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Simple algorithms for vertical seismic profiling

in transversely isotropic media

Joseph Ha

Department of Mathematics, University of the South Pacific, Suva, Fiji

Abstract. A set of stable algorithms for the full wave synthe-
sis of vertical seismic profiles in transversely isotropic media
is presented. The algorithms are in a form suitable for imme-
diate numerical implementation. The complete seismograms
are computed from plane waves by numerical integrations
in the wavenumber and frequency domains. Compared with
algorithms for surface receivers, algorithms for vertical seis-
mic profiles require larger amount of computer memory
and take, at the most, three times the amount of computing
time to compute the various quantities needed to define
the displacement vector. The computing time for vertical
seismic profiles depends on the number of layers spanned
by the depth range of the seismic sensors. The computing
time required to compose the displacement vectors from
the overall reflection and transmission coefficients is also
greater for subsurface receivers than that for free surface
receivers. The symmetries in the reflection and transmission
coefficients for seismic waves simplify the computational
scheme and reduce the amount of computation required
for synthesizing vertical seismic profiles.
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Introduction

The application of vertical seismic profiling techniques to
the imaging of the Earth’s interior has received a lot of
attention in the past decade. It has been the subject of sever-
al books and many research papers [see, for example, Gal’-
perin (1974) and Balch (1984)]. Vertical seismic profiling
(VSP) provides additional information that may not be ob-
tainable from other types of data. VSP displays the propaga-
tion of seismic waves through the Earth in depth as well
as time. This time-depth representation is quite instructive.
It offers insights into the wave propagation properties of
the medium, as the identification of down and upgoing
waves and multiples is facilitated. For example, it is often
possible to follow the path along which the seismic pulse
propagates through the Earth to form multiples.

One major drawback of the application of VSP tech-
niques is the relative expense involved in the collection of
data. The computation of VSP is also relatively more expen-
sive compared with that for the surface receivers. The theo-
retical development in the past decade has decreased the
cost of numerical computation of synthetic seismograms.
Recently, Ha (1984a, 1984 b, 1986) presented a set of stable

algorithms for computing synthetic seismograms in isotro-
pic and transversely isotropic media that are simpler to
implement and require up to 30% fewer algebraic opera-
tions than the reflection matrix method. The algorithms
are for surface receivers only. The stability of these algo-
rithms in the numerical computation of synthetic seismo-
grams results from the non-existence of any growing expo-
nential in the computational scheme. Also, the loss of pre-
cision problem associated with high frequencies that is in-
herent in the propagator matrix approach does not occur
in these algorithms. In this paper, the algorithms of Ha
are extended to enable the computation of seismograms
for a range of receiver depths in transversely isotropic me-
dia. The extension is straightforward and forms a natural
adjunct to the algorithms for surface receivers. The incorpo-
ration of uniaxial anisotropy into the stratification does
not entail additional cost to the computation time but al-
lows both isotropic and transversely isotropic materials to
be included in the model. The solution procedure for multi-
ple receiver depths follows that of Ha (1986) for surface
receivers. The numerical examples presented there demon-
strate the validity of the solution procedure on which the
algorithms of the present paper are based. The algorithms
for computing VSPs are presented in the next section in
a form that is suitable for immediate numerical implementa-
tion.

Although our algorithms differ from those based on the
matrix method, they have certain features in common with
other computational schemes reported in the literature. Our
computational procedure for SH waves is similar to that
for acoustic waves presented by Temme and Miiller (1982,
Appendix). The greater accuracy and shorter computing

- time of our algorithms than those based on the propagator

matrix method were also noted by Temme and Miiller. The
global matrix method of Schmidt and Tango (1986) also
achieves improved accuracy and efficiency over the propa-
gator matrix method for computing synthetic seismograms
for stratified isotropic media. The algorithms of this paper
shares other important advantages with the global matrix
method. The handling of multiple sources is straightfor-
ward. The wavefields generated by multiple sources are sim-
ply superposed. It is also not necessary for our algorithms
to introduce dummy interfaces at the source depths.

Numerical algorithms

The derivation of the algorithms for multiple receiver depths
is similar to that presented in Ha (1986) except that the



displacement vectors at different receiver depths are now
required. The derivation for SH waves is presented first,
followed by the derivation for P and SV waves. For each
wave type, there are three cases to consider — the receiver
layer is above, below or the same as the source layer. Al-
though the source is normally on or near the free surface
for VSP in practice, we consider all possible source-receiver
configurations for completeness.

A cylindrical coordinate system (r, ¢, z) is used with
the origin at the free surface and the z-axis taken positive
downward. The model considered consists of n homoge-
neous, transversely isotropic (with vertical axis of symmetry)
or isotropic layers overlying a half-space. The mth layer
of thickness d,, and density p,, is bounded by the horizontal
planes z=z,,_, and z=z,,. For each anisotropic layer, five
elastic moduli ¢4, ¢33, Ce6> Ca4 and c, 5 in abbreviated sub-
scripts are required to describe the elastic behaviour fully
[see, for example, Auld (1973)]. From these elastic moduli,
we define the following parameters:

ap=)/c11/p,

«,=|/c33/p

Byr= l/ Ce6/Ps
B,= |/ C44/Ps

y=)/c13/p-

These parameters are associated with the velocities of the
three body waves that correspond to the P, SV and SH
waves in isotropic media. The velocities a,, and «, are asso-
ciated with the P waves, while 8, and f, are associated
with the SH waves. The subscripts h and v denote horizontal
and vertical propagation, respectively. For SV waves, the
horizontal and vertical velocities take the same value f,.
In the following discussion, the source is assumed to be
in layer s and the receiver in layer r of the stratification.

SH waves

In the frequency(w)-wavenumber (k) domain, the azimuthal
displacement at depth z of the jth layer can be written
as

i(e) = A, €xp (— &;2) + B, exp (&2), (1
and

- Jt PR P> 1B,

Y ik 1R, P<Up

kvjzw/ﬁvj‘

Here, p denotes slowness. The two terms on the right of
Eq. (1) represent the down and upgoing components of the
SH wavefield. In the source layer (j=s), the appropriate
source term of the form S exp[—¢&|h—z|] for a source
at depth h needs to be added to the right of Eq. (1).

Applying the solution procedure of Ha (1984a) and
working upward from the bottom of the stratification, the
following relation is obtained for layer j:

Biexp (&zj— ) =A5+Qj Ajexp (—&;z;-4), 2
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where
Di=1+r} 0}y lgj=n
Q=[ri+ 2, Jexp(—2¢;d)/D} 15jsn
0 ifj>s
[rj+ Q511 St exp [ = &2 = W] exp (=44, /D!
ifj=s
Aj= t;{szCXP[—Cj(h—Zj—1)]+A§+1}exp(_—f.éjdj)/[;‘}
Hj=s—
t4 A4,y exp(—¢&;d;)/D] f1<j<s—2

ri=(p; ﬁfj Ei—Pj+1 ﬂf,-“ Eiv /p; ﬁ.%, Eitpjra ﬁg,,, Eiv)
ti=2p;41 ﬁgj“ Eiv 1/(Pjﬁ§j Eitpi ngﬂ Eiv1):

Here, ¢ and ¢4 denote the j th interfacial reflection and trans-
mission coefficient, respectively. The superscripts u and d
indicate that the wave approaches the jth interface from
below and above the interface, respectively. S3 and S} repre-
sent the amplitudes of SH waves leaving the source down-
ward and upward, respectively. We make this distinction
to allow for possible asymmetry in the source radiation.
These source amplitudes for a point horizontal force and
for a point shear dislocation are defined in Ha (1986). From
Eq. (2), it is clear that the upgoing wave of layer j arises
from the upward transmission and downward reflection
from the stratification below layer j. When the source layer
is above layer j, the first term on the right of Eq.(2) is
absent. The upgoing wave of layer j comes from the down-
going wave that has reflected back up from interface j and
below. When the source layer is below the jth layer, the
source contribution to the upgoing wave of layer j is given
by the term Aj}.

Similarly, we obtain the following relation expressing
the downgoing wave component of layer j in terms of the
upgoing wave component from the transmission and reflec-
tion properties of the stratification above layer j:

Ajexp(—&;z)=A+Q4B;exp({;z)) 3)
where
Di=1+4r_, Q4 1<j<n
Q=[ri_+Q_Jexp(—=2¢;d)/Dj 1=5j=n
0 ifj<s
[r?—l‘*‘glf—d Sk eXP[“fj(h_Zj—x)] CXP(_é_f"ij)/D;
ifj=s
A?Z t‘}-l{Sﬁ exP[—fj—l(Zj—l—h)]*'A';q} exp(—¢;d;)/Dy
ifj=s+1
t9_y Af_, exp(—¢;d;)/D} ifj=s+2

u__ _ d
rj=—r;

ti=2p; ﬁf, Eillp; B2 i+ pjaa ﬂf,H Eiv1)

Here, r} and tj denote the reflection and transmission coeffi-
cients for waves that approach the jth interface from below
and above the interface, respectively. The term A4 is absent
from Eq. (3) if the source layer is below layer j. The downgo-
ing wave of layer j comes from the upgoing wave that has
reflected back down from interface (j— 1) and above. When
the source layer is above the jth layer, A9 gives the source
contribution to the downgoing wave of layer j.

The similarity in structure between Egs. (2) and (3) is
not surprising as the formal symmetry between upward and
downward propagation is well appreciated [see, for exam-
ple, Kennett et al. (1978) and Thomson et al. (1986)]. The
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reciprocals of DJ and D* represent infinite series of multiply
reflected and transmitted rays that interact with the stratifi-
cation below and above layer j. Q4 and Q4 are the overall
downward and upward reflection coefficients below and
above layer j, respectively. For multiple sources, it is clear
from Egs. (2) and (3) that additional source terms of the
form A* (or A% for sources present in layer j are simply
added to A4 (or A9).

In general, we have the following two relations at any
receiver depth z from Egs. (2) and (3):

Br CXp (é,Z)=/T:+§f Ar exP(‘érZ), (43)
A, exp (—¢&,2)= A7+ Q¥ B, exp (£,2). (4b)

The subscript r refers to the receiver layer. A* and 3¢ are
obtained from A* and Q¢ respectively, by replacing the
layer thickness d, in the exponential term by (z,—z). A%
and 0" are obtained from A2 and Q¥, respectively, by replac-
ing the layer thickness d, in the exponential term by (z
—z,_1). When the source and receiver are in different layers
of the stratification, A* is zero if r>s, but A? is zero if
r<s. By solving Egs. (4a) and (4b) simultaneously, we ob-
tain the following result for the azimuthal displacement at
the receiver depth z:

A1+ Q0 - . _ifr<s
B(z)= Sexp [ =& |h—z[1+[A:(1+ 2+ A1+ 2H1/00,
- ifr=s
AL+ 34/0, ifr>s
(5)
where

Op=1-G¢ Q¢

d Sy if(h—2)>0
an S“{s: if (h—2) <.

Equation (5) constitutes the VSP algorithm for SH
waves. The recurrence relations for the various quantities
involved are defined in Eqgs. (2) and (3). The relations are
in a form suitable for immediate numerical implementation.
In Eq. (5), the terms A* and A% (¢ represent the upgoing
wave components while A% and A* (* represent the downgo-
ing wave components of the SH wavefield at depth z. The
multiple interaction of the source pulse with the stratified
medium is given by the reciprocal of [],,.

P and SV waves

In the transformed domain, the horizontal (i) and vertical
(W) components of displacement for P and SV waves at
depth z can be written as follows. For P waves,

u(z)=¢,[A exp(—nz)+Bexp (nz)]
w(z)=ie,q,[A4 exp(—nz)—Bexp(nz)] (6)

where ¢,=1/)/2pq,

q,=—[B2 o*+1—p*a})/[po(y* + B2)]
o=nj/o={[—a,+(ai—4a, a0)"'*1/2a,}'?
ay=(1—p*az)(1—p*B2)

ay =0+ B2+ p*[(* + B2)* — Bt — o2 o]

a, =°‘3 ﬁf

Re(0)=0

For SV waves,

U(z)=¢,[C exp(—&z)—D exp(¢2)]
Ww(z)=ig;qs[C exp(—&z)+D exp({2)] ™

where ¢,=1/]/2pq,

v=¢/w={[—a}—4a,a0)'"*]/2a,}'"* Re(v)20

and g, is similar to g, except that ¢ is replaced by v. To
refer the above parameters to layer m of the stratification,
we shall attach a subscript m to each of them.

The derivation of the algorithm for P and SV waves
is analogous to that for SH waves except that there is now
the need to incorporate the coupling of P and SV waves
when they interact with the interface between two different
materials. For any depth z within the receiver layer, we
have the following results in terms of the reflection and
transmission properties of the stratification below layer r:
B, exp (1,2)=£2;,, A, exp (—1,2)+ 5, C, exp(—¢,2)

ppr

+ App, W'+ A5y, X5 ®)
Dr €Xp (érZ)ZQgs,. Ar €Xp (_nrz) + Qgs,. Cr €Xp (_ érz)
+ Aps, W+ A5, X5
where
depr= [r';pr +Q‘:’pr+l Rr+9gsr+ 1 S, + Q:pr+1 T+J,4y rgsr]
-Ey, Ep /47
Q:Pr = [r:pr +(Q:Pr+ 1 +Q:sr+ 1) R:k + Q:Pr+ 1 ’1—;‘* +J’+ 1 rgPr]
-Ej, Ey /4]
Qgsrzggpr
Q‘sisr= [rgsr'*'giprn Sr+Q‘s‘s” 1 Rr+Qgpr+1 Tr+Jr+ 1 r:pr]
-Ej Eq /47
u CXp [_"m(zm_—z)] m=r
bm exp(_r,mdm) m=r
o [P Cnen—2]  m=r
Sm CXP(_émdm) m=r
Ard: 1—rpp, warn — T3, Q:s” 1
_r:pr desr+ 1 _rzsr Qgp.-+ 1 + Klr‘ er+ 1
K ="pp, Tss,—T5p. Tps,
Jg*’l :S?Ij’ﬂr+1 Qgsr*l_mpr+l Q:Sr+1'

The physical interpretation of Eq.(8) is identical to that
of Eq. (2). The extra terms in Eq. (8) incorporate additional
source type and the coupling of P and SV waves. The terms
W, and X{ represent, respectively, the P and SV source
contribution to the upgoing components of the P and SV
waves. These source terms are absent if the source layer
(layer s) is above the receiver layer (layer r). The coefficients
of W and X% are defined in the following three sets of
equations. For r=s,

A;ps = Q‘:Jps eXp [ns(zs - Z)]
AlS‘Ps = Sz:ps eXp [és(zs - Z)]
A:Ss = dess €Xp [ns(zs - Z)]

A?s, = Qgss €Xp [és(zs_z)]' (9)



Forr=s—1,

ppr_[tppr o1 L +Qsdsr+1 M,] Eur/Ad
[tu +Q‘:’I’r+1L Qf’&wl "]E r/Ad
Psr_[t SPr+1N+Q§Sr+1 OJE::r/Ad
ssr_ [t:sr+Q:pr+ 1 p5r+l 0] E“./Ad' (10)
For 15r<s—2,
ppr_[Appru(tppr o1 L +Q§s M)

+A:Sr+ 1(tlS‘Pr+Q;Pr+1 L Qld’sr+ 1
N+ .. 0)

SSr+ 1

., 0 Es /47 (11)

When 1=<r<=<s—2, the recurrence relations for A5, and A
are similar to those for A%, and A}, respectively, except
that A}, is replaced by A and A by As,. Here, r,, and
t,,, denote the rth interfacial reﬂection and transmission
coefficient, respectively. The subscript xy denotes x to y
conversion. The superscripts d and u indicate that the wave
approaches the rth interface from above and below the in-
terface, respectively. These coefficients as well as the terms
R, S, T, R*, T* L, M, N and O are defined in Ha (1986,
Appendix).

The source terms W,;* and X% of Eq. (8) are defined by
the following two equations:

Sy exp [ —n,(z,— )]
W =18y exp [—n,(h—z,- )]+ 45, S exp [—n(z,—h)]
+ 43, S5 exp [ —&(z,—h)] ifr<s
S exp [—&(z,—h)] if r=s
Ss exp [ —&(h—z,1)]+ A5, S exp [—n(z,— )]
+ 4%, S exp [—&i(z,—h)] ifr<s

M) E/4;

psr_[Apprn(tppr sPr+l
u u d
+ APSr+ 1 (tssr + Qppr+ I

ifr=s

Xt=

Here, S% and St denote the scaled amplitudes of the P and
SV waves that leave the source upward, and S% and S? de-
note those that leave the source downward. These scaled
source amplitudes are defined in Ha (1986, Appendix).

The downgoing components of the wavefield of layer
r can be expressed in terms of the upgoing components
using the reflection and transmission properties of the strati-
fication above the rth layer:

A, exp (—=n,2)=2;,, B, exp (1,2)+ £, D, exp (£,2)
+ Ay, Wit A5, X{
§r2)=12, B, exp (n,2) + <%, D, exp (¢, 2)
+ A, W A5, XS 12)

C, exp (-~

where

u
PPr+1

=[ryp + 2 R4 S, +205, RF +
Edprn Pr+1/Ar+l
94 _[ sp,+7(Qpp,+le‘s,.) 7:+Q:p,. ’Tr*+J;‘ r:p,]

SPr+1
d
E3r+1 Ml/A"‘*l

Jrrss,]

Qu

psr
QL =[r +Q4, S, +Q4 R +2Q, R*+J'rs, ]

d
Esr+l Sr+1/A"+1

_Q“

spr
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pi _[FPLmmm@=z,)]  m=r
P 1exXp (=1 d,) m=+r
4 _ eXp[_Cm(Z—zm)] m=r
Sm CXP(—ém dm) m*r
Ay =1—rp, Qp, —re QU —ri, Qo
r‘ Q?,,r + K“ I
K rpp,. rgs, - r‘s,p,- ’:sr
Ju Q;p, Q’;s,. Q:pr Q;sr

The coefficients of W and X? of Eq. (12) take on similar
definitions as those of W}’ and X% of Eq. (8). They are defined
by the following three sets of equations. For r=s,

pps =5, exp [n,(z—z,-4)]
sps =, exp [{(z—z,- )]
Ad _Q:s, exp [n5(z—z,-4)]
sss sss exp [C (Z Zs 1)] (13)
Forr=s+1,
ppr_[tppr 1 gpr 1 0,-4 Q:s -1 M,_,] Edr/Au
spr_ [tspr i ppr 1 0, +str 1 M, ] E; w/Au
=[ths, 4 N+ L, 1E/A;
Ags [tss, 1 ;p,. 1 N 1 Q;S,A 1 r—l] E:,/A: (14)

Fors+2=r=n,

Or—l_Q:s,. 1 r 1)

Ppr'_[APPr .(tppr T
+ A8

SPr 1

(tsp,. ;+Q;p,,x0r41+gu Mr 1)]

PSr-1
Ed /Au
Psr [Appr 1(tPPr l+‘Qu -1 N Q's‘s, 1 r-—l)
+Adpsr 1(tssr 1 :I’r 1 r Q;Sr 1 r—l)]
-Eg /45 (15)

When s+ 2<r<n, the recurrence relations for A%, and A2,
are identical to those for A9, and A%, respectively, but
for the replacement of A%, by 4%, and A3, by Ag,. The
source terms W2 and X of Eq (12) are as follows:

Su exp[ r’s(h Zs— 1)] ifr=s
Wy =185 exp [ —11,(z,— W] + A3, Sy exp [—ny(h—z,-1)]

+ A8, 8" exp [ —&y(h—z,-,)] ifr>s

St exp [ &,(h—z,-1)] r=s

X¢=15% exp [ —&(z,—h)]+ A%, St exp[—ny(h—2z,_1)]
+ 4%, St exp [—&(h—z,_4)] if r>s.

Solving Egs. (8) and (12) simultaneously, we obtain the fol-
lowing solutions for # and w from Egs. (6) and (7):

u” /0 ifr<s
=&, Wexp [—n,|h—z[]+e, X exp[—¢, [h—z[]

+(u +u7)/0 ifr=s

ut/0 ifr>s
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w~/O ifr<s
w=1ie, q, Wexp[—n,|h—z|]+ig q, X
exp[— & |h—z[]+(W* +w ™)/ ifr=s
wt/O ifr>s
(16)
where

i =, (A" +B )+¢,(C"—D")

W™ =il[g, q, (A" —B7 )+, 4, (C”+D7)]
A =aW ™ 4+cX™

B  =aWf+bXt

C =bW™+dX"~

D™ =cWp+dX%

W=, Wr+Q:, X4

X~ =8, Wi+Qu X4

ut=¢, (A" +B")+¢, (CT—DY)
wt=ile, q,(A*—B")+¢, 4, (C*+D")]
At =aWf+c X5
B*=aW*+bX*
C*=bWf+dX%

DY =cW?*4+dX*

Wt=Q4 Wi+Qi, X%
Xt=4 Wi+Qd X5

a=1-Q, Q —Qi Q.
b= Q;pr Q:Pr + Q:pr Qgsr

€= Q:pr Q) + %, 5,
d=1— QZpr Qp— Qgpr Qp,
O=ad-bc

WTq:A:pr VV;"+A?FV . ¢
X4 =A%, Wi+ AL, X!
Wit= Ay, W+ A%, X2
7= Aps, W'+ A5, X
W={S§ %f(h—z)>0
s, if(h—2)<0

S§

X= g
Equations (16) constitutes the algorithm for computing
VSPs of P and SV waves for transversely isotropic media.
In the expressions for #* and w*, the terms B* and D*
represent the upgoing waves and the terms A* and C*
represent the downgoing waves at depth z. For #~ and
w~, the terms B~ and D~ represent the upgoing waves
and the terms A~ and C~ represent the downgoing waves.

The reciprocal of [] represents the reverberation of the
stratified medium.

if (h—z)>0
if (h—z) <0.

Discussion

In the previous section, a set of unconditionally stable algo-
rithms for computing the VSPs of P, SV and SH waves
are presented. Inverse Hankel and Fourier transforms are
applied to transform the displacement vectors back to the
time-distance domain. The algorithms of the last section
are in a form suitable for immediate numerical implementa-

tion. The source terms and the various quantities that are
required to define the recurrence relations needed by the
algorithms are presented in Ha (1986, Appendix).

The recurrence relations for Q* and ©¢ are similar in
structure, as are the recurrence relations for A* and A°
Their computation times through the stratification are thus
similar. The computation time for VSP will depend on the
number of layers and receivers in the depth range spanned
by the seismic sensors. Suppose the number of layers in
the range of receiver depths is n and that the source is
on the free surface, the values of Q¥ Q7 and A? are required
for each layer of the stratification. In the case of surface
source and surface receivers, only the value of Q¢ at z=0
is required. Although A? requires less computation time
than Q* (Ha, 1984b), A% and Q* are assumed to require
similar computation time for the present discussion. Hence,
the computation time for all the quantities required to com-
pose the displacement vectors for VSPs is roughly three
times that for surface receivers at most. It is also relatively
more expensive to compose the displacement vector at a
buried receiver from the overall reflection and transmission
coefficients than its counterpart at a free surface receiver.
Compared with computer programs for surface receivers,
computer programs for VSPs demand larger amounts of
computer memory because of the overhead involved to store
the various quantities required by Egs. (5) and (16) for all
the layers within the range of the receiver depths. In a sepa-
rate paper, these times and memory requirements in the
numerical implementation of our algorithms will be dis-
cussed in more detail together with some numerical exam-
ples. The symmetry between upward and downward propa-
gation reduces the number of parameters required to define
the recurrence relations. The symmetries of the reflection
and transmission coefficients reduce the number of recur-
rence relations required to define the displacement vector.
These reductions translate to shorter computation time for
synthesizing VSPs.
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