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Ray synthetic seismograms for complex two-dimensional

and three-dimensional structures
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Abstract. In recent years, considerable progress has been
made in studies of the lateral heterogeneities in the Earth’s
interior and of seismic sources situated in realistic inhomo-
geneous media. In connection with these studies, the role
of the ray method and of its various modifications is becom-
ing increasingly important. In this paper, ways of applying
the ray method to the evaluation of high-frequency body
wave synthetic seismograms and synthetic time sections in
complex two-dimensional and three-dimensional laterally
varying layered structures are discussed. Certain new devel-
opments in the ray theory, mainly dynamic ray tracing and
the paraxial ray approximation, make these computations
fast and effective, even in 3-D structures. Although the com-
putations are only approximate and the ray method may
fail partially or completely in certain situations, the ray
concepts have been found very useful in many practical
applications of ‘great seismological interest. The paper ex-
plains the physical principles and the most important algo-
rithmic steps in the computation of ray synthetic seismo-
grams. Numerical examples of ray synthetic seismograms
and ray synthetic time sections are presented.

Key words: Seismic waves — Synthetic seismograms — Ray
method— Dynamic ray tracing — Paraxial ray approximation

1. Introduction

Recently, considerable attention has been devoted to the
numerical modelling of high-freqeuncy seismic wave fields
in complex 2-D and 3-D layered structures. Several proce-
dures of evaluating high-frequency body wave synthetic se-
ismograms in laterally inhomogeneous media have been
proposed. These procedures have immediately found im-
portant applications in various seismological investigations.

This paper is devoted to the computation of synthetic
seismograms by the ray method. The ray method, also called
the ray series method, or the ART (asymptotic ray theory)
method, was first used to study the propagation of high-
frequency elastic waves in inhomogeneous media by Babich
(1956), see also Babich and Alekseyev (1958), and indepen-
dently by Karal and Keller (1959). It is the simplest, but
very powerful, representative of high-frequency asymptotic
methods. One of its great advantages is its universality,
effectivity and conceptual clarity.

The ray method, however, is only approximate and can
be applied only to smooth media in which the characteristic

dimensions of inhomogeneities are considerably larger than
the prevailing wavelength of the propagating wave. More-
over, it has some other limitations, even in smoothly vary-
ing media. The main limitation consists in its lower accura-
cy or even invalidity in singular regions of the ray field,
such as the caustic region, the critical region, the transition
zone between the shadow and illuminated region, etc. In
spite of these limitations, computer programs for the evalu-
ation of ray synthetic seismograms in complex structures
are very useful in the interpretation of seismic data.

In the ray method, as in other high-frequency methods,
the complete wave field is composed of contributions — ele-
mentary waves — such as the refracted waves, waves reflected
from individual interfaces, converted waves, multiply re-
flected waves, etc. These elementary waves can be simply
evaluated along individual rays. Each elementary wave may
be specified by some numerical (or alphanumerical) code
which describes the history of its rays. The numerical codes
may be introduced in various ways. They may be generated
automatically, semi-automatically or manually. For com-
plex 2-D and 3-D models, the semi-automatic generation
of numerical codes often seems to be very convenient. It
consists of automatic (optional) generation of the most im-
portant waves, e.g. of the primary P and S reflections from
all interfaces, including refractions and converted reflec-
tions. Other desirable elementary waves, such as multiply
reflected waves, may then be added by manual generation.

The ray method offers the possibility of investigating
the individual elementary waves separately from others.
This fact is very important in practical applications, e.g.
in the interpretation of data obtained by deep seismic
sounding of the Earth’s crust or in seismic prospecting.

The basic step in the evaluation of the seismic wave
field of individual elementary waves consists in ray tracing.
Many ray tracing algorithms are now available. Some of
them, based on some simple approximation of the model,
are very fast, but are not quite suitable for the evaluation
of ray amplitudes and ray synthetic seismograms as they
may generate false anomalies in the amplitude-distance
curves. The more sophisticated algorithms, based on the
numerical integration of the ray tracing system, can be used
more safely, but are more time consuming. Thus, the suit-
ability of any ray tracing algorithm depends on the seismo-
logical problem we are treating.

In the evaluation of vectorial complex-valued ampli-
tudes of elementary waves in 2-D and 3-D layered struc-
tures, the most important part is the evaluation of geometri-



cal spreading. The geometrical spreading can be evaluated
in several ways. The simplest (but not very accurate) way
is to measure numerically the cross-sectional area of the
ray tube. In 3-D computations, it is necessary to compute
at least three rays corresponding to close ray parameters
to determine numerically the cross-sectional area of the ray
tube. The second way is based on the so-called dynamic
ray tracing. Dynamic ray tracing plays a fundamental role
not only in the evaluation of geometrical spreading, but
in many other applications. For example, dynamic ray trac-
ing is a very important step in the paraxial ray approxima-
tion, which provides us with the possibility of evaluating
the travel-time field and the displacement vector not only
directly on the ray, but also in its vicinity. Finally, in some
simple types of media, the geometrical spreading can be
evaluated analytically.

There are two main approaches to the evaluation of
ray synthetic seismograms in 2-D and 3-D laterally varying
layered structures. The first is based on two-point ray trac-
ing, the second on the paraxial ray approximation. Both
these approaches are described in the following sections.
Some examples of computations will also be presented.

This paper explains only the most important physical
principles of the ray synthetic seismogram computation.
Any attempt to present all the relevant mathematical equa-
tions would increase the length of the paper inadmissibly.
Moreover, all necessary equations can be found in the ex-
tensive paper by Cerveny (1985b). Owing to the extensive
use of various matrix notations and to the application of
several coordinate systems and transformation matrices, the
resulting equations in that paper are very concise and un-
derstandable from a physical point of view, even in the
case of an arbitrary multiply reflected wave in a 3-D layered
structure. All the equations are expressed algorithmically;
the expressions are specified to the last detail. They can
thus be used directly for programming.

The literature devoted to the ray method is very exten-
sive. In this paper, we shall refer mainly to recent papers
devoted, directly or indirectly, to the computation of ray
synthetic seismograms in laterally varying layered struc-
tures. For a detailed treatment of many other aspects of
the elastodynamic ray series method and of its applications
in seismology, see the books by Cerveny and Ravindra
(1971), Achenbach (1973), Cerveny et al. (1977), Goldin
(1979), Aki and Richards (1980), Hubral and Krey (1980),
Gerasimenko (1982). The ray series method has also been
widely used in other branches of physics, mainly in electro-
magnetic theory. See, e.g. Kline and Kay (1965), Babich
and Buldyrev (1972), Felsen and Marcuvitz (1973), Kravt-
sov and Orlov (1980).

Some attention in seismology has recently been devoted
to the possibilities of the space-time ray method. In the
space-time ray method, the wave field propagates along
certains space-time, four-dimensional trajectories, called
space-time rays. Their spatial projections are standard rays.
The space-time rays may be easily computed, similarly to
the space rays. The space-time ray-tracing systems and the
space-time dynamic ray-tracing systems can be found e.g.
in Kirpichnikova and Popov (1983). The space-time ray
method may be applied to solve some elastodynamic prob-
lems in media with boundary conditions dependent on time
(reflections from moving bodies), to study the propagation
of high-frequency seismic waves in dispersive and slightly
dissipative media, to study surface waves in laterally vary-
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ing layered structures, to perform the downward and up-
ward continuation of the seismic wave field, etc. In princi-
ple, the method could be easily applied even to the compu-
tation of synthetic seismograms. The author, however, is
not aware of any attempt in this field. For this reason,
we shall not discuss the space-time ray method in this paper.
For more details and references, see Babich (1979), Kravt-
sov and Orlov (1980), Cerveny et al. (1982), Kirpichnikova
and Popov (1983) and mainly the up-to-date monograph
by Babich et al. (1985).

2. Ray tracing

Ray tracing has found broad applications in the solution
of both direct and inverse seismological problems of lateral-
ly varying 2-D and 3-D layered media. In the numerical
modelling of seismic wave fields, it plays an important role
not only in the ray method itself, but also in many other
more sophisticated high-frequency asymptotic methods. In
these methods, the rays are used as a coordinate frame
and the amplitudes are evaluated along rays in the new
coordinate frame by more accurate methods than in the
standard ray method. Examples are the extended WKBJ
method, the Chapman-Maslov method, the Kirchhoff inte-
gral method, the method of Gaussian beams, etc. For more
details and many references, see Cerveny (1985a) and Chap-
man (1985) in this volume. Ray tracing has found important
applications even in surface wave studies. In the inverse
methods, ray tracing is the basis of many recent inversion
procedures (tomographic methods, various linearization ap-
proaches).

The ray tracing system in a 3-D smoothly varying medi-
um consists of six ordinary differential equations of the
first order. Three equations yield the ray trajectory (Carte-
sian coordinates of points along the ray) and the other
three give the Cartesian components of the slowness vector
at each point on the ray. Together with the computation
of the ray trajectory, the travel time 7 along the ray is
also evaluated. The ray tracing system, with proper initial
conditions, can be solved numerically by standard numeri-
cal techniques such as the Runge-Kutta method or by the
predictor-corrector method. Some combinations of numeri-
cal and analytical methods may also be suitable for solving
the ray tracing system; e.g. see Dobrovol’skiy and Fridman
(1980) and Fridman (1983) for the method based on the
Richardson extrapolation. Initial-value ray tracing is fast
and stable and its accuracy can be easily controlled, even
in the case of rays of multiply reflected, possibly converted
waves. The new initial conditions for the ray tracing system
at points of reflection/transmission at curved interfaces can
be simply determined using Snell’s law. Note that the initial-
value ray tracing is also sometimes called Cauchy ray trac-
ing.
The ray tracing systems can be written even for inhomo-
geneous anisotropic media. The initial-value ray tracing in
an inhomogeneous anisotropic medium can be performed
in the same way as in inhomogeneous isotropic medium,
but it is more time consuming. For ray tracing systems
in inhomogeneous anisotropic media, see Babich (1961),
Vlaar (1968), Cerveny (1972), Cerveny et al. (1977), Petras-
hen and Kashtan (1984), Cerveny and Firbas (1984).

In seismological applications, however, we often need
boundary-value ray tracing. The well-known example of
boundary-value ray tracing is the so-called two-point ray
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tracing, or source-to-receiver ray tracing. Assuming a point
source, the rays are specified by the initial and endpoints
of the ray (source and receiver). Instead of the initial point,
some other boundary conditions may be important in cer-
tain applications. As an example, let us consider the compu-
tation of synthetic time sections in seismic exploration by
the “normal ray” algorithm. In this case, the initial point
of the ray is not specified. Instead, it is required that the
initial direction of the ray be perpendicular to the reflector.
Similar boundary conditions may be imposed if we start
the computation from some initial surface. Boundary-value
ray tracing is considerably more complicated than initial-
value ray tracing, mainly in 3-D media. It can be performed
in several ways. We shall briefly describe two such methods.
The first method, called the shooting method, exploits
Cauchy ray tracing. An iterative loop, in which the initial
conditions for the ray tracing system are changed, is used
to find the ray which passes through the receiver point.
The initial conditions, which are changed in the shooting
method, may have different physical meanings in various
problems. In source-to-receiver ray tracing, they specify the
initial direction of the ray at the source. In synthetic time-
section computatons, they specify the position of the initial
point on the reflector (the initial direction of the ray, per-
pendicular to the reflector, is then automatically deter-
mined). Various approaches can be used to change the ini-
tial conditions for a new iteration. Among others, it is possi-
ble to apply the recently proposed methods of the paraxial
ray approximation, see Cerveny et al. (1984). Special care
must be devoted to multiple arrivals of the wave under
consideration (loops in the travel-time curves) and to the
rays in certain singular regions of the ray field.

The second method, usually called the bending method,
does not exploit standard ray tracing. In this method, an
initial ray path is guessed and the perturbed iteratively to
satisfy the appropriate differential equations.

For more details regarding boundary-value ray tracing,
see Wesson (1971), Chander (1975), Julian and Gubbins
(1977), Pereyra et al. (1980). A good review with many ref-
erences can be found in Lee and Stewart (1981).

Both methods have their advantages and disadvantages.
The shooting method is usually more cumbersome and time
consuming than the bending method, especially in three-
dimensional computations. If, however, the iterative loop
is properly organized, it safely determines the rays of all
required elementary waves arriving at the receiver position.
If the elementary wave has several branches, e.g. in the
case of loops in the travel-time curves, it determines all
relevant multiple arrivals. Such rays may be easily lost in
the bending method which has a tendency to determine
only one of the multiple arrivals. For this reason, when
computing synthetic seismograms or synthetic time sections
for complex 2-D or 3-D layered structures, the shooting
method or its various modifications have usually been used.

In most algorithms of high-frequency body wave syn-
thetic seismogram computation, boundary-value ray trac-
ing must be used. In some recent approaches, however,
boundary-value ray tracing is not necessary. This applies,
e.g. to the algorithms based on the paraxial ray approxima-
tion and on Gaussian beams. Both these algorithms only
require initial-value ray tracing, which is fast, easy and sim-
ple. Even in these algorithms, however, it is useful to modify
the initial-value ray tracing procedure. These algorithms
require a system of rays with a sufficient density of end-

points in the vicinity of receivers. The density of endpoints
must, of course, be higher for higher frequencies. A suffi-
cient density of endpoints of rays is not always guaranteed
by initial-value ray tracing in laterally varying complex
structures. Some elementary waves may be overlooked, par-
ticularly if all the rays of these waves are within a very
narrow pencil of rays from the source. This is the typical
case of slightly refracted waves, similar to head waves. Of-
ten, the ray field of some elementary wave is very sparse
in some region, although it is rather dense in another region.
If the number of computed rays is increased considerably,
the density of rays remains small in the former region and
becomes unnecessarily high in the latter region.

A new method of ray tracing is proposed to deal with
such situations. We call it interval ray tracing. Interval ray
tracing is the ray tracing procedure in which it is required
that at least the endpoint of one ray of the elementary
wave under consideration is situated in any illuminated in-
terval of specified length along the profile. If the elementary
wave under consideration has several branches, the above
requirement applies to any branch. In 3-D computations,
instead of the length interval we use the surface element
of a specified area.

The algorithm of 2-D interval ray tracing is as follows.
The standard initial-value ray tracing is performed as long
as the density of the endpoints is sufficient. If any given
length interval is left out (i.e. no ray has its endpoint in
that interval), an iterative loop is used to find at least one
ray with the endpoint in that interval (if it exists). After
this, the initial-value ray tracing continues with the original
step.

A safe and general interval ray tracing routine for an
arbitrary elementary wave in a 2-D laterally varying layered
structure is now available. The algorithms for 3-D interval
ray tracing are under investigation.

An example of the 2-D interval ray tracing is presented
in Fig. 1. The model of the Earth’s crust used in this exam-
ple (model Zurich) will be described in more detail in Sec-
tion 11, see Fig. 7. The shot point x =320 km is considered,
and three ray diagrams of the reflected PP wave from the
intermediate crustal interface are shown. The first two ray
diagrams are computed by standard initial-value ray trac-
ing, and the third by interval ray tracing. In the first dia-
gram, the step in the radiation angle is 1.8° (50 rays over
the range from 0° to 90°). In the second diagram, the step
is four times less, i.e. 0.45° (200 rays). As we can see in
both these ray diagrams, the endpoints of the rays are dis-
tributed along the profile very irregularly. They are very
dense close to the source and extremely sparse at larger
distances from the source. At larger epicentral distances,
there are practically no endpoints at all. The four-fold in-
crease of the number of computed rays (from 50 to 200)
added many superfluous rays at small epicentral distances,
but only one ray with an endpoint beyond x =400 km. The
regular ray field, however, extends to a distance x ~ 500 km,
see the last diagram computed by interval ray tracing. Inter-
val ray tracing was performed with a basic step of 1.8°
in the radiation angle, the same as in the first diagram.
Nevertheless, the coverage of the profile by ray endpoints
is considerably more regular than in the first and second
diagrams. There are no “blind” regions along the profile.
Note that interval ray tracing sometimes yields some rays
situated very close to other rays. This case, however, can
be easily treated in the synthetic seismogram algorithm.
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Fig. 1. Comparison of ray diagrams computed by initial-value ray
tracing and by interval ray tracing. Top diagram. initial-value ray
tracing, the basic step in the radiation angle is 1.8°. Middle dia-
gram: initial-value ray tracing, the basic step in the radiation angle
is four times less, i.e. 0.45°, Bottom diagram: interval ray tracing,
the basic step in the radiation angle is again 1.8°. Interval ray
tracing gives a more regular distribution of endpoints of rays along
the profile

The interval ray tracing algorithm can be exploited to
find even the rays of slightly refracted waves. It is often
very difficult to catch these rays by initial-value ray tracing.

The algorithm of the interval ray tracing described
above may be modified in several ways. For example, the
initial conditions for the ray tracing system may be au-
tomatically varied in such a way as to obtain a required
density of rays in the region of interest using the results
of the dynamic ray tracing, see Section 3. In particular, the
geometrical spreading matrix Q, defined in Section 4, plays
a very important role in the algorithm. Such an algorithm
of interval ray tracing may find applications mainly in 3-D
computations, see Section 14 and also Cerveny (1985a).

The ray tracing system may be easily rewritten and
solved numerically in any orthogonal coordinate system
(spherical, cylindrical, etc.). For the very important case
of a spherical coordinate system see, e.g., Jacob (1970),
Julian and Gubbins (1977), Comer (1984).

In several simpler types of media, the ray tracing system
can be solved analytically. This applies, e.g., to the case
when the velocity ¥ (or 1/¥ or 1/F? or In V) is a linear
function of Cartesian coordinates. The simplest analytical
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solution is obtained when the quantity 1/F? (not V) chan-
ges linearly with the coordinates. The most popular analyti-
cal solution corresponds to the case when the velocity V
changes linearly with coordinates. The ray trajectory is cir-
cular in such a medium and can be simply and efficiently
calculated. For example, in the reflection methods of seis-
mic prospecting, the commonly used model is composed
of layers separated by curved interfaces, with a constant
velocity or with a linear change of velocity within the indi-
vidual layers. For more details and many references see
Hubral and Krey (1980) and also Yacoub et al. (1970), Sor-
rels et al. (1971), Shah (1973a). This approximation has
recently found applications even in seismology, see Lee and
Langston (1983a, b), Langston and Lee (1983), Matveeva
(1983).

In realistic models, it is sometimes complicated to de-
scribe the velocity distribution in the whole structure (or
in the whole layer) by a simple analytical function. Often,
however, the medium is divided into parts (blocks, tetrahe-
drons) with a simple analytical velocity distribution inside
the individual parts. For example, let us assume that a
smooth velocity distribution is specified in a regular or ir-
regular network of points. It is then possible to divide the
whole medium into tetrahedrons whose apexes are at the
above points, and to use a linear approximation of V (or
1/Vor 1/¥? or In V) in any of the tetrahedrons. The veloci-
ty then remains continuous across the boundaries of the
individual tetrahedrons, but the gradient of the velocity
changes discontinuously. In this way, second-order inter-
faces are generated. Unfortunately, these second-order in-
terfaces produce some anomalies in the ray amplitude com-
putations. For examples, see Cerveny (1985a). This approx-
imation may thus be useful in travel-time computation, but
it is not quite suitable for computing ray synthetic seismo-
grams, unless some smoothing of amplitudes is used.

Most commonly, the linear approximation of ¥ is used
inside the tetrahedrons (or within triangles in 2-D computa-
tions). The segment of a ray inside any tetrahedron is again
circular. Thus, the ray is evaluated as a succession of circu-
lar segments. The method has found important applications
in seismology, mainly in seismic studies of crustal structure.
See, e.g., Gebrande (1976), Will (1976), Whittall and Clowes
(1979), Aric et al. (1980), Marks and Hron (1980), Cassell
(1982), Miiller (1984), Chapman (1985).

3. Polarization vectors

For any selected ray £, we can introduce the ray-centred
coordinate system q, , q 5, 4 connected with £ in the follow-
ing way: One coordinate, say g5, corresponds to the arc
length s along the ray 2, measured from an arbitrary refer-
ence point. The coordinates ¢,, g, form a 2-D Cartesian
coordinate system in the plane perpendicular to 2 at ¢,,
with its origin at £2. This Cartesian coordinate system may
be chosen in many ways. We shall choose it is such a way
as to make the ray-centred coordinate system g,, ¢., ¢s
orthogonal. This condition determines the ray-centred coor-
dinate system uniquely along the whole ray €2, once the
2-D Cartesian system ¢, , ¢, has been specified at any point
on the ray. The ray-centred coordinate system was first
introduced to seismology by Popov and Psencik (1978a, b).

The vector basis of the ray-centred coordinate system
connected with Q is formed at an arbitrary point O; on



Q by a right-handed triplet of unit vectors e,(s), e,(s), t(s),
where t(s) is the unit tangent to the ray 2 at O and the
vectors e, (s), e,(s) are perpendicular to £ at Oy. For the
orthogonal coordinate system connected with Q, the unit
vectors e;(s), e,(s) are strictly determined at any point on
the ray Q once they have been specified at some reference
point of the ray.

It should be emphasized that the orthogonality of the
ray-centred coordinate system means more than the mutual
perpendicularity of e, e,, t along the ray Q. In any coordi-
nate system (;, i=1, 2, 3, we can express the square of
the infinitesimal length element ds in the following way:
ds’=g; ;dC;dl;, where g;; are the components of the metric
tensor corresponding to the coordinate system {;. The coor-
dinate system is called orthogonal if g;;=0 for i#j in the
whole space. This is the case for the ray-centred coordinate
system introduced here. The unit vectors n, b, t, where n
is the unit normal and b the unit binormal to the ray, are
also mutually perpendicular at any point on the ray Q.
It can, however, be easily proved that the coordinate system
qn, 9», 43 =S, connected with the triplet n, b, t, is not orthog-
onal for rays with a non-zero torsion.

The unit vectors e, (s), e,(s), t(s) play an important role
in all high-frequency asymptotic methods of the investiga-
tion of seismic wave fields. Among others, they determine
the direction of the displacement vector of high-frequency
seismic body waves propagating in laterally varying layered
structures. For this reason, these unit vectors are often
called polarization vectors. More specifically, the unit vector
t determines the direction of the displacement vector of
P waves which is always linearly polarized. Especially im-
portant are the vectors e,(s), e,(s), as they determine the
polarization of S waves. The S wave is generally elliptically
polarized (although it may also be linearly polarized in
some situations). The complex-valued displacement vector
of S waves does not rotate with respect to e,, e, as the
wave progresses along Q, although it rotates with respect
to the unit normal n and unit binormal b to the ray. Thus,
the polarization of S waves is determined by e, and e,.

There are several ways of evaluating the unit vectors
e;, e, along the ray € in 3-D media. For example, they
can be determined by just one simple auxiliary integration
along the ray. For the relevant equations, see Popov and
PSencik (1978a), PSencik (1979), Cerveny and Hron (1980),
Cerveny (1985b). Cormier (1984) derived a relevant equa-
tion for rays expressed in spherical coordinates and used
it to study the polarization of S waves propagating in later-
ally inhomogeneous models of the Earth’s mantle (e.g. in
lithosperic slabs).

In 2-D media, such computations are not necessary.
One of the polarization vectors e, , e, has a constant direc-
tion, and the other can be simply determined from the slow-
ness vector. Similarly, the determination of polarization
vectors e; and e, along the ray is straightforward in homo-
geneous media and in media in which V (or 1/V'%) changes
linearly with Cartesian coordinates. No integration along
the ray is necessary to determine e, and e, in these cases.

4. Coordinate systems connected with rays. Transformation
matrices

Besides the general Cartesian coordinate system x,, x,, X3
and the ray-centred coordinate system q,, q,, qs, it is conve-
nient to introduce several other coordinate systems con-

nected with rays and ray fields, mainly in 3-D computa-
tions. The application of various transformation matrices
from one coordinate system to another simplifies the nu-
merical modelling of high-frequency wave fields in complex
structures considerably.

The ray coordinates y; (i=1, 2, 3) are not connected with
one ray but with the whole ray field of the elementary wave
under consideration. The quantities y,, y, are parameters
which specify individual rays and y; is some parameter
along the ray, e.g. the arc length s. The well-known exam-
ples of the ray parameters y,, y, are the radiation angles
in the case of a point source. In other situations, the ray
parameters may have a different meaning, see e.g. Sec-
tion 13.

Other useful coordinate systems are the local Cartesian
coordinate systems at points where the selected ray Q im-
pinges on interfaces. They may be introduced to some extent
arbitrarily. Generally, one coordinate axis coincides with
the unit normal to the interface at the point of incidence,
and one is perpendicular to the plane of incidence. A similar
local Cartesian coordinate system may also be introduced
at the endpoint of the ray.

All these coordinate systems can be specified by the
transformation matrices from the system under considera-
tion to the general Cartesian coordinate system x;. These
transformation matrices can be easily evaluated along Q2
and play a basic role in the computation of the wave field,
mainly in 3-D structures. For example, the transformation
matrix from ray-centred to Cartesian coordinates along 2
is formed by Cartesian components of the polarization vec-
tors e, , e,, t. Thus, this transformation matrix is automati-
cally obtained as a by-product of the computation of the
polarization vectors.

The most important of these transformation matrices is
the 2 x 2 transformation matrix Q from ray coordinates y,,
72 to ray-centred corodinates q,, q, ; @1y =[0q1/07,]4, =q,=0>
I, J=1, 2. The determinant of this transformation matrix
can be used to evaluate the geometrical spreading. There-
fore, this matrix can be called the geometrical spreading
matrix. It can also be used to find the caustic points of
the first and second order and to determine the index of
the ray trajectory, also called the KM AH index. At caustic
points of the first order, detQ=0 and trQ #0. At caustic
points of the second order, detQ =trQ =0. The geometrical
spreading matrix can be evaluated by dynamic ray tracing,
see that next section.

In certain applications, it may be convenient to intro-
duce a special phase space, in which the coordinates corre-
spond to the ray-centred components of the slowness vec-
tor, p;=0t/0q;. The 2 x 2 transformation matrix P from
ray coordinates y,, y, to the phase-space coordinates p,,
P2;  Pr=[0pi/0ysly, =a,-0=[0%7/0¢;07)g,=g,=0, has a
deeper physical meaning and importance in certain high-
frequency methods, e.g. in the Maslov method. It can be
evaluated by dynamic ray tracing, together with the geomet-
rical spreading matrix.

The application of the transformation matrices allows
us to write the expressions for the displacement vector of
arbitrary multiply reflected waves propagating in any 2-D
or 3-D laterally varying layered structure in a very compact
form. For a detailed treatment of the individual transforma-
tion matrices and for their applicatons, refer to Cerveny
(1985b).



5. Dynamic ray tracing. Paraxial ray approximation

Dynamic ray tracing is a powerful procedure which has
recently found many applications in the numerical model-
ling of high-frequency seismic wave fields in complex struc-
tures. In seismological terminology, the dynamic ray tracing
system can be interpreted as the approximate ray tracing
system for paraxial rays (rays situated close to the central
ray ), expressed in the ray-centred coordinates connected
with Q. It consists in solving a system of ordinary differen-
tial equations along a known ray Q. The dynamic ray trac-
ing system can be expressed in different ways.The most
suitable form of the dynamic ray tracing system seems to
be a system of linear ordinary differential equations of the
first order. In 2-D computations, the system consists of
two scalar equations, in 3-D computations of two matrix
equations (for 2 x 2 matrices Q and P).

There are many important applications of dynamic ray
tracing. We shall list several of them here. Some other appli-
cations of dynamic ray tracing will surely be discovered
in the future; they may be even more important than those
listed here (applications in inverse problems, in the lineari-
zation procedures, in seismic source studies, etc.).

The most important quantities which may be deter-

mined by the dynamic ray tracing are as follows:
(a) Matrix Q of geometrical spreading and transformation
matrix P from ray coordinates y,, y, to phase-space coordi-
nates p,, p,; pr=0t/0q;. (b) Geometrical spreading, pro-
portional to (detQ)'/2. (c) 2 x 2 matrix M of second deriva-
tives of the travel-time field with respect to ray-centred co-
ordinates gx, M;;=[0°7/04;0q,)4, =q,-0 (I, J=1, 2). Matrix
M can be determined from transformation matrices Q and
P using the relation M=PQ~!. Matrix M itself satisfies
a non-linear matrix Riccati equation. As soon as matrix
M, the velocity of propagation and velocity gradients are
known at some point on the ray, the 3 x 3 matrix of second
derivatives of the travel-time field with respect to Cartesian
coordinates x;, x,, x3 can be easily determined. (d) 2x2
curvature matrix K of the wavefront, K=oM=0PQ™!.
Matrix K itself again satisfies a non-linear ordinary differ-
ential equation of the first order, which can be simply ob-
tained from the Riccati equation for M. (e) Paraxial travel
times. (f) Paraxial rays. (g) Fresnel volumes and/or Fresnel
zones. (h) Paraxial components of the displacement vector.
(i) Gaussian beams.

The dynamic ray tracing procedure may also be used
to perform approximate boundary-value ray tracing or in-
terval ray tracing in the vicinity of the central ray and to
find the analytical continuation of the travel-time field into
shadow zones.

When the ray is incident at an interface (surface of dis-
continuous velocity), the matrices Q, P, M and K change
discontinuously across the interface along the ray. The
transformation of Q, P, M and K across an interface has
played an important role in various seismological applica-
tions, as it is directly connected with the problem of calcu-
lating the amplitudes of seismic body waves propagating
in a layered medium. Traditionally, considerable attention
has been devoted mainly to the behaviour of the curvature
matrix. As the curvature matrix K can be easily continued
along the ray in certain simple types of media (homoge-
neous, constant velocity gradient), the curvature matrix can
be efficiently evaluated even along a multiply reflected ray
in a layered medium and may be used to determine the
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geometrical spreading. This method is sometimes called the
“wavefront curvature method”, * principle curvature meth-
od” or similar. Such methods found wide applications
mainly in seismic prospecting. See, e.g., Alekseyev and Gel’-
chinskiy (1959), Gel’chinskiy (1961), Cerveny and Ravindra
(1971), Deschamps (1972), Shah (1973b), Hubral (1979,
1980), Hubral and Krey (1980), Cerveny and Hron (1980),
Ursin (19824, 1982b). Lee and Langston (1983 a), Gjoystdal
et al. (1984).

In models with a more complex velocity distribution
within the individual layers, the curvature method would
require the non-linear ordinary differential equation of first
order for K to be solved along the ray. In this case, it
is more useful and computationally more efficient to solve
the linear dynamic ray tracing system for Q and P. The
curvature matrix K may then be evaluated from Q and
P at any point on the ray, but this is usually not necessary,
matrices Q, P and M are sufficient to solve all problems
of numerical modelling of high-frequency seismic body
waves in complex structures.

Many papers have been devoted to various problems
of dynamic ray tracing and/or to the evaluation of geomet-
rical spreading. In addition to references given above, we
mention several others: Belonosova et al. (1967), Cerveny
et al. (1974), Green (1976), Cerveny (1976b). Popov (1977),
Cerveny et al. (1977), Popov and PSencik (1978a, 1978b),
Goldin (1979), Psencik (1979), Cerveny and PSencik (1979),
Belonosova and Cecocho (1979), Azbel et al. (1980), Grin-
feld (1980), Popov and Tyurikov (1981), Cerveny (1981a,
b), PSencik (1983). The complete treatment of this problem
for arbitrary multiply reflected waves in a 3-D laterally
varying layered structure can be found in Cerveny (1985b).

The main importance of dynamic ray tracing consists
in its applications in the so-called paraxial ray approxima-
tion, see items (e) and (h) above. In the standard ray meth-
od, the travel time and the displacement vector are evalu-
ated only along rays. Thus, if we wish to evaluate the wave
field at any point S by the standard ray method, we must
find the ray which arrives at this point (boundary-value
ray tracing). In the paraxial ray approximation, however,
we need not evaluate the ray which arrives at S, but we
can use any point Oy, situated on an arbitrary ray £ passing
close to S, to evaluate the wave field at S. In this case,
however, the dynamic ray tracing must be performed along
Q. The position of both points O; and S may be specified
in general Cartesian coordinates, see Cerveny and P3encik
(1983).

In many applications, it is suitable to use the fundamen-
tal matrix of linearly independent solutions of the dynamic
ray tracing system. As soon as the fundamental matrix is
known, many high-frequency asymptotic computations re-
duce to simple matrix algebra. In 3-D problems, the 4 x4
fundamental matrix consists of two 2 x 2 matrix solutions,
one of them is the “plane wave” solution, and the other
the ““point source” solution. Similarly, in 2-D problems,
the 2 x 2 fundamental matrix consists of two solutions, one
of them is again the “plane wave” solution and the other
the ““line source” solution.

Dynamic ray tracing takes only a small fraction of the
computer time that ray tracing takes. Moreover, dynamic
ray tracing has to be performed even in the standard ray
method to evaluate the geometrical spreading. In this way,
all the other possible applications are obtained practically
without any increase in computer time.



Dynamic ray tracing can be performed even in inhomo-
geneous anisotropic media. For concrete forms of the dy-
namic ray tracing system in general anisotropic media, see
Hanyga (1982).

Let us add one note to the derivation of the dynamic
ray tracing system. The dynamic ray tracing system can
be derived in a very simple and straightforward way from
the eikonal equation rewritten in ray-centred coordinates,
see Cerveny (1985b). A more general approach, based on
the Riemannian geometry, is also available. Consider a
three-dimensional Riemannian space with the metric tensor
gij=v"?0;j, where v is the propagation velocity and J;; the
Kronecker symbol. Then the rays correspond to geodesics
in this space, and the system of differential equations for
the geodesic corresponds to the ray tracing system. Similar-
ly, equations for the so-called geodesic deviation correspond
to the dynamic ray tracing system. The differential equa-
tions for the geodesics and for the geodesic deviations have
been known for a long time and’are applicable to any
curved n-dimensional Riemannian space, with an arbitrary
metric tensor g;;, see e.g. Synge and Schild (1952). These
equations have been widely used in mathematical physics,
mainly in the general theory of relativity, see e.g. Synge
(1960), Misner et al. (1973). The equations for geodesics
and for geodesic deviations may be directly applied to ray
tracing and dynamic ray tracing in ““curved spaces” of se-
ismological interest, for which the Riemann (curvature) ten-
sor can be evaluated. As an example, let us mention here
the ray tracing and dynamic ray tracing along an arbitrarily
curved surface. This may be needed in surface wave studies,
in finite-source studies (ray tracing along a generally curved
fault surface), etc. The evaluation of the Riemann tensor,
however, is not in general an easy procedure. For some
related discussions and applications see Sharafutdinov
(1979), Young (1985).

6. Computation of amplitudes

In this section, we shall discuss only the amplitudes of the
zero-order term of the ray series solution. The higher-order
terms of the ray series may be important in investigating
the ““higher-order” waves, such as pure head waves, and
in investigating the accuracy of the zero-order term. The
higher-order terms, however, have not yet found wider ap-
plications in seismology. For details regarding the evalua-
tion of higher-order terms of the ray series and regarding
head waves, see Cerveny and Ravindra (1971). Most of
the important seismic body waves in seismology and seismic
prospecting, such as waves reflected from first-order discon-
tinuities, refracted waves, etc., are zero-order” waves in
the terminology of the ray series solution. In the following,
we shall call the amplitudes of the zero-order term of the
ray series the ray amplitudes, or simply amplitudes. The
ray amplitudes are inversely proportional to the geometrical
spreading.

As geometrical spreading can be evaluated by dynamic
ray tracing, we shall first discuss the evaluation of the
“spreading-free’ amplitudes, i.e. the ray amplitudes without
the geometrical spreading factor.

The procedures for computing complex-valued vectorial
spreading-free amplitudes in 2-D media are well-known.
The equations can be simply written in a compact form,
even for an arbitrary multiply reflected, possibly converted,

wave in a laterally varying layered structure. Such equations
can be written even for 3-D media, but they are more com-
plicated. The complications are caused mainly by the differ-
ent orientation of the polarization vectors and the local
Cartesian unit vectors at points of reflection/transmission.
Both components of the S vector generally become coupled
at any point of reflection/transmission. In 3-D computa-
tions, it is very convenient to use the matrix notation and
various transformation matrices. The matrix notation and
the use of transformation matrices again allow us to write
the equations for the complex-valued displacement vector
of an arbitrary multiply reflected/transmitted P, S or con-
verted wave in any 3-D laterally varying layered structure
in a compact analytical form, see Cerveny (1985b). Instead
of reflection/transmission coefficients, however, 3 x 3 reflec-
tion/transmission matrices must be used, in which the ele-
ments are the standard reflection/transmission coefficients.
The compact analytical equations for the displacement vec-
tor can be used in various applications. For example, they
can be used to study and prove various reciprocity proper-
ties.

In numerical computation of the spreading-free ampli-
tudes, the compact analytical expressions for the spreading-
free amplitudes are not necessary. The computations may
be performed by a straightforward step-by-step algorithm,
following the ray from one interface to another, and apply-
ing relevant transformations at individual points of reflec-
tion/transmission. See PSencik (1979), Hubral and Krey
(1980).

The spreading-free amplitudes can be used not only in
ray applications, but also in some other more sophisticated
computations, e.g. in the method of Gaussian beams. In
the Gaussian beam approach, the standard geometrical
spreading is replaced by another complex-valued function,
the complex-valued spreading.

Generally speaking, the computation of the complex-
valued vectorial spreading-free amplitudes is not a compli-
cated problem. The procedures are fast and efficient if the
relevant rays are known.

In the case of a point source, the expressions for the
ray amplitudes also contain the radiation patterns of the
source. It may sometimes be more suitable not to include
the radiation pattern in the amplitudes, but to take it into
account only in the synthetic seismogram computations.
See the detailed discussion in the next section.

As mentioned in the introduction, the accuracy of ray
amplitudes is limited in the singular regions of the ray field,
such as the caustic region, the critical region, the transition
zone between the shadow and illuminated regions, etc. In
some situations, the ray expressions may even be fully inval-
id. For example, in shadow zones the ray method yields
zero amplitudes and, directly at caustics, infinite ampli-
tudes. It should be emphasized that certain singular regions
(such as the caustic and critical regions) are of great impor-
tance in seismological applications, as the amplitudes may
be considerably large there. To evaluate the amplitudes in
singular regions, various modifications of the ray method
have been proposed. Well-known examples are the Airy
modification in the caustic region, the Weber-Hermite mod-
ification in the critical region, etc. The references to the
evaluation of the wave field in singular regions are too
numerous to be given here. For a more detailed explanation
and many references, see Babich and Buldyrev (1972), Fel-



sen and Marcuvitz (1973), Cerveny et al. (1977), Kravtsov
and Orlov (1980), Cerveny (1981a), Klem-Musatov and Ai-
zenberg (1984), Chapman (1985). Let us only note that the
amplitudes of seismic body waves in singular regions are
frequency dependent.

Another limitation of the ray method is as follows. Cer-
tain seismic waves cannot be described by the ray series
method. Let us mention here various diffracted waves con-
nected with corners and edges in interfaces, the grazing
diffractions, waves which propagate at least partly along
non-ray paths, such as screened waves, evanescent waves,
tunnel waves, pseudospherical waves like S*, etc. Some of
these waves may be of importance in seismology and seismic
prospecting. Similarly as in the preceding case, various
modifications of the ray method have been proposed which
can be used to find asymptotic high-frequency expressions
for these waves. They again yield frequency-dependent am-
plitudes. These modifications can be simply included in the
ray computations. A good example are the Klem-Musatov
expressions for the edge waves (see Klem-Musatov and Ai-
zenberg 1984), the asymptotic expressions for pseudospheri-
cal waves, etc. See again the references given above.

Moreover, the standard ray series method is not able
to describe waves of an interference character, connected
with very thin layers, whispering gallery waves, etc. For
certain of these waves, some modifications of the ray meth-
od have again been proposed (e.g. for whispering gallery
waves). Some other waves of the interference type may be
evaluated by hybrid methods, which will be described in
the next section.

As mentioned in Section 2, there is still one additional
problem in the evaluation of ray amplitudes. The ray ampli-
tudes of some body waves are very sensitive to minor details
in the approximation of the medium, e.g. to artificial inter-
faces of second order, fictitious small oscillations of the
velocity distribution, etc. There are two possibilities of
avoiding this problem. First: it is possible to use an approxi-
mation of the medium which is smooth enough to suppress
the artificial effects. Unfortunately, this is a very compli-
cated problem, see Section 9. Another possibility is to
smooth the computed ray amplitudes. One such possibility
will be described briefly in Section 8. It would, of course,
also be possible to use other methods of numerical model-
ling, which automatically include some smoothing, such as
the Chapman-Maslov method (see Chapman 1985) or the
method of Gaussian beams (see Cerveny 1985a, Sec-
tion 12).

As the ray method is only approximate, it would be
useful to have some possibility of estimating the error in
the computation of amplitudes. Unfortunately, the validity
conditions have usually only a qualitative, not quantitative,
character. Therefore, it is not simple to give quantitative
estimates of the error in ray amplitudes. The validity condi-
tions, however, tell us when and where the error is larger
(smaller). Usually, the accuracy of the ray method is studied
quantitatively by the comparison of ray results with more
exact computations for some canonical problems. For more
details on the validity conditions, see é)erven}'/ et al. (1977,
Chapter 8), Ben-Menahem and Beydoun (1985a, b).

The ray method can be used to determine ray ampli-
tudes of high-frequency seismic body waves even in more
complicated types of media, such as anisotropic, pre-
stressed, slightly dissipative, porous and randoin media.

7. Elementary wave quantities. Elementary seismograms

As soon as the travel times and vectorial complex-valued
amplitudes of individual elementary waves are available,
it is possible to evaluate elementary seismograms, i.e. the
contributions of the individual elementary waves to the
whole wave field in the time domain.

To determine the elementary synthetic seismograms, we
must know the source-time function and its Hilbert trans-
form. Various source-time functions have been used in syn-
thetic seismology. Let us mention, e.g., the Berlage signal,
the Ricker signal, Kiipper’s signal, etc. We prefer to use
the Gaussian envelope signal (also called the Gabor signal)

F(t)=exp[— (2nfu (t—t0)[7)*Icos[2 i (t —1o) +V],

where fy, 7, to and v are real-valued free parameters. The
signal corresponds to a harmonic carrier (frequency fy)
with a Gaussian (bell-shaped) envelope. For larger y (say,
yZ2.5), the signal has a very narrow amplitude spectrum,
highly concentrated at frequency fy,. The Hilbert transform
of F(f) can then also be expressed analytically by means
of an approximate equation, see Cerveny (1976a),

H(1)= —exp[— (27fu (t—10)/y)*Isin[27 fir (¢ —t6) +v].

This makes the evaluation of elementary seismograms very
easy. Moreover, by a proper choice of the parameters fy,,
y, v, to we can simulate a large variety of seismic signals
observed in seismology and in seismic prospecting.

The analytic expressions for the Hilbert transform are
known for several other useful source-time functions; the
most important of them is the delta function. In this way,
we can easily construct the elementary seismograms for the
delta source-time function. This source-time function, how-
ever, contains very low frequencies (including the D.C.
component) which are not allowed in the high-frequency
calculations. Nevertheless, the delta function computations
may be performed, but the results must later be convolved
with some high-frequency source-time function. For other
details, we refer the reader to Cerveny (1985b).

If the source-time function is known, the elementary
seismogram of any multiply reflected wave propagating in
an arbitrary structure is fully specified at a receiver point
by the following quantities: the travel time and the vectorial
complex-valued amplitudes. We call these quantities the ele-
mentary wave quantities.

In a general 3-D medium if we are interested in all the
three Cartesian components of the displacement vector,
there are seven real-valued elementary wave quantities: the
real-valued travel time and two real-valued numbers for
each component of the displacement vector.

The number of elementary wave quantities may be de-
creased in some special situations. For example, in 2-D
P-SV computations there are five elementary quantities,
in 2-D SH computations there are three.

We have considered real-valued travel times. In some
cases, it is suitable to consider complex-valued travel times.
This applies, e.g., to slightly dissipative media. One addi-
tional elementary wave quantity, which corresponds to the
imaginary part of the travel time, must then be considered.

In slightly dissipative media, it is convenient to include
among the elementary wave quantities the so-called global
absorption parameter

05
= [ (VQ)~'ds,

()



10

where Q is the quality factor and ¥V is the velocity; the
integration is taken along the ray from the source to the
receiver. In addition to standard synthetic seismograms for
a non-absorbing medium, elementary synthetic seismo-
grams for various absorption models (including models of
causal absorption) may then be constructed.

If the elementary wave quantities are known, the ele-
mentary synthetic seismogram can be computed for any
high-frequency source-time function. The possibilities of el-
ementary synthetic seismograms may be considerably gen-
eralized if some other additional quantities are available,
together with the elementary wave quantities listed above.
For example, in the case of a point source, it is useful
also to store the two radiation (take-off) angles. The radia-
tion patterns of the source need then be taken into account
only in the elementary synthetic seismogram computations,
not in the amplitude evaluation. The procudure is as fol-
lows: the amplitudes are evaluated for an isotropic radia-
tion pattern of the source, and only the elementary synthetic
seismograms are multiplied by the radiation pattern under
consideration. In this way, the elementary synthetic seismo-
grams may be calculated for various radiation patterns
practically without any additional numerical effort.

The approach described may, however, be slightly more
complicated in 3-D computations as the radiation patterns
for the two components of S waves (e.g. SH and SV) are
generally different. In this case, three other complex-valued
Cartesian components of the displacement vector must be
stored if the source generates an S wave. In 2-D computa-
tions, this increase of elementary wave quantities is not
necessary as the two components of S waves are not cou-
pled together.

8. Ray synthetic seismograms

By ray synthetic seismograms, we understand a superposi-
tion of the elementary seismograms of all elementary waves
(or some selected elementary waves) arriving along various
ray trajectories from the source to the receiver within a
specified time window.

Much attention in the seismological literature has been
devoted to the automatic generation of numerical codes
of multiply reflected waves in horizontally layered media
with homogeneous layers, see e.g. Hron (1972). In such
media, the elementary waves may be effectively grouped
into families of kinematic and dynamic analogs. Only a
finite number of elementary waves arrives at the receiver
within a specified time window in this case. In inhomoge-
neous layered structures, an infinite number of elementary
waves may arrive at the receiver, even if a time window
of finite length is considered. Thus, the ray synthetic seismo-
gram cannot be generally complete, only partial ray expan-
sion is possible. Moreover, in laterally varying layered
structures, the elementary waves must be treated individual-
ly; they cannot be grouped into families of kinematic and
dynamic analogs. The automatic generation of numerical
codes would be more complicated in this case. The ray
method is most effective in situations in which only a small
number of elementary waves needs to be computed. A medi-
um composed of thick layers separated by smooth inter-
faces, with a smooth velocity distribution inside individual
layers, may serve as a good example; particularly if the
epicentral distances of receivers are not too large. The prob-
lem of automatic, semi-automatic and manual generation

of numerical codes of elementary waves was briefly dis-
cussed in Section 1.

The basic data file for the evaluation of ray synthetic
seismograms is the file containing the set of elementary
wave quantities, for all receivers and all elementary waves
under consideration. As soon as this file is available, the
evaluation of ray synthetic seismograms is easy and fast.
In principle, three approaches can then be used to evaluate
the ray synthetic seismograms:

a) Direct summation of elementary seismograms.

b) Frequency domain approach. In the frequency domain
approach, the frequency response is evaluated first, using
the elementary wave quantities of all elementary waves
under consideration. Multiplying it by the spectrum of the
source-time function yields the spectrum of the synthetic
seismogram. Finally, the ray synthetic seismogram is evalu-
ated by inverse Fourier transform.

c) Convolutory approach. First, the complex-valued im-
pulse response is calculated. The source-time function cor-
responds to the delta function in this case. The ray synthetic
seismogram is then obtained as the real part of the convolu-
tion of the complex-valued impulse response with the ana-
lytical signal corresponding to the source-time function.
Several alternative approaches can be used. In some of
them, it is not necessary to work with the analytical signal
of the source-time function, but only with the real-valued
source-time function. See Chapman (1985) for details.

All the above three approaches have certain advantages
and disadvantages. If the number of elementary waves is
small and the Gaussian envelope signal is considered as
a source-time function, the approach based on the summa-
tion of elementary seismograms is the simplest and most
straightforward. On the other hand, the frequency-domain
approach is more general. If the number of elementary
waves is large, it may even be faster. As the vectorial com-
plex-valued amplitudes of elementary waves are indepen-
dent of frequency in the ray method, a fast method can
be used to evaluate the frequency response. The frequency
response at any specified receiver has the following form:

N
X(f) Y Urexp(i2nf1,),
n=1

where f is the frequency, N is the number of elementary
waves under consideration, t, is the travel time and U™
the relevant component of the vectorial complex-valued am-
plitude of the n-th elementary wave, and X (f) is the spec-
trum of the source-time function. Both U" and 1, are inde-
pendent of frequency. Assume that we evaluate the fre-
quency response for frequencies f,, k=1, 2, ..., K, with
fi+1—fi=A4f=const. Then, for each elementary wave
(n=1, 2, ..., N), the contribution Uexp(i2x ft,) must be
evaluated for frequencies f;, k=1, 2, ..., K. The most time-
consuming step is the evaluation of trigonometric functions
cos (2nfyt,) and sin(2nf,t,). The fast frequency response
(FFR) algorithm, which removes the calculation of trigono-
metric functions, is as follows. For a given n, the contribu-
tion U" exp(i2nf7,) is directly evaluated only for the first
frequency f;. Then the quantity 4 =exp(i2n4fz,) is com-
puted. For all other frequencies f,>f;, only one complex-
valued multiplication is needed to evaluate U" exp (i27 f; 7,,),
as U" exp(i2nfit,)=U" exp(i2nf, t,) A*~ 1. Thus, no trigo-
nometric functions need be computed. The FFR algorithm
can be used even for complex-valued 1z, (slightly dissipative
media, Gaussian beams) and for certain cases of frequency-



dependent U" [if U"=G(f) U", where U" is frequency inde-
pendent and G(f) is the same for all n].

The frequency-domain approach also allows some fre-
quency-dependent effects (dissipation, frequency character-
istics of recording equipment, subsurface thin layering, thin
transition layers, etc.) to be included simply in the computa-
tions. It also allows various modifications of the ray method
to be considered in singular regions, and the non-ray waves,
such as the diffracted, evanescent, pseudospherical, and
higher-order waves, to be included. In most of these fre-
quency-dependent effects, however, the fast frequency re-
sponse (FFR) algorithm cannot be used. It can still be used
in the case of non-causal absorption and even for certain
causal absorption models, if the model is considered in lin-
earized form, see Cerveny (1985a, b). Certain problems in
the frequency-domain approach may be caused by the alias-
ing effect.

As mentioned in Section 1, ray synthetic seismograms
may be evaluated by two methods. The first method is based
on boundary-value ray tracing and was explained above.
The second method is based on the paraxial ray approxima-
tion. In the second method, boundary-value ray tracing is
not necessary, only initial-value or interval ray tracing is
required. The initial-value or interval ray tracing does not
yield the elementary wave quantities directly at the re-
ceivers, but in some irregular system of endpoints of rays
along the Earth’s surface. The system of endpoints must
cover the region of interest D, with sufficient density. The
receiver coordinates need not be specified at this stage, only
the region of interest D, must be known.

The elementary synthetic seismogram can then be evalu-
ated at any point S of region D, by the method of paraxial
ray approximation. The knowledge of the elementary wave
quantities at the endpoints of rays, however, it not sufficient
to evaluate elementary synthetic seismograms at .S, we must
know some additional quantities. To compute elementary
synthetic seismograms by the paraxial ray approximation
at S, the following quantities must be stored at the end-
points of rays: the Cartesian coordinates of the endpoint,
the Cartesian components of the slowness vector at the
endpoint, the travel time, the spreading-free vectorial com-
plex-valued amplitudes, the Cartesian components of the
velocity gradient at the endpoint, the index of the ray trajec-
tory (KMAH index) and the results of dynamic ray tracing.
Optionally, we can again store the quantity /* and the radia-
tion angles.

If such a file is available, ray synthetic seismograms
can be evaluated at any point of the region D,. Only now
need the coordinates of the receiver points be specified.
In 3-D calculations, the receiver points may be distributed
regularly or irregularly along various profiles.

Two algorithms based on the paraxial ray approxima-
tion may be used to evaluate the travel time and the com-
plex-valued vectorial amplitude at a specified receiver point
from the quantities stored at the endpoints of rays. In the
first algorithm, the travel time and complex amplitude are
determined at the receiver from the nearest endpoint of the
ray. In the second algorithm, the travel time and complex
amplitude at the receiver are obtained as a weighted super-
position corresponding to several of the closest endpoints.
The second algorithm automatically includes some smooth-
ing which may be very useful in the ray amplitude computa-
tions. If Gaussian weighting is used to evaluate the ray
amplitude at the receiver, the approach is in fact very close
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to a special case of the Gaussian beam summation method,
see Cerveny [1985a, Eq. (18)].

The computation of synthetic seismograms by the ray
method is most effective if we deal with a small number
of rays only. As soon as the number of rays becomes very
large, difficulties may appear. Firstly, the procedures be-
come cumbersome if a large number of elementary waves
must be evaluated. Secondly, certain principal difficulties
can also be encountered in the case of destructive interfer-
ence of waves. The leading terms of the individual waves
may cancel each other. Various modifications were sug-
gested to overcome these difficulties, e.g. hybrid ray-mode
methods or hybrid ray-reflectivity methods. The latter mod-
ification is very convenient if the model is composed of
thick smoothly inhomogeneous layers separated by thin
transition layers with abrupt changes of velocity. The ray
method can then be applied to the thick layers and the
reflection/transmission coefficients at the individual inter-
faces are replaced by frequency-dependent reflection/trans-
mission coefficients for the transition layers, evaluated by
matrix methods. See Ratnikova (1973), Daley and Hron
(1982).

The concrete algorithms for the compuiation of ray syn-
thetic seismograms depend considerably on the purpose,
required accuracy and completeness of computations, and
are described in many papers publishing during the last
few years. Several references will be given here for the
reader’s convenience.

Ray synthetic seismograms have found applications
mainly in seismic investigations of the Earth’s crust. In the
1960s the ray synthetic seismograms were evaluated for
crustal models composed of parallel thick homogeneous
layers (e.g., see Cerveny and Novak 1968). Several modifi-
cations of the ray method, such as the Weber-Hermite mod-
ifications in the critical region, were applied to increase
the accuracy of ray computations. The programs were also
modified for vertically inhomogeneous layered structures,
simulating them by thin homogeneous layers (similar to
the reflectivity method). Certain algorithms and programs,
written at that time, such as program SEIS4, found broader
applications in the interpretation of seismic crustal data.
See the detailed expositions of these methods with many
examples in the book by Cerveny et al. (1977). The evalua-
tion of ray synthetic seismograms for general vertically in-
homogeneous layered structures may be useful even at pres-
ent. A new, very fast and efficient algorithm and program
for such computation is described in Cerveny and Jansky
(1985). The ray method, of course, cannot compete in the
accuracy of computations with the reflectivity method, but
it is considerably faster and more efficient, at least for such
structures in which the higher multiple reflections do not
play a considerable role.

Ray synthetic seismograms, however, have found most
natural applications in laterally varying layered crustal
models (where the reflectivity method cannot be used). The
first ray synthetic seismograms for 2-D crustal structures,
mostly composed of homogeneous layers separated by
curved interfaces, were computed at the beginning of the
1980, e.g. see Hron and Kanasewich (1971). The algorithms,
details of computations and numerical examples can be
found in Cerveny and PSencik (1977), Hron et al. (1977),
Cerveny et al. (1977), Cerveny (1979), Marks and Hron
(1980), McMechan and Mooney (1980), Cassel (1982),
Spence et al. (1984). The accuracy and computer efficiency



12

of the ray synthetic seismogram was investigated in great
detail by DeSisto and Smith (1983). See also Examples 2
and 3 in Sections 11 and 12 and other references therein.
The comparison of computations by different algorithms
for a 2-D laterally varying model of the Earth’s crust, pro-
posed by W.D. Mooney, was performed in the Workshop
of the Commission on Controlled Source Seismology at
Einsiedeln, 1983; for results, see Mooney (1985). The mod-
el, however, is not quite suitable for ray computations as
it contains very thin layers and corner points in interfaces.
Various modifications of the ray method may also be used
to compute synthetic seismograms for 2-D layered struc-
tures. For example, the synthetic seismograms evaluated
by the Wiggins disc theory are reported by Chiang and
Braile (1984). Note that 2-D ray synthetic seismograms
have even been computed for slightly dissipative media,
see Krebes and Hron (1980, 1981), Cerveny and Pentik
(1984), and for certain simpler types of anisotropic inhomo-
geneous media. For a review with many references, see Cer-
veny etal. (1980), Cerveny (1983), Fertig and Psencik
(1985).

In interpreting seismic crustal measurements, 3-D later-
ally inhomogeneous layered structures have not yet been
widely considered. At present, however, effective algorithms
and program packages are available, which allow numerical
modelling even in the case of 3-D crustal models. For de-
tails, see Cerveny et al. (1984), where also some numerical
examples of ray synthetic seismograms for a 3-D crustal
structure are presented. Generally speaking, the 3-D syn-
thetic seismogram computations are not complicated,
especially if the paraxial ray approximation is used. The
3-D computations are, of course, more time consuming
than 2-D computations. There are some exceptions. If the
receivers aré not distributed over a 2-D region on the
Earth’s surface, but only along one roughly straight-line
profile, and if the epicentre is situated close to that profile,
the computation of the synthetic seismograms is very fast,
even for 3-D models. The synthetic seismogram computa-
tions then do not require considerably more computer time
than the computations for 2-D models. The distribution
of receivers and sources described is typical for deep seismic
sounding studies of the Earth’s crust, so that 3-D synthetic
seismogram computations can be performed in this case
even on 200-K-size computers and require only a reasonable
amount of computer time. See Example 5 in Section 14.

Recently, ray synthetic seismograms and synthetic time
sections have found broader applications even in 2-D and
3-D numerical modelling of seismic wave fields in seismic
prospecting. See, e.g., Hron et al. (1977), May and Hron
(1978), Zilkha et al. (1983), Sierra Geophysics (n.d.), etc.
For simple 2-D examples of synthetic seismogram and syn-
thetic time-section computations for models of some inter-
est in seismic prospecting refer to Sections 10 and 13. The
author expects the importance of ray concepts and particu-
larly of the ray synthetic seismograms in seismic prospect-
ing, mainly in 3-D seismics, to increase considerably in the
near future.

9. Approximation of the velocity distribution in the model

The approximation of the velocity distribution in 2-D and
3-D layered structures is not a simple problem. The ampli-
tudes evaluated by the ray method are sensitive to some
pecularities of the approximation, e.g. to artificial second-
order interfaces, to small oscillations of the velocity distri-
bution and to corners in interfaces, introduced by approxi-
mation methods. These small details in the approximation
are often responsible for the anomalous behaviour of ray
amplitudes in certain ranges of epicentral distances. For
example, the bilinear approximation, or a piecewise linear
triangular approximation generates such second-order in-
terfaces. They are, therefore, not quite suitable for comput-
ing ray amplitudes and ray synthetic seismograms (although
they may be useful in the evaluation of travel-time curves).
The spline approximation does not generate such interfaces
and is usually more useful. Unfortunately, the spline ap-
proximation may generate some small oscillations, which
again cause anomalies in the ray field and in amplitude
computations, mainly in regions of stronger changes of ve-
locity. In deep seismic studies of the Earth’s crust, this ap-
plies particularly to the uppermost part of the crust. It is
more convenient to use smoothed splines or splines with
tension.

Generally, the smooth approximation of the velocity
distribution in 2-D and 3-D models is the most complicated
part in the evaluation of ray amplitudes and ray synthetic
seismograms. This is one of the reasons why such a large
effort has been devoted recently to the investigation of more
sophisticated high-frequency methods which would not be
so sensitive to the minor peculiarities in the approximation
of the velocity distribution.

! Model 1P1
Ivelocity distribution
isolines constructed from 250000 to 400000 with increment 015000

0 2000 5000 000 8000 10000

0

4505

Fig. 2. The 2-D laterally varying model IP1, with a lens-like high-
velocity body, used for the computation of the numerical exam-
ple 1. The P-wave velocities in individual layers are constant

-

Fig. 3. Model IP1, shot point at x=5 km. Examples of source-to-receiver ray diagrams, travel-time and ray amplitude-distance plots
for two clementary primary reflected waves. Bottom part: ray synthetic seismograms of the vertical component (/eff) and horizontal
component (right) of the displacement vector. No amplitude normalization is used; travel times are not reduced. All primary reflected

waves, including converted waves, are considered
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grams of the vertical component (/eft) and horizontal component
(right) of the displacement vector. The travel time is not reduced;
the time axis is oriented downwards, from 0 s to 5 s. The horizontal
axes again correspond to x, from 0 km to 10 km. All primary
reflected waves, including converted waves, are considered. A stan-
dard seismic plotting system is used to plot the synthetic seismo-
gram sections

10. Numerical example 1: model IP 1

We shall now illustrate the ray synthetic seismogram com-
putations on a simple 2-D laterally varying model IP1, see
Fig. 2. The model is 10 km long and 4.5 km deep. It con-
tains a lens-like high-velocity body. For simplicity, the velo-
cities in the individual layers are constant. The P-wave velo-
cities in the individual layers, from top to bottom, are as
follows: 2.5 kmy/s, 3 km/s, 3.5 km/s (the lens), 3 km/s, 4 km/
s. The S-wave velocities ¥ and the densities p are evaluated
from the P-wave velocities V, using the relations: V,=V,/
}/5, p=1.74+0.2 V,. The uppermost interface is curved and
represents the Earth’s surface. In Fig. 2 the region above
the Earth’s surface is denoted by asterisks. A point source
with isotropic radiation patterns generates both P and S
waves, the generated S waves being twice as strong as the
P waves.

The synthetic seismograms for the IP1 model were cal-
culated using the SEIS 81 program package. We shall briefly
describe a revised version of the program package, called
SEIS83, which is now available from the World Data
Center A for Solid Earth Geophysics, Boulder. A more
detailed description of the SEIS83 program package can
be found in Cerveny and Pencik (1984).

The SEIS83 program package is designed for the numer-
ical modelling of high-frequency seismic wave fields in 2-D
laterally varying layered structures by the ray method. It

Fig. 5. Model IP1, shot point at x=>5 km. Ray synthetic seismo-
grams of the vertical component of the displacement vector. Left-
hand side: The source generates only P waves. Right-hand side:
The source generates only S waves. Primary reflected waves, in-
cluding converted waves, are considered. The travel time is not
reduced; the time axis is oriented downwards, from 0s to 5s.
The horizontal axes again correspond to x, from 0 km to 10 km.
A standard seismic plotting system is used to plot the synthetic
seismogram sections

is based on two-point ray tracing. The two-point ray tracing
is performed by a modified shooting method. Special care
in the modified shooting procedure is devoted to multiple
arrivals of the individual elementary waves, to boundaries
of shadow zones and to slightly refracted waves.

The model is bounded by two vertical boundaries and
two, possibly curved, boundaries representing the Earth’s
surface and the bottom of the model. Each interface crosses
the whole model from its left vertical boundary to its right
vertical boundary. The interfaces are specified by systems
of points. They are approximated by cubic spline interpola-
tion. They may have corner points and may be fictitious
in certain parts. Various interfaces may also partially coin-
cide. Thus, models with vanishing layers, block structures,
fractures and isolated bodies can be handled. A slight dissi-
pation is optionally considered. Within any layer, the veloc-
ity distribution may be approximated optionally in one of
the three following ways:

a) The velocities are specified at grid points of a rectangular
network covering the whole layer and a bicubic spline ap-
proximation is used.

b) The same as in a), but the piecewise bilinear approxima-
tion is used instead of splines.

¢) The velocity is specified by isolines of velocity, and a
linear velocity-depth interpolation between isolines is used.

The ray synthetic seismograms are evaluated by the
summation of elementary seismograms. The source-time

Fig. 6. Model IP1, shot point at x=0 km. Examples of source-to-receiver ray diagrams for four elementary reflected waves. The travel
times and ray amplitudes for one of these waves is also shown. Bottom part: ray synthetic seismograms of the vertical component
(left) and horizontal component (right) of the displacement vector. No amplitude normalization is used. Travel times are not reduced.

All primary reflected waves, including converted waves, are considered
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function has the form of the Gaussian envelope signal. The
source may be situated at any point of the medium. The
radiation patterns of the source may be specified indepen-
dently for P and S waves, either by tables or analytically.
The amplitudes are evaluated by standard ray formulae.
The geometrical spreading is determined by dynamic ray
tracing. The semi-automatic generation of numerical codes
of elementary waves is used, see Section 1. All the primary
reflected and refracted waves, including the converted
waves, may be generated automatically. Any other multiply
reflected wave may then be added manually.

Program package SEIS 83 consists of five programs. The
basic program, also called SEIS 83, computes two files. The
first file contains the elementary wave quantities for all
receivers and all elementary waves. The second file contains
data for plotting ray diagrams, travel times and amplitudes.
The first file may be used to evaluate the synthetic seismo-
grams in the SYNTPL program. These synthetic seismo-
grams may be plotted by program SEISPLOT. The results
stored in the second file may be optionally plotted by pro-
gram RAYPLOT. Program SMOOTH may be optionally
used to efficiently prepare the data for the velocity distribu-
tion within individual layers and to smooth them. The
SEIS 83 program package is well documented.

Now we shall return to our example, model IP1. We
shall present results for two different source positions, x=
Skm and x=0 km, situated, in both cases, close to the
Earth’s surface. A point source with isotropic radiation pat-
tern is considered.

a) Source at x=35 km

Figure 3 shows examples of ray diagrams, travel times and
amplitudes of two elementary waves: the PP wave reflected
from the fourth interface and the SS wave reflected from
the fifth interface. (The Earth’s surface is considered as
the first interface.) Let us emphasize that the ray diagrams
are source-to-receiver ray diagrams, not initial-value ones.
Note also the considerably more complicated distribution
of amplitudes of the SS reflected waves as compared to
the amplitudes of the PP reflections. We can also see the
distinct boundary of the shadow zone of the reflected PP
wave at x~2 km. The synthetic seismograms (constructed
from PP, PS, SP and SS primary waves reflected from
all interfaces) are shown in the bottom part of Fig. 3. Com-
plicated interference zones are clearly seen in both dia-
grams. It is interesting to observe the focusing of energy
at certain epicentral distances, mainly in the case of S
waves, in the horizontal component synthetic seismograms.

In Fig. 4, the synthetic seismograms are shown in a dif-
ferent presentation, more common in seismic prospecting,
with the time axis oriented downwards. The left-hand syn-
thetic seismograms again correspond to the vertical compo-
nent, the right-hand to the horizontal component.

It may sometimes be convenient to evaluate only syn-
thetic seismogram sections of some selected elementary
waves. As an example, we present Fig. 5. Both synthetic
seismogram sections in Fig. 5 correspond to the vertical
component. The left-hand picture corresponds to the P-
wave source, the right-hand to the S-wave source.

All the computed synthetic seismograms in Figs. 3-5
are presented in terms of actual amplitudes. No reduction
of travel times and no amplitude scaling was applied.

b) Source at x=0 km

Figure 6 shows examples of several source-to-receiver ray
diagrams, travel-time curves, amplitude curves and synthet-
ic seismogram sections for the source situated at x=0 km.
Note that the elementary wave corresponding to the code
of the primary reflected wave from some interface automati-
cally also contains wave refracted in the layer overlying
the interface. For demonstration, see the ray diagram of
the SS reflected wave. As in the case of the source at x=
5km, we can again observe the interesting behaviour of
the synthetic seismograms, with many regions of strong
arrivals separated by regions of very weak or completely
vanishing arrivals.

11. Numerical example 2: model Zurich

In this section, we shall present some results of synthetic
seismogram calculations for the 2-D laterally varying
Earth’s crust model which was used as a “secret model”
in the Workshop of the Commission on Controlled Source
Seismology at Einsiedeln, 1983, to test various interpreta-
tional methods. The model, shown in Fig. 7, was proposed
by N.I. Pavlenkova. The Earth’s crust consists of two
layers. The interfaces are shown by the bold lines in Fig. 7,
the thin lines correspond to the isolines of velocity. The
dominant feature of the model is an uplift of the deep dis-
continuities under a sedimentary basin (graben structure).
The model is described in detail in the proceedings of the
workshop, see Finlayson and Ansorge (1984).

Synthetic seismogram sections were computed for four
isotropic shot points, situated at x=20 km, 170 km, 320 km
and 470 km (six synthetic seismogram sections: 20R, 170L,
170R, 320L, 320R, 470L). All computations were per-
formed using the SEIS81 program, see Section 10.

In Fig. 8, ray diagrams, travel times and amplitudes for
several elementary waves propagating to the right of SP=
320 km are shown. In particular, we can see the P waves
refracted in the first, second and third layers and the PP
waves reflected from the intermediate interface and from
the Mohorovicic¢ discontinuity. The travel time is reduced,
the reduction velocity being 8 km/s.

The reflected waves from the intermediate interface and
from the Mohorovi€i¢ discontinuity are recorded contin-
uously from the shot point at x=320 km to x=1500 km
and x=475 km, respectively. Beyond these distances, shad-
ow zones are formed. The critical points corresponding to
these waves are situated at x=385 km and x=410 km, re-
spectively. At these distances, the ray amplitudes of the

ZURICH DATA SET-1
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Fig. 7. The 2-D laterally varying Earth’s crust model Zurich, used
for the computation of numerical example 2. The bold lines denote
interfaces, the thin lines the isolines of velocity. The shot points
are situated at x=20 km, x=170 km, x=320 km and x=470 km



reflected waves reach their maximum values. The wave re-
fracted in the first layer is recorded continuously from the
source to x= 500 km, the wave refracted in the second layer
from x=385km to x=475 km and, finally, the wave re-
fracted under the Moho is observed beyond x=415 km.
Note that the program package SEIS81 did not give quite
accurately the identification of the boundaries of shadow
zones in certain situations. The program package SEIS83,
improved in this respect, gives the boundaries of shadow
zones at x=1500 km and x=485 km (not x=475 km).

The wave refracted in the first layer has very large am-
plitudes at small epicentral distances, close to the shot
point. In this region, the amplitudes are not quite regular,
see Fig. 8. The irregularities are caused by changes of veloci-
ty gradients in the source region and by corresponding
(slight) oscillations of the depth derivatives of the spline
approximation. For the detailed behaviour of the ray field
in this region, refer to Cerveny (1985a, Figs. 15a and 15b).

The synthetic seismogram section for the Zurich model,
SP =320 km, evaluated by the program package SEISS83,
is presented in Fig. 9a. The source-time function corre-
sponds to the Gaussian envelope signal, with fy =4 Hz,
y=4, t,=0s and v=0. The zero time of the source-time
function corresponds to the maximum of the envelope of
the signal, i.e. to the middle of the signal. The reduction
velocity is 8 km/s. Amplitude power scaling is used, the
trace at the epicentral distance r being multiplied by
35(r/20)*. Here, r is measured in kilometres and ampli-
tude=1 corresponds to the plotting distance between two
neighbouring traces in the plot of the seismogram section.

The synthetic seismogram section is considerably differ-
ent in three ranges of epicentral distances. At small epicen-
tral distances, a strong refracted wave is followed by weak
reflections from the intermediate interface and from the
Moho. The weak arrivals at a reduced time of about 7.5 s
at x~360-380 km correspond to the primary reflected con-
verted PS wave from the intermediate interface. (The pri-
mary reflected converted PS wave from the Moho is outside
the range of travel times under consideration.) Individual
waves are well separated from each other. At larger epicen-
tral distances, r ~ 70-130 km, the individual waves mutually
interfere. At large epicentral distances, r 2 140 km, the indi-
vidual waves are again separated to some extent. The very
weak refracted wave propagating under the Moho appears
in the first arrivals. In the second arrivals, the wave reflected
from the Moho appears. The wave interferes with the wave
refracted in the deep crust in that region. Finally, the re-
flected wave from the intermediate interface arrives as the
last. Again, this wave interferes with the wave refracted
in the first layer. The boundaries of shadow zones for these
waves are situated beyond x=485 km and x =500 km, re-
spectively, as discussed above. As the ray method is used,
the boundaries between the illuminated and shadow regions
are sharp.

The general behaviour of the synthetic sections for other
shot points is similar to that in Fig. 9a. A more complicated
synthetic section is obtained for SP=20 km, due to the
low-velocity layer, see Fig. 9b. The refracted wave propa-
gating in the first layer has several branches in this case.
The rays of refracted waves which penetrate to the deeper
parts of the first layer form a new retrograde branch beyond
x=215km, with a short loop and a caustic point close
to x=215 km. Otherwise, the synthetic section for SP=
20 km is similar to that for SP =320 km. The wave reflected
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from the intermediate interface has a critical point at
x~125km and the boundary of the shadow zone at
x~210 km. The wave reflected from the Moho discontin-
uity has the same points at x~135km and x~215 km.
The wave refracted below the Moho is too weak to be
observed in the section.

The synthetic seismograms for the same model and for
SP =320 km, calculated by the Gaussian beam method, are
presented in Cerveny (1985a) in this volume. The differ-
ences between the ray synthetic seismograms and Gaussian
beam synthetic seismograms are discussed there in some
detail. (Note only that the zero time of the source-time
function in the Gaussian beam computations is shifted by
0.4 s with respect to ray computations and that fy,=5 Hz,
not 4 Hz.) The above reference also presents Gaussian beam
synthetic seismograms for the same model and the same
shot point, assuming various radiation patterns of the
source (single force, double couple), and allowing some
slight dissipation in the medium.

Similarly, synthetic seismograms for model Zurich,
SP=20 km, evaluated by a 3-D program package as a
weighted superposition of paraxial ray approximations
from the nearest endpoints of rays are presented in Fig. 13
of this paper. For discussion, see Section 14.

Note that the ray synthetic seismograms for model Zur-
ich and all shot points (SP=20km, 170 km, 320 km,
470 km), computed by Cerveny and P3encik, can be found
in Finlayson and Ansorge (1984). The publication also pres-
ents ray synthetic seismograms for several similar laterally
varying 2-D layered crustal models, computed by various
authors in the process of interpreting the “secret” model
Zurich (V. Luosto, E.R. Flih and B. Milkereit, C.M.R.
Fowler, G.S. Fuis and T.J. Reed, D. Gajewski, B. Gugg-
isberg, N. Sierro, J. Ansorge, M. Demartin and E. Banda,
W.D. Mooney). It is obvious from this list that synthetic
seismograms are now a widely used tool for the interpreta-
tion of deep seismic sounding data. In one paper (by C.
Prodehl), the ray synthetic seismograms for SP=20 km are
compared with the reflectivity seismograms for a vertically
inhomogeneous (but laterally homogeneous) modification
of model Zurich.

12. Numerical example 3: profile Baigezhuang-Fengning

The next example is taken from actual deep seismic sound-
ing measurements of the Earth’s crust in China. In inter-
preting the measured data, numerical modelling has been
used. In the numerical modelling, the synthetic seismogram
sections for models based on a preliminary kinematic inter-
pretation were computed. We shall present one synthetic
seismogram section from the Baigezhuang-Fengning pro-
file, SP=112 km. Note that the profile passes in the close
vicinity of the city of Tangshan, well-known for the catas-
trophic 1976 earthquake. The preliminary model used for
the computation is as follows. The crust consists of four
layers and the average depth of the Moho is 34 km. The
interfaces are roughly horizontal, but the velocity in the
individual layers changes considerably both in the horizon-
tal and vertical directions. Indications of several low-veloci-
ty regions were found. To be brief we shall not present
the measured seismogram sections and a detailed descrip-
tion of the proposed model. The synthetic seismograms for
SP=112 km are shown in Fig. 10. They were computed
by the program package SEIS83. The reduction velocity
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Fig. 8. Model Zurich, shot point at x=320 km. Examples of source-to-receiver ray diagrams, travel-time and amplitude-distance plots

for elementary reflected and refracted P waves

is 6 km/s. The Gaussian envelope signal with f;=4 Hz,
y=4, v=0, t,=0s was used in the computations as the
source-time function.

The most interesting feature in Fig. 10 is the compli-
cated behaviour of the amplitudes of the Pg waves which
are the first arrivals to both sides of the shot point. The
amplitudes of seismic waves are more sensitive to anomalies
in the velocity distribution than the travel times. We can
also see that the properties of the waves reflected from
intermediate crustal interfaces change considerably in the
lateral direction. The last arrival is the Moho reflection.

13. Numerical example 4: salt dome model

In this section, we shall present an example of the computa-
tion of synthetic time sections. The synthetic time sections
were computed using the SYNS83 program package which
is based on the normal ray algorithm. The SYNS8&3 pro-
gram package is a modification of the SEIS83 package.
The approximation of the velocity distribution in the model
is the same as in SEIS83. The main difference between
SEIS83 and SYNS83 is that the rays normal to individual
reflecting interfaces are evaluated in SYNS8&3. In this way,
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the ray parameter does not correspond to the radiation
angle from the source, but the x-coordinate along the nor-
mally reflecting interface under consideration. Boundary-
value ray tracing is used to evaluate the normal rays arriv-
ing at receivers. Most of the other details are the same
as in SEIS§3.

Synthetic time sections were computed for the salt dome
model, see Fig. 11. The model was proposed by J. Fertig.
It consists of six layers, separated by five interfaces. The
interfaces partially coincide and partially vanish. The veloc-
ity is constant within the individual layers. The resulting

50

320 ]:-0 3&0 7;0 400 420 440 460 480 500 520

DISTANCE IN KM
MODEL ZURICH 6,1,2,3,3,2.,1

synthetic time sections are shown in Fig. 11, both for the
vertical component (above) and horizontal component (be-
low). The synthetic time sections are normalized. Again,
the Gaussian envelope signal is considered, with y=4,
fu=10Hz, v=0, t,=0s.

Figure 12 shows normal ray diagrams for elementary
waves corresponding to the second, third, fourth and fifth
interfaces, and the normal two-way travel times and vertical
amplitudes for the second interface. The diagrams are self-
explanatory. As we can see, certain anomalies are caused
by the corners of the interfaces, mainly by the corners of
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Fig. 10. Ray synthetic seismograms of the vertical component of
the displacement vector along the Baigezhuang-Fengning profile

the second interface. In the relevant regions, the ray method
is not too suitable for computations. It would be useful
to also evaluate, in addition to the standard ray contribu-
tions, the edge waves connected with these corners, see
Klem-Musatov and Aizenberg (1984). Another possibility
is to smooth the interface or to use Gaussian beams.

It is, however, obvious from the diagrams presented
that the ray computations may be useful in the interpreta-
tion even without the modifications mentioned above.

In the example presented, we have considered the model
with constant velocities in the individual layers. The
SYNS83 program package allows an arbitrary velocity dis-
tribution to be considered in any layer, as in SEIS83.

14. Numerical example 5. 3-D computations by weighting
of the paraxial ray approximations

In this section, we shall present one example of computing
synthetic seismograms by the program package SW 84, de-
signed for 3-D numerical modelling of seismic wave fields
in complex structures (Klime§ 1985). The synthetic seismo-
grams which will be presented here are computed as a
weighted superposition of paraxial ray approximations
from the nearest endpoints of rays.

The SW&4 program package is composed of a system

of optional programs and routines. The routines for evalu-
ating the interfaces and velocity distributions in the individ-
ual layers may be specified by the user. Certain standard
options, based on splines with tension, are included in the
package. The generation of numerical codes of elementary
waves is manual, but the numerical codes are constructed
in such a way that one code may include several elementary
waves. Cauchy initial-value ray tracing is performed. The
increments in the radiation angles from the source, how-
ever, are not necessarily constant but they are optionally
controlled in such a way as to obtain the required density
of endpoints of rays in region D, of interest along the
Earth’s surface. Thus, some sort of interval ray tracing is
used. The point source may be situated at any point of
the model. It may generate both P and S waves. In the
older version of the program package, called RD83 (see
Cerveny et al. 1984), the synthetic seismograms were evalu-
ated by the summation of elementary seismograms, corre-
sponding to the Gaussian envelope source-time function
(as in SEIS83). In SW84, the frequency-domain approach
is implemented, which allows the use of an arbitrary high-
frequency source-time function. The fast frequency re-
sponse (FFR) algorithm, described in Section 8, is used.
The radiation patterns correspond to an isotropic, single-
force or to a general moment-tensor source. Slight dissipa-
tion may be considered.

The program package SW84 works in two different
modes:

1) Complete 3-D mode. This mode is suitable for com-
pletely 3-D calculations of synthetic seismograms. This is
the case of receivers distributed regularly or irregularly
along some region D, of interest along the Earth’s surface.
In this mode, a two-parametric system of rays is evaluated.
Both the radiation angles d, and ¢, from the source vary
in broad limits to cover the whole region D, with endpoints
of rays.

2) Profile mode. This mode is suitable for computations
of synthetic seismograms at receivers situated roughly along
a straight-line profile, if the epicentre is located close to
the profile. In this mode, only a one-parametric system of
rays, with the initial directions in some vertical plane con-
taining the source, is evaluated. From the two radiation
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angles d, and ¢,, only one (say do) is changed, and the
second (@,) remains fixed. As the model is three-dimen-
sional, the endpoints of rays are not generally situated in
that vertical plane. The methods of paraxial ray approxima-
tion allow us to evaluate approximately the wave field at
receivers situated in the vicinity of endpoints of rays. The
standard paraxial approximation is used in the direction
of the coordinate line corresponding to the ray coordinate
#o, going through the endpoint. In the plane perpendicular
to that coordinate line, Gaussian weighting of paraxial ray
approximations is used. In the profile mode of the program
package SW84, the receivers are generally chosen along
a straight-line profile or along a slalom-line profile on the
Earth’s surface. The most accurate results are obtained if
the profile roughly follows the endpoints of rays. In 3-D
models, which are not strongly inhomogeneous in the direc-
tion perpendicular to the vertical plane discussed above,
the position of the profile is not so critical. For example,
the profile may follow the intersection of the Earth’s surface
with the vertical plane.

Note that ray tracing, dynamic ray tracing, etc., is fully
three-dimensional in both modes. The profile mode, how-
ever, is considerably faster, as only a one-parametric system
of rays is evaluated. It does not require a considerably lon-
ger computer time than 2-D computations.

Once a file with elemeniary wave quantities at the end-
points of rays is available, it may also be used for Gaussian
beam computations. In this way, the program package
SW 84 may even be used for the evaluation of Gaussian
beam synthetic seismograms, see Cerveny (1985a). The

Gaussian weighting of paraxial ray approximations corre-
sponds, in principle, to the summation of very narrow
Gaussian beams, with their phasefronts at the endpoints
of rays locally identical to the wavefronts of elementary
waves under consideration at the same point. See the rele-
vant equations in Cerveny [1985a, Eq. (18)]. The width of
the Gaussian window is selected automatically to be as nar-
row as possible. The lower limit of the width is controlled
by the local density of the endpoints of rays.

We shall now present one examle of computations,
again for model Zurich, as we would like to compare the
3-D paraxial ray approximation computations with the 2-D
two-point ray-tracing computations, see Section 11. Al-
though the model is two-dimensional, all the computations
are three-dimensional.

Figure 13 shows synthetic seismograms for model Zur-
ich, SP=20 km, evaluated by Gaussian weighting of parax-
ial ray approximations. The profile mode is used for compu-
tations. From the interpretational point of view, Fig. 13
and Fig. 9b are very similar. The only difference is that
the weighting of paraxial ray approximations (Fig. 13) in-
volves some smoothing. In this way, the boundaries of
shadow zones and critical regions are not as sharp as in
Fig. 9b, but slightly smoothed. Similarly, the caustic region
close to x=215 km is smoothed. The reflections from the
intermediate interface and the retrograde branch of the re-
fracted wave are all smoothly connected at x~205-215 km,
so that they apparently form one wave.

It should be noted that the smoothing effect introduced
by the Gaussian weighting of paraxial ray approximations
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corrects the ray amplitudes in singular regions in a qualita-
tively correct way. The ray synthetic seismograms computed
in this way are, as a rule, closer to exact solutions than
the standard two-point ray tracing solutions. Quantitative-
ly, however, the results in singular regions may still be rath-
er different from the exact solutions. In the terminology
of Gaussian beams, very narrow Gaussian beams are used,
whereas broader Gaussian beams are needed in some singu-
lar regions to achieve a higher accuracy of the computa-
tions.

As a narrow Gaussian window is used in the procedure,
the computations of synthetic seismograms based on the
weighted summation of paraxial ray approximations is very
fast, stable and computationally efficient.

15. Concluding remarks

The ray algorithms and program packages described above
can be used, directly or after some modifications, in many
other fields of seismology and seismic prospecting. Here
we shall list some of them:

a) Strong motion seismogram computations and seismic
source mechanism studies. See Bernard and Madariaga
(1984), Spudich and Frazer (1984), Madariaga (1985).

b) Effects of structure geometry and local geological
conditions on strong ground motion. See Hong and Helm-
berger (1978), Langston and Lee (1983), Lee and Langston
(1983a, b).

c) Polarization studies (mainly for S waves). See Cor-
mier (1984).

d) Location of seismic hypocentres. Location of rock-
bursts in mines. See Lee and Stewart (1981), Engdahl
(1984).

e) Solution of inverse problems for laterally varying me-
dia. Seismic tomography. References are too numerous to
given here.

f) Vertical seismic profiling, both in 2-D and 3-D mod-
els. See Cormier and Mellen (1984), Young et al. (1983),
Sierra Geophysics (n.d.).

g) Seismic migration. See, e.g., Hubral and Krey (1980),
Zilkha et al. (1983), and other references given there.

h) Determination of interval velocities and curvatures
of reflecting interfaces in reflection seismology. See Hubral
and Krey (1980).

i) True (spreading-free) amplitude determination in re-
flection seismology. See Hubral (1983).

Jj) Backward and forward continuation of the wave field
specified on an initial surface of arbitrary form. See Cerveny
(1985Db).

k) Borehole-to-borehole measurements.

The above list is, of course, far from complete. The
number of applications of the ray method in seismology
and seismic prospecting of complex media continuously in-
creases.
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