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Abstract. Born inversion represents a novel approach in
reflection seismic data processing. Omission of multiple
scattering effects and relying on a known reference velocity
allows for true amplitude mapping of subsurface structures.
Born inversion is closely related to classical migration con-
cepts in terms of its provisions as well as its results. Conse-
quent application of high-frequency approximations, gener-
ally accepted in reflection seismology, leads to simple rela-
tions between Born inversion, frequency-wavenumber mi-
gration and migration based on a Kirchhoff summation
technique. The formulas are derived for the simple case of
3-D zero-offset geometry with a constant reference velocity.
Modifications of Born inversion theory are presented if the
particle velocity is measured instead of the pressure and
if the influence of the free surface is incorporated.

Key words: Reflection seismology — Migration — Born inver-
sion

Introduction

The seismic experiment aims at the extraction of informa-
tion concerning a certain volume of space from measure-
ments of physical quantities like pressure, particle displace-
ment or velocity on parts of a boundary enclosing the vol-
ume. Refraction seismology derives velocity functions aver-
aged over several wavelengths in space; the targets of reflec-
tion experiments are structural features of the subsurface.
Actually, both notions, smoothed velocities and structural
information, in general, refer to the same physical parameter
— compressional velocity — but mean different spectral com-
ponents. Velocity functions inverted from refraction data
represent the low-wavenumber portion of the true velocity
distribution, whereas reflection data allow for the inversion
of the reflective properties of the structure caused by the
high-wavenumber part of the true velocity function, see
Claerbout (1985, pp. 46).

An intermediate result of reflection seismic data process-
ing is the common-midpoint stacked section, that can be
considered as an approximation of a zero-offset section de-
fined by coincident source-receiver geometry. These sections
represent seismic images of the earth, of the position and
the strength of subsurface reflectors. It is, however, a dis-
torted image. Dipping reflectors, for instance, appear at po-
sitions shifted away from the true ones. In addition, hyper-
bolically arranged diffraction onsets mark their end points.

The reconstruction of the true image of the subsurface struc-
ture is the ultimate goal of seismic migration. Originally
the efforts concentrated on the reconstruction of geometric
features, e.g. location and extend of reflectors, and thus re-
quired only geometric methods (Haagedorn, 1954). During
the last 15 years migration was based on the acoustic wave
equation and various approaches of its solution like ray
theory, finite-difference methods, the Kirchhoff approach,
and operations in the frequency-wavenumber domain. In
general, a wave field recorded at the surface is downward
continued and then subjected to an imaging condition. An
overview on migration methods can be found in Robinson
(1983) and Claerbout (1985).

Standard migration procedures model a zero-offset sec-
tion with reflectors exploding simultaneously at a certain
time, say t=0, and waves travelling upward in a medium
with half the true velocity. The migration process downward
continues the wave field and defines the (band-limited) re-
flectivity as its value at the imaging time ¢ =0.

If one accepts the accoustic wave equation as appro-
priate for the description of reflection seismological phe-
nomena, its exploitation in migration or inversion proce-
dures could possibly lead to the reconstruction, not only
of the proper position of reflectors but also to amplitudes
that measure and express the reflection strength adequately
and thus deliver an additional parameter for the interpreta-
tion. Any method aiming at this goal is called true ampli-
tude migration. Born inversion, introduced, worked out and
refined in recent years, belongs to this category. Its develop-
ment is associated with the names of Bleistein, Cohen, Ha-
gin and other workers, e.g. see Bleistein and Cohen (1982)
or Cohen et al. (1986).

As Born inversion represents a rather new approach
to the inverse problem of reflection seismology, one would
like to know its similarities with and differences to standard
migration procedures in terms of the basic physical and
mathematical models used, and in terms of assumptions
and approximations employed. This paper attempts to ad-
dress this question and, besides the contribution of Bleistein
and co-authors, uses the results of Cheng and Coen (1984)
who also discuss the relationship between Born inversion
and migration of common-midpoint stacked data.

In order to keep the analysis as simple as possible the
following considerations are restricted to a constant refer-
ence velocity and to zero-offset geometry. An inversion aims
at the true-amplitude recovery of the reflectivity of the earth.
Therefore the basis of the inversion, the forward model,



e.g. the wave equation and Born’s approximation, must be
critically discussed in as far as it properly describes the
physics of the seismic experiment. Another question refers
to the measured quantity used for inversion, e.g. pressure
or particle velocity, and the quantity desired as output, e.g.
velocity perturbation or reflectivity. For an inversion it can
be demonstrated that two essentially equivalent approaches,
in spatial and in Fourier domain, are conceivable.

The basic equation

This section presents a detailed derivation of Born inversion
for a case that reveals the main features of the theory but
is simple enough to avoid cumbersome mathematics. The
basic equation involved is the Helmholtz equation in three-
dimensional (3-D) space.
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It describes the behaviour of the pressure in a liquid medium
with no or negligible density variations. In order to utilize
Eg. (1) for reflection seismology the medium is assumed to
consist of an upper halfspace with constant velocity contin-
uously connected with a lower halfspace containing an arbi-
trary velocity distribution. The inhomogeneous part of the
Helmholtz equation (1) represents a point source in the ob-
servational plane defined by z=0 with a spike-like, broad-
band source signal. The source radiates the pressure in all
directions. Whereas no reflection can be expected from the
upper halfspace, the variable velocity structure of the lower
halfspace reflects a certain amount of energy that can be
recorded in the observational plane.

The Helmholtz equation (1) and the concept of velocity
structure do not ideally model the conditions of the reflec-
tion seismic experiment. Clearly the elastic equations should
be employed instead of the acoustic equation. The upper
halfspace should be simulated with a zero velocity, introduc-
ing free surface effects. The band limitation of the seismic
source requests an additional frequency function in the in-
homogeneous part of Eq.(1). Despite these shortcomings
the Helmholtz equation (1) is generally considered as an
appropriate mathematical tool in reflection seismology
mainly because steep angle propagation and steep angle
reflections prevent any relevant conversion of the source-
generated compressional waves to shear waves; the medium
behaves as if it were liquid. Consequently, the Helmholtz
or the wave equation became the basis for most modern
migration schemes. Nevertheless, the deficiencies of the
equation as a model for reflection seismic experiments
should be kept in mind, in particular whenever true ampli-
tudes are concerned.

Delineation of 3-D structural features of the subsurface
requires a 3-D seismic survey with sources and receives dis-
tributed in the whole observational plane z=0. The seismo-
grams used as input data for the Born inversion procedure
discussed in this paper are zero-offset traces. In theory these
seismograms could be recorded with coincident source-re-
ceiver geometry. In practice, such a measurement is of little
use because shot-generated noise completely overrides the
signals reflected from the subsurface. However, common-
midpoint stacked data can be viewed as an approximation
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Fig. 1. Sketch of temporal and spatial band limitation for reflection
data of a zero-offset section with reference velocity v,. The upper
part shows that available information is restricted to a frequency
band (®pin, Omay) and a ray parameter window (= p,.,,). Lower
part indicates the resulting map to the (k,, k) plane utilizing the
dispersion relation

of a zero-offset seismogram containing only the reflective
response of the medium.

The ultimate goal of an inversion procedure based on
Eq. (1) for seismic data is the derivation of the spatial veloci-
ty distribution. Born inversion does not fully accomplish
this task. The velocity field is composed of a smooth, long-
wavelength, low-wavenumber part and another one with
short-wavelength oscillations. The low-wavenumber part,
commonly referred to as the reference velocity, controls
travel times and must be known as input for the inversion.
Large-wavenumber constituents of the velocity field are re-
sponsible for the reflectivity of the medium. Only these com-
ponents of the velocity field form the target of Born inver-
sion. The following derivation assumes a constant reference
velocity in order to keep the analysis as simple as possible.
A treatment of arbitrary reference velocities can be found
in Cohen et al. (1986).

The Helmholtz equation (1) is written for a source with-
out any band limitation. In reality, however, field data as
well as stacked sections are band-limited in frequency and
wavenumber or ray-parameter content. Physical limitations
of the source, the propagation properties of the medium
and the receivers reduce the frequency content of seismic
data to typically 10-100 Hz. In zero-offset sections the max-
imum ray parameter observable is 2/v,, twice the inverse
of the reference velocity. Again the theoretical value often
exceeds the true maximum encountered. One reason is the
wavenumber (ray parameter) filtering property of arrays of
sources and receivers commonly used as field techniques.
In addition, zero-offset rays are often close to vertical.

The data consisting of a seismic trace for each receiver
position (x,, y,) at the surface form a 3-D space in the obser-
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vational variables (x,, y,, t). The limited information attain-
able with reflection seismic measurements can be demon-
strated in the corresponding Fourier space (k,, k,, w), where
the data are confined to a slice of a cone defined by the
frequency band and the maximum ray parameter. Figure 1
(upper panel) shows a cut through the cone in the k,=0
plane. The data are used for the derivation of 3-D structural
information, e.g. the velocity perturbation a(x, y, z) or the
reflectivity c(x, y, z). The mapping function that defines the
corresponding domain in Fourier space (k,, k,, k.) that can
be reconstructed from the data is the dispersion relation:

k2_4w —k2

z
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The lower panel of Fig. 1 shows this domain as a 2-D sketch.
The 3-D situation is achieved by rotation around the k,
axis. Most calculations that follow in this paper are based
on Eq. (1) and thus ignore the band-limited character of
the data. This is acceptable because the relation between
structural parameters and data is linear and the derivation
would thus not be different. All one has to keep in mind
is that the final integral operations are applied to band-
limited functions.

Born approximation

An appropriate formulation of the forward problem serves
as a starting point for the inversion. In the time domain
in the acoustic wave equation governs the propagation of
pressure fluctuations (p), excited by a broad-band source,
located in the observational plane defined by z=0 at (x;,
¥s, 0), in a liquid medium with constant density and arbi-
trary spatial velocity distribution. In the frequency domain
the Helmholtz equation (1) replaces the acoustic wave equa-
tion; its unique solution is guaranteed by Sommerfeld’s ra-
diation conditions. The z-axis points downward, into the
earth. A constant velocity characterizes the upper halfspace
(negative z-axis). The velocity field in the lower halfspace
is partitioned into a reference value ¢ and a dimensionless
perturbation of v so that

1
V(%)
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A corresponding decomposition of the pressure into
pP=pr+Dp;s

defines a pressure p; whose propagation is controlled by
v

[172+“’—2 (X, X,, W)= — 0 3)
172()() D1 ,XS,(J) - (X—Xs).

The solution of this equation yields Green’s function g(x,
X,, w) for the reference velocity field.

If Eq. (2) and (3) are inserted into Eq. (1), an inhomoge-
neous Helmholtz equation results:

[VZ + _2( )] ps(X, X, @)

= —2( )a(x)[pl(x xs»w)+ps(x x.\,w)] (4)

As the right-hand side acts as source term, Green’s function
allows for the integral representation of the solution as a
spatial convolution of the inhomogeneous term and Green’s
function

ps(xgv Xs» CO)

,‘. -2( ) [pl(xr Xs, (U) +ps(x’ xs’ Cl))] g(xg’ X, (D) d3x (5)

with the geophone location

xg=(xg’ .Vga zg)T-

Note that no approximations have been used so far.
Equations (3) and (5) represent just another view of the
Helmholtz equation (1). The solution for the total pressure
is approached by first finding Green’s function for the refer-
ence velocity field, and then solving an integral equation
that connects the residual pressure p, with the previously
evaluated Green’s function and the scattering potential

2 ()
2 (x)’

As it stands the reformulation of the original Helmholtz
equation is of little use because neither does it lend itself
to exact solution techniques of the forward problem nor
does it prove useful for an inversion. It serves, however,
as the basis for the introduction of physical assumptions
that allow for the Born approximation. Suppose that the
reference velocity o is known a priori, e.g. from refraction
surveys or NMO analysis, then the scattering potential or
the velocity perturbation remains the target of inversion.
The solution of Eq. (3) is Green’s function which incorpor-
ates all kinds of multiples, upward and downward travelling
waves if 0 varies in space. For Born’s approximation, a
solution containing only downward-propagating waves is
sufficient. Such a solution results, for example, from splitting
the wave equation into portions that yield separated up-
ward- and downward-directed waves or from high-fre-
quency approximations like asymptotic ray theory. Then
p; can be viewed as the wavefield generated by a source,
travelling directly to the velocity perturbation, interacting
with it and thus generating the scattered field p;. Weak
scattering can be defined by

|psl <1psl

which allows us to neglect p, in the integrand of Eq. (5).
This assumption is called Born’s (first) approximation. Tak-
ing into account the particular geometry used in reflection
seismology, and the circumstance that scattering comes ex-
clusively from the lower halfspace, leads to

ps(xga Xy (l))

zja()

g(x, X,, ) g(x,, X, w) d>x (6)

where, in addition, symbol p; is replaced by Green’s func-
tion, the solution of Eq. (3). Equation (6) relates the pressure
measured in the observational plane z=0, through a linear
Fredholm integral equation, to the unknown velocity per-
turbation a(x, y, z). As the incident wavefield remains unaf-
fected by the velocity perturbation, transmission losses or
refractive effects caused by a(x, y, z) are not considered.



Omitting the scattered wavefield in the integral in Eq. (5)
implies that only the incident waves interact with the veloci-
ty perturbation, never the scattered waves. Consequently,
multiple effects are not incorporated and again transmission
and refraction phenomena of the upward-propagating scat-
tered wave caused by a(x, y, z) are neglected. The rather
general Eq. (6) and its utilization for the inverse theory can
be found in Cohen et al. (1986). In this paper the simple
case of a constant reference velocity v,

1
1 B v—(z) Zéo
v(x) |1

—(2)[1+a(x)] z>0,

is considered. With Green’s function for this particular case
J—Ix ¢l
4 [x—¢l

and coincident source and receiver coordinates, Eq. (6) be-
comes

g(x, &, w)=

2w

! ¢ @dx 7

2
pulsgr0)=( o) fat0 z
with
Pl 4=y + 2T

With a guess of the reference velocity v, and broad-band
observations in the plane z=0, one aims at the inversion
of the linear integral equation (7) to derive the velocity per-
turbation. Two points should be mentioned before the in-
version itself is tackled. Firstly, p standing for pressure in
(7) specifies the measured quantity only in marine experi-
ments and not in land-based reflection seismology where
the vertical particle velocity replaces p. Secondly, the veloci-
ty perturbation does not represent an appropriate quantity
measurable with and invertible from reflection data. These
items will be discussed in detail later.

The inversion

An inversion of Eq.(7) can pursue two approaches. The
first method utilizes spatial Fourier transforms and tries
to find a simple, readily invertible relation between data
and velocity perturbation in Fourier space. The second ap-
proach designs an approximate inverse operator without
transforming the data.

Transform method

An attempt to Fourier transform Eq.(7) with respect to
Xg any y, encounters the problem that an analytic expres-
sion for the transform of

2w
1w

e
rZ

is not available. If Eq. (7) could be manipulated in a way
that only the inverse of r instead of the inverse square of
r appears, then Weyl’s integral for the plane-wave decompo-
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sition of a point source allows the evaluation of the correct
Fourier transform:

20
j—'
e _ 1 h‘ Ilkxx=x) Hhy =0 HVIEN Gk G
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v 12 UO (8)
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The introduction of modified data

.0 (1
&=—Jiss (? ps) )
leads to the desired modification of Eq. (7)

2w
]—~r

3§(

The right-hand side of Eq. (10) represents an integral
over the product of velocity perturbation and Green’s func-
tion for a homogeneous space with velocity v,/2. Therefore,
the modified data must be a solution of

(10)

qs(x,, W)=

(V2+ 4;‘;2) 4%, )= — 2“(")3 (11)

Uy

in a plane specified by z=0. This equation describes the
propagation of a quantity g, in a space with velocity v,/2,
whose sources explode at t=0. Its strength and spatial dis-
tribution is determined by a(x, y, z). In other words, Eq. (11)
represents the mathematical formulation of the exploding
reflector model of Loewenthal et al. (1976), the well-known
basis for migration of zero-offset sections. Born theory
quantifies the exploding reflector model. It reveals the physi-
cal meaning of the source strength and the propagating
and measured quantity. Whereas the standard view of the
exploding reflector model assumes that the source strength
is defined by the reflectivity and that the propagating quan-
tity represents the pressure, Born theory tells us, rather,
that this model relates velocity perturbation with modified
data.

A Fourier transformation of both sides of Eq. (10), utiliz-
ing Eq. (8), results in

0. (ks Ky )= ok, —) (12)
4nvy

where Q,(k,, k
V> @) and

w) is the 2-D Fourier transform of g,(x,,

AK)=[ax) e **d3x,  k=(k,,k,,k,)". (13)

The simple relation between Q, and A in Fourier space
can be considered as solution of the inverse problem

A(kx’ y9— ):_47IJUOV Qs(k:w yo ) (14)

In order to express the solution in spatial coordinates a(x,
¥, z), an inverse Fourier transform must be performed. The
inverse of Eq. (13) is
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a(x)=(771¥jA(k) eI*x 43k, (15)

As Eq. (14) expresses A in the variables (k,, k,, —v) rather
than (k,, k,, k), the variables of integration in Eq. (15) must
be changed according to

k,=k,
k,=k,
2 E1
k,= —sgn (w)(%‘;’——kg-kg) . (16)
0

The definition of the vertical component of the wave vector
in Eq. (8) suggests that A can be determined for real and
complex values. For the inversion, however, the real k,
values are sufficient. The mapping is one-to-one, the full
3-D space in (k, k,, k,) is projected into a double cone
in (k,, k,, ). With the functional determinant

—4w

vV

Eq. (15) can be written as
a(x) 2 ~.3,2 2 Ij.’- A(kX’ ys )

e Jvzej(k x+ky}’)dkxdkydw, (17)

where the expression for 4 as a function of k, k, and —v
can be replaced by Q, using Eq. (14):

2 jjijs(kxa yo )
el 4k dk do. (18)

a(x )—

This equation solves the inverse problem. It relates the
velocity perturbation a(x, y, z) to the modified data g, with
a formula strongly reminiscent of results from standard fre-
quency-wavenumber migration, e.g. see Stolt (1978), Gazdag
(1978) or Castle (1982). The physical view of migration is,
however, quite different because there a wavefield propagat-
ing in a medium with velocity v,/2 and recorded at z=0
is downward continued and then subjected to an imaging
process.

Equation (18) solves the inverse problem correctly with-
out assumptions beyond those inherent in Born’s approxi-
mation. A simplification of Eq. (18) reintroducing the pres-
sure is feasible if only high frequencies are involved. Again,
two conceivable approaches can be pursued. The first one
starts with Eq. (18) and relies on partial integration; the
second one completely omits the modified data. It relin-
quishes a correct Fourier transform of Eq.(7) and uses a
stationary-phase approximation instead.

Application of the rule of partial integration to the w-
integral in Eq. (18) results in

Wy X
| wQ,e ™ dw
o

P o1 o P 4jze?\
——j[ e ’”] +j | —52(1— jvzzt))e"”dw.

w 0

—w —wy

w, indicates the maximum frequency for a particular wave-
number k. As the data will always be band-limited below

this value, the first term vanishes. In the expression appear-
ing in the integral on the right-hand side the first term
can be neglected if

z

"1,

p) >

where 1 is the maximum wavelength and in real data the
dominant wavelength. Therefore, the inversion formula (18)
can be written as

a(x = X9 y’ )

: "”e’“‘ "“‘y”dkxdkydw (19)

an expression valid for depths exceeding a few wavelengths,
e.g. a few hundred metres at most.

The same result arises if a high-frequency approximation
is utilized in the Fourier transform of Eq. (7). As an exact
transform is unknown, an approximate transform can be
derived with the method of stationary phase. This method
is commonly applied to integrals over one variable, e.g. see
Bath (1968, p. 44) but can be extended to two (Papoulis,
1968, p. 241) or more dimensions (Bleistein, 1984, p. 283).
Application of the technique in two variables results in

P(k)w },,CU): 6 X9 ya_v)’

where A is the 3-D Fourier transform of
a(x)
s

ax)=

The reconstruction of a(x, y, z) from A(k,, k,, —v) fol-
lows the procedure outlined with Eq. (15)(18) and leads
directly to Eq. (19). The latter relation clarifies the connec-
tion between f — k migration and Born inversion. The veloc-
ity perturbation can be recovered from the pressure by stan-
dard f—k migration of the weighted pressure

1
7, Blke, ky, )
jv y

and subsequent multiplication of the result with z. It should
be mentioned that a multiplication of the section with z
after migration is not identical with a multiplication of the
data with time before migration.

If one prefers a Kirchhoff summation technique as the
numerical scheme for the inversion, the pressure in Eq. (19)
must be written as the Fourier transform of x, and y,. If
the order of integration is interchanged, Eq. (19) becomes

16
a(x)=n—vz [ py(xg, @)

1 .. eitkxlx—x9 +ky(y—yg) — vzl s
{ﬁ v dkxdky}d X, dw.

The expression in brackets gives exactly

2w
1 i
_e 0
r

a result readily established if —w is inserted in Eq. (8).
Therefore,
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16 =iy
aX)=—[[ 2 py(xp w)e * d*x,do (20)
vy ' T
or, after a transform to the time domain,

16 .z _ 2 R
a(x)—n—voj;ps(xg, t—v-o r)d X, (21)
These Kirchhoff formulas state that the velocity perturba-
tion a(x, y, z) can be recovered by summing the weighted
pressure along hyperboloids defined by

2 ,
=[x — x>+ (y—y)* +2°1%
0

Inversion in space

This method tries to design a procedure for directly invert-
ing Eq. (17) in the space domain. It was established by Beyl-
kin (1985) and applied by Cohen et al. (1986) to 3-D Born
inversion with arbitrary reference velocity. Equation (7)
contains an integral over the velocity perturbation, an am-
plitude factor B and a phase factor w- ®:

2
Pty )=o) [0 Bl ) €20, )
0
B(x, xg)zlz, D(x, X,) =3 r,
r Vg

where w-@ varies rapidly compared to B if the frequency
is high. Assume that the solution of the inverse problem
can be written in the following form

a(x)= [ F(w) I(x,x,) e I°®®X) p (x,, w) d*X, do. (23)

This equation is the mathematical expression of the intu-
itive idea of migration. If the pressure is transformed to
the time domain, Eq. (23) becomes

a(xX)=1 )= [[ I(x, X,) Ps(Xg, =P (X, X)) d* X, d1,

where f(t) and p,(x,, t) correspond to F(w) and p,(x,, w),
and * symbolizes temporal convolution. The formula states
that migration consists of a summation through the data
field along the hyperboloids, defined by

t=d(x, X,).

F(w) and I(x, x,) are still undefined at this stage, but will
be determined later. Clearly Eq. (23) is not strictly correct
because the exact Eq. (18) has a different form. Equation (20)
which displays a form similar to Eq. (23) can be derived
from Eq.(18) only if high-frequency approximations are
used. The equals sign in Eq. (23) must be understood in
this sense. Inserting Eq. (22) into Eq. (23) results in

o \2
(o) Fl BEx) 1x %)

/0P Ex) X g2y dp=§(E—x) (24)
and thus determines the choice of the functions F(w) and

I(x, x,). If the phase fluctuates rapidly enough, the integral
has only nonvanishing values if x and & coincide or are
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at least close together. Then one can expand the phase ex-
pression with the variables &€ around the variables x, where-
as the amplitude B(x, Xx,) is taken at x. These qualitative
considerations can be viewed as a high-frequency approxi-
mation because the condition of a rapidly oscillating phase
is valid if the frequency is high enough. Beylkin (1985) estab-
lished these facts more rigorously using results of the theory
of generalized Radon transforms. With

D&, x.) = P(X,X,) + VP (& —x),
B(¢&, x) = B(X, X,), (25)

Eq. (24) becomes

) 2
{f (Zn_vo) F(w) B(x, x,) (X, X,)
BTGy o= 5(E—x) (26)
with

V0= (X=X (€ X)

A transform of variables according to

kxzm(x—xg)’
2
ky_w(y yg)?
2
kz=vwz,
Vgt

then leads to

oot

1 n
(—2_7[)—3§EF(“’)1(X’ Xg) e*E VA3 k =§(£—x).

This identity is guaranteed if

Flw) =1,
16z
TUor

I(x,x,)=

Thus the quantities I(x, x,) and F(w), unknown when
Eq. (23) was established, can be inserted there to obtain
exactly Eq. (20), the formula for Kirchhoff summation.

The results derived in this section demonstrate the
equivalence of different inversion procedures. An exact in-
version with modified data and subsequent application of
partial integration and a high-frequency approximation
leads to the same (f— k) migration formula for the pressure
as if the high-frequency assumption is introduced in the
evaluation of the Fourier transform of the equation describ-
ing the forward problem. In the case treated here, the formu-
la for (f—k) migration can be transformed exactly to a
Kirchhoff migration scheme. The straight way to the Kirch-
hoff summation is the inversion in space without detour
to the Fourier domain. The (f—k) formulation of the in-
verse problem can be rewritten as a Kirchhoff summation
even if different slowly varying weighting factors are asso-
ciated with the pressure. The appropriate stationary-phase
approximation is valid if the object of migration is a few
wavelengths beneath the surface.
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Input and output data

The previous section summarized principles of different in-
version procedures with pressure as the input and velocity
perturbation as the output quantity. However, only marine
surveys record the pressure, whereas in land-based surveys
the geophones are sensitive to the vertical component of
the particle velocity. In addition, a theory as close as possi-
ble to the experimental situation should incorporate the
free surface conditions instead of assuming a homogeneous
space with some finite velocity above the reflectivity struc-
ture.

As indicated in the introduction of this paper, the veloci-
ty perturbation is not really the appropriate inversion quan-
tity requested by reflection seismologists. They usually look
for the short-wavelength part of the velocity field, e.g. the
reflectivity. This requires additional modifications of the in-
version results.

Marine versus continental reflection data

In marine reflection experiments, hydrophone streamers po-
sitioned several metres below the sea surface record the
pressure of the seismic waves. Actually, not only are upcom-
ing waves recorded but also the interaction between them
and the reflection from the interface between water and
atmosphere ideally associated with a reflection coefficient
of — 1. In land-based experiments geophones usually record
the vertical component w, of the particle velocity which
is related to the pressure in the frequency domain by

aps .
B jw po w, 27)
Zg

po represents the density at the geophone position. In order
to carry out the calculations of the previous sections with
w, instead of p;, a derivative with respect to z, must be
introduced in the Born approximation before z, is set equal
to zero. This derivative affects the amplitude and phase
in Eq. (5) and thus leads to a near- and far-field term. For
high frequencies or a depth of several wavelengths, the near-
field contribution can be neglected and Eq. (7) that serves
as the starting point of the Born inversion in the marine
case must be replaced by

2 _2
We(X,, ) = @ ) Jat 5e Ty (28)

2
Po Vo \4mu,
for continental environments. In Eq. (28) the sign of w; is
chosen in a way that a positive break is caused by a particle
moving upwards in the negative z direction. Inversion pro-
vides, as the (f'— k) formula,

8
A== 2 [ 5wl o)

TCUO

eIl dk dk,dw (29)
and, as the Kirchhoff summation,

8 E
a(x):%ﬂ wy(xg, w)e " d*x,do. (30)

Comparison to Eq.(20) shows that the weight factor z/r
must be omitted in the inversion if the particle velocity
is used as the input quantity instead of the pressure.

The influence of the free surface

The influence of the free surface can be introduced in Born’s
inversion scheme by an appropriate modification of Green’s
function. Remember that Eq. (6), which solves the forward
problem in the frame of Born’s approximation, combines
a wave travelling downward from a source at z=0 with
a wave travelling upwards towards the surface from any
point inside the reflecting halfspace. This wave is repre-
sented by Green’s function for a homogeneous space with
a source point inside the lower halfspace. If a free surface
exists at z=0, the wave reflected from the free surface must
be added to form the new Green’s function

) LW

Iv—or 1 ID—OV 2

(x xw)—e —
EXes X, dnr,  4nry’

(1)

where
Fi,2= [(x _xg)z +(y_yg)2 +(Z’T_Zg)2]%'

The first term represents the upward-travelling wave,
the second one the reflected wave. Both are just connected
by a subtraction because the free surface acoustic reflection
coefficient is —1, independent of the angle of incidence.
Again the marine and continental case must be distin-
guished. For marine pressure data, expression (31) is exactly
zero at z=0 because there both terms cancel each other.
At a depth below the surface Green’s function does not
vanish and, if z, is small compared to the dominant wave-
length, can be approximately expressed as

.
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For continental data the derivative of Eq. (31) with re-
spect to z, must be evaluated at z,=0. The net effect of
this step is the introduction of the scale factor 2 on the
right-hand side of Eq. (6). Therefore, the free surface has
no consequence if continental data are processed.

Marine data measured at z, below the sea surface should
be inverted or migrated according to

2z 1
v, Zg j_“j?Ps(kx’ ky’w)

.e—jvzej(kxX+"yy)dkxdkydw (32)

a(x)=

if a (f—k) program is preferred. The associated Kirchhoff
formula is

2w

4 =—— [ px, e ™ dx,do. (33)
nZ jo TUF 8

Comparison with Eq. (20) shows that the weight function
z/r must be omitted and a frequency term should be intro-
duced if the influence of the free surface is taken into ac-
count.

o

Reflectivity versus velocity perturbation

Despite the fact that the velocity always acts as a parameter
describing the medium in the wave equation, it depends
on the experimental configuration whether it might be the
appropriate quantity for an inversion. Reflection seismolog-



ists know very well that they cannot get reasonable esti-
mates of the velocity; rather, they map the spatial distribu-
tion of the reflective properties of the medium. These prop-
erties are dominated by the short-wavelength part of the
spectrum of the velocity. Its long-wavelength part plays a
role in stacking and migrating the data, but these processing
steps are not too sensitive to the accuracy of the velocity
estimates, and therefore rough spatial averages or estimates
that can be determined by, for example, NMO analysis are
sufficient.

The amplitude of a reflection is proportional to the re-
flection coefficient defined as

1 dv

C(Z)=2‘U—(5:i’z—

(34)

in the case of a 1-D velocity variation, constant density
and vertical incidence. With the velocity perturbation, de-
fined by Eq. (2) and |a| <1, this expression becomes

1
“”=—z%§ (35)

The reflectivity can, therefore, be viewed as mainly deter-
mined by the small-wavelength contribution to the Fourier
spectrum of the velocity. It can be resolved within the band-
width of the data, e.g. within an upper limitation but also
within a lower limit defined by the smallest available fre-
quency. In principle, the velocity perturbation as well as
the reflectivity can be used as the inversion target. The ve-
locity perturbation, however, inherently incorporates a large
amount of small-wavenumber components, which cannot
be resolved with reflection data, whereas the reflectivity em-
phasizes the high-wavenumber components according to

cw»=—£@Aw4 (36)

Figure 2 illustrates this relationship for a thin layer. The
reflectivity has a spectrum more equally distributed in the
observational wavenumber range compared to the velocity
perturbation. It appears, therefore, desirable to obtain the
reflectivity as an inversion result. This concept requires a
generalization of the definition of the reflectivity to an arbi-
trary medium with a 3-D velocity fluctuation. A straightfor-
ward extension of Eq. (34) is

1 dv
c(x):mlﬁﬂ sgn (E) 37)

The formula can be interpreted in the following way:
given a spatial velocity distribution, the reflectivity at a
point is determined by finding the direction of maximum
variation of the velocity. The directional derivative scaled
by the velocity defines the modulus of the reflectivity. If
the velocity locally increases (decreases) with depth, a posi-
tive (negative) reflectivity results. In terms of the velocity
perturbation, Eq. (37) becomes

1
c(x)= 2 |V al sgn (-g—g) (38)

This last equation relates reflectivity and velocity pertur-
bation in space if the parameters vary in three dimensions.
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Fig. 2. Demonstration of the distribution of the wavenumber com-
ponents in the Fourier transform of the velocity perturbation A
(upper part) and the reflectivity C (lower part) for the case of a
thin bed. Note that a substantial part of amplitudes for A4 are
concentrated around k,=0 and thus not accessible for band-limited
inversion, whereas for C amplitudes are more equally distributed
along the k, axis

For the inversion a relation in the Fourier domain is re-
quired, because once available one would simply insert the
Fourier transform of the reflectivity for the transformed ex-
pression of the velocity perturbation in Eq. (12) and proceed
with the inversion along the lines previously described.
Whereas for a 1-D medium an exact relation between the
transforms of a(z) and c(z) can be given, namely Eq. (36),
only an approximate formula can be derived for the general
case:

cm=—$m%MMAm) (39)

This relation was proved by Bleistein (1984, p. 289) using
stationary-phase approximations. If the medium is com-
posed of domains of constant velocity, its spatial velocity
distribution can be written as a sum of characteristic func-
tions

v(x)=} v; [i(x),

where I;(x) represents a function with unit value inside and
vanishing outside a given domain D;. Inside D; the velocity
is v;. The different domains are mutually disjoint.

1  xeD;
F"(x)‘{o x¢D;.
With

2
a;= —a(vi—vo),

la;|<1 and Eq. (2), the spatial distribution of the velocity
perturbation becomes
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a(x)=}, a; L;(x). (40)
The corresponding expression for the reflectivity is

c®)=Y c;7i(x) O
with the discrete reflection coefficient

=3 Vo
and the singular function y;(x) which has delta-function-like
singularities at the surface where I](x) jumps from zero to
unity. Characteristic and singular functions can be viewed
as generalisations of the 1-D Heaviside and delta functions.
The Fourier transform integrals of y;(x) and I;(x) can be
evaluated approximately with the method of stationary
phase. Then they are related by

(v;— o)

(k)= —jlk]| sgn (k.) (k). (42)

Equation (39) results if Egs. (40), (41) and (42) are pro-
perly combined. It holds if the medium is composed of areas
of constant velocity. Reflectors are located at the interfaces
between areas of different velocity. The stationary-phase ap-
proximation is reasonable wherever the product of R and
k is much greater than unity, where R represents the radius
of curvature. If k is associated with a wavelength, then the
radius of curvature should exceed the dominant wavelength.
Therefore, the approximation fits very well into the resolu-
tion capabilities of reflection seismology.

If the reflectivity is used instead of the velocity perturba-
tion, the previously derived results are readily modified. In
order to replace a(x, y, z) by c(x, y, z), for instance, in
Eq. (14) one inserts
k,=—v
into Eq. (39). v is defined in Eq. (8) where only real values
are of interest. Then
jo

Clky, ky, —v)= Alky, ky, —v).

20,

The further steps of the inversion procedure are simply ap-
plied to C instead of A. As a result, the data must be multi-
plied by the frequency factor

Jo
20g (43)
prior to migration. Then Eq. (18) becomes
1
C(X)=F jjj wz Qs(kx’ kya CU)
e el bt gk dk, dow (44)
or Eq. (19) is modified to
(x)—i”ng(k k., w)
¢ Ttpd Ny e »®
eItV dk dk, do. (45)

In the time domain the application of factor (43) corre-
sponds to a differentiation of the seismic traces. If a stacked

section of continental data is to be inverted to an image
of the spatial distribution of the velocity perturbation, the
Kirchhoff formula (30) requires nothing but a straight sum-
mation along the diffraction hyperboloids through the sec-
tion. If an image of the reflectivity is of interest, the data
should be differentiated prior to the Kirchhoff summation.

Summary and conclusions

Born inversion represents a new look to the old problem
of migration of reflection data. Its similarities with standard
wave equation migration schemes originate in the fact that
the wave equation is assumed to describe appropriately re-
flection seismic observations. It uses essentially the same
simplifying assumptions about the earth’s structure, its divi-
sion in a slowly varying or even constant background or
reference velocity that serves as input to the inversion, and
unknown velocity perturbations representing the short-
wavelength components of the velocity field causing the ref-
lectivity of the medium. The omission of multiple scattering
results in a linear integral equation between data and reflec-
tivity that can be inverted analytically, at least in a station-
ary-phase sense. The stationary-phase approximations used
are acceptable under the conditions generally faced in reflec-
tion seismology. The object of inversion is several wave-
lengths away from the receiver and a curvature is only prop-
erly mapped if its radius is larger than a wavelength.

Under these conditions it can be shown that Born inver-
sion applied to a stacked section with constant reference
velocity is essentially equivalent to frequency-wavenumber
migration and to a Kirchhoff summation. There are, how-
ever, weighting factors involved which reflect different phys-
ical situations. For instance, if the reflectivity is requested
as the inversion quantity instead of the velocity perturba-
tion, then the integral operations must be applied on data
multiplied by frequency or differentiated in the time domain.
Using the pressure instead of the vertical component of
the particle velocity requires a factor in the migration for-
mula that weights the data close to the apex of a diffraction,
compare Eq. (21) and (30). In the acoustic case treated here,
the free surface plays a role only for marine data.

The circumstance that Born inversion in the applica-
tions discussed in this paper leads to results strongly remi-
niscent of classical migration should not be interpreted as
a shortcoming. Those methods are often based on heuristic
ideas, as, for example, the exploding reflector model, rather
than on a straight inversion procedure. Therefore, Born ap-
proximation must be considered as a contribution to the
theoretical justification and consolidation of classical migra-
tion. Born inversion can thus rely on well-tested numerical
methods and simultaneously yield true amplitudes.
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