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Surface harmonic expansion methodology
in restricted domains of the Earth’s surface —

Application to the Indian Ocean

Xavier Lana and Ramon Carbonell

Departamento de Geodinamica, Geofisica y Paleontologia, Facultad de Fisica, Avenida Diagonal 645, E-08028 Barcelona, Spain

Abstract. A dense distribution of Rayleigh-wave group velo-
cities (fundamental mode) throughout the Indian Ocean is
obtained by means of spherical harmonic expansion of the
inverse of group velocity and standard least-squares meth-
ods. The data, covering the whole region, come from nine
earthquakes in the Indian Ocean, recorded at several sta-
tions of the WWSSN (long period). This coverage, for each
period, consists of approximately 50 paths. The records used
correspond to periods ranging between 15 and 90s. The
results allow a qualitative discussion of the upper part of
the Indian Ocean’s lithosphere and especially display high
velocities around the Rodrigues triple junction. The number
of group velocities mapped should allow a quantitative
study of the upper part of this lithosphere.

Key words: Spherical harmonic expansions — Group veloci-
ties of Rayleigh waves’ fundamental mode — Indian Ocean
— Lithosphere

Introduction

The spherical harmonic expansion method is an efficient
tool in work on many aspects of Earth properties on a
global scale. Some pioneer works are the papers of Kaula
(1959), Horai and Simmons (1969), Ellsasser (1966) and
Coode (1967), among others. These papers developed both
atmospheric and geophysical parameters for the whole
Earth. Dispersive properties of surface waves have also been
subjected to this analysis by Sato and Santo (1969). More
recent papers which follow the same line are by Nakanishi
and Anderson (1982), Nataf et al. (1984), Nishimura and
Forsyth (1985) and others. Nishimura and Forsyth’s (1985)
study is the only one which develops surface-wave proper-
ties by means of a spherical harmonic representation on
a restricted domain of the Earth. Additional information
about propagation of body waves and inversion of seismic
waveforms, using spherical harmonics, can be found in
papers of Dziewonski (1984) and Woodhouse and Dziew-
onski (1984).

It must be remembered that spherical harmonic expan-
sions have two shortcomings. First, they are no longer effi-
cient when there are very sharp lateral velocity gradients.

Offprint requests to: X. Lana

This problem could be avoided by increasing the harmonic
order. Second, if expansions are applied to restricted do-
mains, the properties under investigation near the boundary
regions must be carefully considered. The parameters stud-
ied in this paper extend over a considerable part of the
Earth’s surface and, consequently, spherical harmonic func-
tions are a reasonable expansion basis. The linearity be-
tween data (travel times) and parameters (spherical harmon-
ic coefficients) must be pointed out, because it simplifies
the least-squares method by avoiding iterative processes.
Although the pure-path method has the same advantage
of linearity, spherical harmonic expansions are superior
since they avoid the a priori age regionalization which is
an important shortcoming in the first method.

In the present paper we study the methodology involved
in the expansion of Rayleigh-wave group velocities by
means of spherical harmonics over restricted domains. The
implications of this method for crustal and lithospheric
structure are outlined.

Theory

Following Courant and Hilbert (1962), any function g(6,
@) which is continuous, together with its derivatives, up
to second order on the sphere may be expanded in an abso-
lutely and uniformly convergent series in terms of spherical
harmonics:

,n
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where 6 and ¢ are the spherical coordinates colatitude and
longitude, respectively, Y, ¢ the fully normalized spherical
harmonics and G,,, the coefficients of the expansion.

From now on, as we will study the group velocity of
the Rayleigh-wave fundamental mode, the function g(8, ¢)
will be the corresponding slowness s(w, 0, ¢); w is the angu-
lar frequency.

We define the travel time for each path | between an
epicentre (e) and a station (s) as:

t;=L,$*(w), 2

where L, is the epicentral distance and $* (w), the experimen-
tal averaged slowness. The slowness in Eq. (2), in the ap-



proximation of geometrical optics, is an average value along
the path. Consequently, we can also define the travel time
as:

n={S(w,0,9)dL,, 3)

where S(w, 0, @) is the local slowness and depends on the
spherical coordinates.

The pure-path method (Nishimura and Fortsyth 1985;
Yu and Mitchell 1979; Mitchell and Yu 1980; and others)
assumes a correlation between surface tectonics and deep
structure. Under this hypothesis, the product in (2) or the
integral in (3) is replaced by a discrete summation for all
the structural ages considered. In order to avoid this a priori
age regionalization of crustal structure, inherent to the pure-
path method, a continuous representation of the slowness
on colatitude and longitude is more advisable.

Splitting the fully normalized spherical harmonics into
sine and cosine terms, Eq. (1) for S(w, 6, ¢) reads:

S@,0,9)= Y Ay B9 cos(mo)
n=0,m=0
+ Y By B9sin(mo). @

n=1,m=1

P® are the fully normalized associated Legendre functions.
It is implicitly assumed that azimuthal anisotropy can be
neglected.

Inserting Eq. (4) in Eq. (3), we obtain for each path
I(I=1, ..., k) the basic equation:

tl = j { Z Anm Bl(gl) COos (m (p)

e n=0,m=0
+ Y By Rsinmo)dL, )
n=1,m=1

The integrals:

Comi= j B cos(me)dL, (6a)
Dypi= [ B sin(me)dL,, (6b)

which depend on the location of the epicentre and the sta-
tion, must be evaluated along the path.

The set of equations, Eq. (5), for different paths can be
written in a compact way as follows:

T=MA4, @)

where T is the travel-time vector (¢, ..., t,), M is the matrix
formed by the factors C,,,; and D,,, defined in Eq. (6) for
each path [, and A4 is the vector of the unknown coefficients
Anm and B,,, of the spherical harmonic expansion. Expres-
sion (7) is a linear system of equations which is solved by
means of the standard least-squares method.

Another very important question is the uncertainty of
the spherical harmonic coefficients in terms of the errors
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in the data. Following Nishimura and Forsyth (1985), we
can define the slowness variance as:

Gg(o,w = Q WQT’ (8)

where W is the covariance matrix of the coefficients and
Q the partial derivative vector, defined as:

0=(0S/0Amm 0S/0B,,). &)
The covariance matrix of the coefficients is defined as:
W=M"1yYM Y (10)

where M~ ! is the generalized inverse of M and ¥ the covari-
ance matrix of the data. The covariance of the data is esti-
mated from the travel-time residual of the least-squares pro-
cess by assuming, for instance, that ¥ is the identity matrix
multiplied by the Euclidian norm of the travel-time residual.

If we are interested in the group-velocity variance, it
is easy to find that

0u(9,¢)=0'sw,¢)s_2(0, o). (11)

Methodology

A first and important point is to fix the degree of the spheri-
cal harmonic expansion; in other words, to decide how
many of the fully normalized harmonics should be used
in this expansion. The path coverage of the studied domain,
the travel-time residual evolution with the degree of the
expansion and the physical relevance of the coefficients will
give some insight to this question:

A) It is clear that the path coverage has a direct influence
on the degree of the expansion (Nishimura and Forsyth,
1985), but this effect has not been quantified yet.

B) The minimization of the inversion travel-time residuals,
as a criterion to decide the convenient degree of the expan-
sion, has been proposed by Nakanishi and Anderson (1982).
It consists of choosing the degree that corresponds to a
minimum of the travel-time residual evolution. The same
authors point out that this criterion will not always work.

C) A low-degree expansion corresponds to a simple view
of the Earth model. A higher-degree expansion produces
corrections to this poorly detailed description in order to
obtain a more realistic model. In this way, when the degree
increases, a decrease of the absolute values of the expansion
coefficients is expected, provided that only smooth lateral
heterogeneities in the Earth model are present. If sharp ve-
locity gradients exist, the coefficients do not clearly decrease
with increasing degree, but the group-velocity map tends
to a more detailed one.

The algorithm used in solving expression (7) is also rele-
vant for the degree of the expansion. By means of the singu-
lar value decomposition (S.V.D.) (Lanczos 1961), we solve
the system of Eq. (7) in a proper way. Other possibilities
are the total inversion algorithm (Tarantola and Valette
1982) or the Backus-Gilbert inversion (Backus and Gilbert
1967, 1968). Examples of the application of the total inver-
sion algorithm are the papers of Angelier et al. (1982) and
Lana and Correig (1987). With respect to the Backus-Gil-
bert inversion we can refer, for instance, to Nolet (1976)
and Tanimoto and Anderson (1985). The linearity between
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Table 1. Earthquake parameters. The numbers of the events correspond to those in Fig. 1. CARL, MIR
and M ASC identify, respectively, the regions of Carlsberg Ridge, Mid-Indian Rise and Mascarena Island

Region
Date Latitude Longitude  Origin time Depth Magnitude

1 CARL 04.0.572 5.200 62.100 Oh 27m 34s 58 km 5.1
2 MASC 06.19.76 —17.900 65.400 ISh Om 46s 21 km 5.5
3 CARL 09.0.772 — 1.900 68.100 2h 55m Os 47 km 5.6
4 MIR 10.29.70 —40.900 80.500 2h 23m 25s 33 km 5.5
5 MIR 11.22.76 —38.500 78.600 4h 46m 26s 33 km S.1
6 MASC 10.25.70 —13.700 66.300 12h Om 35s 25 km 5.6
7 MIR 03.27.76 —38.900 78.100 8h 49m 325 35 km 5.2
8 MIR 02.19.77 —41.300 80.500 7h 53m 23s 33 km 5.8
9 MIR 11.16.76 —41.800 80.100 18h 20m 49s 18 km 5.3

the travel times and the coefficients, together with the sim-
plicity and the speed of computation of the S.V.D. algo-
rithm, make it advisable to use the S.V.D. algorithm in
this case.

If all the eigenvalues, evaluated by the S.V.D. algorithm,
are used in the solution of system (7), usually unrealistic
Earth models appear. Such models are a consequence of
including also the smallest eigenvalues. The existence of
small eigenvalues is due to singularities in the system of
equations. The existence of these singularities comes not
only from the noise in the data, but also from the path
coverage. It is obvious that there may be a certain number
of paths which are very close to each other and that they
generate very similar equations in (7). We must bear in
mind that a certain degree of the expansion implies a mini-
mum number of independent paths. Singularities are usually
expected, and the crucial question here is the choice of a
reasonable cut-off value I/, which fixes the last eigenvalue
that the algorithm will employ in the matrix inversion.
Problems related to the proper choice of I, have been
pointed out by Tanimoto and Anderson (1985), studying
the upper mantle of the whole Earth, but without absolutely
conclusive results about the proper cut-off value. When the
group-velocity distribution is computed all over the Earth,
the physical meaning of the evaluated coefficients is particu-
larly relevant in deciding the cut-off value. In this case the
coefficient 4., represents the inverse of the averaged group
velocity (Nakanishi and Anderson, 1982). Following this
interpretation, the fixed [, must involve a suitable value
of Ay in agreement with some reasonable standard Earth
model. The present application does not study the entire
domain of the Earth’s surface, and 4, has a different mean-
ing. According to Eq. (4), if we integrate this expression
over the whole Earth’s surface, only the term with n=0
and m=0 contributes to the averaged slowness. In our case,
integrating over part of the Earth’s surface, the averaged
slowness depends not only on the term with n=0, m=0
but also on higher terms which do not cancel now. We
also think that the extension of the integration over the
whole surface is meaningless, because our data are only
related to a restricted domain of the Earth. The evaluation,
in such a case, of both the cut-off value and the expansion
degree must be done at the same time taking into considera-
tion the following points:

A) The decreasing evolution of the travel-time residuals with
an increasing degree and with different /.

B) To obtain coefficient values with a reasonable behaviour
for the degree of the expansion.

C) Poor resolution in the kernels of the S.V.D. algorithm
for most of the coefficients implies a superfluous degree,
even though the residual has a good evolution. We must
bear in mind that, according to Eq. (7), the kernel resolution
matrix is defined by:
K=M"'M. (12)
The matrix K is the identity matrix if l,=0. On the other
hand, l, >0 leads to a matrix K which differs from the iden-
tity matrix. The coefficient which corresponds to the row
of the K matrix that differs from the same row in the identity
matrix has a poor resolution.

In short, the degree and the cut-off value I, arise as
a result of the minimization of the travel-time residual, the
correct evolution of the coefficients and the best kernel reso-
Iutions for most of them. With respect to the expansion
degree, it is convenient to apply a window to the coefficients.
By doing this we can remove or attenuate the ringing phe-
nomena in the group-velocity maps. This phenomenon is
very similar to that obtained when a short temporal signal
is spectrally analysed. Because of the analogy between both
situations we can use (Tanimoto and Anderson 1985) a clas-
sical Hamming window, substituting the length of the tem-
poral signal by the number of the highest degree expansion
used. If the slowness has sharp discontinuities, Gibbs phe-
nomena (Kulhanek 1976) could appear when expression (4)
is truncated. We assume that such discontinuities are not
present in the slowness. Consequently, Gibbs phenomena
will not appreciably affect the group-velocity maps.

The third and last point is the mathematical meaning
of the cut-off operation. The generation of compatible solu-
tions of linear or linearized systems of equations like (7),
as a consequence of the smallest eigenvalues, is well estab-
lished in Pous et al. (1985) and Lana and Correig (1986).
The consequences and the physical meaning in our applica-
tion will be discussed in the conclusions.

Application to the Indian Ocean

The theory and methodology developed above has been
applied to a set of experimental group velocities of the fun-
damental mode of Rayleigh waves, evaluated for the Indian
Ocean. These group velocities are obtained, after standard
instrumental correction of the records (Chandra, 1970), by
standard spectral analysis of the vertical component of the
seismic records (Herrmann 1973, 1978). These records corre-
spond to several WWSSN stations surrounding the Indian
Ocean and to earthquakes with magnitudes between 5 and
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Fig. 1. Path coverage for the Indian
Ocean. The codes correspond to the
WWSSN stations used. The numbers
correspond to the nine events from
which seismic records were obtained.
A scheme of ridges with the
Rodrigues triple junction and the
distribution of lithospheric ages in
units of million years are also
included

Table 2. Set of coefficients obtained at 15, 30, 40, 50 and 60 s, fourth-degree expansion and a cut-off

value of 0.05
15s 30s 40 s 50s 60s

Ago 0.379E+00 0.214E+00 0.219E+00 0.233E+00 0.207E+00
Ao —0.106 E+00 —0.651E—01 —0.428E—-01 —0.883E—-01 —0.728E—01
Ay 0.172E+00 0.956 E—01 0.125E+00 0.897E —01 0.877E—-01
Ao 0.184E+00 —0.675E—-01 —0.948E—-01 —0.390E-01 —0.729 E—-01
Ay —0.294E+00 —0.180E—02 —0.448E—-01 0.757E—-01 —0.135E-01
Az, —0.222E+00 —0.134E+00 —0.102E+00 —0.114E+00 —0.135E+00
Asp —0.105E+00 0.369E—02 0.136E—02 0.101E—03 0.105E—-01
Ay 0.185E+00 —0.165E—01 —0.198E—01* —0.397E-01 —0.254E—-01
Az, —0.265E+00 0.210E—01 —0.264E—01 0.505E—-01 0.113E—-01
Ass —0213E-01 —0.371E-01 —0.162E-01 —0.519E-01 —0.389 E—-01
Ao 0.134E+00 —0.445E—-01 —0.239E+00 —0.511E-01 —0.710E—-01
Aqy 0.531E—-02 0.204E+00 0.147E +00 0.606 E—01 0.683E—-01
Ags —0.130E-01 0.348E—01 0.102E+00 0.889E —01 0967E—-02
Ay —0.122E+00 —0.864E—01 —0.368E—01 —0.773E-02 —0.613E—-01
Aaa —0.908E—01 —0.356E—01 0.146 E—01 0.144E—01 —0.136 E—01
B,, 0.381E+00 0.265E +00 0.260E +00 0.274E+00 0.260E+00
B,, 0.710E—-01 —0.780E—-01 —0.317E-01 —0.116 E+00 —0.856 E—01
B,, 0.130E+00 0.117E+00 0.129E+00 0.123E+00 0.108 E+00
B, 0.268 E+00 0.100E—01 —0.790E—02 0.479E—-01 0491 E—-02
B, —0.177E+00 0.117E-01 —0.244E—-01 0.900E —01 0.221E-02
B, —0.141E+00 —0.189E—-01 —0932E-02 0.144E—-01 —0.242E—01
By 0.512E—01 —0.143E+00 —0.156E+00 —0.854E—01 —0.117E+00
B, —0.242E+00 0437E—-01 —0.848E—01 0.252E—-01 —0.189 E-01
By 0.219E+00 0422E—01 0.988 E—01 —0.766 E—01 —0.241E—-01
B,., 0.147E +00 0.861 E—01 0.112ZE+00 0.783E—01 0.710E—01

6. The events used, and their main characteristics, are listed
in Table 1. Source group delay has been neglected. The dis-
tribution of the paths in the Indian Ocean and the main
surface tectonic features are shown in Fig. 1.

Following the methodology discussed above, a suitable
expansion degree and a suitable cut-off value of 0.05 for
the S.V.D. algorithm have been fixed. The Euclidian norms
of the travel-time residuals divided by the number of paths,
at a period of 15s for the first four degrees, for instance,

are: 110.6, 101.0, 89.2, and 58.9, given in units of s%. These
residuals, computed without cut-off value, are only slightly
different from those calculated with a cut-off value. These
residuals imply an averaged difference of 9 s between the
experimental travel times and the theoretical ones evaluated
from expression (5) with the coefficients obtained solving
system (7). This averaged difference of 9 s results in an upper
limit of uncertainty in the third decimal place of the group
velocities according to Eq. (11). This assessment is a conse-
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Table 3. Set of coefficients obtained at 15, 30, 40, 50 and 60 s, third-degree expansion and a cut-off

value of 0.05
15s 30s 40s 50s 60s

Aoo 0.326 E+00 0.283E+00 0.275E+00 0.280E +00 0.280E +00
Ao —0.111E+00 —0977E-01 —0.101E+00 —0.191E+00 —0.152E+00
Ay 0.288 E +00 0.133E+00 0.224E+00 0.735E—-01 0.106 E+00
Ay —0912E-01 —0.711E-01 —0.685E—01 —0.307E—-01 —0.441E—-01
Az —0.863E—01 —0.301E-01 —0.695E—01 —0.347E-01 —0.336E—01
A, —0.600E —01 —0.110E+00 —0.624E—-01 —0.106 E+00 —0.111E+00
Aso —0.190E+00 —0.559E—-01 —0.126E+00 —0.109E+00 —0.978E—01
As,y —0.131E+00 0.541E—02 —0.881E—01 0.802E—02 —0.787E—-01
As, —0.348E—02 —0.624E—01 —0.364E—-01 —0.133E+00 —0.126E+00
Ass 0.231E+00 0.983E—01 0.162E+00 0.231E-01 0.607E—01
B, 0.339E+00 0.325E+00 0.290E +00 0.313E+00 0.315E+00
B,, —0.719E-01 —0.767E—01 —0.671E—01 —0.156E+00 —0.118E+00
B,, 0.233E+00 0.110E+00 0.183E+00 0.586 E—01 0.909E —01
B, 0.132E+00 0.679E —01 0.115E+00 0.871E—02 0.735E—01
B,, 0.542E—01 0.729 E —01 0.588 E—01 0.817E—-01 0.554E—01
Bs, —0.906E—01 0.435E—01 —0.706 E—01 0.545E—01 0.157E-01

Table 4. Graphical representation of the kernel resolution matrix
at a period of 15s, an expansion of fourth degree and a cut-off
value of 0.05. The elements of the symmetric matrix have been
reduced to values ranging from O to 10, which are proportional
to their absolute values between 0 and 1. The rows are associated,
from the top to the bottom of the table, with the coefficients 44,
Ayos - Baz, Baa
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quence of the standard deviations computed by means of
Egs. (8){10). As we can see, there is a significant decrease
in the residuals from the first to the fourth degree.

It can be seen that the errors in travel times are very
similar to the travel-time residuals of the fourth-degree ex-
pansion, by comparing pairs of travel times for similar tra-
jectories. Consequently, neglecting the anisotropy effect and
remembering the linear character of the problem, we can
assume that data residuals are of the same magnitude as
data errors. We can also compare the Euclidian norm of
the residual with the Euclidian norm of the differences be-

Table 5. Set of coefficients for a third- and fourth-degree expansion
at a period of 15 s. No cut-off value has been used. These coefficients
are very different from those in Tables 2 and 3

Ago —0.347E+02 0.715E+04
Ao —0.545E+01 0.196E +04
Ay, 0.140D +02 —0.217E+04
Ayo 0.112E +02 —0.214E+04
Ay, 0.430E +00 —0.561E+03
Ay, 0.852E+01 —0.355E +04
Aso 0.932E+00 —0.537E+03
Ay, —0.139E+01 0.181E+03
As, 0.797E +00 —0.574E+03
A, —0.122E+01 0.835E+03
Auo 0.452E +02
Ay 0.327E +02
Aq, 0.736 E +02
Aqs 0.756 E +02
Aua 0.785E +02
B, 0.346 E +02 —0.801 E+04
B, 0.441E 401 —0.188E +04
B, —0.872E+01 0.207E +04
Bs, —0.257E +01 0.714E +03
B, —0.809E—01 0.374E+03
B, —0.351E+00 0.838E +03
B, 0.112E+03
Ba, —0.381E+02
Bas 0.654F +02
B, —0.132E+03

tween the experimental travel times and those computed
for a spherical symmetric Earth such as the PREM: model
(Dziewonski and Anderson 1981). In such a way, a variance
reduction between 35% and 45% is obtained.

Tables 2 and 3 show the set of coefficients obtained for
degrees 4 and 3, respectively, for all periods as well as the
common value of [, that leads system (7) to the proper
solution. As Nakanishi and Anderson (1982) show, coeffi-
cients belonging to higher degrees are usually small correc-
tions of those calculated for smaller degrees, if great lateral
heterogeneities are missing in the medium. Tables 2 and
3 illustrate this behaviour, where some of the higher-degree
coefficients are also slightly smaller than the lower ones.
This situation could not only be the result of an insufficient
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degree of the expansion, but also due to sharp group-veloci-
ty gradients. A higher degree could be attempted, giving
smaller travel-time residuals. Table 4 shows the resolution
kernel for a fourth-degree expansion at 15 s. It can be seen
that coefficients A4,,, Bam, (m=1, ..., 4) have a very good
resolution, whereas some of the rest have a very poor one.
Through the inversion process, a decrease of the kernel
quality, when the expansion degree increases has been ob-
served. Consequently, very poor resolution for all of the
coefficients would be found in expansions with a degree
greater than four. The kernel evolution is, of course, a direct
consequence of the singularities and cut-off values. Taking
into account the restrictions discussed in the methodology,
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Fig. 2. Group-velocity map for a period
of 30 s and a second-degree expansion.
Isolines are given in units of km/s. The
numbers correspond to the events of
Table 1

Fig. 3. Same as Fig. 2, with a third-
degree expansion

an expansion of fourth degree and a cut-off value of 0.05
looks reasonable for all periods. Third- and fourth-degree
kernels are very similar. Though a third-degree expansion
would be acceptable, its travel-time fit is worse than that
associated with the fourth degree. In addition, the fourth
degree gives more detailed group-velocity maps. We can
obtain very good kernels’ with second-degree expansions,
but the corresponding group-velocity maps give an extreme-
ly simplified view of the medium.

It is important to point out that if a cut-off value smaller
than I, is used, the coefficients of the expansion lose all
their; physical meaning. Table 5 shows the wrong coeffi-
cients obtained for third and fourth degrees at a period
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of 15 s; no cut-off values has been used. Notice the unrea-
sonable jump in the coefficient values when changing from
one degree to the other. In a similar way, the unacceptable
values of the coefficients in Table 5 become evident, if they
are compared with those in Tables 2 and 3.

Figures 2 and 3, together with Fig. 4, show the group-
velocity evolution through an increasing degree of expan-
sion at a period of 30s. Figures 2 and 3 correspond to
expansion of second and third degree, respectively, and have
been computed according to the methodology discussed,
with a suitable cut-off value for each degree slightly different
from 0.05. From the set of maps at 30 s one can deduce

40°5

Fig. 4. Same as Fig. 2, with a fourth-
degree expansion

100°E Fig. 5. Same as Fig. 2, for a period of 155

that very similar features are developed by third and fourth
degrees. The second degree with a suitable [, expansion
generates the same robust features as the greater-degree
maps do, but in a more simplified and poorly detailed way.

Figures 4-8 are group-velocity distributions for the Indi-
an Ocean at periods of 30, 15, 40, 50 and 60s. All of them
correspond to fourth-degree expansions. There is a smali
evolution through the five maps where the robust common
features are a maximum group velocity near the Rodrigues
triple junction, another maximum just south of the Indone-
sian Arc, one saddle point at both sides of the central maxi-
mum and a minimum just on the Indian Coast.
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Conclusions

Using a set of group velocities computed by a standard
spectral analysis program, a methodology for surface har-
monic expansions in restricted regions of the Earth’s surface
is developed. By means of this methodology one can estab-
lish the cut-off value for the S.V.D. algorithm and the degree
of the expansion. Both the expansion degree and the cut-off

value are determined from three conditions:

1) First, the determination of the smallest travel-time

residual

2) Second, the search for expansion coefficients with

physical meaning

MUN
100°E X .
Fig. 6. Same as Fig. 2, for a period of 40 s
g
CHG <
& &
100° 4
.LEM °
g W
MUN

e Fig. 7. Same as Fig. 2, for a period of 50 s

3) Third, the retrieval of good resolution of the kernel
for a significant number of coefficients

It is relevant to point out that the combination of these
points systematizes two aspects of the paper of Nishimura
and Forsyth (1985); namely, a better treatment of the
singularities and an efficient system to define the proper
degree of the spherical harmonic expansion. This last aspect
is very important due to the fact that the easy process of
studying only the minimization of the travel-time residuals
(Nakanishi and Anderson 1982) does not always define the
proper degree.

The cut-off operation means that other compatible solu-
tions can be reached. This assertion has been discussed and
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exercised in other aspects of seismology by Pous et al. (1985)
and Lana and Correig (1986).

Coming to the specific results for the Indian Ocean, it
is important to point out the existence of the same robust
features in all velocity distribution maps. These robust fea-
tures are present in both sequences of maps shown here:
one for increasing expansion degree at a given period; the
other for different periods and a given expansion degree.
Perhaps the most relevant feature are the high velocities
near the triple junction.

Comparing the map at 30-s period with the world-wide
distribution of group velocity at the same period obtained
by Sato and Santo (1969), we find that the relevant maxi-
mum is located at the same place, but that our map is
more detailed because of better coverage over a smaller
domain. We obtain even greater similarity when a smaller
expansion degree is used, but then we lose details.

The map shown at 60 s can be approximately compared
with that of Montagner (1986) at 75 s. The similarities seen,
as in the case before, are the robust features. The minimum
in the southeast corner of the map has its correspondence
in Montagner’s map. The maximum value of our group-
velocity distribution just south of the islands of Sumatra
and Java also has its correspondence in Montagner’s map,
and the south part of our map is also in agreement. Another
minimum can be assumed in our map south of the Arabian
peninsula, which is also well define in Montagner’s paper.
A different distribution of group velocities appears near the
Indian peninsula. We think this effect is due to the poor
coverage we had for this region (Fig. 1) and perhaps also
due to the effect of the continental crust, corrected in Mon-
tagner (1986). From this last point we may conclude that
coverage is important. Another point that reinforces this
conclusion is the above discussion for the period 30 s; when
the second-degree expansion fits Sato and Santo’s maps,
but a fourth-degree expansion develops a more accurate
description.

The evolution of all the common robust features, ob-
served through the maps as we increase the period, indicates

Fig. 8. Same as Fig. 2, for a period of 60 s

good correlation between the shallow and intermediate
structure with surface tectonics down to a depth of 60 km.
This result is reinforced by a similar correlation for deeper
structures pointed out by Montagner (1986), if we bear in
mind the agreement between his map at 75 s and our map
at 60 s.

Group-velocity dispersion curves can, in fact, be inferred
from these expansions by increasing the number of periods;
one then obtains slightly different dispersion curves for dif-
ferent age regions of the Indian Ocean lithosphere. Partial
derivatives of group velocities (Rodi et al., 1975) can be used
to retrieve the shallow and intermediate lithosphere struc-
ture (depth range 10-70 km) missed by Montagner (1986),
because of the very long period he used. In this way it
will be possible to compare computed models of the litho-
sphere with the location of ridges and distribution of litho-
spheric ages. As a first step, the map at 15s shows good
correlation between 10- to 53-million-year lithosphere and
low group velocities. Regions with lithospheric age greater
than 53 million year have higher group velocities. In short,
the present paper establishes rough lines for a study which
may confirm Montagner’s lithospheric models at intermedi-
ate periods.
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