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Restoration of broad-band seismograms (Part II):

Signal moment determination

D. Seidl’ and M. Hellweg?

! Seismologisches Zentralobservatorium Grifenberg, Krankenhausstr. 1, D-8520 Erlangen, Federal Republic of Germany

2 57 Overhill Road, Orinda, CA 94563-3122, U.S.A.

Abstract. Two standard methods for the time-domain deter-
mination of the signal moment from displacement seismo-
grams are studied theoretically and numerically using
broad-band data. Investigation shows that the accuracy of
the displacement integral method depends relatively little
on the shape of the body-wave displacement pulse, but
strongly on the ratio of the pulse duration d to the seis-
mometer period T,. For a single-sided wavelet of duration
d, the signal moment can be determined with a relative
error {e if the seismometer period Ty) 2nd/e. The displace-
ment impulse method for wavelets with corner frequencies
greater than the cut-off frequency of the seismograph is
discussed for the broad-band channel of the Grifenberg
array. The theoretical results are illustrated using broad-
band recordings of the Gréfenberg array.

Key words: Source moment — Displacement integral — Dis-
placement impulse — Broad-band seismograms — Restora-
tion

Introduction

The inversion of displacement waveforms is the basis for
the determination of source parameters such as focal depth,
fault-plane parameters and moment. The wider the band-
width of the recording, the more accurate the seismic inter-
pretation can be. The Wielandt-Streckeisen broad-band
seismometer (Wielandt and Streckeisen, 1982), which re-
cords ground motion as velocity or displacement from 0.2 s
to 20 s, and the improved Wielandt-Steim very broad-band
version (Wielandt and Steim, 1986), with an upper corner
period of 360 s, produce such wide-band recordings. The
characteristic properties of digital broad-band seismographs
- low seismometer noise, an exact transfer function, high
linearity, large bandwidth and high dynamic range - allow
the upper corner period to be increased still further numeri-
cally. In addition, velocity seismograms can easily be con-
verted to displacement seismograms.

With the advent of broad-band digital seismographs,
the accuracy and resolution of signal parameters used in
source studies can be improved using wide-band restora-
tion. Restoration of broad-band seismograms Part I (Seidl
and Stammler, 1984) discussed the seismograph characteris-
tics of the Gréfenberg array in the time and frequency do-
mains, various methods for the computation of synthetic
seismograms and the instrumental correction for the mea-
surement of arrival times and first-motion signs. Part II ad-
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dresses the problem of wide-band restoration and the deter-
mination of signal moment.

Signal moment determination

The source moment M, can be calculated from the P- or
S-wave signal moment

m, = }Ou(t)dt:U(O), (1)

using the expression
My=G-m,. (2)

u(t) is the displacement wavelet [u(t)=0 for t<0] of the
P or Swave and U(0) is its spectral value at frequency
zero. G corrects for the radiation pattern of the source,
the geometrical amplitude spreading and the attenuation
factor of the propagation path.

If u(t) is recorded by a seismograph with the frequency
characteristics H(j w), the spectrum S(jw) of the seismogram
5(t) has the form

S(jw)= }Os-(t) exp(—jwt)dt=U(jw) H(jo). 3)

0

The seismogram moment m,, obtained from Eq.(3) for
w=0,1s

my= fg(z)dt:U(O}ﬁ(O):O 4)

since H(0)=0 for seismometers with mechanical pendulum
Sensors.

The approximate signal moment m,, is usually estimated
in the frequency domain by the sequence of operations:
Selection of a seismogram window — Fourier transform
S(jw)— instrument correction U (jw)=S(jw)/H(jw)— ex-
trapolation of the “low-frequency plateau range” of |U (jw)|
to frequency zero.

In the time domain, the moment can be approximated
using the displacement integral with a finite upper limit
to. This finite integral corresponds to the extrapolation of
the displacement spectrum into the frequency interval
{0, 1/t,}. The displacement time function for the integration
must be determined by restoration from a recorded velocity
or displacement seismogram. In this case, restoration means
increasing the seismometer period using numerical methods



until the seismogram becomes unstable due to the long-
period noise.

For a small signal-to-noise ratio, a sufficient base-line
correction cannot be performed by linear trend removal
and high-pass filtering. In this case, analysis in the time
domain has an advantage over the frequency domain be-
cause the instantaneous low-frequency trend of the seismo-
gram can be used as the time axis for the computation
of the displacement integral. Such a correction for the low-
frequency noise is not possible in the frequency domain.

The displacement integral method

To a certain extent, the effects of signal shape, seismometer
frequency and integration interval on the accuracy of the
signal moment determination can be investigated theoreti-
cally. The far-field displacement P or § waveform for a uni-
lateral rupture with finite fault length and finite slip function
rise time 18 a single-sided wavelet with a spectrum propor-
tional to w~? for high frequencies. The time function

u(t)y=my,-a*-t-exp(—a-t)-h(t), (5)

where h(t) is the unit step response, can be used as an analyt-
ically simple signal model for such a displacement pulse
with the moment m,. A practical definition of the signal
duration d is the time within which the signal decays to
about 0.7% to the maximum amplitude:

d=2. (6)

The wavelet in Eq. (5) has the Laplace transform
m,-a’

U(S):(s+a)2

()

and the Fourier transform U(jw)= U(s)ls= jo- The wavelet
spectrum |U(jw)| is a negative monotonic function with
the upper corner frequency

o=

and a spectral fall-off ~w ™2 for high frequencies.
For a displacement seismometer with critical damping,
angular eigenfrequency w, and the transfer function

-ax0.1024-a (8)

Hig=—S ©)

"(S'ﬁ“ﬂ)o]z,

the response 5(t) to the input wavelet in Eq. (5) is obtained
by evaluating the inverse Laplace transform of the rational
function U (s) H(s):

§(t)=mu-a2{[ 4

(a_(ﬂo):a

Z'a'“"’]exp(—a-:)}. (10)

[ agt
(a—w,)? (a—w0)3

2'a‘WO

— )3]exp(—wo-r)
— g

In the special case a=wg, Eq. (10) becomes indeterminate.
However, §(t) can still be described analytically using
L’Hospital’s rule:

_ W
s(t)=mu(t—w012+—6~r3) exp (—wg 1) (11)
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Fig. 1. Theoretical seismograms for two broad-band (solid lines
1 and 2) and one very broad-band (solid line 3) displacement seismo-
graphs (period T,) for the displacement wavelet wu(t)
=m,-a* -t exp(—a-t) (dashed line) with moment m,=1. a has the
value 4.88 s~ corresponding to an upper corner frequency of f,

Ip
=0.5 Hz. The apparent seismogram moment rir,= [ 5(£) dt (¢, time
0

of zero crossing) tends to the input moment m,=1 for T, - o

Equation (10) shows that the seismogram 5(z) approaches
the input wavelet u(z) if the seismometer frequency w, tends
to zero:

lim §(t)=m,-a-t-exp(—a-t). (12)

wo—+0

In Fig. 1 the theoretical seismograms calculated using
Eq. (10) approach the input wavelet when the seismometer

period T, is increased. Since [ 5(t)dt=0 [Eq. (4)], the seis-
4]
mogram 5(t) crosses zero at least once at ¢, and overshoots
for any finite seismometer period. The finite displacement
fo
integral [ §(1)dt will be called the apparent seismogram
0

moment .. Hence, the moment m, of the input wavelet
can be written as follows:

m,= | 5@ dt+e(f,, Ty (13)
1]

Equation (13) is illustrated in Fig. 1. For a wavelet with
a time function described by Eq. (5) and upper corner fre-
quency as in Eq. (8), and given an error >0, there exists
a seismometer period Tg such that |m,—rm| {e for T,» Tj.
How does the error term in Eq. (13) depend on the shape
of the input wavelet? The response of the seismometer in
Eq. (9) to a rectangular wavelet of duration d and moment
m

u(z):f;_"- [A() — h(t—d)] (14)
is given by

$(0)="3" {(1 —wo 1) exp (— o ) ()~ [(1— o (t—d)

-exp (—wo (t—d)] h(t—d)}.

As in Eq. (12), the seismogram tends to the input wavelet
in Eq. (14) for the limit wy — 0.
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Fig. 2. Apparent moment and wavelet shape: theoretical seismo-
grams (solid lines) and apparent moments 1, for a very broad-band
seismograph (T, =500 s) for the exponential [Eq. (5), left] and rect-
angular [Eq. (14), right] input wavelet (duration d). ri, has nearly
the same value for both wavelets

Linearizing Eq. (15) for wy-t<€1 and integrating over
the interval d gives an approximation for the apparent mo-
ment

thg=m, (1 —wy-d). (16)

The relative error is then e = (#h, —m,)/m,= —wq-d.

Figure 2 shows that #i, has nearly the same value for
the exponential wavelet in Eq. (5) and for the rectangular
wavelet in Eq. (14). A similar result is obtained for a half-
cycle sinusoidal pulse. Since the spectra of single-sided time
functions are all negatively monotonic and flat near fre-
quency zero, Hi, depends only weakly on the shape of the
input wavelet.

Figure 3 shows a diagram of the apparent moment #,
versus the duration d for an exponential and a rectangular
wavelet and for displacement seismometers with different
periods. The straight lines defined by Eq. (16) satisfactorily
approximate both curves for w,-d<1. As a rule of thumb,
the relative error is less than about 10% if the seismometer
period T,>20nd [Eq.(16)]. For a very broad-band seis-
mometer (T, =360 s) the relative error is therefore less than
10% for pulse durations up to about 6 s.

The displacement impulse method

If the upper corner frequency of the displacement wavelet
is greater than the cut-off frequency of the seismograph,
the seismogram 5(¢) has approximately the form 5(t)
~m, h(t), where h(t) is the displacement impulse response
of the seismograph and m, is the moment of the input wave-
let. This approximation follows from the series representa-
tion of the seismogram in terms of the derivatives h*(t)
and the moments

my= | fu(@)dt k=0,1,2,... (17)
(1]
of the input wavelet (see, for example, Papoulis, 1977):

s‘(t):i(—1)"-m,,k-h“"(t)zmu-lr(t)+mul-h’(t)+... (18)

=0

with m,,=m,.
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Fig. 3. Apparent seismogram moment i, versus duration d for
two input wavelets with moment m, =1 (solid curves — exponential
wavelet; dashed curves — rectangular wavelet) for displacement se-
ismographs with periods Ty,. The straight lines rii,=m, (1 —wyd)
of Eq. (16) approximate both curves for w,-d <1, where w,=2n/T,
is the angular eigenfrequency of the seismometer

Inserting the exponential wavelet in Eq. (5) into Eq. (17),
it follows

My =my-a®- | 5+ exp(—a-t)de=m, KTV (19)
a

k
0

Expressing a in terms of the wavelet duration in Eq. (6),
Eq. (19) can be written as

My =m, ——"— (20)

ge

Substituting Eq. (20) into Eq. (18) gives

s(ty=m, {Z“‘ (= l]k‘(kk‘f‘ 1)! h (1) - d*
k=0 8
ht) lh’(t d 311”: d? 21

—mu{ ( 3 ) +32 (1) +] (21)

Hence, for small duration d of the input wavelet, the
seismogram is approximately given by the first term in the
expansion m,-h(t). For the broad-band velocity channel of
the Gréfenberg array, the range of pulse durations for which
this approximation is valid is shown in Fig. 4. The theoreti-
cal seismograms are calculated using the impulse invariant
transformation (Seidl and Stammler, 1984). For upper
corner frequencies of the exponential wavelet f,=5 Hz, the
seismograms can be described by the function b(f)-m, - h(t),
where b(f,) is the maximum amplitude of the synthetic re-
sponse in terms of the corner frequency f,. b(f,) decreases
very slowly from b=1.0 for high frequencies to b=0.86 for
f.=5 Hz (cut-off frequency of the Grifenberg seismograph)
and h(t) has nearly the same shape as the impulse response
h(t). For f.<5 Hz, b(f,) decreases very rapidly (for example,
b=0.2 for f.=2 Hz) and the seismogram shows increasing
deviation from the impulse response. This sharp transition
is caused by the steep slope of 36 dB per octave of the
amplitude response of the Grafenberg velocity channel.
Thus, the influence of a change in moment on the observed
pulse amplitude can be separated from the effects of a
change in the corner frequency. The usually steep fall-off
generated by the anti-aliasing filter of a digital seismograph
is therefore very useful for the application of the displace-
ment impulse method.
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In contrast, the transition in b(f,) and h(t) for the stan-
dard narrow-band seismographs with a flatter high-fre-
quency fall-off is more gradual. The separation of moment
and corner frequency effects at intermediate frequencies is
therefore not as easy. For example, Randall (1972) has de-
scribed the method using WWSSN-LP seismograms.

The most important application of the displacement im-
pulse method is the moment estimation for local events,
especially the determination of relative moments for shock
sequences.

Restoration of broad-band seismograms

Restoration is the approximate reconstruction of the true
ground motion from the seismogram. One possible proce-
dure is performed for a displacement seismograph by shift-
ing the seismometer period to higher values. The long-peri-
od boundary is limited mainly by the low-frequency noise.
For a velocity seismograph, an additional integration is nec-
essary. For small signal-to-noise ratio, a base-line correction
should be performed by linear trend removal and high-pass
filtering. Of the many well-known procedures, a practical
time-domain method is increasing the seismometer period

i 10 \ o5 M
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Fig. 4a and b. Synthetic seismograms for the
T broad-band velocity channel of the Gréfenberg
z

array for a a half-cycle sinusoidal wavelet with
frequency f, and b the exponential wavelet
from Eq. (5) with corner frequency f,. In both
cases the first seismogram is the displacement
impulse response. The input wavelets are

2.05 normalized to the moment m,=1

Fig. 5. Restoration of synthetic
seismograms. Bottom: exponential
displacement wavelets with various corner
frequencies normalized to the maximum
amplitude. Middle: the corresponding
synthetic seismograms for the Grifenberg
velocity channel (GRF-BB).
Top: restoration of the GRF-BB synthetic
seismograms for a displacement

] seismograph (T, =100 s) including the
8.05 Grifenberg anti-aliasing filter

stepwise and integration for velocity seismograms until the
seismogram form remains nearly unchanged or the seismo-
gram becomes unstable due to amplified low-frequency
noise.

Figure 5 uses synthetic seismograms to demonstrate res-
toration. The high-quality result is due to the lack of noise
in the original seismograms. The deviations are caused by
the anti-aliasing filter and the overshoot effect described
in Eq. (4). The synthetic and restored signals are calculated
using the impulse invariant transformation (Seidl and
Stammler, 1984).

Practical examples

Figure 6 shows the time-domain restoration for the Grifen-
berg velocity recording of a teleseismic P wave. The restora-
tion was performed using a recursive simulation filter for
a seismometer-galvanometer system with amplitude charac-
teristics proportional to displacement in the period band
from 0.2 s to the indicated upper period (Seidl, 1980). Over-
shooting in the displacement seismograms decreases with
increasing upper period, in good agreement with Eq. (10),
indicating a single-sided P wavelet. For upper periods
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Fig. 6. Grifenberg broad-band velocity recording (V) of a teleseis-
mic P wavegroup and the restored displacement seismograms (D)
for increasing seismograph period. Notice the decrease in overshoot
with increasing period. The dots indicate the synthetic seismograms
of Eq. (10).

Station GRF-A1Z, epicentral distance 84°, Honshu 09/24/1980,
mb=6.0, depth=73 km. Apparent seismogram moment of the
P pulsc (shaded area) hi,=032x 1075 m"s
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Fig. 7. Grifenberg broad-band velocity recording (V) of a short-
period local Pn—sPn wavegroup and the restored displacement
seismograms (D) for increasing seismograph period.

Station GRF-A1Z, epicentral distance 220 km, Swabian Jura 09/
03/1978, MS=5.5, depth=6.5 km. Apparent seismogram moment
of the Pn pulse (shaded area) ;=6.2x 10”® m-s. Source moment
M,=0.34 x 10'7 Nm (Haessler et al., 1980)

greater than 100.0 s, the overshooting is less than the noise
level. The signal duration is about 2.5s and the relative
error of the apparent moment is about 15%.

Figure 7 shows the restoration of a Pn—sPn wave-
group, using the procedure described for Fig. 6. For an up-
per period T,=20.0s, a nearly single-sided pulse of about
1.5 s duration is obtained. The overshooting is less than

for the synthetic seismogram 1 in Fig. 1, calculated for a
seismometer period T,=20.0s and a pulse duration d
=1.6 s. This indicates that the P pulse is a composite and/or
non-single-sided wavelet. The apparent moment should
therefore be used with caution for the determination of the
source moment by applying standard geometric P-wave
spreading factors. In this case, waveform inversion using
theoretical seismograms should be preferred to estimate the
source moment.

Conclusions

The moment of a single-sided wavelet can be determined
from a broad-band displacement seismogram using a finite
displacement integral. Velocity recordings must first be con-
verted to displacement seismograms by a wide-band resto-
ration procedure. The relative error of the seismogram mo-
ment depends mainly on the ratio of the seismogram wave-
let duration to the upper period of the seismograph. An
advantage of this time-domain method is the ability to cor-
rect for long-period noise in the wideband displacement
seismograms.

If the upper corner frequency of a wavelet is greater
than the cut-off frequency of the seismograph, the seismo-
gram Is nearly the impulse response of the seismograph.
In this case, the moment can be estimated from the maxi-
mum seismogram amplitude. The frequency range for the
valid application of this method can be determined using
synthetic seismograms.

Correctly applied, these methods may improve the accu-
racy of signal moment determination. Although the correc-
tions are small compared to the uncertainties due to path
and radiation effects, they may reduce scatter in moment
vs. energy or moment vs. magnitude curves studied in shock
sequences.
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