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Abstract. The response of a spherically symmetric non-
rotating elastic isotropic (SNREI) model earth to
spheroidal forcing is described by six coefficients, five
of which, h,, k,, |, h, and [, are related to earth tide
measurements. The sixth parameter, [, a spheroidal
stress coefficient, is completely independent, whereas all
other coefficients used to describe the response to
spheroidal forcing are linearly dependent on the five
coefficients above. The corresponding relations are
compiled in this paper.

The response of the SNREI model earth to tor-
sional forcing is completely described by the torsional
stress coefficient, [¥, which is resonant at the corre-
sponding eigenperiods of the torsional free oscillations
of the earth. For n=1, the zero frequency mode, T},
corresponding to a rigid rotation, is established, and
can only be excited by external forcing. After attenua-
tion is introduced eigenperiods and quality factors of
the fundamental torsional modes, ,T,—,T;,, are calcu-
lated for the isotropic preliminary reference earth mod-
el (PREM). A comparison with the corresponding val-
ues originally determined for the PREM yields a small
bias. As a probable cause of the bias, differences in the
procedures of numerical integration are discussed.

Key words: Earth tides — Torsional free oscillations —
Love-numbers — Response functions — Numerical inte-
gration — Q determination

Introduction

At spherical coordinates r, 3, 4, every physical vector
field can be decomposed in spheroidal and torsional
fields (Morse and Feshbach, 1953). These constituents
in spherical harmonics can be developed for surfaces
where r is constant to produce a component represen-
tation of the spherical coordinate system. For example,
the r, 3, 4 components of the surface traction, z(r, 3, 1),
acting on spherical surfaces where r is constant can be
shown as
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cosmi for g=c

sinm/  for g=s

Y"9(9, 2) = B"(cos 9) {
are spherical harmonics. The first term on the right
hand side of Eq. (1) represents the spheroidal and the
second term the torsional part of the surface traction, 7.

A corresponding decomposition can be given for
the displacement field, s(r, 3, 1):
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Corresponding to the spheroidal and torsional types of
vector fields, forced motions and free oscillations of a
spherically symmetric non-rotating elastic isotropic
(SNREI) earth are described by two separate systems of
differential equations with adequate boundary con-
ditions (Alterman et al., 1959; Aki and Richards, 1980;
Lapwood and Usami, 1981). Both types of motion,
spheroidal and torsional, are forced by corresponding
stress fields and are completely decoupled. Any de-
viation from the SNREI properties will act to couple
these fields (Masters et al., 1983).

Forced motions can be induced by volume or sur-
face forces. For example, tidal forces exerted by the
moon and the sun, or loading forces at the earth’s
surface such as the tidally varying ocean load, are vol-
ume forces. Their gravitational potential is only in-
volved in the spheroidal system of equations, and there-



fore earth tides are spheroidal in character. In loading
tides, both volume forces (gravitational attraction) and
surface forces (pressure) are active. The load pressure
squeezing the earth’s surface, r=a, is a vectorial field,
7(r, 9, 4), of spheroidal character, since it has only a
radial component at r=a.

Torsional motions are restricted to movements on
spherical surfaces and therefore do not change the mass
distribution within a spherically symmetric earth. For
an SNREI model earth they can only be induced by
horizontal traction, e.g. friction caused by winds or
ocean currents. In this context two questions arise:

1. Is it possible that both spheroidal and torsional
motions are induced by purely horizontal traction at
r=a?

2. What kind of structure of applied horizontal traction
will induce torsional motions alone?

Boundary conditions for stress

These questions can be answered quite generally if the
surface traction, t(r, 3, A), is decomposed according to
Eq.(1) and if the continuity of the stress at r=a is
taken into account. With applied traction of #(9, A), the
continuity of stress yields

7(a, 9, 1) =12(9, 1). 3)

The radial component of #(9, A), developed in spherical
harmonics, is
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where
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follows from Egs. (1) and (3). For reasons which will
immediately become evident, the horizontal com-
ponents of £(9, 1) are developed in spherical harmonics
according to Eq. (1), but are also decomposed in the
following way:
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From Egs. (1) and (3), which are valid for each har-
monic component specified by a given combination of
n’ m’ q’

Lo,1m" =117,
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at r=a. The following relations are deduced from Egs.

(6)-09):
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yielding vanishing coefficients for n=0. With the re-
lations of Egs. (5), (10) and (11), it is obvious that
question (1) of the introduction has to be answered
with yes. Clearly, question (2) is answered by simply
stating that the horizontal traction must be torsional in
order to induce only torsional motion. A sufficient con-
dition for this is that the applied horizontal traction,
(9, 2), is zonal, i.e. T,=0 and 7, is independent of A. In
this case

and

Uri(a)=0=V,"(a).

The boundary conditions for the stress field at r=a can
be specified according to the character of the forcing
field. In the spheroidal case four types of boundary

conditions can be formulated (Molodenskiy, 1977;
Saito, 1978; Okubo and Saito, 1983; Varga, 1983). For

(a) a forcing external potential (e.g. tidal potential),
Sma(r, 9, 1) =G™ (f) Y™(9,7), O<r<oo

a
and then U (a)=0=1V,"(a);

(b) a forcing mass-load potential,
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where G is the gravitational constant, p, the mass-load
density and &7'? the corresponding coefficient of the
mass-load height development in spherical harmonics,
so that p, &r1Y™(9, 1) is the surface-load density (e.g.
Ziirn and Wilhelm, 1984), and then
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(c) a forcing pressure pr4Y™4(9, 2) at r=a, then
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where G ™ is defined by Eq. (12), and g, is the gravi-
tational force per unit mass at the surface r=a;

(d) a forcing horizontal surface traction at r=a,
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with G, ™ defined by Eq. (13).
The boundary conditions of (b) evolve from super-

posing the conditions of (a) and (c).
In the torsional case the forcing traction is given by

0
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and the boundary condition for the stress yields

Wria)=tpi= 0o G, (15)

with G*™4 defined by Eq. (15).

Additional boundary conditions

The continuity of the potential at r=a can be achieved
by defining a response potential in case (a) by

S~;""(r, 3, 4)
o )

a n+1
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r
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=GrayYmi(4, 4)

and a corresponding response potential in cases (b), (c)
and (d) by replacing k, by k,, k}, k; and G4 by G,
GF™, G, ™4, respectively.

A further boundary condition is a result of the
continuity of the expression (Farrell, 1972)

(V8™ —4n G p(r)sT) -1,

where T is the unit vector in the radial direction. From
Eq. (2), it follows for case (a) that

[(dk,,+
dr
and there is a corresponding relation for the other
cases.
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Relations between spheroidal coefficients

In the spheroidal state a system of six first-order linear
differential equations can be used to describe the forced
and free motions of the spherical earth. Alterman et al.
(1959) introduced the five variables:

Yy =uyi(r), y,(r)=UrM(),
y3(r)=ovri(r),  y,(r)=V,"(r),

rs()=Gye () @+, 00,

and a variable, y4, which is not used here in its original
form but as defined by Saito (1974):
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which is
dk. 2n+1 n
yo0)=[ G2+ G 0] 63 (£) 4G o,
dr r a

with =1 in cases (a) and (b) and =0 in cases (c) and
(d). In addition, Saito showed that between two so-
lutions (y,y, ..., Yg1) and (y,,, ..., Vg2), for two different
sets of boundary conditions, the relation

Vir Va2 +n(+1) Y3, Y4, +@nG) ™ ys,y ve,
=YYt +1)ys, v, +@nG) " s, vy (17)

holds at r=aq. While y,, y, and y, are determined by
boundary conditions, y,, y; and ys are linearly related
to the forcing function by coefficients and factors ac-
cording to Table 1 (Okubo and Saito, 1983).



Table 1. Factors and coefficients used to describe the earth’s
response to spheroidal forcing

Gr G GHm G, "
Y1 h./go /g0 h/go h, /g0
V3 L./go l'/go I¥/go /g0
ys  (L+k)  (1+k) ky ke

0 _(2"+1)g0 (2n+1) g,
V2 4nGa 4nGa

2n+1)g,

Y4 0 0 0 nin+1)4nGa

Ve 2n+1)/a (2n+1)/a 0 0

By combining the solutions for two different sets of
boundary conditions, six relations between the coef-
ficients are derived (Saito, 1978; Okubo and Saito,
1983; Varga, 1983):

(a), (b):  k,=k,—h,

(@@, (©): kS =—h,

(), (d): Kk, =1,

(b), (c):  hr=h +kr=h —h,

(), (d):  h, =k, —1,=1,—1,

(€, d): Ir=—hr=l-1I, (18)

and trivially, because of the linearity of the boundary
conditions and the differential equations,

h,=h,+h
k,=k,+k’
=0+

From the twelve coefficients introduced in Table 1 six
coefficients can be expressed as linear combinations of
h,, k,, 1,, b, and I', which can therefore be regarded as
independent coefficients. However, the stress coefficient
I, does not appear in the relations [Eq. (18)], being
completely independent. From earth tide measurements
and model calculations the first five coefficients are
fairly well known, but I, has not yet been investigated.
However, a complete knowledge of the reaction of the
spherical non-rotating earth to spheroidal forcing fields
requires the determination of /;. From the definition in
Table 1, it is clear that [ appears in spheroidal mo-
tions of the earth that are induced by horizontal fric-
tional forces exerted on the earth’s surface, e.g. by
winds and ocean currents. It is, however, expected
that local disturbances will inhibit the identification of
this effect.

Torsional forced motions

In the torsional case there is no disturbing potential
and the displacements are purely horizontal every-
where. For a spherical earth with a fluid outer core,
only two boundary conditions, at the earth’s surface
and at the core-mantle boundary, need be taken into
account. There are only two differential equations, of
first order, for the two variables (Alterman et al., 1959):
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yi(r)=wy(r)
Y2 (r)=W,(r), (19)

viz.:

dy
d—rl=y1/r+yz/u

d
(=2 pfr o p) y, =3y, (20)
where p is the shear modulus and p the density, both
depending on the radial distance, r.

The boundary condition at r=a for a given tor-
sional traction field, 79(9, 1) according to Eq. (14), is
given by Egs. (15) and (19), yielding

y2(@)=19,

whereas the displacement is linearly related to the tor-
sional stress by

yi(@) =13y Gx™/g,

where G¥™ is given by Eq. (15). Numerical integration
of the system [Eq. (20)] yields the torsional stress coef-
ficient, [*.

For torsional motions it is particularly easy to de-
scribe an attenuating medium, achieved by introducing
a complex shear modulus:

A=p(+i/Q,),

where u, but not the dissipation parameter Q,, is as-
sumed to be frequency-dependent (Kanamori and An-
derson, 1977), so that

u(w)=p(w,) (1+2/(xQ,) In(w/w,),

and w, is a reference frequency.
Consequently, the stress and the displacement also
become complex quantities:

W= W W=y, i,
W.mq=mmq+i anq=y2+i)72'

Correspondingly, there are now four differential equa-
tions instead of two:

Dy 4 v/ (@) (107 )+ 5/, (@) 1+ 057)

s 5,4 Fal() (1407 ) =y3/(Q, (@) 1+ 05 )

Yy, n =D ) 07 p)
3R =D (@) Q)

a5,

TI=Ti((n? +n=2) p(w)fr? —? p)
=37+ 31 (n* +n=2) p(@)/(r* Q,), (21)
and the resulting stress coefficient is also complex:

Pe=1*4il*
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Fig. 1. Negative real part [} of complex torsional stress
coefficient [¥ for small frequencies using the preliminary earth
reference model (PREM). Two frequency and ordinate scales
are used. Long period (LP), diurnal (D), and semi-diurnal (SD)
tidal frequency bands are indicated

If the forcing field is assumed to be a real quantity, i.e.
y,(a)=0, and if y,(a) is given, the response of the earth,
i.e. the displacement and the stress within the earth, can
be calculated by numerical integration of the system
[Eq. (21)]. At the earth’s surface, r=a, the coefficient [*
completely describes the response, since according to

P =TxGrmijg, (22)

the amplitude and phase of * relates the displacement
linearly to the forcing field. ~

The torsional stress coefficient, [*, has been calculat-
ed for the anelastic isotropic preliminary reference
earth model (PREM) (Dziewonski and Anderson, 1981)
and a varying circular frequency w. For n=1 and small
frequencies, [* has an extremely small imaginary part
compared to the real part, which is resonant for w—0,
whereas the imaginary part becomes zero. This reso-
nance at zero frequency corresponds to the torsional
free mode, T, which can only be excited by static
external forces exerting a torque on the earth. The
earth’s response to the torque is a rotation which leads
to infinite displacements with respect to a non-rotating
coordinate system. Figurel shows the negative real
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Fig.2. Frequency dependence of the complex stress coef-
ficient, f’f in the vicinity of the mode T, using the prelimi-
nary earth reference model (PREM). The real part, I¥, the
imaginary part, [¥, and the magnitude, |¥|, were determined

part of [* for the two frequency bands 0-0.017 c/h and
0-0.17 ¢/h. For small frequencies the phase difference
between the displacement and the applied stress is al-
most 180°, since the imaginary part of [} is positive.
This corresponds to the behaviour of a damped har-
monic oscillator for frequencies greater than the reso-
nance frequency. For n=2,3,...,[¥ has definite real
limits for w—0. In a rotating coordinate system the zero
frequency mode is transformed into a free mode, with a
period corresponding to the rotation of the inertial
frame (Dahlen and Smith, 1975).

At the appropriate frequencies of the applied trac-
tion, the torsional vibrations of the earth lead to a
resonant behaviour. Figure 2 shows this behaviour for
[* in the neighbourhood of the eigenfrequency of the
T, mode. The zero crossing of [§f determines the reso-
nance frequency.

By calculating [¥ in the vicinity of the resonances,
the eigenperiod ,T, and the quality factor ,Q, of the
corresponding torsional oscillation can be determined.
For a damped harmonic oscillator with resonance fre-
quency ,w, and quality ,Q, the frequency response is
given (Ben Menahem and Singh, 1981) by

M((l)) =(kw3 -’ + iwn wk/an)—l'
The ratio of the real to the imaginary part of M(w) is
G(w)=(0/w, =@,/ w) Q. (23)

Fourier transformation of Eq. (22) yields the corre-
sponding frequency response, [*(w); the ratio of the real
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Fig. 3. Differences, 40=0,.—Q,,, and AT=T,.—-T,,,, be-
tween the calculated values, Q,. and T,., from the resonances
of [* and the values QnDA and T,,,, given by Dziewonski and

Anderson (1981) for 0 - and the preliminary earth reference
model (PREM), n 0. Differences of the observed values
are given with error bars

to the imaginary part of [* is well represented by a
function like Eq.(23), with ,w, and ,Q, as parameters
whose values are determined by least squares fitting of
the calculated ratio [*:I*¥ to the response ratio [Eq.
(23)] for different values of w. The frequencies used for
the least squares fit have to be chosen sufficiently close
to and symmetrically distributed around the zero cross-
ing value. It happens that the least squares fit is also a
robust fit in the calculated numerical examples. In this
way eigenperiods and quality factors of torsional oscil-
lations have been determined for the PREM. For the
lowest fundamental modes, the differences between T,
=2n/,w, and ,Q, obtained by this method and the
corresponding values given by Dziewonski and Ander-
son (1981) are shown in Fig. 3. In addition the differ-
ences of the observed eigenperiods are shown with er-
ror bars. There is a bias of about 0.19%; between the
corresponding eigenperiods and about 19, between the
Q values.

Though this bias is rather small it looks systematic.
Since it might have arisen through neglecting the influ-
ence of neighbouring eigenperiods on the determination
of ,w,, in the response function up to 12 eigenfrequen-
cies were taken into account instead of one. The effect
of the additional resonances is to give a deviation of
about 0.01 s for the resonance required, at low degrees
of n. For n=8 the deviation is 0.02s for the period ,Tj,
and 0.03 for ,Q4. This difference is reached after taking
the next four additional resonances into account, and

21

Table 2. Numerical methods used to integrate the linear sys-
tem y'(r)=A(r)y(r) (Stiefel, 1976) and corresponding results
for the fundamental mode ,T,: 1. Heun method, with pre-
dictor for unequal integration intervals; 2. Runge-Kutta
method, with predictor for unequal integration intervals; 3.
modified Runge-Kutta method with inversion for unequal
integration intervals; 4. Runge-Kutta first method with pre-
dictor and linear interpolation for equal integration intervals;
5. Runge-Kutta second method with predictor and linear
interpolation for equal integration intervals; 6. calculated val-
ues of Dziewonski and Anderson (1981); 7. observed values
according to Dziewonski and Anderson (1981)

Procedure T, [s] 092

1 2640.8 249.61
2 2629.5 250.33
3 2640.4 249.63
4 2640.0 249.63
5 2640.0 249.63
6 2639.4 250.40
7 2636.38 ?

+2.11

the use of additional eigenfrequencies does not change
the result further at the five-digit level. Therefore, satu-
ration is reached with a limited number of neighbour-
ing resonances. For growing values of n the number of
resonances that have to be respected also increases.
This effect, however, cannot be responsible for the bias
shown in Fig.3 because the corresponding differences
are much lower than the bias. Only those eigenfrequen-
cies with the same degree n but different node number
k are involved in this problem.

Another proposal was that different methods of
numerical integration may yield differences in the re-
sults. Hence, as a computational example, different
methods of integration were applied for the determi-
nation of the period and quality of ,7,. The result is
shown in Table 2 for five different procedures. Lines 6
and 7 show the values calculated by Dziewonski and
Anderson (1981) compared with the observed values.
Except for method 2, the least squares fitted values
agree to within +0.01 for ,Q, and to within +0.04s
for ,T,. The differences between the results are com-
parable with the differences shown in Fig. 3. Therefore
it can be concluded that a possible cause of the bias
may be found in different integration procedures. In
particular, two inherently different methods (4 and S;
Table 2) yield the same results within five digits, yet
differ from the results of the Dziewonski and Anderson
method (1981).

Dziewonski and Anderson (1981) calculated the Q
of a normal mode with index j according to a pro-
cedure described by Sailor and Dziewonski (1978):

QI‘=L3 K K;(r) Q' (r) r? dr,

a

(u(r) M(r) @, (r) +

Ot

where M. (r) and K. ;(r) are defined by Backus and Gil-
bert (1967 egs. 30, 31) and p(r ) and K(r) are the shear
and the bulk modulus and Q,'(r) and Q, '(r) the ra-
dially dependent imaginary parts of the corresponding
complex moduli (Ben Menahem and Singh, 1981, eqgs.
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10.130, 10.198). The method finally used in this paper is
a combined determination of the eigenfrequency and
the quality factor of a normal mode, using the response
of a linear oscillator to an external forcing function. If
there are N + 1 resonances the response is given by

M=

M(w)=.

J

0{(wf —0?)/[(@] =0 +(ww;/Q)*]
(0 w,/Q)/[(w] — ) +(w w;/Q)*1}, (24)

where j=0 is the resonance in which w, and Q, are to
be determined and j=1,2,... N are the resonances
which have to be taken into account for the determi-
nation of w, and Q,, and for which preliminary values
of sufficient accuracy are inserted in Eq. (24) in order to
determine the influence of the other N resonances on
w, and Q,. The ratio of the real to the imaginary part
of M(w) 18 G(w; wq, Qy; W), Q), j=1...N, which is
calculated from Eq. (24). By fitting the ratio [¥:[* to the
ratio of the real to the imaginary part of M(w) in a
linearized least squares procedure, the unknown values
of wy and Q, are determined.

-~

Conclusions

The response of an SNREI model earth to a forcing
spheroidal field is completely described by six coef-
ficients, five of which (h,, k,, I, h, and [’) can, in
principle, be calculated by numerical integration of the
corresponding set of linear differential equations, and
are related to earth tide measurements. Except one, all
other coefficients used to describe the response are lin-
early composed of these five coefficients. The exception
is I, which is completely independent and difficult to
determine by measurements. Until now, it has not re-
ceived any attention, but it is fundamental. Model cal-
culations should reveal its numerical value as a func-
tion of frequency.

The response of an SNREI model earth to a forcing
torsional stress field acting at the earth’s surface can be
completely described by only one coefficient, [*. After
introducing attenuation to the earth model, the eigen-
periods and quality factors of the torsional free oscil-
lations can be determined by a least squares fit pro-
cedure to the response function of a linear oscillator
model. For the isotropic PREM (Dziewonski and An-
derson, 1981), the calculated values yield differences of
0.19; for the period ,T, and 1% for ,Q, with respect to
the values given by Dziewonski and Anderson (1981).
Using different integration procedures, differences of
the same order can be obtained.
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