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Abstract. In this work we discuss the problems of
applying dynamic inversion methods in seismic explo-
ration. The linearized inversion methods, rapidly devel-
oped in recent years, are still of very limited practical
use. This is associated particularly with the presence, in
real data, of powerful regular-noise background which
is neglected in linearized solutions. At the same time,
the usual treatment by the CDP-migration does not
provide the required quality in images of seismic sec-
tions in complicated situations, particularly in the case
of a 3-D strongly inhomogeneous structure of a me-
dium.

The proposed method of imaging consists in reduc-
ing the inverse dynamic problem in its classical state-
ment to a problem of reconstructing the stable func-
tionals of the velocity structure of a medium, i.e. the
dynamic images of its inhomogeneities. The relative
redundancy of multifold seismic observation systems is
used for dynamic filtration of regular noise. If a me-
dium is complex-structured, the physical parameters of
the equation of the useful part of the field are corrected
in the process of treatment. The imaging transfor-
mations are supplemented here with specific continua-
tion of the field in the inhomogeneous medium. The
practical treatment is interactive. In connection with
3-D inverse dynamic imaging it is sufficient to observe
the field, using an areal system of parallel profiles of
multifold coverage.

Key words: Seismic image inversion — Double wave
migration — Weighted spatial-frequency stacking

Introduction

At the present time, common-depth-point (CDP) and
wave migration methods are most widely used for pro-
cessing and interpretation of wave fields. However, re-
cently in seismic exploration problems have arisen that
extend beyond the limits of these seismic data process-
ing methods. These are problems of seismic stratig-
raphy, problems of searching for geological structures
in complicated spatial-configuration regions, etc. Kine-
matic simplification of schemes defining useful waves,
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representation of an inhomogeneous medium by aver-
age-velocity models and other assumptions used in the
CDP-migration methods may, more often than not,
substantially distort results of processing.

The most complete and exact information on physi-
cal characteristics of inhomogeneous media can be pro-
vided by solving inverse dynamic problems in general
formulation. Here we mean problems of defining vari-
able coefficients (physical parameters of a medium) in
differential equations according to wavefields described
by these equations. Theory and methods of numerical
solution of such problems developed up till now, and
results obtained, allow us to firmly restore the structure
of vertically inhomogeneous media (Alekseev, 1967;
Alekseev and Dobrinsky, 1975). An important issue
which remains to be considered is the development of
methods for multidimensional inverse dynamic prob-
lems and the applicability of corresponding transfor-
mations in real data processing. A serious handicap,
besides the mathematical difficulties, remains in the
rigid requirements of acceptable models of 2-D and 3-D
media to details of observations and accuracy of dy-
namic wavefield recordings.

The theory of solving inverse dynamic problems
admits the presence of irregular noise in the initial
data. It is assumed that minimization of discrepancies
between an observed and calculated field (using an
iterative method), in the case of a unique solution of
the inverse problem, is a sufficient condition to find an
acceptable solution (Aki and Richards, 1980). However,
if the equations used are inadequate for real fields the
solutions thus obtained can intrinsically differ from real
ones, even if there is negligible irregular noise. This is
because part of the recorded waves turns into the ca-
tegory of regular noise, not taken into account in the
solution, which is the cause of incorrectness of the
inversion. An example of incorrectness is the use of
exact algorithms of acoustic inversion for processing an
elastic wavefield. Obviously, minimization of discrepan-
cies between values of the simulated acoustic field and
the recorded elastic wavefield is not sufficient for the
acoustic solutions to converge to some approximate
values of the parameters of an elastic medium. Realistic
seismic fields can be appreciably affected by imperfect
elasticity, porosity, anisotropy and other physical prop-
erties of rocks. Disregarding the wave phenomena in-
volved can also be the cause of incorrectness of exact



solutions of inverse problems for the Lamé equations
describing the seismic fields.

Approaches to the solution of dynamic problems
in seismic exploration

We will consider schematically how a problem of wave-
noise filtration in seismic exploration is solved from the
point of view of inverse problems.

Let the observed field U=Lv be described as the
sum

U=U,+U,=Lyvo+L,v,,

where L, L, are, respectively, operators of a full (re-
alistic) and particular (simulated) solution of the for-
ward dynamic problem; v and v, are physical parame-
ters of the realistic and model medium, respectively; U,
=L, v, is the part of the observed field considered to
be noise. We assume that an inverse operator Ly! of
the simulated problem is constructed which is stable
with respect to irregular noise and such that Lg'U,
=v,. Applying it to the field U=U,+ U, will yield a
distorted solution if, in the domain of definition of v,,
the values ||Lg'U,|=|Lgy"'L,v,|l (i.e. the result of its
influence on the field of regular noise) are comparable
to or exceed the values of [|vy] in some norm. Assume
that there exist filtering operators M reducing the re-
corded field U to MU=U,+¢, so that U,~L,v,,
where L, is the operator of some special solution of the
forward problem (in the general case, L, can be dif-
ferent from L,). To filter out the regular noise-field and
find v,, it is necessary to find operators M and L’
such that L,'MU=v,+L;'¢, and, in the chosen
norm, ||vyll> | L, ¢,ll. Typical of this statement is that
under special filtration of the observed field the inverse
problem can be posed for an equation that is more
easily handled than the initial (model) one (Alekseev,
1967). When part of the regular noise-field has charac-
teristics which differ only slightly from those of the
useful field, full filtration of noise may prove imprac-
ticable. In this case transformation of M and L' will
lead to reconstruction of some functionals c(v) of the
realistic physical parameters of a medium. Though they
do not imply an exact solution to the inverse problem
the information about the medium carried by them
may be of great importance in seismic prospecting.

An example of an extremely simple implementation
of this approach can be CDP-migration processing.
When seismograms are processed by the CDP method
one usually classifies multiple, surface and, sometimes,
converted waves as noise. CDP transforms, based on
simple kinematic schemes, are used to process a full
dynamic wavefield, i.e. the method is not purely kine-
matic. Filtration of the regular noise-field by stacking
of seismograms along CDP time-distance curves is
made possible due to redundancy of multifold obser-
vation systems (standard seismic exploration systems).
For example, the 2D CDP section U,(l1)
=McppU(xq, x,t) is formed from the field U(x,, x, t)
(recorded on a profile line), dependent on three vari-
ables (here M pp is a CDP-stacking operator). The
redundancy is used to stack the signal component of
the field and to suppress the part of irregular wave
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noise whose kinematics is different from that of useful
waves. However, the kinematic simplification of the
CDP scheme often gives rise to a dynamic distortion of
useful reflections on CDP sections. Besides, the size of
the common reflection element is fairly small only for
an insignificant dip of the reflecting boundaries. With
the increase of the dip of the boundaries, dynamic
distortion intensifies and the locality property of CDP
sections is lost.

In further treatment of seismic data, the CDP sec-
tions are assumed to be a filtered field of primary
reflected waves (to be recorded at points of wave exci-
tation) against remaining noise background. In migrat-
ing the CDP sections they are taken to be the result of
radiation of secondary wave sources distributed along
reflecting boundaries. The inverse problem of migration
usually reduces to determining values of the field at the
moment t=0 when these secondary radiations are “tur-
ned on”. This allows one to obtain an image of the
inhomogeneities of the medium, i.e. to image it. As
shown by Alekseev and Tsybul’chik (1978), there is a
certain connection between problems of imaging the
structure of a medium and inverse problems of wave
theory. So far an obvious correspondence between
them has been found only in the case of simple models
of a medium. Nevertheless, from our experience with
using the CDP-migration methods it may be presumed
that constructive approaches being employed in seismic
exploration can be helpful in developing approximate
methods for inverse dynamic problems.

By means of CDP-migration methods the inverse
problem to determine elastic parameters of an inhomo-
geneous medium reduces, in fact, to simple problems of
multidimensional filtration (stacking) of the field and to
the subsequent reconstruction of special functionals of
its structure (seismic sections). Methods of calculation
of “velocity spectra” make it possible to determine also
the mean (effective) velocity of wave propagation in a
layered medium. Moreover, correlation between pecu-
liarities of the pattern of stacking sections and the
geology of sedimentary rocks is observed. Therefore,
the formulation and solution of a more general prob-
lem, an inverse dynamic problem of reconstruction of
multidimensional functional-images of complexly struc-
tured media, on the basis of actual wavefields of redun-
dant observation systems is of theoretical and practical
interest.

The imaging dynamic inversion

We will describe the propagation of waves in a spa-
tially inhomogeneous medium by the equation

1
AU ~Z® U,=—0(R—=Ry)f(t);

1
R"—‘(X, Y, Z)» ROZ(XO’yO’ZO)’ ( )
where v(R) is the wave propagation velocity, f(t) is the
form of the wave radiated by the wave source [ f(t)=0
for t<0] which may be at any present point R,. Let
the velocity v(R) take on a constant value v, outside
some inhomogeneous restricted domain D. Having per-
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formed a Fourier transform over t, we give the result-
ing Helmholtz equation in the equivalent integral form:

e~ kIR=Ro|
U(R, Ro,k)=d5(kl)0)4—n—m
k2 e—ik]ll—lhl
——(3R)UR,, Ry, k)———dR,.
47[ iv( 1) ( 1> 520> ) |R—R1] 1

@)

Here ®(w)=F[f(t)] is the spectrum of the wave, k
=w/v, is the wavenumber, #(R)=1-0v3/v*(R) is the
function of relative velocity variations in a medium,
dR,=dx,dy,dz,.

Let there be on the plane z=0 a recorded field,
excited on z,=const. by independent sources. The in-
homogeneous domain D lies below the planes of wave
excitation and recording, ie. 5(R)=0 for z<0, z<z,.
We will assume that the signal f(t) in the sources and
the value of the constant velocity v, near the obser-
vation system are known. The frequency spectrum of
the recorded field

U, ry, k)=U(R, R, k)|
[l'=(X, y)’ r0=(x0, yo)]

zg=const,z=0

is determined according to Eq.(2), which is looked
upon as a non-classical integral equation concerning
the velocity function #(R). The unknown field in the
medium, U(R,, Ry, k), which enters into the expression
under the integral in Eq.(2), depends on the medium’s
velocity structure v(R), which in turn must be deter-
mined from the field on the surface z=0. Hence, it is
necessary to specify an assumption about the form of
the field in the inhomogeneous medium. We will as-
sume that in some part D, of the medium below sou-
rces and receivers it has a composition that is suf-
ficiently similar to the downward field of sources in an
effectively homogeneous volume, i.e.

—ik|R; —Ro|

U(R17R0’ k)z¢(kvo)m
1 0

+Ui (R, Ro, k). (3)

Within the framework of the problem of reconstruction
of functional-images of the medium’s structure, stated
below, the condition of “sufficient similarity” is ex-
pressible by a Rayleigh criterion. According to this
criterion, the system which forms the image is assumed
to be fairly good if phase distortions of the field in-
troduced by it are not greater than n/4. In our case,
this means that the phase distortion of the downward
field in D, due to inhomogeneity of the upper part of
the medium must be less than m/4. From here there
follow certain limitations on the degree of inhomo-
geneity and sizes of the domain D, (with respect to the
wavelengths of the primary field). The composition of
the velocity structure of the medium remains arbitrary
enough to include both scattering elements and reflect-
ing boundaries of any configuration.

In a series of papers (e.g. Alekseev, 1967; Zapreev,
1977; Raz, 1981; Clayton and Stolt, 1981) a low-fre-
quency approximation (the condition of weak wave
scattering inside a medium, called the Born-Rayleigh
approximation) is used to solve inverse problems reduc-

ing to equations similar to Eq.(2). According to the
weak scattering condition, the field of secondary waves
in a medium [U,(R,,Rg, k) in Eq.(3)] must be neg-
ligibly small compared to the downward source field

éaO(Rl’ RO’ k)
=®(kv,) exp(—ik|R, —R,|)/(47|R, —R,)).

This requirement is fulfilled only in the case of low
frequencies or insignificant variations of velocity all
over the medium, ie. if w—0 or #(P)<1, ReD and if
the dimensions of the whole inhomogeneity domain D
are fairly small. Hence, the assumption about weak
scattering substantially limits the form of the model of
a medium allowed to solve respective inverse problems.
Besides, as was shown by Zapreev (1977), if the con-
ditions of the Born approximation are fulfilled and the
noise background is present, we can stably determine
not the function #(R) itself, but only its low-frequency
(smooth) part. Here we will not require that the sec-
ondary field U, be small in the medium as compared to
the downward field of sources. This implies that rela-
tive velocity variations in the inhomogeneous domain
D on the whole are not assumed to be small. The
influence of the field U, in the proposed nonlinearized
statement of the inverse problem will be looked upon
as an effect of strong regular noise. On account of this,
the solution of the problem of determining the struc-
ture of a medium must include a procedure for sup-
pressing the wave noise in the observed field. The
possibility of directional filtration of a regular noise-
field is determined by the redundancy of the obser-
vation system considered (the recorded 5-D field and
the 3-D structure of the medium). Relative redundant
information in the data allows us to include, in the
solution algorithms, procedures of dynamic stacking of
useful waves (those described by adopted wave equa-
tions) and suppressing the remaining noise.

As shown by Zapreev and Cheverda (1981), part of
the secondary field U, in a medium may be similar to
the primary downward field. That is, the field U, in
Eqg.(3) may have a common (generally, significant)
component of the form &R,)&,(R,, Ry, k) which de-
pends on unknown wave properties ¢(R) of the in-
homogeneous medium in the vicinity of any point
ReD,. Thus, as a result of the inversion, in the general
case, we will determine not the velocity function #(R)
itself, but a functional of the form c(R)=#(R)[1+¢(R)]
which depends on local properties of the medium. Be-
cause the values of the functional show precisely local
variations of the velocity structure of the medium, it is
defined as an image which reflects inhomogeneities of
the medium. The physical sense of the function of sec-
ondary scattering ¢(R) [hence the functional ¢(R)] can
be defined more precisely by assuming a law of re-
radiation of the field in a medium, ie. the physical
model of the strong field U, (R, Ry, k). To do this, we
may suppose that all elements in D, are rather smooth
and sloping reflecting boundaries or they scatter the
field according to a well-known law. However, such a
definition considerably narrows the possibilities of
using the corresponding inversion algorithms in prac-
tice.

After we substitute Eq.(3) into the integral of



Eq. (2), considering all the adopted requirements and
assumptions, we obtain the integral equation with re-
spect to the functional ¢(R)

e~ ikIRi—Ro|

2
: ¢w%)5“R”|ﬁ‘:R|
1 0

@n® 5,
e—iklr—R1|

4R, +U(r, 1, k). 4
Ir—R,| U1, k) 4)

U(r, Io, k)= -

Here U is the total noise-field due to both the second-
ary interactions in D, and the scattering (reflection) of
waves in the other part of D. This implies that we
include in the noise-field anything which cannot be
described to a required accuracy (according to the Ray-
leigh criterion) by the integral term in Eq. (4).

Solution of the integral equation, Eq.(4), is devel-
oped in the range of spatial frequencies. Having per-
formed a Fourier transform of the field U(r, r,, k) over
T, T, of the shots and receivers we arrive at

Uk, k,, k)
o LU G 1, ] =20

—ik[(z1—20) V1 —Kg/k2+zl V1 —x2/k?]

V1-x3/k* Y 1—xk*/k*
+F’,,,0[U(r, Iy, k)], (5)

where k=(x,, y) Ko=(K,,, k,) are spatial-frequency
variables. In deriving Eq.(5) we make use of the Weyl
formula and consider the requirement that c¢(R)=0 if
2<0, zy; [c(R)=0, if §(R)=0]. Introducing the focusing
transformation of the observed field for the plane
z>0, z, gives us

fek+xy,z,)

€

dz,

WO(K, KO,Z)=IU(K, x0>k) YI(K, Ko’ka Z)dk, (6)

in which the function ¥ for the total areal observation
has the form

K2
1—-=2
I/ k2+t xo

n®(kv,)
. I/ Ka ]/ K2
-e—Hk[(Z—ZO) 1_F+Z I—F], (7)
nX)=1, IX|<1; [I(X)=0, |X|>1.

The presence of the factors Il(x,/k) and II(x/k) in-
dicates that solution of Eq.(4) is in the range of stea-
dily recorded homogeneous plane waves of the full
spatial field spectrum. It appears that such truncation
of spatial frequencies may not lead to “smearing” of
the solution c(R). Integration over k in Eq.(6) is per-
formed in the range of steady recording of temporal
frequencies.

Let us turn to spatial-frequency variables k,=x
+Ky,, y=k—k, and Fourier-transform the field
W,(k,, y, z) over the coordinate z. As a result of this
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transform in the full spectral domain (v,y) [v=(k,, k,)
=(k,, k,, k,)] we obtain (Zherniak, 1982):
Wo(v, y)=FE[W,(k,, 7, 2)]
=L+ 01 (557). )

Here c(v) F[c@)] is the 3-D spectrum of the fun-
ctional-image to be determined, &(v, y) is the spectrum
of the transformed noise-field in Eq.(4). Equation (8)
shows that the useful part c(v) of the field transformed
in this manner does not depend on the variable y, while
the noise-field &(v, y) from Wo(v y) remains dependent
on it. In the absence of the noise background, c(v) can
be defined by W, (v,y) at any fixed value of |y|, i.e. y is
a free parameter in Eq.(8). This appears to be the
consequence of redundancy of the observation system
of multifold coverage considered.

One can take advantage of the fact that the spectrum
of the solution, ¢(v), we are seeking is independent of y
to filter out the regular noise-field £(v, y) entering into
Wy(v, 7). Suppression of the noise-field can be per-
formed, for instance, by integrating (stacking) W,(v,?y)
over y with the weighting function ¢(v, y) satisfying the
requirement

f (kkz )<p(v, ydy=1, 9)

which implies that suppression of the noise from
W,y(v,7) must not lead to a distortion of the recon-
structed image c(R). Equation (9) appears to have a
variety of solutions ¢(v, y). For instance, it can be satis-
fied by functions
@=(k)2k2, (k)/[n)/ k2 +(k, - 7)1,

etc. It allows one to select, among stacking functions ¢,
those which maximize the signal/noise ratio on recon-
structed images. Thus, when selecting ¢ one can estab-
lish the condition of minimization of relative energy of
the remaining regular noise, i.e.

Ea[§1 (557) 0. 00 dy | = min (10)

In real data processing there is, as a rule, a priori
information about the composition of regular and irre-
gular noise. Using this information and special tech-
niques for the analysis of the wavefield and reconstruct-
ed images, one can select the most effective stacking
function ¢.

The general form of transformation of the space-
time spectrum U(K,, y, k) of the observed field to the
image W(R) of the inhomogeneous medium in variables
k,, v, k, z is as follows:

WR)=F_'[[fU(K,,7, k) ¥(k,, 7.k, 2)
o(k,,y, k)dkdy]. (11)

The value of the function ¢ in variables k,, y, k can be
derived from its values in the frequency range v, y, if we
substitute k, by

kY 1—(k, +9)2/4k% +1/1—(

K, —7)?/4k2].
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Having interpreted the results of the imaging trans-
formations, it is possible to properly define the struc-
ture of the domain D, of the inhomogeneous medium
where expansion (3) is appropriate. Usually this is the
upper part of the medium, lying below the observation
system, where the downward source field is described
fairly accurately (in phase) by the function &,(R, Ry, k).
The image of the other parts of the medium is, in this
case, suppressed and geometrically distorted, as the
field re-radiated outside D, at this stage of solution
refers to the noise background. By means of the visual
analysis of the image obtained it is possible, to estab-
lish approximately where the lower boundary of the
area D, is located. This continuation corresponds to a
transfer of the entire system of observations below D,
which makes it possible to correct parameters of the
field equation for useful waves, reflected and scattered
by deeper inhomogeneities of the medium, to solve a
similar imaging problem for the next subregion D,, and
$O on.

If the velocity structure of the medium varies
strongly in a horizontal direction, images of its do-
mains, which then form the total picture, are recon-
structed in the same order.

A limited range of temporal frequencies

We have obtained the solution of the above integral
equation, Eq.(4), assuming that U(r, r,, k) is steadily
recorded for all w=kv,. This assumption disagrees
with real conditions in, practically, a finite range of
temporal frequencies. The higher the maximum fre-
quency, the smaller the size of any defined region D, of
the inhomogeneous medium must be, according to the
Rayleigh criterion used by us. On the other hand, with
the decrease of the frequencies in the field being pro-
cessed, the resolving capability and the details of the
images become worse. Varying the range of frequencies,
involved in the processing, will make it possible to
firstly reconstruct crude, smoothed images of large do-
mains of a medium and then, adding high frequencies,
to define more exactly and in more detail the structure
of its separate parts.

We take the limitation on the range of frequencies
|w]<Q into account by introducing the characteristic
function I1(w/Q) into the imaging transformation. The
field in this case is written as follows:

U(r, ro, k, K)=U(x, 1o, N IT(k/K), K=Q/v,. (12)

Applying transformations (5)—(8) to the field

U(r, ry, k, K) gives us

Wots, 3, K)=[e+ e 1 () 1 (352). a1y

z

where
ki = 2VkE+k2 472+ (K, p)*/k2.

This relation differs from Eq. (8) obtained earlier only
by the additional term II(k, ,/2K). Just as in the case
of an infinite temporal frequency band, we are free here
only to choose stacking functions ¢(v, y, K) whose form
depends now on the limiting frequency Q=Kv,. The

solution is constructed in a similar way when the spec-
trum of the field being processed is defined in the
limited frequency band @, <|w|<Q,,,. The field W,
obtained has a form of the difference

Wo("a vs K )_ WO (V, ¥ K

max min) .

Analysis of Eq. (13) shows that, in the finite range of
temporal frequencies |w| <, non-zero values of the
spatial spectrum c(v) of the image are determined only
inside the sphere |v|<2 K. This allows us to find limit-
ing estimates of the resolving capability of the image
W(R, K). According to the Rayleight criterion, the
limiting resolving capability is approximately half the
width of the central maximum of the function of the
system’s response to the field of an elementary radiator
of waves. In this case the limiting resolution, uniform
over Xx, y, z, is equal to 0.354,,,, where 4, =2mv,/Q is
the minimum wavelength in the spectrum of the pro-
cessed field. It is possible to improve the resolution
over one of the coordinates x, y, z a little by reducing it
over other coordinates in truncation of the respective
spatial frequencies.

Other systems of observation

When we solve 3-D seismic problems particular diffic-
ulties of technological character arise in the use of the
total areal system of observations of the 5-D field
U(r, ry, t). The algorithm described for the 3-D imaging
inversion can be modified for use in less redundant
areal systems of observations of the field over four
space-time coordinates. An example of such a system is
a set of parallel profiles of multifold coverage. Under
the same assumptions, the temporal spectrum of the
field, recorded only on straight lines along which its
sources shift, will be described by Eq.(4), if y,=y, z,
=0. The Fourier transform of the field over the coor-
dinates x,, x, y of sources, receivers and profiles has the
form

UKy, Ky ky K)=F o LU(x, X, 3, k)]

x0° Yy
_k2 P(kv,) f clr,tr,,kyzy)
4y 2= Vz,

e~ isigzy V(a+ )2 —k§—mn/4]

. dz,
ofy @t pr K21

+F [U(x, x4, ¥, k)], (14)

X, X0,Y

where a=)/k* —«x2, p=1/k*>—x«Z . This relation was ob-
tained using the stationary phase method, the errors of
this approach being negligibly small if kz, > 1.

Applying Egs. (6) and (8) to U(x,, x,, k,, k) and
using the function

4 (x,/k) I (x. /k) I [k, /(0 + B)]

Y=
V27 |kl @(kvg)
(Ot+ﬁ)2 e+isig(k)[zV(a+m2—k§—n/4]

By @+ B —k212

(15)



we obtain the full spatial spectrum of the field
Wo(kx, k}n V7 Z):

k
Wotw, )=Le, )+ £ 1T (122). (16)

Here ¢, (v)=FR[cR)Y 2], ky=r, +K,, 7=K,—K,, Vv
=(k,, k,, k,). The effect of band-limiting the temporal
frequencies here is the same as before.

Thus, the solution of this areal system turns out to
be similar to that considered above. This example
shows that it is possible to modify the transformations
described for the case of various redundant systems. In
particular, if the medium’s structure does not change in
the y-direction (perpendicular to the profile), it is suf-
ficient to have data, recorded only along one profile y
=0, in order to determine the 2-D imaging inversion.
One must only set k, =0 in Egs. (14) and (15) and select
respective stacking functions.

Continuation of wavefields

Within the framework of a dynamic imaging problem
the inverse continuation of the field is a means to
continue the entire observation system outside the re-
constructed domain of an inhomogeneous medium.
This implies that one must compute the values of such
a field whose “sources” and “receivers” would be at
some surface below the reconstructed part D, of the
medium and the homogeneous domain would be above
the surface. In this case it is sufficient for the field to
consist only of homogeneous plane waves, i.e. to have
no peculiarities in its secondary “sources”. Thus, in
continuation of the observed field it is necessary that
the influence on it of the known inhomogeneities of the
upper part of the cross-section be compensated for as
accurately as possible.

We can use the procedures of continuation of the
field in a hypothetical inhomogeneous medium in the
finite-difference migration algorithms based on various
approximate solutions of the wave equation (Claerbout,
1976; Kosloff and Baysal, 1983). However, in the case
of such field continuation, the attenuation of wave
amplitudes due to their travel through inhomogeneities
is not compensated for. The amplitude distortions in-
crease due to the inverse travel of waves through the
inhomogeneities.

Zherniak (1983) proposed an algorithm for a re-
current local application of Kirchhoff’s integral formula
to continue the field in a spatially inhomogeneous me-
dium. The structure of a medium is approximated by a
set of thin phase variable-velocity plates. In the case of
consistent continuation of the field through the plates
we consider only phase variations of homogeneous
plane waves from its spatial spectrum. The approxi-
mations and the form of the algorithm are in agree-
ment with the approximations and the form of the
imaging inversion. The local phase continuation of the
field allows us to take into consideration wave re-
fractions in an inhomogeneous medium and partially
compensate for an undesirable attenuation of their
amplitudes. This, in fact, appears to be a specific meth-
od of regularization of the inverse problem in the field
reconstruction.

169

Let us represent the formula of phase continuation
of the field U(r,z, ) from the upper to the lower
boundary of an inhomogeneous thin layer (z, z+ 4z) in
the space-frequency domain as follows:

Uk, z+ 4z, w) T
=T (U2 0)® S, ] Vi o, (17)

where U(k, z, 0)=F,[U(r, z, )], S,, is the spatial spec-
trum of the characteristic function of the m-th plate of
the layer components (z, z+ 4z), v,, is the velocity in it.
The distortions resulting from the approximate for-
0

mula, Eq.(17), are insignificant if Az <1 for

Um vn
any m and n. Under continuous vertical and horizontal
variations of the velocity in a medium, Eq.(17) be-
comes:

Uk, z+ A4z, )
= [ U,z w)e

z=const

[Azw ! K .
vi(r,z) w? er

] dxdy. (18)

Such downward continuation of the field, accom-
plished simultaneously over the coordinates of both the
receivers (r— k) and the sources (r,—#,), corresponds
approximately to transferring the entire system of ob-
servation below the inhomogeneous domain of the me-
dium with partial removal of the effect of upper in-
homogeneities. Combined with the imaging transfor-
mations, this allow us to organize an interaction pro-
cess, a means for a continuous and more precise defini-
tion of the structure of a highly inhomogeneous me-
dium.

To continue the field in the inhomogeneous me-
dium, we must know at least the mean (interval) values
of the velocity in it. These values might be obtained
from a well log or from velocity analysis methods,
analogous to the “velocity spectrum” algorithm in the
CDP method. It appears that maximum “brightness” of
the image elements reconstructed by means of imaging
transformations can be obtained if the velocity at
which they are reconstructed coincides with the actual
interval velocity of the domains of the medium. So we
can firmly obtain the mean velocity values in any do-
main by some selection method.

Results of numerical experiments

Possibilities of the algorithms of the inverse dynamic
imaging were tested by means of numerical modelling
(Alekseev and Zherniak, 1983). A model of a 2-D me-
dium and observation system is shown in Fig. 1. Ar-
rangement of the 64 receivers here was the same for
any of the 64 positions of the source of cylindrical
waves. Forward dynamic problems were solved by the
accurate method of boundary integral equations (Vo-
ronin, 1978). Two of the 64 common receiver trace
gathers, where direct events were excluded, are shown
in Fig. 2. The computed wavefield U(x, x,,t) was de-
composed into Fourier harmonics with respect to the
discrete variables ¢, x,, Xx—=w, K, K.
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Fig. 1. Model of the medium and the observation system
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Fig. 2. Two of the 64 common receiver trace gathers for the
model in Fig. 1

The inverse imaging problem was solved in an in-
teractive regime. In the first approximation, the me-
dium was assumed to be homogeneous. The velocity in
it was taken equal to that near the sources. The recon-
struction of the image W(x,z) was carried out by
means of the 2-D variant (for cylindrical waves) of
Eq. (11). The focusing function, Eq. (7), with k=x, =(k,
+9)/2, Kko=K, =k, —)/2, z,=0 was used. @~1
+5sin®[n(k,/2k)*] was chosen to be a rough approxi-
mation of the weighting function of y-stacking. Stacking
over 64 values of k=w/v, was performed in the fre-
quency range 17 <|w/2n| <100 Hz. Only the upper part
of the reconstructed image corresponds to the real po-
sition of the object (indicated by dots in the lower part
of Fig. 3).

After that, the information obtained about the ob-
ject configuration and the velocity in it was used. The
medium was imaged together with double field continu-
ation under the chosen upper part of the curvilinear
boundary of the object. For the downward continua-
tion of the field we used Eq. (17) with m=0, 1; v,=3, v,
=3.5km/s. At every step Az through the depth of the
object the computation of U(k, k,, z, ) was carried out
by means of inverse and direct Fourier transforms over
K—X, Ko—X, We substituted the continued field
Uk, Ky, 2, @) 1n Eq. (11) in place of the field observed
on the line z=0, and took z=z,=0 in the ¥-function
of Eq. (7). The resulting depth cross-section is shown in

400 0 800 m

|

Fig. 3. Image of the object in the first approximation
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Fig. 4. The result of imaging the structure of the medium in
the second approximation
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Fig. 4. The image of the steep parts of the closed
boundary was cancelled out because the rays reflected
from them do not strike the fixed arrangement of the
receivers.

This undesirable effect can be removed if we use
conventional offset-spread systems shifting over long
distances. An example of the image reconstruction in
this case is shown in Fig. 5. An object here is a sloping
boundary with two small scattering inclusions above it.
The structure of the medium here does not vary across
the profile, v,=3 km/s, v, €v,, the size of the scattering
elements is ~Z%A_.. The source radiates spherical
waves in the frequency range 8-64 Hz. With the step
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Fig. 5. Image of the 2-D structure of the medium reconstruct-
ed on the data of a shifting offset spread

Ax,=Ax=20m, the source together with 28 receivers
shifts along the profile over a distance of 1,200 m. The
reconstruction of the image was carried out directly by
Eq.(11). The focusing function, Eq.(15), with k =0 was
used with the same approximation for ¢. Similar ex-
periments were also performed for simple 3-D models.
The wavefield in this case was observed on a multifold
system of independent profiles.

Conclusion

The imaging transforms, resembling to some extent the
spectral form of the CDP-migration transformations
(Zherniak, 1984) can be looked upon as their dynamic
generalization. In comparison to the CDP-migration,
with their help one can solve a wider range of seismic
problems used when both steeply dipping reflecting
boundaries and scattering elements are present in a
medium. The choice of the optimum stacking functions
guarantees a high signal/noise ratio in connection with
the reconstruction of two- and three-dimensional ima-
ges in seismic sections. Taking the dynamics of re-
flected and diffracted waves in the observed field more
accurately into consideration allows us to obtain a
higher resolution in images and to improve the map-
ping of the physical properties of an inhomogeneous
medium. The efficiency of the imaging transformations
was tested in a series of numerical experiments.

The solutions of the problem of reconstruction of
functional-images obtained can be looked upon as a
particular case of quite a general approach to the so-
lution of dynamic inversion problems, using data of
overdetermined observation systems. One may choose
other equations of the useful part of the field to for-
mulate problems of reconstruction of other stable func-
tionals of the structure of the medium. Similar prob-
lems may be posed, for instance, for the equations of
elasticity theory. In this case, in order to develop the
solution one has to find such transformations of the
redundant field as a result of which the useful part of
the transformed field (the part corresponding to a for-
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mula of the signal component of the field) would be
independent of a spatial or a spatial-frequency coor-
dinate. All this makes it possible to find procedures of
specific filtration of irregular noise, which do not dis-
tort the dynamics of useful signals, from which the
structure of the inhomogeneous medium will be de-
termined.
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