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Paul Temme' * and Gerhard Miiller 2

! Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, USA
2 Institute of Meteorology and Geophysics, Feldbergstrasse 47, D-6000 Frankfurt/M., Federal Republic of Germany

Abstract. A method is presented by which plane-wave and
single-shot migration can be performed very fast through
Fourier transformation. The technique is similar to Stolt’s
(1978) migration procedure for CMP data; however, it is
based on plane-wave and single-shot sections as input data.
For the reconstruction of the subsurface structure, the ap-
propriate imaging conditions are used (Temme, 1984), and
the velocity is assumed to be constant. Plane-wave migra-
tion can be performed exactly, single-shot migration is exact
only along a ray leaving the shot with a specified direction
and close to it. The theory is tested on synthetic seismo-
grams for a synclinal structure and a set of horizontal reflec-
tor elements separated by gaps. The proposed method re-
quires mapping of the frequency-wavenumber spectrum cor-
responding to the observations, on to the two-dimensional
wavenumber spectrum corresponding to the migrated sec-
tion. The latter spectrum has to be sampled with sufficient
detail, otherwise pronounced aliasing effects will appear in
the migrated section. A time-saving alternative is to apply
a smoothing phase-shift operation to the frequency-wave-
number spectrum and to remove the phase shift from the
spectrum of the migrated section.

Key words: Prestack frequency-wavenumber migration —
Directional migration — Computational aspects

Introduction

Modern migration techniques employ the scalar wave equa-
tion in order to reconstruct the subsurface structure from
seismic wave fields measured at the earth’s surface. Usually,
common midpoint sections (CMP sections) are used as in-
put data in standard migration. The exploding reflector
model is employed (Loewenthal et al., 1976), i.e. the CMP
wave field is downward continued in a first step to different
depth levels by solving the wave equation using half the
material velocity. In a second step, the migrated depth sec-
tion M (x, z) is constructed by taking the downward-contin-
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ued wave field U (x, z, t) for each depth level z at the imaging
time ¢, =0:

M(x, z)=U(x, z, t;=0).

Instead of using a CMP section as input, plane-wave sec-
tions and single-shot sections can be used for the reconstruc-
tion of subsurface structures. A plane-wave section is the
plane-wave response of an arbitrarily shaped structure due
to an incident plane wave with a fixed angle of propagation.
A single-shot section represents the reflected wave field at
the earth’s surface for point- or line-source excitation. In
common seismic surveys, several single-shot sections are
recorded by shifting the shotpoint-geophone configuration
across the structure being investigated. These single-shot
wave fields represent the data base for standard CMP stack-
ing (Mayne, 1962). On the other hand, single-shot sections
can also be used for synthesizing plane-wave sections by
slant stacking (Schultz and Claerbout, 1978; Treitel et al.,
1982). Plane-wave and single-shot sections represent physi-
cal wave fields that can be measured in a realistic physical
experiment. Therefore, one can expect to be able to deter-
mine the reflection coefficients of the structure. This is more
difficult in the case of CMP migration, which starts from
a manipulated (and, in that sence, nonphysical) wave field
(Temme, 1984).

The role plane-wave and single-shot migration could
play in the reconstruction of subsurface structures is cur-
rently restricted to the detailed investigation of selected re-
flecting elements. Because of the finite geophone spread that
is used to record the reflections, only segments of the struc-
ture can be seen. In order to obtain the total subsurface
structure, as in the case of CMP migration, many single-shot
sections with different shotpoint locations or many plane-
wave sections with different angles of incidence have to be
migrated. From a practical point of view this is only attrac-
tive if rapid algorithms performing single-shot and plane-
wave migration are available.

The fastest migration algorithms have been formulated
in the frequency-wavenumber domain. Gazdag (1978) pre-
sented the phase-shift method for CMP sections, where the
Fourier-transformed wave field at the surface is downward
continued to each desired depth level z using an appropriate
z-dependent phase-shift operator. The migrated section re-
sults from subsequently evaluating the downward-contin-
ued wave field at time ¢ =0. At each depth level the inverse
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Fourier transform from frequency to time is a simple sum-
mation of all frequency components. Finally, one depth level
of the migrated section is obtained by a one-dimensional
inverse Fourier transform over the horizontal wavenumber
k.. Stolt (1978) presented another fast algorithm of fre-
quency-wavenumber migration. In his method the total
depth structure M (x, z) is calculated from the Fourier-trans-
formed CMP section in one step. The frequency-wave-
number integral is transformed to a Fourier integral over

k. and the vertical wavenumber k, using the substitution
2

]
kz = (c—:.)f - k:zc
ward-continued wave field is only evaluated at time t=0.
This Fourier integral can be calculated by an inverse two-
dimensional Fast Fourier Transform (FFT) and results in
the total migrated depth section.

Frequency-wavenumber migration deals with velocity
variation only in an approximate way. Gazdag’s phase-shift
method allows for depth-dependent velocity only. For later-
ally varying velocity, Gazdag and Squazzero (1984) pro-
posed an interpolation method. Stolt’s method has the dis-
advantage of not allowing any velocity variation. In order
to alleviate this difficulty he proposed a stretching of the
time axis of each zero-offset seismogram, incorporating the
root mean square velocity (Stolt, 1978: Eq. 75; Claerbout,
1985: p. 276). The transformed wave field looks more like
it had come from a constant velocity structure. In spite
of the weakness in dealing with varying velocity, the fre-
quency-wavenumber migration is widely used in industrial
practice.

In this paper a migration algorithm, which is similar
to Stolt’s method but formulated for plane-wave and single-
shot sections will be presented. In order to deal with non-
CMP input data, modified imaging conditions for the con-
struction of the migrated section have to be used. The imag-
ing conditions for plane-wave and single-shot sections have
been described by Temme (1984). They are based on the
principle that reflectors exist at those points (x, z) within
the structure where the reflected wave is time coincident
with the downgoing wave. If we assume the velocity to be
constant, the imaging conditions can be expressed analyti-
cally. In the plane-wave case we use

, where c is half the wave velocity. The down-

M(x, z)=U<x, 2, t,=%sin¢+%cos ¢). )

For single-shot sections we use
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M(x, z)= U(x, z, t,=g—tz—)). )
M (x, z) represents the migrated depth section, U is the
downward-continued reflected wave field at depth level z.
t; in Eq. (1) represents the arrival time of the downgoing
plane wave measured from the surface point at x =0, where
the plane wave passes at time t=0, to the reflection point
at (x, z). The angle ¢ is the propagation angle of the plane
wave with respect to the z axis. t; in Eq. (2) is the arrival
time of the downgoing cylindrical wave (2D case), taken
from the shotpoint location at (x=0, z=0) to the reflector
at (x, z).

In the next section we will present the theory of plane-
wave and single-shot migration in the Fourier domain. A
discussion of computational aspects of the method and how
aliasing can be avoided is included in a subsequent section.

Finally, the method is tested on synthetic seismograms for
simple subsurface structures: a synclinal structure and a
set of horizontal reflectors with gaps.

Theory

Plane-wave migration

U (x, z=0, t) represents the reflected scalar wave field, which
is known at the earth’s surface; the depth coordinate is
positive downwards. In order to calculate the reflected wave
field at a deeper level z, we use the scalar wave equation.
Its solution will be given in the frequency-wavenumber do-
main, where the wave equation reads

d*U (o?
—ci—z‘z‘-l-(*—z— k2> U=0. (3)

U represents the Fourier-transformed reflected wave field;
v is the constant material velocity. The following correspon-
dences have been used:

Uk,,z,0)= | [ U(x,z1)e " *=2drdx
1 © o . 4
U(x, zt)= g3 ] _f U(k,, z, w) e =2 dpdk,. @

The general solution of Eq. (3) is

Tk, 7, )= ) p )

For reasons of simplicity, we are only dealing with positive
frequencies w. Thus, the arguments of the exponential func-
tions have only one sign. The first term with coefficient
C represents waves travelling upwards in the negative z
direction. The second term with the coefficient D represents
waves travelling downwards. We are only interested in the
downward continuation of upgoing reflected waves. For this
reason, we choose D=0. C can be determined from the
boundary condition for z=0: C=U(k,, 0, ). Finally, we
obtain the downward-continued wave field at level z from
Eq. (4):
o) @

1 _
U(X,Z, t)=m j j U(kx,O,CU)

— 0o — o

-ei[‘"”k‘”(%_kf)*z]dwdkx. )

The migrated section M (x, z) can be calculated by applying
the imaging condition for plane waves, Eq. (1):

1 2 _
M(X,Z)=W .‘. I U(kx,O,w)

. ei{(% sin ¢+ k,)x +[<‘;’—22—k3)*+% cos ¢] z}dwdkx. ©)

The calculation of the depth section M (x, z) using Eq. (6)
is cumbersome because the frequency-wavenumber integral
has to be solved for each depth level z. The total depth
section can be calculated more efficiently by rewriting Eq.
(6) as a Fourier integral, which can be computed very fast
by using the FFT. This is achieved by introducing new
variables 4 and B into (6):



Ao, kx)=% sin ¢ +ky )

2

k3
B(w, kx)=% cos ¢ +(%—k§) . @®)

Equation (6) transforms into the Fourier integral

o0

M(x,2)=g—= [ [ Ulk:(4,B),0,0(4, B)]
_‘a(w, k)

i(Ax + Bz)
3B dAdB, ©)

from which we recognize A and B as new wavenumbers
with respect to x and z. The Jacobian in Eq. (9) is

Ao k) Odw ok, dw Ok,

Solving Egs. (7) and (8) for k, and w, we obtain:
(A%2—B?)sin ¢ +2AB cos ¢

k.(4, B)= 2(A sin ¢+ B cos ¢) "o
v(A%+B?)
(4, B)=2(A sing+Bcos @) W

Calculating the Jacobian from these expressions and insert-
ing into Eq. (9), we have the migrated section

1 » ® .
M(x,2)=7— | | M(4 B)eé**P)d4dB (12)

— o — o0
with the Fourier transform

M(A, B)=U[k,(4, B), 0, w(4, B)]
|v(42 — B?) cos ¢ —2A4B sin ¢
| 2(4'sin ¢ + B cos $)?

Equation (12), together with Eqgs. (13), (10) and (11), is the
final solution which can be used to calculate the migrated
section in one step ‘with the aid of the FFT. Before we
discuss some computational aspects of Egs. (12) and (13),
we will first derive the migration algorithm of single-shot
sections.

I. (13)

Single-shot migration

In the case of single-shot migration, the imaging condition
Eq. (2) has to be applied to Eq. (5). A problem arises from
(2422}

the nonlinear dependence of t,= on x and z. ¢,

has to be approximated by a linear expression, which can
be found by expansion into a Taylor series about (x,, zo)
and neglecting higher-order terms:

(g +zy)? 1
= v(x3+z

1/xo Z
—E('R—OX-FR*OZ)
sin ¢

v

2 [x0(x—Xo)+ 2o (2 —20)]

cos ¢

X

: Xt——z. (14)
Ro=(x}+2z3)* is the distance from the shotpoint at (x

=0, z=0) to the reflection point (x,, z,), and ¢ is the angle

21

between the ray from shotpoint to reflection point and the
z axis. From Eq. (14) we realize that the approximation
of t; does not depend on (x,, z,), but only on the angle
¢. The imaging condition (14) for single-shot migration is
exact for all points on the ray leaving the shotpoint under
the angle ¢, but errors are introduced away from this ray.
Hence, single-shot migration with Eq. (14) can be considered
as directional sounding of the subsurface: reconstruction will
be correct for the direction ¢ and directions close to it,
but deviations will develop for directions significantly differ-
ent from ¢.

The single-shot imaging condition (14) has the same
form as the plane-wave imaging condition Eq. (1). Therefore,
the same program coding as’in the case of plane-wave mi-
gration can be used.

Computational aspects

In this section a few computational aspects of solving Egs.
(12) and (13) will be discussed. Figure 1 shows the transfor-
mation of U(k,, 0, w) from the w—k, domain to the newly
introduced 4—B wavenumber domain. Homogeneous
waves, which we will consider here only, correspond to the
w

shaded triangles shown in the left panel where 5 =k, |.

Elsewhere, U (k,, 0, w) is equal to zero. By transforming the
w—k, domain to the A— B domain, lines of constant fre-
quencies w are imaged on to circles with centres located

() )
at 4 =5 sin¢ and B= - cos ¢. The horizontal and vertical

Nyquist wavenumbers A, and By have to meet the follow-
ing conditions:

T Wy .
= >
Ay=—=2—" (1+sin |g]), (152)
T _ Oy
=2>—
By 122 (1+cos ¢) (15b)

From these expressions follow the sampling intervals of the
migrated section M (x, z):

Ax< vAat 16
*=T4sin (g’ (162)
vAat
<___—
225 oos g (16b)

T
Here the circular Nyquist frequency wy =7 has been used,

where At is the time interval of the reflected wave field.
The sampling intervals in the 4 — B domain are

2n 2n
AA= X AB= 7
where X is the length and Z the depth of the migrated
section. X is usually assumed to be identical with the length
L of the geophone array measuring the reflected wave field
at z=0; this implies that 44=A4k,. For Z, a reasonable
estimate has to be made. A possible choice is Z=vT, where
Tis the duration of the seismograms, representing the re-
flected wave field. The number of grid points in the A—B
domain (and in the x—z domain) is determined by the in-

17)
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Fig. 1. Transformation of the
Fourier-transformed reflected wave
field U(k,, 0, ) from the k,—w

cos
B= ,¢ A
1+sing

domain to the A— B wavenumber
. A domain. M (A4, B) is the Fourier-
N transformed migrated section. Lines
- ‘-co|s¢ of constant frequency are mapped on
~sing

(3]
to circles with centres at A = sin ¢

w
and B=? cos ¢p. Ay is the horizontal

and By is the vertical Nyquist
wavenumber. k. is the original
horizontal Nyquist wavenumber and
wy the temporal Nyquist frequency

U(eroﬁw)
tegers
LA - LB o 18
=T =gy )

With Eqs. (15)(18) the grid on which the Fourier transform
M (A, B) of the migrated section, Eq. (13), has to be calculat-
ed is known. M (4, B) is nonzero only in the shaded area
of the right panel of Fig. 1, and the computation can be
restricted to B=0. Inverse Fourier transformation of
M (A, B) [and also calculation of U(k,, 0, w)] in the exam-
ples of this paper was performed with a FFT program writ-
ten by Terefe (1985).

The computation of M (A4, B) requires interpolation of
U(k,, 0, w), since the points in the k,—« domain, corre-
sponding to the equidistant gridpoints in the A — B domain
according to Eqgs. (10) and (11), will usually not fall on the
gridpoints in which U(k,, 0, w) is known. The two-dimen-
sional sinc interpolation is used:

2

4n
Awdkxé

. (k,ndkx) . (cumAcu)
sin Sin

g[(kx(A’B)’ Oa (J)(A, B)]: le(ndkx,o,mdm)

Ak, Aw
k.—ndk, wo—mAw
T Ak, Aw

(19)

In the examples discussed later, five grid lines, with both
variable m and variable n and closest to the point (k,, w),
are included in the evaluation of Eq. (19).

The quality of the migrated result depends critically on
the sampling intervals 44 and 4B, i.e. on the estimates
of the length and the depth of the migrated section in Eq.
(17). We assume U(k,, 0, w) is sampled sufficiently finely

2n 2n
by Akx:LE and Aw:—f,
enough for points between the grid points. The nonequally
spaced (k,, w) points, which contribute to M (A, B), may

such that Eq. (19) is accurate

M(a,B)

represent a grid which is coarser than the original grid of
U(k,, 0, w), such that essential features in this spectrum may
be lost, and in particular if U(k,, 0, ) is a rapidly oscillating
function. Then it may happen that pronounced spatial alias-
ing is produced in the migrated section M(x, z). In such
cases, 44 and 4B have to be reduced, i.e. X and Z have
to be enlarged by increasing LA and LB in Eq. (18). Com-
mon practice, however, is to reduce Aw and Ak, ie. T
and L will be increased; because of the assumed relations
X=L and Z=vT, the result is the same. Increasing T and
L is equivalent to adding zeros at the end of the seismo-
grams and zero traces at the end of the geophone array
(Stolt, 1978). The disadvantage, however, is that zero traces
unnecessarily have to be Fourier transformed from the x—t
domain to the k,—cw domain, leading to an increase in
computing time which may be substantial. The increase in
computing time can be reduced or even avoided through
multiplication of the spectrum U (k,, 0, w) by the phase-shift
operator @ *kx*) This corresponds to the introduction
of a new origin (x,, fy) in the x—t domain. If this origin
is placed at about the centre of the wave field U(x, 0, 1),
the resulting spectrum U(k,, 0, w) is considerably smoother
than before and thus larger sampling intervals 44 and 4B
can be used. After interpolation, the inverse phase shift is
applied, such that the old origin is valid again. This method
follows a suggestion of Claerbout (1985) and is similar to
the spectral smoothing by the use of reduced travel times
which is familiar from the theory of synthetic seismograms
for layered media.

Applications

Fast plane-wave migration

The plane-wave migration will be tested on the synclinal
model shown in Fig. 2. The model consists of two layers
with different velocities v and densities p, which are sepa-
rated by a curved interface having a maximum dip of 35°.
A seismic line source S; is located at the surface and gener-
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Fig. 2. Synclinal model: v, =1,500 m/s, v,=1,000 m/s, ?:0.5.
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S,...S, denote shotpoints. G,...G, is the geophone spread. The
shotpoint-receiver configuration is shifted across the structure in
the x direction in order to simulate the field survey

distance ~----> x

AT umllﬂllMllllllllllﬂlllmmlm

time (ms)
Fig. 3. Plane-wave response of the synclinical model for a plane
wave propagating vertically (¢=0). The direct plane wave starts
at time t=0. The reflection is visible between 70 ms and 226 ms

ates cylindrical SH waves with a dominant frequency of
50 Hz. The reflection from the syncline is calculated along
the finite geophone array G, ... G, using a finite-difference
technique (Korn and Stockl, 1982). Reflections coming from
the boundaries of the rectangular model are suppressed by
using absorbing boundary conditions (Clayton and Eng-
quist, 1980). In order to simulate the field survey, the single-
shot experiment is repeated for different shots §,...S, at
the surface, shifting the shotpoint-geophone configuration
across the structure. The single-shot sections calculated in
this way represent the data base for the plane-wave sections
which can be synthesized from the single-shot sections by
applying the slant-stack technique. The plane-wave sections
we will show here have already been used as input data
to a finite-difference migration technique (Temme, 1984).
Figure 3 shows the plane-wave response for -a plane
wave propagating vertically (¢ =0). The geophone array ex-
tends from 150 m to 450 m the section contains 150 seismo-
grams. The sampling interval in time is 4t=1.89 ms. For
the frequency-wavenumber migration, 106 zero traces have
been added on the right side. The number of time samples
in each seismogram is LT=128. LA in Eq. (18), i.e. the
number of samples along the horizontal wavenumber axis
A, has been chosen equal to the number of seismograms
LX=256. LB in Eq. (18) has been chosen equal to the
number of time samples LT=128. The depth increment
4z=1.28 m has been used, and the maximum depth Z of
the migrated section is 164 m. The migration result, corre-
sponding to these parameters (Fig. 4), is characterized by
strong aliased events; only the upper part of the syncline
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Fig. 4. Frequency-wavenumber migration of the plane-wave re-
sponse of Fig. 3 without application of the phase-shift operation
prior to interpolation. Strong aliased events are visible because
of too coarse sampling of U(k,, 0, w)

i

Fig. 5. Improved migrated section of the plane-wave response of
Fig. 3, with the phase shift "@"**~0 applied prior to interpola-
tion: to=113 ms, xo=150 m
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to a depth of 50 m is migrated correctly. The reason for
aliasing is too coarse sampling of U(k,, 0, w) in w. The
migrated result can be improved without extra computing
time if, prior to migration, a phase shift e/ k<%0 js applied
to the plane-wave section. We have chosen t, =113 ms and
Xxo=150 m, corresponding to a new origin at the centre
of the record section in Fig. 3 (x, is measured from the
x coordinate of the leftmost seismogram). After migration
the phase shift is removed in order to get the true depth
structure. The result is shown in Fig. 5. The complete syn-
cline is migrated very well; there is good agreement with
the results of the finite-difference migration of Temme (1984,
Fig. 6). Segments of the structure lying horizontally, or hav-
ing small dips, show large amplitudes because the plane
wave is vertically incident.

The next example (Fig. 6) shows the slant-stacked sec-
tion for a plane wave incident under the angle ¢ = —30°.
The plane wave comes in from the right, travels to the left
in the negative x direction, and hits upon the left flank
of the syncline almost normally. The right side of the travel-
time loop, carrying information about the left part of the
syncline, is complete; whereas the left side shows a large
gap. This is a consequence of the finite geophone spread
used in the single-shot experiments. The geophone array
again extends from 150 m to 450 m and the plane-wave
section contains 150 seismograms. The sampling interval
is At=1.89 ms. For migration, again 106 traces have been
added on the right side, so that the total number of seismo-
grams is LX =256. The number of time samples of each
seismogram is LT=256 in this experiment. As in the first
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Fig. 6. Slant-stacked section for a plane wave with propagation
angle ¢ =—30° The plane wave is incident from the right and
starts at t=0 at x=450 m; it travels to the left, in negative x di-
rection. The reflection from the syncline is visible between 60 and
260 ms

depth (m)
Fig. 7. Migration of the slant-stacked section of Fig. 6 without
application of a phase shift. The left-hand part of the structure
is successfully reconstructed. Strong aliased events occur at
depths of 230-280 m

depth (m)

Fig. 8. Improved migrated section of the slant-stacked section of
Fig. 6 with application of a phase shift: t,=132 ms, x,=150m
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Fig. 9. Twenty horizontal reflectors embedded in a medium of
constant velocity and density. For the calculation of SH reflec-
tions and diffractions, a reflection coefficient has been used which
is characterized by a velocity contrast from v, =1,500 m/s to
v, =1,000 m/s and a densny contrast from p,=2g/em?® to
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Fig. 10. Synthetic single-shot seismograms calculated along half
the geophone array of Fig. 9 from x=0 to x=500 m. The posi-
tion of each reflection is marked

plane-wave experiment, LA=LX and LB=LT has been
chosen and 4z=1.44 m has been used.

Figure 7 shows the migrated depth section without ap-
plication of a phase shift. Again, strong aliased events are
present at depths around 230-280 m. Using a phase shift
with to=132 ms and x,=150 m, we obtain the improved
migrated result shown in Fig. 8. As expected, the largest
amplitudes occur in the steep dip range of the syncline,
where the plane wave comes in vertically. Again there is
good agreement with the finite-difference migration results
of Temme (1984, Fig. 7).

Fast single-shot migration

For the single-shot migration, the model shown in Fig. 9
was chosen. The structure consists of 20 horizontal reflector
elements, which are separated from each other by roughly
one wavelength. The shotpoint is located at x=0. The geo-
phone array extends from x= —500 m to x= 4500 m. The
synthetic SH seismograms for this simple reflector model
were calculated with a fast analytical technique (Fertig and
Miiller, 1979) which is comparable to the finite-difference
technique as far as accuracy is concerned. The analytical
formula is based on a generalization of the exact theory
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Fig. 11. 45° finite-difference migration of the single-shot section
of Fig. 10. The true reflector positions are marked by thin lines
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Fig. 12. Fast frequency-wavenumber migration of the single-shot
section of Fig. 10 for the sounding direction ¢=0. The ray angle
¢=10° is shown for orientation. True reflector positions are
marked by thin lines

for diffraction at an opaque half-plane. Interaction of the
reflecting elements with each other cannot be taken into
account with this forward modelling technique. The model
in Fig. 9 was chosen to demonstrate the effects due to the
approximate nature of the imaging condition Eq. (14). As
was shown in the derivation of the theory of single-shot
migration, the migrated result will be correct only along
a specified ray. Here, three rays are investigated. The —33.7°
and the +33.7° rays traverse the structure diagonally. We
expect the diagonal elements to be migrated more or less
correctly. The 0° sounding should give a good image of
the elements below x=0.

Figure 10 shows the synthetic seismograms along half
the geophone array from x=0 to x=500 m. The position
of each reflection is marked along the four hyperbola-like
events. Reflections at large x have small amplitudes due
to cylindrical spreading and the angle-dependent reflection
coefficient. Between the reflections, diffractions from the nu-
merous reflector edges can be seen.

We first show in Fig. 11 the migrated section calculated
with the 45° finite-difference technique. This method allows
the application of the correct single-shot imaging condition
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Fig. 13. Fast frequency-wavenumber migration of the single-shot
section of the model of Fig. 9 for the sounding direction ¢ = + 33.7°.
Ray angles ¢ =33.7° £+ 10° are shown for orientation

Eq. (2); the results serve as a reference for the following
fast frequency-wavenumber migrations. We notice in Fig.
11 the good agreement of the reconstructed elements with
the true positions indicated by thin lines. Reflections from
the upper-right elements propagate with angles of 55°-75°
to the surface. For these angles, the 45° approximation of
the wave equation becomes inaccurate. As a consequence
we see distorted reflectors in the upper-right part of the
reconstruction. Reflectors far from the shotpoint show small
amplitudes due to cylindrical spreading. Additionally, am-
plitude variations can be seen along each element, which
are caused by the angle-dependent reflection coefficient. Be-
tween the reflectors, diffracted energy is focussed to a range
of approximately one wavelength.

Figure 12 shows the frequency-wavenumber migration
for ¢ =0°. A phase shift of t, =300 ms and x,=0 has been
applied. The imaging condition is exact along a ray pointing
vertically downwards at x=0. We expect to migrate reflec-
tion points at (x=0, z) correctly. From Fig. 12 we see that
also segments within an aperture of 0°-10° are also recon-
structed very well. Reflecting elements beyond this range
are mispositioned. They are too deep and are shifted to-
wards smaller x values. Comparison of the reconstructed
elements with the true reflector positions shows that the
error is in the range 0-2 wavelengths.

The same data set was used to reconstruct elements
along the sounding direction ¢=33.7°. Figure 13 shows
that in this experiment elements lining up diagonally can
be reconstructed very well. Additionally, the ray angles
¢=33.7°+10° are marked for orientation. Reflectors out-
side this range, again, are mispositioned and show incom-
pletely focussed diffractions.

The entire migrated section, now for the sounding direc-
tion ¢ = —33.7°, is shown in Fig. 14. The array of this exam-
ple extends from x=—500m to x=+500m. Along the
sounding ray the elements are reconstructed very well. We
realize for positive x values, however, that the error in-
creases. This is due to the slowness of the exact imaging
hyperbola, Eq. (2), changing sign beyond x=0; whereas for
the linear approximation, Eq. (14), the slowness remains
constant over x.
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Fig. 14. Fast frequency-wavenumber migration of the entire single-
shot section of the model of Fig. 9 for the sounding direction ¢p= —
33.7°

The fast frequency-wavenumber technique needed a
computing time for the section in Fig. 12 or 13, which was
only 5% of the computing time of the finite-difference tech-
nique. Most of the CPU time was used to perform the two-
dimensional FFT.

Discussion

Migration of plane-wave and single-shot sections can be
performed very fast in the frequency-wavenumber domain.
The steps included in this technique, outlined above in de-
tail, are the following. First, the wave field which has been
recorded at the earth’s surface has to be transformed from
the t—x domain to the w—k, domain by using a two-
dimensional FFT. In a second step, the spectrum U (k,, 0, w)
has to be mapped onto a new grid in the A — B wavenumber
domain. This is done by prescribing equidistant wave-
numbers A, B within the shaded area of Fig. 1 (right panel)
and solving Egs. (10) and (11) for k, and w. Usually £k,
and w do not fall on gridpoints in the w—k, domain, and
U[k,(4, B), 0, w(A, B)] has to be interpolated. The exam-
ples shown in this paper have been calculated with a two-
dimensional sinc interpolation of order 5, Eq. (19), which
is sufficiently good. Tests with linear interpolation were not
successful ; this simpler interpolation generates background
noise all over the migrated section. More critical than the
interpolation is the choice of the sampling intervals 44 and
AB in Eq. (17). As Figs. 4 and 7 show, large 44 and 4B
result in strong ghost events in the migrated section. The
sampling intervals Ak and Aw are sufficient for representa-
tion of the spectrum U (k,, 0, @), but the sampling intervals
resulting from Egs. (10) and (11) may be too large, such
that details of the spectrum may be lost in the 4 — B domain.
In such cases, a remedy is the phase-shift operation
'@t tk=Xo) prior to interpolation which smoothes the spec-
trum. The point (x=x,, t =t,) is chosen at about the centre
of the record section representing the reflected wave field
U(x, 0, t). After interpolation, the phase shift is removed
through multiplication by e~ “®@%°**=%) and the spectrum
M (A, B) of the migrated section M(x, z) follows from Eq.
(13). The final step is an inverse two-dimensional FFT.

Plane-wave migration can be performed exactly with the
imaging condition Eq. (1). Plane-wave sections for different
angles of incidence, which can be synthesized from single-
shot sections by slant stacking, can be used for the recon-
struction of selected segments of the structure. An advan-
tage of data stacking which forms part of the plane-wave
migration procedure is noise reduction. A disadvantage is
that a complete plane-wave response is only obtained if the
single shots used have a sufficient spread length. Current
recording techniques appear to allow the synthesis only for
propagation directions close to vertical.

The reconstruction of the subsurface structure from sin-
gle-shot sections can be performed with the algorithm that
has been developed for plane-wave migration. However, a
linear approximation of the exact imaging condition by Eq.
(14) has to be used. As a consequence, the migrated result
is only correct along a ray with direction ¢ with respect
to the vertical axis. In Figs. 12-14 reconstruction is success-
ful within an aperture of + 10° around this sounding direc-
tion; this aperture is frequency dependent and decreases
with increasing frequency. As in plane-wave migration, sin-
gle-shot sections can be used to reconstruct selected seg-
ments of the structure. No stacking is involved in single-shot
migration, and the danger that noise is migrated is larger
than in plane-wave migration. However, it is conceivable
that stacking the migration results of closely neighboured
shots, all being obtained for the same sounding direction,
will produce noise reduction.

Conclusions

In this paper a fast frequency-wavenumber method for mi-
gration of single-shot and plane-wave sections was derived.
It has been demonstrated that plane-wave migration can
be performed exactly in constant-velocity media. The recon-
struction of reflecting elements from single-shot sections can
be done exactly only along preselected sounding directions.
The direction selective features of plane-wave and single-
shot migration can be used to reconstruct selected segments
of the subsurface structure which are of special interest.
It is conceivable that migrated single-shot sections, corre-
sponding to several neighbouring sounding directions, can
be combined into one section with extended validity.

As a technical result, it has been demonstrated that a
two-dimensional phase shift in the frequency-wavenumber
domain prior to migration can improve the migrated result
without extra computing costs. The phase-shift operation
is useful since it reduces zero padding of the reflected wave
field and makes the proposed migration method even more
economic.

The migration technique developed here is a straightfor-
ward extension of Stolt’s (1978) technique for CMP or zero-
offset wave fields. Stolt’s method is frequently used in indus-
trial practice, in spite of the limitations due to the constant-
velocity assumption. We suggest that, in a similar way, the
potential of fast plane-wave and, in particular, single-shot
migration in the frequency-wavenumber domain be investi-
gated with the abundant data volumes of the prospecting
industry.

Since this paper has been completed, we have been able
to generalize the fast frequency-wavenumber migration
method for the case of depth-dependent velocity (Miiller
and Temme, in preparation). The focussing properties that
were found here for single-shot migration then become more



pronounced: a migrated CMP or plane-wave section is cor-
rect only along a preselected horizontal line (and close to
it), and a migrated single-shot section only at a preselected
point (and close to it). The algorithm is basically the same
as that used in this paper.
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