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Abstract. Four stages of numerical experiment in seis-
mology and seismic prospecting are considered. These
stages are discussed for different models of a medium.
Anisotropic, porous and nonelastic media, whose pa-
rameters are arbitrary functions of the vertical coor-
dinate, and 2-D-inhomogeneous elastic media, whose
parameters are arbitrary functions of two coordinates,
are dealt with. For solving these problems, different
algorithms are suggested which are based on a com-
bination of finite integral transforms with finite-differ-
ence techniques. Complete theoretical seismograms for
anisotropic, porous and nonelastic media and for com-
plex 3-D-geometries are presented.

Of special importance is the analysis of theoretical
seismograms for SH waves and P-SVwaves for complex
subsurface geometries. From the calculations it is con-
cluded that diffracted-reflected waves can be rather in-
tense, and that they may be used in seismic exploration.
A corresponding approach is proposed which implies
cancellation of multiple waves and investigation of dif-
fracted waves.

Key words: Elastic wave propagation - Theoretical
seismograms - Finite differences - Finite integral trans-
forms

1. Introduction

In this lecture, we will consider some problems and
results of numerical seismic modelling for complex
geological media. Recently, at the beginning of the
1960s, in seismology and seismic prospecting a new
theoretical approach has appeared, which is the
numerical experiment. With the help of numerical ex-
periments it became possible to calculate complete
theoretical seismograms and to compare them to ob-
served records. In a numerical experiment one can dis-
tinguish several stages. First of all, we will briefly char-
acterize each stage and then illustrate all the stages in
more detail by particular examples.

Stage 1. Construction of a physical model of a realistic
medium.

This stage requires a good knowledge of experimental
facts. With the accumulation of experimental data our
views change. For example, by the end of the 1950s, in

interpreting seismic data of deep seismic sounding a
model of the Earth’s crust was considered to be made
up of thick, homogeneous layers. Then inhomogeneous
layers were introduced in the model. After that, a mod-
el with lateral inhomogeneities and curved interfaces
was developed. Thus, the accumulating data brought
out a more flexible physical model than a one-dimen-
sional model. We are now in a transition period from
the 1-D model to the 3-D model.

Stage 2. Construction of a mathematical model of a
realistic medium.

Now, a physical model selected at stage 1 must be
formulated in terms of mathematics. In seismology, a
linear-elastic model of a medium is widely used. This
model is described by the elastodynamic equations with
variable coefficients. For calculated theoretical seismo-
grams to be in good agreement with observed records,
it is necessary to develop a mathematical model which
takes into account many physical effects. To describe
seismic processes in realistic media mathematical mod-
els of nonelastic, anisotropic and porous media must be
considered. A good selection of a mathematical model
makes it possible not only to explain well-known seis-
mic phenomena, but also to predict some new physical
effects.

Stage 3. The development of an efficient algorithm for
the selected mathematical model of a realistic medium.

The main feature of this stage is the selection of
the technique for the calculation of complete theoreti-
cal seismograms for the mathematical model of the
medium. At present there exist many methods of calcu-
lation of theoretical seismograms. Each one of the
methods has a corresponding set of problems for which
it is best suited. Most of these methods, however, can-
not be used for general laterally inhomogeneous media
with curved interfaces. There are several approaches at
present for the computation of theoretical seismograms
for elastic waves in media where the elastic parameters
are functions of two coordinates. Only two approaches
will be mentioned here.

The first approach is based on the direct numerical
solution of the elastodynamic equations by means of
finite difference or finite elements techniques. The sec-
ond approach amploys approximate methods such as
asymptotic ray theory and its various modifications
and combinations with other methods.
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Here we will discuss the method for calculation of
complete theoretical seismograms for arbitrary subsur-
face geometries, based on the combination of finite-
integral transforms and finite-difference techniques.

Stage 4. The comparison of theoretical and experimen-
tal seismograms.

At this stage, we compare complete theoretical and
experimental seismograms and make conclusions about
the suitability of our physical model. If the results of
this comparison are not satisfactory, we must return to
the first stage and change the physical model of a
medium and then repeat the whole cycle of the numeri-
cal experiment.

Let us illustrate these four stages of the numerical
experiment on some particular examples. As physical
models of realistic media we will consider the follow-
ing:

anisotropic model,

porous model,

nonelastic model (Boltzmann’s model) and

elastic 2-D inhomogeneous model.

For all these models we will show efficient numeri-
cal algorithms for calculating complete theoretical seis-
mograms. All these algorithms are based on the idea of
combination of finite-integral transforms with finite-dif-
ference techniques.

2. Computation of complete theoretical seismograms
for transversely isotropic media

The need to include anisotropy in the description of
Earth models was recognized early in the development
of seismic investigations. The review of theoretical and
experimental results can be found, for example, in pa-
pars by Crampin (1981) and White (1982). Here we will
discuss the case of a transversely isotropic medium with
the axis of symmetry perpendicular to the laminations.
Thus, we have fixed a physical model.

Seismic wave propagation in such a medium is de-
scribed in the cylindrical system of coordinates (r,z) by
equations of the form
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Here, the coefficients ¢;;(z) and the density p(z) are ar-
bitrary functions of the variable z-F, and F, are com-
ponents of the excitation vector. For an explosive-type
source:
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Here d is the depth of the source and f(t) represents
the time variation of the source. At the free surface the
boundary conditions of the form
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are fulfilled.
This problem is solved with zero initial data
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According to the third stage of the computational
experiment it is necessary to select a method to calcu-
late the complete theoretical seismograms for an aniso-
tropic medium. Here we make use of the method based
on a combination of partial separation of variables and
finite-difference techniques. For the inhomogeneous iso-
tropic medium this method was developed in a number
of papers (see, for example, Mikhailenko, 1973; Alek-
seev and Mikhailenko, 1976, 1978, 1980). This approach
has been extended to inhomogeneous anisotropic media
by Martynov and Mikhailenko (1979, 1984). Following
these papers for the solution of problem (1)-(5) we ap-
ply as a first step finite Hankel integral transformations
of the form

Ur|t=0 = Uz|l=0 =

=0. (5
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where k; are the roots of the equation J,(k;a)=0.
At the boundary r=a we introduce the additional
boundary conditions:
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r=a

In order to exclude wave reflections from this bound-
ary, we select a distance r=a which is large enough.

Employing the finite integral Hankel transform we
then obtain the following set of equations:
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We solve the system of Egs. (11)-(14) by the finite
difference method. Here we use an explicit finite-differ-
ence scheme in the space of grid variables z, =mAz, (;
=j- At with truncation errors of second approximation
order.

We must solve problem (11)~(14) for different fixed
values of k;, the roots of Bessel equation, and then sum
up the series (7) and (9) in order to obtain displacement
components.
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One-dimensional problems for fixed values of k, can 2.1. Examples
be solved simultaneously using multiprocessor com-
puters. Convergence of series (7) and (9) depends on the
manner of decreasing the spectrum of the impulse f(¢)
in the source; for more details see Martynov and Mik-
hailenko (1984). This approach makes it possible to
compute complete theoretical seismograms including
nonray waves.
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Let us discuss some models of anisotropic media, which
are common in seismic prospecting. There are three
classes of variation in the quasi-longitudinal velocities:
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Fig. 3. Theoretical seismograms and parameters
of a transversely isotropic model medium. The
seismograms are calculated along the radius R
=20 km. The dominant frequency is 1 Hz

Fig. 4. Theoretical seismograms and parameters
of a transversely isotropic model medium. The
seismograms are calculated along the radius R

=0.715 km. The dominant frequency is 40 Hz



Class 1 — V, gradually increases from V(L) to V,(||),
where V(J_) V,(Il) are velocities in vertlcal and hor1-
zontal d1rect10ns respectively.

Class II - V, has constant value in the range of 6=0°-
20° and then increases to V,({]).

Class 111 - V, decreases and then increases to V,(|), so
an intermediate minimum is observed.

Theoretical seismograms for these models, wave sur-
faces and polarization diagrams are given in Figs. 1, 2
and 3. The seismograms have been computed along a
semicircle with the radius R for an explosive-type
source in an anisotropic homogeneous space. The com-
mon feature of the figures is that some branches of
wave surfaces are not distinctly traced in the theoretical
seismograms. Figure 4 illustrates a model of the me-
dium for the case when V, decreases to V,(||). Polariza-
tion dlagrams show elllptlc polarlzatlon of a quasi-
shear wave in the vicinity of the angle of 40°.

The above approach allows us to calculate complete
theoretical seismograms for anisotropic media contain-
ing a large number of anisotropic inhomogeneous
layers. The study of the physics of seismic wave propa-
gation in anisotropic media and comparison to field ex-
periments will allow us to understand in more detail
the nature of waves in anisotropic media.

3. Calculation of complete theoretical seismograms
for liquid-filled porous media

Let us discuss a model of the porous medium. This
physical model became popular for the description of
seismic wave propagation in marine sediments and,
also, for direct hydrocarbon detection.

In numerical simulation of wave propagation in po-
rous media we take Biot-Frenkel’s system of equations
in cylindrical coordinates (r,z). For elasticity, this sys-
tem consists of four equations in partial derivatives.

For the sake of simplicity we will only consider
propagation of P waves in the porous medium (a non-
dissipative case).

The system of equations is of the form

0
P~AU+Q~AV=a—t2(p“U+p12V), (16)

)
Q-AU+R'AV=W(p12U+p22V), (17)

where U is the displacement in the solid, and V the
displacement in the liquid.

Biot’s coefficients P,Q,R (P=A+2yu) obey the in-
equality

PR—Q?>0.
The coefficients p,,, p,,,0,, satisfy the inequalities

P11>0,  py;>0,  py,>0

P11P2;—P12>0.

The point source emitting the P wave is located in-
side the medium or at the surface z=0. In the latter
case, the boundary conditions are of the form

a_U 1 o(r)

ozl . 2n -, (18)
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ov 1 4(r)
52l an o BIO (19)
The problem is solved with zero initial data.

We now turn our attention to the discussion of the
third stage of solution, that is selection of the efficient
algorithm. To solve problem (16)+(19) we apply the
same algorithm which we used in the case of anisotrop-
ic media. Let us use the finite Hankel transform along
the coordinate r in the form

S(z, k;, t)= } U-rdyk;r)dr, (20)
0
22 Jolkr)
Ver0=2 L 5E G ar -
F(z,k;,t)= } V-rJyk;r)dr, (22)
0
22 Jol(k; 1)
V(z,r,t)——2 =Z kal® (23)

where k; are the roots of the equation J,(k;a)=0.
As earlier, we assume at the boundary r=a con-
ditions of the form

Ul,_.,=Vl|,_.=0. (24)

The new problem of reduced dimensionality is of the
form

ﬂ_kzs (RP11_QP12>62_S (RP12—QP22)6_2£
0z* PR-Q? ot? PR —Q? 0t*’
25
azF_k_zF:(PPn—QPn)aZ_S (szz_QPu)az_F
0z? PR-Q? or? PR-Q? ot?’
(26)
0S f@t) OF f@)
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Problem (25)-(28) with fixed values of k; is solved
by the finite difference technique. The scheme used here
is explicit with a truncation error of second order with
respect to time and space. The displacements U and V
are calculated by summing up series (21) and (23).

As an example we took P-wave propagation in a
porous medium. At present, this algorithm without es-
sential changes is used for solving Lamb’s problem for
the vertically inhomogeneous porous medium, with po-
rosity also changing with depth. In this case, the initial
problem by means of the finite integral Hankel trans-
formations reduces to a system of four one-dimensional
equations with variable coefficients. This system is
numerically solved.

3.1. Examples of calculation of theoretical seismograms
for a liquid-filled porous medium

Dynamics of seismic-wave propagation in a porous me-
dium has some peculiarities. There are two types of
longitudinal waves, the so-called “fast” wave (P, wave)
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and the “slow” wave (P, wave). The velocity of the slow
P, wave can be greater, equal to or less than that of the
shear wave, depending on the relative values of the Biot
constants. Examples of calculation of these waves are
shown in Fig. 5. The left-hand side of the figure shows
the displacement U in the solid; the displacement in
the liquid V is shown in the right-hand side. As is seen
from the figure, the fast logitudinal wave (P, wave) is
recorded in the first arrivals; in the second arrivals the
slow P, wave is recorded. The longitudinal slow wave is
of diffusive nature. As is seen from the figure, the dis-
placement of this wave in the solid and in the liquid
are in the opposite phases.

There is a number of physical experiments where
the slow longitudinal wave is discovered (see, for exam-
ple, Coussy and Bourbie, 1984). The question arises:
What media can be well described with the help of the
Biot-Frenkel theory? This problem requires further in-
vestigation both in theory and in practice. In the first
place, it is necessary to determine Biot’s coefficients for
different geological rocks.

4. Calculation of complete theoretical seismograms
in non-elastic media

While seismic waves propagate in real media, absorp
tion takes place and changes their spectrum and wave-
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form. One should take these features into account when
constructing a mathematical model of real media. In
this case, the relation between stresses and defor-
mations differs from Hooke’s law. We will discuss a
class of models describing linear nonelastic media. Here
deformation and stress tensors are connected by linear
integral differential relations. Such models are suitable
for the description of seismic waves far away from the
source.

Let us consider Boltzmann’s model. The system of
elasticity equations in cylindrical coordinates (r,z) is of
the form

°U. 13U U 92U
Y2 bgl B, S :
(A+ M)( r? +r ar rz) gz or
0 [y (0 2U\T_, U,
vz MGt a )| =e e R0 )
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ou, 62U
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where A and M are integral operators of the form

-2 j g(t—1)x(1)dr, (31)

— o

—u j h(t—1) y(r)dr. (32)

A-x(t)=4x(t)

M- y(6)=p y(1)
Elastic constants 4, u and nonelastic ones A/, u' are
arbitrary functions of the variable z.
The problem is solved under the following bound-
ary conditions:

ou, ol
=M 4 =0 33
bele=o (az ar):o ’ &)
Olno=4 (aU H)+2M‘ =0, (34)
=0
with zero initial data
ou 1A
U=—"=U=—--: =0.
ot L Ot |,_p 4 (52)
For an explosive-type source we have
_i0 d L d o,

As earlier, we employ the finite Hankel integral trans-
form:

R(z,ki,t):frU:(z, F ) Jolk; r)dr, 37)
2, & Jolk;r)

Ufz,r,t) —zg z, k.t [Jo(k ]za (38)
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We arrive at the following problem of reduced di-
mensionality:

S o (. 8S 9
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0z 220
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where k; are the roots of Bessel’s equation J,(k;a)=0.
Applying transformations of the form (37)-(40) br-
ings about new boundary conditions of the form

_ oy,
= or

Ul, =0. (46)

r=a

We will consider the problem up to the time t=T,
where T is the minimal time of longitudinal wave prop-
agation to the reflecting surface at r=a.

Let us apply a finite integral transform with respect
to the variable ¢t in the one-dimensional problem ob-
tained. The possibility to apply these transforms for the
problem under consideration has been studied in Fati-
anov and Mikhailenko (1979), Fatianov (1980). Let us
apply the finite Fourier transform

2T

x(k;,n, 2) f S(z, k;, t) e~ dt, (47)
2T
y(k;,n,z)= f R(z,k;, t)e™ " dt, (48)
S(z, l,t)——[ + Z a-cos i, t+bsini t] (49)
727 A&
1 s ©
R(z,k;, t)= ?[C+ Z ¢ cosd,t+dsini t] (50)
nm
j, = T
" T
a(ki9nsz)=Rex(ki’naZ)s C(ki,n>z)=Rey(ki’n’Z)a

b(k;,n,z)= —Imx(k;,n,z), d(k;nz)=—Imy(k;,n,?z).
to Eqgs. (41) and (42). As a result we obtain a system of

ordinary differential equations

d dx dy
dz[ o kcly] K(ea+2e) x—kics
+pAlx+pf, p=0, (51)
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d

dx
dz[(c2+2cl) +kc2] ki2C1y+kiC1d—z

+pAly+pf. p=0 (52)

with boundary conditions

dy dx
kiexxtlep+2e) ) =0 ¢ (dz L y) 0wy
Xl,_,=0, yl,_,=0. 54)
Here

:/,l—ﬂlﬁn, C2=l—i/-(xn,

2T ' 2T .
p= j f(t)e—llntdt, dnz j g(r)e—llnrdt,
0 0

2T _
B,= | h(x)e~"*"dr.
0

In Egs. (51) and (52) we assume that the conditions

oS R
st ASloarx0, o

+iAd,R|,_,7~0 (55)
are approximately met. It can be shown that these con-
ditions are fulfilled with high accuracy if the duration
() of an impulse in the source is much less than the
value 2T (I<2T).

Problem (51)—(54) is solved numerically for different
sets of k; and n. After that we obtain the displacement
components by summing up series (49), (50) and (38),
(40). Problem (51) can be accurately solved for layered
homogeneous media (see Fatianov and Mikhailenko,
1984).

4.1. Examples of calculation
of complete theoretical seismograms
for Boltzmann’s media

Attenuation of seismic waves has become an important
parameter in seismic exploration in recent years. Exper-
imental studies of attenuation properties of real media
show the linearity with the frequency of the damping
factor « over a wide frequency range. This fact was tak-
en into consideration in numerical simulation of seis-
mic waves in nonelastic inhomogeneous media.

Note that in seismic exploration one uses the damp-
ing factor o and the logarithmic decrement 4. In our
equations, properties of the medium are determined by
nonelastic coefficients A', " and kernels g(&), h(&). There
are particular formulas which relate the nonelastic coef-
ficients A, u' to the damping factor o or logarithmic de-
crement A.

The form of the functions g(&) and h(&) can be arbi-
trarily selected. For example, if

_Aé’ 0’
R
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Fig. 6. Theoretical seismograms of the horizontal and vertical
components of displacement for homogeous Maxwell’s model.
Attenuation decrements of P and S waves are equal. 4p,=4;
=0.1, V5/Vp=0.5. The seismograms are calculated along the
radius R=20 WL, where WL is the dominant P wavelength.
Here: P - longitudinal wave, S - shear wave, R - Rayleigh
wave, K - head wave

we_have fhe Maxwell medium. If the functions g(&) and
h(&) are connected by the relation

3-Ag+24-h=0

nd

h(é)={§

we arrive at Deriagin’s model (Deriagin, 1931). Thus,
by varying the form of the function g(£) and h(&) we
will obtain different models of media.

We now consider the Maxwell model. Let the
source be a vertical force acting at the free surface of
the homogeneous half-space. Figure 6 shows theoretical
seismograms of the vertical and horizontal displace-
ment components calculated at a radius R=20 WL,
where WL is the dominant wavelength P. The decre-
ments of attenuation of P and S waves are 4,=4,=0.1,
vy/v,=0.5.

As compared to the elastic medium, the wave pic-
ture essentially changes. The variations of wave ampli-
tudes with the angle, correspond on the whole to the
elastic medium case but the waveforms undergo con-
siderable changes.

The waveform of the P wave becomes similar to the
integral of the P wave waveform in the elastic medium.
The S wave spectrum is shifted towards low frequencies
as compared to P waves.
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Fig. 7a, b. Theoretical seismograms of the vertical component
of displacement for homogeneous Maxwell’s model in case of:
(a) 4p/45=0.5, 4,=0.1; (b) 4p/d3=2, A3=0.1. The seismo-
grams are calculated along the radius R=20 WL

Experimental data show evidence of the wide range
of variation of the ratio v /v;. Its value can be equal to
1, or can be more or less than 1. Figure 7 represents
theoretical seismograms of the vertical displacement
components for the following two cases:

(a) 4,/4,=0.5
(b) 4,/4,=2

As is seen from the figure, with the relation 4,/4;

changing, redistribution of energy between P and S
waves takes place.

Figure 8a and b shows theoretical seismograms in
the presence of a thin layer inside the half-space. The
thickness of the layer is h=0.4 WL. The source of ex
plosive type is located at a distance of d=0.2 WL from
the free surface. The parameters of the medium are
v, /v, =05, v, =2v,, v, /v, =0.5. Figure 8a represents
the theoretical seismograms for the elastic medium
and Fig. 8b shows the theoretical seismograms for a
Maxwell medium in the layer and the half-space. Here

4,=0.1
4,=0.1

4,=4, =04, v jv, =05 4, =00l

Figure 8a and b represents synthetic seismograms of
the vertical component for different epicentral dis-
tances. The seismograms have been calculated at the
free surface. The wave picture is of complicated charac-

ter due to interference in the layer. As we can judge
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Fig. 8a, b. Theoretical seismograms of the
vertical component for a model of a thin high-
velocity layer in a half-space. The layer
thickness is h=0.4 WL. An explosive-type
source is located in the middle of the layer.

Parameters of the medium V,, =2V, , ¥ /V,,
=05, V,/Vp, =05, The following cases are
shown: (a) elastic medium; (b) Maxwell’s
medium with parameters Ag =A, =04, 4,
=ds,=0.5, 4p,=0.01. The ratio of scales of
theoretical seismograms for (a) and (b) is 1:8
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from the figures, attenuation changes essentially the
wave picture.

5. Calculation of complete theoretical seismograms
for complex subsurface geometries

We have considered three-dimensional axisymmetrical
problems for one-dimensional models of media. How-
ever, one-dimensional models are not sufficient for the
description of real media. In numerical modelling it is
necessary to take the 2-D and 3-D models of media
into consideration, but this problem is far from being
simple. The basic problem here is to construct efficient
algorithms for calculation of complete theoretical seis-
mograms for 2-D and 3-D models of media.

Here we will generalize the above-mentioned algo-
rithms developed for one-dimensional models for two-
dimensional models with arbitrary dependence of elas-
tic parameters on two spatial coordinates. Two varia-
tions of this algorithm were suggested some years ago
(Mikhailenko, 1978, 1979), and were developed in a se-

I S T S S

ries of papers in the USSR (see, for example, Mik-
hailenko and Korneev, 1983). The review of some of
the results obtained has been published in English
(Mikhailenko, 1984; Mikhailenko and Korneev, 1984).

We will start in the following with the equation of
motion for horizontally polarized shear (SH) waves in
Cartesian coordinates x and z. Here the elastic parame-
ters are arbitrary functions of two spatial coordinates.
A line source is located inside the half-space. Further,
we will discuss the plane problem of P-SV-wave propa-
gation in a two-dimensional inhomogeneous half-space
(Lamb’s problem).

In realistic field experiments point sources which
generate spherical waves are used. Thus, amplitudes of
reflected and diffracted waves are not only affected by
reflection coefficients, but also by spherical divergence.
Therefore, we will also consider P- and SV-wave propa-
gation in a three-dimensional half-space, when the elas-
tic parameters are arbitrary functions of two spatial
coordinates.

Finally, we will illustrate these cases by examples of
calculation of complete theoretical seismograms for SH
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waves and P-SV waves for complex subsurface geome-
tries.

5.1. SH-wave propagation
in complex subsurface geometries

Let us consider an elastic half-space in a Cartesian
coordinate system, where the SH-wave velocity v, (x, z)
is an arbitrary function of two coordinates. For the
sake of simplicity, the density p of the medium is taken
constant. In such a medium SH-wave propagation from
a line source, located at x=x,, z=z, is given by the
equation

d ZaU)+6 aU) 92U
55(”55 0z (" 3z )" o2

+ Fi(x —x0) Fy(z —24) f (1) (56)
with the boundary condition
oU
5, . =0 (57)
and the initial values
U|t=0=gg =0. (58)
Ot o

Here the function f(t) represents the time variation of
the source. For a finite source, the functions F,(x —x,),
F,(z—z,) are in the form of the Gauss function

F(x XO) ]/;’;; —no(x— Jt:n::)2
Z—ZO) |/ e~ molz— z0)?

For ny,my— oo the functions F;, and F, tend toward
deltafunctions.

Problem (56)—(59) will now be solved with two ver-
sions of the algorithm.

(59)

First version of the algorithm. This version is based on a
combination of finite integral Fourier transforms with
respect to one of the spatial coordinates (e.g., the coor-
dinate corresponding to the epicentral distance) and the
finite difference method. In this case the problem re-
duces to solving a system of equations with partial de-
rivatives with respect to one spatial coordinate (say, the
vertical one) with coefficients which are finite Fourier
integrals of the elastic parameters varying along the
epicentral coordinate. This approach is an extension of
the standard techniques of separation of variables to
the solution of problems of complex subsurface geome-
tries. For the application of the finite integral Fourier
transform we introduce the boundary conditions for x
=0 and x=»b,

oU _8£
x T dx

We select a sufficiently large distance b and consider
the wave field up to the time ¢t=T, where T is the mini-
mal time of propagation of the wavefront to the reflect-
ing surface.

Now, we apply the finite integral Fourier transform
along the coordinate x from 0 to b:

=0.

x=b

(60)

x=0

b
R(z,n,1)= [ U(z,x, £) cos fz—x—dx, (61)
0
1 22 nmTx
Uz, x, t)=ER(z,0, t)+E Y R(z,n,t)cos (62)
n=1
. nmx
We then multiply both parts of Eq. (56) by cosT

and integrate from O to b. If we integrate by parts the
first term of Eq. (56), we arrive at an equation of the
form

0°R nnb aUsnnnxd j ( GU)COSnnxd
vZ——si x+|— X
02 by dx b o b
n2n?
—Fy(z—zp)e *bno cosT0 1(t). (63)
Integrating the same term once more, we obtain
0*R
T _(nn) fv? Ucos—b—dx
——*j.l)sz UsianX
b9 (,0U nmx
d
+j ( aZ)cos ,dx
n2n2
—Fy(z—zy)e *mcos 20 fp, (64)
Here v is the derivative of the squared velocity with

respect to x.

There is no separation of variables in Eqgs. (63) and
(64) since velocity v (x, z) is an arbitrary function of two
spatial coordinates. Note, that Eq. (63) contains the
first derivative of displacement with respect to x under
the integral sign, and Eq. (64) the displacement itself.

In recent years several different problems in mathe-
matical physics and seismology have been solved using
an orthogonal set of trigonometric functions instead of
a finite-difference expression to approximate a spatial
derivative (see, for example, Kreiss and Oliger, 1972;
Gazdag, 1973, 1981). This approach allows for a highly
precise calculation of spatial derivatives, but requires
substantially more CPU time per degree of freedom.
This difficulty is reduced with the use of the fast Fou-
rier transform (FFT) and array processors, which are
ideal for the task of calculating spatial derivatives.

Approximating the spatial derivative %—Z in Eq. (63)
by the Fourier series (62), we obtain the following sys-
tem of equations:

0%2R(z,m, 1) nm? X
— = —— N R(z,m,t)m
atZ bZ mgo
26 . mMmX . NTX
B(j)vs( z)sm—b—sm—b—dx
=200 [,  OR@EZmI)
+m§01—)£§[vs(x,z)—qaz ]
TX hmX
-cosTcos—dx

—Fy(z—2,) e‘mcos”—’;xi 1. (65)



Equation (64) does not contain the spatial derivative
of the displacement U(z,x,t) with respect to x. In this
case we approximate the function itself by series (62)
and obtain another system of equations:

0%2R(z,n,t nm\> 2
e ] §
—jvz(x z)cosm;:x cos%dx

(” V) % Remo
v2(x, z) cos —Z—x sin n_7l:_x dx

= 20971,  BR@zmI
?J!E["s""z)—az |
X

n2n2

R nmwx
—Fy(z—z,)e #b*mocos— 2

[ (66)

It is not quite clear right now which one of these
two systems is preferable. At first sight system (65)
seems more convenient for numerical implementation,
although convergence of system (66) is better since the
term m is absent under the summation sign.

Below we will deal with system (65). This system is
solved with the boundary conditions

OR(z,n,1)| _0R(z,n, )|

= 67
0z |Z=O 0z |z=a 0 (67)
with zero initial data
t
R(z,n,t)|,=0=M —0. (68)
ot —o

Problem (65), 67), (68) is solved with the help of finite-
difference techniques. The scheme used here is explicit,
with a truncation error of the second order with respect
to time and space. System (65) in a finite difference
form can be written as

1
P[Rf+1(”)—2Rf(")+Rf_l(”)]
2 o
= };L Z m- RF(m)- D, (m, n)

1
+ Z 3472 RE A (m) =R ¢,y (m, )

+[R§, ((m)—2R{(m)
+ Ry _(m)] ¢, (m,n)+[RE(m) — Ry (m)]c,_(m,n)}

n2n2

—Fye “ahing cos Of" (69)

where z=k-Az, t=p- At,
b

— j vsk x) COSM

b
(n+m)mx
b
=h,(n—m)—h,(n+m), (70)

D,(m,n)= dx

—%j v (x)cos dx
0
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¢ (m,n)=h,(n—m)+ h,(n+m). (71)

The infinite system (69) is replaced by a finite system
and is solved numerically. The boundary conditions (67)
are approximated in a familiar way. For the nodes k of
the difference scheme (z,=k- Az), where the ve1001ty v,
is constant along the lines parallel to the Ox axis from
0 to b, system (69) generates into one equation with the
parameter n:

ﬁ[R£“—2R€+R£“]
n? n? 2 5
=TT R"—i—A 5 [(RE, 1 —RP) v,
+(RE, ,—2RI+RE_ o2 —(RE—RI_ )02
—Fye g cos—% 1. (72)

Note that the velocity v, varies from point to point
along the coordinate z. Here we have a classical sepa-
ration of variables in combination with the finite differ-
ence approach. This algorithm was suggested and de-
veloped by Mikhailenko (1973) and Alekseev and Mik-
hailenko (1976, 1978, 1980). When the velocity is a
function of two coordinates, it is necessary to solve sys-
tem (69) The coefficients of this system

STX
— dx,
hy(s)= j' vZ(x) cos—— p o dx 73

s=n+m

are analytically calculated. The function vy (x) which
varies arbitrarily from O to b is approximated at each
of the points on nonuniform intervals by the linear
function v, =wv, (1+f,x). Here v,, is the initial velocity
of each interval I, and B is the coefficient of velocity
variation, i.e., the velocity gradient.

The complexity of subsurface geometries in the di-
rection of the coordinate x does not cause additional
computational difficulties in solving system (69), as long
as the interval of integration between 0 and b in (73) is
partitioned into a sufficiently large number of segments
in which the function v2(x) is well approximated by the
linear function defined earlier.

It should be noted that the dimension of the finite
system (69) is slightly dependent on the partitioning of
the interval 0 to b. The number of terms that are need-
ed to properly approximate the infinite sum in system
(69) is dependent on the Fourier spectrum width of the
signal f(t). The additional convergence of the series (62)
and hence the number of terms which must be used in
the series is dependent on the smoothness of the veloci-
ty used in integral (73). Therefore, one may use splines
of different orders for smoothing the function h(s)
(Mikhailenko and Korneev, 1984).

This paper also shows that if the velocity v2(x,z) is
of the form (Fig. 9)

Av(z2) Imx
+ > (1—0057), (74)

the original system (63) degenerates into a differential
equation with a shift parameter. Here [/ is some fixed
arbitrary integer.

vi(x,z)=

vo(2)
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Fig. 9. Variation of the velocity v (x,z) given by the formula

l
v2(x, z)=A(z)+B(z)cos—7;-)£. The values of A(z) and B(z) are

constant and the figure shows the dependence of the velocity
on x: (a) I=1, (b) =2, (c) [I=3 and (d) [=10

In the numerical solution of system (69) with an ex-
plicit finite difference scheme most of the computing
time is required for the computation of the convo-
lution-type sums

M

Y. RE(m) [hy(n—m)+h,(n+m)]. (75)
m=0

These sums may be evaluated using the fast Fourier
transform (FFT) or some other particular techniques. It
is highly desirable to use an array processor which al-
lows one to substantially decrease the main-frame time
requirements for computing synthetic seismograms for
complex subsurface geometries. It should be noted that
for convolution sums (75) at present more efficient al-
gorithms have been developed as compared to those
based on the use of FFT (Nussbaumer, 1981).

Second version of the algorithm. The second version of
the algorithm is based on utilization of finite integral
Fourier transforms with respect to two spatial coor-
dinates. Let us apply the finite integral cosine transform
along the coordinate z from 0 to a

W (i, n, t)= [ R(z,n, t) cos ’—’;5 dz, (76)
0
2 2 j
Rzn)=—WO.n0+> Y Win,0) cosl—Z—Z 77)
i=1

to the system of partial differential equations. We mul-
tiply (65) by cosl—Z—Z and integrate by parts from O to a.

Performing manipulations similar to those mentioned
above and making use of condition (67) we obtain

d>W(i,n,t) nm ® 2
g~ bz; W(]mt)D(nml])
i Yy 6, W(],m ) D,(n,m,i,j)
a = 0j=0
——e_4b2"°e_mcos TXo szo, (78)
b a
where
1 if m=0j+0
0= 3 i m=0j+0 or m=%0;=0
L f m=j=0
D(n,m,i,j)=%[h(n—m,i—j)+h(n—m,i+j)
—h(n+m,i—j)—h(n+m,i+)), (79)
DZ(an,la])=%[h(n_m’l_J)_h(n_mal""./)
ab rmz  SWX
h The os2 it
(r,s) ab(j,gv (x,z) cos PRl dxdz.
System (78) is solved with zero initial values
dW(i,n,t
Wii,n, o), =2 Em0l g (80)
dt —o

The infinite system (78) is approximated by a finite sys-
tem and is solved numerically by means of an explicit
difference scheme:

1
il i, ) —2WP(i,n)+ WP (i, n)]

M 1J-1
— Z Y 5,,,] " we (j,m) D, (n, m, i, j)
m=0 j=0 b
aMotiZt
- Z Z 5 '-ﬁ Wp(] m) (n7m’iaj)
m=0 j=
—e 4Pnocos——2e 471 cos. Of(t) (81)

The displacement U(z,x,t) is determined by summing
up the series (77) and (62). For the calculation of in-
tegral (79) the integration domain from 0 to b and O to
a is partitioned into nonuniform segments. In each of
these segments the velocity is approximated by the bi-
linear function

Vg, = +byx+c z+d, xz.

The coefficients a,,,b,,,c,, and d,, are determined from
the velocity values in the nodes of the rectangle. In this
way the value of integral (79) in each segment is easily
calculated analytically. If we sum up the values of the
integrals for all segments we will obtain the coefficients
h(r,s). Due to the fact that the function v(x,z) is con-
tinuous at all the boundaries of the segment, the coeffi-
cient decreases as 1/(r +5)%. A discontinuity in the veloc-
ity function is well approximated by a gradient layer
whose width is much less than the wavelength. The
number of segments used for the calculation of the
coefficients h(r,s) depends on the complexity of subsur-
face geometries. Here, the coefficients h(r,s) are calcu-
lated with a special subroutine.



In numerical solutions of system (81) double sums
of the convolution type

M-1J-1

Y. Y We(,m)-h(ntm,itj) (82)

m=0 j=0

are calculated with the fast Fourier transform. We may
also use some other algorithms (Nussbaumer, 1981).

The use of an array processor considerably reduces
the computer time for synthetic seismograms of com-
plex subsurface geometries. The convergence of the
double sums of type (82) increases, if one uses splines
for approximating the velocity v?(x,z) in calculation of
the coefficients h(r, s).

Note that one can avoid the calculation of integral
(79) in calculations of the double sums (82) if the veloc-
ity v,(x,z) is assumed to be a sufficiently smooth func-
tion of two coordinates. In the case where the velocity
vy(x, z) i1s given at the nodes of a uniform grid, the num-
ber of nodes along the coordinates x and z must coin-
cide with the number of terms to be summed up in (82).
For more details see Mikhailenko and Korneev (1984).

The second version of the algorithm described here
can be related to the so-called spectral methods. In a
recent paper by Kosloff and Baysal (1982) a pseudo-
spectral so-called collocation method was suggested for
the calculation of synthetic seismograms. The pseudo-
spectral method is an approximation which uses inter-
polating functions to evaluate derivatives represented
on a grid in physical space. It is called a pseudospectral
method because the interpolating functions used are the
same as in the spectral method. In the pseudospectral
method, all operations except differentiation are carried
out in the physical space defined by a grid.

In contrast to the familiar spectral method we gain
some advantage in computation time since spectral
multiplication is not necessary. The price that is paid
for this advantage is that the calculations are aliased.
The effect of aliasing may not be important but we
must keep in mind that aliasing has implications for
the stability of a calculation for long intervals of time
(Merilees and Orszag, 1979). Also, the effect of aliasing
may be important if the abruptly changing velocity is
present in our model.

When we use the pseudospectral method, the elastic
parameters are defined at the points of a uniform grid.
The FFT dimension in this case is determined by the
number of grid points. To approximate a medium with
complex subsurface geometries or a medium containing
thin layers it is necessary to use a large number of grid
points which leads to an essential increase in compu-
tation time.

Note that in contrast to the pseudospectral method
we do not calculate second spatial derivatives but ap-
proximate by the Fourier series either the first spatial
derivative or the function itself. This brings about the
better convergence of the algorithm.

The second version is suitable for use in calculating
synthetic seismograms for very complex subsurface
geometries including inhomogeneities which are much
smaller than the predominant wavelengths. This ap-
proach requires much less capacity of computer main
memory than the finite difference method. Although
this approach requires more computer time, the use of
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the FFT makes it possible to overcome this difficulty.
The weak point in this approach is the fact that it is
difficult to satisfy the boundary conditions at the free
surface.

This drawback is absent in the first approach, which
for instance is applicable to the calculation of Rayleigh
waves in arbitrary two-dimensional inhomogeneous
media. This version is most effective for thin-layer mod-
els involving heterogeneities whose amplitude along
one coordinate (say, the vertical one) is less than along
the other. These are models of typical petroleum traps
(anticlines, reefs, thrust faults, etc.) whose size in the
vertical direction is not greater than 8-10 wavelengths.
This approach, as we will discuss later, is used for com-
plex subsurface geometries in a cylindrical coordinate
system.

Now we will discuss the implementation of the first
approach for the calculation of theoretical seismograms
of P-SV waves for complex subsurface geometries.

5.2. P- and SV-wave propagation
in complex subsurface geometries (Lamb’s problem)

Consider Lamb’s problem for the elastic inhomo-
geneous half-space z=0, where the parameters of the
medium are arbitrary functions of two spatial variables
x and z. For the sake of simplicity we consider the den-
sity p to be constant. At the boundary z=0 a vertical
force is applied; then the boundary conditions at the
free surface are of the form

ou  ,ow
(v2 —202)—+ v} =F(x —x,) f(t) (83)
0z, .
ow oU
I o 4
0x * 0z |,_¢ 0 (84)

Here U and W are horizontal and vertical displace-
ments, respectively. As earlier, we take F(x —x,) in the
form

F(x_xo)zﬁe—no(x—xo)zl (85)
T

Having selected the parameter n, large enough, we
will have a source which is close to a line force. The
second-order partial differential equations, describing
P-SV-wave propagation in a two-dimensional medium
with Cartesian coordinates x and z can be written as

[0 L (Y

dx 9z 0x 0z 02
' (86)
o [,(0W U 0 2E)W 50U _62W
a—[ (W*E)]*éz["p 5z T2 )*]‘ o0
(87)
with zero initial values
oUu ow

U,_,=W|_,=— =——-1 =0. 88
lt:o |l=0 at t=0 0t t=0 ( )

Let us introduce the new boundary conditions

ow
= — =0. 89
Uli:,? 0, % Lo (89)
x=b
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We apply the cosine and sine integral transforms with
finite limits to the system of Egs. (86), (87):

b
R(z,n,t)=[ W(z,x,t) cos%dx, (90)
0
1 2 2 nmx
W(zx,t)=—R(z,0,0)+ = Z R(z,n, t) cos >, 1)
b b e b
b nmx
S(z,n,t)=[ U(z,x,t)sin dx, 92)
0
22 nmx
U(z,x,t)== > S(z,n,t)sin——. 93)
b= b

We multiply Eq. (86) by sin$ and Eq. (87) by

nmx . .
cos—b~ and integrate by parts from 0 to b, making use

of conditions (89). Then substituting the series (91), (93)
instead of W(z,x,t) and U(z, x,t) in the integral terms of
the system obtained, we have:

0%S(z,n,t) nn- ©
T: - Z‘ z mt
b
Ej v2(x, z)cos X cos%dx
© OR( )28
_n_n Z Zimt—j[v (x,2) —2v%(x, 2)]
mnx nmx
- Cos cos dx
Eym —f _[0}(x,2) R(z.m, 1)]
bm 0
G MEX L ATX
1 b Sin b X
> 250 oS t
+m§15£5[vf(x,z) (za,:1, )]sinmgxsinnzxdx, (94)
0% R(z,n,t) nn? & 20b
— = m- R(z,m, 1)~ | v2(x, z)
6[2 b2 mz EE
sin sinnz dx
nn 2 0S(z,m,t) 2% X . NmX
+ 5 m§1 = b(j)vs(x,z)sm 5 sdex
o 2b 6 2 aR(Z’myt) mmXx nmtx
S ] s 1,
[e¢) 2b a
+%m§1m'5£5;[(0,2,(x,2) 202(x, 2)) S(z,m, 1)]
-cosmnxcosnnxdx
b b '

If we take the velocities v, and v, independent of the
coordinate x very close to the free surface, the bound-
ary conditions for z=0 will be as follows:

OR(z,n,t
vZ %.F(u; —2vf)nTnS(z, nt)l,_o
—¢ #no cosm;xo 1), (96)
aS
(Z—"”—MR(Z n, 1), o =0. 97
0z
Problem (94)—(97) is solved with zero initial values
0S(z,n,t
S(z,n,t)l,_o=R(z,n,t)|,_ o= _(—a—t_)
t=0
OR t
_OR(zn,1) 0. (98)
0t Jioo

Problem (94)-(98) is solved by means of an explicit
finite difference scheme with a truncation error of sec-
ond order. System (94), (95) degenerates into two equa-
tions with a parameter n, if the velocity is only a func-
tion of the coordinate z.

For some particular models of two-dimensional me-
dia one can obtain special one-dimensional equations
with a shift parameter (Mikhailenko and Korneev,
1984).

The above approach requires less computer time
than the second version of the algorithm and than the
pseudospectral method. At the same time it allows us
to calculate complete synthetic seismograms for Lamb’s
problem.

5.3. Calculation of complete theoretical seismograms
for a three-dimensional half-space

In previous sections we discussed propagation of seis-
mic waves from a line source in two-dimensional in-
homogeneous media. However, for the comparison of
theoretical seismograms with observed records, we
should consider spherical waves, since amplitudes of re-
flected, diffracted and other waves, are not only affected
by reflection coefficients, but also by spherical diver-
gence.

Now we consider the propagation of P and SV
waves in a medium which is axially symmetric and has
complex subsurface geometry. Here, the velocities v,
and v, are arbitrary functions of the two spatial vari-
ables r and z. The physical model selected can be de-
scribed by the equations

0 (,0U, o[ ,(00, 6U,) i[ 2 22]
5(”" or )+5 _US(ar 0z ]+6r (v, =2v3) r
0

[ oU 0 (/U 02U
e 2 __ 2 z 2 7 ([ZIr) = r
+6r _(U" 2v;) 0z ]+20S or ( r ) ot?’
0 (,0U, 0 ou, U, o, )
Y 9 l2_n,2 2
ar ( 6r)+az | 2”5)(ar )+ FP ]
o[ ,0U7 ,10U, 10U, 0°U,
1OU, | 2100 07U
+6r[ 62] Y oz +s r or  0t? (100)

Let us assume that the medium consists of two re-
gions as shown in Fig. 10. Medium 2 is located at some
distance from r=0. Medium 2 is assumed to be two-
dimensionally inhomogeneous, and the propagation of
seismic waves in it is described by system (99) and
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Fig. 10. Geometry of the medium considered. The medium is
assumed to be radially symmetric in the cylindrical system of
coordinates (r, ¢, z) indicated in the figure. The source is lo-
cated in medium 1, which is isotropic and homogeneous. The
source may lie at any point along the z axis between 0 and b.
Medium 2 is a generally inhomogeneous medium, and it is in
this medium where the receivers are located

(100). We choose the line of receivers to be located in
this region. It is assumed that the medium in region 1
is an isotropic homogeneous medium. If the receivers
are located in region 2 far removed from the source we
may neglect the effect of three-dimensional curved
boundaries. The problem is in effect three-dimensional,
but it can be formulated in terms of a problem in two
dimensions because the medium varies only in two
coordinates, r and z.

As the medium in region 1 is isotropic and homo-
geneous, an analytic solution for the system of Egs.
(99), (100) can be obtained and connected across the
boundary ¥, to medium 2 where a numerical solution
must be formulated. This problem will be discussed la-
ter.

According to the first version of our algorithm we
apply the finite integral Fourier transform and the fi-
nite difference technique for the numerical solution of
system (99), (100) in region 2. The boundary conditions
for z=0 and z=b are:

ou,
0z

(101)

Z=

As the source is located in an isotropic homo-
geneous medium, an analytic solution for an explosive-
type point source may be presumed with initial con-
ditions of the form

oG,
ot

The initial conditions in medium 2 are obtained by
matching the analytic solution in medium 1 to the
numerical solution across the interface Z,.

We will now introduce finite sine and cosine trans-
forms and their inverses which we will use in reducing
the dimensionality of Egs. (99) and (100):

_ oy,
ieo Ot

=0. (102)

t=0

Ul_o=Ul_o=

b
R(r,n,0)=[ U, sinﬁ%fdz, (103)
0
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Urz0=2= 3 R(n,t)sin' "2, (104)
b=, b
b
S(r,n,0)={U, cos%dz, (105)
0
1 2.2 nmz
U(r,z, t)=BS(r,0, t)+5 Y. S(r,n,t) cos — = (106)
n=1

As earlier, we will employ these finite transforms so
that the unknown quantities become R(r,n,t) and
S(r,n,t) instead of U,(r,zt) and U,(r,zt). The obtained
system of partial differential equations may be present-
ed in the following finite difference form:

1 . . ;
S S ) =284 + 5,7 ()}

A
= i {4{(m) C,, ,(m,n)+B] /(m) C,(m,n)

E 1(m) C, _,(m,n)+ H{(m) F,(m, n)}, (107)
A—tz‘{Ri“(n) 2R{(m)+ R (n)} = Z {Pi(m)- F,, ,(m,n)

m=

+Qi(m) F(m,n) + T(m) F _, (m,n) — V{{(m) C,(m, n),
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where (108)
b
(m, n)—gg z)cos ZCOSZZ——dZ
=[D,(m+n)+D,(m—n)], (109)
b
Fk(m,n)zzsz(z)sm "Zn" "2y,
=[Dy(m—n)—D,(m+n)], (110)
b +
Dk(min)=%j Vpi(z)cosw—zdz, (111)
o

and A, B}, E], H{, P/, QJ, T/ and V{ are known func-
tions. For more details see Mikhailenko (1984).

If the velocity depends only on the spatial coor-
dinate r we arrive at a system of equations of the form
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Analytical solution for P, SV waves in a homogeneous
medium. Let us consider an explosive-type point source
which is located at some arbitrary depth along the z
coordinate. We assume that f(tf) has the following
form:

SO =exp{—[2nfo(t —t)]*/y*} sin[2n fo(t —t5)],  (114)
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where f, is the predominant frequency, y is a damping
factor, and ¢, is selected such that f(0)=~0. In this case
we can obtain an analytical solution as a series

R=— ("7”) alnyzg) Y cos[r(t 1)1 b0 elkery),  (115)
i=1

S=a(n,z,) i cos[y(t —to,)] b(v)d(k; 1), (116)

where the coefficients a(n, z,), c(k;1,), d(k;7) b(v) are de-
fined as follows:
a(n,zy)=e 4bno cosf—nﬁ,
b
c(k;ro)=Jo(k; 7o)/, (k; @)]?,
d(k;rg)= —k;J,(k;15)/[J; (k;a)]?,
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v
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Derivation of formulas (114) and (115) can be found in
Mikhailenko (1984). With the help of these formulas we
calculate the values of the functions R(r,n,t) and
S(r,n,t) (n=0,1,2,3,...) at the point r,, which is the first
point of the finite difference Eqgs. (107) and (108).

We have selected the explosive-type point source,
although it is not difficult to obtain an analytical so-
lution for other types of sources. Plane waves are also
popular in problems of seismic exploration. It is not
difficult to model a plane wave with the help of the
analytical solution (114) and (115). In this case the val-
ues of functions R(r,n,t) and S(r,n,t) are nonzero for
the harmonic n=0 only. However, for the numerical
solution in medium 2 we must use the same number of
harmonics as for a point source. This can be seen from
Eqgs. (107) and (108), as in this case the solution is not
equal to O for the harmonics n=1,..., M. Physically,
this means that the secondary sources, i.e., the points in
the laterally inhomogeneous medium, produce spherical
waves which may be approximated only by a sum-
mation over a number of plane waves which means
that many harmonics must be used. For numerical cal-
culation we will use both plane waves and point
sources.

Introduction of an absorbing boundary. In order to elim-
inate reflections from the pseudoboundary we must in-
troduce an absorbing boundary condition. For this pur-
pose, we make use of the results obtained by Clayton
and Engquist (1977), where a parabolic approximation
to the hyperbolic two-dimensional equations is intro-
duced. Let us assume that in the vicinity of this
pseudoboundary all velocities are constant. In this case
we may obtain a system of one-dimensional equations
for the function R(r,n,t) and S(r,n,t) for a fixed value of
the parameter n. This system is of the form

925 1 8*S (V.—V)nmdR (V.—2V 2
orot V2 6t2+( 07 szﬁ’( ) ! (?) 5=0,
’ > (117)
PR 1 R (V,~V)nndS (V,=2V) (nmy?
orot V7? ot v, b ot 2 b (118)

This system is then formulated in finite difference form
at the boundary X, (Mikhailenko, 1984).

Also, it should be noted that the boundaries at z=0
and z=b»b are reflective, too. In order to eliminate these
reflections, it is necessary to select them far enough
from the centre of the geological structure. Besides, it is
possible to solve the problems twice, first with the
boundary conditions

o,

=0, U =0 119
22 beo te=o (1)
z=b
and then with the alternative conditions
519
U =0, z =0. 120
rli:g aZ Z=’()) ( )

After that the results are summed up.

It should be noted that for seismological problems
instead of an absorbing boundary X, we introduce
boundary conditions at the free surface r=a.

Comments on the Convergence and Accuracy of the
Method. Here we will only mention the main factors
affecting the convergence. For more details see Mik-
hailenko and Korneev (1984) and Mikhailenko (1984).
Most important is the smoothness of the Fourier spec-
trum of f(t), since we select the number of spatial har-
monics in series (104) and (106) according to the high-
est temporal frequency in the spectrum of the source
signal f(t) and according to the minimal velocity of the
medium. The number of harmonics in series (104) and
(106) increases linearly with the increase of the distance
z=b to the reflecting surface. Here we take two har-
monics per minimal wavelength.

An additional factor affecting the convergence of
convolution sums of the type (75) is the decrease of
coefficients h,(s) with increasing s. The convergence of
these coefficients is directly related to the smoothness
of the velocity in the medium, as follows from Eq. (73)
for s—>oo. In numerical calculations we approximate
v, (x) by a linear function on a uniform interval. In this
case the convergence is as 1/s? in Eq. (73). We may
improve the convergence by approximating v (x) by
spline functions of different orders in nonuniform in-
tervals. Here the coefficients h,(s) are analytically calcu-
lated (Mikhailenko and Korneev, 1984).

In the numerical solution for medium 2, the time
step is determined approximately by the following re-
lations:

(47 + 5o e

In practice, in our calculations we made use of the
simple criterion
at-V,

— 1 <0.87.
ar

(121)

(122)

The total error of the method consists of the trun-
cation error resulting from finite-difference schemes and
the error from limiting the spatial frequencies in the
Fourier series. The method was tested against several
problems for particular models of inhomogeneous me-
dia calculated by the integral equations method (Vo-
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ronin, 1978). The results obtained using the algorithms
described here are in satisfactory agreement.

5.4. Examples of theoretical seismograms
Sfor media with complex geometries

The two versions of the algorithm discussed in this lec-
ture make it possible to calculate seismograms for re-

alistic subsurface geometries. However, we will not con-
sider here a realistic complex model because its seismo-
grams are difficult to understand. In this section we will
present only the simplest geological models. In order to
increase the range of applicability of our results, dis-
tance and time are expressed in terms of wavelengths
(WL) and periods (T), respectively.

The time dependence of the source pulse used is
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given by formula (114). Here we will consider only
sources generating either P or SH waves, although the
algorithm for the calculation of SH waves in complex
subsurface structures with radial symmetry was not dis-
cussed here (Mikhailenko, 1984). In our calculation we
will use also a plane wavefront which is convenient in
the interpretation of theoretical seismograms.

Let us consider the case of a symmetric basin. Fig-
ure 11 shows this model and theoretical seismograms.
The receivers are located close to the surface X, which
is 30 WL away from the axis 0z. The point source gen-
erating a spherical SH wave is located on the z axis at
the point r=0, z=0. In the figure the front of the wave
incident from the source is denoted by S, x; and x,
denote the coordinates z and r=30 WL, respectively.
The velocity below the interface is twice that of the me-
dium above it. The quantity h=1.5WL. The identifi-
cation of arrivals is as follows: S, - direct arrival, §,, -
reflected arrival, §,, - diffracted arrival. The distance
between the receivers is 0.5 WL.

A more complicated picture may be observed if a
spherical P wave is incident on the same structure. In

Fig. 13. Theoretical seismograms of the
vertical and horizontal components of
displacement generated by a plane P
wave for a model medium consisting of a
high-velocity inclusion whose radius r is
equal to one Fresnel zone. The velocity
of P and S waves in the inclusion is
twice the one outside it (V/V,=0.6). The
inclusion thickness is h=025 WL

this case, besides PP waves, there are converted PS
waves. Theoretical seismograms for the vertical and
horizontal displacement components are presented in
Fig. 12.

As is seen, the wave picture is far from being sim-
ple. To simplify the interpretation of seismograms, we
found it appropriate to change from the spherical wave
to a plane wave. This plane wave may be constructed
by means of a set of point sources. In Fig. 13 we see the
diffraction of a vertically incident plane P wave by a
high velocity elastic inclusion. Note that the direct P
wave is cut off in all the figures. The inclusion is located
at a distance of 9 WL from the free surface. The size of
the inclusion equals 6 WL which corresponds to the ra-
dius r of the first Fresnel zone. The velocity of longitu-
dinal and shear waves in the inclusion is twice the ve-
locity outside, and the ratio V/V, =0.6. At the edges a
and b of the inclusion diffracted P and S waves are
generated. Since the wave picture is symmetrical with
respect to the centre of the inclusion, we will consider
the diffraction tails of P waves and the two diffraction
tails of § waves from the edges a and b. The diffraction
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Fig. 14. Theoretical seismograms of the vertical component of
displacement for the model medium shown in Fig. 13. The
width of the inclusion is selected as follows: (a) 0.5 of the
Fresnel zone, (b) 0.25 of the Fresnel zone, (c) 0.04 of the Fres-
nel zone

tail of the P wave from point b has the same polarity
as the reflection event, while the diffraction tail from
point a has polarity opposite to the reflection event.
This is a well-known fact. A similar situation takes
place also for diffraction tails of § waves. However, if
the diffracted S wave is incident on the free surface un-
der the angle a=arcsin(V,/V,) a longitudinal head wave
P, S, P, is generated. Besides, linear polarization of the
diffracted shear wave P, S, changes to elliptic polariza-
tion. As is seen in Fig. 13 the horizontal displacement
component passes through zero. The amplitudes of
waves reflected by the inclusion are zero on the hori-
zontal component because we use a plane wave. We
should note that the amplitude of the reflected P wave
is reduced to 509 directly above the edges of the in-
clusion.

With decreasing size of the inclusion the wave pic-
ture becomes closer to the wave picture obtained with
a point diffractor. We can see this in Figs 14 and 15,
where vertical and horizontal displacement components
are presented. All the parameters of the previous model
stay the same here except for the size of the inclusion.
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Fig. 15. Theoretical seismograms of the horizontal component
of displacement for the model medium shown in Fig. 13. The
width of the inclusion is as follows: (a) 0.5 of the Fresnel
zone, (b) 0.25 of the Fresnel zone, (c) 0.04 of the Fresnel zone

As we can judge from the calculations, diffracted (or
scattered) S waves have the same amplitude as P waves,
even when the size of the inclusion is small.

Although in this section we deal with two-dimen-
sional models, the divergence is the same as in a three-
dimensional case, if receivers are located not far from
structures.

Let us now consider simple two-dimensional reef
models. To simplify interpretation of theoretical seis-
mograms, we will use a vertically incident plane SH
wave. Figure 16 shows the theoretical seismograms for
a reef (model A), for a reef with smoothed upper edges
(model B) and for a salt dome (model C). The main
wave types are marked in model A. Since the wave pic-
ture is symmetrical with respect to the centre of the
reef, we show only parts of the profiles on the left.

Interference of diffracted waves from the zone of in-
flection of the geological horizon gives a false im-
pression of its continuity beneath the reef Besides, as
we see from the figure, there is an intense wave which
arrives after the S,, wave reflected from the horizon. In
order to understand its origin let us consider models B
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Fig. 16. Theoretical seismograms for an SH-plane wave normally incident on the three structures A, B, C. The § velocity

inside the structures is twice that above them

and C. As is seen, the smoothed upper edges of the reef
produce more intense diffracted (scattered) S,, waves.
Variation in the location of the lower reef edges does
not cause any change in arrival time of the above-men-
tioned intense wave.

Let us consider the three models and theoretical
seismograms shown in Fig. 17. Model C and its corre-
sponding seismograms are taken from the previous fig-
ure. Model D is constructed as follows: We take the
upper part of model C and make the geologic horizon
continuous. Thus, we obtain some high velocity in-
clusion above the geologic horizon. Model F represents
the above inclusion without geologic horizon.

The analysis of these models leads to the conclusion
that the intense wave which arrives after the reflected
§,; wave is a diffracted (scattered)-reflected wave. The

diffracted (scattered) wave from the upper part of the
salt dome is incident under the critical angle on the
geologic horizon. The wave reflected from this horizon
generates a head wave S, ;.

We now consider the model and theoretical seis-
mograms presented in Fig. 18. The plane SH wave is
normally incident on a half-infinite high-velocity layer
of thickness 0.25 WL (V5,=2Vs,). Here one can also see
a diffracted-reflected wave which arises each time mul-
tiple reflections from the horizon and the free surface
are incident on the edge of the layer.

When the distance d between the layer and the ho-
rizon decreases the wave picture becomes more com-
plicated. The diffracted wave and the diffracted-reflect-
ed wave interfere. This can be seen in Fig, 19.

We next consider a two-dimensional monocline
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Fig. 17. Theoretical seismograms for an SH-plane wave normally incident on the three structures C, D, F. The § velocity inside

the structures is twice that above them

model. The plane connecting the two half-planes has a
dip of 45°. The velocity below these planes is twice the
velocity above them. If the SH wave is normally in-
cident, the reflected waves from the dipping plane prop-
agate in the horizontal direction and do not come to
the receivers. However, we observe on the theoretical
seismograms a relatively intense diffracted-reflected
wave and head waves (Fig. 20).

Thus, from numerical experiments it becomes clear
that diffracted-reflected and diffracted head waves can
be rather intense, and that they may possibly be used
in seismic exploration. I would like to propose an ap-
proach which is based on the cancellation of multiple
waves and on the investigation of diffracted waves. The
idea is to use plane P waves and recordings of the hori-
zontal component of the displacement vector. Let there

be some inclusion or stratigraphic trap inside the stra-
tified medium. If we construct a plane wave with the
help of point sources, the amplitudes of all multiply re-
flected waves on the horizontal displacement com-
ponent will be zero. In this case we will have only dif-
fracted waves, if the medium changes only in the verti-
cal direction. This is illustrated in Fig 21, where a
plane P wave is incident on a flat layered medium con-
taining an inclusion. The parameters used are V,
=2V V=2V VifV,=086, V,.=15V,, V,=135¥,.
The thickness of the inclusion is 0.25 WL. Note that the
direct P wave is cut off in the figure. As is seen in the
figure, multiply reflected waves are absent on the hori-
zontal component, and we have only diffracted waves.
It is easy to determine the location of the middle part
of the inclusion where the horizontal component equals
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Fig. 20. Theoretical
seismograms for an SH-plane
wave normally incident on a

zero. At present work has begun on implementation of
this approach in seismic exploration.

Conclusion

We have considered and discussed the main stages of
numerical experiments in seismic exploration for one-
and two-dimensional inhomogeneous models of media.
The approach presented is being developed for the cal-
culation of complete theoretical seismograms and for
three-dimensional inhomogeneous media. In this case
two-dimensional Fourier transform along the coor-
dinates x and y and the finite difference technique
along the coordinate z is used. Here we introduce an
absorbing condition at the boundary z=z,. Note that
for the calculation of three-dimensional models of re-
alistic media it is necessary to use high performance
computers.
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