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Stable inversions of MAGSAT data over
the geomagnetic equator by means of ridge regression

C.J. Lotter
Magnetic Observatory, PO Box 32, Hermanus 7200, South Africa

Abstract. Several authors have reported on the instability
problems experienced when inverting satellite magnetic
anomaly data using the equivalent source technique. These
instabilities particularly occur for inversions of data in re-
gions near the geomagnetic equator and for certain dipole
spacings in the equivalent source formulation. In this study
the method of ridge regression is put forward as an alterna-
tive method, as it provides very stable solutions. In addition,
it gives an indication of where the instabilities occur and
can be utilized with smaller than usual dipole spacings. This
method is demonstrated by applying it to the region con-
taining the Bangui anomaly.
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Introduction

One of the reasons for inverting satellite magnetic anomaly
data is to obtain more information on the spatial physical
properties of the crust. The standard method is to invert
the anomaly data to an equivalent layer magnetization
model based on a latitude-longitude dipole source array
at the earth’s surface. Mayhew and Galliher (1982) reported
that the inversion process becomes unstable for dipole spac-
ings of less than 220 km. At these dipole spacings the pa-
rameter solutions exhibit an oscillatory nature; that is, adja-
cent sources generally take on alternately large positive and
negative values and clearly have no physical meaning. For
larger dipole spacings they found that the magnetization
solutions vary systematically and have a physically mean-
ingful interpretation. Their results were obtained for mid-
latitude regions, utilizing the Moore-Penrose inverse:

AP=(ATA) 1 ATAG (1)

where AP is as parameter correction vector, 4G is a residual
vector (observed minus initial model) and A is the dipole
source function matrix. Within +20° of the geomagnetic
equator, this technique yields unstable solutions for any
reasonable dipole spacing.

The problem of inverting satellite magnetic anomaly
data involves a large number of data points and of parame-
ters to be resolved. Numerical manipulation of large matri-

ces can lead to instabilities due to round-off error. In addi-
tion, the magnetic inverse problem is very similar to down-
ward continuation right down to the surface of the source.
This is a very unstable process and short wavelength varia-
tions in the residual total field, 4F, are amplified out of
proportion in the magnetization solution.

Another stability problem is associated with proximity
to the geomagnetic equator. The presence of the asymmetric
sine function in the dipole source function equation can
lead to symmetric sign changes in values of the elements
of the matrix A for this region. This is mainly due to the
change in sign of the inclinations of the magnetization vec-
tor and main field direction, respectively, as the geomagnetic
equator is crossed. A problem that now arises is that of
linear dependence between the columns of the problem ma-
trix (ATA). If the condition of linear dependence is nearly
satisfied, i.e. certain linear combinations of the columns are
nearly zero, the determinant of (ATA) is almost zero. The
problem can then be classified as singular, ill-conditoned,
non-orthogonal or ill-posed.

Von Frese et al. (1981) applied singular value decompo-
sition to the problem matrix in order to obtain physically
realistic parameter values for subsequent geological inter-
pretation of the crust. They did an eigenvalue-eigenvector
decomposition of A given by A=USVT to yield Lanczos’
natural inverse:

P=(VS~1U")G. @)

U and V are orthogonal matrices whose columns are the
eigenvectors associated with the columns and rows of A,
respectively, S is a diagonal matrix whose elements are the
eigenvalues of A. Here P and G are the estimated parameter
and total field residual vectors, respectively. The authors
do not explicitly mention any instability problems near the
geomagnetic equator, or for certain dipole spacings for that
matter.

Langel et al. (1984) suggested and demonstrated the use
of principal component regression to overcome the instabili-
ty problem. They also start off with a singular value decom-
position and then force the system to be positive definite
by truncating the smaller eigenvalues. This is equivalent
to reducing the rank of the problem matrix. With this meth-
od one is restricted to a choice between two adjacent integer
values for the rank, even though the optimum rank some-
times clearly lies between the two values (Marquardt, 1970).
This normally happens when some of the eigenvalues are
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not precisely zero, as is the case with some dipole source
function matrices.

Marquardt (1970) came to the conclusion that principal
component regression (and the natural inverse) is preferable
for problems containing some zero eigenvalues. Our prob-
lem involves some very small eigenvalues.

Other authors (Leite, 1983; Silva, 1986) have discussed
the technique of adding a small value to the diagonal of
the problem matrix, in order to force the system to be or-
thogonal. In the present study the method of ridge regres-
sion, initiated by Hoerl and Kennard (1970a, b) together
with some ideas put forward by Marquardt (1970), is imple-
mented to obtain stable inversions for regions near the geo-
magnetic equator and for smaller than usual dipole spac-
ings.

Theory of the method

The theoretical magnetic field value at the j—th satellite
observation point due to an array of k dipoles is given
by:
k
gi= ) aipi+te;
i=1

i=

j=1,..,n 3)

with

n =number of observations,
a;;=element of dipole source function matrix,
p; =magnetization of i-th crustal block,

¢; =measurement errors and noise.
The theoretical field arising from the source array is a linear
function of the source parameters. The parameters may
therefore be directly determined using a least-squares tech-
nique. The standard least-squares solution for an estimated
parameter correction is given by Eq. (1).

Hoerl and Kennard (1970a) demonstrated (see Appen-
dix) that when ATA is nearly singular the mean-square error
between the unbiased estimates, P, and the true parameters,
P, becomes very large when using Eq. (1). The same happens
with the variance of the parameter. Instead of the least-
squares estimator they suggest the use of the ridge regres-
sion estimate of P, which is:

P*=(ATA+yI)" 1 ATG 4

where the relationship between the two estimators is given
by:

P*=[I+7(ATA)"!]"1 P. )

From (5) it is clear that P* is a biased estimate of P. Here
I is the identity matrix and y is a real positive value. Accord-
ing to the existence theorem of Hoerl and Kennard (1970a),
a small value y, always exists such that the mean-squared
difference between P* and P, I?, is smaller than that be-
tween P and the ordinary least-squares estimator P. This
relationship is graphically illustrated in Fig. 1.

Before adding the factor y, the matrix ATA is standard-
ized in such a way that it produces a matrix of correlation
coefficients among the parameters. In other words, the diag-
onal values of ATA all became equal to unity. Therefore,
the diagonal additive y must have a value between 0 and
1. Equation (4) can now be rewritten in the form:

MEAN-SQUARE ERROR

\4

& DIAGONAL ADDITIVE ()

Fig. 1. Mean-square error functions for the ridge regression estima-
tor (after Hoerl and Kennard, 1970a)

P*=D(DATAD +yI)" ! DA’G 6)

where D is the diagonal scaling matrix with elements
n 1/2
d;= 1/( Y af,-) .
j=1

Hoerl and Kennard (1970a) give criteria for the selection
of an optimal y. Leite (1983) provides another method to
determine y,.

Off-diagonal coefficients in the correlation matrix
DATAD approximating unity indicate that the problem is
nearly singular. This leads to very small eigenvalues which,
in turn, render the problem sensitive to noise in the data
and to computer round-off error. By adding a small value
y to the diagonal of DATAD, all small eigenvalues will be
increased by an amount y. This will lead to a more stable
inversion.

The following is an algorithm to perform a stable inver-
sion:

1. Let the variations in y be defined by the exponential
form y=10""2% (Leite, 1983). Determine an optimum value
for y in the following way:

a) Set t=—1 and A=1 (These values are suitable for
the data set used in this study).

b) Determine the solution P*=D(DATAD)+yI)~!
DA’G.

c) Determine G; = AP¥, the first model.

d) Determine an estimate of the residual variance:

AGTAG,
=——-——" where
n—k

4G, =G(observed)—G;.
e) Determine the total parameter variance

;=2 [VAR(P})];

i=1
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Fig. 2. Average scalar anomaly field from MAGSAT data. Contour
interval is 2nT

with VAR(P¥)=6} Z(ATA)"! ZT (Hoerl and Kennard,
1970a)
Z=(ATA +y1)" 1 (ATA).

f) Determine a new value for y by setting A=A/, and
t=1—1l0g;0(61/6)

G(observed)” G (observed)
n—k

where ¢% =
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g) Repeat steps (b)—(e) with P%¥, G, and 62.

h) If 63 < 61, repeat steps () and (g); if 63 >6%, set 1=1
+ 4, leave A unchanged and repeat step (g) with P%, G,
and 63.

i) After three attempts, use Lagrange interpolation on
the curve 4 versus 7 to obtain an optimal y.

2. Solve Eq.(6) using the optimal y value.

3. If not satisfied with the total variance of the parame-
ters, increase the value y as described above while closely
monitoring the estimated residual variance 42

Results

The area in Central Africa where part of the Bangui anoma-
ly is situated was chosen to demonstrate the application
of the proposed method. A 1° latitude-longitude array of
dipole sources was used for the equivalent source inversion.
Each observation is an average of the MAGSAT residual
total field values contained in a cylinder of radius 0.7°,
height equal to the full elevation range of the satellite and
centred at integer latitude-longitude intersections. Figure 2
shows a contour map of the data prior to inversion. The
following corrections have been applied to this data set:
removal of the main field, an improved ring current correc-
tion (Zaaiman and Kiihn, 1986) and linear fits to individual
passes to improve track-to-track consistency.

The optimal value of y for this problem was found to
be 0.005. Figure 3 shows a contour map of the synthesized
field at a common altitude of 400 km, obtained by using
y=0.005. From Fig. 1 it is clear that a y>y. can be used
to obtain solutions with smaller parameter variance without
increasing I? above that obtained by the least-squares solu-
tion.

Leite (1983) used ridge regression to obtain depth to
the top, width, direction and intensity of magnetization for
basement blocks from aeromagnetic data. He reported that
a relatively large value of y (0.7) was required to determine
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Fig.3a and b. a Anomaly field computed at 400 km altitude from equivalent source solution. Contour interval is 2 nT. b Anomaly

field at 400 km altitude reduced to the pole. Contour interval is 5 nT
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Fig. 4a and b. a Magnetization contours from equivalent source solutions.

equivalent source solutions. Contour interval is 0.005 SI units

physically meaningful magnetization and susceptibility
values from aeromagnetic data. In the present study a value
for y which is orders of magnitude larger than the optimal
value, ., was also found to be necessary. In order to obtain
smooth parameter solutions from satellite magnetic data,
a value of 0.15 was used for y. This is the largest value
for which the inversion process is still stable and produces
a smaller I? than the least-squares technique. Figure 4a
and b shows the apparent magnetization and apparent sus-
ceptibility contrast contour maps for the study area. There
are only small differences between the two maps. The reason
is the small variation of the main field intensity (H) in this
region. It was assumed from the start that one has induced
magnetization only, so that the relationship between the
magnetization (P) and the susceptibility (K), which is

P=KH,

explains the similarity between the two maps.

The minor edge effects that are observed in Fig. 4a and
b, can be avoided by using solutions for overlapping adja-
cent regions and combining them at a suitable boundary.
From subsequent work on the Southern African region it
was found that, with a 1° dipole spacing, an overlap of
6° for adjacent regions was sufficient to get satisfactory
matching. The small perturbations which are superimposed
on all the contour maps are due to the linear interpolation
technique that was used prior to contouring the data.

The map reduced to the (south) pole was produced using
the magnetization values of Fig. 4a.

Conclusions

Stable inversions cannot be obtained for regions near or
over the geomagnetic equator when using standard inver-
sion techniques. Ridge regression can be applied to obtain
stable solutions and physically realistic parameter values
for this region.
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One of the most important advantages of the ridge re-
gression method is that it allows much more freedom in
selecting a suitable dipole spacing for the equivalent source
grid to be used. This has been demonstrated by using a
1° x 1° dipole grid in this study. The minimum dipole spac-
ing is only determined by the capabilities of the computer
in use and the limitation that the system of equations must
be overconstrained. It would be physically meaningless to
decrease the dipole spacing beyond the resolution capabili-
ties of the data set, but a higher sampling density of magneti-
zation and/or susceptibility values facilitates effective con-
touring of the data. This obviates the shifting of the source
grid and recalculation of parameters to obtain a satisfactory
sampling density as described by Mayhew (1982).

Appendix

The following demonstrates why the least-squares estimate P of
the true parameter correction vector P tends to be unreliable for
an ill-conditioned DATAD matrix.

Let the eigenvalues of DATAD be denoted by
>0.

e =A1Z Ay . ZA,=4

‘min

From Hoerl and Kennard (1970a) the mean-square distance differ-
ence I? between P and P is given by

P
=0 TRACE(DATAD) =42 ¥ (1/1)
j=1
and the variance is given by

VAR[[}]=2¢* i (1/4;)

Jj=

where ¢? is the residual variance.

Lower limits for these two properties of I[? are ¢%/1.;, and
20%/42;.. It is now clear that for a DATAD with one or more
very small eigenvalues, the distance between P and P will tend
to be large. The variance of I? will also be large and this is responsi-



ble for the oscillatory behaviour of the magnetization solutions
observed by Mayhew (1982) and Mayhew and Galliher (1982) for
certain dipole spacings.
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