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Canonical decomposition of the telluric transfer tensor
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Abstract. This paper presents an analysis of the telluric
transfer tensor T based on canonical decomposition, which
explicitly displays the structural components of the tensor
in the form of eight physically motivated scalar parameters
and, hence, provides a complete specification of the informa-
tion embodied in T. These canonical telluric parameters
provide the proper framework for the interpretation, identi-
fication and discrimination of the geoelectric contributions
to the telluric response from all the various dimensional
conductivity structures. For a strictly two-dimensional (2-D)
geoelectric structure, only five of the canonical parameters
are relevant and this fact provides the motivation for the
development of a procedure for the separation of the 2-D
and 3-D structural contribution to T. This separation proce-
dure consists of two steps: firstly, a normal telluric tensor
Ty is extracted from T based on the optimization of an
appropriate cost function; and secondly, the complex input
(or output) principal coordinate frame for Ty is computed
by canonical decomposition and a real coordinate frame
consisting of linearly polarized basis states is chosen so as
to approximate this principal complex frame in an optimum
fashion. Finally, the canonical decomposition of the mag-
netic transfer matrix is derived and its utilization for the
identification of the geoelectric strike and dip directions
for near 2-D structures is considered.

Key words: Telluric mapping method — Telluric transfer ten-
sor — Canonical decomposition — Magnetic transfer matrix
- Induction vector — Structural dimensionality

Introduction

The telluric mapping method (Yungul, 1966) is based on
the relationship between the tangential components of the
natural electric field measured simultaneously at two sepa-
rated locations on the surface of the earth. Two transverse
(1, 2) and (1, 2') Cartesian coordinate systems are chosen
at the fixed base station (O) and the roving satellite station
(0’) for the measurement of the electric field. We will use
the standard Dirac bra-ket notation whereby the vectors
of a Hilbert space over the complex numbers are denoted
by kets, |a), and the vectors of the dual space by bras,
{b|. To make the connection with the usual vector notation,
we note that the components of the ket |a) in some chosen
representation can be arranged into some column vector
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a, whereas the components of the corresponding bra {a|
in the same representation can be arranged into a row vec-
tor a', where 1 denotes Hermitian transposition. In this no-
tation, the bra-ket product {alb) can be expressed as the
scalar product of the row vector a' and the column vector
b corresponding to <a| and |b), respectively, so <{alb)
=a'-b=) a}¥b;, where a; and b, denote the (complex) com-
i

ponents of a and b and *denotes complex conjugation. Now,
for a vertically incident monochromatic plane-wave source
field, the coupling between the transverse electric fields ob-
served at O and O’ can be represented by the following
linear relationship (cf. Fig. 1):
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where |Ej ,) and |E$. ,.) are the base and satellite ket vec-
tors, respectively, whose elements (phasor components) are
the complex electric field amplitudes measured with respect
to the sensor coordinate systems (1, 2) and (1, 2'). Here,
T is the telluric transfer tensor which characterizes the
transfer properties of the earth system coupling the O to
O’ channel. For the assumed source (primary) field, the ele-
ments of the telluric transfer tensor depend upon the electri-
cal conductivity characterizing the internal structure of the
earth system, the coordinate systems used to measure the
electric fields at the base and satellite stations (which need
not be the same), the frequency at which the measurements
were made and the relative positions of the base and satellite
stations on the earth’s surface.

The telluric transfer matrix T can be expressed in terms
of the identity matrix and the three Pauli spin matrices
as follows:
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Since these basis matrices are trace-orthogonal [i.e.
tr(Y,Y,)=24,, where §,, denotes the Kronecker delta func-
tion], the expansion coefficients of Eq. (2) may be computed

as T,=tr(T X,)/2 (v=0, 1, 2, 3); more explicitly, these coeffi-
cients are given by

To=(Ty 1+ T5,)/2, (3a)
T, =(Ty 2+ T2 1)/2, (3b)
L=i(T,.,—T51)/2, (3¢0)
and

L=(Ty,—Ts.,)/2. (3d)

We note that T, and T, are rotationally invariant parame-
ters, viz. they are invariant under the rotation transforma-
tion of T

o (Ta®) T )
T0=(r ) 1) ROTRC 4

where

R(J)=cos y r0+isin.//r2=( (4b)

cosy  siny
—siny cosy
is the rotation matrix associated with a counter-clockwise
rotation through angle y about the vertical z-axis. Similarly,
T, and T, are ellipticity invariant parameters, viz. they are
invariant under the ellipticity transformation of T

. (T Ti5(R)
T(A):(szl(l) TZ,Z(A))=P(_A)TP(A)’ (5a)
where

. cosld isinA
P(l):cosil’b%—ismln:(isinl cosi) (5b)

is the ellipticity matrix for angle A(Ae[—mr/4, n/4]). The
physical significance of rotation and ellipticity transforma-
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Fig. 1. The relevant components of the telluric
mapping method. |E} ,> and |E5. ,.> are the
base (input) and satellite (output) electric field
ket vectors (vector phasors) sensed with
reference to the transverse Cartesian
coordinate systems (1, 2) and (1, 2) at points
O (fixed base station) and O’ (roving satellite
station). These vector phasors are linearly
related through the telluric transfer tensor T
which characterizes the transfer properties of
the earth system

tions, particularly as it would relate to the polarization char-
acteristics of the base (input) and satellite (output) electric
fields, is discussed in greater detail in Yee and Paulson
(1987).

It is important to be able to relate the structure of T
to the dimensionality of the associated conductivity distri-
bution. In particular, we note that for a two-dimensional
(2-D) conductivity structure, there exists a real angle Y,
such that the rotated telluric transfer tensor T'(y) [cf. Eq.
(4a)] assumes a diagonal form, viz.

Ti(Yo) O )>'

Two=(""0" 1,0, ©

In writing Eq. (6), we have implicitly assumed the parallel-
ism of the sensor coordinate systems (1, 2) and (1, 2') for
the base and satellite stations, respectively. Now, for 2-D
geoelectric structures, the principal frame of reference (s,
d) is defined to be that frame whose axes are aligned with
the strike-dip directions for the structure (viz. with the prin-
cipal structural axes). This principal frame can be obtained
from the sensor coordinate frames (1, 2)=(1’, 2') by a pure
rotation operation through some azimuthal angle Y =y,.
Furthermore, for a true 2-D structure, the corresponding
telluric transfer tensor is symmetric, so T, = T,,. Continu-
ing along this vein, it is straightforward to show from
Egs. (3) and (4) that for a telluric transfer tensor correspond-
ing to some 2-D conductivity structure, the value of Y =y,
that results in the diagonal form of Eq. (6) is determined
from

tan 2y, =T,/ Ts, )]

where T, and T are defined as per Eq. (3b) and (3d). Al-
though Eq. (7) permits the determination of the principal
axes of the 2-D structure, there is still a +7/2 ambiguity
in the identification of the strike and dip axes which can
be resolved by a consideration of the magnetic transfer func-
tions as will be shown later.

It should be noted that in the S-frequency interval,
where the telluric fields essentially behave as DC fields, the
elements of the telluric transfer tensor are real and indepen-
dent of the frequency. In this particular frequency range,
it is well known that for 2-D conductivity structure, the
major and minor axes of the ellipse of polarization for the
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output electric field vector phasor at the satellite station
coincide with the principal structural axes (i.e. the strike-dip
direction). In addition, the azimuth ¥, of the major axis
of this polarization ellipse relative to the fixed measurement
axis 1=1' can be computed from the relation (Berdichevsky,
1960; Iliceto et al., 1986)

T11T21+T12T22= T,
TA+Th—g T3+ T12+T32’
where

g=L/2-)/L'/4—-J>?, (8b)

tan Y, = (8a)

P=T4+ThH+ T+ T5, (8¢)
and
J=det(N)=T, T,,— Ty, T);. (8d)

It should perhaps be noted that Eq. (8a) provides the same
principal frame of reference (s, d) for 2-D conductivity struc-
tures (i.e. the same longitudinal and transversal directions
for the structure) as that determined from Eq. (7). Finally,
we remark that for the telluric mapping method, the Jaco-
bian J [cf. Eq. (8d)] has traditionally been the only parame-
ter to be utilized in the interpretation of telluric anomalies,
usually being displayed in the form of iso-J contour maps
(Yungul, 1968). Recently, however, Iliceto and Santarato
(1986) have used other parameters such as |Ty;(¥,)l,

arg [T7, (o)), etc.

Canonical decomposition of the telluric transfer tensor

The extraction of informative telluric parameters from the
telluric transfer tensor can be solved systematically by the
application of canonical decomposition to T. This decom-
position, which was originally developed for the analysis
of the magnetotelluric (M T) impedance tensor (Yee, 1985;
LaTorraca et al,, 1986; Yee and Paulson, 1987), provides
a structural representation for T in the sense that it explicitly
exhibits the tensor in terms of eight physically relevant sca-
lar parameters that are useful for the interpretation of tellur-
ic anomalies as well for the assessment of structural dimen-
sionality. Canonical decomposition permits the logical defi-
nition of intrinsic or principal coordinate systems for both
the input (base) and output (satellite) electric field spaces
in a totally natural fashion without the need for any a priori
information concerning the dimensionality of the geoelectric
structure from which T was derived.

From a purely mathematical point of view, the canonical
decomposition for T possesses exactly the same form as
that for the MT impedance tensor. Indeed, since the transfer
characteristics for the earth system coupling the base with
the satellite stations are modelled as a two-input and two-
output linear multichannel system with the transfer matrix
TeC?*?, the telluric transfer tensor thus admits to the de-
composition (cf. Yee and Paulson, 1987)

T=UZV %a)
where
oy exp(iy,) 0
= ), 9b
( 0 azexp(wz)) ©b)

cos(6,)

U=(luy)|uy)) =<exp(i¢s) sin(6)

—exp(—igy) sin(6)
cos(6,) )’(9 °

and

cos(6,)

B —exp(—igy) sin(6y)
V=(|01>|1’2>)=<exp(i¢b) sin(6,) )

cos(0,)]"

©d)

The parameters in this decomposition are constrained as
follows: 0:7 ebe[o’ 7.5/2]’ ¢s’ d)be(_ns 7[]’ Y15 )’ze(—”a 7(],
and 0<o,=<0,;. We emphasize that all these parameters
are to be interpreted as functions of the frequency w. It
is possible to explicitly express the eight canonical parame-
ters that emerge from this decomposition in terms of the
elements of T as follows:

1) The singular values or principal telluric gains ¢; and
g, of T can be computed from

ot =3 TIF+{GITI7?—|det(T)*}'/? (10a)
and
o3 =3ITIF—{G ITIF?—|det(T)]*}'2, (10b)
where
ITIr=(T01* +| Tpal? +1 Ty |2+ T2 )2

=[tr(T'T)]/? (10c¢)

is the Frobenius norm of T and det(T) is the determinant
of T, represented by J in Eq. (8d).

2) The polarization parameters 6, and ¢, which charac-
terize the principal base (input) electric field polarization
states are determined from

| Ty T+ Ty TS|
tan(0,)= (11a)
b U%_(|T12|2+|T22|2)
and
op=arg(T,; T5 + T, T55). (11b)

3) Finally, the polarization parameters 6, and ¢, which
specify the principal satellite (output) electric field polariza-
tion states and the principal telluric phases y, and y, are
given by

T cos(0,) + T, exp(i @) sin (Gb)|

@00 = | oS @) T Tr; oxp (i) sin (@) (122)
y1=arg[ Ty, cos(8,)+ Ty, exp(i¢,) sin(6,)], (12b)
¢ =arg[T,, cos(6,)+ T,, exp(id,) sin(6,)] — 74, (12¢)
and

y,=arg[T,, cos(8,) — T,, exp(—i¢,) sin(6,)]. (12d)

If the base electric field is measured with reference to
the orthonormal (generally elliptic) basis states |v,> and
|v,)> [i.e. with reference to the principal base polarization
states determined as per Eq. (9d)] so

E?
B8 > = Lo+ EL o) =( ).

2,

(13a)

and if the satellite electric field is measured with reference
to the orthonormal (generally elliptic) basis states |u,;> and



|u,> [i.e. with reference to the principal satellite polarization
states determined as per Eq. (9¢)] so

'S

E;,
B2 > = Eain) + Exluny = ), (13b)

then the telluric transfer matrix referred to these input and
output vector frames assumes the simple diagonal form

o, exp(iyy) 0 )
Tp=X= . , 13¢
P ( 0 d,exp(iy,) (13¢)
viz.
|ES, > =TplES, 4> (13d)

The diagonal elements of T, determine the principal telluric
transfer functions (i.e. principal complex transmittances be-
tween the base and satellite stations) for the earth system.
In particular, the moduli (or principal gains) of these
transfer functions (i.e. g, and g,) correspond to the maxi-
mum and minimum electric field intensity transmittances
between the base and satellite stations, where intensity
transmittance is defined as the ratio of the output wave
intensity (or power) to the input wave intensity, viz.

(E’|E*) <E"|T'TI|E")
CE’|E®)  (E°|E®)

R= (14)

It is of interest to note that the input polarization states
|v;> and |v,) (characterized by the polarization parameters
0, and ¢,) which result in the maximum and minimum
intensity (power) transmittances between the base and satel-
lite stations, respectively, are orthogonal; and these input
polarization states produce the output polarization states
|uy> and |u,) (characterized by the polarization parameters
0, and ¢,) which are also orthogonal.

We note that if the polarization form of an arbitrary
polarization state

|p>=(§;)=(exp(ci(:;)(fi)n(e))

is characterized by the complex polarization ratio

P=p,/p, =tan(f) exp(i¢),

then it is straightforward to show that the azimuth y [y [0,
n)] and the ellipticity angle A [Ae[ —n/4, n/4]] of the asso-
ciated ellipse of polarizations is given by (Yee, 1985)

(15a)

2Re(P)

tan2l/l=1_—lpl~2—=tan29cosd) (15b)
and

g 2m®) s
Sin 4=y =sin sin ¢. (15¢)

In terms of the elliptic parameters ¥ and A, the canonical
decomposition for T displayed in Eq. (9a) may be expressed
alternatively as

T=R(,) P(4,) ZP(— ) R(— ), (16a)
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where .
5_ [o1exP(i71) 0
2= . 1

( 0 02 exP(’)’z)) (16b)
with
T1=71—(S— &), (16¢)
’}72='y2+(€s_£b)’ (16d)
¢ =arg(cos Y, cos A,—i sin Y, sin A), (16¢)
and
&, =arg(cos ¥, cos A, —isin ¥, sin 4;). (16f)

In Eq. (16a), R(y) and P(4) are the rotation and ellipticity
operators defined in Egs. (4b) and (5b), respectively, and
(s, 49 and (Y, 4,) are the elliptic parameters corresponding
to the polarization parameters (6, ¢,) and (6,, ¢,) computed
in accordance with Eq. (15b) and (15¢). Notice that, in gen-
eral, both rotation and ellipticity transformations on T are
required in order to obtain input and output coordinate
frames in which the telluric transfer tensor assumes a simple
diagonal form. It should be noted that polar diagrams of
the elements of T are frequently constructed as a function
of the azimuth (rotation) angle ¥ to aid in the interpretation
and classification of telluric anomalies. However, the canon-
ical decomposition of T expressed in Eq. (16a) implies that
in order to characterize optimally the dependence of the
telluric anomalies on the polarization forms of the base
(input) and satellite (output) electric fields, it is necessary
also to construct polar diagrams for the elements of T as
a function of the ellipticity angle 4. An examination of the
polar diagrams as a function of both { and 4 would enable
the interpreter to specify the characteristic (optimal) polar-
izations at which the telluric anomalies are most revealing
and distinctive. It is important to point out that the princi-
pal telluric gains ¢, and o, are independent of the polariza-
tion forms of the input and output electric fields and, conse-
quently, these telluric parameters contain information per-
taining solely to the intrinsic properties of the geoelectric
structure.

For the most general 3-D conductivity structure, the
eight canonical parameters o,, y;, 0,, Y2, 05, ¢,, 0, and
¢, provide a complete specification of the telluric transfer
tensor in terms of physically meaningful scalar parameters.
These parameters can be used for the identification, discrim-
ination and classification of the geometry and the nature
of telluric anomalies. In particular, we note that for 2-D
structures, the principal base and satellite basis states em-
bodied in V and U, respectively, are linearly polarized and
aligned with each other; in particular, these principal basis
states are linearly polarized along the strike and dip direc-
tions of the structure. This implies that 6,=0, and ¢,=¢,
(i.e. the input and output principal states are aligned or
parallel with each other) with ¢,=¢,=0 or = (i.e. the input
and output principal states are linearly polarized). Hence,
a 2-D structure is characterized by five canonical parame-
ters, namely o4, y,, 05, y, and 8,=60,=0,. Note that Y, =0,
determines the angle through which the measurement (Car-
tesian) coordinate system (1, 2)=(1’, 2') must be rotated
in order to be aligned with the strike-dip (s, d) coordinate
system. Of course, there still remains the problem of a +7/2
ambiguity in the determination or identification of the strike
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and dip axes for the geoelectric structure. However, this
ambiguity can be resolved if we have available additional
information in the form of the magnetic parameters, as
shown in the Appendix. In light of this discussion, it is
important to emphasize that for 2-D conductivity struc-
tures, the canonical decomposition of T yields the same
parameters as those extracted in the conventional analysis
of T (Iliceto et al., 1986) based on the coordinate rotation
properties of the tensor.

Furthermore, it is of interest to note that since the ele-
ments of T in the S-frequency interval associated with a
2-D structure are real with T;,=T,,, Eq. (11a) obtained
from the canonical decomposition of T is identical to Eq.
(8a) which was originally derived by Berdichevsky (1960)
by an alternative method. In particular, to verify the equiva-
lence between Eqs. (8a) and (11a), it is necessary to observe
that [cf. Eq. (10a)—(10c)]

(TP +I T — o3 =01 —(| Ty I* +] T ).

Finally, we note that canonical decomposition of the
telluric transfer tensor for general 3-D conductivity struc-
tures provides eight scalar parameters that embody all the
information contained in T. The parameters are more amen-
able to physical interpretation than any of the individual
elements of T per se and, conceivably, they can be associated
with certain features in the underlying conductivity struc-
ture. Indeed, since these canonical parameters embody in-
formation concerning the polarization transforming proper-
ties of the earth in its base and satellite electric field polariza-
tion states as well as information relating to the input-out-
put behaviour (i.e. transfer characteristics) in its principal
telluric transfer functions, they are diagnostic of the earth’s
subsurface conductivity distribution. Undoubtedly, the sig-
natures provided by the canonical parameters can conceiva-
bly be employed to classify and characterize certain 3-D
features in the conductivity distribution and, hence, may
improve the interpretation of telluric data in the presence
of 3-D distortions. However, before this can be done, it
is necessary to undertake numerical and analog modelling
as well as empirical studies of 3-D conductivity structures
with the specific objective of studying how the behaviour
of the canonical parameters is determined by the nature
of the conductivity distribution. Hence, although the canon-
ical decomposition of T provides a rigorous mathematical
construct for studying the telluric tensor, modelling and
empirical studies will be required in order to provide an
understanding of the physical processes involved, particu-
larly as it relates the nature of the conductivity distribution
to their signatures as embodied in the canonical parameters.
There is little doubt that such studies would significantly
increase the potential of canonical decomposition as it re-
lates to the inversion and interpretation of telluric data.

Separation of 2-D from 3-D structural components in T

Since the telluric mapping method has been primarily ap-
plied to the exploration of dipping sedimentary structures
(i.e. geological structures which for the most part are charac-
terized by geoelectric inhomogeneities that are elongated
in some direction), the usual practice has been to interpret
the telluric response in terms of 2-D conductivity models
(Iliceto et al., 1986; Iliceto and Santarato, 1986). Indeed,
the inversion and interpretation of telluric data have almost

invariably been undertaken with reference to 2-D conduc-
tivity models since an extensive 3-D interpretation is usually
deemed too computationally expensive and perhaps too ex-
travagant given the quality and paucity of most data sets.
In view of this, we will restrict our attention to telluric
tensors that arise from comductivity structures that are
dominated by a 2-D component on which is superimposed
distortions or perturbations due to certain smaller 3-D con-
tributions. Conventionally, the principal structural axes for
quasi or near 2-D structures have been determined from
the horizontal rotation properties of T with the assessment
of the degree of influence from 3-D structural components
being characterized in a somewhat semi-quantitative man-
ner by the skewness parameter defined as

_|T12_T21|

Svi’
[Ty 1+ Tsl

which provides an immediate assessment of the 3-D distor-
tion of the purely 2-D situation. Of course, S vanishes for
strictly 2-D structures. Accordingly, for quasi 2-D conduc-
tivity structures with S small (say, S <0.20), we remark that
for the purpose of interpretation with 2-D forward model-
ling studies, it is perhaps more desirable to effect a separa-
tion of the 2-D and 3-D structural components from T
and utilize only the 2-D component of the tensor in the
construction of 2-D models.

Towards this primary objective, we consider the decom-
position

T=T,+4, 17)

where T, is that part of T due to the contribution from
the strictly 2-D structural component and 4 is that part
of T arising from the 3-D geoelectric component. Of course,
the latter contribution is viewed as a perturbation or noise
in the ensuing analysis. If T, is the result of a strictly 2-D
geoelectric component, then, as already indicated in the pre-
vious section, its canonical parameters verify (1) 04 =04 and
¢ =¢i! and (2) ¢ = ¢71 =0 or n. Perhaps it should be noted
that there exist certain 3-D conductivity structures (e.g.
those which possess a vertical plane of mirror symmetry)
whose telluric tensors result in canonical parameters that
verify these two conditions, but we remark that this situa-
tion is rather exceptional and, consequently, conditions (1)
and (2) can be considered to be necessary and sufficient
conditions for two-dimensionality when taken from a purely
practical or operational point of view. From this practical
vantage point, we note that condition (1) implies that T,
commutes with its adjoint T} so T, T,=T, T}, viz. T,
is a normal matrix. This condition ensures that the principal
input (base) and output (satellite) polarization states are
aligned or parallel in the unitary (i.e. complex inner product)
polarization space. We note that parallelism of polarization
states in the unitary space requires the corresponding el-
lipses of polarization to possess identical azimuths and ellip-
ticities. Furthermore, condition (2) implies that the input
and output principal states are in fact linearly polarized
so that the alignment (parallelism) between these states is
actually maintained in real space. This development sug-
gests that we can isolate the 2-D structural component from
T (i.e. T,) using the following two-step procedure. Firstly,
the normal matrix Ty that best approximates T is extracted
and, secondly, the linear polariztion states that best approx-
imate the input (or, equivalently, output) principal polariza-



tion states of this normal matrix are then obtained and
used to construct T ,.

To begin with, let us consider the problem of extracting
the best normal matrix approximation for T. To quantify
‘best’, we consider the matrix Ty that best approximates
T to be the one that minimizes the 2-norm (Golub and
Van Loan, 1983) of the perturbation matrix A, viz. T, mini-
mizes the cost function

e= 141, =IT—Tylly=0ma(4), (18)

where ¢,,,,(4) denotes the maximum singular value of A
and Ty is a member of the set consisting of all normal
2 x 2 matrices. A cautionary remark is in order here. This
minimization problem does not possess a unique solution,
and in the ensuing development we show how to construct
one possible normal matrix which solves the problem.

The solution to the minimization problem can be ob-
tained relatively easily from a purely geometric point of
view. To this end, let us define the real and imaginary com-
ponents of T as

Tr=(T+T7)/2 (19a)
and
T,=i(T=T"/2, (19b)

respectively. Notice that these two component operators
are Hermitian and determine a Cartesian decomposition
for T as T=Tx+iT;. Let ty=>t% and tj =7 be the eigen-
values of T, and T, respectively, and observe that the nor-
mal matrix

i
T,b:TR+§(z}+c%)l (20)

results in an error of approximation g, =(t} —tZ)/2. This
is easily verified by computing the perturbation matrix given
by

i
A1=iT,—§(r} +tH1

and determining the maximum singular value. More impor-
tantly, the normal approximation of Eq. (20) can be en-
dowed with a geometric interpretation as follows. As de-
picted in Fig. 2, the normal matrix given by Eq. (20) can
be associated with a rectangle in the complex plane with
corners determined by the points th+it}, th+it?, th+it}
and t +it? which inscribe the ellipse N R(T), where

NR(M={{x|T|x>eC:|x>eC? {x|x>=1} (21)

is the numerical range of T (Gantmacher, 1959; Donoghue,
1957). Observe that the sides of this rectangle are parallel
to the real and imaginary axes, touching the ellipse at four
tangential points of contact, and that the error of approxi-
mation in choosing the normal matrix of Eq. (20) is equal
to one-half the length of the side of the rectangle parallel
to the imaginary axis.

It is clear from Fig. 2 that the smallest error of approxi-
mation of T by a normal matrix is associated with that
rectangle which inscribes N R(T) and whose sides are paral-
lel to the major and minor axes of the ellipse; and the
error associated with this approximation is then equal to
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Fig. 2. Two rectangles that inscribe the ellipse corresponding to
the numerical range of T. These rectangles are associated with two
possible normal matrix approximations for T

one-half the length of the minor axis of the ellipse. This
rectangle is delineated by dashed lines in Fig. 2. The normal
approximation to T associated with the dashed rectangle
is easily obtained by rotating T by an angle - a, so that

T=Tr+iT,;=exp(—iay)(Tg+iT), (22a)
where

Tr=Tp cos og+ T, sin (22b)
and

T,= —Tgsin oy +T; cos o (22¢)

are the real and imaginary components of T, respectively.
The normal approximation of Eq. (20) is then applied to
T to form

_ _ i_
Ty=Te+5( +iD)]1, (224d)
where i >t} are the eigenvalues of T;, and finally T} is
rotated back by the angle «, with respect to the real axis

in C to form the required optimal normal matrix approxi-
mation as

Ty=explicy) Th. (22¢)

Here a, denotes the angle that the major axis of the ellipse
N R(T) forms with the real axis. In light of the fact that
eigenvalues ¢, and ¢, of T lie at the foci of N R(T) (Don-
oghue, 1957), it is straightforward to compute explicitly this
angle as

_ [ det(T7)
wo=arg(t, —t;)=arg (1 @(_T_—”),

where

(23a)

T-=T—1tr(T)L (23b)
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Having obtained a required normal matrix Ty [cf. Eq.
(22¢)] that approximates T optimally, it remains to deter-
mine the linear polarization states that constitute the best
approximation to the input (or, equivalently, output) princi-
pal polarization states of Ty. If the canonical decomposition
of Ty is written as

TN=UN£NUITV’ (24a)
where
o} exp(iy}) 0
Iy _( 0 oY exp(iyy )) (24b)
and
_ cos(fy) —exp(i¢y) sin(Oy)

Un= DI~ iamysine  coslty )
(24¢)

then we are required to find

L=~y ooy ) (3)

such that the linear polarizations |l;> and |l,) are most
closely aligned (parallel) to |u}) and |u}), respectively, in
the unitary polarization space. To this end, let us first recall
that the degree of alignment (parallelism) between two ket
vectors |x) and |y) can be characterized by the angle y
between these vectors defined as

cos x = Kx|yl/|/ <x1x> {yly).

In view of this, let us introduce the measure of alignment
between the two pairs of polarization states (|/, >, |uY») and

(112>, 1u3>) as

AT G
'{|<11|u9>|2 *

[l luz >l } (26)

KL >

Now, we need to compute the value of =y, that maxi-
mizes K. Insertion from Egs. (24¢) and (25) of the definitions
for |I,> and |uf »(k=1, 2) into Eq. (26) and evaluation of
dK/dy =0 leads to the result

tan 2y =tan 20y cos ¢y. 27)

Comparing Eq. (27) with Eq. (15b), we conclude that the
linear polarization |/, that is maximally aligned with |u})
in the unitary polarization space is oriented in real space
in a direction parallel to the major axis of the ellipse of
polarlzatlon of [u}>. Finally, the 2-D structural component
of T is given by

T, =L¥o) ZvL'(¥o) (28)

with Xy computed according to Eq. (24b) and vy, deter-
mined as per Eq. (27).

Notice that the separation procedure developed above
extracts the 2-D structural contribution from T at a single
frequency. In some applications it may be desirable to gen-
eralize the procedure to extract the 2-D component that
is applicable over a number of frequency points. In other

words, we need to determine one regional principal coordi-
nate system (characterized by the azimuthal elliptic parame-
ter o) that is valid over some specified frequency range.
It should be remarked that the azimuthal parameter Y,
is independent of frequency for true 2-D geoelectric struc-
tures. To develop a multi-frequency generalization of the
separation procedure, we consider the maximization of the
new cost function

Kyl (@)1
Z [|<11|u2 Yanl |

|<lzlu’zv(wk)>lz]}
I<E |} (>

Here, |u} (w,)) and |u} (w,)) refer to the principal input and/
or output polarization states extracted from the canonical
decomposition of the normal approximation Ty(w,) [cf.
Eq. (27)] of T(w,) at frequency w,(k=1, 2, ..., N). The sca-
lars W (k=1, 2, ..., N) are positive weights chosen a priori
to pre-emphasize the telluric response at certain frequencies.
Maximization of K with respect to ¥ leads to the following
expression for the orientation of the regional strike-dip
structural axes with reference to the fixed measurement or
sensor axes:

i W, sin [2 6y (w,)] cos[py(wy)]
tan 2yo="— N : (29)
Z cos[20y(wy)]

Observe that Eq. (29) is the multi-frequency generalization
of Eq. (27).

A numerical example

Consider the ideal telluric transfer tensor
0.325+2.25i

T _( —0.2251/3—0.71/31')
"\ l0225)/3-0.7)/3i ’

0.775+2.75i

referred to Cartesian coordinate systems (1, 2)=(1’, 2') rotat-
ed 30° (n/6 radians) with respect to the strike-dip coordinate
system of some 2-D geoelectric structure. In particular, the
principal telluric transfer functions are Ty,(n/6)
=2.0025 exp(i87.137°) and T;,(n/6)=3.16228 exp(i71.565°).
Now suppose that the 2-D structure is contaminated and
distorted by certain 3-D structural contributions and that
the measured telluric tensor for the total contribution of
2-D and 3-D geoelectric components is given by

—0.025)/3-0.5)/3 i)

(0275423
( 0.805 +2.81

\-0425)/3-09)/3i

First, we note that the skewness parameter for T has
the value $=0.188. For the purposes of comparison, we
note that the application of a conventional rotation analysis
of T [ie. the determination of the rotation angle ¥ =y,
that minimizes the quantity Q =|T{,()|*> +|T5, (¥)|? in anal-
ogy to the equivalent condition utilized in magnetotelluric
analysis (Vozoff, 1972)] yields a principal axis direction of
Yo =7.156°. The principal telluric transfer functions can be
obtained using Eq. (4) with Y=y, and give T{,(¥,)
=2.635exp (i81.72°) and T;, () =2.589exp (i74.30°).



Computation of the canonical decomposition of T re-
sults in the following values for the canonical parameters
[cf. Egs. (9)-(12)]: ¢,=3.978, y,=82.105° o0,=1.323, y,
=76.535°, 6,=56.15°, ¢,=163.59°, 0,=46.838° and ¢,
=172.27°. Observe the 3-D structural contribution is ex-
pressed by the fact that the principal base and satellite po-
larization states are neither aligned (i.e. 6,6, and ¢,=+ ¢;)
nor linearly polarized (i.e. ¢, ¢, +0° or 180°).

Now, we proceed to apply the separation procedure de-
scribed earlier to effect a separation of the 2-D and 3-D
structural components from T. To this end, the real and
imaginary components of T are

~ 0275 —0.3897+0.3464i
TR‘<—0.3897—0.3464i 0.805 )
and

. 23 121203464
1_(— 1.21240.3464 28 )

whose eigenvalues are th=1.125, t3=—0.0449 and t}
=3.835, t7=1.265, respectively. Since the eigenvalues of T
are t; =3.8512exp(i76.65°) and t,=1.3663 exp(i82.0°), the
major axis of the ellipse N R(T) is oriented at oy =73.708°
[cf. Eq. (23a)] with reference to the real axis. Hence, the
real and imaginary components of the rotated telluric tensor
T=exp(—iony) T can be computed [cf. Eq. (22b) and (22¢)]
as

2.285

TR:(- 1.273+0.2353i

—1.273-0.2353i
2913 )

and

0.3813

Ti= (0.03394 +0.4297i

0.03394—0.4297i
0.0128 )

with eigenvalues given by t%=23.931, tZ=1.267 and t}
=0.6658, t7 =0.2717, respectively.

With this information, the best normal matrix approxi-
mation can be computed and is found to be

—0.5830—1.1559i

T 0.451842.2483i
N_( 0.6282+2.8517i

—0.1313—1.2880i>

The canonical decomposition for Ty can now be computed
to yield the following parameters [cf. Eq. (24)]: o} =3.936,
yY=76.58°, o5 =1.282, y¥=8255° 6y=51.825° and ¢y
=169.53°. The direction of the principal structural axes can
be determined using Eq. (27) and is found to be o, =38.1°.
Note that this value for y is closer to the true value of
30° than the one obtained using the conventional rotation
analysis.

Conclusions

Canonical decomposition can be applied to the telluric
transfer tensor to provide a complete set of eight physically
motivated scalar parameters that can be used for the assess-
ment of structural dimensionality as well as for the interpre-
tation and classification of telluric anomalies. Indeed, can-
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onical decomposition provides a rational basis for the inter-
pretation of T by 3-D models since this analysis provides
a complete specification of the tensor. Motivated by the
form of the canonical decomposition for T arising from
strictly 2-D geoelectric structures, we have developed a two-
step procedure for the separation of 2-D from 3-D structural
components in T. This is useful since, at present, only 2-D
forward models are utilized in the interpretation of telluric
data so that the separation procedure provides a means
for the removal of distorting 3-D effects from the data prior
to its submission to the interpretative phase.
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Appendix

Determination of strike and dip directions:
a canonical decomposition approach

Canonical decomposition of the telluric transfer tensor per-
mits the definition of a principal coordinate system for arbi-
trary geoelectric structures. However, for near 2-D struc-
tures, it is desirable to be able to identify the strike and
dip directions for the structures. There still exists a + /2
ambiguity in the determination of these structural axes from
the principal coordinate system determined through canoni-
cal decomposition. This ambiguity can be resolved by mak-
ing measurements of the three components of the total mag-
netic field at the base station. Choosing a right-handed Car-
tesian sensor coordinate system (x, y, z), the vertical compo-
nent of the magnetic field can be expressed as the linear
combination of the two horizontal components of the mag-
netic field, viz.

H,=X, H.+X,,H,=X|H), (30)

where X,, and X,, are the magnetic parameters. In Eq.
(30), X=(X,, X,,) is the magnetic transfer matrix and |H)
=(H,, H,)" is the Cartesian tangential magnetic field vector
phasor. Of course, if we assume that the source or primary
field is a vertically incident plane electromagnetic wave, then
the vertical component of the magnetic field at the surface
of the earth is essentially a secondary or anomalous field
whose magnitude comprises a measure of the degree of
transversal inhomogeneity present in the underlying con-
ductivity structure. It should perhaps be noted that this
procedure for the identification of the strike direction, when
used in conjunction with the telluric mapping method, in-
volves additional measurements of the horizontal and verti-
cal magnetic fields at the base station and, as such, can
form the basis for the application of the more powerful
telluric-magnetotelluric method (Hermance and Thayer,
1975). It is well known (Vozoff, 1972) that the direction
of the horizontal magnetic field that possesses the largest
correlation with H, determines the direction of the dip axis
of the geoelectric structure. This direction can be computed
by application of the usual rotation analysis to X and yields
the result

2Re(X% . X))

X
zx zy

(1)
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where , is the angle that the dip axis makes with reference
to the fixed x-measurement axis.

Since the magnetic transfer operator is a 1 x 2 complex
matrix, we can compute the canonical decomposition for
X as follows:

X=U,Z, V], 32)
where
X - X

5, - on) 0 -
Uy=1, (34)
and

_ _ cos(0y) —exp(—igy)sin(by)
Vx=(vD|v))= (exp(i ) sin(6;) cos(6,) )

(33)

The canonical parameters o7, y¥, 6y and ¢y may be ex-
pressed explicitly in terms of the matrix elements of X to
give

ol =(1X.> +1X., )2, (36)
1 =arg(X..), (37
| Xl
cos(Oy)=————, (38)
l/ Iszlz + |Xzy|2
and
¢X:arg(szX:y)=arg(sz)_arg(Xzy)‘ (39)

We remark that for an input horizontal magnetic field po-
larized in the |v¥) direction in the unitary polarization space
(ie. |HY=|vYD), the output vertical magnetic field H, is
equal to a7 exp(iy}). In particular, ¢¥ is the maximum possi-
ble modulus of the output vertical magnetic field component
for any input horizontal magnetic field |H) of unit wave
intensity or power (i.e. (H|H)=1). It is of interest to note
that ¢¥ coincides with the usual tipper magnitude (Vozoff,
1972) which has been utilized conventionally as an indicator
of the significance of lateral conductivity inhomogeneities.
Moreover, for an input horizontal magnetic field polarized
in the |v}) direction in the unitary polarization space, the
output vertical magnetic field is completely extinguished;
hence, [v] ) corresponds to an extinction or nulling direction
for X. Note that this direction is orthogonal to [v¥) in the
unitary space. The direction of the dip axis can be obtained
from the canonical parameters of X by use of Egs. (15b),
(38) and (39) to give

21X 1Xy
tan 21, =tan 26y cos ¢X=m—y—l7008 by
_ 2Re(X%X.,) ’ 0
_Iszlz—leylz. ( )

Observe that the dip axis direction derived from the canoni-
cal analysis of X is exactly the same as that obtained from
the conventional rotation analysis [cf. Egs. (31) and (40)].
Indeed, for a strictly 2-D geoelectric structure, the principal
horizontal magnetic field polarization states are linearly po-
larized (i.e. ¢x=0) so that, for this case, Eq. (40) reduces

down correctly to y,=arctan (X_,/X,,). It is of interest
to remark that the canonical decomposition of X has sys-
tematically provided all the information from a purely
mathematical point of view that the conventional examina-
tion (Vozoff, 1972) of X has revealed from a purely physical
point of view.

For a geometric representation of the results embodied
in the canonical decomposition of X, it is convenient to
introduce the induction arrow

N=Re(o] exp(iy})) £, +ilm(c] exp(iy}))
=05 cosyf £, +io¥sinyf £, 41)

where £, and £, are unit vectors directed along the directions
of the major and minor axes, respectively, of the ellipse
of polarization associated with the principal input horizon-
tal magnetic field polarization state |v¥) [cf. Eq. (35)]. It
is of interest to note that the induction vector N is similar
in structure to the Schmucker vector (Schmucker, 1970;
Gregori and Lanzerotti, 1980). The real (in-phase) and im-
aginary (quadrature-phase) components of N, namely

Re(N)=0% cosy¥ £, (42a)
and
Im(N)=o% siny¥ ¢,, (421b)

are aligned with the direction of the dip and strike axes,
respectively, of the geoelectric structure. As with the
Schmucker vector, the real induction arrow [ie. Re(N)]
always points away from regions or zones of higher electri-
cal conductivity. Finally, notice that the magnitude of the
induction vector N defined by

INJ|=])/N-N*=]/Re(N)-Re(N) + Im(N)- Im(N) (43)

is equal to ¢¥, viz. |N| is simply the tipper magnitude.
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