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In memoriam

Herbert Lennartz (1916-1986)

Herbert Lennartz, founder and, until his retirement in 1984,
owner of Lennartz-Electronic — manufacturer of seismic in-
struments, Tiibingen — died October 23, 1986, after a few
months of illness. He was a pioneer in the design and con-
struction of seismic data-acquisition systems, and his instru-
ments are in use in more than 50 countries all over the
world.

Lennartz was born in Lingen (Ems) in 1916 as the son
of a pharmacist. At the age of seven, his school-mates won-
dered if it was possible to climb one of those newly installed
high-voltage transmission towers. Young Herbert showed
that it was, but he lost his right arm completely and the
left arm had to be amputated above the elbow. After long
hospital treatment he had a private teacher for one year,
but then he was again able to attend a public school. Fol-
lowing his Abitur, which he took in Essen, he went to Berlin
to study physics at the Technische Hochschule. He earned
his living by writing technical articles for various radio mag-
azines. In addition to his construction articles, he distrib-
uted the necessary electronic parts. Possibly he was the first
to sell television receiver Kkits.

Journal of
Geophysics

During the second World War he was forced to develop
electronic measuring devices for military use. With air raids
against Berlin getting more severe, he had to transfer his
company to a quieter place. He chose Tiibingen to be close
to a university, and so this town became the home for the
rest of his life.

Radio receivers were much in demand in the years after
the war. His company “Labor fiir technische Physik”
(L.T.P.), which he owned together with a partner, now pro-
duced radios using parts from surplus military equipment.
In the late 1940s they belonged to the largest manufacturers
of radio receivers in West Germany, employing 700 people.
After the dreadful war, people in Germany were strongly
prone to romanticism. A best seller of L.T.P. were radio
chassis installed in ceramic flower vases. But, alas, a thou-
sand vases turned out to be a few millimeters too small
to serve as cabinets for the chassis. Economic difficulties
followed, and the company was forced to close. Again, for
some time, Herbert Lennartz earned his living writing nu-
merous articles for electronics journals. With no hands
available, he had to take the soldering iron in his mouth
to assemble the test circuits.

In 1959, his economic situation again allowed the foun-
dation of his own office: “Ingenieurbiiro Herbert Len-
nartz”. He used his experience in the design of instrumenta-
tion amplifiers and data recording systems made during
the war and developed circuits for storing low-frequency
and D.C. data on magnetic tape using a frequency modula-
tion multiplex channel system. His system was ideally suited
to the requirements of recording seismograms in refraction
shooting and, after a testing phase, the German geophysical
institutes ordered the first 40 recording stations which later
became known as “MARS 66”. Performance and reliabili-
ty of Lennartz equipment soon became proverbial. In 1978,
he was able to sell modulator number 500. The name of
Lennartz is strongly associated with the beginning of mod-
ern long-profile refraction measurements.

He now worked almost exclusively for geophysics, under
the new name Lennartz-Electronic. Although most of his
life was devoted to analog circuits, he did not miss the
train to the digital age. But health problems became more
severe, and, when in 1984 the Lennartz 5800 PCM system
was ready for series production, he decided to retire and
sold his company to leading employees.

Herbert Lennartz was a versatile man: a genius engi-
neer, a clever business man, an active radio amateur and,
despite his severe physical handicap, an enthusiastic sports-
car driver.

R. Schick
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An analytical approach to the magnetic field

of the Earth’s crust

H.J. Nolte and M. Siebert

Institut fiir Geophysik der Universitit, Herzberger LandstraBe 180, D-3400 Gottingen, Federal Republic of Germany

Abstract. A method is introduced that allows calculation
of the magnetic crustal field of the Earth from crustal and
geomagnetic core field data. If induced magnetization only
is considered, and if its vertical extension is neglected on
a global scale, the crust can be characterized by an integrat-
ed susceptibility. The inducing core field is represented by
an expansion into spherical harmonics, and the explicit deri-
vation of the equations is exemplified with the dipole term
of this expansion. The application to a recently developed
global model of the Earth’s crust involves the conversion
of the discrete data of the crustal magnetization into the
continuous integrated susceptibility function which is then
definitive for the model. This is accomplished by means
of potential theory and classical spherical harmonic analysis
applied to the surface density of magnetization of variable
amount and direction. A comparison of the spatial energy
density spectrum of the crustal field with previous results
demonstrates the usefulness of the method. The analytical
approach yields results of comparable accuracy with consid-
erably less numerical effort. Regarding the induced crustal
field, it turns out that the inducing core field may satisfacto-
rily be approximated by its zonal dipole term. The angular
dependence of the inducing field has only little influence
upon the crustal model field.

Key words: Geomagnetic crustal field — Integrated crustal
susceptibility — Potential theory — Spherical harmonic anal-
ysis — Multipole expansion — Spatial energy density spec-
trum

Introduction

In recent years there has been a growing interest in the
crustal part of the Earth’s magnetic field, both under region-
al and global aspects (Regan et al., 1975; Mayhew, 1979;
Alldredge, 1983; Nakagawa et al., 1985). The investigation
of the crustal field or crustal anomaly has been greatly facili-
tated by satellite surveys at low altitudes. We mention in
particular the mission of the Magnetic Field Satellite (Mag-
sat) that was planned and operated by NASA and the U.S.
Geological Survey between October 1979 and June 1980.
It was the first satellite designed to provide a global vector
survey of the magnetic field.

The measured whole field B, is the superposition of

Offprint requests to: M. Siebert

the internal geomagnetic field B; originating from sources
within the Earth’s core (B, and crust (B,), and of the exter-
nal field B, that results from ionospheric and magnetospher-
ic currents. In the following we shall be concerned only
with the internal part of the field, i.e. in the case of any
comparison with experiment we assume that the external
contributions have been removed in advance from the mea-
sured data. The crustal field is then obtained by subtracting
the geomagnetic core field B, from the remaining internal
field

Ba=Bi_Bc:(Bw_Be)—Bc' (1)

The core field cannot be measured independently of the
internal field, and commonly it has been subtracted from
the latter by adopting a suitable field model. The core field
is thought to be characterized by the large-scale or low-
degree part of the spherical harmonic expansion of the inter-
nal field. Cain (1975) and Langel and Estes (1982) suggested
attributing the first n degrees of the expansion to the core
field and to represent the crustal field by all higher terms.
These authors specified n= 13 in view of an obvious separa-
tion of the energy density spectrum into two distinct straight
sections that intersect at approximately this value. This sug-
gestion has raised several objections. Carle and Harrison
(1982) note that such a separation does not remove all large-
scale oscillations from the crustal field. There are always
some, though small in value, that remain. On the other
hand, Meyer et al. (1983) have pointed out that also impor-
tant large-scale variations pertaining to the crustal field are
removed from the anomaly charts. Crustal structures of con-
tinental size, e.g. the continental margins, cannot be repro-
duced with the truncated expansion (n213) taken for the
crustal field; however, they should clearly be visible if a
full expansion is used (Meyer et al., 1985). In view of the
deficiencies of the conventional methods these authors made
a new approach to the forward analysis of the Magsat
anomaly data. On the basis of surface geology and seismic
investigations they have developed a global model of the
Earth’s crust that is consistent with the crustal part of a
particular field model derived by Cain et al. (1984) from
the Magsat data. The improved version of the crustal model,
that is effective for the time being, has been published by
Hahn et al. (1984).

The representation of the magnetic field of the new
crustal model in terms of isodynamic charts for the vertical
component, or of the energy density spectrum, required ex-
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tensive numerical computations. The numerical expenditure
and the need for repeated computation with different input
parameters suggested elaborating a more economical way
in order to study the dependence of the crustal model field
on the particulars of the model and of the inducing core
field. We present here an analytical method of forward cal-
culation of the crustal field that was originally outlined by
one of the authors (M.S.) and further developed and applied
to the above-mentioned crustal model by the other author
(Nolte, 1985). After formulation of the pertinent equations
in the next section, the method is applied to the latest crustal
model and evaluated by comparison with previous results.
Conclusions will be drawn with respect to the crustal mag-
netization of the Earth that can be deduced from the model,
and to the role of the inducing core field.

Theory

The approach is based on the following assumptions. At
the present level of approximation we neglect all deviations
of the shape of the terrestrial body from a sphere with equi-
volumetric radius a (¢=6371.2 km). The crustal thickness
does not surpass about 0.5% of the Earth’s radius. Since
we are interested in global aspects of the field, it is admissi-
ble to neglect the thickness as compared to the Earth’s radi-
us. Taking into account only induced magnetization, the
crustal data can be described by an integrated susceptibility
that depends upon the angular coordinates of the spherical
surface. Spherical coordinates are understood to coincide
with the conventional geographic system of radius r, colati-
tude 6 and longitude A.

Consider a volume element dt’ of magnetizable material
located at the point r'=(r', ', A') within the Earth’s crust
that is exposed to the magnetic induction B, of the geomag-
netic core field. The magnetization of dt’ causes a crustal
magnetic induction with a scalar potential dV, at a fixed
external point r=(r, 6, A). The underlying geometric situa-
tion is illustrated in Fig. 1. If d7’ is sufficiently small, dV,
can be formulated as the dipole potential

Ho N ool

dV,(r,r)=
Here pu, is the permeability of vacuum, [=|r—r’|, and the
prime with the Nabla operator V' denotes differentiation
with respect to crustal coordinates. The magnetic dipole
moment dm is the product of dt’ with the magnetization
M. Under the assumptions mentioned above, the latter is
the product of the magnetic susceptibility y of the material
and of the inducing field B, (or, more strictly, B,/u,) with
a scalar potential V, outside the Earth’s core

dm(r)=M(r)d7 = — “i 2(t) V' V() dv. 3)
0

To take advantage of the negligible crustal thickness d, we
use the integrated susceptibility of the crust in order to
define the surface susceptibility ¥ by

W0, )=1im | y(@)dr 4)
420 ,_g
X~
which is related to the corresponding vector of surface mag-
netization by

r=(a.dN)

r=(r,9.n)

cosd, = cosIcosd + sind sindcos (A-N\)

Fig. 1. Illustration of the geometric relations between some point
in space and some point on the spherical Earth’s surface

_ 1
M(@’, 1)= R @, ) V' V(X)) - )

The vertical bar denotes that the variable ' has to be re-
placed by the radius a after differentiation.

The total potential of the crustal field at the external
point is obtained from integrating Eq. (2) over the entire
crustal volume. We note that dt’ is connected with the differ-
ential solid angle dw’ on the spherical surface by dt’
=a’dr' dw’, where dow’ =sin @ d¢ d . After introduction of
Egs. (3) and (4) into Eq. (2) the result is

a2 4n 1
V)= —3 | 30, 1)V V@) vy do. ©)
0

r'=a

The potential of the geomagnetic core field is expanded
into a series of spherical harmonics with reference radius
a

Vi=a ¥ (,5) Y, (0, 7). ™

n'=1

Due to the missing magnetic monopole, there is no term
with degree n'=0. Y, represents a sum over one or more
elementary surface harmonics of the same degree n’ but
with orders varying between m'=0 and m' =n’

Y;l' = Z (gn'm’ cosm’ A’ + hn'm' Sin m'l’) Bl"nl(er) (8)

m' =0

Here the quasi-normalization according to Schmidt is used
throughout for Legendre’s associated functions P™, and all
Gaussian coefficients g, and A, are given by an appro-
priate field model.

There is a well-known expansion of the reciprocal dis-
tance between points r and r’ into spherical harmonics
(Hobson, 1955) which reads, for r' <r,

’

=Y () 260 ©)

v'=0



The geocentric angle 6, between r and r' combines the angu-
lar components of both vectors by the cosine relation of
spherical trigonometry

cos 0, =cos 0 cos 0’ +sin 0 sin ' cos (A—1'). (10)

Provided the integrated susceptibility is differentiable, it can
be expanded into a series of spherical surface harmonics
with variable degree n. Let

Z @, 1), (11)
where ¥, is a sum of elementary surface harmonics

7,='Y (Dam COS M’ + Gy sin mA) B(). (12)

m=0

Strictly speaking, the expansion in Eq. (11) should start
with a term of degree n=0 that represents a constant distri-
bution of the integrated susceptibility over the entire surface
of the Earth. However, this term is dropped because of
a theorem due to Runcorn (1975) stating that a spherical
shell of uniform susceptibility does not contribute to the
induced magnetic field to be observed outside.

The potential V, is evaluated by separating Eq. (6) into
a sum of two integrals that comprise only differentiations
with respect to (i) the radial variable ' and (ii) the angular
variables 6’ and A/, respectively.

Vo=V (r)+ V; (r), (13)

where

) a® 4r 6V 0 1 ,

Vio=—7- [ i5:57 7 do (14)
0 r=a

and

_do. (15)

" a 4""‘/ /1
V=g [ AVVV |
1]

The truncated Nabla operator is defined by

- éa P 0 16
'_E( 20 T sine 57)’ (16)

and the unit vectors @ and 1 point into the directions of
increasing colatitude and longitude, respectively.

It is no loss of generality to pick out one representative
term each from Egs. (7) and (11). All operators (integral
and differential) that will be encountered are linear, and
the most general result can easily be obtained by summing
up finally over all pertinent degrees n and n'.

i) After introducing Eq. (9) and Egs. (7) and (11) (repre-
sentative terms) into Eq. (14) we obtain, with ' =a,

1 0 a\v'+t1 4n
Vim=7- 2 V| | (" +1)7, Y, B.(0) de
4n o \r o

v =

n=1,2,3,...; n=1,23,..). 17)

Note that by means of Eq. (10) Legendre’s polynomials P,
depend upon the variables 6" and 4, as do the functions

T

%, and Y,.. The product %, Y, is defined on the surface of
the sphere and can be expanded into a series of spherical
surface harmonics S, with variable degree v because the
latter form a complete and orthogonal set of functions

.0, )=} 4@, 1)
n=0

=Y (a,,cosui'+b,, sin ui’) PA(0), (18)

u=0

with v=0, 1, 2, .... With the definition

Y Sy="+ 1), Y, (19)
v=0
we obtain from Eq. (17)

1 L v+1 4m
o=z L V() [s@nR0)a. eO

v,v'=0

ii) The same considerations applied to Eq. (15) lead to

v=0 r

1 0 fg\v'+1l 4n
o= 2 (5) [ ma YeanRG) . @Y
0

For the sake of brevity we temporarily replace the “prefac-
tor” of this integral by

1 =) a vi+1
LA
The operator ¥, fulfils the identity
vV -uv)=uV/-v+v-V/u, (22)

where u and v denote a scalar and a vector field, respectively,
of the variables §' and A'. Setting u=PF, and v=}%,/Y,
this identity allows us to rewrite Eq. (21) as

4n
V/@=-T _f aV;-(B, 3, aV, Y,)dw'
+F§ B.aV-(%,aV, Y,)da . 23)

The first integral on the right-hand side vanishes (see Ap-
pendix) and we are left with

4

V,()=T | B.(7.@V;)* Y, +aV,},-aV; Y,)do'. (24
0

The square of (a V;) is Legendre’s differential operator

Lie 2 = 1 0 g0 0 1 8 55
=—@h)"=—gn 0’(09’ sin0' 55t Sng o1 25)
which has the basic property that any spherical surface har-
monic of degree, say, n is an eigenfunction to the eigenvalue
n(n+1). The second term of the integrand in Eq. (24) obeys
the relation

aV, ,-a¥, Y, =

—3 (L7, Yy — 2 LYy — Y, LT,). (26)
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With the definition of the functions S, according to Eq.
(19) and with the “prefactor” I' according to Eq. (21a) we
obtain

. 1 & vv+)+n(w+1)—nn+1)
W=z X 20+ 1)

v,v'=0

a\v +1 4n
) Isenrenw. @)
0

The integral over the solid angle in Egs. (20) and (27) is
solved by application of an integral-theorem for spherical
surface harmonics (Lense, 1954, p. 76)

4n 4n
I Sv(9,7 l’) RJ’(GO) d(;l),— 2 + 1 S (9 2’) 5vv (28)
0

d,, is the Kronecker symbol. Note that the angular coordi-
nates of the fixed external point r enter as arguments into
the function S, on the right-hand side. The whole potential
of the crustal magnetic field at the external point is the
sum of Egs. (20) and (27). The result is generalized here
by allowing for the full expansions Egs. (7) and (11) of the
core field and the susceptibility

1
AR 2vil

nn=1v=0

.[v_v(v—i- D+n'(n+1)—

n(n+1)]/a\*+?
2+ T) ](7) 5,6, 4).

(29)

Note that S, also depends on the summation indices n and
n’ according to Eq. (19). Equation (29) is the basic equation
of the geomagnetic crustal field. The functions S, are speci-
fied by definite assumptions about the crustal susceptibility
and the core field. A detailed inspection of the recurrence
relations for spherical harmonics (Jahnke and Emde, 1945;
Kautzleben, 1965), however, reveals that only a finite
number of functions S, according to Eq. (19) are different
from zero. The pertinent degrees vary in steps of two units
between v=|n—n'| and v=n+n'.

Then the crustal anomaly is derived from the gradient
of the potential V,

B,(r)=—VV,(r). (30)

To be specific, the geomagnetic core field shall be repre-
sented by its dipole term only (n'=1). This case is the most
practicable one for calculation and, as it turns out later,
also the most important one at all

Y10, X)=810 R (0)+(g11 cos X' +hyy sin V) B(6).  (31)

The integrated susceptibility of the crust shall be accounted
for by the representative term of Eq. (12) with arbitrary,
but fixed, degree n and order m. Thus, the twofold sum
over indices n and n’ in Eq. (29) reduces to exactly one
term. With the abbreviations

a(}'/)=pnm cosmi’ + Anm sinml,
B(X)=Pum cos [(m—1) X’ + €]+ qupsin[(m—1) X' +e], (32)
y(ll)=pnm Cos [(m+ 1) l’_B] +qnm sin [(m+ 1) l’—S],

and
e=arctan (hy,/g1,),
we have

IYi=gioaP B"+%)/gt, +hi (B+y) B B (33)

The products of Legendre’s associated functions are ex-
panded into a linear combination of the functions by means
of the recurrence relations

1
1 nm=m(]/ (n—m)(n+m)B"

+)/(n—m+1)(n+m+1)Pr,, (34)

and

PP I2n+1 (V(n+m—1)(n+m) B

—)/(n—m+1)(n—m+2) Bm7*

—1
= I/ _— _1 _ B]r’i“il
(2n+1)1/5_,,,( ML

~/(n+m+1) (n+m+2) B! (35)

with

12 for k=-—1
O=12 for k=0
1 otherwise.

The alternative recurrence relation differs with respect to
the order of Legendre’s associated functions. The correct
choice is made if the order of the expanded form agrees
with the argument of the trigonometric functions f and
y, respectively. The prefactors involving the operation &,
result from the normalization due to Schmidt. Actually, the
order assumes non-negative values only. However, the par-
ticular case 6_; is introduced formally, because it is needed
for the determination of the Gaussian coefficients of the
crustal field. For the sake of clarity it is stressed that &,
should not be confused with the Kronecker 6,,..

According to Eq. (19) the product 7 Y; defines the spheri-
cal surface harmonics S,

=3 1+58,+1)

(Z Sh- ﬁnf Sm) (36)

with the functions S% defined in Eq. (18). For the degrees
of this expansion which result from the proper recurrence
relations, cf. the remark following Eq. (29). To specify these
functions in terms of known quantities we equate the right-
hand sides of Egs. (33) and (36) and use the recurrence
relations for the former. The functions are then determined
by integrating over the entire surface of the Earth and utiliz-
ing fully the orthogonality relations for spherical surface
harmonics.

It is obvious from Egs. (33)+(36) that in the course of
this procedure the order of the functions S* assumes only
the values u=m—1, m and m+ 1. We obtain, for example,
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R KA A G R L (37)
and similar but more extended formulae result for the re-
maining five functions. These functions are introduced into
Eq. (29) with n fixed and n'=1. The sum over v has only
two terms, v=n—1 and v=n+1, and leads to the crustal

potential

3(n—1)

a n
K= 1y () {E10 2V =) e m B0
2 h2
VB 5, B i m= D m B 0)

—%V(n—m—l)(n—mmm_t‘(e)]}

n a n+2
+mr3)(7)

- {gwau)Wz—m1)(n+m+1)1:";1(0)

2 2
——”g“;h“[Vam_lﬁ(x)V(n—m+1)(n—m+2)f:'1:‘(9)

)
Vo

The first and fourth terms of this equation represent the
potential if only the zonal dipole part of the inducing core
field is considered, and the other terms account for the sec-
torial dipole. With regard to Legendre’s associated functions
Pm_, and P™*!, it should be mentioned that these functions
vanish by definition if the order surmounts the degree, i.e.
for m=n and for m=n— 1, respectively.

It has been emphasized by Meyer et al. (1983) that the
spatial spectrum of the mean energy density is in many
respects an appropriate measure for the global comparison
of the crustal model field and the observed field. The spec-
trum function itself was first derived by Mauersberger (1956)
and Lucke (1957). It is expressed in discrete terms of degree
N in the form

Y (n+m+ 1)(n+m+2)1>;1+11(0)]}. (38)

N
W(N)=(N+1) ¥ [(g¥)*+(hy)’]. (39)

M=0

Except for a factor 1/2p, this quantity is the energy density
of the particular field constituent (=field of the 2"-pole)
averaged over the whole Earth. gif and hy are the spherical
harmonic expansion coefficients of the field under consider-
ation, i.e. in our case of the crustal potential

o0 N a N+1
V,m=a Y 3 (7) (g%cosM/1+h# sian)BVM(O).

N=0 M=0

(40)

In order to express the expansion coefficients in terms of
core and crustal parameters, one has to identify the general
form of Eq. (40) with V, given by Eq. (29) and to utilize
again the orthogonality relations for spherical surface har-
monics. If we approximate the geomagnetic core field by
its dipole term only, we obtain from Egs. (38) and (40),
in a way analogous to that described after Eq. (36),

73

T M- N—M)(N+M

gN_a(2N+1){2N—l[g1° (N=M)(N+M)py-1,u
]/ 2 +h2
+—g‘“—li(l/5§41—1(N+M—l)(N+M)

2
“(PN-1,M-1COSE—qN_1,Mm-1 SiNE)
—)/du(N—M—1)(N~M)

- (PN-1,M+1 COSE+ N1, p+1 SN 8))]

3N
+a| 0V N M+ DM+ D) p i

2 +h2
————W(‘/&;,‘.AN—M+1)(N—M+2)

- (PN+1,M-1COSE=qN+1, m—1 SINE)
—/ou(N+M+1)(N+M+2)

- (PN+1,M+1COSEFGN L1 M+1 Sins))]}. 41)

Again, only the first and the fourth terms remain if the
core field is approximated by a zonal dipole field (i.e. g,
=h,,=0). A similar formula results for hy; it differs from
Eq. (41) in that the coefficients p and g and the boldface
signs are interchanged. It should be mentioned that these
coefficients are defined only for non-negative values of the
subscripts and that the second subscript must not exceed
the first one by value. In all other cases the coefficients
have to be set equal to zero.

More complicated analytical expressions have been de-
rived for the crustal potential and the expansion coefficients
if the quadrupole and octupole terms of the geomagnetic
core field are taken into account (Nolte, 1985). The formulae
are not reproduced here because these cases turn out to
be less important. Nevertheless, the effects of core field mul-
tipoles of higher degrees will be included in the discussion
of numerical results below. The pertinent equations are
readily evaluated by a digital computer and require only
little computation time.

Results

We apply the analytical approach to the specific global
model of crustal magnetization established by Hahn et al.
(1984). This model subdivides the Earth’s crust into blocks
of 2°x2° extension along geographical coordinates and
classifies each block on the basis of 16 crustal types. Each
block is composed of two or three layers of definite thick-
ness. Within a layer the magnetic susceptibility is assumed
to be constant.

The transformation of the model data into the continu-
ous function of the integrated susceptibility proceeds in two
steps.

1) For each crustal type the defining Eq. (4) now as-
sumes the form of a sum

1= Z xi di 42)

where y; is the magnetic susceptibility, d; the thickness of
the i-th layer and j the number of layers in the block. Table
1 shows the 16 types that constitute the basis of the crustal
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Table 1. Crustal types of the model of Hahn et al. (1984) and inte-
grated susceptibility 7 from Eq. (42)

Code Crustal type 7 (unit: m)

Continental crust

A Platform 1231.7

K Platform with 3000-m sedimentary cover 1055.7

B Shield 1633.7

C Black Sea 138.3

D Basin structures (Basin and Range type) 4299

L Basin structures with thick 477.6
sedimentary cover

E Mobile belts-Palaeozoic Age; 681.2
Moho at 30 km

F Mobile belts-younger than Palaeozoic; 907.4
Moho deeper than 30 km

G Continental side } of passive 628.4

H Oceanic side continental margin 251.3

J Marginal sea 75.4

Oceanic crust

Z General oceanic crust 75.4

Y Mid-ocean ridge 50.3

X Oceanic plateau 716.4

w Island arcs 590.7

Vv Trench 25.1

model together with the integrated susceptibilities from Eq.
(42). The first column in the table denotes the code that
has been chosen for an easy demonstration of the distribu-
tion of crustal types in a world chart.

2) Each crustal block can thus be characterized by a
discrete value of the integrated susceptibility which is attrib-
uted to the centre of the block surface, viz. to all pairs
of coordinates (&,1) with 6'=1°23° ...,179° and
A'=1%3° ..., 359°. Conventional spherical harmonic anal-
ysis (Chapman and Bartels, 1940) is used to determine the
expansion coefficients p,,, and g,,, of Eq. (12). The computa-
tion of the energy density spectrum of the crustal model
field up to degree N =35 requires the knowledge of all coeffi-
cients up to degree and order n=m=38 if octupole terms
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of the core field are included in the consideration. The coeffi-
cients are then definitive for the crustal model and can be
used for repeated computations of the spectrum as well as
for other purposes.

The analysis reveals that many of the coefficients are
of similar magnitude. No prominent coefficient representing
a particular periodicity of the integrated susceptibility can
be singled out. The maximum value is found with coefficient
Poo, as a mere consequence of the fact that § can assume
non-negative values only. However, this coefficient need not
be considered further because it does not contribute to the
induced crustal field.

In agreement with previous work the geomagnetic core
field is approximated by the IGRF (Peddie, 1982), here for
the epoch 1980.0. In favour of this approximation one can
argue that it incorporates the effect of demagnetization in
the crust which is not built into the theory explicitly. After
selection of a specific core field model we have calculated
the spatial spectrum of the crustal model field from Eq.
(39). Figure 2 shows the resulting spectra for different ele-
mentary multipole terms of the core field and the spectrum
of the previous numerical computation. Attention is drawn
to three facts that show up clearly in the figure. (i) Except
for the first three or four terms the spectra are almost con-
stant with degree N or “white”, i.e. the mean energy density
of the crustal model field is distributed equally among the
degrees, at least as far as N =35. (ii) The spectrum by Hahn
et al. (1984) is reproduced almost perfectly if the core field
is approximated by the zonal dipole term. (iii) Neglecting
small deviations, the spectra appear almost as if they were
shifted parallel on the logarithmic ordinate scale if other
multipole terms of the core field are considered, ie. they
differ only by nearly constant factors.

The first observation has already been discussed in detail
in the literature. A white spectrum is regarded as an indica-
tion that the reference sphere for expansion into spherical
harmonics (here the Earth’s surface) coincides roughly with
the location of the sources of the field under consideration.
The other observations will be discussed in the next section.

Figure 3 shows the energy density spectrum of the
crustal model field at different steps of approximating the

*q
.
*
+

Fig. 2. Spatial energy density spectra of the crustal
model field due to various core field models.

® numerical computation (Hahn et al,, 1984) with
core field approximated by full IGRF of 1980.0;
present investigation with .core field approximated
by IGRF of 1980.0:

A zonal, O sectorial dipole term;

v zonal, @ tesseral,  sectorial quadrupole term;
+ tesseral (n'=3, m'=1) octupole term
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Fig. 3. Spatial encrgy density spectra of the crustal
model field at different steps of approximation of

the core field. © cf. Fig. 2;

present investigation with core field approximated
by IGRF of 1980.0:

& dipole term;

O dipole and quadrupole terms;

< dipole and quadrupole and tesseral (n'=3,

Le y m =1) octupole terms

geomagnetic core field. Note from Eq. (39) that the spectra
in this figure cannot be obtained by simple addition of the
spectra in Fig. 2, because the coefficients p,,, and g,,, per-
taining to the individual central multipoles have to be added
first. Close inspection of the higher degree terms reveals
that the agreement with the spectrum of comparison slightly
worsens with a more accurate approximation of the core
field. We attribute the deviations to the different treatment
of the global crustal model in the original and in the present
work.

Discussion

The convenience of the analytical approach to the geomag-
netic crustal field is based on two simplifying assumptions
that can be justified on a global scale.

1) The approach considers induced magnetization only,
le. at any crustal point the magnetization is proportional
to the inducing field from the core. The crust is then charac-
terized by its magnetic susceptibility which, being a scalar
function, allows for simple notation of the relevant formu-
lae. The restriction to consider induced magnetization only
and, hence, to disregard any remanent magnetization is jus-
tified by the argument that the contributions of successive
crustal layers which have been magnetized during different
palaeomagnetic epochs cancel each other to a large extent.
There remains only the contribution of the most recent mag-
netization which is in fact proportional to the inducing field.
In principle the model can also take into account any rema-
nent magnetization parallel to the induced magnetization.
In this case, however, the function y loses its direct physical
meaning and turns into a mere computational quantity.

2) The second simplification concerns the neglect of the
radial extension of the crust with respect to global dimen-
sions. Admittedly we lose information about the crustal
magnetization, and this approximation certainly is not al-
lowed if we are investigating local anomalies. With the inte-
grated susceptibility function we are able to make extensive
use of spherical surface harmonics and to benefit from their
orthogonality relations in the formulation of the theory.
In the actual computation of the potential we are saved
from the time-consuming three-dimensional integration

30

35

over the crustal volume which proved to be a limiting factor
in the previous work.

An essential step is the expansion of the product of
spherical surface harmonics into a linear combination of
the same kind of functions. Instead of solving this problem
in full generality, which is difficult because of a lack of gener-
alized recurrence relations for Legendre’s associated func-
tions, we have allowed for a full expansion of the integrated
susceptibility; but the multipole expansion of the core field
has been restricted to its terms of lowest degree (n'<3)
which are the most important ones at the Earth’s surface.
There is no fundamental difficulty to include multipoles of
higher degrees, except for the rapidly increasing length of
the resulting formulae and the number of individual terms.
Whereas the expression for the crustal potential splits into
six different terms in the case of a central dipole, cf. Eq.
(38), the corresponding formula splits into (n'+1)(2n'+ 1)
terms if a central multipole of degree »’ is considered.

The construction of the function ¥(#', ') from discrete
data by means of the spherical harmonic analysis has pro-
vided further insight into the crustal model of Hahn et al.
(1984). Although large connected areas of the Earth’s sur-
face appear to be uniform when characterized on the basis
of 16 crustal types, a prominent periodicity in the integrated
susceptibility cannot be detected. Apparently this function
exhibits a random distribution in terms of wavelengths. The
individual expansion coefficient p,,, or g,,, therefore, has
no physical meaning, and only the coefficients altogether
describe the magnetic properties of the crust satisfactorily.
A rather large expansion into spherical surface harmonics
is necessary in order to ensure an adequate description of
the crustal model field.

The magnetic field of the model is controlled almost
exclusively by the distribution of the magnetizable material
in the Earth’s crust. The angular dependence of the inducing
core field is of little influence. This is concluded from the
observation in Fig. 2 that the distribution of energy among
the individual terms of the spectra is nearly equal, although
the core field components are different. The spectra differ
in absolute value, reflecting the field strengths of the core
field components at the surface that enter into the function
W(N) with their second power. Obviously the zonal dipole
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term of the core field dominates the inductive effect on the
crustal magnetization. This might have been supposed from
inspection of the Gaussian coefficients of the IGRF. How-
ever, the crustal field results from both the crustal properties
and the core field properties, and the minor role of other
central multipoles, could not be known a priori; they had
to be confirmed by actual computation.

From Figs. 2 and 3 we notice that the spectrum after
Hahn et al. (1984) and the result of the analytical approach
agree best if the inducing core field is approximated by
the zonal dipole only. A more complete expansion of the
core field, including octupole terms, even worsens the agree-
ment at degrees above N =20. The optimum with the zonal
dipole is probably due to the cancellation of small errors
that arise from the different treatment of the crust in the
previous papers and in the present investigation. Neglect
of the finite crustal thickness can partially account for the
differences in some of the degrees in Fig. 3. Moreover, simple
analytical expressions result if the integration is performed
over the entire spherical surface, whereas the original nu-
merical computation of the crustal model field and of the
spectrum considers only a limited number of crustal blocks
within a geocentric angular distance of 70° (see Meyer et al.,
1983) around each external point. This restriction had been
introduced to save computation time. It is also supported
by the argument that crustal regions which are hidden by
the conductive core of the Earth should not be treated in
the same way as the regions close to the external point.

The formalism described in this paper provides an effec-
tive method of forward analysis of the geomagnetic crustal
field under global aspects. Concerning the spectrum of mean
energy density, it has confirmed the previous results with
high accuracy and with only a fraction of the numerical
effort involved. The role of the inducing core field could
be evaluated in some detail. The analytical approach can
easily be applied to the computation of world charts of
large-scale anomalies and to other magnetic phenomena
of the crust. It may serve as an appropriate tool for a global
comparison between observational data and model concep-
tions in future studies.

Appendix

For the proof that the first integral in Eq. (23) is zero, we
define the vector field T(¢, A) tangential to the surface of
the sphere

T=0T,+iT;:=j,aV,¥,.

Then we have
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Both P, and T} are 2n-periodical with respect to the variable
A
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