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Transient SH waves in dipping layers:

the buried line-source problem

F.Ziegler', Y.-H.Pao? and Y.S. Wang?*
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Abstract. The theory of generalized rays is applied to
analysing transient waves in a layered half-space with
non-parallel interfaces. The propagation, transmission,
reflection and refraction of SH waves generated by a
line source which is buried in the underlying half-space
(bedrock) of a three-layer model is considered, each of
the two overlying layers having a different dip angle.

Generalized ray integrals for multiply refracted rays
are formulated by using three rotated coordinate sys-
tems, one for each interface. Through a series of trans-
formations of the local slowness and the application of
Snell’s law, all ray integrals are expressible in a com-
mon slowness variable. The arrival time of each ray
undergoing multiple transmissions and reflections be-
fore reaching an observation point in the top layer is
then determined from the stationary value of the phase
function with common slowness of the ray integral.
Early arrivals of head waves which follow a ray path
refracted at a fast bottom are calculated from proper
branch points of the Cagniard mapping. Inverse Lap-
lace transformation of these ray integrals is then com-
pleted by Cagniard’s method.

Key words: Cylindrical waves - Ray integrals - Ray
sorting - Arrival times - Head waves - Divergence
effect - Synthetic seismograms

Introduction

Recently the theory of generalized ray integrals, orig-
inally developed for layered media with parallel sur-
faces (see e.g. Miiller, 1968a,b,c; Wiggins and Helm-
berger, 1974; Pao and Gajewski, 1977; Kennett, 1980;
and, for a comparison with other theories, Aki and
Richards, 1980), was extended to account for a single
dipping layer by Ishii and Ellis (1970a,b) and Hong
and Helmberger (1977). They showed that the exact
solution of SH waves in a wedge (Hudson, 1963) can be
expanded into a series of integrals. One of them repre-
sents the radiation from the apex of the wedge and the
others can be identified as generalized ray integrals,
representing cylindrical waves which are multiply re-
flected between two plane nonparallel surfaces. These

* On leave from Hunan University, China
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ray integrals are then evaluated by applying the
Cagniard-de Hoop method and by using a first motion
approximation.

Pao and Ziegler (1982) have shown that by express-
ing the SH-source ray integral in two systems of ro-
tated coordinates, one for each of the two nonparallel
surfaces, one can construct successively the ray inte-
grals for multi-reflected waves within the wedge. A
comparison with the method of images has been in-
cluded as far as direct rays are concerned. Their ap-
proach was recently generalized to a multilayered me-
dium, Ziegler and Pao (1985), when the line source and
the receiver are located in the surface layer.

A report on related site effects has been given by
Porceski (1969) and model seismic experiments are de-
scribed in Drimmel et al. (1973) and in the dissertation
by Wiedmann (1983).

We consider a three-layered medium, each of the
overlying layers having a different dip angle and non-
common apexes. A line source which generates a tran-
sient SH wave is placed beneath the two top layers.
The observational station can be anywhere in the me-
dium, but our interest is confined mainly to that in the
surface layer or on the top surface.

Waves emitted by the line source which are incident
at the lowest interface (3), see Fig. 1, are represented by
@inc(X, 1), the transmitted waves in layer 2 will be de-
noted ¥(x,t) and those further transmitted to the top
layer 1 are denoted ¢(x,t). For SH waves in solids, ¢
or y is the displacement component in the direction of
the line source. In a fluid medium, ¢ or ¥ is the wave
potential, the gradient of which is the velocity. The
Laplace-transformed wave potentials are denoted by
¢(x,s) and Y(x,s). They are solutions to the homo-
geneous reduced wave equations, except ¢;,.(X, s) which
satisfies the inhomogeneous Helmholtz equation
V2hie—b2s>di=—b*f(s)0(x)0(z — z,),
where V2=02/0x%+0%/0z% and b=c3"' is the slowness
(reciprocal of wave speed) of the underlying half-space
and f'(s) the Laplace transform of the time function f(¢)
of the line source which is located at x=0, z=z,.

In the following section we construct the general-
ized ray integrals of the waves transmitted through
interface (3) into the intermediate layer2 from the
Weyl-Sommerfeld integral representation of the incident
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wave ¢;,.(x, s). These waves are multiply reflected with-
in layer2 as well as refracted back to the underlying
half-space and partially transmitted to the surface
layer 1. Multiple reflections of waves transmitted to the
top layer are considered in a subsequent section, fol-
lowed by a discussion of higher order wave trains with
more than two transmissions and propagating towards
the receiver station in the surface layer.

Application of Cagniard’s method (1962) to the in-
verse Laplace transformation of these ray integrals is
then briefly discussed. Special attention is given to the
calculation of the stationary point of the phase function
and the branch points of the common slowness variable
for all rays. The former yields the arrival time of direct
rays and the latter is connected with head waves of
refracted rays. Receiver stations are assumed at down-
dip und up-dip locations.

Synthetic seismograms at those observational points
located at the free surface are presented for the sim-
plified case of one dipping top layer and a triangular
source time function of a single pulse, thus the ap-
parent source ray is transmitted only once through the
interface before reaching the receiver. A comparative
study is made to the signals arriving at the surface of a
half-space with a parallel top layer of constant thick-
ness equal to that of the dipping layer at source lo-
cation. The final section contains the conclusions.

Source ray and transmission into the intermediate layer 2

The configuration of the three-layer half-space is shown
in Fig. 1, together with three coordinate systems rotated
about the common epicentral origin 0. Interface (2) is
inclined against the free surface (1) by angle o and
interface (3) is inclined against (2) by angle f and,
therefore, by y=(a+ f) against the top surface.

Material of the surface layer has shear modulus g,
slowness a=c~' and vertical thickness h measured
along the z-axis through source point S. Material of
layer 2 or 3 has shear modulus u: (j=2, 3) and slowness
a,=c;', b=as;=c3"'. The vertical thlckness along the z-
axis of the intermediate layer 2 is h,.

The axes parallel to the 1nterfaces (1), (2) and (3) are
denoted x, x' and x”, respectively. A line source S is
located in the underlylng half-space 3 at depth z,>H,
measured from the free surface (1), and H=h+h,. The
final position of the observation point (x,z) will be in
the top layer and a ray path from the source to the
receiver passes through all three layers.

The equation of each plane surface is:

Free surface (1):
Interface (2)
Interface (3):

z=z,=0
Z'=z),=hcosa=x,sina
Hcosy, H=h+h,, y=a+p.
(1)
We shall use the tip-distance measured along in-
terface (2)
"=(h/sin o) — h, cos y/sin f3, 2)

see Fig. 1, and

Z'=z=

Xg= —hsiny+h, cosy cos /sin 5, A3)

to be convenient geometric parameters.
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Fig.1. Geometry of a half-space with two dipping layers.
Source S located in the bedrock 3 at x=0 and z=z,>H, H
=h+h,. Also shown are: the source ray ¢,,., a direct ray
path y;, j=3, in the intermediate layer2 and two apparent
source rays in the surface layer, ¢,, and ¢,,. V... Obser-
vation stations on top surface, O ... epicentre, 1 and 2 down-

dip locations, 3 up-dip location

The angles « and f are positive when rotated clock-
wise, negative when rotated counter-clockwise. At z=z,
=0, the shear stress (or pressure for a fluid medium)
vanishes. At both interfaces, the stress and displace-
ment (or velocity) are continuous and Hooke’s law
applies to all three layers.

The source ray

The Weyl-Sommerfeld integral representation of the
Laplace-transformed displacement for the waves ra-
diated by the line source into infinite homogeneous
and isotropic space is (Aki and Richards, 1980, Chap-
ter 6)

Fucl)=F(5) | SE)eeae" @
where -
Fs)=b2f (5/4r,
SE)=1/r  y=b>+E )

and the phase function becomes, noting the source lo-
cation in doubly primed coordinates,

g(f")=ig"(x" —zo siny) —

We call ¢, . the source ray and F(s)S({”) the source
function. The variable of integration, £”, is the apparent
slowness of waves in the x”-direction, y that along the
z"-axis. The phase function shows the projections of the
source ray to a receiver station at the point (x”,z") in
bedrock in the x”- and z"-directions.

The source ray, when incident at interface (3), is
subject to partial reflection and transmission into layer
2. The transmitted ray which may be called an ap-
parent source ray in the intermediate layer 2 is given by
the generalized ray integral

%12z cos yl. (6)

Fo©)=F(9) | So(@)e™ede”, )

where we changed the source function S(£”) of the
incident source ray to the apparent source function of



the transmitted ray
5o(&)=S8(&") T (&), @®)

by multiplying with the transmission coefficient of
plane SH waves,

TO=2p3x/(usx+1200),  Lo=(a3+&"?)2 ©

Also, the phase function is changed according to the
phase contribution of the incident source ray,
g(&", x4, z3), to a point of refraction at interface (3), say
(x5,2%), and the phase of the emanating ray to an
observation point (x”, z”) within layer 2, z”’ <z}, Fig. 1,

ho(&) =&, X3 25) +iE' ' =X+ G =25, (10)

Since Snell’s law applies to transmission, the apparent
slowness £” is common and the unknown coordinate x’;
cancels. Hence,

ho(E")= —i8"z, siny — y(zy— H) cos y
,(;Zg‘i‘lé” "+C” //. (11)

The apparent source ray v, is incident at interface
(2) and subject to reflection and to transmission into
the top layer. The refraction should be formulated in
primed coordinates. Therefore, we transform the phase
function h,(¢") to primed coordinates where, in matrix
notation,

cos sin
x//=D2xl’ D2= ( ; B ﬂ),
—sinf cosf (12)
XIT=(xI, ZI), xl/Tz(x//’ Z”
is to be substituted and require the phase of the ray to
be invariant under coordinate rotation through the
angle f:

h(Zo)=h(l")= —il"z,siny —X(Zo —H)cosy

— {2y +ilyx' + {2 (13)

where the pair of apparent slownesses of the ray in
primed coordinates is derived from the doubly primed
pair of apparent slownesses in the doubly primed coor-
dinates by the transformation

ol =00, &y =(i&o, L) (14)

where (g is the irreducible radical of Eq. (9).

Hence, the transformed phase function h(&') still
contains the same number of two radicals as h(&”),
namely y and (;, which are apparent slownesses of the
transmitted ray path in the z'-direction in the two
media with common interface (3).

We consider multiple reflections within layer 2 first.

' T __ g T
0 _60 DZ’

Reflections within the intermediate layer 2

The apparent source ray Y, is subject to partial re-
flection at interface (2) and the reflected cylindrical
wave is given by the generalized ray integral

Vi()=F(s) Ofo So(€")RP(&)e e ae” (15)
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where, [=1 above,

RP(E)=[—pmi+ 01/ Tum+ 1, 1, (16)

is the reflection coefficient of plane waves at interface
(2). Expressed in the local apparent slowness in the
primed coordinates:

m=(a’+¢&?)'"? (17)

is an irreducible radical and {;=}/(a%+¢&*) may be
reduced to the pair_of slownesses ¢” and (; of the
apparent source ray ¥, cf. Eq. (21).

The phase function is changed according to the
superposition, z' >z},

hy (€ =hy(ED=h(E, x3, 25) +ily (X' —x5) = {1 (2 = 23), s

where the unknown coordinate x’, of the point of re-
flection at interface (2) cancels, since Snell’s law holds,
see Fig. 1,

&=¢. (19)

Hence, the phase function of the once-transmitted and
once-reflected ray becomes

hy (&)= —il"z,siny—x(zo— H) cosy— ({2}

+25(l+ ) +ig X' = (4 2, (20)
where, Eq. (14),
T=ET=&"D,, 1)

and (x’, z') is an observational point in layer 2.
Requiring invariance of phase of this reflected ray
under coordinate rotation through the angle f,
iéll x/ —_ ZI — l éli I/ // II, (22)
the constant part remains unaffected, the phase func-
tion can be expressed in doubly primed coordinates,
thereby preparing it for the next reflection to take place
at interface (3):

hy (&)= —i&"zysiny — y(zo—H) cos y — {323
+22(C0+C )+l£// II I/ZII, (23)

where

T=8T=47D,=¢"D}. 24
The transformation shows both the diverging effect on
a ray pointing down-dip, £“>0, and the steepening
effect during reflection at interface (2) for a ray pointing
up-dip, &"” <0.

Partial reflection at interface (3) renders the ray 1//2
in layer 2 and the generalized ray integral becomes

¥,(s)=F(s) °f So(EYRP(EDR 5)(Ey) e d e, (25)

The reflection coefficient at interface (3) expressed in
local slowness &7, j=2 above, is given by

R(3)(€}’)=(/‘2 C},_I‘L3Xj)/(:u2 C},‘f‘ﬂs)(j), (26)
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where
x=0b2+ &2 (27)

denotes an irreducible radical and ;' =}/(a3+¢;'?) can
be reduced together with &7, cf. Eq. (24) for j=1 and
see Eq. (35).

The phase function

ha(E)=hy (&L X5, 2 +iG =X+ E 25 (28)
becomes, under Snell’s condition, &;=¢], and after the
cancellation of the unknown coordinate x’ of the point
of reflection at interface (3), see Fig. 2,

hy (&)= —i&"zysiny —x(zo —H) cosy —25({o +{; +{3)"

+ 25l + ) +igsx" + 52" (29)

A transformation to primed coordinates leaves the con-
stant part unchanged and renders
iEx"+ 052" =&, x' + {57, (30)
where the pair of local apparent slowness in primed
coordinates of the last ray segment is transformed ac-
cording to

2 =¢&"D,=¢"Dj. (€)Y

Hence, the cylindrical wave with a ray path showing
one transmission and j reflections within layer2 is
given by inference through the generalized ray integral

Uis)=F(s) | So(&)M,emde". (32)

The product of reflection coefficients is expressed in
local apparent slowness in the x'- and x"-axis, respec-
tively, and is given for an even-numbered ray which is
subject to partial transmission into the top layer by

;=R (&))R (3 RP(E5) ... R3)(&)): (33)

The phase function expressed in terms of local slow-
ness is

j
hi(&")= —il"zysiny —yx(zo— H) cosy—zj Z &
1=0
ji—1
+2, Y (4i&x' + iz, j(zero, even), (34)
1=0

and the proper pairs of apparent slowness are related
to the pair of slownesses of the apparent source ray ¥,
through

/T _ T _ g Tyl+1
I+17 51 _60 D2 ’
T _ gnT _ gnTyl
T =601=8 D3,

I (even). (395)

Snell’s law is indicated.

The first train of waves in the surface layer 1

The even-numbered rays y; are incident at interface
(2) and are partially transmitted into the top layer,
thereby forming apparent source rays ¢;,. The first
subscript indicates the even number of reflections with-

in layer 2 and the subscript zero identifies the ray to be
just transmitted into the surface layer without further
reverberations. See Fig. 1 for those ray paths with two
transmission and j=2 reflections. The ray ¢,,, there-
fore, denotes the direct ray path from the source to a
receiver in layer 1 without any reflection. The general-
ized ray integral is given by

o) =F) | So&)eso€Ide", j=0.2,4.... (36)

The apparent source function becomes
S0,(&")=50(&N T, T(E)).

when considering the transmission coefficient of plane
waves through interface (2):

TA(E) =2, 0 /luy {4 1161, (37)
where
Njo=(a*+E&2)? (38)

denotes an irreducible radical.

Taking into account that a receiver in the top layer
requires z'<z,, the phase function is expressed in
primed receiver coordinates by

8jo(&")=hy(&), x5, 25) + (X" — x) + 1o (2 — 25) (39)

and, since the unknown coordinate of transmission x’,
cancels, we have in (x, z)-coordinates of the observation
point in the top layer,

j
gio(&")=—i&"zosiny—x(zo— H) cosy—z§ DR
1=0
J
+2) (Z C;_”}o)"‘ifjox""?jozs (40)
1=0

where the proper pair of slownesses of the apparent
source ray in unprimed coordinates is changed accord-
ing to invariance of phase under coordinate rotation
through the angle a
18X +nj0z =i&;x+n;02. (41)
Hence, in analogy to Eqgs. (14) and (12)

sin oc)
—sina  cosa/’
§;€=(lf;, ;1}0)’ éjo = (iéj, 71j0)-

In the following subsection we study the generalized
ray integral of a ray ¢; undergoing q successive re-
flections within the top layer.

COoSs o
T _gT
T, =D, D—(

42
x' =Dx, “42)

The ray ¢_>jq of the first wave train

According to the changes of the generalized ray inte-

grals of the apparent source ray y, to the ray with (j
+1) reverberations ;, we substitute the product of
reflection coefficients

;= R“)(éjl)R(Z)(é;'z)R(“(éJB)
<R‘”(é ), a(odd)

43
R, (&5, ql(even) (43)



AN

S 9

Fig. 2. Direct ray path from source S to observation station
(x, 2), gb of first train of waves in surface layer 1. The ray
shown is. j=2,q9=2

where R, = —R', and change the phase of the ap-
parent source ray ¢,o to

8;(&")=—il"zy8iny —x(zo— H) cos y—zj z &

+z;[z =) n}z]+i€,~q><+(—1)“zn,~q, (44)
1=0 1=0

where g*=gq (even) and g*=¢g—1 when ¢ is odd and,
hence, find the generalized ray integral

j=0,2,4....

Gl =F () | Soy(&) T, &80 de",
o 43)

We note the transformations of proper slowness pairs
within layer 1, see Fig. 2,

El=&i_y=¢oD',  I(even) (46)
1, =&¢D1*, g (even). 47)

J(q+1)

Elimination of the local slowness in Eq.(44) and noting
the finite sums

2 Jf sin(21—1)f=(1—cosjp)/sin B
2 Jf cos(21—1)B=sinjf/sin B, (48)

renders the final form of the phase function in a matrix
multiplicative form

guT "

where slowness vectors of apparent source rays are
related to £, the integration variable,

81alx,2, &)= —&TDIITA +EIDT X, (49)

ET=¢" ), &T=0G&"L0), &o=0E&,m), (50)
and

x=b2+ V2 i=(@3+ &2 nie=@"+&H',
i&=E"DLT, TT=(1,0)- (51)

The point vectors are conveniently defined by
xISIT - [(x((; + 29 sin y)’ (ZO - H) cos y]s
Xg=2Xq cosy—d cosf, (52)
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(2)

(3)

Fig. 3. Direct ray path from source S to observation station
(x,2), ¢;,pn Of second train of waves in surface layer 1. The
ray shown is j=2,q9=1,p=1,n=1

d’ of Eq. (2) and
xT=[(x+x,), —&z]. (53)

The exponent g* equals g(even) with direction factor ¢
= —1 and equals (g—1) when q is odd, e= + 1.

The second train of waves in the top layer 1

In Fig. 3 we show the ray path of a ray qSJ 4pn With a last
segment in layer 1 which is a result of partial trans-
mission of the ray ¢, > J(z€r0, even), q(odd) through
interface (2) and, after (p+1) reverberations within the
intermediate layer 2, is further transmitted upwards
through interface (2) p(odd). The last index n gives the
number of successive reflections considered in the top
layer before reaching the observation station (x, z).
Considering V;,, as an apparent source ray in layer 2,
pointing downward see Fig. 3, and d) o as the ap-
parent source ray of the second train of waves in the
surface layer 1, we find the generalized ray integral

(;qup,,(s)=13(s) j Sojqp(f”)qupneséffqpn(é”)déu,

j=0,2,4..., q=1,3,5...,

p=1,3,5..., (54)
where
Sosar(€)=Sol& ) I T E) L, Ty €5 110, T2(E,) (59)

denotes the apparent source function of the second
train of waves in layer 1, and the transmission coef-
ficient from the top layer to the intermediate layer 2
becomes

Ty (&) =2um;/Tung+ 15 Cig0]- (56)
(go=(az+&D% (57)
is an irreducible radical. Since the (j+ 1) reverberations
in layer2 are subsequently followed by further p re-

flections within the same intermediate layer 2, the pro-
duct of reflection coefficients is

14, =Ri3)(€jg) RP(Ega) - Ris) (&)

Similarly, we consider n subsequent reflections in the
top layer, hence,

p(odd) (58)
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1,0 =RM (051 R 2)(&lgp2)
<R<1>(¢jqpn), n(odd)
“\Ris(Egpe).  nleven)

Analogous to Eq. (49), the phase function has the final
form

8iapn(€s X, 2)= — & Txg —[E7 DY — & D!
+ETLDITd +&T D" x,  (60)

jq0 jap0

(59)

where n* equals n(even) and n*=n—1 when n is odd.
It contains five irreducible radicals

(=07 +&7), G=(a3+ 87",
Mio=@>+&ME, o=(a5+&0),
"I;’qpo = (a2 + 5.’1?“?)%’ (61)

and the local slownesses are expressed in terms of the
integration variable &’ by successive transformations:

gl =&, L) =ET, D5, p(odd) (62)
{igo=(a? +E2)2,

&a =0, M) =8;xD* Y, q(odd) (63)
Mo=(a? + &)

ET=(i&, {)=ET D, j(even) (64)

=@+,

Furthermore, we have the pairs of transformations,
including Snell’s law:

in layer 1
Tan="Clapon— 1= Erapo D" n(odd) (65)
iapis n=Cgp=Ciapo D', I(odd) (66)

where apparent source ray slowness is expressed in
terms of & by
;ZPO =( é;'qp’ n;‘lIJO)’ 17;'1“10 =(a2 + é;’gp)uz’
ij4p=8jq0 D5 T
={[G", (DI T, o] DT, (o} DEFIT. (67)

Wave trains in the surface layer of order higher
than two are constructed in much the same manner in
which Eq. (45) was changed to Eq. (54) and are not
recorded here.

In the following section we consider the inverse
Laplace transform of the generalized ray integrals and
discuss the arrival times of individual direct and re-
fracted rays.

Inverse Laplace transform of generalized ray integrals

The generalized ray integrals of wave trains of first and
second order observed in layer 1 are given by Egs. (45)
and (54) in terms of the Laplace-transformed displace-
ments:

¢, ()=F() | So; (&), e*-C7ae". (68)

The integration can be broken into two parts and from
the complex conjugate properties of the reflection and

transmission coefficients we can show that
¢;..()=2F(s)Re [ So; (£, e®-0dE", (69)
0

where Re denotes “the real part of”.
In the method of Cagniard (1962) the phase func-
tion is changed to ¢ by the mapping

(=g (&) (70

and the integration over the real variable £” is extended
to the complex &’-plane. Assume that ¢ is real and the
inverse mapping exists,

&=8"=g; 1. (71)

The ray integral is transformed to

5,..)=2F()Re | {So,-.,.[rf"(t)] 1, %}e-“dt, (12)
where !
tA=[_gj...(éN)]§”_—.0' (73)

When f(s)=1 in Eq. (5), the inverse Laplace transform
of ¢(s) is

¢} (=0*2m)H(t—t,) Re {So,'... (& w1, %E}- (74)

H(t—t,) is the Heaviside step function, vanishing when
t<t,. The inverse Laplace transform is thus accom-
plished by “inspection”.

For a general time function f(t), the result is ob-
tained by convolution and the integration may be
changed to one over &”:

$;..0=b*2mHt—t) [ f(t—7)
0
[Re | So;. (&)1, dE"]dx. (15)
r

The integration contour I' in the £”’-plane, the portion
OM is along the imaginary £"-axis, is shown in Fig. 4.
The point M is at &"=¢y= +iB,, where B,, is real
and &), is the root of the equation

dt/d¢" =0. (76)

The point &), is a saddle point on the {’-plane and a
stationary point for the phase functions g; . The upper
limit of integration, &’(7), is calculated numerically
from Eq. (71) when t=1. The locus of &’(7) is the
contour I'. Note that the saddle point M can be either
below the lowest branch point of the integrand in Eq.
(75) as shown in Fig.4a or above the lowest branch
point (Fig. 4b).

Once the wave along each ray path is evaluated, the
total response is the summation of rays that have ar-
rived at an observation point (x, z),

PO=2Z¢; () +EZEZPjpnt ... (77)

The first term, j=¢g=0, is the ray from the source to
the receiver, traversing the layers, and the double sum
represents the first train of waves. The second group
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Fig. 4a,b. Cagniard’s contour of integration (I in &’-plane,
with branch cuts in the second quadrant, extends into the
first quadrant. If By, <0, contour I' extends into the fourth
quadrant)

represents waves that are transmitted to the surface
layer, subsequently transmitted to the intermediate
layer 2 and then refracted back to the top layer.

In the following two subsections we derive Eq. (76)
explicitly and discuss proper branch points correspond-
ing to early arrivals of head waves.

Arrival times of direct rays

The stationary point of the phase function is deter-
mined by solving Eq. (76). To calculate the roots, we
must first carry out the differentiation explicitly and
then solve this irrational equation numerically. Once
the roots {"=¢y = +iB,, are found, the value of ¢ at
this stationary pomt is the arrival time of a particular
ray,

—8;.. (&) (78)

We call t,, the arrival time of a direct ray. By direct
ray we mean a ray that is either transmitted or re-
flected at an interface. The case of a refracted ray, a
part of which travels along an interface, is discussed in
the next subsection.

In the following we calculate dt/d&” for the first two
trains of waves in the surface layer.

Differentiation of the phase function, Eq. (49), ren-
ders the equation for é” for the first wave train,

d 1 )
dgg,? AT €D
(C//TD}+1T) /-qu*+1X=0, (79)
jO
where the vectors
=0 —if"), LT=(C5, —i&)
and (80)

which are orthogonal to the corresponding differen-

’

tiated slowness vectors, &", &g, &, respectively, have
been introduced 1n the compact matrix notation. Note

the scalar factor C—(C”TDJZ“T) when differentiating the

higher order slowness vector and the transformation
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Fig. 5. Refracted ray path ¢%,. Refraction of y¥ at fast bot-
tom to interface (3). (No counterpart corresponding to a head
wave travelling up-dip is observed by an up-dip receiver point
under the conditions assumed in the figure)

i&=¢&TDIT: (81)
dg n 1 1" j ’
d'g,f' -~ ——;(c "Dy T)d
(C”TD"Z“T)T(n}%D‘”‘T)d'

’7]0
_T(C“TDHIT) ;o DTT) —
10 quO
(§,qu”“T)d'
g GTDE D) (D)
JO quO
(quODIZH—lT) ’ "JpqODn*+1x 0 (82)
jap0

where the additional higher order vectors

C}ZO=(C;’qO’ _li;q)

and (83)
— ik

which are orthogonal to &, and &, ,,, respectively,
enter through differentiation. Slownesses are related to
source ray slowness by

i, =EID T=(& "D T. ) DT,

léjqp éJqODp+ 'T
=[(§s DL T, 7o) DT, (o 1D5 ' T. (84)

/T __ (.
Mjapo —("iqpo’

Arrival times of refracted rays

We assume layers with increasing slowness, b<a,<a.
Since refraction occurs only during critical reflection at
a fast bottom, the lowest order refracted ray is y¥%, see
Fig. 5, when the once-transmitted ray y, after reflection
at interface (2), ¥, is incident under critical angle con-
dition, 6/ =sin"'(b/a,), at interface (3). A portion of the
refracted ray coincides with interface (3) and the last
two segments to an observation point in layer 1 are
under critical angle condition, 0, and 6,=sin""(a,/a)
is changed to 6, due to the divergence through the
angle .

We calculate early arrival times of head waves from
the branch points
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x
(1

(2)

(3)

Fig. 6. Refracted ray path ¢%,. Refraction of ¢,, at fast
bottom to interface (2). First train of waves in surface layer

&'=+,ib, x;=0. (85)

The location in the £”-plane is calculated by solving the
equations

ET=E"Di=—b(1, —k,),

a% 1/2 )
Ky= (35— ) ,real  j(even). (86)
Hence,

&' =—b()1, —k,)(DYT  j(even) 87
determines the branch point which may fall below the
stationary point. The minus sign (—) applies to the ray
j=1 only when incident under critical angle condition
and y% renders a head wave propagating up-dip in the
intermediate layer 2.

Head waves of the first train of waves propagating
in the surface layer are given by rays ¢% refracted at
interface (2), Fig. 6.

The location of the branch points

&,=tia,, (=0 (88)

in the ¢’-plane are calculated by successive solution of
the equations

1/2
g =EIDI= —a,(l, —x), K=(:_2—1) ,real,  (89)
2
&' =8 Dy (90)

to be at
gio=—a,(1, —x)(DYT, &= —a,(1, —x)(DY)'T,
=3+ & =gMD5T, ié”=§}T(D§+1)TT(.91)

Head waves in the second train of waves may travel
in the intermediate layer 2, the branch points being

iap=rib, ¥, =0, %2)

or in the surface layer. Refraction of the ray ¢
interface (2) is given by the branch points

Ciapn=0- 93)

The locations in the &”-plane are found by successive
solutions of proper transformation equations: For even
Jj we have

"=¢&[cos(+1) =)/ (iay/E)* — 1 sin(j+1)B], %4)

*
Jqpn at

, .
éjqpn___(i)laZ)

“silent cone"
———

Fig.7. Refracted ray path ¢%* corresponding to backscatter-
ing of an up-dip travelling head wave y¥. Note the steepening
effect in the direct ray path shown in the surface layer 1

where, in the case of refraction at interface (3),

&=ib[(*,cospf—1/(a,/b)*—1sinpp] {cos(q+1)a
—]/[a/a3(( +,cospB—1/(ay/b)>—1sinpp)]*—1sin(q+1)a}.
93)

In the case of refraction at interface (2) the local
slowness to be inserted in Eq. (94) becomes

&= ¢jg[cos (q+a—1/(a/¢),) ~1sin(g+1)al,  (96)
where, with p (odd)

&,=& . lcos(p+1)p—1/(iay/&, )2 —1sin(p+1)f]  (97)

and with n(even)

& p=1ia, [t cosna—7/(ajay)*—1 sinnal. (98)

All radicals are assumed real and the branch points
located on the imaginary &”-axis may fall below the
stationary point M, indicating the early arrival of the
head wave. The arrival time is calculated by substitut-
ing & of the branch point into Eq. (70).

Observation stations receiving those head waves
with a last segment under critical angle condition must
be located outside the “silent cone” defined by the
conditions

dt dt
%>O, d—az>0‘ (99)

Up-dip travelling head waves, corresponding to
branch points like /= —ib or {}; = —ia,, are subject
to backscattering due to the steepening effect of the
wedge. A delayed signal, corresponding to a ray path
with incident segment under critical angle condition
followed by a ray portion coinciding with the proper
interface and a subsequent direct ray path to the obser-
vational point, is also received within the silent cone,
see Fig. 7.

Numerical results: One dipping layer

We omit the intermediate layer and take the limit
h,—0 and f—0 in Eq. (45). The ray integrals of dis-
placement V become

(100)

V(s)=F(s) [ So(&), ez de.

I,, is given by Eq. (43) and S,=ST®(¢). The phase
function after g reverberations is given in the limit of
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Fig. 9. Parallel surface layer, «=0° Source location in (fast) Fig. 10. Signals observed at the free surface of a dipping layer,
bedrock at z,=1.5h. Observational point at free surface, epi- a=20° Epicentral distances are: x=0 (epicentre) ——, x
central distance x=|4h|. Triangular source time function: 24 =—h..,x=h—-——,x=4h — — — — .Sourcelocationinbed-
=24 rock, zo=1.5h
Eg. (49) 401
80,(&)=—ETDx+E DT x, X =(xo, z,) (101) 3.0
with the newly defined slowness vectors i’ <201
X}
ET=(E.0), ET=GE )., =0+ EH, |5 10
o=(a*+&?)!2. (102)
For convenience of integrations in the &-plane, we 0
calculate the response to a source time function of 0. t
triangular shape of duration 24, with equal rise and fall o ah
time A, when the line source is located at x=0, z,  Fig.11. Signals observed at the free surface of a parallel layer,
=1.5h. Observational points are situated on the free =~ a=0°. Epicentral distances are: x=0 (epicentre) ——, x=|h| -
surface at epicentral distances x=4h, +h, respectively. -- x=[4h| ------- . Source location in bedrock, zo=1.5h

Material properties of the layer and the underlying
bedrock are a=c '=1, a,=c;'=1/)/2, p,/p=1. Dip-
ping angle a=20° (x=0° in the parallel layer case).
Individual and summed ray integrals are shown in
Figs.8 and 9. The pulse récorded in the parallel layer
case of Fig.9 is much smoother in the less peaked
source ray at early times as well as in the tail at later
times. Thus Fig. 8, indicating higher accelerations in the
seismogram on top of an inclined layer with arrival of
a head wave, contributes to the understanding of high
damage records of the Skopje (1963) earthquake for
structures above sloping parts of the interface, reported
by Porceski (1969). Note that only a finite number of
rays arrive at a fixed receiver in the dipping layer case.

There are two direct rays and a returning and refracted
ray shown in Fig. 8a-c, respectively. Within the record-
ing time of Fig.9 there are also three rays observed,
but they are all direct rays. Individual ray signals arriv-
ing at later times in the parallel layer case are all
weakened by transmission of energy through interface
(2). Figures 10 and 11 clearly show the inclination effect
and the asymmetry in the synthetic seismograms re-
corded at x= +h. Amplification effects and compara-
tively higher accelerations are much more pronounced
at larger down-dip distances of the observation points.
Note the critical angle of incidence, at the interface to
the fast bedrock, to be 45°.
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Conclusions

Cylindrical waves emitted by a non-stationary line
source located in bedrock and transmitted through two
dipping layers several times up and down, with an
arbitrary number of subsequent reflections within those
layers considered between transmission, are described
in closed form by generalized ray integrals. Through
proper transformations of local slowness vectors by
rotational matrices, the ray integrals are put in a form
suitable for the application of the Cagniard technique.
Thus, inversion of the Laplace-transformed solution is
the same as in the parallel layer case; hence, becomes a
standard procedure. Contrary to the parallel layer case,
the number of ray integrals received at a fixed point of
observation becomes finite. Generalization of the
analytical part of the solution to a multi-layered con-
figuration is rather simple, as long as the source re-
mains in the underlying bedrock.

Divergence effects of a single dipping layer on syn-
thetic seismograms, observed at receivers at the free
surface of the half-space, are studied by comparison of
individual and summed ray signals to those of the
parallel layer case; equal thickness of the layers is
understood at source location. Integration in the source
ray slowness plane is performed by Gaussian quadra-
ture in both cases, thus the standard procedure of the
parallel layer case is directly applicable. A triangular
source time shape function was chosen to save com-
puter time on the convolution integrals.

The number of ray integrals to be evaluated in the
multi-layered case is dramatically increased together
with computer time required for numerical integration.
Thus, numerical results had to be restricted to one
layer only. The variation of locations of the obser-
vational point on top of the half-space and the amplifi-
cation and increased unevenness of the records ob-
served give a quantitative interpretation of damage
results reported on structures above dipping parts of
an interface in the Skopje (1963) earthquake, where a
single layer has been reported.
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