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Abstract. The first-order perturbation theory applied to the
eigenvectors and eigenvalues of the recovered seismic mo-
ment tensor give rise to a more accurate determination of
the whole scalar seismic moment and allows a quantifica-
tion of a possible superposition of distinct focal mecha-
nisms, such as the double couple and the compensated lin-
ear vector dipole. On the other hand, the elements of the
seismic moment tensor recovered from spectral amplitudes
of shallow earthquakes will be obtained with important un-
certainties, especially the My, and My, elements, when the
starting models of inversion are close to pure normal, re-
verse or strike-slip faults. By using properties associated
with the Lanczos matrix decomposition of the system of
equations that defines the linearized inversion, a solution
is given to the uncertainties of the seismic moment tensor
elements. In such a way, a set of focal mechanisms, all fitting
the experimental data, are generated and discussed in terms
of other geophysical evidence. The applicability of the per-
turbation theory is tested by means of numerical simulation
and applied to two earthquakes. For each earthquake, a
set of models fitting the data has been generated. The verti-
cal component of the Rayleigh wave spectral amplitudes,
with periods ranging from 30 to 90 s, has been used.

Key words: Seismic moment tensor — Perturbation theory
— Focal mechanism — Focal depth

Introduction

Following the pioneering work of Gilbert (1970), it is nowa-
days usual to retrieve the elements of the seismic moment
tensor from seismic records. If spectral amplitudes and
phases are available, the inversion process is linear and does
not present special problems (Patton and Aki, 1979). How-
ever, except for a few well-studied regions of the Earth,
phases can not be used because phase velocities must be
known with an accuracy better than 0.5%, and the inversion
has to be carried out with the amplitudes only. Mendiguren
(1977) showed that using spectral amplitudes only, the in-
version, which is no longer linear, is not unique. Moreover,
the lack of uniqueness may be increased due to ill-condi-
tioned systems (that appear when the initial trial solution
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is close to a reverse, normal or pure strike-slip fault) as
well as errors in data (due to ambient noise, focusing, etc.)
which may generate unrealistic spurious mechanisms.

In the present paper we study the problem of recovering
the elements of the seismic moment tensor using only the
amplitudes of the Rayleigh waves, vertical component, with-
in a period range of 30-90 s. Periods shorter than 30 s have
been avoided because of the difficulty of correction by atten-
uation as well as to avoid possible influences of directivity
function (Correig and Mitchell, 1980), focusing and multi-
pathing. Concretely, two problems are discussed: a quantifi-
cation of the uncertainties of the seismic moment tensor
and the influence of the lack of uniqueness on the focal
mechanism obtained.

The uncertainties are quantified by applying first-order
perturbation theory to the eigenvalues and eigenvectors of
the seismic moment tensor. In order to carry out the process
of inversion, the initial model is obtained by assuming a
shear focal mechanism as deduced from the usual study
of P-wave first motions. A first evaluation of the scalar
seismic moment is made by dividing, at large periods, the
recorded spectral amplitudes by the spectral amplitudes
generated theoretically from the focal mechanism previously
obtained with a unit scalar seismic moment.

We have found that perturbation theory is a useful in-
strument in recovering a correct scalar seismic moment.
In addition, the existence of spurious focal mechanisms
other than the double couple is also discussed through the
study of the perturbed scalar seismic moment. The uncer-
tainties associated with the focal mechanism are obtained
from the perturbed eigenvectors and eigenvalues of the seis-
mic moment tensor. The knowledge of the uncertainties of
the focal mechanism is very important, for instance, when
dealing with the orientation of the regional stress tensor
(Angelier et al., 1982; Gephart and Forsyth, 1984). We show
also that, in the case of moderate ambient noise, the correct
focal depth corresponds to the depth for which the perturba-
tion on the scalar seismic moment is a minimum.

The uniqueness is another parameter which we attempt
to quantify. As a consequence of the lack of uniqueness,
a badly constrained focal mechanism can be obtained. Us-
ing the properties of the matrix Lanczos decomposition ap-
plied to eigenvectors close to zero, a set of focal mechanisms
that fit the observed data is analytically obtained as a func-
tion of the inversion residuals. This newly generated dataset
is called “compatible models”.
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Perturbation theory

Following Knopoff and Randall (1970) we assume that the
eigenvalues of the seismic moment tensor, obtained from
an inversion process, can be interpreted as the superposition
of a double couple (DC) and a compensated lincar vector
dipole (CLVD) in the following way:

B, 0 0 10 0
0 B, O|=Me(—-27){0 -1 0]+
0 0 B, 0 0 0
1 0 o
My2f10 -} 0 (1)
0 0 -}

where f3; are the eigenvalues of the retrieved seismic moment
tensor, M, the (scalar) seismic moment, My(1 —2f) gives
the amount of seismic moment due to a DC mechanism
[with eigenvalues (1, —1, 0)] and M,2f gives the amount
of seismic moment due to a CLVD mechanism [with eigen-
values (1, 3, —3)]. f is a parameter defined as (Dziewonski
and Woodhouse, 1983):

f=|53/ﬁ1| (2)

with values ranging from 0 (pure DC) to { (pure CLVD).
We apply first-order perturbation theory (Mathews and
Walker, 1964) to eigenvectors and eigenvalues of the seismic
moment tensor, in order to study the uncertainty associated
with each mechanism. The method used to obtain the per-
turbed eigenvectors and eigenvalues is given in Appendix 1.
The uncertainty in the mechanism is obtained as follows:
i) Let V/ be the perturbed eigenvectors; following Men-
diguren (1977) and Honda (1962), the perturbed principal
axes of tension T’ and pressure P’ are given by:
T'=+V] P=41V;. A3)
ii) Equations (1) and (2) define the perturbed (scalar)
seismic moments as:

o=h1 pc=P1+2B3  Mervo=—283. 4)

Comparing the retrieved seismic moment with the comput-
ed perturbations, we can impose a criterion to decide which
focal mechanism is representative and which is due to con-
taminating noise: the focal mechanism will be representative
of a real physical process if the ratio M'/M is close to 1,
where M is a (scalar) seismic moment (M, Mpc or M¢pyp)
and M’ is its perturbed value. The term “close to 17 will
be quantified in the numerical simulations and applications.

iii ) Following Strelitz (1980), it is also possible to com-
pute the angle between the eigenvector V; and the perturbed
eigenvector V; as:

C;j=cos(V;- V). &)

This angle C;; represents the confidence ellipse of pressure,
tension and null vector axis, projected on the focal sphere.

Generation of compatible models of mechanisms
Let

SD=AJdP+e 6)

be the system of equations from which we have computed
the elements of the seismic moment tensor, where A is the
matrix of partial derivatives of the spectral amplitudes with
respect to the parameters of inversion (defined in Appen-
dix 2) 4D the difference vector between observations and
predictions from an initial model Ry, J P is the correction
to By and ¢ is the error vector associated with the observa-
tions. A solution of system (6), due to the existence of ¢,
will be one that minimizes:

E=||D—-AP| )

where D are the observed spectral amplitudes and E the
Euclidian norm of residuals of inversion. P’ is the solution
that minimizes Eq. (7).

The solution P’ which minimizes Eq. (7) is not unique,
because by solving Eq. (6) according to the decomposition
of Lanczos (1961) of A4 in eigenvalues y; and eigenvectors
(U;, V), another possible solution is:

P*=P' +P (8)
where:
P=Y o4 U 9

is a linear combination of the eigenvectors U, of A, associat-
ed with eigenvalues close to zero. Note that the complete
set of eigenvectors U, generates the parameter space. Taking
this into account, our problem may now be formulated in
a different way: finding a set of solutions P which satisfy:

lAP'—AP*||=Q (10)

where Q is a value to be determined as a function of the
Euclidian norm E. Expression (10) can be interpreted in
the following way: because the eigenvectors Uj are associat-
ed with eigenvalues close to zero, the set of models P that
satisfy (10) will predict the observed amplitudes D with the
same accuracy as model P’, solution of Eq. (7). This assess-
ment is a consequence of the existence of the term ¢ in
Eq. (6) and the residuals of the inversion.

To obtain maximized values of P*, the coefficients «;
of Eq. (9) have to be computed. Using (8) and (9), expression
(10) can be rewritten as:

Z(#i ai)2§Q~ (11)

From a geometrical point of view, expression (11) represents
a hyperellipsoid with semiaxes y; Q*. The computation of
the coefficients which maximize P is equivalent to searching
the tangency point between the hyperellipsoid (11) and the
hyperplane (9). Application of this concept gives rise to the
expression:

Q%
(@)max = £ T (VeE )t (12)
it |

where n is the number of parameters and (a;) .. is the coeffi-
cient that, substituted in (9), maximizes the component k
of vector P that satisfies (10), and V}, the component k
of the eigenvector V;. For a discussion on the parameter
Q see the applications given below and a recent paper of



Table 1. Numerical simulation. Case S is an example of noise-free
signal. Cases S1, S2 and S3 are signals contaminated with back-
ground noise. S4 is an example of signal contaminated by multipli-
cative noise. Mpo/M, gives the ratio of shear focal mechanism
with respect to the whole focal mechanism. The percentage of per-
turbation in My, Mpe and My, is given by %M, %M and
% M ¢Lvp, respectively. The scalar seismic moment tensor is given
in units of 1.0 E+ 16 Nm. Focal depth is given in kilometers. The
signal-to-noise ratio is also given

Focal M, My
depth

MCLVD Ml)(‘/MO%MO %Ml)(‘ %MCLVD

Case S

7.5 954 478 476 050 88 398 23.0
10.5 1320 578 742 044 128  69.2 18.9
13.5 100.0  99.8 02 099 0.5 0.9 94.5
16.5 1240 1030 21.0 0.83 8.2 4.5 26.6

Case S1

7.5 957 482 475 050 9.0 394 230
105 1327 578 749 044 122 515 18.2
135 101.0 994 1.6 099 0.9 1.7 87.5
165 2130 108.0 1050 0.51 17.3 340 228

Case S2

1.5 963 491 479 051 9.6 41.1 250
10.5 1342 580 762 043 1.5 50.0 18.4
13.5 1027  98.0 47 095 30 5.5 95.0
16.5 2160 1090 107.0 0.50 168 559 220

Case S3

7.5 1000 542 458 0.54 71 340 223
105 1430 60.6 824 043 78 441 16.3
13.5 1640 348 1292 0.21 146 703 14.0
165 2320 1130 119.0 048 141 574 27.3

Case S4

1.5 960 482 472 0.50 11.8 373 33.8
105 1320 610 71.0 046 17.5 653 22.5
13.5 1040 501 539 048 587 723 254
16.5 2130 1050 108.0 0.49 554 693 25.2

Signal/noise  ratio

Period 60 s 50s 40 s 35s 30s 25s
Case S1 10 20 25 50 75 75
Case S2 2 4 5 10 25 25
Case S3 1 1 1 2 5 5

Pous et al. (1985). It is important to point out that, from
Eq. (9), we will obtain as many maximized solutions P as
parameters that define the model, five in our case. More-
over, in the computation of P, Eq. (12) gives stronger weight
to the smaller eigenvalues; for this reason the addition that
appears in (9) can be extended to the total number of param-
eters.

Numerical simulation

In order to study the uncertainty in the My, Mpc, Mcivp
scalar seismic moments, and focal depth determination due
to ambient noise, some numerical simulations have been
carried out. Synthetic spectral seismograms, with periods
ranging from 25 to 60 s, have been generated (case S) for
a pure double couple shear fault, located at a depth of
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Fig. 1. Synthetic spectral amplitudes of the vertical component
reduced to the seismic source for an arbitrary azimuth. Case S
corresponds to signal without noise. Case S1 corresponds to signal
contaminated with the first level of noise in Table 1. Case S3 corre-
sponds to signal contaminated with the third level of noise in Ta-
ble 1. Dashed lines (cases S4) correspond to maximum variations
in the spectral amplitude when multiplicative noise is present

13.5 km with the following parameters: dip =45°, slip=45°,
strike = 80° (clockwise from north) and a scalar seismic mo-
ment of 1.0 E+ 18 Nm. As a propagating medium, we use
the model of Dziewonski and Anderson (1981). The ambient
noise of the seismograms pretend to be randomly distrib-
uted values ranging from —1 to +1, added to the real
and to the imaginary parts of the spectra and multiplied
by three increasing levels of signal-to-noise ratio. These lev-
els of signal-to-noise ratio are similar to those used in Pat-
ton and Aki (1979), which were obtained by studying the
spectral components of several sets of background noise
recorded at WWSSN stations. Corresponding results have
been named cases S1, S2 and S3. The signal-to-noise ratios
for periods within 25-60 s are given in Table 1. Besides this,
possible existing lateral inhomogeneities have been simulat-
ed by random multiplications or divisions of the spectral
amplitudes by a factor of 0.7; (case S4). The focusing and
multipathing effects can be generated by random multiplica-
tions or divisions of spectral amplitudes by a factor depen-
dent on frequency for periods lower than 30 s. This possibili-
ty will not be taken into consideration because the process
of inversion has been applied to periods greater than 30 s.
In doing so, we have avoided the influence of multipathing
focusing, attenuation and finite extension of the seismic
source. As a counterweight to this situation, there will exist
some loss of resolution in the focal depth determination,
especially when there is very important seismic noise. In
Fig. 1, logarithms of some spectral amplitudes in dyne cm
reduced to the source with an arbitrary azimuth are shown,
corresponding to cases S1, S3 and S4.
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The process of retrieving focal mechanisms for a noise-
free spectrum (case S) and contaminated spectra (cases S1,
S2, S3 and S4) was carried out in a previous work (Lana
and Correig, 1985), minimizing the residual of the inversion
and the standard deviation of the first parameter of inver-
sion (defined in Appendix 2). For cases S, S1 and S2 the
correct focal depth of 13.5 km was obtained, whereas the
retrieved focal depth for cases S3 and S4, obtained from
the minimum standard deviation of E, was 7.5 km.

In the present study the numerical simulation has been
carried out by applying only the perturbation theory. The
algorithm of mechanism generation in perturbation theory
will be applied, later on, to two real events. The inversion
process is repeated for several depths and perturbation
theory is applied to each one. In Table 1 the retrieved seis-
mic moments (M,, Mpc and M¢,yp) are summarized, as
well as the percentage of perturbation for every seismic mo-
ment (YoMy, % Mpc, YoM yp) and the ratio Mpc/M, for
the five cases S to S4. It is stated for cases S, S1 and S2
that not only the residuals and standard deviations are min-
imal, but the ratio Mpc/M, is a maximum for this focal
depth, the percentage associated with perturbation of M,
and Mpc is a minimum and the component M, vp of the
mechanism makes no sense because the associated perturba-
tion is too large. For cases S3 and S4, the ratio Mpc/M,
is a maximum for a focal depth of 7.5 km and the perturba-
tion percentage of M, and Mp¢ are minimum. We can con-
clude that for a poor signal-to-noise ratio, such as in
case S3, and for relatively high multiplicative noise, case
S4, the scalar seismic moment M, is retrieved with enough
accuracy and a spurious focal depth, with an error of ap-
proximately 6 km, is recovered. We also obtain the CLVD
component of the focal mechanism with moderate uncer-
tainties. In short, in cases S3 and S4 there are some uncer-
tainties concerning the correct focal depths and focal mech-
anism components, but the whole scalar seismic moment
M,, which gives information about the strength of the seis-
mic event, is well recovered.

Applications

Perturbation theory and the computation of compatible
mechanisms has been applied to two earthquakes: event
January 1, 1965 (MED) and event November 18, 1970
(PAC). Focal mechanisms for both earthquakes were pre-
viously studied by Lana and Correig (1985) by means of
the retrieval of the elements of the seismic moment tensor.
Table 2a shows information obtained from NEIS agency;
azimuthal distribution and epicentral distances of the
WWSSN stations used. Due to the moderate magnitude
of both earthquakes, the seismic signal is poorly recorded
at some WWSSN stations and the azimuthal distribution
is not entirely fulfilled. Figure 2 shows several vertical-com-
ponent seismograms for event PAC. Table 2b shows the
focal parameters, elements of the seismic moment tensor,
focal mechanism and focal depth for both earthquakes as
reported by Lana and Correig (1985).

In the study of residuals, focal depth showed some un-
certainty which could be resolved for event MED by search-
ing for a minimum of the standard deviations of parameter
P, associated with the real part of the spectra. The study
of the P, standard deviations for several depths is entirely
coherent because P, is the only parameter depending expli-
citly on the focal depth according to the functions G, and

Table 2a. Information available from NEIS agency (approximate
focal depth, location, origin time and magnitude) WWSSN stations,
epicentral distances in km, and azimuth clockwise from north

Event: MED PAC
(35.7°N, 4.4°E) (28.7°S, 112.7°W)
Date: January 1, 1965 November 18, 1970
Focal depth: 10 km S5km
Magnitude: 5.2 (mb) 5.6 (mb)
WWSSN Epicentral azimuth
stations distance
Event MED
PTO 1,284.3 301.9
AKU 3,560.6 343.0
COP 2,305.2 129
ESK 2,257.8 3474
KEV 4,033.9 13.1
STU 1,506.9 139
TOL 876.5 304.5
VAL 2,146.7 331.7
AQU 1,073.6 43.8
ATH 1,738.4 75.9
PDA 2,476.1 285.6
Event PAC
BKS 7,430.6 352.1
LON 8,400.1 353.5
QUI 3,983.3 69.9
NNA 4,148.5 71.0
TUC 6,742.0 1.8
COR 8,180.5 352.1
LPS 5,384.4 31.2
ARE 44214 81.2
PEL 4,018.7 107.8
LEM 14,176.8 234.1
MAT 13,451.3 2974

Table 2b. Elements of the seismic moment tensor, focal depth, dip,
slip, strike and scalar seismic moment (M) for the double couple
focal mechanism (Lana and Correig, 1985)

Event PAC

Myx=—086 E+18 My,=021E+18 My,=—010E+14
Myy= 110E+18 M,;,=0.10E+14 M,,=—024E+18
Dip = 90° Slip =0° Strike=N 51° E

Mpc=0.65 E+ 18 Nm Depth: 0-30 km

Event MED

Myx=—038 E+18 My, =013E+18
My,y= 095E+17 M,,=051E+18
Dip =48.9° Slip =70.1°
Mpe=0.54 E+ 18 Nm

My,=—0.11E+17
M,,= 029E+18
Strike=N 29° E
Depth: 10.5 km

G,. However, an uncertainty in the focal depth was ob-
tained (Lana and Correig, 1985) for event PAC, studying
the residuals and the standard deviation of parameter P,.
This situation could be associated with the ill-conditioned
system result of an initial model for event PAC close to
a pure strike-slip fault. The poor dependence on the focal
depth of the standard deviation of P, remains unexplained
because a better resolution of the focal depth is expected
by studying the parameters associated with the real part
of the spectral amplitudes.
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Fig. 2. Long-period vertical-component records of event PAC at
WWSSN stations LON, TUC, QUI, ARE

In Table 3 there is a summary of results obtained from
perturbation theory; a focal depth of 10.5 km for event
MED is confirmed. For event PAC, the uncertainty is less
than in the previous results, and we conclude a focal depth
of 4.5 km. Although the percentage of shear mechanism for
event PAC is practically the same for a focal depth of 4.5 km
as for 7.5 km, the perturbation in the Mp¢ seismic moment
is smaller at a focal depth of 4.5 km. The focal depth ob-
tained for the two events ware very similar to those reported
by NEIS agency. It is important to note that in both events
the possible CLVD mechanism for the assumed focal depth
is obtained with a very large perturbation in their seismic
moment; for this reason we conclude that it is not represen-
tative of the physical process at the seismic source.

Angles C;; formed by perturbed and unperturbed eigen-
vectors of the mechanism are listed in Table 4 for both
events. It can be seen that the uncertainty in the orientation
of the null, compressional and tensional axes ranges be-
tween 0° and 5°. We can conclude that the uncertainty in
the orientation of the principal axes is small and, conse-
quently, the strike, dip and slip of the DC mechanisms will
be accurately obtained.

The algorithm of generation of compatible models has
been applied to events MED and PAC when the elements
of the seismic moment tensor, the scalar seismic moment
and the focal depth have been well delimited. The criterion
we have considered, for deciding whether a model is com-
patible with that obtained by generalized inversion or not,
imposes that the square error between the amplitudes used
in the inversion and those given by compatible models gen-
erated by Eq. (11) should be, in the worst case, as large

17

Table 3. Results obtained by applying perturbation theory.
Mpc/M, gives the ratio of shear mechanism with respect to the
whole mechanism. The percentage of perturbation in the scalar
seismic moments is given by %M,, %Mpc and %M vp. The
scalar seismic moment is given in units of 1.0 E+ 16 Nm. The focal
depth is given in kilometers

Focal M, %Mo Mpc %Mpc Mcrvp Y% Mcrvp Mpce/Mo
depth
Event PAC

4.5 1.12 82 065 59 047 201 0.58
1.5 123 122 0.67 83 056 232 0.54
10.5 .35 153 070 135 0.65 284 0.52
13.5 149 272 072 184 077 323 0.48
16.5 164 325 081 226 083 379 0.49
19.5 1.85 351 084 280 101 421 0.45

Event MED

7.5 034 265 0.08 38 026 385 0.23
10.5 062 101 054 170 008 723 0.88
13.5 042 133 019 221 023 448 0.46
16.5 047 460 031 255 0.16 46.6 0.66
19.5 041 534 035 302 006 853 0.85

Table 4. Angles between perturbed and unperturbed principal axes
of the two earthquakes. In the absence of perturbation, the angles
will be equal to 90°. C;; is the angle between the unperturbed
vector i and the perturbed vector j, with i different to j

Event PAC Event MED
C,, 89.95° 95.17°
C,, 90.50° 90.18°
Cis 89.96° 85.03°
Csy, 89.95° 93.97°
C,s 89.32° 88.92°
Ci, 89.95° 88.40°

as the residual E of the inversion. The first approximate
value of Q may be assumed to be the residual E of the
inversion. We will have to reduce the assumed value of
Q until the condition of linearity, implicit in the derivation
of (11), is satisfied, because our system is not linear, although
it has been linearized in (6).

Since P is obtained as a linear combination of eigenvec-
tors associated with very small eigenvalues of the Lanczos
(1961) decomposition, it is reasonable to expect important
deviations in models generated from event PAC for which
two eigenvalues close to zero have been obtained in all
steps of the inversion process. For event MED none of
the obtained eigenvectors is too small, so the obtained com-
patible models will not really differ from that obtained by
inversion.

A similar situation to that obtained for event PAC has
been reported by Kanamori and Given (1981) in an inver-
sion study of the real and imaginary parts of the spectra
corresponding to very superficial earthquakes. To avoid an
ill-conditioned system, those authors impose the condition
that parameters P, and P (see Appendix 2) are zero. Once
the inversion is performed, they try to determine the values
of parameters P, and P; from geological or geophysical in-
formation. From the point of view of the present study,
we solve this problem by first generating the maximized
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Table 5. Increments of P parameters (see Appendix 2) that maximize the five compatible models for events PAC and MED

Components 1) ) (3) 4) (5)

Event PAC

Model 1 0.160 E+08 —0942 E+09 —0.123 E+09 —0393E+12 —0.685E+18
Model 2 —0.101 E+08 0.149 E+10 —0.154 E4+09 —0.729 E+ 12 0.631 E+18
Model 3 —0.246 E+ 07 —0.287 E4+09 0.799 E+09 —0.142E+12 0.130 E+16
Model 4 —0.907 E+04 —0.157 E4+09 —0.164 E+06 0.693 E+15 —0.124 E+15
Model 5 —0.139 E+08 0.119 E+09 0.132 E+07 —0.109 E+12 0.787 E+18
Event MED

Model 1 0418 E+14 0.192 E+16 0.659 E+15 0.300 E+15 —0414 E+15
Model 2 0.224 E+ 14 0.357 E+ 16 0419 E+15 0997 E+14 —0.346 E+ 15
Model 3 0.133 E+ 14 0.720 E+15 0.206 E+15 —0.669 E+15 0.185E+16
Model 4 0352 E+13 0998 E+15 —0387E+15 0.357 E+16 —0.1499 E+ 16
Model 5 —0.294 E+13 —0.210 E+15 0.649 E+15 —0.904 E+15 0.589 E+16
Table 6. Shear focal mechanism and whole scalar seismic moment Conclusions

for the five maximized compatible models obtained for event PAC.
Models 1, 2 and 5 correspond to a normal fault. Models 3 and
4 correspond to a pure strike-slip fault. Strike is given clockwise
from north

My(Nm) Mp(Nm) Dip Slip Strike
Event PAC
Model 1 1.31 E+18 094 E+18 64.9° —21.6° 56.1°
Model 2 126 E+18 098 E+18 65.9° —21.9° 57.8°
Model 3 1.12E+18 0.65 E+18 89.9° 0.0° 51.0°
Model4 1.12E+18 0.64 E+18 89.9° 0.0° 514°
Model 5 1.40E+18 0.85E+18 63.4° —222°  56.8°

models compatible with observations and, in a second step,
we select the model that fits other geophysical and geologi-
cal data best. Note that there is no need to make parameters
P, and Ps zero, although in the case of an ill-conditioned
system no variation of those parameters are allowed.

In Table 5 there is a list of the five series of increments
in P that generate the maximized compatible models for
both events. We can clearly see that only for event PAC
are compatible models, well differentiated from that of in-
version, obtained; especially for parameters P, and P, the
values of which zero at the initial model Fy. Table 6 shows
the maximized generated compatible models for event PAC.
We can clearly see that two solutions are possible. Models 3
and 4 represent a strike-slip fault, whereas models 1, 2 and
5 represent a normal fault. On the other hand, the strike
angle is practically the same for all the models. The strike-
slip solution agrees with that obtained by Forsyth (1972),
who locates this event on a transform fault. If this is the
case, the strike-slip solution is the correct one. However,
the percentage of DC mechanism with respect to total mech-
anism is higher for the normal fault solution. Because there
is no evidence of a CLVD mechanism, the normal fault
solution could be favoured.

The maximized compatible models for event MED are
not included in Table 6 because the increments of P in Ta-
ble 5 are very small with respect to the parameters P ob-
tained in the inversion. Consequently, the compatible strike,
dip, slip and seismic moments are very close to those shown
in Table 2a.

Perturbation theory has been applied to the retrieval of
the scalar seismic moment of earthquakes. Through numeri-
cal examples and applications to two previously studied
earthquakes, perturbation theory appears to be a powerful
method in improving the scalar seismic moment M, and
in discussing the physical meaning of focal mechanisms dif-
ferent to the DC model. The focal depth determination is
also improved in some cases. When different kinds of noise
contaminate the seismic signals, the applicability of the per-
turbation theory to the recovery of very exact focal depths
is restricted.

The generation of compatible models is especially useful
in solutions where the lack of resolution affects some inver-
sion parameters. These solutions will appear when the initial
models are close to pure normal, reverse and strike-slip
faults, generating ill-conditioned systems. By applying this
algorithm of generation, we are able to obtain a large set
of models. These models fit the observations as well as mod-
els obtained by inversion, although they represent different
focal solutions. Once this large set of possible models has
been obtained, it is straightforward to incorporate data
from other sources to delimit realistic seismic source models.

Appendix 1

Let M be the seismic moment tensor obtained by inversion of
spectral amplitudes of Rayleigh waves, and let 6 M be the tensor
whose elements are a function of the standard deviations o(M;))
associated with each element M;;.

Let us define the perturbed seismic moment as:

M=M+6M (13)
where
5Mij=U(Mij)gij (14)

and g;; is a gaussian variable with zero mean and unit standard
deviation.

Following Mathews and Walker (1964), the perturbed eigen-
values f; and eigenvectors V/, assuming that the eigenvalues are
not degenerated, are given by:

Vi=Vi+Y ai; Vs 15)
k



Bi=F;+V;5M Y, 10
where:
a;j=Vi oM V/(B.—B)), Jj*k 7

and V; and B; are the unperturbed eigenvectors and eigenvalues,
respectively.

From a statistical point of view, we are interested in computing
the expected value of ||| that can be expressed as:

E(lagiD={ X Vis Vi Vi; Von EQG M, SM)/(Bi—B)*}° (18)

s,.t,l,m

where V;; means the component j of vector V,. 6 M,, 6 M, may
be interpreted as a fourth-order tensor which, if st=Im, give us
the covariance of M,,, and, if st & Im, give us the correlation between
M,,, and M,,.

Assuming that the correlation between M,,, and M, is small,
implying that E(6 M,,, d M) are close to zero, we get:

E(”akj”):{Z(Vtk Vrj(SMll)z/(ﬂk—Bj)z}% (19)

and the expected value of the perturbed eigenvalue is given by:

EB)=B;+{X(V; V;; 6 M,)*}*. (20

Similarly, the expected value of the perturbed eigenvector can be
expressed as:

EWV)=Vi+) ViE(lal), k=*j. 1)
k

Appendix 2

Let

U =M, (W) Gnp.s(W) (22)

be the spectral displacement field, expressed as a product of the
seismic moment tensor by the derivative of the Green’s function
of the medium with respect to spatial coordinates (Aki and Ri-
chards, 1980).

Following Mendiguren and Aki (1978), if we develop Eq. (22)
with as many equations as different azimuths for which we have
observations, we can resolve the following five parameters:

A=M.x+M,,)G,+M,. G,

B=M,—-M,,

B=M,, (23)
B=M,,

B=M,,

where G, and G, are functions that depend of the medium struc-
ture, stress and displacement functions and focal depth (Takeuchi
and Saito, 1972).

The covariance matrix of the parameters of inversion is:

Cov(P)=A" ' (4~ YT (24)

where 47! is the generalized inverse of matrix 4 of Eq. (6) (Lanczos,
1961) and ¢ is the covariance matrix of associated errors of Eq.
(6). From Eq. (23) it can be seen that only the covariances of M,
M,, and M, can be computed. The following process can be de-
vised to compute the remaining terms. By imposing that the trace
of the tensor be zero, and using the definitions of P, and P, [Eq.
(23)], the following system can be written down:
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P G, G, G M,
Bl=(-1 1 o]+[M, |+e (25)
0 11 1 M

zz

where ¢ are the uncertainties associated with P, and P,. By writing
the covariance matrix of ¢ as:

Ciy Ci2 O
Cov(e)=(C,, C,, O (26)
0 0 0

where C;; is the covariance matrix of P, and P, and using (24),
one gets the following expression for the covariance of M., M,
M,,:

Cov(M,M_ )=(C,;—2C,, G+C,, GG
Cov(M,,,M,)=(C,;+2C,,G+C,,G) G

Cov(M,,,M,,)=4C,, G’
(27

Cov(M,,M,)=Cov(M,,, M, )=(Ci;—C;, G}) G’

yy?
Cov(M,,, M, )=Cov(M,,M,)=(—2C,;+2C,, G}) G

Cov(M,,, M,,)=Cov(M,,,M,)=(—2C,,—2C,, G} G’

yy?

where G=(G,—G,) and G'=G?/4.
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