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XX.

Zur Theorie der aus n Haupteinheiten gebildeten
komplexen Grofen.

[Nachrichten von der Koniglichen Gesellschaft der Wissenschaften zu Gottingen,
Jahrgang 1885, S. 141—159.]

Der unter der gleichen Uberschrift in Nr. 10 des Jahrgangs 1884
dieser Nachrichten verdffentlichte Brief des Herrn Weierstrass an
Herrn Schwarz behandelt einen Gegenstand, mit welchem ich mich
ebenfalls voriibergehend bescliéftigt habe. Die Untersuchung der-
jenigen Zahlgebiete, die ich Korper nenne, gab mir hierzu die un-
mittelbare Veranlassung, weil die analytische Behandlung, welche die
Theorie der endlichen Kérper verlangt, sich fast wortlich auf die
Theorie der aus n Haupteinheiten gebildeten iiberkomplexen Grofien
anwenden 146t; man braucht nur den Korper der rationalen Zahlen,
auf welchen bei jener Untersuchung die Koordinaten beschrinkt
waren, zu ersetzen durch den Korper aller reellen oder lieber durch
den Korper aller komplexen Zahlen, unter welchem Namen ich im
Folgenden immer die gewohnlichen, jetzt allgemein eingefiihrten
komplexen Zahlen verstehe. Die betreffenden analytischen Unter-
suchungen sind im § 159 der zweiten, im Jahre 1871 erschienenen
Auflage der Dirichletschen Vorlesungen iiber Zahlentheorie ver-
offentlicht; in die dritte Auflage sind sie nicht wieder aufgenommen,
weil sie fiir die Theorie der algebraischen Zahlen entbehrlich sind,
und weil ich diese Theorie mit den geringsten Hilfsmitteln zu be-
griinden wiinschte. Bei der genannten Ubertragung ergab sich nun,
dafl wahrhaft neue Zahlindividuen auf diesem Wege nicht zu gewinnen
sind; in der Tat, jedes System von » Haupteinheiten e, e,...e, kann
immer aufgefalit werden als ein System von 7 gewohnlichen kom-
plexen Zahlen oder vielmehr als Kollektivrepriasentant von 7 solchen
Systemen; derartige mehrwertige Grofensysteme sind aber in unserer
hoheren Algebra lingst eingebiirgert. Mit diesem Resultat begniigte

ich mich, weil ich in ihm die Bedeutung und die volle Bestitigung
Dedekind, Gesammelte Werke, IT. 1
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der bekannten Bemerkung von Gaull gefunden zu haben glaubte.
Da nun diese Auffassung der Haupteinheiten in dem Briefe des Herrn
Weierstrass*) zwar gestreift, aber doch nicht so, wie sie es mir zu
verdienen scheint, als der eigentliche Kern der ganzen Frage deutlich
hervorgehoben ist, da ferner z. B. die Erscheinung, daB ein Produkt
von zwei nicht verschwindenden iiberkomplexen Grofien verschwinden
kann, bei dieser Auffassung wohl ihre natiirlichste Erkliarung findet,
so erlaube ich mir, im folgenden eine Darstellung derselben mit-
zuteilen, wobei sich zugleich eine kleine Vereinfachung der von Herrn
Weierstrass aufgestellten Zuldssigkeitsbedingungen ergeben wird.

Ich mache zunichst darauf aufmerksam, daB alle Beziehungen
zwischen den iiberkomplexen Grolen, soweit es sich nicht blof um
Addition oder Subtraktion handelt, vollstindig bestimmt werden durch
die von Herrn Weierstrass mit g, von mir im folgenden mit
n¢,rs bezeichneten Koeffizienten, welche in der Gleichung (5) seiner
Abhandlung als Koordinaten des Produktes

€€ — 2 €Ny, rs

auftreten. (Ich bezeichne in der Folge mit ¢, ¢/, ... stets Summa-
tionsbuchstaben, welche die n Werte 1, 2...n durchlaufen sollen,
und ein einfaches Summenzeichen Y bezieht sich immer auf alle,
hinter demselben auftretenden ¢, ¢/, ¢"..., wihrend r,s... konstante
Indizes aus derselben Reihe bedeuten.)) Da das System der Haupt-
einheiten von vornherein als irreduktibel vorausgesetzt wird, oder mit
anderen Worten, da jede iiberkomplexe Zahl

x = > ek

nur ein einziges, vollig bestimmtes System von #n Koordinaten £, be-
sitzt, so ergibt sich, wie Herr Weierstrass erwihnt, aus den For-
derungen

€8y == €5€,, (er es) 6 — (er e’t) €s
eine Anzahl von Bedingungen, denen die Zahlen 7, ,, geniigen miissen.
Dieselben Jauten offenbar folgendermalen

(1) Nt,rs = Nt,sr
(2) E Nu,teNe,rs — E Nu, st Nerts

*) 8.410—411. Der daselhst ausgesprochenen, auf die Meinung von Gaufl
beziiglichen Vermutung kann ich mich nicht anschliefen.

$
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wo 7,8, t,u irgendwelche Indizes aus der Reihe 1,2...n bedeuten.
Diese Bedingungen, zu welchen Herr Weierstrass im Verlaufe
seiner Untersuchung noch einige, spiter zu erwithnende hinzufiigt,
stimmen, wie es in der Natur der Sache liegt, vollstindig mit den-
jenigen iiberein, welche in der Theorie der endlichen Koérper bei der
Forderung auftreten, dall die Zahlen sich durch Multiplikation re-
produzieren sollen.

Ich will nun im ersten Teil meiner Darstellung einen Weg an-
geben, auf welchem man nach Belieben unendlich viele solche Systeme
von Zahlen 7, ,, erzeugen kann, und im zweiten Teil beweisen, dal
umgekehrt auf diese Weise auch alle solche Systeme erzeugt werden.
Hierbei bemerke ich, dall von jetzt ab ausschlieflich von den bis
jetzt allgemein eingefiithrten komplexen Zahlen die Rede sein wird.

Es sei ein System B von n? Zahlen e nach Belieben angenommen,
welche nur der einzigen Bedingung unterworfen sind, daf} ihre Deter-
minante

(3) e= S +eel...eV
von Null verschieden ist. Ich betrachte nun ein System von 7 GroSen
4) €, €. .6,

welches insofern als mehrwertig anzusehen ist, als es fihig sein soll,
durch n verschiedene Substitutionen in die 7 bestimmten Spezial-
systeme

3) | &, .. e

iiberzugehen, welche den n verschiedenen Werten des Index s ent-
sprechen; diese Substitutionen sind natiirlich so zu verstehen, dal
gleichzeitig jede der » Grolen e, den mit gleichem Index r behafteten
Wert ¢ annimmt. Andere Spezialisierungen der GroBen e, sollen
ginzlich ausgeschlossen sein. Wir stellen uns die Aufgabe, alle
rationalen Beziellungen zwischen diesen mehrwertigen Grofen e, und
den vollig bestimmten, einwertigen Zahlen aufzufinden, nimlich alle
solche Beziehungen, welche fiir jedes einzelne der = Spezialsysteme
(5) giiltig sind; nur von diesen Beziehungen wird im folgenden ge-
sprochen werden.

Zu diesem Zweck betrachten wir das Gebiet G aller mit be-
stimmten Zahlkoeffizienten behafteten ganzen rationalen Funktionen
der n Grofen e,. Jede solche Funktion 2 wird durch die Sub-
stitution (5) einen entsprechenden Wert annehmen, den wir mit x®

1%
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bezeichnen wollen. Sind diese n» Werte «', 2”... 2™ bekannt oder
auch willkiirlich angenommen, so 1alt sich die mehrwertige GroBe 2
immer und nur auf eine einzige Weise als homogene lineare Funktion
der Groflen e,, also in der Form

(6) r — Eetgt

darstellen, wo die n Zahlen £, einwertig bestimmt sind; sie sollen die
Koordinaten der Grolie x in bezug auf die Basis (4) heillen. In der
Tat. die vorstehende Gleichung soll nach dem Obigen nichts anderes
bedeuten, als dall die den n verschiedenen Indizes s entsprechenden
n Gleichungen

(7) 20 = > "¢,
bestehen; da nun die Determinante (3) von Null verschieden ist, so

ergeben sich hieraus durch Umkehrung fiir die n Koordinaten Aus-
driicke von der Form

(8) ;S-7 — Ef(t) (t)

das System F der hier auftretenden n? Zahlen f ist das Komplement
des gegebenen Systems E. Wir setzen im folgenden stets

9) (r,8) = 1 oder = 0,

je nachdem die Indizes r,s gleich oder ungleich sind; dann bestehen
zwischen den beiden komplementiren Systemen E, F bekanntlich die
Relationen

In der eben bew1esenen volhgen Bestimmtheit der zu einer

Grobe o gehorenden Koordinaten £, liegt auch die Irreduktibilitit
der Basis (4), insofern die Gieichung

2 et =0
durch n bestimmte Zahlen § nicht anders befriedigt werden kann,
al]s wenn diese simtlich verschwinden. Jedes einzelne Spezialsystem (5),
fiir sich allein betrachtet, besitzt natiirlich, sobald n > 1 ist, diese
Irreduktibilitdt niemals *).

*) Der Fall ¢ =— 0, und allgemeiner die Untersuchung solcher mehrwertiger
Systeme e,, ey...e,, fir welche die Anzahl der erlaubten Substitutionen (5)
kleiner oder grofler als n ist, JdBt sich leicht auf den hier behandelten Fall
zuriickfiihren.
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Nach dem Vorhergehenden ist es nun auch erlaubt, die » Zahlen
fry e f als die Spezialwerte einer demselben Gebiet & ange-
hiorenden GroBe f, anzusehen, und man erhélt so eine zu der Basis (4)
komplementire, ebenfalls n-wertige Basis

(11) fis foeoifne

Bezeichnen wir ferner mit dem Symbol § (x) die aus allen
Spezialwerten von z gebildete Summe

(12) S(z) = 2,
so kann die Beziehung (10) zwischen den beiden Basen auch durch
(13) S(ef‘fs) = (1,9)

dargestellt werden, und da die Koordinaten £, der Grofie x zufolge
(8) die Form

(14) & — S(xfr)
besitzen, so ist allgemein
(15) , x = > e8(zf).

Man erhédlt endlich, wenn man nach den Spezialwerten a(®
ordnet und die % Grofen

(16) Cr = Eetft(r)
einfiithrt, die folgende Darstellung
(17) r = > c¢,a0.

Die demselben Gebiete @ angehdrenden n Groflen ¢, bilden
gewissermaflen eine Normalbasis desselben und sind durch

(18) & = (r,5s)

definiert. Die einzelnen 7 Bestandteile c¢,2®, welche den einzelnen
Substitutionen entsprechen, kann man mit Herrn Weierstrass die
Komponenten der Grofile z nennen. Versteht man ferner unter einem
Teiler der Null jede Grofie x, von deren Spezialwerten x(® mindestens
einer verschwindet, so sind, falls » > 1 ist, die Grofen ¢, solche
Teiler der Null.

Da nach dem Obigen alle Grollen x des Gebietes G, d. h. alle
ganzen rationalen Funktionen der n Groflen e, sich als homogene

lineare Funktionen derselben darstellen lassen, so kann man jedes
Produkt

(19) €, € — Eec'rlt,rs
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setzen, wo die Koordinaten 7, ,, notwendig den sidmtlichen Bedin-
gungen (1) und (2) geniigen miissen, welche aus den Gleichungen
e,e, = e,e, und (e e,)e, = (e, e)e, entspringen. In der Tat ergibt
sich aus dem obigen allgemeinen Ausdruck (14) fiir die Koordinaten
einer Grofle z, dafl

(20) nt,'ra B S(eresft)

ist, und aus dieser Darstellung der Zahlen #;,, durch das gegebene
System E der Zahlen e folgt sofort, daf alle jene Bedingungen
identisch erfiillt sind, weil die Summe

(21) Enu,“ Ne s = 2 () (l’)f ) (l") (l")f(l")
—_ 2 el')f(l’) (GO) (t”) Y u) — 2 el') ) (l')f(l')
- S(eres € fu)i

also symmetrisch in bezug auf die drei Indizes r, s, ¢ ist.

Am einfachsten gestaltet sich natiirlich die Multiplikation, wenn
man alle Grofen x des Gebietes @ in der Form (17) durch die
Normalbasis darstellt. Die GroBen ¢, haben namlich, wie aus ihrer
Definition (16) oder auch unmittelbar aus (18) hervorgeht, die Eigen-
schaften
(22) ¢, ¢y = (1,9)Cp,

und hieraus folgt, wenn y ebenfalls eine beliebige Grolle des Ge-
bietes G bedeutet,

(28) 2y = S0y,
was ohnehin wegen
(24) (290 = 200

selbstverstindlich ist. Ebenso leuchtet ein, daB, falls » > 1, ein
Produkt 4 von zwei von Null verschiedenen Groflen xz,y sehr wohl
verschwinden kann; in der Tat bedeutet die Gleichung zy =— 0
nichts anderes, als das gleichzeitige Bestehen der den n Substitutionen
entsprechenden Gleichungen #®4® — 0, und diesen kann immer so
geniigt werden, dal einige Spezialwerte von jeder der Groflen z,y
verschwinden, aber mindestens einer derselben von Null verschieden
ist. Ist x eine gegebene Grolle, so ist die Mannigfaltigkeit der
Wurzeln y der Gleichung zy — 0 hiernach sofort zu iiberblicken.
Auf die Folgerungen, welche sich hieraus fiir die Division der Grolen
des Gebietes @ und hinsichtlich der Mannigfaltigkeit der Wurzeln
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von Gleichungen hoheren Grades ergeben, will ich hier nicht mehr
eingehen, weil sie von Herrn Weierstrass ausfiihrlich besprochen
sind. —

Ich gehe nun im zweiten Teil zu meiner Hauptaufgabe iiber,
welche darin besteht, zu zeigen, dall umgekehrt jedes gegebene System
von Zahlen #,,, welches die Bedingungen (1) und (2) und eine
sogleich aufzustellende Zusatzbedingung erfiillt, immer auf die im
vorhergehenden beschriebene Weise (20) aus einem und nur einem
System E von n? Zahlen ¢” mit nicht verschwindender Determinante
e entspringt. Die erwéhnte Zusatzbedingung besteht darin, dall, wenn
man zur Abkiirzung

(25) 6, == 21y r

und

(26) Trs =— Tsp — 26‘77‘7 rs
setzt, die Determinante

(27) 4= 2+ 7,%5 Tnn

einen von Null verschiedenen Wert besitzt; es wird sich spiter,
ohne dall ich besonders darauf zuriickzukommen brauche, von selbst
ergeben, dall diese einzige Bedingung vollstindig &quivalent mit den
drei Forderungen ist, auf welche Herr Weierstrass durch seine
Untersuchung iiber die Zuldssigkeit der iiberkomplexen Gréfen ge-
fithrt wird (S. 403). Ihre Bedeutung fiir unsere Aufgabe ist leicht
zu erkennen; ist némlich das System der Zahlen 7 ,, in der oben
angegebenen Weise (20) wirklich aus einem System K entsprungen,
s0 ist
(28) 6, = 2 8(eef) = S e’ e = S(e,)
und
(29) 1= S8E)S(ef) = e d d [ = S(e,e)
und folglich
(30) A4 = €
woraus die Notwendigkeit unserer Bedingung unmittelbar einleuchtet.
Des leichteren Verstindnisses wegen empfehle ich dem Leser, auch
im folgenden immer die Bedeutung anzumerken, welche die einzu-
fiilhrenden Grofen besitzen wiirden, falls die Abstammung der Zahlen
M, rs aus einem System E schon bewiesen wire.

Die Bedingungen (1) und (2) lassen sich am einfachsten und
mit dem besten Erfolge zusammenfassen, wenn man n unabhingige
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Variable &, & ...£, und 7 homogene ganze Funktionen zweiten
Grades %,, 7, ... 4, durch die Definition

(31) 277t == Ent,u'ngl'
einfiithrt. Die Bedingungen (1) sind dann durch
(32) — _‘?_2,’7#_

‘ nt,rs—dgrdgs
ausgedriickt. Setzt man ferner

o,

(33) Nrys =— -d_g‘; - 2"]7‘,34&17
so ist
(34) ‘ 29 = 2,k

und, wenn d das Zeichen fiir eine Variation (d. h. eine totale Diffe-
rentiation) bedeutet,
(35) dnr: Eﬂr,zd& = E&dﬂm-

Die Bedingungen (2) werden ferner, wenn d’ ebenfalls eine
willkiirliche Variation ist, zusammengefalit in

(36) Zd”?r,td'nz,s - Zd’nr,t d"h,s-

Alles Folgende beruht auf diesen Bedingungen und der freiesten
Ausnutzung des Begriffes einer Variation. Man kann diesen Be-
dingungen noch verschiedene andere Formen geben, in denen sie
ebenfalls zur Anwendung kommen werden. Multipliziert man mit
& und summiert nach s, so folgt nach (35)

(37) >y, Ay = X dy,, d.
Setzt man ferner d'¢, = §&,, so folgt aus (36)
(38) E’Vh,sd”?r,t - an,tdﬂt,.‘a-

Wir fiihren noch folgende Funktionen ein, die lineare

(39) 6 = 2771,1 = Zdtgu

die quadratische

(40) 27 — 2 Zdlnt —_ E‘hu’éngm
die linearen

0
(41) Ty = 0"; = Edtnt,f == 2%&

und beginnen nun unsere Untersuchung.
Da die aus den Zahlen 7,, gebildete Determinante (27) nach
unserer Annahme nicht verschwindet, so kann man eine spezielle
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Variation & vollstindig definieren durch die fiir alle n Indizes r
geltende Forderung

(42) 01, = 6,,

und zwar sind die hieraus folgenden Werte der Differentiale 0§,
0&,...0&, bestimmte konstante Zahlen. Multipliziert man nun (36)
mit 6, und summiert nach 7, so folgt mit Riicksicht auf (41)

(43) 2 dr, d"’h,s - 2 d'z, d’ﬂz,sa
und wenn man hierin d' = § setzt und (42) beachtet,

Zdtﬁnu = Eﬁldmx = d1,;
da nun, weil 4 nicht verschwindet, die » Differentiale dz,, d1,...dz,
ginzlich unabhéngig voneinander sind, so folgt hieraus offenbar

(44) 0n,s = (1,8), 0n =&, 0t — 0.

Hieraus ergibt sich die wichtige Folgerung, dall die Funktional-
determinante

o
(45) § = T S mae a

nicht identisch verschwinden kann; legt man ndmlich jeder Varia-
blen &, den entsprechenden Wert 0 &, bei, so geht %, , in 07, , = (r,9)
iiber, und folglich nimmt die homogene ganze Funktion n-ten Grades ¢
den Wert

6n
(46) 7 (n) =1
an (diese Determinante ¢ geht in die von Herrn Weierstrass auf
S.397 mit & bezeichnete Grole iiber, wenn die § =— f, gesetzt
werden).

Hieraus folgt wieder, daf mnicht blof fiir jede positive, sondern
auch fiir jede negative ganze Zahl p eine entsprechende Variation 9,
vollstindig definiert werden kann durch die fiir alle n Indizes 7
geltende Rekursion
(47) 6p+1§7‘ - 61, Nry
mit der Anfangsbedingung 8, = 8. Die merkwiirdigen Eigenschaften
der hierdurch definierten Funktionen 8,&, (welche von Herrn Weier-
strass mit £ bezeichnet sind) ergeben sich leicht aus unseren Grund-
bedingungen (87); setzt man d == 8,, so erhilt man zufolge (47)

Eapnﬁ‘d"l - Ednr,lap'l-lgl - 26p+171r,td§¢
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und hieraus wegen der Willkiirlichkeit von d,

(48) 6p+lnr,s - Ent,sap'ﬂr,t =5 an,lapnl,s-
Setzt man hierin p = — 1, so folgt nach (44), dafl
(49) X Ne Oy = 2, 01y = (7,8),
mithin das Produkt

(50) : P01,

der Koeffizient des Elementes 7, , in der Determinante ¢ ist.

Allgemeiner folgt aus (48) leicht durch den Schluf von ¢ auf

g + 1, daB fiir je zwei ganze Zahlen p,q der Satz

(51) Optq s = ESpnr,laq'?t,s
gilt, woraus man beildufig schlieft, dall

Op M1+ 0p7,n
61’ 7]";1 e ap ""7""

ist, was aber auch schon aus (48) folgt.

Multipliziert man (51) mit & und summiert nach s, so folgt

nach (35)

(53) 0p+qMr = Eﬁpnnlaqn“
also zufolge (47) auch

(54) 6p+q§r — 251)””:‘64&'

Ebenso findet man aus (47) und (48) durch den Schluf von p
auf p+1 die Allgemeingiiltigkeit des fiir p — 0 evidenten Satzes

(55) d3p’ér = Pzapwl’?n,d& — pzdm,ﬁp—l&
und hieraus die Funktionaldeterminante
A0, ...0,E,
(36) e = e
Setzt man d = 0,, so folgt aus (55), (54)
(57) 6q6p§r = pap%—q—-lgm
also auch
(58) 0,0,4 = POpiq—1dy

wenn A eine willkiirliche homogene lineare Funktion bedeutet.

man ¢ = 0, so folgt
(59) 00,A = pdy—14

Setzt
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und durch Wiederholung der Variation o

(60) 0mi,A =p(P—1) ... @—m—+1)0,_.4,
speziell
(61) 6""6_11 = (_ 1)”‘11(71’&) 6_1_",'}».!

Ich wende mich jetzt zur niheren Betrachtung der Determinante g.
Zufolge der oben gefundenen Bedeutung des Produktes (50) ist nach
einem bekannten Satz

dp = ¢ 201w dne, = ¢ 20100 Mo, dEurs
aus den Grundbedingungen (36) folgt aber

2 6-—1 Ny Niyrs =— 2 nr,rt’a—l Nysy

und hierdurch vereinfacht sich mit Riicksicht auf (39), (41) das vor-
stehende Differential in folgender Weise

dq) _ ‘pznt,u'a—lnt’,t”dgl" prasns 97261’6—1"7:’,1"d§ﬂ’ frmvsend ‘Pza——lfz”d&”

oder also

(62) dop = ¢ So_vdt = ¢ Sdud_ik,
oder, wenn die n Differentiale d§, konstant sind, noch kiirzer
(63) do = @d_,dr,

wo nun dt jede beliebige homogene lineare Funktion bedeutet, weil
4 von Null verschieden ist. Hieraus geht hervor, dafl die n Funk-
tionen 0_, &, sich durch die Derivierten von log ¢ ausdriicken lassen,
und umgekehrt diese durch jene. Ferner ergibt sich, wenn man zur
Abkiirzung
(64) — D

Pu I(w) ¢
setzt, durch wiederholte Anwendung der Operation &, unter Beriick-
sichtigung von (61), der Satz

‘U, =m
(65) deg, = Eq)u%_m_ldt.
=20
Bedenkt man, dal zufolge (46)
(66) Pn = (— 1)1,
und dafi alle folgenden @, 4, @,42... verschwinden, so ergibt sich

u=n
> 9uu—m—1d7 = 0, wenn m = n,
w=o0 ,
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und da dz, wie schon bemerkt, jede der n Variablen £, bedeuten
kann, so ergibt sich, wenn 4 eine willkiirliche Funktion ist, immer
p=mn

Eq)uau—-m—x‘d) = 0, wenn m = n;
p=0

nimmt man hierin, wenn p eine willkiirliche ganze Zahl ist,

) Y= 0pims2é,
so folgt mit Riicksicht auf (57)

p=n
(p+m+2)2‘puau+p§r = 0, wenn m = n;
L=o0

da nun fiir jede gegebene ganze Zahl p eine ganze Zahl m =>n
stets 80 gewidhlt werden kann, dafl (p + m -+ 2) nicht verschwindet,
so folgt, dall immer

u=n

(67) Eo‘pu 6u +p gr = 0,
‘u, =

also auch immer die Rekursion

p=n

(68) #EO‘PM Ourpv =0

gilt, wo ¢ eine willkiirliche Funktion.
Nehmen wir jetzt in (65) an, es sei m < n, so folgt mit Riick-
sicht auf (68)

u=mn

d(pm - — E¢M5u_m_1 dt
p=m+1
oder auch _
w=n—m=—1

dtpm = — Eq’#+m+l6#67‘
a=0

Setzt man hierin d = 8, und bedenkt, daB 8z — ¢ und 0, =
— (m 4 1) @p +, ist, so erhélt man, wenn man noch m durch m —1

ersetat, h=n—m

(69) m Pm ZMZO‘PM +m0u0.

Dieser Satz gilt fiir die Zahlen m — 1,2 ...7 und offenbar auch
fiir m = 0 zufolge (68); seine Bedeutung wird sich sogleich ergeben.

Wir fiithren jetzt eine Charakteristik ¢ ein, welche folgenden Sinn
hat. Ist ¥ eine beliebige Funktion der 7 Variablen £,, so soll &(v)
diejenige Funktion von den &, und von einer neuen Variablen £ be-
deuten, welche aus ¢ dadurch hervorgeht, dal jede Variable £, durch
die entsprechende Grofie (§,—&0&,) ersetzt wird. Da die 0 &, konstant
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sind, so ist nach dem Taylorschen Satze, wenigstens far ganze
Funktionen 1,

(70) f(d’)——d’—‘g—-—l—?l——g—’égl 7. n+“'
and allgemein, wenn die Differentiale d§, konstant sind,
(71) de(w) = e(dv) —e(dv)dé.
Da @ eine ganze IFunktion n-ten Grades ist, so ist mit Riicksicht
auf (64)
(72) (@) = ¢+ @£+ @+ - + Pubn;

da ferner ¢ die Determinante der linearen Funktionen %, ,, und
mfolge (44)

(73) & (Nrys) = Nis — (1,9) €
ist, so ergibt sich auch

Ma— G DE e — (L,7)§
(74) & (Q) e

g1 — (M 1) E e My — (nn)’g'
Wir denken uns nuu &(¢p) als ganze Funktion n-ten Grades der Va-
riablen £ in » Faktoren ersten Grades zerlegt und setzen demgemil,
weil @, = (—1)" ist,

(75) é(p) = [[(z—¥&),
wo das Produktzeichen sich auf die n Wurzeln
(76) =, x"...x®

bezieht, welche Funktionen von den n Variablen £, sind und nach
dem Fundamentalsatze von Gaufl im Korper der komplexen Zahlen
stets existieren. Dann ergibt sich durch Vergleich von (68), (69),
(72) mit den Newtonschen Formeln der Algebra, dal fiir jede
ganze Zahl p
() 0p6 = Op—17 = S(aP)
ist, wo die Summation S sich auf alle n Werte von z bezieht. Be-
zeichnet man ferner mit D die Diskriminante von & (), d. h. das
Quadrat des Produktes aus allen Differenzen der » Grofen x, so ist
nach einem ebenfalls bekannten Satze

da, 0,6...0,_,6
(18) D — | 016, 0,6. 6 G 7

.............
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welcher Ausdruck sich noch umformen 1laft. Multipliziert man die
Determinante

0k, ...0&
(19) o= | Bk 0k
n 1&1 n-—lgn

mit der aus den Zahlen 7,, gebildeten Determinante 4, und bedenkt,
daf3

2 trlapgl - 6p'5r
ist, so erhdlt man das Produkt
oz, ...0t,

| Op—1Ty. . 017y

multipliziert man abermals mit ¢, und bedenkt, dal mit Riicksicht
auf (41) und (54)

Eapgtaqtt = Zap&ﬁuaqnu,L = 261’6p+q§1’ = 0Op4q0

ist, so ergibt sich offenbar der Satz

(80) D = 4
Auf dhnliche Weise findet man leicht aus (74)
1, 0§, ...0&,
) 6 6 n
) ee)=| & DB b
£ 0nky ... Onfn
Aus unserer Annahme, dal die Determinante 4 von Null ver-
schieden ist, 1abt sich nun — worauf ich wunten zuriickkommen
werde — in aller Strenge beweisen, dafl die Determinante o und

folglich auch die Diskriminante D nicht identisch verschwindet.
Man kann daher den = Variablen £, solche bestimmte Zahlwerte
beilegen, dafl die n Wurzeln x sidmtlich voneinander verschieden
ausfallen. Nachdem dies geschehen, definieren wir fiir jede dieser
n Wurzeln z ein entsprechendes System von n Zahlen e,, e,...e, durch
diejenigen n Gleichungen

(82) a? = > ed,E,

welche den n Werten p — 0, 1, 2...(n—1) entsprechen; die =
GroBen e, sind hierdurch in ihrer Abhingigkeit von der Wurzel z



vollstdndig bestimmt, weil die Determinante ¢ einen von Null ver-
schiedenen Wert hat. Es ergibt sich zundchst, dal die Gleichung
(82) nun fiir jede positive ganze Zahl p besteht (auch fiir jede nega-
tive, wenn ¢ von Null verschieden ist); in der Tat, da &(p) fiir
& =— x verschwindet, so geniigt aP zufolge (72) derselben Rekursion

w=n

Eq)ﬂ&;."""ﬂ — 0,

w=0
welche zufolge (67) fiir die Grélen 0,&, gilt; nimmt man daher an,
unser Satz (82) sei fiir » aufeinanderfolgende Werte
p=mm+1l..m+n—1

bewiesen, so ergibt sich aus dieser Ubereinstimmung, und weil g,
von Null verschieden ist, dall er auch fir p — m + n gilt, wodurch
er offenbar allgemein bewiesen ist.

Hierauf fiihren wir fiir je zwei Indizes 7, s aus der Reihe 1,2...7

eine entsprechende, ebenfalls von der Wahl der Wurzel  abhéngende
Zahl

(83) €rs = €5y = 2 €Ny, rs

ein; multipliziert man mit 0,£,0,& und summiert iiber alle Werte
7,8, so folgt mit Riicksicht auf (54) und (82)

2 e, 3p§¢5q§u et Eelnl’l,tné\pg‘ﬁqgu P Eelﬁpglﬁqn“,
= e, b = 2P+ = P2t = > e0,£e00,E,

(v — ees)d,E 0, = O
setzt man hierin fiir p und ¢ alle Werte aus der Reihe
0, 1,2...(n—1),
und bedenkt, dall die Determinante ¢ von Null verschieden ist, so
folgt leicht, daf immer e,, = e, e,, also zufolge (83)

(84) €€ == > € irs
ist, wodurch wir zu der Gleichung (19) unseres ersten Teiles zuriick-
gekehrt sind.

Substituiert man endlich fiir z alle » verschiedenen Wurzeln
und bezeichnet mit e denjenigen Wert von e,, welcher durch die
Wurzel o = 2@ erzeugt wird, so erhilt man, wenn man die Deter-
minante der m* Zahlen (82) bildet, die den Werten

p=20,1.2...(n—1)

also



entsprechen, das Resultat

VD——gE-i—a’le;’ e = ge
und hieraus mit Riicksicht auf (80)
(85) 4 = ¢
das auf diese Weise aus dem System der Zahlen #,,, berechnete
System B der Zahlen e besitzt daher eine . Null verschiedene
Determinante e.

Da die Gleichungen (84) fiir jede der » Substitutionen & — z®
gelten, so ist hiermit aus den gegebenen Zahlen % ,, ein n-wertiges
System von n Groflen e, e,...e, konstruiert, aus welchem umgekehrt
auf die im ersten Teil angegebene Art unser jetzt gegebenes System
von Zablen #,; ,, erzeugt wird. Hiermit ist der Beweis geliefert, daf
jedes System von n Haupteinheiten, wie es in der Untersuchung des
Herrn Weierstrass auftritt, stets aufgefallt werden darf als ein
n-wertiges System von 7 gewohnlichen Zahlen, in der Weise, dal
jede rationale Gleichung zwischen den 7 Haupteinheiten dann und
nur dann wahr ist, wenn sie fiir jedes der von uns hergeleiteten
Spezialsysteme e, e(f). e gilt. Will man daher iiberhaupt noch
von solchen iiberkomplexen Grollen als von mneuen Zahlen sprechen
(was ich fiir unzweckmilig halte, weil in unserer hoheren Algebra
bestiindig melrwertige Grolensysteme genau in der hier beschriebenen
Weise auftreten), so kann dies doch nur in einem ganz anderen,
und zwar unendlich viel schwicheren Sinne geschehen, als bei der
gewaltigen Bereicherung des Korpers der reellen Zahlen durch die
Hinzufiigung der imagindren Zahlen, oder auch bei der Einfiihrung
der Hamiltonschen Quaternionen, die, wenn ihr Nutzen auch auf
ein sehr kleines Feld beschrinkt zu sein scheint, doch auf den Cha-
rakter der Neuheit gegeniiber den anderen Zahlen unbedingten An-
spruch erheben diirfen.

Es ist nun auch leicht zu zeigen, dal das gefundene System E
der Zahlen e — abgesehen von der Freiheit, die den einzelnen
Substitutionen entsprechenden oberen Indizes nach Belieben mit ein-
ander zu vertauschen — ein einziges, voilstindig bestimmtes, d. h.
immer dasselbe ist, wie auch die numerischen Werte der Variablen £, ,
denen ein von Null verschiedener Wert ¢ entspricht, sonst gewihlt
sein mogen. Denn wenn wir, nachdem wir ein bestimmtes solches
System gefunden und uns dadurch auf die im ersten Teil unserer
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Untersuchung angenommene Grundlage gestellt haben, den Groen &,
ihre volle Variabilitit wiedergeben und, ohne Riicksicht auf die bis-
herige Bedeutung von x, diese Grolle jetzt, wie im ersten Teil (6),
als n-wertige lineare Funktion

(86) x = ek

definieren, so folgt aus (19) oder (84)

(87) xe, — 2 ey /T §¢ — 2 et"]t,ra

und wenn § eine willkiirliche einwertige Grofe bedeutet,
(88) (x - g) € — 2 (A (ﬂt,r - (51 ”‘) ‘5)7

wendet man hierauf alle n Substitutionen an, setzt fiir » alle » In-
dizes und bildet die Determinante, so erlidlt man nach Division
durch die von Null verschiedene Determinante e und mit Riicksichi
auf (74) das Resultat

(89) [Te—8 =<0

da nun die Funktion &(¢) schon durch das System der Zahlen 4, ,,
vollstindig bestimmt ist, so gilt dasselbe von der Gesamtheit der
n linearen Funktionen = in (86), also auch von dem System E
ihrer Koeffizienten ¢”. Zugleich ergibt sich hierbei das Resultat,
in welchem riickwérts alles iibrige enthalten ist, daf &(p) und also

auch
(90) ¢ =]I=
ein Produkt von n linearen Faktoren ist. —

Bei dem vorstehenden Beweise der Existenz des erzeugenden
Systems E und der Zerlegbarkeit der Funktion ¢ in lineare Faktoren
habe ich denjenigen Weg gewihlt, welcher die meisten Beriihrungs-
punkte mit den Entwicklungen des Herrn Weierstrass darbietet,
Hierbei habe ich die besondere Voraussetzung machen miissen, daf
die in (79) definierte Determinante ¢ nicht identisch verschwindet;
in Wahrheit ist dies, wie ich schon oben bemerkt habe, eine not-
wendige Folge unserer Grundannahme, daB die Determinante 4 einen
von Null verschiedenen Wert besitzt, aber es hat mir trotz mancher
zeitraubenden Versuche nicht gelingen wollen, diesen nicht unwichtigen
Satz kurz, und zwar lediglich mit denjenigen Hilfsmitteln zu be-
weisen, welche in der obigen Darstellung vor seiner Benutzung, also
bis (81), entwickelt sind. Da die analoge Frage fiir die Funktion ¢

Dedekind, Gesammelte Werke, II. 2
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oben in (46) auf die leichteste Weise erledigt ist, ndmlich durch die
wirkliche Angabe eines aus den Zahlen v, ,, rational abgeleiteten
Wertsystems £, — 0§, fiir welches ¢ mnicht verschwindet, so be-
fremdet mich diese Schwierigkeit, und ich wiirde mich sehr freuen,
wenn es einem anderen Mathematiker geldnge, sie zu iiberwinden.

Dafl wirklich ¢ nicht identisch verschwindet, wenn ./ von Null
verschieden ist, kann man nun — freilich post festum — auf einem
ganz anderen Wege beweisen, namlich so, dall man vorher die Zer-
legbarkeit der Funktion ¢ in lineare Faktoren dartut. Der Kiirze
halber will ich mich aber hier darauf beschrinken, nur die Haupt-
punkte dieses Beweises anzugeben (vgl. den oben zitierten § 159
der zweiten Auflage von Dirichlets Zahlentheorie). Unter der im
folgenden immer geltenden Annahme konstanter Differentiale dg,,
d' ¢, findet man aus (62) durch abermalige Differentiation unter Be-
riicksichtigung von (55) und der aus (36) oder (43) leicht abzu-
leitenden Gleichung

Sdrd g = Xrvddy,
das Resultat

(91) dd'logp = “6—227tdd"’713
definiert man die von d und d' abhingige Variation d” durch die
ebenfalls konstanten Differentiale

(92) &g = ddy,,
so nimmt dasselbe die einfachere Form

(93) dd'loge = —d_,d"z
an, woraus leicht der Satz

(94) dd' logep — d"dlog

folgt, welcher die Grundlage des Beweises bildet (beiliufig bemerkt,
folgt hieraus schon, daB .aus der Funktion ¢ und der Variation §
gich das ganze System der Zahlen 7 ,, riickwirts ableiten laGt).
Man zeigt zuniichst leicht, dal jeder ganze rationale Faktor ¢ der
Funktion ¢ dieselbe Eigenschaft

(95) dd'logy = d"dlog ¢
besitzt. Da ferner

v d dlogwy (A0
(96) o(Hy ) = v ()
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ist, so ergibt sich, dall die ganze Ifunktion

(97) P d?y —20y9dyddy +dyp? oy

durch v teilbar ist, und hieraus 1illt sich, wenn man fiir 3 ein
Produkt von lauter voneinander verschiedenen irreduktiblen oder
Primfunktionen nimmt, auf verschiedene Art beweisen, dall &(v) und
also auch 4 ein Produkt von lauter linearen FFaktoren ist. Dasselbe
gilt daher auch von &(p) und ¢. Ist endlich

(98) €= 2 eé

irgendeiner dieser linearen Iaktoren von ¢, so kann man ihn
immer so wihlen, dall dz — 1 wird, und dann gibt der auch fiir
hn giiltige obige Satz

(99) dd' logx = d"dlog x
unmittelbar das Resultat dad'x = d" =z, d. h.
(100) e = )€, ro,

womit das erstrebte Ziel erreicht ist. Dal aber die Funktion g nicht
identisch verschwindet, dafl also die = linearen Funktionen x vonein-
ander verschieden sind, ergibt sich jetzt sofort daraus, dall, wie aus
(77) oder auch auf andere Weise leicht folgt, 27 — S(a?) ist, und
daf die Diskriminante 4 dieser Funktion einen von Null verschiedenen
Wert hat. —

Zum SchluB noch folgende Bemerkung. Ich habe der Unter-
suchung von vornherein den Korper der komplexen Zahlen zugrunde
gelegt, weil hierdurch die Darstellung sehr erleichtert wird. Will
man, wie es in der Abhandlung des Herrn Weierstrass geschieht,
nur reelle Zahlen #; ,, und &, zulassen, so hat dies auf das mehr-
wertige System e,, e,...e, lediglich den EinfluB, daf, wenn ein
Spezialsystem (5) imagindre Zahlen enthilt, immer ein zweites
Spezialsystem vorhanden ist, welches aus den mit ihnen konjugierten
imaginéiren Zahlen besteht.

Braunschweig, 13. Februar 1885.



Erlauterungen zur vorstehenden Abhandlung. (Zugleich zu XXI.)

Diese Abhandlung bringt die Theorie der kommutativen hyperkomplexen
Systeme ohne Radikal — hyperkomplex in bezug auf den Korper der komplexen
Zahlen — auf der Grundlage der Zerlegung der Systemdeterminante (Gruppen-
determinante) in Linearfaktoren (90), womit auch die Zerlegung der charakte-
ristischen Gleichung des allgemeinen Elements gegeben ist (89). Daraus wird
der Hauptsatz gefolgert, die Allgemeingiiltigkeit der im ersten Teil (bis 24) an-
gegebenen Struktur: Die Darstellung als direkte Summe von n dem Korper der
komplexen Zahlen isomorphen Kérpern, wodurch die % verschiedenen Homomorphismen
des Systems in den Korper der komplexen Zahlen vermittelt werden; die Kom-
ponenten der Einheit ergeben dabei in ihren Koeffizienten die 7 Homomorphismen
der komplementiiren Basis.

Entsprechende Entwicklungen hatte Dedekind urspriinglich zur Begriindung
der Korpertheorie verwandt (§ 159 der 2. Auflage von Dirichlet-Dedekind;
Bd. III dieser Werke), indem er einen Korper n-ten Grades als hyperkomplexes
System iiber dem Korper der rationalen Zahlen auffafite, aus dem Nichtauftreten
von Nullteilern die Irreduzibilitit der Systemdeterminante erschlof und deren Zer-
legung in Linearfaktoren bei Erweiterung des Koeffizientenbereichs gab. Auf diese
Begriffe geht er in XXI zuriick; Restklassenringe nach zerlegbaren ganzzahligen
Polynomen und Erweiterung des Koeffizientenbereichs bei einem als hyperkomplex
anfgefabten Kreiskorper geben Beispiele fiir das Auftreten von Nullteilern und
sollen den Zusammenhang mit der iiblichen Algebra illustrieren. Bemerkenswert
ist auch die geometrische Deutung des dritten Beispiels, die darauf hinauskommt,
das System als Restklassenring nach einem Polynomideal in mehreren Unbestimmten
aufzufassen.

Wie aus dieser letzteren Auffassung das Dedekindsche Hauptresultat sich
herleiten lifit, hat Hilbert (Gott. Nachr. 1896) vermoge seines Nullstellensatzes
gezeigt. In der Sprache der Matrizen hat Frobenius eine neue Herleitung und
Verallgemeinerung gegeben (Uber vertauschbare Matrizen, Berl. Ber. 1896); der
Zusammenhang besteht in der Tatsache, dafi die irreduziblen Homomorphismen
einer Matrix durch Zuordnung der Matrix zu ihren charakteristischen Wurzeln
gegeben sind. Auch in den spiteren hyperkomplexen Arbeiten von Frobenius —
vor allem in seiner Theorie der nichtkommutativen ,Dedekind-chen Systeme“ —
zeigt sich Dedekindscher Einfluffi; die hyperkomplexe Auffassung von Algebra
und Galoisscher Theorie wirkt sich aber erst in den neuesten hyperkomplexen
Arbeiten aus [vgl. etwa E. Noether, ,Hyperkomplexe Grofen und Darstellungs-
theorie“, Math. Zeitschr. 80 (1929), $21 oder eine demniichst in der Math. Zeitschr.

erscheinende Arbeit iiber hyperkomplexe Galoissche Theorie].
Noether.



XXI.

Erlauterungen zur Theorie der sogenannten
allgemeinen komplexen Grofien.

[Nachrichten von der Koniglichen Gesellschaft der Wissenschaften zu Gottingen,
Jahrgang 1887, S.1—7.]

Seit dem Erscheinen der auf diese Theorie beziiglichen Abhand-
lung des Herrn Weierstrass (im Jahrgang 1884 dieser Nachrichten,
S.395) und der meinigen (1885, 8.141) habe ich bei miindlichen
und brieflichen Unterhaltungen ofter die Erfahrung gemacht, daf}
die in beiden Schriften niedergelegten Auffassungen nicht mit hin-
reichender Deutlichkeit voneinander unterschieden werden. Da viel-
leicht meine Darstellung hieran die Schuld trigt, so erlaube ich mir
noch einmal auf denselben Gegenstand zuriickzukommen. Es handelt
sich um die Auslegung des bekannten Ausspruches von Gauf:

»Der Verf. hat sich vorbehalten, den Gegenstand, welcher in
der vorliegenden Abhandlung eigentlich nur gelegentlich beriihrt ist,
kiinftig vollstindiger zu bearbeiten, wo dann auch die Frage, warum
die Relationen zwischen Dingen, die eine Mannigfaltigkeit von mehr
als zwei Dimensionen darbieten, nicht noch andere in der allgemeinen
Arithmetik zuldssige Arten von GroBen liefern konnen, ihre Be-
antwortung finden wird.“ (Gaul’ Werke, Bd.II, S.178.)

Herr Weierstrass fafit (S.410—411 1 ¢.) seine Ansicht in
folgende Worte:

sWenn ich nun mit dem Ergebnis der vorstechenden Unter-
suchung die im Anfange angefiihrte Gaulische Bemerkung, dal
komplexe Grofen mit mehr als zwei Haupteinheiten in der allge-
meinen Arithmetik unzulissig seien, zusammenhalte, so scheint es
mir, daf Gaufb diese Unzuliissigkeit als dadurch begriindet angesehen
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habe, dal das Produkt zweier GroBen, sobald n > 2, verschwinden
kann, ohne dal} einer seiner Faktoren den Wert Null hat. Denn
hitte er diesen Umstand nicht als ein uniibersteigliches Hindernis
fiir die Einfithrung der allgemeinen komplexen Groflen in die Arith-
metik betrachtet, so wiirde es ihm schwerlich entgangen sein, da8
sich eine Arithmetik dieser Grifen begriinden 148t, in welcher alle
Satze entweder mit denen der Arithmetik der gewohnlichen kom-
plexen Groflen identisch sind oder doch in der letzteren ihr Analogon
finden. Er wiirde dann auch ohne Zweifel seinen Ausspruch dahin
modifiziert haben, daf die Einfithrung der allgemeinen komplexen
Groben in die Arithmetik zwar nicht unstatthaft, wohl aber iiber-
fliissig sei. In der Tat geht aus dem oben (S.407) ausgesprochenen
Satze hervor, dafl die Arithmetik der allgemeinen kom-
plexen GroBen zu keinem Resultat fiithren kann, das
nicht aus Ergebnissen der Theorie der komplexen Griofen
mit einer oder mit zwei Haupteinheiten ohne weiteres
ableitbar widre®

Von dieser Auffassung weicht die meinige (vgl. S.142, 147,
156 L c.) erheblich, nimlich in dem Hauptpunkte ab, daB ich den
GroBen, welche im vorstehenden allgemeine komplexe Grofen ge-
nannt werden, den Charakter der Neuheit génzlich versage; es handelt
sich in unserem Jahrhundert nicht mebr um ihre Zulassung, sie sind
vielmehr schon lange und mit groflem Erfolge in die allgemeine
Arithmetik zugelassen; sie bilden, wie gesagt, keine neue oder —
um buchstiblich genau mit Gaul zu reden — keine anderd Art
von GroBen, sondern sie sind geradezu identisch mit den iiberall
in der Algebra eingebiirgerten mehrwertigen gewShnlichen Zahlen;
es ist unmoglich, jene von diesen zu unterscheiden, und die letzteren
bieten bei folgerichtiger Ausbildung ihres Begriffes auch schon die
erwiahnte Erscheinung dar, daf ein Produkt aus nicht verschwindenden
Faktoren sehr wohl verschwinden kann. In allem Diesen glaube ich
die Bedeutung und die volle Bestitigung des Ausspruches von Gaul
zu erkennen.

Da ich den in meiner Schrift gegebenen allgemeinen Beweisen,
auf welche ich diese meine Auffassung griinde, und welche, wie ich
gern hinzufiige, dem Wesen nach auch in den analytischen Ent-
wicklungen des Herrn Weierstrass enthalten sind, nichts hinzu-
zufiigen habe, so begniige ich mich, die beiden verschiedenen Auf-



— 928 —

fassungen durch einige Beispiele zu erldutern, weil diese oft eine
weit grofere iiberzeugende Kraft besitzen, als eine allgemeine Theorie.

Jedes Beispiel fiir unsere Untersuchung ist dann ein vollkommen
bestimmtes, sobald die Produkte von je zwei der Haupteinheiten
linear durch die letzteren dargestellt sind. Ich wahle zundchst ein
System von drei Haupteinheiten e,, e,, e, mit folgenden Grundformeln:

e = —2e, — e, —2¢
6 = —2e¢,—2¢,— g
e — — e, —2e,—2¢
e ey = e, + e
e;e, — e+ e
e e, — e, + e

Dieselben erfiillen, wie man sich leicht iiberzeugt, alle die Bedingungen,
welche sich aus dem sogenannten assoziativen Gesetz der Multi-
plikation ergeben. Behilt man ferner die von mir (L c. S.147) ge-
wihlten Bezeichnungen bei, so findet man

6, =6, —6; — — 1

Typ == Tgg = Tgg = D

Tgg = Ty = Typ = — 2
a4 = 49,

und weil die Determinante ./ nicht verschwindet, so sind auch die
von Herrn Weierstrass aufgestellten Zuldssigkeits-Bedingungen er-
fiilllt; mithin wiirden die Grofen e,, e4, e, wirklich die Haupteinheiten
eines zuldssigen Systems komplexer Gréfien von der Form

g6+ &6y 1 &6

bilden, wo die Koordinaten £, &,, £, alle reellen Werte durchlaufen.
Allein ich kann nicht glauben, daf Gaul hierin eine neue (andere)
Art von GroBen erblickt haben wiirde. In der Tat, es ist unmoglich,
irgendeine Eigenschaft, eine Tatsache anzugeben, durch welche diese
GroBen e, e,, e, sich von den dreiwertigen Kreisteilungs-Perioden

e, =r+r1 e =1r241r"2 e = 1’ 3
unterscheiden, wo 7 unbestimmt jede Wurzel der Gleichung

4+t r+ 1 =0
bedeutet,
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Genau so verhidlt es sich, wie ich gezeigt habe, in jedem
anderen Beispiele. Ich fiihre noch die beiden folgenden an:

el = e, + e+ e, €3 = e, €3 = ¢,
€g€; == €y, €€, == €, - &, €,6, = ¢, | &
und
e —e + e+ ey €6 — e, 6] = — e,
€yl = — €y, €3, == — €, 1 €, €€, = €, | ¢,
Alle Bedingungen der Weierstrassschen Theorie sind erfiillt, aber
ich kann die Haupteinheiten e,, e,, €, nicht fiir eine neue Art von
Grolen ansehen, weil sie schlechterdings nicht zu unterscheiden sind
von den gewdhnlichen mehrwertigen Grofien
e, = 1471 e =r e =1
wo r jede Wurzel der kubischen Gleichung
r—r =20
im ersten Falle, im zweiten der Gleichung
rP+r=20
bedeutet.

Um die Frscheinung des Verschwindens von Produkten aus nicht
verschwindenden Faktoren im Reiche der gewohnlichen, aber mehr-
wertigen Zahlen zu erldutern, schicke ich folgende Bemerkung voraus.
Ist 7 eine n-wertige*) Zahl, d. h. bedeutet r unterschiedslos jeden
der n voneinander verschiedenen bestimmten Zahlwerte

', r' L),
so wird folgerichtig, wenn ¢ (f), ¥ (f) ganze Funktionen einer Ver-
anderlichen ¢ mit bestimmten (d. h. einwertigen) Koeffizienten sind,
die Behauptung

p(r) = ¥ (r)
stets und nur dann fiir wahr gelten, wenn die n-Bedingungen

p(r) =), 9(") =9 (@")... p (™) = (™)

simtlich erfiillt sind, d. h. wenn die ganze Funktion ¢ (£) — v (t)
durch die ganze Funktion

fA)=0¢—r)@Et—7r")...0t—r™)
teilbar ist.

*) Wenn man lieber will, so mag man r eine verdanderliche Grofe
nennen, deren Gebiet auf u bestimmte, voneinander verschiedene Werte 7/,
7" .. ™ beschrinkt ist.



Ist daher z B. r eine zweiwertige Grofe, welche unterschiedslos
jeden der beiden Werte + 1 bedeutet, so verschwindet weder die
Grobe r + 1 noch r — 1, aber ihr Produkt »2 — 1 verschwindet.

Man sage nicht, dies sei nur kiinstlich herbeigezogen, um den
bisher in die allgemeine Arithmetik eingefiihrten Grofen eine Eigen-
schaft zuzusprechen, die eigentlich nur einer ganz neuen Art von
GroBen beigelegt werden diirfte. Dem ist keineswegs so. Dal} diese
Eigenschaft der gewohnlichen mehrwertigen Grollen selten oder
vielleicht niemals ausdriicklich erwidhnt ist, findet seinen Grund darin,
daf sie bei den meisten Beispielen wegen der besonderen Beschaffenheit
derselben gar nicht zum Vorschein kommt, wihrend sie bei allgemein
gehaltenen Untersuchungen selbstverstidndlich ist und gerade deshalb
kaum Erwdhnung verdient. In der Tat, eins der bekanntesten Bei-
spiele mehrwertiger Zahlen wird von der Theorie derjenigen Zahlen-
gebiete geliefert, die ich endliche Korper genannt habe; hier liegt
die Sache so, daB » jede Wwurzel einer sogenannten irreduzibelen
Gleichung f(r) = 0 bedeutet, deren Koeffizienten rationale Zahlen
sind, und auBerdem werden auch nur rationale Koeffizienten in den
aus r gebildeten Groben ¢ () geduldet; es ist lediglich eine Folge
dieser besonderen Beschrinkungen, dall ein Produkt aus zwei nicht
verschwindenden Faktoren ¢ (r) ebenfalls niemals verschwinden kann.
Der bekannteste spezielle Fall ist wohl der der Kreisteilung, welchen
Gaull in der siebenten Sektion der Disquisitiones Arithmeticae
behandelt hat; im Artikel 339 wird, wenn # eine Primzahl bedeutet,
unter r jede Wurzel der Gleichung R — 0 verstanden, wo

R=m—-14 -2 etc. +7r+4 1,

und im Artikel 341 wird bewiesen, dafl diese Gleichung irreduzibel
ist; solange r diese Bedeutung einer (n — 1)-wertigen Grofe behilt,
gilt der Satz, daB ein Produkt aus zwei nicht verschwindenden,
rational gebildeten Faktoren ¢ (r) ebenfalls nicht verschwindet, und
bei Umformungen von Zahlen ¢ (7) in ¢ (r) diirfen alle und nur solche
Glieder weggelassen werden, die den Faktor R enthalten. Aber aus
naheliegenden Griinden fiihrt Gaull, was bemerkt zu werden ver-
dient, die meisten (doch nicht alle) solchen Umformungen so aus,
daB sie auch noch fiir » = 1 giiltig bleiben, wodurch der Grad der
Mehrwertigkeit erhoht wird; in allen diesen Fillen ist daher weder
der Faktor R noch der Faktor r — 1 als verschwindend anzusehen,
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wohl aber ihr Produkt 7 — 1. Dies wird freilich nirgends ausdriicklich
erwiahnt, aber tatséchlich verhdlt es sich so.

Auch die Geometrie kann leicht Veranlassung zur Betrachtung
mehrwertiger Grolen geben, bei welchen dieselbe Erscheinung auf-
tritt. Sind z B. drei Punkte M’', M", M'"' durch ihre Cartesischen

Koordinaten gegeben,
M' durch 1, ,

0, 0
Mo, 2, 1,1

M, 0,—1,1
und es handelt sich darum, alle algebraischen Flichen zu bestimmen,
welche durch alle drei Punkte gehen, so lduft dies darauf hinaus,
alle die rationalen Gleichungen zwischen drei Grofen e,, e,, e, auf-
zustellen, welche durch jedes der drei obigen Systeme von je drei
Koordinaten befriedigt werden. Diese Grolen e,, e,, e; bilden daher
ein solches mehrwertiges System, wie ich es im ersten Teile meiner
Abhandlung (S.143—147) betrachtet habe, und zwar sind die Grund-
formeln fiir die Multiplikation diejenigen, welche sich oben im zweiten
meiner drei Beispiele finden. Die einzige fiir e,, e,, e, geltende lineare
Gleichung

e, —e =1

entspricht der durch die drei Punkte M', M", M'" gelegten Ebene;
von den drei linearen Grofien

e — e —e;, e+ e, e, — ¢,
welche den durch den Nullpunkt und je zwei der Punkte M', M",
M" gelegten Ebenen entsprechen und nach Herrn Weierstrass
zweckmifig Teiler der Null genannt werden konnen, verschwindet
keine, wohl aber verschwinden die Produkte aus je zwei verschiedenen
von ihnen, was sich geometrisch von selbst versteht.

Nachdem ich versucht habe, meine Deutung des Ausspruches
von Gaull durch die vorstehenden Beispiele zu erldutern, glaube ich
zugunsten derselben noch folgendes anfithren zu diirfen. Die Grund-
lage fiir die Untersuchungen des Herrn Weierstrass (und ebenso
der meinigen) iiber die Zuldssigkeit allgemeiner komplexer Zahlen,
welche linear aus » Haupteinheiten gebildet sind, besteht in der
Forderung, da die (von der Ordnung der Faktoren unabhingigen)
Produkte aus je zwei Haupteinheiten sich wieder linear durch die
Haupteinheiten darstellen lassen, und es darf wohl als sicher ange-
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nommen werden, daB Gaufl von derselben Grundlage ausgegangen
ist. Vergleicht man nun hiermit den Artikel 345 der Disquisitiones
Arithmeticae, in welchem Gaul den fiir die Kreisteilung adullerst
wichtigen Satz aufstellt, dal die Produkte aus je zwei sogenannten
Perioden sich linear durch die Perioden darstellen lassen, so springt
die Ahnlichkeit jener arithmetischen Untersuchung iiber allgemeine
komplexe Groflen mit dieser, freilich sehr speziellen algebraischen
Untersuchung iiber mehrwertige GroBlen der Kreisteilung so in die
Augen, dal} ich glauben mochte, Gaufl miilite dieselbe sofort bemerkt
baben und dadurch auf den Gedanken gekommen sein, dal jene
hypothetischen komplexen Grofien auch nichts anderes sind als ge-
wohnliche, aber mehrwertige Grofen. Doch sind dies natiirlich nur
Wahrscheinlichkeitsgriinde, welche die Streitfrage nicht entscheiden
konnen, und dariiber wird man vermutlich auch nicht mehr hinaus-
kommen, weil jeder weitere Anhalt zu fehlen scheint.



XXII.

Uber einen arithmetischen Satz von Gaus8.

[Mitteilungen der Deutschen mathematischen Gesellschaft in Prag,
Jahrgang 1892, 8.1—11.]

§ 1.

Die folgenden Betrachtungen beziehen sich auf den im Art. 42
der Disquisitiones Arithmeticae enthaltenen Satz:

I. Wenn die Koeffizienten der beiden ganzen Funktionen

P=qamt pam=1 4 p,am=2 4+ Dy,

Q=2 + g,z ! +ggan—2 g
der Variablen x rationale, aber nicht sdmtlich ganze Zahlen
sind, so kénnen auch die Koeffizienten ihres Produkts

PQ — gm+tn + 7, xmtn—1 + . +'rm+n

nicht simtlich ganze Zahlen sein.

Derselbe kommt meines Wissens nur ein einziges Mal, ndmlich
im Art. 341 zur Anwendung, und fiir diese Anwendung reicht die
obige Fassung auch vollstindig aus. Aber bei niherer Priifung
erkennt man leicht, daf der im Art. 42 enthaltene Beweis eine viel
groBere Tragweite besitat, als diese Fassung des Satzes erkennen
1a6t. Um dies ganz deutlich zu machen, wollen wir mit o', ¢, 7'
bzw. die Nenner der in den Funktionen P, @, P@Q auftretenden, in
den kleinsten Zahlen ausgedriickten Koeffizienten p, ¢, r und mit A
irgendeine Primzahl bezeichnen; ist nun unter den Nennern p’
mindestens einer durch die Potenz A, aber keiner durch A*+? teilbar,
und ist ebenso mindestens einer der Nenmer ¢' durch A%, aber keiner
durch A*+1 teilbar, so zeigt GauB, dall mindestens einer der Nenner ¢’
durch die Potenz h“+t” teilbar ist, und hiermit ist der obige Satz
bewiesen, weil es (nach Annahme) mindestens eine Primzahl % gibt,
fiir welche w + v > 0 ist. Um aber von dem, was Gaull bewiesen
hat, nichts zu opfern, wollen wir mit a, das kleinste gemeinsame
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Vielfache der Nenner p', mit b, dasjenige der Nenner ¢, mit ¢, das-
jenige der Nenner 7’ bezeichnen; nach der bekannten Regel fiir die
Bildung des kleinsten gemeinsamen Vielfachen von gegebenen Zahlen
sind dann A%, A" und (weil offenbar keiner der Nenmer 7' durch
hietv+1 teilbar sein kann) A*t+* die hochsten Potenzen von A, welche
bzw. in @, b, und ¢, aufgehen; und weil Ahnliches fiir jede Prim-
zahl gilt, so folgt hieraus offenbar
@ by = ¢,

wihrend im obigen Satze nur behauptet wird, dall ¢, gewill nicht =1
sein kann, wenn mindestens eine der beiden Zahlen a,. b, > 1 ist.

Multipliziert man nun eine Funktion P, deren hiochster Koeffizient
=1 ist, mit dem Generalnenner a, der iibrigen (oder auch aller)
Koeffizienten, so entsteht immer eine sogenannte urspriingliche
(primitive) Funktion, d. h. eine Funktion

A =a,z™+ a2 14 a2 24 - - + ap,

deren Koeffizienten ganze Zahlen ohre gemeinsamen Teiler sind; und
umgekehrt, dividiert man eine wurspriingliche Funktion 4 durch
ihren hochsten Koetfizienten a,, so entsteht eine Funktion P, deren
hichster Koeffizient = 1 und deren iibrige Koeffizienten den General-
nenner @, haben. Aus dieser Bemerkung ergibt sich sofort, dal der
von Gaull bewiesene Satz a,b, = c, auch in folgender Form aus-
gesprochen werden kann:

IL. Das Produkt von zwei urspriinglichen Funktionen ist
wieder eine urspriingliche Funktion.

Versteht man ferner unter dem Teiler einer mit beliebigen
ganzen rationalen Koeffizienten behafteten Funktion den grofiten
gemeinsamen Teiler dieser Koeffizienten, so ist jede solche Funktion
offenbar das Produkt aus ihrem Teiler und aus einer urspriinglichen
Funktion, und der vorstehende Satz nimmt folgende Form an, in
welcher ich ihn gelegentlich*) in Dirichlets Vorlesungen iiber
Zahlentheorie (S. 466 der zweiten, S. 545 der dritten Auflage)
erwihnt habe:

IIl. Der Teiler eines Produktes von zwei Funktionen ist
das Produkt aus den Teilern der beiden Faktoren.

*) Daf dieser naheliegende und so leicht zu beweisende Satz schon vor
mir von anderen ausgesprochen sein mag, ist zwar sehr wahrscheinlich, aber ich
habe keine solche Stelle finden kénnen.
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Offenbar gilt derselbe Satz auch fiir Funktionen mit gebrochenen
rationalen Koeffizienten, wenn man unter dem Teiler einer solchen
Funktion F' diejenige vollstindig bestimmte (positive) Zahl ¢ versteht,
fiir welche der Quotient F:¢ eine urspriingliche Funktion wird; dann
sind z B. die Teiler der oben mit P, @, P@Q bezeichneten Funktionen
die umgekehrten Werte von a,, b,, ¢,, und der Satz besteht wieder
in der Gleichung ¢, = @,b,, Man findet ferner leicht, dall der Satz
fiir Produkte von beliebig vielen Faktoren und fiir Funktionen von
beliebig vielen unabhiingigen Variablen gilt. Statt aber auf solche
Verallgemeinerungen einzugehen, ziehe ich es vor, dem Satze noch
eine andere gleichwertige Form zu geben, welche insofern einfacher
und deshalb leichter auf hohere Zahlengebiete zu iibertragen ist, als
in ihr der Begriff des Teilers gar nicht mehr auftritt:

IV. Sind alle Koeffizienten @ der Funktion 4 und alle
Koeffizienten b der Funktion B rationale Zahlen, und sind
alle Koeffizienten ¢ des Produktes AB ganze Zahlen, so
sind auch alle Produkte ab ganze Zahlen.

Um dies zu beweisen, bezeichne ich mit «, § die Teiler der
Funktionen 4 = a A', B = f B’ und mit o', b’ alle Koeffizienten der
urspriinglichen Funktionen 4', B'; jedes Produkt ¢ b ist dann von der Form
(xa’)(Bb’), und weil a B (nach II oder III) der Teiler der Funktion 4 B
ist, diese aber (nach Annahme) lauter ganze Koeffizienten ¢ hat, so
ist e und folglich auch jedes Produkt @b eine ganze Zahl, w. z. b. w.

Ebenso leicht ist es, aus diesem Satze IV umgekehrt den Satz IT
oder III abguleiten, ohne nochmals auf den Nerv des Beweises von
Gaull, also auf die Bildung der Koeffizienten eines Produktes aus
denen der Faktoren zuriickzugehen. Wire nimlich ein Produkt aus
zwei urspriinglichen Funktionen 4, B, deren Koeffizienten mit g, b
bezeichnet werden mogen, keine urspriingliche Funktion, wiren also
alle (offenbar ganzen) Koeffizienten von A B durch eine Primzahl A

teilbar, so miiften, weil dann das Produkt fiil—-B lauter ganze

Koeffizienten hitte, alle Produkte —g—-b (nach IV) ganze Zahlen sein,

was offenbar nicht der Fall ist, weil sowohl in A als auch in B
sich mindestens ein durch % nicht teilbarer Koeffizient a, b findet.

Der Satz IV ist daher vollkommen gleichwertig mit dem Satze IT
oder III; aber jeder dieser Sitze ist schirfer als der Satz L
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§ 2.

Ich gehe nun dazu iiber, den Satz in der Weise zu verallgemeinern,
dab die Koeffizienten, welche bisher als rational angenommen waren,
beliebige algebraische Zahlen sein diirfen. Unter einer algebraischen
Zahl verstehe ich jede Wurzel einer Gleichung mit rationalen Koeffi-
zienten, und ich nenne sie eine ganze algebraische Zahl oder kiirzer
eine ganze Zahl, wenn unter den unendlich vielen Gleichungen,
deren Wurzel sie ist, es auch eine solche gibt, deren hochster Koeffi-
zient =— 1 und deren iibrige Koeffizienten ganze rationale Zahlen
sind (Dirichlets Zahlentheorie, Aufl. 2 und 3, § 160). Hieraus er-
geben sich sofort die a.a. Q. bewiesenen Sitze:

1. Die Summen, Differenzen, Produkte von je zwei ganzen Zahlen
sind ganze Zahlen. ' .J

2. Jede Wurzel einer Gleichung, deren hochster Koeffizient = 1
und deren iibrige Koeffizienten ganze Zahlen sind, ist eine ganze Zahl
Aus diesen beiden Sitzen leiten wir leicht noch den folgenden ab:

3. Eine Zahl o ist gewil eine ganze Zahl, wenn es ein end-
liches System von Zahlen u,, g, ... y, gibt, die nicht simtlich ver-
schwinden und deren jede (u,) durch Multiplikation mit @ ein
Produkt von der Form

ap, =20 +20Ppy+ -+ 20 u,
gibt, wo alle mit z bezeichneten Koeffizienten ganze Zahlen sind.

Denn durch Elimination der » GroBen u, aus diesen 7 homo-
genen linearen Gleichungen ergibt sich bekanntlich die Gleichung

’ r r
2, — @y 29 cel 2g

" ” "
2y y Ry — ... 2y 0;
(n) (n) (n) __
2 ) 2 v 2™ —gq t

entwickelt man die Determinante nach Potenzen von a, so erhilt
man eine Gleichung von der Form

"+ 40" Y a2 -y = 0,
deren Koeffizienten y,, , ... ¥, durch Addition, Subtraktion, Multipli-
kation aus den ganzen Zahlen z entstehen und folglich (nach 1.)

ejbenfalls ganze Zahlen sind, und hieraus folgt (nach 2.), daB auch a
ene ganze Zahl ist, w. z. b. w.
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Mit Hilfe der in dem genannten Werke begriindeten allgemeinen
Zahlentheorie, die sich auf die Begriffe des endlichen Zahlen-
korpers und der ihm angehorenden Ideale stiitzt, ist es nun leicht,
den obigen Satz III auf Funktionen mit beliebigen algebraischen
Koeffizienten zu iibertragen. Sind n#mlich die Koeffizienten der
beiden Funktionen

A=ajx™+a, 2™ 14+ + apn,
B =b,a* 4 ba"—1 4 ...+ b,

und folglich auch diejenigen ihres Produktes
AB = cyamtr 4 camtr—14 oo 4 Cpiy

ganze Zahlen eines endlichen Korpers £, und bedeutet p irgendein
Primideal in &, so ergibt sich in ganz &hnlicher Art wie bei dem
Beweise von Gaul}, dal die hochste in allen Koeffizienten ¢ auf-
gehende Potenz von p gleich p«+v ist, wo p* die hochste in allen
Zahlen a, und p* die hochste in allen Zahlen b enthaltene Potenz
ist; sind nédmlich r, s die kleinsten Indizes, fiir welche @, nicht
durch p*+1 und b, nicht durch p*+1 teilbar ist, so kann der Koeffi-
zient ¢, , ; gewill nicht durch pv+v+1 teilbar sein, weil er ein Aggregat
von Produkten ab ist, die alle, mit Ausnahme des einzigen Gliedes
a, by, durch p¢+++1 teilbar sind. Hiermit ist aber nach den Prinzipien
der Idealtheorie wirklich bewiesen, daB der Teiler des Produktes A B
d. h. der groBte gemeinsame Idealteiler aller Koeffizienten ¢, das
Produkt aus den Teilern von 4 und B ist. :

Aber welche weit ausgedehnte Theorie gehort dazu, um diesen
Satz beweisen, ja um ihn nur mit Verstindnis aussprechen zu konnen!
Ganz anders verhdlt es sich mit der folgenden Verallgemeinerung
des Satzes IV, die nur den obigen einfachen Begriff der ganzen Zahl
aber gar nichts von Korpern oder Idealen voraussetzt:

V. Wenn das Produkt aus zwei Funktionen A4, B lauter
ganze Koeffizienten besitzt, so ist jedes aus einem Koeffi-
zienten von 4 und einem Koeffizienten von B gebildete
Produkt eine ganze Zahl

Dieser Satz ist zwar fir den Kenner der Idealtheorie wieder
gleichwertig mit der eben besprochenen Verallgemeinerung des
Satzes III, aber seine viel einfachere Form 148t auch die Moglichkeit
eines einfacheren Beweises vermuten. Die Herstellung eines solchen



Beweises bildet den eigentlichen Gegenstand der vorliegenden Ab-
handlung, und dies wird wohl im Hinblick auf die zahlreichen An-
. wendungen, welche der Satz V gestattet, hinreichend gerechtfertigt
erscheinen.

§ 3.

Am kiirzesten gelangt man zu dem gewiinschten Ziele, indem
man sich auf den folgenden speziellen Fall stiitzt:

VI. Wenn die ganze Funktion f(x) lauter ganze Koeffi-
zienten hat, und wenn @ irgendeine Wurzel der Gleichung
f(@) = 0 bedeutet, so hat auch die ganze Funktion

f@ = 1@
lauter ganze Koeffizienten.
Um dies zu beweisen, setzen wir
fx)=coat e at—14-.-+¢,

h(®) = ay@*=1 +a; 282 4 - + @y,

= Cya" +c,0" " .- ¢,
folgt. Multipliziert man nun einen bestimmten solchen Koeffizienten a,
mit jeder der k Potenzen 1, w, @®... @*—1, so erhdlt man
a,0° = C et c ot ... 4 C, 0%
ist der Exponent s eine der k—r Zahlen 0,1, 2 ... k —r —1, also
r + 8 <k, so behalten wir diese Form des Produktes bei; ist aber
der Exponent s eine der 7 Zahlen k —r, bk —r4+1... k—1, so
multiplizieren wir die Gleichung
fl@ =ce*+c,o*~ 14+ ---4+¢ =20
mit @"+¢—* wodurch sich die andere Form

woraus

A0 = —Crp 10— Cry @2 — s — Gtk
ergibt; da mithin alle diese Produkte @, ®® in der Form
zoot—l Lz 0t 24 g
fiarstellbar sind, wo die Koeffizienten 2z ganze Zahlen bedeuten, so
18t (nach 3. in § 2) auch jeder Koeffizient a, eine ganze Zahl, w.z.b. w.

Durch wiederholte Anwendung dieses Satzes ergibt sich offenbar
folgendes. Wenn die Funktion

f(@) =c(x—a,)(x—a,) ... (x— o)
Dedekind, Gesammelte Werke, II. 3
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lauter ganze Koeffizienten hat, so behilt sie diese Eigenschaft nach
Division durch beliebig viele der Faktoren ersten Grades (z — w);
der letzte Koeffizient einer so erhaltenen Funktion ist (abgesehen
vom Vorzeichen) immer von der Form ¢ 0 — ¢ w,0,0; ..., Wo
7,8t ... irgendwelche voneinander verschiedene Indizes aus der
Reihe 1, 2 ... &k bedeuten, also @' jedes beliebige Glied des ent-
wickelten Produktes
I+ o)A+ o) ... (14 )

sein kann. Alle Produkte von der Form ¢, sind also ganze
Zahlen.

Und hieraus folgt leicht der zu beweisende Satz V. Denken
wir uns némlich die Funktion f(z) auf irgendeine Weise in zwei
Faktoren A, B zerlegt, und setzen

A =ay(r—a)(@®—ay) ... (T — o),
B = by(x — B)(x—By) ... (—Pa),
so ist @yby, = ¢y, m +n = k, und der Komplex der m + n Zahlen

o, B ist identisch mit dem Komplex der k Zahlen @. Bezeichnen
wir daber mit &' jedes Glied des entwickelten Produktes

AO+o)(I+ay) ... (14 an),
ebenso mit 8 jedes Glied des entwickelten Produktes

(L4 B)(1+ By ... (1+ Bn),

so sind die Produkte o' f’' identisch mit den Zahlen @', und folglich
ist jedes Produkt ayo'.b,p = c,@’, also eine ganze Zahl. Da nun
jeder Koeffizient @ der Funktion 4 (abgesehen vom Vorzeichen) ein
Aggregat von Produkten a,«’ und ebenso jeder Koeffizient b der
Funktion B ein Aggregat von Produkten b, g’ ist, so ist jedes
Produkt @b auch ein Aggregat von Produkten a,o'.b, ', also eine
Summe von ganzen Zahlen und folglich (nach 1. in § 2) ebenfalls
eine ganze Zahl, w.z b.w.

Man sieht leicht, daB der nunmehr bewiesene Satz V auch fiir
Produkte von beliebig vielen Faktoren gilt. Sind a, b, ¢ die Koeffi-
zienten der drei Funktionen 4, B, C, so wird, wenn das Produkt
A BC = (AB)C lauter ganze Koeffizienten hat, nach V auch jede
Funktion (4 B)c, also auch jedes Produkt A (Bc) ganze Koeffizienten
haben, woraus nach V wieder folgt, dal die Produkte a(bc) ganze
Zahlen sind; und so kann man offenbar fortfahren. Ubrigens leuchtet
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ein, dal man den obigen Beweis auch ohne weiteres fiir Produkte
von beliebig vielen Faktoren hétte fithren kénnen.

Ebenso wiirde die Ubertragung des Satzes auf den Fall, wo die
Koeffizienten nicht Zahlen, sondern algebraische Funktionen von ver-
inderlichen Grofen sind, keine neue Schwierigkeit darbieten, und in
dieser Allgemeinheit kann der Satz sehr wohl dazu dienen, die Be-
trachtungen, welche Kronecker in § 14 seiner ,Grundziige einer
arithmetischen Theorie der algebraischen Grofien“ (1882) entwickelt
hat, zu vereinfachen und zu vervollstdndigen. Der in dieser gedanken-
reichen Abhandlung herrschenden Auffassung der arithmetisch-alge-
braischen Probleme wiirde freilich der obige Beweis des Satzes V
insofern wohl nicht volikommen entsprechen, als in ibm die Zerleg-
barkeit der Funktion f(x) in Faktoren ersten Grades vorausgesetzt
wird. Aus diesem Grunde will ich zum SchluB noch einen ganz
anderen Beweis des Satzes V mitteilen, in welchem diese Zerlegbar-
keit durchaus nicht benutzt wird.

§ 4.

Der Gang des neuen Beweises 1dfit sich am einfachsten dar-
stellen, wenn man einige wenige Begriife aus der Theorie der Moduln
entlehnt. Ein System a von Zahlen o« nenne ich einen Modul*),
wenn die Summen und Differenzen von je zwei solchen Zahlen o
wieder demselben System a angehoren. Sind alle diese Zahlen o
auch in dem Modul b enthalten, so heifit a teilbar durch b; sind
zwei Moduln a, d gegenseitig durch einander teilbar, so sind sie
identisch, was durch a = b bezeichnet wird. Bedeutet & jede Zahl
des Moduls a, ebenso B jede Zahl des Moduls b, so bilden alle
Produkte o 8 und alle Summen solcher Produkte wieder einen Modul,
welcher das Produkt von a und b heilt und mit ab bezeichnet
wird. Ist a teilbar durch d, so ist offenbar ab teilbar durch 50
Ebenso kann man Produkte von beliebig vielen Moduln und Potenzen
von Moduln bilden, und es gelten hierbei dieselben Multiplikations-
gesetze wie bei Produkten von Zahlen.

Wir brauchen uns hier nur mit sogenannten endlichen Moduln
zu beschiiftigen. Sind a,, @,, @, ... @y, irgendwelche bestimmte Zahlen,

-_—

*) Dirichlets Zahlentheorie, Aufl. 2, § 161.
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wahrend =z,, ,, ®, ... %, willkiirliche rationale ganze Zahlen be-
deuten, so bilden alle in der Form

o= Qy%y+ 0, %, + AT, + -+ a2, (1)
darstellbaren Zahlen & einen solchen endlichen Modul a, der durch
das Symbol

o= (@, @, Bg .. Ay (2)

bezeichnet wird; das System der Zahlen @, a, ... @, heilit eine
Basis von a, und diese Zahlen selbst heiflen die Glieder oder
Elemente dieser Basis. Offenbar kann die Basis eines endlichen
Moduls a in unendlich viele, duflerlich verschiedene Formen gebracht
werden, ohne die geringste Anderung des gesamten Zahleninhalts
von a; z B. darf man das erste Glied @,, indem man alle anderen
beibehélt, durch jede Zahl von der Form (1) ersetzen, in welcher
z, — +1 ist. Wenn nun

b = [by, b, ... b,] 3)
ebenfalls ein endlicher Modul ist, so gilt dasselbe offenbar auch von
dem Produkt ab, und zwar ist

ab :[pO’pl ool (4‘)
wo die Zahlen p,, p, ... alle Produkte von der Form a,b, bedeuten.
Ebenso leuchtet ein, daf auch jede Potenz des endlichen
Moduls (2) wieder ein endlicher Modul ist; die Basis einer solchen
Potenz
artl = oy, 00y, Olg ...
besteht aus allen Produkten « von » -1 gleichen oder verschiedenen
Faktoren aus der Reihe a,,q, ... a,; die Anzahl dieser Produkte o«
ist bekanntlich
II(m +n +1)
n(m) O(n+1)
Fiir unseren Zweck ist aber eine Transformation dieser Basis in eine
andere erforderlich, deren Glieder gewisse aus den Grilen a,, @, ... a,,
gebildete Determinanten sind. Der Kiirze halber wollen wir mit »
irgendeine Kombination von 7 4 1 verschiedenen, der GroSe nach
geordneten Indizes
T <]ry Ty oes Ty ()
bezeichnen, welche der Reihe der m -4 » 41 Zahlen
0,1,2...(m+ n)



angehoren; dann ist zugleich
rW<n—1<r—2...<r,—mn,
und diese #» 4 1 Zahlen r, — » gehoren alle der Reihe der m + 1 Zahlen
0,1,2...m
an; jeder Kombination r entspricht daher ein bestimmtes Produkt
Oy == QpoGp; —1Qry—2 -+ Qr, —n,
und umgekehrt leuchtet ein, daf jedes Produkt e, also jedes Glied

der Basis von a"+1, aus einer und nur aus einer einzigen Kombi-
nation » entspringt. Ist ferner s eine von r verschiedene Kombination

80<81<32"'<8n1 (8)
so konnen die Differenzen 7, —s,, 7, — s, ... 1, — s, nicht alle ver-
schwinden, und wir wollen von den beiden entsprechenden Gliedern
o, @ das erste als das hohere, das zweite als das niedrigere ansehen,
wenn die erste micht verschwindende dieser Differenzen positiv aus-
fallt; offenbar ordnen sich dann alle Glieder & ihrer Hohe nach in
eine bestimmte Folge der Art, daB, wenn von drei Gliedern o,, e,,
das erste hoher als das zweite und dieses hoher als das dritte ist,
gewil das erste auch hoher als das letzte ist; von allen Gliedern o
ist apt' das hochste, apt* das niedrigste.

Indem wir ferner festsetzen, daB @; = 0 sein soll, so oft der
Index ¢ nicht in der Reihe der m 4 1 Zahlen 0, 1, 2 ... m enthalten
ist, lassen wir jeder Kombination r, also jedem Produkte o, eine
bestimmte Determinante
Ay Qrg—1 o+ Gpy—n
Apy Qpy—1 v oo Gry—n

Oy Gry =1+ Qo g,

entsprechen. Dieselbe ist ein Aggregat von lauter Produkten e,
unter denen sich das Hauptglied «, befindet, und man kann be-
weisen — was wir der Kiirze halber dem Leser iiberlassen miissen —
daf alle anderen Glieder niedriger als «, sind. Hieraus folgt mit
Riicksicht auf eine friihere Bemerkung, daf man die aus den Produkten
%, @, ... bestehende Basis des Moduls an+1 schrittweise, indem man
immer o, durch o, ersetzt, in eine neue Basis transformieren kann,
welche aus den simtlichen Determinanten o, besteht, daB also

ant1l = [0, & ...]



— 88 —

ist. Mit Hilfe dieser Transformation kann man leicht den folgenden
Satz beweisen:
VII. Bildet man aus den Koeffizienten der drei ganzen
Funktionen
A=a,zm +aam™ ! 4.+ a,,
B = b,z + b, an—1 + ... 405,
AB = ¢, amtn + c, xm+n—1 + coe b Co 4
die drei endlichen Moduln
0= [Gy, By ... Gp),
b = [by, b, ... b,],
€ =1[C€4y €; .-+ Cminl

50 ist
ant1p = an¢, abmtl — pmc,

Beweis. Aus der Bildungsweise der Koeffizienten

C; = aibo + a’i—lbl SRR o a’i—nbn
geht zundichst hervor, dall der Modul ¢ durch ab und folglich anc
durch a»+1b teilbar ist. Setzt man ferner fiir 4 die in einer
bestimmten Kombination # enthaltenen Indizes 7y, 7, ... 7,, so ergibt
sich, dal alle Produkte «,b, in der Form

“1", 0 cro + “7:, 1 Crl e + Ot,f’ n crn
darstellbar sind, wo e, o, 0, 1 ... &, , gewisse Unterdeterminanten nter
Grades von o, bedeuten und folglich in dem Modul a» enthalten
sind. Mithin ist jedes Produkt o, 6, in a”c enthalten, und da die
Determinanten «, eine Basis von a?+! und die Zahlen b, eine Basis
von b bilden, so ist das Produkt a®+1b teilbar durch a”c¢ und
folglich a»+1b = anc¢, w.zb. w.

Aus diesem ganz allgemeinen Satze, in welchem iiber die Be-
schaffenheit der Koeffizienten @, b, ¢ gar nichts vorausgesetzt wird,
ergibt sich nun unmittelbar unser Satz V. Bilden nimlich die Zahlen
@1, Uo ...y eine Basis des Moduls a», so sind alle Produkte

abu,, abuy, ... abu
in (ab)am, d.h. in anc enthalten, also von der Form
N oY P e Y
WO 2,,2, ... 2 Zahlen des Moduls ¢ bedeuten. Setzen wir also jetzt
(wie .in V) voraus, dall alle Koeffizienten ¢ ganze Zahlen sind, so
gilt dasselbe (nach 1. in § 2) auch von diesen Zahlen z,, 2, ... 2, und
folglich (nach 3. in § 2) auch von jedem Produkt ab, w.zb.w.
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Erlduterungen zur vorstehenden Abhandlung.

In der Abhandlung Nr. XXV: Uber die Begriindung der Idealtheorie, be-
merkt Dedekind, da er den Beweis des Satzes V, des Hauptsatzes der vorstehenden
Abhandlung, schon am 15, Februar 1887 gefunden und am 20. Februar d. J. an
H. Weber mitgeteilt hat. Etwas spiter, aber unabhingig von Dedekind, ist der
Satz von A. Hurwitz (Uber die Theorie der Ideale, Géttinger Nachrichten 1894,
Math.-phys. Kl., 8. 291298, vgl. Fullnote 8.292) in einer #quivalenten Form
ausgesprochen worden. Aus Satz V folgt bekanntlich einfach, daf man zu einem
beliebigen Ideale ein zweites so bestimmen kann, daB das Produkt ein Hauptideal
wird, und diese Tatsache ist sowohl von Hurwitz als auch gelegentlich von
Dedekind zum Aufbau der Idealtheorie benutzt worden. Eine eingehende Dis-
kussion dieser Probleme gibt Dedekind in der Abhandlung Nr. XXV; man ver-
gleiche auch die Besprechung dieser Abhandlung im Vorwort zur vierten Auflage
von Dirichlets Zahlentheorie, ebenso die weiteren Literaturangaben (Kronecker,
Mertens) bei A. Hurwitz: ,Uber einen Fundamentalsatz der arithmetischen Theorie
der algebraischen Gréfien, Gottinger Nachrichten 1895, S.230—240.

Ore.
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Uber Gleichungen mit rationalen Koeffizienten.
[Jahresbericht der Deutschen Mathematikervereinigung, Bd. I, S.33—385 (1892).]

DafB solche Sitze iiber Gleichungen, die fiir jeden endlichen Grad
.gelten, nicht ohne weiteres fiir Gleichungen von unendlich hohem
Grade in Anspruch zu nehmen sind, wird zu unserer Zeit wohl von
fast allen Mathematikern anerkannt. Da aber die Entscheidung iiber
eine solche Frage bisweilen nicht leicht zu finden ist, so erlaube ich
mir im folgenden einen besonderen, nicht unwichtigen Fall zu be-
handeln. In der Lehre von denjenigen Gleichungen, welche einen
endlichen Grad und lauter rationale Koeffizienten haben, wird
der bekannte Satz bewiesen:

1. Hat die irreduzible Gleichung ¢ (x) = 0 eine Wurzel gemein
mit der Gleichung ¢ (x) = 0, so ist jede Wurzel der ersteren Gleichung
auch eine Wurzel der letzteren.

Dieser Satz verliert aber, wenn die Gleichung ¥ (x) = 0 von
unendlich hohem Grade ist, seine allgemeine Giiltigkeit, und zwar
selbst fiir solche Gleichungen, deren linke Seite (x) eine fiir alle
Werte von z konvergierende Potenzenreihe mit rationalen Koeffizienten
ist. Dies ergibt sich unmittelbar aus dem Satze:

2. Ist o irgendeine reelle Zahl, so gibt es eine solche Gleichung
¥ (2) = 0 von unendlich hohem oder auch endlichem Grade, welche o
als einzige reelle Wurzel besitzt.

Ist némlich dies bewiesen, so folgt daraus jedesmal ein offen-
barer Widerspruch mit dem Satze 1., wenn man fiir « eine Wurzel
einer irreduziblen Gleichung @ (z) = 0 (z. B. 2* — 2 =— 0) wihls,
die mindestens zwei reelle Wurzeln «, § hat. Es kommt also nur
noch darauf an, den Satz 2. zu beweisen, und hierbei darf man sich
auf den Fall einer positiven Zahl « beschrinken, weil auf diesen
der entgegengesetzte Fall durch Verwandlung von z in — x zuriick-
gefiihrt wird; im Falle « =— 0 kann man natiirlich ¢ (2) — = nehmen.
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Aus jeder positiven Zahl o entsteht — in #hnlicher Weise
und mit derselben Bestimmtheit, wie bei der Entwicklung in einen
gemeinen Kettenbruch — immer eine Reihe von ganzen Zahlen
@,, @y, Gy, ... und eine Reihe von zugehdrigen Resten, d. h. solchen
Zahlen &,, &,, &, ..., welche alle der Bedingung

0= 6 <1
geniigen, nach folgender Regel: Zunichst setze man
'&1— = @, + &,

wodurch @, als die grofte in 7.1? enthaltene ganze Zahl, also auch ¢,

als Rest bestimmt ist; fiir jeden grofleren Index » aber setze man

2¢ 3¢ ne
1 2 n—1
z ay + &, e g+ &5, ..., T =@y + &y, ..

wodurch auch alle folgenden Zahlen @ als grofite Ganze und alle
Reste & vollstindig bestimmt sind; zugleich leuchtet ein, daff von
den Zahlen @ keine negativ ist. Dann besitzt die vollkommen
definierte Funktion

5 x2n—1

3
Y@= —lta T+ttt

alle im Satze 2. angegebenen Eigenschaften. In der Tat:
1. Die Koeffizienten von v (x) sind simtlich rationale Zahlen.

2. Da g,_,<< 1, also a, << g;, so ist das allgemeine Glied der

Reihe (x) absolut kleiner als

g (@

o II(n—1)’
woraus bekanntlich folgt, dal die Reihe ¢(z) (wie die Exponential-
reihe) fiir jeden Wert von z konvergiert.

3. Aus den Definitionen der Zahlen @ und & folgt, dall die aus
(n + 1) Gliedern bestehende Summe

“27&—1 azn—-l
om) — ")
ist, und da die rechte Seite mit unendlich wachsendem n unendlich

klein wird, so folgt 9 () = 0, d. h. « ist eine Wurzel der Gleichung
¥(z) = 0.

o o? ob
Tt targ gttt
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4. Da von den Zahlen ¢ keine negativ, wohl aber mindestens
eine positiv ist (wie aus ¢(¢) = 0 hervorgeht), da ferner, abgesehen
von dem konstanten Gliede — 1, die Variable z in der Reihe v(z)
nur in Potenzen mit ungeraden Exponenten auftritt, so wird gleich-
zeitig mit x auch ¢ (x) das ganze reelle Gebiet von — oo bis + oo
stets wachsend durchlaufen und folglich auch nur fiir den einzigen
Wert # = « den Wert Null erhalten; d. h. die Gleichung v (x) = 0
hat auller « keine reelle Wurzel, w. z b. w.

Hiermit ist die Unzuverlissigkeit des Satzes 1. fiir Gleichungen
¥(z) = 0 von unendlich hohem Grade erwiesen. Dieser Nachweis
18t wohl nicht ganz wertlos, weil verschiedene Mathematiker auf den
Gedanken gekommen sind, durch Anwendung dieses unzuverlissigen
Satzes auf das Beispiel 9 () = sin « einen Beweis fiir die Tran-
szendenz der Zahl » zu gewinnen, der offenbar nur wenige Zeilen
erfordern wiirde.

Der Beweis des Satzes 2. 1i0t sich, wie man leicht sieht, in der
mannigfaltigsten Weise abindern; zugleich leuchtet ein, daB dieser
Satz auch fiir jede endliche Anzahl von vorgeschriebenen reellen
Wurzeln « gilt.

Erlduterungen zur vorstehenden Abhandlung.

Eine franzosische Ubersetzung dieser Abhandlung erschien unter dem Titel
»Sur les équations 4 coefficients rationels* in den Nouvelles Annales de mathé-
matiques, 3. Ser., Bd. 17, S.201—204 (1898). (Ubersetzung von L. Laugel.) Der
Ubersetzer fiigt am Ende der Abhandlung die folgende Note hinzu: M. Dedekind
me prie de mentionner ici un mémoire de M. A. Hurwitz (Acta Math., t. 14, 1889)
ot la méme question a été traitée d’'une maniére beaucoup plus générale.

In der erwidhnten Abhandlung von Hurwitz ,Uber bestindig konvergierende
Potenzreihen mit rationalen Zahlenkoeffizienten und vorgeschriebenen Nullstellen“
wird das Dedekindsche Resultat aus dem folgenden allgemeineren Satz abgeleitet :
Zu einer beliebig gegebenen Potenzreihe 4 («) kann man eine ganze transzendente
Funktion B(x) so bestimmen, daf die Koeffizienten in der Reihenentwicklung von
A (x) eB (@) simtlich rational sind. ‘

Mit derselben Frage beschiftigte sich schon E. Strauss, Acta Mathematica
11 (1887), S.18—18; vgl. auch O. Perron, Math. Ann. 104 (1930), S. 139—142.

Ore.
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Zur Theorie der Ideale.

[Nachrichten von der Koniglichen Gesellschaft der Wissenschaften zu Gottingen,
Mathem.-phys. Klasse, Jahrgang 1894, 8. 272—277.]

Nachdem es mir in den Jahren 1869 und 1870 endlich gelungen
war, durch Einfiihrung neuer Begriffe die letzten Schwierigkeiten zu
iiberwinden, welche sich meinen friitheren Versuchen, eine strenge
und ausnahmelose Theorie der Ideale zu begriinden, entgegengestellt
hatten, diente mir die hiermit gewonnene Grundlage in den nichst-
folgenden Jahren teils zur Untersuchung spezieller, insbesondere der
kubischen Korper, teils zur Erforschung der allgemeinen Gesetze,
welche die Beziehungen zwischen den Idealen verschiedener Korper
beherrschen. Die letztere Frage, welche im wesentlichen auf die Be-
trachtung derjenigen Korper zuriickkommt, die ich Galoissche
Korper oder Normalkorper genannt habe, bot keine erheblichen
Schwierigkeiten dar und konnte daher bald zu einem vollsténdigen
Abschlufl gebracht werden. Von der Verdffentlichung dieser Unter-
suchung bin ich immer durch andere Beschiftigungen abgezogen,
und nur gelegentlich habe ich ihrer Erwihnung getan, z. B. im § 27
meiner Schrift Sur la théorie des nombres entiers algé-
briques (1877), wo ich den Satz ausgesprochen habe, daf aus den
Idealen eines Normalkorpers die Ideale eines jeden in ihm als Divisor
enthaltenen Korpers nach bestimmten Gesetzen abgeleitet werden
konnen, und wo auch an einem sehr einfachen Beispiel die Kraft
dieser von mir gefundenen Gesetze dargelegt ist*). Dies hat Herrn
Frobenius, wie er mir in einem Schreiben vom 3. Juni 1882 aus
Ziirich mitteilte, zur selbstindigen Durchforschung des Gegenstandes
angeregt, durch welche er, wie sich bald herausstellte, zu einer

*) Vgl. auch Compte rendu der Pariser Akademie vom 24. Mai 1880, und die
Anmerkung auf S.618 der vierten Auflage von Dirichlets Vorlesungen iiber
Zahlentheorie (1894).
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nahezu vollstindigen Ubereinstimmung mit mir gelangt war; da er
zugleich wegen einer Nebenfrage eine Mitteilung meiner Resultate
wiinschte, so verfalte ich in der Kile eine kurze Ubersicht derselben
und fiigte sie am 8. Juni meiner Antwort bei. Obgleich nun vor
kurzem Herr Hilbert seine auf denselben Gegenstand beziigliche
Untersuchung in diesen Nachrichten (7. Juli 1894) veroffentlicht hat,
so erlaube ich mir doch, die eben erwihnte Ubersicht, weil in ihr
die Zerlegungen der Ideale noch allgemeiner ausgefiihrt sind *), ohne
jeden Zusatz, nur mit Auslassung einiger unwesentlicher Worte jetzt
mitzuteilen.

Einige Sitze aus der Untersuchung der Beziehungen zwischen den
Idealen in verschiedenen Korpern.

I. Ideale in Normalkérpern.

Bezeichnungen:

ein Normalkérper vom Grade n.

die Gruppe aller n Permutationen ¢, durch welche & in sich

selbst iibergeht. — Bedeutet z irgendein System von Zahlen des

Korpers & oder auch eine einzelne solche Zahl, so bezeichne ich

durch das Symbol z¢ das durch die Permutation ¢ aus 2

hervorgehende System *¥).

o das Gebiet aller ganzen Zahlen w des Korpers 2. — Wenn ich
in einer Gleichung oder Kongruenz den Buchstaben @ benutze,
so will ich damit sagen, dal sie fiir jede in o enthaltene
Zahl ®, also gewissermafen identisch gilt.

p  ein Primideal des Korpers L.

p die durch p teilbare positive rationale Primzahl.

S

*) Auch die auf S.235 von Herrn Hilbert aufgesteliten Sitze iiber Partial-
diskriminanten — von welchen die folgende Ubersicht unmittelbar gar nicht
handelt — scheinen die Allgemeinheit derjenigen Resultate nicht ganz zu erreichen,
zu welchen ich durch die am Schlusse der Einleitung zu meiner Abhandlung
Uber die Diskriminanten endlicher Kiorper (1882) erwihnte Unter-
suchung gelangt war; auf diese gedenke ich spater einzugehen. Dagegen ist mir
die von Herrn Hilbert ausgefiihrte weitere Zerlegung der von ihm mit g;» von
mir mit X bezeichneten Gruppe neu gewesen.

*%) Die im Originale benutzte Bezeichnung 2| ersetze ich hier durch die ein-
fachere, welche ich in § 161 der vierten Auflage von Dirichlets Vorlesungen
iber Zahlentheorie (1894) eingefiihrt habe.
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die Gruppe aller derjenigen g Permutationen y, fiir welche
(identisch)
oy = o (mod. p).
Dann gibt es eine Permutation
(oder vielmehr genau g solche Permutationen y,), fiir welche
o = oy, (mod. p).
Daraus folgen die Eigenschaften:
;71 Xy, = X, d. h. Xy, = ¢, X,
und der Grad von p ist der kleinste positive Exponent
fiir welchen
Xyf{= X, d. h. ¢ in X enthalten.

N =17
Ferner ist die Gruppe (Bezeichnungsweise von Galois)
T =X+ X9+ X¢2+---+ X¢[~1 (vom Grade fg)
der Inbegriff aller derjenigen Permutationen v, welche der
Bedingung

Also

Yy =19
geniigen (d. h. die Gruppe, zu welcher p gehdrt). Setzt man
endlich
=T, +Fopy+ -+ P, also n = efy,

so entspricht jedem dieser e Komplexe ¥ ¢, ein mit p konju-
giertes Primideal

Ps = Ps;
diese e Primideale

pl ) pg SERR 8
sind verschieden voneinander, und es ist

0p = (P, Py Pe)?
N (p;) = p’ (unabhingig von s).

Wird p durch p, ersetzt, so ist X, ¢,, & zu ersetzen durch
X, = ¢;1X<Psy Yg,0 = ‘P;ld’oq)sw P, = q);l'P'%-

II. Ideale in den Divisoren eines Normalkorpers K.

Kennt man die (in I erdrterte) Konstitution aller Primideale p
des Normalkorpers £, so folgt daraus fiir jeden in & als Divisor
enthaltenen Korper
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durch alleinige Anwendung von Gruppen-Zerlegungen (also
gewissermallen aus rein algebraischen Prinzipien) die voll-
stindige Kenntnis aller Primideale
in &'. Die Bezeichnungen in I werden beibehalten. Bekannt ist:

Q" gehort zu einer Permutations-Gruppe
bestehend aus allen denjenigen m (in @ enthaltenen) Permu-
tationen ¢',-die jede in &' enthaltene Zahl ungedndert
lassen; dann ist

n = mn/,
und n’ ist der Grad von L' (umgekehrt, wenn @' eine in @
enthaltene Gruppe ist, so gibt es immer einen, und nur einen
zugehorigen Korper £'). Es wird daher das erstrebte Ziel
lediglich durch Vergleichung von @' mit den in I betrachteten
Permutationen und Gruppen erreicht. Dazu dient zunéchst
folgendes, was weniger oder zum Teil gar nicht bekannt scheint.
Bedeutet ¢, eine bestimmte Permutation, so bezeichne

ich mit ¥ g, d' den Komplex aller voneinander verschiedenen
Permutationen von der FForm ¢ ¢,¢’, wo 3, ¢ resp. alle in den
Gruppen ¥, @’ enthaltenen Permutationen durchlaufen; ist 4,
der Grad des groBten gemeinschaftlichen Teilers ¥, der
Gruppen @; 'T @, = ¥, und @' (d. h. besteht ¥, aus h, Per-
mutationen), so werden immer je h, Produkte ¢ ¢, ¢’ identisch,
und das Produkt aus den Graden der Gruppen ¥, @' (hier fg
und m) ist daher das h,-fache von der Anzahl der in ¥ ¢, @’
enthaltenen Permutationen. Da ferner zwei solche Komplexe
T, P, To,P entweder ganz identisch sind, oder keine einzige
gemeinschaftliche Permutation haben, so kann man setzen:

=T, +TP, @ + -+ T ?.
Dies ist, beildufig gesagt, die Grundlage fiir die Untersuchung
der algebraischen Reziprozitit zwischen zwei beliebigen
endlichen Korpern, némlich denen, welche zu den Gruppen &
und @' gehoren (Einwirkung zweier beliebigen irreduziblen
Gleichungen aufeinander, Zerlegung jeder in ¢ Faktoren).
Zugleich ist

. D= g7 T+ - Doy P.

Diese allgemeine Zerlegung einer Gruppe @ nach zwei in

ihr enthaltenen Gruppen ¥, @' gibt fiir unseren Fall alles,
was wir wiinschen, durch folgende Bestimmungen.
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Es sei ¢, eine bestimmte der in der obigen Zerlegung
benutzten €' Permutationen @, @,--- @, und

p?‘ = p¢r’
p, das durch p, teilbare Primideal in &',
g, der Grad des grofiten gemeinsamen Teilers
X, von X, = ¢;' X @, und @', daher
a, definiert durch g = a,g,, so ist
, ,a1 , 02 y Qe!
OP=9P P Py , WO
o das System aller ganzen Zahlen des Korpers Q.

Die Anzahl e’ der Komplexe ¥ @, @', aus denen & besteht,
ist daher zugleich die Anzahl aller voneinander verschiedenen,
in p aufgehenden Primideale p;, p;---p, des Korpers &', und
die Zerlegung von p in diesem Korper ist gefunden; die Be-
stimmung der Normen dieser Primideale ' und ihre Zerlegung
in Q folgt jetzt. Ks sei, wie oben,

P, der grobte gemeinsame Teiler der Gruppen

P, = ¢; ' Te, und &',

h,

fr

fr

der Grad von ¥,, folglich
@': w;¢;,l+w;¢;,2++w;¢;,er’ m:hre'ra

Prs = Prtp'r,s, so ist '

oy, = (pr, 1Pr2 Py, e,.)g"

61‘+eg+"'+ee’ = e
Hiermit ist die Zerlegung erledigt (die letzte Gleichung
folgt daraus, dal e,fg die Anzahl der in ¥ ¢, d’ enthaltenen
Permutationen ist). Endlich: da X, auch der groSte gemein-
same Teiler von X, und %, ist (weil X, Divisor von %), so
ist %, teilbar durch g¢,, also
definiert durch A, = f.g,,
und nach der obigen Regel besteht der Komplex X, %, aus
f-9 Permutationen, welche alle in ¥, enthalten sind (weil X,
und ¥, Divisoren von ¥,), und da dieser Komplex X, ¥, zu-
gleich eine Gruppe ist (weil X,v, — ¢, X,), so ist fg (als
Grad von ¥,) teilbar durch f.g (als Grad von X, %)),
mithin
definiert durch f = f,f,. Dann ist

N'(p) = (o, 9)) = p'r
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und
N (pr,) = 9”7 (unabhiingig von s),

wo N das Symbol fir die in bezug auf L' genommene
Partialnorm von Zahlen oder Idealen des Korpers £ be-
deutet. — Sind L,R' zwei beliebige endliche Korper, so
gehort zu jedem Ideal a des Korpers & ein bestimmtes Ideal
o' = N(a) des Korpers &', die Partialnorm von a nach £/
und es ist N (ab) = N (a) N (b).

IIl. Verallgemeinerung.

Dieselben Sitze gelten ohne nennenswerte Wortinderung,
wenn man an Stelle des Korpers R der rationalen Zahlen einen
beliebigen endlichen Korper P setzt, und unter & einen endlichen
Korper versteht, welcher P als einen -Divisor enthilt, und zwar ein
Normalkérper in bezug auf P ist (d. h. daf & durch alle
diejenigen Permutationen, welche jede Zahl in P ungeédndert
lassen, in sich selbst iibergeht). Fiir die Zerlegung der Prim-
ideale p des Kirpers P in Primideale p des Korpers & gelten genau
dieselben Gesetze wie in I. Sind ferner alle diese Zerlegungen
bekannt, so erhélt man daraus nach den in II angegebenen Gesetzen
sowohl die Zerlegung jedes Primideals p in Primideale p’ eines
Korpers £, welcher Multiplum von P und Divisor von £ ist, als
auch die Zerlegung dieser Primideale 9’ in Primideale p des Korpers £
Und diese Verallgemeinerung kann noch weiter getrieben werden.

8. Juni 1882.

Erlduterungen zur vorstehenden Abhandlung.

Durch die Hilbertsche Abhandlung: Grundziige einer Theorie des Galois-
schen Zahlkirpers, Gottinger Nachrichten 1894, 8. 224—236, veranlafit, publizierte
Dedekind seine friiheren Untersuchungen iiber denselben Gegenstand. Wihrend
er die von Hilbert eingefiihrten Verzweigungsgruppen nicht studiert hat, gehen
seine Resultate iiber die Primidealzerlegung in beliebigen Unterksrpern wesentlich
iiber Hilbert hinaus. Ausfiihrlichere Darstellungen dieser Theorie findet man bei
P. Bachmann, Allgemeine Arithmetik der Zahlenkérper, Kap. 12, Leipzig 1905;
H. Hasse, Jahresbericht der Deutschen Mathematikervereinigung 36 (1927), S. 233
—311; man vgl. auch den Hilbertschen Bericht, Jahresbericht der Deutschen
Mathematikervereinigung 4 (1897), S.247—263.
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Die weiteren Untersuchungen iiber den Zusammenhang zwischen Idealen und
Gruppeneigenschaften behandeln meistens die Struktur der Verzweigungsgruppen.
Zu erwihnen sind: F. Hiittig, Arithmetische Theorie eines Galoisschen Korpers,
Diss. Marburg 1907; R. Fueter, Vierteljahrsschrift d. Naturf. Ges. in Ziirich 1917,
S.67—72; A. Speiser, Journ. f Math. 149 (1919), S.174—188; T. Rella,
Journ. . Math. 150 (1920), S.157—174; 0. Ore, Math. Ann. 100 (1928), S. 650
—673; 102 (1929), 8.283—304; Am. Math. Soc. 80 (1928), S.610—620. Die in
der Einleilung erwihnten Untersuchungen von Frobenius sind in den Sitzungsber.
d. Berl. Akad. von 1896, erster Teilband, S.689—703 erschienen.

Eine Untersuchung der gegenseitigen Reduktion zweier Polynome in dem
von Dedekind auf S.46 angedeuteten Sinne ist von Landsberg, Loewy,
Takagi und M. Bauer durchgefilhrt; man vgl. die Darstellung in O. Haupt,

Einfiihrung in die Algebra, Leipzig 1929, S.540—545.
Ore.

Dedekind, Gesammelte Werke, II. 4



XXV.
Uber die Begriindung der Idealtheorie.

[Nachrichten von der Koniglichen Gesellschaft der Wissenschaften zu Gottingen,
Mathem.-phys. Klasse, Jahrgang 1895, S.106—113.]

Von mehreren Seiten bin ich aufgefordert, meine Ansicht zu
aullern iiber die kiirzlich in diesen Nachrichten (1894, Nr.4) von
Herrn Hurwitz veridffentlichte Begriindung der Idealtheorie und
itber deren Beziehungen zu der in der vierten Auflage von Dirichlets
Zahlentheorie (welche ich im folgenden mit D. bezeichnen will)
enthaltenen Darstellung desselben Gegenstandes. Wenn ich nun
hierauf erkldre, dal ich der letzteren, also der meinigen den
Vorzug gebe, so glaube ich diese Meinung ganz unbefangen aus-
sprechen zu diirfen, weil ich schon im Februar 1887 denselben
Weg wie Herr Hurwitz mit demselben Erfolge eingeschlagen
habe, und weil ich erst von hieraus im November 1888 mit Hilfe
neuer Beweismittel zu derjenigen Darstellung gelangt bin, welche
ich spater (1893) in das Werk von Dirichlet aufgenommen habe.
Ich erlaube mir, im folgenden diesen Hergang etwas genauer zu
beschreiben, weil die hierbei auftretende Einkleidung ein wund
desselben Grundgedankens in &uBerlich verschiedene Formen wohl
von allgemeinerem Interesse ist.

In §172 der dritten Auflage der Zahlentheorie und ebenso
in § 23 meiner Schrift Sur la théorie des nombres entiers algé-
briques habe ich hervorgehoben, daf die grofite Schwierigkeit,
welche bei der Begriindung der Idealtheorie zu iiberwinden war,
in dem Beweise des folgenden Satzes bestand:

1. Ist das Ideal ¢ teilbar®) durch das Ideal o, so gibt es
ein Ideal b, welches der Bedingung ab = ¢ geniigt (vgl. D. S. 553, VII).

*) Dieses Wort gebrauche ich, wie bisher immer, in dem Sinne, daf jede
Zahl des Ideals ¢ auch in q enthalten ist; ich mufl, um Verwirrung zu vermeiden,
hierauf aufmerksam machen, weil Herr Hurwitz in seinem Aufsatz (II, 5) mit
demselben Worte gerade die im Nachsatz ausgesprochene Beziehung zwischen ¢
und g bezeichnet.
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Dafll dieser Satz, durch welchen der Zusammenhang zwischen
der Teilbarkeit und der Multiplikation der Ideale festgestellt wird,
bei der damaligen Darstellung erst nahezu am Schlusse der
Theorie beweisbar wurde, machte sich in der driickendsten Weise
fiihlbar, besonders dadurch, dal einige der wichtigsten Sitze nur
allmihlich durch schrittweise Befreiung von beschrinkenden Vor-
aussetzungen zu der ihmen zukommenden Allgemeinheit erhoben
werden konnten. Ich bin daher im Laufe der Jahre ofter auf
diesen Kardinalpunkt mit der Absicht zurtickgekommen, einen ein-
fachen, unmittelbar an den Begriff der ganzen Zahl ankniipfenden
Beweis des Satzes 1 oder eines der drei folgenden Sitze zu ge-
winnen, welche, wie man leicht erkennt, von gleicher Bedeutung
fir die Begriindung der Theorie sind:

2. Jedes Ideal m kann durch Multiplikation mit einem Ideal n
in ein Hauptideal verwandelt werden (vgl. D. S.554, IX). e

3. Jeder endliche, von Null verschiedene Modul m, der aus
ganzen oder gebrochenen algebraischen Zahlen besteht, kann durch
Multiplikation mit einem Modul n, dessen Zahlen aus denen von m
auf rationale Weise gebildet sind, in einen Modul mn verwandelt
werden, welcher die Zahl 1 enthilt und aus lauter ganzen Zahlen
besteht (vgl. D. S.528, VI). = . -

4. Aus je m algebraischen Zahlen g, die nicht alle ver-
schwinden, kann man auf rationale Weise m Zahlen v,, ableiten,
welche der Gleichung

Ll e e
und aulBerdem der Bedingung geniigen, daB alle m? Produkte UrVs
ganze Zahlen sind (vgl. D. 8.530, VII). =~ .-

Wenn nun auch diese vier Sitze insofern vollstindig gleich-
wertig sind, als jeder von ihnen ohme jede Schwierigkeit aus jedem
der drei iibrigen abgeleitet werden kann*), so geschieht es doch
in solchen Fillen nicht selten, daB der eine Satz durch seine ein-
fachere Fassung einem direkten Beweise leichter zuginglich wird
als die anderen. In dem vorliegenden Beispiel zeichnet sich offen-

*) Um dies einzusehen, braucht man nur die hinter den Sitzen bemerkten
Zitate zu verfolgen und zu bedenken, daf jeder endliche algebraische Modul m
durch Multiplikation mit einer geeigneten, von Null verschiedenen Zahl in einen
8anzen Modul, und jeder von Null verschiedene ganze Modul eines endlichen
Kirpers durch Multiplikation mit jedem Ideal in ein Ideal verwandelt wird.

4%
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bar der Satz 4 oder auch der Satz 3, welcher sich von jenem
nur duflerlich durch die Benutzung des Modulbegriffs unterscheidet,
an Einfachheit vor den Sitzen 1 und 2 aus, in welchen der
kompliziertere Begriff des Ideals auftritt. Es ist mir dann auch
bald gelungen, den Satz 3 wenigstens fiir zweigliedrige Moduln m,
also den Satz 4 fiir den Fall m = 2 zu beweisen, und zwar
stimmt dieser Beweis, auf welchen ich unten zuriickkommen werde,
wesentlich mit demjenigen iiberein, welchen ich spiter in das Werk
von Dirichlet (D. S.529) aufgenommen habe. Aber es gelang mir
damals nicht, diese Methode auf drei- und mehrgliedrige Moduln m
auszudehnen.

Eine neue Anregung zur Beschiftigung mit diesem Gegenstande
empfing ich im Frithjahr 1882 durch die grofle Abhandlung
»Grundziige einer arithmetischen Theorie der algebraischen Grofien“
von Leopold Kronecker. Das Studium derselben veranlafite
mich, eine Reihe von ,bunten Bemerkungen“ aufzuschreiben, von
denen Nr.20 sich auf den fiir mich wichtigsten § 14, also auf
die Begriindung der Idealtheorie bezieht. Obgleich ich mich mit
dem hier auftretenden ,methodischen Hilfsmittel der unbestimmten
Koeffizienten“ nicht befreunden konnte, so suchte ich doch in das
Wesen der Methode einzudringen, um womoglich daraus einen
Nutzen fiir meine Auffassung der Theorie zu ziehen, weil in dem
hier gewonnenen Resultate auch der obige Satz 3 oder 4 offenbar
enthalten ist. Nun schien und scheint mir noch heute in der
Beweisfiithrung Kroneckers eine Liicke oder wenigstens eine
zweifelhafte Stelle zu sein; setzt man unter sonstiger Beibehaltung
der dortigen Bezeichnungen der Kiirze wegen

1) (x+va' 4+u'a"+--)G@=F
und
@) : (@ + v+ 07"+ )G = Q,

so ist G eine ganze Funktion der unbestimmten Groéfen u, wihrend
@ auflerdem von den unbestimmten GroBen v abhingt, und wenn
ich die etwas dunkle Stelle richtig verstehe, so soll bewiesen werden,
dafl alle Koeffizienten dieser Funktion @ ganze Grofen des hier
betrachteten Bereichs () sind. Nun wird zwar gezeigt, dal @ einer
Gleichung von der Form

(3) Qn+01Qn~]+"’+0n—1Q+0n:O
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geniigt, wo C, C, --- O, ebenfalls ganze, und zwar solche ganze
Funktionen der Variablen u, v bedeuten, deren Koeffizienten ganze
Grolen in () sind; aber es bedarf meiner Ansicht nach doch noch
eines besonderen Beweises, dall sich hieraus die oben bezeichnete
Eigenschaft der Koeffizienten von @ als notwendige Folge ergibt;
ich habe wenigstens in den vorausgehenden §§ 1 bis 13 keine Stelle
gefunden, aus welcher dies hLervorgeht. Fiir den vorzugsweise
mich interessierenden Fall, wo der Bereich () der Korper aller
algebraischen Zahlen ist, also keine Variablen enthilt, gelang es
mir auch, einen solchen Beweis zu finden, den ich hier aber nur
andeuten will, weil er in der Folge nicht weiter verwendet wird.
Man sieht leicht ein, daB der fragliche Satz zufolge (3) auf den
folgenden zuriickkommt: ,Wenn eine ganze rationale Funktion Q
von Variablen stets eine ganze (algebraischie) Zahl wird, sobald
diese Variablen ganze Zahlen werden, so ist auch jeder Koeffizient
der Funktion @ eine ganze Zahl.* TUnd diesen Sat: hewies ich,
freilich auf eine ziemlich kiinstliche Weise, indem ich fiir die
Variablen beliebige Wurzeln der Einheit einsetzte. Durch diese
Vervollstindigung der Beweisfilhrung von Kronecker war nun,
wie schon oben bemerkt, auch zugleich fiir den Satz 3 ein Beweis
gewonnen, welcher von meiner bisherigen Idealtheorie unablingig
war und folglich zu einer neuen Begriindung derselben dienen
konnte.  Aber dieser Weg entspricht durchaus nicht meinen
Wiinschen, teils weil die Benutzung der Funktionen von Variablen
mir immer als ein der Sache fremdes Hilfsmittel erscheint, teils
weil die Durchfiihrung aller Beweise ohne Zweifel einen groferen
Raum erfordert als in meiner damaligen Theorie.

So ruhte diese Frage mehrere Jahre ohne jeden Fortschritt, und
sie kam erst aufs neue in Bewegung, als mein Freund H. Weber
mir am 10. Februar 1887 von Marburg aus eine von ihm aus-
gearbeitete ,Theorie der algebraischen Zahlen nach Kronecker«
zuschickte, in welcher die Hauptsitze ausfiihrlich und vollstindig:
bewiesen wurden. Bei angestrengtem Nachdenken iiber diese Dar-
stellung fand ich nun am 15. Febrnar den folgenden Satz, durch
welchen nach meiner Ansicht die Theorie von Kronecker noch
eine wesentliche Vereinfachung gewinnt:

5. Wenn das Produkt GH aus zwei ganzen rationalen Funk-
tionen @, H von beliebig vielen unabhéingigen Variablen u lauter
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ganze Koeffizienten hat, so ist auch jedes Einzelprodukt aus jedem
Koeffizienten von G und jedem Koeffizienten von H eine ganze GrifSe.

Um nimlich zu beweisen, dal die oben mit @ bezeichnete
Funktion lauter ganze Koeffizienten hat, braucht man nicht mehr,
wie es bei Kronecker geschieht, die Gleichung (3) zu bilden,
welcher @ geniigt, sondern dies folgt jetzt unmittelbar daraus,
dal das Produkt F in (1) lauter ganze Koeffizienten hat, also auch
jedes Produkt aus jeder GroBe a, ', z"--- und aus jedem Koeffi-
zienten der Funktion G ganz ist.

Diese Bemerkung und ein vollstindiger Beweis des Satzes 5
bildeten den Hauptinhalt meiner am 20. Februar 1887 abgesendeten
Antwort an H. Weber; dieser Beweis ist spiter in § 3 meiner
Abhandlung ,Uber einen arithmetischen Satz von GauB¥ veroffent-
licht, welche sich in den Mitteilungen der Deutschen mathema-
tischen Gesellschaft in Prag (1892) findet, und auf 8.7 daselbst,
ebenso auch in der Vorrede zur vierten Auflage von Dirichlets
Zahlentheorie, habe ich auch die Wichtigkeit des Satzes 5 fiir die
Theorie von Kronecker besonders betont. Herr Hurwitz, dem
diese Abhandlung erst nach Abschluf seiner Arbeit bekannt ge-
worden ist, kniipft an denselben Satz 5 an, fiir welchen er einen
andern Beweis gibt, und leitet daraus den Satz 2 ab. Ebenso weise
ich in meinem Briefe vom 20.Februar 1887 wieder darauf hin, dafl
der zur Abkiirzung meiner Idealtheorie brauchbare Satz 3 eine un-
mittelbare Folge des Satzes 5 ist, aber dies geschieht mit dem aus-
driicklichen Zusatz, ich wiirde mir zehnmal iiberlegen, wie eine solche
Abkiirzung durchzufiihren sei, ohne den einheitlichen Charakter der
Theorie zu storen!

Hiermit komme ich zum letzten Teile meiner Erzihlung. Ich
erinnere zundchst an eine schone Stelle der Disquisitiones Arith-
meticae, die schon in meiner Jugend den tiefsten Eindruck auf
mich gemacht hat. Im Art. 76 berichtet Gaul, dal der
Wilsonsche Satz zuerst von Waring bekanntgemacht ist, und
fahrt fort: Sed neuter demonstrare potuit, et cel. Waring fatetur
demonstrationem eo difficiliorem videri, quod nulla notatio fingi
possit, quae numerum primum exprimat. — At nostro quidem
judicio hujusmodi veritates ex notionibus potius quam ex mnotatio-
nibus hauriri debebant. — In diesen letzten Worten liegt, wenn sie
im allgemeinsten Sinne genommen werden, der Ausspruch eines
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groBlen wissenschaftlichen Gedankens. die Entscheidung fiir das
[nnerliche im Gegensatz zu dem Auferlichen. Dieser Gegensatz
wiederholt sich auch in der Mathematik auf fast allen Gebieten;
man denke nur an die Funktionentheorie, an Riemanns Definition
der Funktionen durch innerliche charakteristische Eigenschaften,
aus welchen die #uberlichen Darstellungsformen mit Notwendigkeit
entspringen. Aber auch auf dem bei weitem enger begrenzten und
einfacheren Gebiete der Idealtheorie kommen beide Richtungen zur
Geltung, und ich habe mich an verschiedenen Stellen meiner oben
erwihnten Schrift Sur la théorie des nombres entiers algébriques
(am SchluB von § 12 und namentlich in der Einleitung) so aus-
fiihrlich iiber die Anforderungen ausgesprochen, die ich mir damals
wie heute bei dem Aufbau der Theorie stellte, daB ich nicht mehr
darauf zuriickzukommen brauche. Hiernach wird man es auch er-
klirlich finden, daB ich meiner Definition des Ideals durch eine
charakteristische innerliche Eigenschaft den Vorzug gebe vor der-
jenigen durch eine &uBlerliche Darstellungsform, von welcher Herr
Hurwitz in seiner Abhandlung (II, 1) ausgeht. Aus denselben
Griinden konnte der oben erwihnte Beweis des Satzes 3, welcher
sich auf den Satz 5 stiitzt, mich noch nicht véllig befriedigen, weil
durch die Einmischung der Funktionen von Variablen die Reinheit
der Theorie nach meiner Ansicht getriibt wird, und ich will jetzt
berichten, auf welchem Wege es mir gelungen ist, das erstrebte Ziel
zu erreichen.

Der am 15.Februar 1887 von mir gefundene Beweis des Satzes 5
geht so zu Werke (vgl. § 3 der Prager Abhandlung), dafl zundchst
der folgende sehr spezielle Fall bewiesen wird, in welchem der eine
Faktor eine lineare Funktion ist:

6. Hat die ganze Funktion
f(®) = cpzn +czn—1 4 -+ ¢,
lauter ganze Koeffizienten, so gilt dasselbe von der ganzen Funktion
(=)
z—@
Wo @ eine Wurzel der Gleichung f(w) = 0 bedeutet.

Vergleicht man aber den Beweis dieses speziellen Satzes mit
dem zu Anfang erwihnten, viel frither gefundenen Beweise (D. S. 529)
des speziellen Falles des Satzes 3, in welchem m ein zwei-

— alxn—l + asxﬂ_2 + cee + (179
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gliedriger Modul [«, 8] ist, so erkennt man leicht ihre voll-
stindige Identitit; denn wenn man o« — fe setzt, so stimmt die
Reihe der n Produkte Bv,, welche in dem letzteren auftreten, mit
den obigen Koeffizienten @, iiberein*). Da nun der vollstindige
Beweis des Satzes 5 (fiir Funktionen von einer Variablen, deren Be-
trachtung hier geniigt) sich lediglich durch eine wiederholte An-
wendung des speziellen Satzes 6 ergibt, so lag die Vermutung nahe,
daBl auch der allgemeine Satz 3 oder 4 durch wiederholte An-
wendung des speziellen Falles, wo m ein zweigliedriger Modul,
oder m =— 2 ist, sich wiirde ableiten lassen. Bei erneuter Be-
schiftigung mit dieser Frage ergab sich dies in der Tat am
22. Oktober 1888, und zwar auf folgende unerwartet einfache Weise
durch die vollstdndige Induktion.

Ist % eine natiirliche Zahl, und nimmt man an, der Satz 4
sei schon fiir alle Fille bewiesen, wo m < n + 2, so kann man aus
n + 2 gegebenen algebraischen Zahlen

a By Wy tg e U
auf rationale Weise 27 + 4 Zahlen
o, B,
oy vy, vy e vy,
B"s 015 02" On
ableiten, welche den drei Gleichungen
ao + B =1,
4) w4 vy F e v, = 1,
BB+ o+ -+ o =1
und zugleich den Bedingungen geniigen, daf alle Produkte
wol, aff, po, B,
) . : oo’y ave, Wp'y WV
BB" Bors U’rﬁ'lv UrQs
ganze Zahlen werden, wo 7, s beliebige Zahlen aus der Reihe 1,
2 ... m bedeuten. Setzt man nun

"

o = au'a’, B = BB'B", 6, = adu'v,+ B0,

*) Es ist dies dieselbe Zahlenreihe, welche mir schon frither bei verschiedenen
Gelegenheiten gute Dienste geleistet hatte (vgl. z.B. den SchluB von § 8 meiner
Abhandlung Uber die Diskriminanten endlicher Korper oder D. § 167).
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so sind auch diese n -+ 2 Zahlen aus den gegebenen auf rationale
Weise gebildet; zufolge (4) befriedigen sie die Gleichung

aa” + ﬂﬁm + w6, + o0+ a6y = 1,
und zufolge (5) sind alle Produkte

' e

aa”y af’, oo,

ﬁal”, ﬁﬁlw’ ﬁGT,
y,,.lxm, y’r ﬁ”" l.l«r 63

ganze Zahlen, weil sie in der Form

oo o0y aff-pp", o -av.+ af’s for

ad-Be, BB-BE", v, Ba’ + BB Bor,

ol oy B ur B, oo prvs + BB wr s
darstellbar sind, w. z. b. w.

Hiermit war endlich das, was ich so lange gesucht hatte, ein
wirklich sachgeméfier Beweis der Sdtze 3 und 4, also auch die
Grundlage fiir die Neugestaltung meiner Idealtheorie gefunden.
Indessen war ich auch mit diesem Induktionsbeweise noch nicht
ganz zufrieden, weil in ihm die mechanische Rechnung vorherrscht,
und bei lingerem Nachdenken iiber den eigentlichen Grund seines
Erfolges entdeckte ich am 9. November 1888 den allgemeinen Modulsatz

(@4 5+ c)(bc+ ca 4 ab) = (0 + ¢)(c + a)(a + b),

woraus die schliefliche Form des Beweises entsprang (D. S.530).
Ich bemerke beilaufig, daB statt des dortigen Moduls

n = (bc+ ca -+ ab)a’b’¢
auch der Modul

n = ab'¢’ 4+ bc'a’ 4 ca'l’
hiitte gewihlt werden konnen, dessen Bau wohl etwas einfacher ist
und sich genauer an den vorstehenden Induktionsbeweis anschlieft;
doch ziehe ich die erstere Wahl vor, weil bei der letzteren der
Beweis, daf der Modul j = [1] durch mn teilbar ist, sich weniger
einfach gestaltet.

Bedenkt man nun, mit wie wenigen Schritten man jetzt (D.
§173) von dem Begriffe der ganzen Zahl zu dem Satze 3 und
hiermit zur vollen Beherrschung der Idealtheorie gelangt, so kann,
wie ich meine, gar kein Zweifel dariiber bestehen, daB dieser Weg
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vor allen Dingen sachgemifer, aber zugleich auch einfacher und
bei weitem kiirzer ist als der im Februar 1887 gefundene, welcher
zundchst zu dem Funktionensatz 5 und erst von diesem zu dem
Zahlensatz 3 oder (wie in der Abhandlung des Herrn Hurwitz) zu
dem gleichwertigen Satze 2 fiithrt. Hierin bestehen die Griinde, auf
denen mein im Eingang dieser Mitteilung ausgesprochenes Urteil beruht.

Braunschweig, am 14.Januar 1895.

Erlduterungen zur vorstehenden Abhandlung,

Die neuere Entwicklung hat den hier vertretenen Ansichten Dedekinds
voll und ganz recht gegeben, in der Definition von Ideal und Teilbarkeit wie in
der Begriindung des Zerlegungssatzes. Um nur ein Beispiel zu nennen: bei Bei-
behaltung der einem kommutativen Bereich angepafiten Funktionen von Unbestimmten
— also des verallgemeinerten Gaufischen Satzes — hitte sich der Zerlegungssatz
nicht auf maximale Ordnungen hyperkomplexer Systeme iibertragen lassen, wie
dies tatsdchlich durch Speiser und Artin geschehen ist (Ziiricher Vierteljahrs-
schrift 1926 und Hamburger Abhandlungen, Bd.V, 1927).

An Stelle der von Dedekind vorstehend angegebenen vier gleichwertigen
Sitze als Grundlage ist in der neueren Behandlung die ,ganze Abgeschlossenheit®
getreten, die zusammen mit gewissen Endlichkeitsvoraussetzungen (eingeschrinkter
Doppelkettensatz) dem Zerlegungssatz gleichwertig ist (E. Noether, Math. Ann.
96, 1926). Auf dieser Grundlage ergibt sich nach Krull (Math. Ann. 99, 1928)
direkt die auch von Dedekind (in der vierten Auflage von Dirichlet-Dede-
kind) in den Vordergrund gestellte Tatsache, daB die Ideale umkehrbare (eigent-
liche) Moduln sind, daB also die ganzen und gebrochenen Ideale eine Abelsche
Gruppe gegeniiber der Multiplikation bilden, woraus der Zerlegungssatz unmittelbar
folgt. Wiahrend Krull zu dem Gruppennachweis noch den Weg iiber die Prim-
ideale nimmt, hat Artin diese Tatsache direkt bewiesen, und zwar allgemein
fir ganzabgeschlossene Bereiche, die keiner Endlichkeitsbedingung zu geniigen
brauchen. Die Gleichheit wird dabei durch einen passenden Aquivalenzbegriff
ersetzt — auf dem Dedekindschen Begriff des Modulquotienten beruhend —,
den in speziellerer Fassung schon v. d. Waerden zugrunde gelegt hatte (Math.
Ann. 101, 1929).

Der Artinsche Beweis wird in der, in der Sammlung Grundlehren der Math.
Wissenschaften erscheinenden, ,Modernen Algebra“ von v. d. Waerden gebracht
werden. Damit ist dann auch in die Lehrbuch-Literatur, wo bis jetzt der Hur-
witzsche Beweis vorherrschte, die Dedekindsche Auffassung eingedrungen;
ebenso wie dies fiir die modernen Vorlesungen gilt, wo E. Landau noch 1917,
im Nachruf auf Dedekind (Goétt. Nachr. 1917), das Gegenteil konstatieren konnte.

Noether.




XXVI

Uber eine Erweiterung des Symbols (a, b)
in der Theorie der Moduln.

[Nachrichten von der Koniglichen Gesellschaft der Wissenschaften zu Gottingen,
Mathem.-phys. Klasse, Jahrgang 1895, S.183—188.]

Am Schlusse des Vorwortes zu meiner Abhandlung Uber die
Diskriminanten endlicher Korper, welche der Konigl. Gesellschaft am
5. August 1882 vorgelegt und in den Bd. 29 der Abhandlungen auf-
genommen ist, habe ich hervorgehoben, dafl alle in ihr gewonnenen
Resultate einer wichtigen Verallgemeinerung fahig sind, zu welcher
man dadurch gelangt, daf man den endlichen Korper & nicht nur
auf den Korper der rationalen Zahlen, sondern auch auf jeden in Q
als Divisor enthaltenen Korper bezieht, wobei neben den gewohnlichen
Normen, Diskriminanten, Spuren auch partielle oder relative, auf
diesen Korper beziigliche Normen usw. einzufiihren und gewisse
rationale Zahlen durch Ideale dieses Korpers zu ersetzen sind. Die
Durchfiihrung dieser Verallgemeinerung erfordert, wie ich damals
bemerkt habe, einige vorbereitende Untersuchungen, welche aber auch
ein selbstindiges Interesse darbieten, und unter diesen befindet sich
die in der Uberschrift genannte Erweiterung des in der Modultheorie
auftretenden Symbols (a, b), welche den Hauptgegenstand der fol-
genden Mitteilung bildet. Hierbei mufl ich die Kenntnis des letzten
Supplements der vierten Auflage (1894) von Dirichlets Vor-
lesungen iiber Zahlentheorie voraussetzen, welche ich kurz mit D.
zitieren werde.

§ L
Der Grundgedanke unserer Untersuchung ist der folgende. Aus
dem Begriff eines Moduls (D. § 168) ergibt sich eine unmittelbare
Beziehung desselben zu dem Korper R der rationalen Zahlen, welche
darin besteht, da jede Zahl « eines Moduls a durch Multiplikation
it jeder ganzen rationalen Zahl ¢ immer in eine Zahl ao desselben
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Moduls a verwandelt wird; bezeichnet man mit 3 den Inbegriff [1]
aller ganzen Zahlen des Korpers R, so kann man diese Eigenschaft
auch so aussprechen (D. S.500), dall das Produkt 3a stets teilbar
durch a ist. Auf dieser Eigenschaft beruht ein grofier Teil der all-
gemeinen Modultheorie. Ersetzen wir nun den Korper B durch einen
beliebig gewihlten endlichen Korper Z, der aber ungeéndert bei-
behalten wird, und bezeichnen wir mit z den Inbegriff aller in ihm
enthaltenen ganzen Zahlen, so soll im folgenden die Theorie aller
derjenigen Moduln a entwickelt werden, welche die Eigenschaft be-
sitzen, dafl za durch a teilbar ist. In unseren Zeichen wird dies
durch

1 za > a oder z > a°

ausgedriickt, wo a® die Ordnung des Moduls a bedeutet (D. S.505).
Da in z auch die Zahl 1 enthalten, also immer a > za ist, so ist
diese Eigenschaft auch gleichbedeutend mit

(2) za = Q.

Man kann sie auch so aussprechen, dal jede auf den Modul a be-
zigliche Kongruenz mit jeder ganzen Zahl des Korpers Z multi-
pliziert werden darf (D. S.508). Wenn nun der Modul b dieselbe

Eigenschaft besitzt, so ergibt sich aus den allgemeinen Sitzen
(D. 8.502, 500, 504)

(3) z(a+b) =za+2b, z(a—Db)> za—zb,
(4) 2(ab) = (za)b, z(—ﬁ—>> %

daf auch die vier Moduln a + 6, a — Db, ab und b:a von derselben
Beschaffenheit sind. Mit Riicksicht auf diese Reproduktion durch alle
Modul-Operationen wollen wir der Kiirze wegen ein fiir allemal fest-
setzen, daf unter einem Modul schlechthin, falls nicht das Gegen-
teil ausdriicklich bemerkt wird, im folgenden stets ein solcher
Modul a verstanden werden soll, welcher die durch (1) oder (2)
ausgedriickte Eigenschaft besitzt. —

Wir betrachten zunidchst alle diejenigen endlichen, von Null
verschiedenen Moduln, deren Zahlen dem Korper Z an-
gehoren. Zu der Bezeichnung dieser Moduln soll in der Regel die
zweite Halfte des lateinischen Alphabetes dienen, wihrend die Buch-
staben der ersten Hilfte meistens Zahlen des Korpers Z bedeuten.
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Da die Ordnung «° eines solchen Moduls = aus lauter ganzen Zahlen
besteht (D. S.527), welche offenbar in Z, also auch in 2z enthalten
sind, so ist 2° > 2, und da zufolge (1) auch z > «° ist, so folgt
x° = 2, mithin ist jeder solche Modul = ein Idealbruch (D. S.560
Anm.). Dieser Fall ist so wichtig fiir unsere Untersuchung, dafi ich
noch einige Worte zur Erlduterung hinzufiigen will. Wenn x ein
ganzer Modul, also x > z ist, so ist er offenbar ein Ideal
(D. 8.551); hierbei bemerke ich ein fiir allemal, dafl immer nur von
solchen Idealen und Idealbriichen die Rede sein wird, welche im
Korper Z enthalten sind, was also kiinftig stets hinzuzudenken
ist. Wenn aber der endliche Modul x auch gebrochene Zahlen ent-
hilt, so kann man eine von Null verschiedene ganze Zahl a des
Korpers Z so wihlen, dall alle Basiszahlen von x durch Multi-
plikation mit @ in ganze Zahlen verwandelt werden, und folglich za
ein Ideal y wird; allgemeiner, es gibt unendlich viele Paare von
Idealen u,v (z. B. v = za, v = y), welche der Bedingung zu = »
geniigen, woraus x — v:u = vu~ ), also auch x—!' = z:2 = o !
= y:v und xzz—! = 2z folgt (D. S.533, 506, 507). Unter allen
diesen Paaren w, v gibt es ein einziges, welches aus zwei relativen
Primidealen wu,, v, besteht (D. S.556), und jedes Paar ist von
der Form % = wu,, v = wv,, wo w — u + v ein willkiirliches
Ideal bedeutet; zugleich leuchtet ein, dall w, — 2z — x—* der Inbegriff
aller oben mit a bezeichneten Zahlen (einschlieflich ¢ = 0) und
ebenso v, — z — x, ferner ;! = 2+ x, vy = 24 2! ist.

Aus den soeben betrachteten Moduln 2 bilden wir jetzt alle
Moduln p von der allgemeineren Form
) y = r«,
wo o« jede beliebige, von Null verschiedene Zahl innerhalb oder
aullerhaib Z bedeutet. Diese Moduln p wollen wir kurz einfache
Moduln nennen, weil sie fiir unsere Untersuchung genau dieselbe
Bedeutung besitzen wie die von Null verschiedenen eingliedrigen
Moduln fiir die allgemeine Modultheorie (D. S.494), und weil sie
mit diesen letzteren zusammenfallen, wenn Z der Korper R der
rationalen Zahlen ist¥*). Jeder einfache Modul p ist offenbar ein
endlicher, von Null verschiedener Modul, in welchem jedes Zahlen-
paar ein nach Z reduzibles System bildet (D. S.466), und man

*) Die Wahl des Buchstaben p soll also keineswegs an Primideale erinnern.
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iiberzeugt sich leicht, daf hierdurch umgekehrt der gemeinsame
Charakter aller einfachen Moduln auf invariante Weise bestimmt ist.
Offenbar 146t sich aber jeder einfache Modul p auf unendlich viele
verschiedene Arten in der Form (5) darstellen; ist ndmlich y irgend-
ein mit z #quivalenter Idealbruch (D. 8.579), also z = yc¢, wo
¢ irgendeine von Null verschiedene Zahl in Z bedeutet, so wird
p = yp, wo f = ca; man darf daher bei der Darstellung (5) auch
immer annehmen, dafl x ein ganzer Idealbruch, d. h. ein Ideal ist.

Zugleich leuchtet ein, dafl jeder einfache Modul p ein eigent-
licher Modul (D. 8.506), daB namlich

(6) Y=z=1pp pl=ale?
ist, und ebenso, dafl Produkte und Quotienten von einfachen Moduln
wieder einfache Moduln sind. Hieraus folgt auch leicht, dafl immer

M (@—D)p ==ap—bp

ist; denn nach der allgemeinen Modultheorie (D. S.502) ist die linke
Seite teilbar durch die rechte, und ebenso ist (ap —bp)p—1 teilbar
durch den Modul app—t —bpp—1, d.h. durch a —b, woraus durch
Multiplikation mit p folgt, daB auch die rechte Seite unserer Glei-
chung (7) durch die linke teilbar ist, w.z b. w. Auf dieselbe Weise
ergibt sich, dal aus ap > bp stets a > b und aus ap = by stets
a = b folgt.

§ 2.

Wir wenden uns jetzt zum Beweise von Sitzen, auf denen die
Einfiihrung eines neuen Symbols beruht, und bei welchen die Analogie
zwischen unseren einfachen Moduln und den eingliedrigen Moduln
der allgemeinen Theorie noch deutlicher hervortritt (vgl. D. S.514).

I Jedes von Null verschiedene Vielfache q eines ein-
fachen Moduls p ist ein einfacher Modul von der Form

wo % ein Ideal bedeutet, dessen Norm
® (zu) = N(@) = (¥09)
ist.

. Denn aus der Teilbarkeit von q durch p folgt durch Multi-
plikation mit y—1, daf der von Null verschiedene Modul qp—* durch
z teilbar, also ein Ideal w ist, woraus sich (8) ergibt; da fermer p
von der Form (5) ist, wo « als ein Ideal angenommen werden darf,
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so ergibt sich nach bekannten Sitzen (D. S.510, 564)
39 = (re, ure) = (%, ux) = N (u),
w. z b. w.

Wir bemerken zundchst, daf das in (8) auftretende Ideal u
durch p und q vollstindig bestimmt ist, weil aus (8) durch Multi-
plikation mit p—1 wieder 4 = qp—1 folgt. Bedeutet ferner z irgend-
eine von Null verschiedene Zahl in p, so ist 2z > b, also 27w — up,
wo u = mp~*! ein Ideal; offenbar entsprechen allen Zahlen = lauter
dquivalente Ideale u (D. S.573), und umgekehrt, wenn das Ideal 2’
mit % Hquivalent, also %' = cu ist, wo ¢ eine Zahl des Korpers Z
bedeutet, so ist die Zahl n' — ¢z in p enthalten und o' =— w'p=t,
man kann daher (D. S.579) die Zahl x aus  auch immer so aus-
wahlen, da mp—! relatives Primideal zu irgendeinem gegebenen
Ideal wird. ,

Sodann benutzen wir den vorstehenden Satz, um fiir einen be-
liehigen Modul m und einen einfachen Modul p ein neues Symbol
(b; m) zu erkldren, in welchem wir die beiden Moduln nicht durch
ein Komma, sondern durch ein Semikolon voneinander trennen.
Hierbei sind zwei Fille zu unterscheiden, je mnachdem (p, m) > 0
oder = 0 ist (D. S.509). Da immer (p, m)p durch p —m teilbar
ist (D. 8.511), so ist im ersten Falle auch p—m ein von Null
verschiedenes Vielfache q von p, und wir definieren (p; m) gemdl (8)
als das durch die Gleichung

(10) p—m = (p;m)p
vollsténdig bestimmte Ideal*)
(11) (s m) = (p — m)p~,

und da immer (p,m) = (p,p —m) ist (D. S.510), so folgt aus (9)
auch

(12) (v, m) = N (p; m).

Da umgekehrt, wenn p —m von Null verschieden ist, zufolge (8)
und (9) dasselbe auch von (p,m) gilt, so tritt der zweite Fall
(»m) = 0 stets und nur dann ein, wenn p —m = 0 ist, und dann
wollen wir auch

(13) (p;m) = 0

*) Ist = ein Idealbruch, so ist z B. (z; 2) = vy, (3 2) = wy, WO uy und
Yo dieselbe Bedeutung fiir & haben wie in § 1.
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setzen, weil hierdurch die Gleichungen (10), (11), (12) erhalten
bleiben. In allen Fillen ist offenbar

(14) (b5 1) = (p; p —m).
Ebenso geht aus (10) hervor, dal die Gleichung
(15) (p; m) = z gleichbedeutend mit » > m

ist. Multipliziert man ferner (10) mit einem beliebigen einfachen
Modul p', so folgt mit Riicksicht auf (7) der in allen Féllen geltende
Satz

(16) (pp'smy’) = (p; m).

Durch wiederholte Anwendung des Satzes I und der daraus ge-
zogenen Folgerungen ergibt sich der Satz

Il. Sind a,b beliebige Moduln, so ist (a,b) entweder
= 0 oder die Norm eines Ideals u.

Ist ndmlich (a,b) = 1, also a > b, so wird dem Satze durch
w = 2 geniigt. Ist aber (a,b) > 1, so kann man aus a immer ein
System P von einfachen Moduln y,, ¥,, - - -, p, in endlicher Anzahl
n so auswahlen, daf

(17) az(a—b)+91+pz+"'+%

wird; denn wenn z B. die Zahlen «,, oy, -- -, &, wo 8 = (a,b), ein
Restsystem von a nach b bilden (D. S.509), so ist offenbar auch
a = (a —b)+ze, + 20y + -+ 4+ ze; und dies ist nur ein spezieller
Fall der allgemeinen Darstellung (17). Setzt man nun, wenn »
irgendeine der Zahlen 1,2, -- -, # bedeutet,

(18) Gy =0@—=b0)+p+hrt+ o+
und auBerdem a, = a —b, so ist o, = a und
(19) . Gy 1 = pl’ + a, < av,

also nach bekannten Sitzen (D. S.510)
(a, b) = (a,, a,) = (805 a,) (ay5 ay) -+ (Qp—r, a,)
und mit Riicksicht auf (12)
(av—u av) == (pv +q,, av) == (pw av) - N(P,,; av)'
Setzt man daher das Idealprodukt
(20) (hs5 ) (Pg3 ay) -+ (Pn; @p) = u,



so folgt aus dem bekannten Satze iiber die Norm eines Produktes
(D. 8.564) das Resultat

(21) (a,b) = N (w),

w. z b. w.

Es liegt nun die Vermutung sehr nahe, dal das in (20) ge-
bildete Idealprodukt wu, dessen Norm =— (a,b), sowohl von der
Reihenfolge der in der Darstellung (17) des Moduls a auf-
tretenden einfachen Moduln p, als auch von der Auswahl des
Systems P dieser Moduln génzlich unabhiingig, also invariant
durch o und b bestimmt ist. Um dies zu beweisen, schicken wir
folgenden Hilfssatz voraus:

III. Sind p, q einfache Moduln, und setzt man zur Ab-
kiirzung

(22) P=9—@+m), ¢ =q—@+m,
wo m ein beliebiger Modul, so ist
(23) 9 (p—m) = p(@q—m)

Dies ergibt sich ziemlich leicht aus dem in der allgemeinen
Modultheorie (D. S.499) bewiesenen, fiir je drei Moduln m, p, q
giiltigen Satze

(24) P+m)—@+m)=p+m=q+m,
woraus wir die fiir unseren Zweck hinreichenden Folgerungen
(25) >0+ m g >y +m

zichen. Nehmen wir nun zunichst an, die Moduln p — m und ¢ —m
seien beide von Null verschieden, so gilt dasselbe auch von p' und
9, weil zufolge (22) offenbar p —m > p" und q—m > q ist; da
ferner p’ > p und ¢’ > g, so sind (nach dem Satze I) auch ¥', ¢/,
p—m, q—m einfache Moduln, und man kann daher

(26) p—m=py, g—m=qq

setzery; wo p, ¢ Ideale bedeuten, deren Identitdt wir jetzt beweisen
wollen. Aus der ersten der durch (25) ausgedriickten Teilbarkeiten
ergibt sich durch Multiplikation mit ¢ zundchst ¢» > gq' 4 gqm;
beide Moduln ¢q’, gm sind aber durch m teilbar, der erstere zufolge
(26), und der letztere, weil ¢ > 2z ist; mithin ist auch ¢y > m,
und da ferner ¢p' > ¥ > p, so ist gy’ ein gemeinsames Vielfaches
von m und p, also auch teilbar durch p —m, d. h. ¢y’ > p¥', und

Dedekind, Gesammelte Werke, II. 5
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hieraus ergibt sich ¢ > p, weil p’ ein einfacher Modul ist. Zufolge
der Symmetrie ist ebenso p > g, also wirklich

(27) =49
und der Satz (23) ist daher eine unmittelbare Folge von (26),
w.z b. w. Dieser Satz gilt aber auch dann, wenn man die obige
Annahme fallen 148t, dal p —m und ¢ —m beide von Null ver-
schieden sind. Dies leuchtet unmittelbar ein, wenn beide Moduln
= 0 sind. Wenn ferner p —m — 0, aber ¢ —m, also auch ¢ von
Null verschieden ist, so behilt das Ideal ¢ seine Bedeutung, und der
obige Beweis fiir die Teilbarkeit von ¢y’ durch p—m bleibt be-
stehen, mithin ist ' = 0 und der Satz (23) auch jetzt richtig,
w. 7. b. w.

Driickt man die in (23) auftretenden Moduln gemal (10) aus,
so nimmt unser Satz folgende Form an:

IV. Sind p, q einfache Moduln, wadhrend m einen be-
liebigen Modul bedeutet, so ist

(28) (@ 9+ m) (p; m) = (p; q + m) (g5 m).

Mit Hilfe desselben beweisen wir leicht, daf die Reihenfolge,
nach welcher aus den in (17) auftretenden einfachen Moduln yp, die
Moduln a, in (18), (19) und die Ideale (y,; a,) gebildet werden,
keinen Einflul auf deren Produkt » in (20) ausiibt. In der Tat,
andert man diese Reihenfolge nur so weit ab, daB zwei Nachbarn
Pu—1 und p, ihre Plidtze miteinander vertauschen, alle iibrigen p,
ihren Platz behaupten, so bleiben auch alle Moduln a, mit einziger
Ausnahme von a,_; ungeiindert, welcher in

@—D0) 4+ Py F+ Pugrt o+ P =Pu—1+ 0,

iibergeht; zugleich bleiben alle Faktoren des Produktes w in (20)
ungeindert mit Ausnahme von

(Pu—15 au—1) und (p; o),
(Pu; Pu—1+ au) und (p.u—ﬂ au)

iibergehen; da aber a,_, = y, + ¢, ist, so folgt aus (28), wenn
man ¢ = Pu_y, P = P,, m = a, setzt, dall das Produkt der beiden
ersteren Moduln mit dem der beiden letzteren identisch ist, also
das Produkt % ungeindert bleibt. Dasselbe gilt daher auch fiir

welche bzw. in



— 67 —

jede Abinderung der Reihenfolge, weil eine solche bekanntlich
immer durch fortgesetzte Vertauschung von zwei Nachbarn hervor-
gebracht werden kann, und wir diirfen daher sagen, das Ideal-
produkt » entspreche dem System P der n einfachen Moduln p,,
welche in der Darstellung (17) des Moduls a auftreten.

Noch leichter 148t sich nun zeigen, dal das Ideal % auch von
der Auswahl des Systems P unabhingig ist. Nehmen wir ndmlich
einmal an, es reiche schon das System P, der n — 1 einfachen

Moduln y,, 9;, - -+, p, zu einer solchen Darstellung von a aus, es
sei also
(29) a:(a_b)+p2+p3+"'+pna

so wird, wenn man zu P, einen beliebigen, durch a teilbaren ein-
fachen Modul p, hinzufiigt, ein System P von » einfachen Moduln p,
entstehen, welches der Bedingung (17) geniigt, weil a 4+ p, = a ist.
Belhdlt man nun die fritheren Bezeichnungen bei, so entspricht dem
System P, das Idealprodukt

Uy = (Pg; y) (P35 ) =+ (Pus ),

und folglich ist v = (p,; a,) u,; da aber zufolge (29) schon o, — g,
also auch p, > a, ist, so folgt aus (15), dal (p,; a,) = 2, mithin
u, = u ist. Dasselbe ergibt sich auch daraus, dal zufolge (21)
gewil N (u) = N (u,), also N (p;;a,) =1 ist. Nennen wir der
Kiirze halber, indem wir die beiden Moduln a,b festhalten, jedes
System P von n einfachen Moduln p,, welches der Bedingung (17)
geniigt, ein vollstdndiges System, so konnen wir das eben ge-
wonnene Resultat offenbar so aussprechen, dal ein solches System P
durch Aufnahme von beliebig vielen einfachen, durch a teilbaren
Moduln in ein ebenfalls vollstindiges System % iibergeht, und daB
beiden Systemen P und R ein und dasselbe Idealprodukt u ent-
spricht. Ist nun O ebenfalls ein vollstindiges System, und bezeichnet
man mit R das aus P und O zusammengesetzte System, welches
aus P durch Hinzufiigung von 2, aus & durch Hinzufiigung von P
entsteht, so leuchtet ein, dal auch den beiden Systemen P, O ein
und dasselbe Idealprodukt w entspricht, w. z. b. w.

Ist a selbst ein einfacher Modul, so wird die Darstellung (17)
durch » = 1, p, = a erfiillt, d. h. a selbst bildet ein vollstindiges
System, und das ihm entsprechende Idealprodukt u reduziert sich

h*
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auf den einzigen Faktor (a; a —b), welcher nach (14) mit (a; b)
identisch ist. Wir wollen daher, wenn a und b wieder beliebige
Moduln bedeuten, welche der Bedingung (a, b) > 1 geniigen, das
invariante, von der Darstellung (17) génzlich unabhiingige Ideal-
produkt % in (20) auch mit dem Symbol (a; b) bezeichnen; es wird
daher

(30) . (a; b) - (pla a]) (pga ai) te (pn, an)»

WO Py, Py, -+, P, einfache Moduln bedeuten, welche der Bedingung (17)
geniigen, wihrend a,, a,, -, a, durch (18) oder (19) bestimmt sind;
die Bedeutung jedes Faktors von (a; b) ist frither in (11) erklirt.
Zufolge (21) ist zugleich

(31) (a,6) = N (a; b).

Wir betrachten nun noch die beiden, bis jetzt ausgeschlossenen
Fille, wo (a,b) = 1 oder — 0 ist. Der erstere Fall tritt dann,
und nur dann ein, wenn a > b ist (also immer fiir a = 0); soll
nun das Gesetz (31) bestehen bleiben, so miissen wir definieren

(32) (a;b) = 2, wenn (a, b) = 1.

Aber man kann auch (mit einziger Ausnahme des Falles a — 0) die
Definition (30) anwenden; denn jedes beliebig ausgewihlte System P
von einfachen, durch a teilbaren Moduln p, ist im obigen Sinne ein
vollstéindiges System, und da nach (15) jeder Faktor (p,;a,) = 2
wird, weil a, = a ist, so folgt aus (30) auch (32). Soll endlich das
Gesetz (31) auch im zweiten Falle erhalten bleiben, so miissen wir
definieren

(33) (a; 5) = 0, wenn (a, b) = 0.

und man iiberzeugt sich leicht, daf dies mit (13) und auch mit (30)
vertriglich ist, wenn in diesem Falle iiberhaupt eine Darstellung von
der Form (17) existiert.

Die Wahl der Bezeichnung (a;0), in welche freilich die not-
wendige Beziehung auf den Kérper Z oder das Ideal z nicht auf-
genommen ist, rechtfertigt sich zunichst dadurch, daB (a;b), wenn
Z der Korper R der rationalen Zahlen, also z das System j aller
ganzen rationalen Zahlen ist, mit (a, b) oder vielmehr mit dem ein-
gliedrigen Modul 3(a, b) zusammenfdllt; dies folgt unmittelbar aus
(31) oder auch aus (11) und (30). Auflerdem gelten aber fiir das
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neue Symbol (a;b), wie wir jetzt beweisen wollen, auch dieselben
Hauptséitze (D. 8. 510, 511) wie fiir das alte Symbol (a, b)*),

§ 3.

Die Darstellung (17) und das daraus abgeleitete Idealprodukt
in (20) oder (30) bleibt offenbar ungeéindert, wenn a festgehalten,
aber b durch a — b ersetzt wird; hieraus folgt unmittelbar der Satz
(34) (a;0) = (a;0 —D).

Aus der Darstellung (17) folgt ferner durch Addition von b,
weil (a —b) 4+ b = b = (a 4 b) — b ist, die Darstellung

b =0y +p e+,
welche fiir die beiden Moduln a + b, b dieselbe Bedeutung hat wie
(17) fiir a,b; wir bilden daher, wie in (18), die entsprechende Kette
der Moduln
a;—l — b+pv+pr+1+ cr o P, a';t =0
und erhalten nach (30) zunichst
(@ -+ 05 6) = (vy507) (Pg; 03) -+ - (Pu; ap).
Zwischen den beiden Ketten der Moduln a, und a, besteht nun die
durch die beiden Gleichungen
a, = b-+4a, a, = a—a,
ausgedriickte Korrespondenz (vgl. D. S.499 Anm.); die erste ergibt
sich unmittelbar aus (18) durch Addition von b, und aus ihr folgt
die zweite; da nimlich a, > a ist, so gilt nach einem Satze der all-
gemeinen Modultheorie (D. S.498) die Gleichung

(a_b)+av - a—(b+av)a
welche mit der zu beweisenden zusammenfillt, weil a — b > a, ist.
Da ferner p, > a ist, so folgt hieraus weiter
P —a, = pv'_‘a-"a;' - py—'a;y

also nach (14) oder (34) auch

(»s3 a,) = (vy; aa")1
und wir erhalten den Satz
(35) (a;0) = (a + b; b).

*) Vgl. auch §6 der von H. Weber und mir verfaften Abhandlung Theorie
der algebraischen Funktionen einer Verinderlichen (Crelles Journal, Bd. 92).
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Aus der Darstellung (17) folgt ferner durch Multiplikation mit
einem beliebigen einfachen Modul » und mit Riicksicht auf (7) die
Darstellung

ap = (ap—0p) + PP+ PP+ -0 4 ¥py;

der Kette der Moduln a, entspricht jetzt die Kette der Moduln a,p,
und hieraus ergibt sich mit Riicksicht auf (16) der Satz

(36) : (ap; bp) = (a; b).
Da ferner (y,;a,)p, = p,—a, > a,, und auch #,;0,)0,>a,
ist, weil (p,;a,) > 2, so folgt aus (19) durch Multiplikation mit

(»y; a,), daB auch (p,;0,)a,_; > a,, und da a, =a und a, =a—Db,
so ergibt sich aus (30) der Satz

(37) (a;0)a>a—b.
Ist endlich a <C b, und b <C ¢, so ergibt sich auch leicht der Satz
(38) (8;0) = (a5 b) (b; ¢),

wenn man die Darstellung (17), in welcher a — b = b ist, mit einer
Darstellung von der Form

b=c+g+a+ - +a
verbindet, wo q,, q,,---, q, einfache Moduln bedeuten.

Die Beweise aller vorstehenden Sitze (34) bis (88) stiitzen sich
auf die Annahme der Existenz von solchen Darstellungen (17); aber
man iiberzeugt sich mit Riicksicht auf (32) und (33) leicht, daB die
Siitze auch dann giiltig bleiben, wenn diese Annahme nicht erfiillt ist.

§ 4.

Wir wenden uns nun zu der Untersuchung der Beziehungen,
welche zwischen unserem Symbol (a; b) und gewissen Determinanten
bestehen und denjenigen ganz #hnlich sind, welche fiir das alte
Symbol (a; b) gelten (D. S.521—523).

Hierbei gehen wir, indem wir (a, b)) > O voraussetzen, wieder
von der Darstellung (17) des Moduls a aus und betrachten jedes
System L von n Zahlen =,, m,, - - -, m,, welche bzw. in Py Doy vy Py
also auch in a enthalten sind und zugleich der Kongruenz

(39) 7, + g+ -+ + ®w, = 0 (mod. b)
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geniigen. Aus je 7 solchen Losungen L', L", ..., L® dieser Kongruenz
bilden wir, indem wir die in ihnen auftretenden Zahlen m, mit ent-
sprechenden Akzenten versehen, die Determinante

(40) b= St al,
welche offenbar, wie jedes ihrer Glieder, in dem einfachen Modul
(41) P="PP P

enthalten ist. Da (a,b)a > b ist (D. S.511), und folglich, wenn «,
eine willkiirliche Zahl in p, bedeutet, die Zahl =, — (o, b) o, fiir
sich allein eine Losung L® der Kongruenz (39) bildet, wihrend die
iibrigen Glieder verschwinden, so leuchtet ein, daf unter den Deter-
minanten 4 sich auch solche befinden, welche von Null verschieden
sind. Da auflerdem zi > p ist, so erzeugt (nach § 2, I) jede von
Null verschiedene Determinante A ein Ideal Ay~L und wir wollen
beweisen, da das Ideal (a;0) der groBte gemeinsame Teiler

aller dieser Ideale Ap—!ist, was wir in unseren Zeichen (D. 8. 496)
durch

(42) (a;0) = XAp=1 oder (a;b)p = Sz
ausdriicken konnen.

Hierzu wenden wir die vollstindige Induktion an, indem wir die
Darstellung (17) in die beiden folgenden
(44) a1:(a_b)+p2+p3+"'+pn
zerlegen, welche, weil & —a, = a, und a, —b = a — b ist, fiir die
Modulpaare a,a, und a,, b dieselbe Bedeutung haben wie die Dar-
stellung (17) fiir das Modulpaar a, b; aus (30) folgt zugleich
(45) (a; 0) = (bs5 9y (a3 ).

Unser Beweis setzt sich nun aus den folgenden fiinf Hauptpunkten
zusammen.,

L. Betrachten wir zundchst, um den Fall n = 1 zu erledigen,
nur das Modulpaar a, a;, also die Darstellung (43), so sind mnach
(39) alle diejenigen in p, enthaltenen Zahlen 7, zu bilden, welche

der Kongruenz =, = 0 (mod. a,) geniigen, d.h. alle Zahlen =, des
einfachen Moduls

(46) n=p,—06 =¥ “1) b= (g al) Ps3
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da nun jede aus einem einzigen Element =, gebildete Determinante
ersten Grades — =, ist, und aullerdem zufolge der Eigenschaft (2)
jeder Modul

(47) n= >zm
ist, wo =, alle Zahlen in n durchlduft, so leuchtet fiir diesen Fall
n = 1 die Richtigkeit des Satzes (42) ein.

2. Dem Verfahren des Induktionsbeweises gemafl nehmen wir
jetzt an, unser Satz sei fiir das in der Darstellung (44) auftretende
Modulpaar a,, b bewiesen, und wir haben zu zeigen, daf hieraus seine
Richtigkeit auch fiir das Modulpaar a, b folgt. Nach der obigen Vor-
schrift besteht diese Annahme im folgenden. Man betrachte jedes
System M von (n — 1) Zahlen o,, g, - - -, 0., Welche bzw. in py, p,,
«++, b, enthalten sind und zugleich der Kongruenz

(48) 92+@3+...._|_@nzo(mod.b)

geniigen; aus je (n — 1) solchen Lésungen M", M"', ..., M® bilde
man die Determinante

(49) w=22t0505  on>

so wird

(50) (0;0) = Xpa~* oder (a;;0)q = Xzp,

wo zur Abkiirzung

(51) Q= PyPs - P, als0 p=qp,

gesetzt ist.

3. Wenden wir uns nun zu dem Modulpaare a, 6, also zu der
aus (43) und (44) zusammengesetzten Darstellung (17) und zu der
ihr entsprechenden Kongruenz (39), so bemerken wir vor allen Dingen,
dal der Inbegriff aller in der letateren auftretenden Zahlen m,
identisch ist mit dem obigen Modul n in (46). Da nimlich die
Zahlen =, in p,, also auch in a enthalten sind, so gilt die auf den
Modul b beziigliche Kongruenz (39) von selbst auch fiir den Modul
a—b und ist daher gleichbedeutend mit einer Gleichung von der
Form

Ty =0 — MWy — MWy — +++ — Ty,

wo ¢ eine Zahl des Moduls a — b bedeutet; hieraus geht aber mit
Riicksicht auf (44) hervor, dal die in p, enthaltene Zahl z, auch
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in a;, also auch in n = p, — a, enthalten ist; und da umgekehrt
jede in mn, also gleichzeitig in p, und a, enthaltene Zahl =, gewil
von der vorstehenden Form ist, aus welcher wieder die Kongruenz (39)
folgt, so ergibt sich hieraus die oben behauptete Identitdt aller in
der, Kongruenz (39) auftretenden Zahlen m;, mit allen in 1. be-
trachteten Zahlen =, des Moduls n, und folglich gilt fiir diese .
Zahlen m, auch wieder die Gleichung (47).

4. Nun leuchtet ein, daf jede Losung M der Kongruenz (48)
auch als eine Losung L der Kongruenz (39) aufgefalit werden kann,
in welcher =, = 0 ist. Kombiniert man daher je (n — 1) Losungen
der Kongruenz (48), denen die Determinante w in (49) entspricht,
mit jeder Losung L der Kongruenz (39), so entspricht diesem System
von n Losungen zufolge (40) eine Determinante 4 — =, u. Unter
den sdmtlichen Moduln z4 befinden sich daher auch alle Moduln
von der Form zm, -2y, und folglich ist der grofite gemeinsame Teiler
>1z4 der ersteren auch ein Teiler der letsteren, also auch ihres
grofiten gemeinsamen Teilers, und da der letztere, weil die Faktoren
7., w ginzlich unabhéngig voneinander sind, von der Form

Dlem oz = >zm > zp

ist, so ergibt sich zufolge (47) das Resultat

e <n>zy,

welches mit Riicksicht auf (45), (46), (50), (51) die Form
(52) > Apt < (3;h)

annimmt.

5. Schwieriger ist der Beweis, dafl das Ideal linker Hand auch
durch das zur rechten teilbar ist. Nach einer fritheren Bemerkung
(§ 2, I) kann man aus dem einfachen Modul n eine Zahl @, so aus-
wihlen, daf 4 — w,n—! relatives Primideal zu (a; b) wird, und
hierauf kann man aus w eine Zahl ¢ wihlen, welche relative
Primzahl zu (qa; b) ist, weil jedes Ideal u sich durch Multiplikation
mit einem Ideal v, welches relatives Primideal zu (a;b) ist, in ein
Hauptideal za = wv verwandeln liBt (D. S.559); zugleich wird
an = ve, > zwo,, und folglich wird jede Zahl =, des Moduls n
durch Multiplikation mit g in eine Zahl

(53) an, — Cw,
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verwandelt, wo ¢ ebenso wie @ in z enthalten ist. Da ferner m,
eine Zahl in n ist, so gibt es zufolge 3. in den Moduln p,,p,, ---, b,
bzw. Zahlen @,, ay, ---, @,, welche die Kongruenz

(54) 0, + o, + o+ - + o, = 0 (mod. b)
erfiillen, also mit @, eine partikulire Losung der Kongruenz (39)
bilden. Betrachtet man nun jede Losung L der letzteren, bestimmt

aus der in ikr enthaltenen Zahl =, gem&ll (53) die zugehorige ganze
Zahl ¢ und setzt

(55) 0y = am, — C®,,

s0 ist ¢, = 0, und die n— 1 Zahlen g,, g;, * -+, 0,, welche bzw. in
Pay Py + -, Py enthalten sind, bilden, wie sich durch Multiplikation
der Kongruenzen (39), (54) mit den ganzen Zahlen @, ¢ und Sub-
traktion ergibt, eine Losung M der Kongruenz (48). Betrachtet
man nun wieder je n Losungen L', L”, - -., L™ der Kongruenz (39),
welche die Determinante 4 in (40) erzeugen, und versieht die nach
(53) und (55) daraus abgeleiteten Zahlen ¢ und Losungen M mit
entsprechenden Akzenten, so ist nach bekannten Sitzen

’ ’ r ’ ! ]
‘ C'col, ATy, ***y, ATy, I I A7y, 927 ) Qn "

" M " " " " "
an) — | € @y, @My, -0y Gy | __ | ATy, Q25 **y On |

(n) ) () (n)

™, an®, .- am, Ay Qs sty On

' "o (n) (n)
= a(mp +ap" + 4w "),
wo w', u”, -, u® Determinanten u von der Form (49) bedeuten,

also zufolge (50) in (a,; b) q enthalten sind; da ferner die Faktoren m,

in n = (p,; a,) p,, also die Produkte =, u und an, p zufolge (45), (51)

in (a;b) p enthalten sind, so ergibt sich aus der vorstehenden Gleichung

zundchst @®2p—! > (a; b) und folglich, weil a* wie a relative Prim-

zahl zu (a;b) ist, auch Ap~! > (a;b), mithin auch

(56) St > (0,

woraus mit Riicksicht auf (52) der Satz (42) folgt, w.z. b. w.
Dieser Satz kommt nun meistens in der Weise zur Anwendung,

daf die in der Darstellung (17) auftretenden einfachen Moduln p,
gemif (5) in der Form

(GX)) p, = 2,0,

ausgedriickt sind, wo z, einen Idealbruch, , eine von Null ver-



— 75 —

schiedene Zahl bedeutet, und hiermit nimmt die Darstellung (17)
folgende Form an:

(58) o= (a —b)+ @00, + Tyt + -+ + X, 0.
Zugleich geht die Kongruenz (39), wenn man =, = a,o, setzt, in
(59) a0, + agoty + -+ + a0, = 0 (mod. b)

iiber, wo @,, @, -+, @, Zahlen bedeuten, welche bzw. in den Ideal-
briichen «,, %, - -+, @, enthalten sind. Bildet man nun aus je n
solchen, durch Akzente unterschiedenen Losungen der Kongruenz (59)
die Determinante

(60) A =>+aday-al

und setzt zur Abkiirzung

(61) X =z, - 2,

so nimmt unser Satz (42) mit Riicksicht auf (40) und (41) die Form
(62) (;0) X = X124

an, in welcher nur Zahlen und Idealbriiche des Korpers Z auf-
treten. —

Bevor wir weitergehen, wollen wir bemerken, dal der Satz (42)
offenbar auch als Definition des Symbols (a;0) dienen konnte.
Da die Ideale Ap—! von der Reihenfolge der einfachen Moduln
s Pg, - -+, D, im System P ginzlich unabhingig sind, so besitzt diese
Definition vor der friitheren (in § 2) den Vorzug, dal die Invarianz
leichter nachweisbar ist; denn durch Betrachtungen, welche den bei
dem obigen Beweis angewendeten ganz #hnlich sind, ergibt sich
sofort, daB der grofite gemeinsame Teiler aller dem System P ent-
sprechenden Ideale Ap—1 sich nicht &ndert, wenn zu P noch irgend-
ein durch a teilbarer einfacher Modul hinzugefiigt wird, und hieraus
folgt wie frither (§2), daB dieser grofite gemeinsame Teiler auch
von der Auswahl des vollstindigen Systems P unabhiingig ist. Auch
kann man offenbar der Definition schon vor diesem Nachweis die
vollige Invarianz verleihen, wenn man (a;b) als den grofiten gemein-
samen Teiler aller Ideale Ap—1! erklart, welche allen vollstindigen
Systemen P entsprechen.

Unsere frithere Definition von (a;b) hat dagegen den Vorzug,
daf sie der Determinanten A gar nicht bedarf und sich nur auf
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die Bildung von Moduln stiitzt; will man ihr ferner von vornherein
den Charakter der Invarianz verleihen, so wird man wieder (a;b) als
den groften gemeinsamen Teiler aller Produkte

=0 P08 PO,

pl ps pn

erkliren, die allen zur Darstellung (17) tauglichen Folgen von ein-
fachen Moduln p,, p,, - - -, p, entsprechen. Immerhin bleibt die eine
wie die andere Definition von (a;b) hinsichtlich ihrer Einfachheit aufer-
ordentlich weit zuriick hinter der Definition des alten Symbols (g, b),
welche sich unmittelbar auf die Betrachtung der in den Moduln a, b
enthaltenen Zahlen stiitzt (D. S. 509). Nachdem ich seit vielen Jahren
eine dhnliche Vereinfachung vergeblich gesucht habe, kann ich nur
noch den Wunsch aussprechen, dal} es einem anderen gelingen mage,
eine solche zu finden.

§ 5.
Wir wenden uns jetzt zu denjenigen Sitzen, welche vorzugs-

weise von endlichen Moduln handeln. Hierbei werden wir ofter
den der allgemeinen Modultheorie angehorenden Satz

(63) (0 +06)m> gm-+4gm

anzuwenden haben, welcher offenbar fiir je zwei Zahlen ¢, ¢ und
jeden Modul m gilt; denn wenn u jede Zahl des Moduls m bedeutet,
so ist jede Zahl des Moduls linker Hand von der Form (¢ 4 6) u
= ou+ 6y, also auch in dem Modul rechter Hand enthalten*);
auch leuchtet ein, daf derselbe Satz fiir Summen von beliebig vielen
Gliedern gilt. Nach dieser Vorbemerkung stellen wir den folgenden
Satz auf, welcher die Grundlage fiir unsere Untersuchung bildet
(vel. D. 8.516): ‘

I. Ist der letzte der drei Moduln a, b, ¢ einfach, so
kann man ‘

(64 c+a)—b=q+(@—0b

setzen, wo q ein einfacher Modul oder = 0 ist.

*) Vgl. D. 8.501, wo dieser fast selbstverstindliche Satz doch hitte er-
wihnt werden sollen.
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Um dies zu beweisen, setzen wir zur Abkiirzung *)

(65) 0" = (¢ + a) — (a 4 b),

(66) b =10a"—b = (c+a)—0,

(67) ¢ =a"—c=c—(a4Db)

Nach einem Satze der allgemeinen Modultheorie (D. S.499) ist dann
(68) ' =c¢+a=1"5 +aq

und die zu beweisende Gleichung (64) lautet

(69) bl = q-+ (a - b)'

Wir bemerken nun zundchst, dal es immer zwei Zahlen o, ¢ gibt,
welche den drei Bedingungen

(70) o+ =1,90¢ > b, 6¢, >0
geniigen; dies leuchtet unmittelbar ein, falls ¢, = 0 ist, weil dann

die beiden letzten Bedingungen von selbst erfiillt sind; im entgegen-
gesetzten Falle ist ¢, (nach § 2, I) als Vielfaches von ¢ ebenfalls
einfach, und da aus (68) sich ¢, > b, 4 q, also z > b, ¢;t 4 acy?
ergibt, so kann man die in z enthaltene Zahl 1 — ¢ 4 ¢ setzen, wo
die Zahlen ¢, ¢ bzw. in b c; 1 ac;! enthalten sind und folglich den
Bedingungen (70) geniigen. Wie nun auch diese Zahlen iibrigens
gewahlt sein mogen, so ergibt sich leicht, dall der Modul

(1) q9=0¢%,

welcher offenbar einfach oder — 0 ist, unserem Satze (69) geniigt.

Wendet man namlich den Hilfssatz (63) auf den Fall m = ¢, an

mit Riicksicht auf (70), so folgt ¢, > q+ q, und da zufolge (70)

auch q > b, ist, so ergibt sich aus (68), daB
'=¢+a>q+0> b fa=a,

also
" =q+a
und folglich nach (66)
b, = 2’ —b = (q +a) —b
ist; bedenkt man aber, dal q > b, > b ist, so folgt hieraus nach
einem Satze der allgemeinen Modultheorie (D. S.498) auch die
Gleichung (69), w. z. b. w. Hieraus folgt unmittelbar der Satz

*) Diese Bezeichnung der Moduln durch Akzente und Indizes entnehme ich
einer noch nicht versffentlichten Arbeit iiber die aus drei beliebigen Moduln q, b, ¢
entspringende Gruppe von 28 Moduln, welche sich in neun verschiedene Stufen
verteilen (vgl. D. Anm. auf S.499, 510).
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II. Jedes Vielfache einer Summe von 7# einfachen
Moduln ist darstellbar als Summe von héchstens n ein-
fachen Moduln.

Dies ist némlich fiir den Fall » — 1 schon friither (§ 2, I) be-
wiesen, und wenn der Satz fiir jedes Vielfache a — b einer Summe a
von 7 einfachen Moduln gilt, so gilt er nach dem vorhergehenden
Satze auch fiir jedes Vielfache (¢ 4 a) —b einer Summe ¢ + a von
(n + 1) einfachen Moduln, also allgemein, w. z. b. w.

Es verlohnt sich aber der Miihe, nach den Vorschriften des vor-
hergehenden Satzes die Form irgendeines Vielfachen a — b einer
Summe

(72) =9 +P+ -+

von 7 einfachen Moduln p, wirklich herzustellen. Da immer a« = a
+ (a —b) ist, so konnen wir die in unserer friitheren Untersuchung
(§ 2) benutzten Bezeichnungen (17), (18) auch auf unseren Fall an-
wenden; setzen wir aullerdem zur Abkiirzung

(73) ay_, = Bt Pt =040, 0 =0, 0, = 0,
so wird (zufolge D. S.498), weil a, > a ist,
g, =(a—b)+ao,=a—(0b+aq) a0, +b=>0+a,
also, weil p, > a ist,
p—a, =p—(0+a)=p—(,+5)
Ersetzen wir daher die in dem vorhergehenden Satz I und seinem

Beweis auftretenden Moduln und Zahlen aq, ¢, g, 9, 6 bzw. durch
ay, Puy Gy, Oyy Gy, s0 wird zufolge (66), (67), (70)

(74) by =01 —b ¢ =p,—a, = (P;8)p,
(75) o+6, =1 g =9, >0, 6¢ > a,
und zufolge (69) erhdlt man

41 —b =g, + (a, —b),
woraus, weil a, — b — 0 ist, die Darstellung
(76) a—b=1q,+q+ - +q
folgt.

Nehmen wir ferner an, die einfachen Moduln p, seien nach (5)
in der Form

(77) p, = 2,0,
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gegeben, wo z, einen Idealbruch und «, eine von Null verschiedene
Zahl bedeutet, so kann man immer eine Zahl ¢ des Korpers Z
und einen Idealbruch y, so wihlen, daf}

(78) 16y = (0,5 0,) @y,

also zufolge (74), (77)

(79) ¢ = 4,600,

wird; ist ndmlich (p,;a,) von Null verschieden, so kann man z B.
¢ — 1 setzen, wihrend im Falle (%,;0,) = 0 auch ¢ = 0 wird,

y, aber willkiirlich, z. B. = z gewihlt werden kann. Ist nun irgend-

ecine Wahl von ¢ und y, getroffen, und setzt man mit Riicksicht

auf (75)

(80) , = Va0, = ¢ o, — a0,
so wird
(81) Gy = 0»¢ = yvﬂv'

Da nach (75) ferner g,¢; > a,, also nach (79), (73), (77)

()
YOy 0,6, > Ty 11001+ o0 Ty ly,

mithin
( —1 —1
20:)06,6,, > Yv Tyr10y 41 + -+ Yy Ty 0y
ist, so kann man die Zahl

) ) )
—Cy 0,0, == Cyy1Oyt1+ "o+ + Cy Oy

und folglich nach (80)

(82) ﬁv:c?)av'*'c?zkluv-{—l_""' +G§:')0{n

setzen, wo die Zahlen ¢o’ in y, ', enthalten sind, also den Be-
dingungen

(83) Yy G;Z) > x#

geniigen, was zufolge (78) auch fiir den Fall gy — » gilt. Bildet
man endlich das Produkt der n Gleichungen (78) und setzt zur
Abkiirzung

(84) X =22, Y =Y, 93" Yn>

(85) C=cics- e,

80 ergibt sich zufolge (30) der in allen Fillen giiltige Satz
(86) (;0) X = YC,
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und die Gleichungen (72), (76) gehen zufolge (77), (81) in

(87) a =20 + Ty0+ -+ + T, 0,
(88) a“b:ylﬁl“*‘yzﬂs“l_""*_ynﬁn
iiber.

Zur Erliuterung bemerken wir noch, dall die in den Glei-
chungen (81), (82), (83) enthaltene Darstellung von g, sich zwar
einfacher schon aus der einen Bedingung ¢, > b, = a,_; —b in
(75) ergibt; aber hieraus wiirde auch mit Zuziehung der beiden
anderen Bedingungen (75) die wichtige Beziehung (76), also auch
der Satz (86) nicht nachtriiglich gefolgert werden konnen, wenig-
stens nicht ohne die neu hinzutretende Voraussetzung, dafl das
System der m Zahlen «, in bezug auf den Korper Z irreduzibel
ist (D. S.466). Diese Bemerkung mége zugleich den Ubergang
bilden zu dem folgenden Fundamentalsatz (vgl. D. S.518):

III. Wenn aus dem endlichen Modul a sich » und nicht
mehr Zahlen so auswdhlen lassen, dafl sie ein nach Z ir-
reduzibles System bilden, so ist a darstellbar als Summe
von » einfachen Moduln.

Um dies zu beweisen, wihlen wir aus a ein nach Z irreduzibles
System von n Zahlen «,, a,, -+ -, &,; dann ist jede beliebige Zahl o
in a von der Form

oo == hyo; + hyoty + -+ + by,
wo die Koeffizienten %, Zahlen des Korpers Z bedeuten (D. S.467).
Da ferner a ein endlicher Modul, also von der Form

a = [oq, og, =+ +, otm]
ist (D. S.494), so kann man, nachdem jede der m Basiszahlen ¢, in
der eben angegebenen Form
oy = hP o, + AP oy + -+ 4 ¥ e,
dargestellt ist, bekanntlich eine von Null verschiedene Zahl a so

wahlen, daB alle mn Produkte ahi’ ganze Zahlen des Korpers Z,
also in z enthalten sind. Setzt man nun ¢, — ¢e, und

0 =20, + 20,4+ -+ + z2w,,
so leuchtet ein, dal die m Basiszahlen «, in o enthalten sind;
mithin ist a teilbar durch o, und da o eine Summe von 7 einfachen

Moduln ist, so gilt (nach dem vorhergehenden Satze II) dasselbe
auch von a, w. z b. w.
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Es braucht kaum bemerkt zu werden, dal a auch nicht als
Summe von weniger als n einfachen Moduln darstellbar ist, weil
sonst je » Zahlen in a ein nach Z reduzibles System bilden wiirden
(D. 8.468). Wir schliefen unsere Untersuchung mit dem Beweis
des folgenden Satzes (vgl. D. S.521—523):

IV. Sind die beiden endlichen Moduln a, b als Summen
von einfachen Moduln in der Form

(39) a = éx,av = x,0, + -+ + Ty,
w
(90) bzzyﬁtﬁu=ylﬁ1+"'+ymﬂm

dargestellt, wo ,, y, Idealbriiche, «,, f, von Null ver-
schiedene Zahlen bedeuten, so bestehen die erforderlichen
und hinreichenden Bedingungen fiir die Teilbarkeit

(91) b > a

in m Gleichungen von der Form

(92) Bu = X Cuy 0ty = Cu10y + ++ + Cu Oy
wo die mn Zahlen ¢, , den Bedingungen
(93) Yu Cu,y > Ty

geniigen. Ist ferner das System der n Zahlen «, irreduzibel
nach Z, und setzt man

(94) X =224 @y,
so wird
(95) @ HX =37,0,

wo die Modulsumme auf alle Kombinationen ¢ von je 7
Zahlen p=1,2,...,n aus der Reihe 1, 2,.--, m zu erstrecken
und entsprechend

(96) Y, = Y Yo oo Yws

(97) 00 - Eicl’,lcz’,2 e Cprip

gesetzt ist.

Der erste Teil dieses Satzes ist leicht zu beweisen. Soll ndmlich
die Teilbarkeit (91) gelten, so muf auch y, B, > a, also

2B >0y = Dyu Ty

Dedekind, Gesammelte Werke, II. 6
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sein, und hieraus folgt die Existenz von Zahlen c,,, welche den
Bedingungen (92), (93) geniigen; und umgekehrt, wenn dieselben
erfiillt sind, so folgt aus dem Hilfssatz (63), dal

yuﬁ.u — yﬂgcﬂ."av > Eyﬂc#,v o, > Exv“v = a,
also auch b > a ist, was zu zeigen war. Den Beweis des zweiten
Teiles kann man auf verschiedene Art fiihren; entweder trans-
formiert man (nach II) den Modul b in eine Summe von hochstens
n einfachen Moduln und benutzt den dort bewiesenen Satz (86),
oder man stiitzt sich unmittelbar auf den in § 4 enthaltenen De-
terminantensatz (62). Indem wir die Durchfithrung der ersteren
Beweisart dem Leser iiberlassen (vgl. D. S.519—523), wenden wir
uns sofort zu der letzteren und betrachten alle Losungen L der
mit (59) iibereinstimmenden Kongruenz
(98) a0+ ayay+ -+ + a0, = 0 (mod. b)
durch n Zahlen a,, welche bzw. den Idealbriichen =z, angehoren.
Nun ist zufolge (90) diese Kongruenz gleichbedeutend mit der Exi-
stenz von m Zahlen b,, welche bzw. in den Idealbriichen y, ent-
halten sind und der Gleichung

(99) Za’vav == Ebu ﬁu

geniigen, und diese zerfillt zufolge (92) und vermoge der Irredu-
zibilitit des Systems der = Zahlen o, in 7 Gleichungen von der
Form

n

(100) = 2 b,C0 3

und umgekehrt folgt aus (92), (93), (90), dafl jedes beliebige System
von m aus den Idealbriichen y, gewéhlten Zahlen b, vermoge (100)
ein System von m Zahlen a, erzeugt, welche bzw. den Idealbriichen z,
angehdren und zugleich eine Losung L der Kongruenz (98) bilden.
Betrachtet man nun (wie in § 4) irgendein System von 7 solchen
Losungen L', L', ..., L™, die wir ebenso wie die zugehdrigen
Zablen a,, b, durch Akzente unterscheiden, so folgt aus (100), dal

die aus den 7? Zahlen a%” gebildete Determinante

[
(101) A= >B,C,
ist, wo die Summe sich iiber alle im Satze genannten Kombinationen ¢
erstreckt und jede Determinante B, auf dieselbe Weise aus den



Zahlen by gebildet ist wie C, aus den Zahlen ¢, , in (97). Da
nun jede Zahl 5 in y, enthalten ist, so ist jedes Glied der De-
terminante B, und folglich diese selbst in dem Produkte Y, ent-
halten, welches in (96) erklart ist, also zB, > V,, mithin ergibt
sich aus (101) mit Riicksicht auf den Hilfssatz (63)

(102) 2d > 22B,0, > 2 Y,0,,

also zufolge (62) auch

(103) (a;6) X > Sv.c,

Wenn alle Determinanten C, verschwinden (wohin auch der Fall
m < n gehort), so bilden bekanntlich (D. S.469) je n der m Zahlen
B. in (92) und folglich auch je » Zahlen des Moduls b in (90) ein
nach Z reduzibles System; da aber allgemein (a,b)a >0 ist
(D. 8.511), so mufl in diesem Falle gewil (a, b) = 0 sein, weil
sonst irgendein in a enthaltenes irreduzibles System von » Zahlen e,
wie es zufolge (89) gewill existiert, durch Multiplikation mit (a, b)
in ein ebenfalls irreduzibles System von n Zahlen in b verwandelt
wiirde; mithin ist zufolge (33) auch (a;b) = 0. Dies folgt aber
auch unmittelbar aus (103), und unser Satz (95) ist also in diesem
Falle richtig.

Wenn aber die Determinanten C, nicht alle verschwinden, so
ist die in Z enthaltene Modulsumme

(104) e=>2Y,C,

auch von Null verschieden, also (nach § 1) ein Idealbruch, und
zufolge (102) ist A e~ stets (falls A nicht verschwindet) ein Ideal.
Bedeutet nun p irgendein gegebenes Primideal, so folgt aus

2 Y, Coe !t = 2,

daB es mindestens eine Kombination ¢ gibt — sie mag aus den n

ersted Indizes » = 1, 2, ..., n bestehen —, fiir welche das zu-

gehorige Ideal Y,C,e~! nicht durch p teilbar ist. Fiir jeden

solchen Index v bilden wir nun nach (100) eine Lisung L® der

Kongruenz (98), indem wir die simtlichen m Zahlen b, = 0 setzen

mit einziger Ausnahme der Zahl b,, fiir welche wir eine noch niher
6*
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zu bestimmende Zahl b, des Idealbruchs y, wihlen; dieses System
von m Zahlen b, erzeugt nach (100) eine aus den 7= Zahlen

W= B0 @ = b6 a = W,
bestehende Losung L® der Kongruenz (98), und wenn man ebenso
mit jedem der » Indizes 1,2, ..., n der Kombination ¢ verfihrt, so
erhilt man n Losungen L', L", ..., L™ der Kongruenz (98), denen
nach (101) die aus einem einzigen Gliede bestehende Determinante

A= B,C,

entspricht, wo
Ba — bllbg b'(nn)a Ca == Eicl.l Co 9 * Cp pe
Nun kann man aber (nach §2, I) jede Zahl b’ aus dem ent-
sprechenden einfachen Modul oder Idealbruch ¢, so auswihlen, daB
das Ideal b v, ' und folglich auch das Produkt B, Y;' dieser n
Ideale nicht durch p teilbar wird; bezeichnet man dasselbe mit g,
so wird B, = ¢qY,, also
Ae ' = B,0 et =¢q-Y,C e 1,

und folglich ist auch das Ideal Ae—! nicht teilbar durch das

Primideal p. Hiermit ist offenbar bewiesen, daff z = >, Ae—1 der
grofite gemeinsame Teiler aller Ideale A4e—1, also auch

EZA — e
ist, und dies ist zufolge (62) und (104) nur eine andere Form fiir

unseren Satz (95), w.z b. w.

In dem Falle m — %, welcher in den Anwendungen am héufigsten
auftritt, nimmt unser Satz (95) offenbar die Form

(105) ()X =YC

an, wo

- (106) Y =995 Yu
und

(107) 0 = Eic1,1 Co,9*** Cpyn

ist (vgl. D. S.523).

Nachdem hiermit die wichtigsten der auf das neue Symbol (a;b)
beziiglichen Sitze bewiesen sind, bemerken wir endlich noch folgendes.
Es ist schon oben (am Schlusse von § 2) erwidhnt, dal in dieses
Symbol eigentlich die Beziehung der Moduln a, b auf den Korper Z



oder auf das System z aller in Z enthaltenen ganzen Zahlen auf-
genommen werden miilite; am einfachsten wiirde man zu diesem
Zwecke das Zeichen (a;b) etwa durch (a,b,2) ersetzen, wo a,0
immer solche Moduln bedeuten, welche die Eigenschaft (2) besitzen.
In der gegenwirtigen Abhandlung konnte dies der Kiirze halber
unterbleiben, weil alle Moduln a, b ausschlieflich auf diesen einzigen
Korper Z bezogen wurden. Die genauere Bezeichnung (a, b, 2) wird
aber notwendig, wenn mehrere solche Korper betrachtet werden.
Nehmen wir z B. an, es sei Z Divisor eines endlichen Korpers £
und o das System aller in £ enthaltenen ganzen Zahlen, so wird
jeder Modul o, welcher der Bedingung oa — a geniigt, auch die
Eigenschaft (2) besitzen, weil z > o ist. Zwei solche Moduln a, b
erzeugen also ein Ideal (a, b, 0) des Korpers & und zugleich ein Ideal
(a,b,2) des Korpers Z, und unser Satz (31) ist nur ein spezieller
Fall des allgemeinen Satzes

(108) (a, b, 2) = N (a, b, o),
wo N das Zeichen fiir die in bezug auf Z genommene Partial-
norm von Zahlen oder Idealen des Korpers £ bedeutet. Die aus-

fiithrliche Darstellung dieser ebenfalls in der Einleitung erwihnten

Untersuchungen muf aber einer besonderen Abhandlung vorbehalten
bleiben.

Braunschweig, 4. Februar 1895.

Erlduterungen zur vorstehenden Abhandlung.

In der vorliegenden Arbeit wird die Normentheorie derjenigen endlichen
Moduln entwickelt, deren Multiplikatorenbereich die Hauptordaung eines endlichen
Zahlkorpers Z ist, insbesondere also die Theorie der »Relativnormen® von Idealen.
Und zwar beruhen die Entwicklungen wesentlich auf der Tatsache, daf ein grofer
Teil der iiblichen Schliisse erhalten bleibt, wenn statt der Gruppe der von Null
verschiedenen rationalen Zahlen diejenige der ganzen und gebrochenen Ideale aus
Z genommen wird. An Stelle der eingliedrigen Moduln treten dabei die ,ein-
fachen“, die den Idealen einer Klasse operatorisomorph sind; die Norm ist definiert
vermoge einer (verallgemeinerten) Kompositionsreihe, deren Kompositionsfaktoren
einfache Moduln sind. Daraus folgt insbesondere ohne jede Rechnung die wichtige
Tfltsache (31), die Formel fiir die Zwischennormen. Aber auch die Sitze iiber
die Untermoduln n-gliedriger Moduln iibertragen sich vollstindig (§ 5, II, III); ins-
besondere wird ein Modul vom Rang 7 direkte Summe von » einfachen.
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Kompliziert wird nur der — bei dem hier gegebenen Aufbau ganz unwesent-
liche — Zusammenhang mit Determinantendarstellung (§ 4). Der am Schlufl dieses
Paragraphen ausgesprochene Wunsch nach einem einfacheren Aufbau ist unterdes
erfiillt: durch {lbergang zum Quotientenring nach geeigneten Idealen — also
Ubergang zu den einzelnen Stellen, zur ,Modultheorie im Kleinen* — wird der
Multiplikatorenbereich ein Hauptidealring, und alles lauft wie bei den Moduln in
bezug auf ganze rationale Zahlen (H. Grell, Zur Theorie der Ordnungen, Math.
Ann. 96, 1927). Nicht erfafit werden aber dabei, wegen des Hineinspielens der
Idealklassen, die oben erwahnten Sitze II, III aus § 5, die somit als ,Modul-
theorie im Grofen“ anzusehen sind. Unter spezielleren Voraussetzungen — Linear-
formenmoduln — und dadurch mit im Spezialfall etwas weitergehenden Resultaten
ist, auf weniger abstrakter Basis und scheinbar ganz unabhingig, diese »Modul-
theorie im Grofen“ von E. Steinitz wieder entwickelt worden (Math. Ann. 71
und 72, 1912), und von J. Schur zu Folgerungen fiir Gruppen linearer Sub-
stitutionen verwandt (Math. Ann. 71). Die Dedekindsche Modultheorie im Grofien
ist auf arithmetische Fragen noch nicht angewandt worden; es scheint nicht aus-
geschlossen, daf sie fiir die Theorie der Relativkorper noch von Bedeutung wird.

Noether.



XXVII.

Uber Gruppen, deren simtliche Teiler Normalteiler sind.
[Mathematische Annalen, Bd. 48, S.548—561 (1897).]

Die vorliegende Untersuchung, welche ich in den ersten Herbst-
wochen des Jahres 1895 begonnen und beendet habe, ist durch die
Frage nach allen denjenigen endlichen ZahlenkGrpern veranla(t, deren
simtliche Divisoren Normalkorper sind. Ist R die Gruppe aller
Permutationen ¢ eines Normalkorpers £, so gehort bekanntlich zu
jeder Gruppe S, welche ein Teiler von R ist, ein bestimmter Korper &',
nidmlich der Inbegriff aller derjenigen Zahlen in £, welche durch
jede Permutation der Gruppe S in sich selbst iibergehen, und
umgekehrt gehort jeder Divisor von £, d. h. jeder in £ enthaltene
Korper &' zu einer bestimmten in R als Teiler enthaltenen Gruppe S;
die Bedingung aber, dal &' wieder ein Normalkorper ist, besteht
darin, daB S ein Normalteiler*) von R, also immer
1) 9718 =48, Seg=9¢8
ist, wo @ jedes beliebige Element der Gruppe R bedeutet. Der auf
die Gruppentheorie beziigliche Teil der obigen Frage kommt daher
auf die Aufgabe zuriick, die allgemeinste Form einer Gruppe R zu
finden. deren sdmtliche Teiler S Normalteiler von R sind.

Zu diesen Gruppen R gehoren offenbar alle Abelschen, d. h.
diejenigen Gruppen, deren Elemente siimtlich miteinander permutabel

*) Diese Benennung, welche H. Weber in seinem Lehrbuch der Algebra
(Bd.1, 1895, S.511) eingefiihrt hat, scheint mir aus mehreren Griinden zweck-
mifiger als die sonst gebriuchlichen eines ausgezeichneten oder invarianten
oder eigertlichen Teilers, welche letatere Bezeichnung ich in meinen Gottinger
Vorlesungen (1857—1858) im Anschiuf an eine Ausdrucksweise von Galois benutat
habe. Sind R, S irgend zwei verwandte, d. h. solche Gruppen, die ein gemein-
sames Multiplum besitzen, und bedeutet ¢ jedes Element von R, so empfiehlt es
sich aus algebraischen Griinden, den grofiten gemeinsamen Teiler aller Gruppen
7’*1:5'97 die Norm von § in bezug auf R zu nennen.
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sind; ihr Bau darf als hinreichend bekannt vorausgesetzt werden,
und es handelt sich daher nur noch um die Form der nicht Abel-
schen Gruppen R, welche ich im folgenden Hamiltonsche Gruppen
nennen werde. Die einfachste oder kleinste solche Gruppe R ist
niamlich diejenige Gruppe achten Grades, welche sechs verschiedene
Elemente vierten Grades enthdlt und welche wegen ihrer innigen Be-
ziehungen zu Hamiltons beriihmter Zahlenschopfung die Quaternion-
gruppe @ heifen mag. Sodann ergibt sich das durch seine enge
Umgrenzung iiberraschende Resultat, dal die allgemeinste Hamil-
tonsche Gruppe die Form

(2) R = PQ

besitzt, wo P die Abelsche Gruppe aller derjenigen Elemente in R
bedeutet, welche mit jedem Element von R permutabel sind; diese
Gruppe P unterliegt nur den beiden Bedingungen, dal sie kein
einziges Element vierten Grades, wohl aber das in der Quaternion-
gruppe @ befindliche Element zweiten Grades enthilt.

§1.
Die Quaterniongruppe Q.

Man kann dieselbe (wie in der Einleitung) als Gruppe achten
Grades definieren, welche sechs verschiedene Elemente vierten
Grades enthélt; die letzteren bilden offenbar drei Paare von je
zwei reziproken Elementen und mogen mit «, a=1, B, =%, p, y!
bezeichnet werden; auller dem Hauptelemente 1 mull @ endlich noch
ein Element ¢ vom zweiten Grade enthalten. Es ist also
3) & =1,

4 == ===y =5

B) tax=ac=0a"1 ef= Pe=p"Y ey =ype—yp

(6) eal=o"le=u efl=fle=24f ey l=yple=1y.
Da pun das Produkt 8y keine Potenz von f oder y sein kann (weil
sonst y — B*! wire), so mull es mit einem der beiden iibrigen
Elemente «*! identisch sein. Offenbar diirfen wir die Bezeichnung
der Elemente von @ so wiahlen, dal By — « wird; da hieraus
Byo = o = B? und afy = o® = »? folgt, so ergibt sich

(M pr=9a ya=24p af=y
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Aus (By) (7B) = B(y*) B = P(p*) p=p* =1 folgt ferner, dafl fy
und y B reziproke Elemente sind; aus (7) ergibt sich daher

(8) Y=o oay=p""% Ba=y

Aus (7) und (8) folgen auch die Produkte der reziproken Elemente
(9) 7,—1 ﬁ—l = o1, a—l,y—l — ﬁ——l’ ﬁ—l“—l — 7—1’

10) fipi=e  prei=f  afi=—rp

Da ferner

(1) set=ola=ff =1 f=yy =y ly=1

so ergeben sich aus den vorhergehenden Gleichungen auch die Produkte

(12) Y=y =@a Py l=ply=0u
(13) ay l=oa"ly =B, ye ! =y la=p""
(14) ol =f"la =y, afpt=oa"1f=yp"

Die Kompositionstabelle der Quaterniongruppe ist daher die
folgende:

e e [o)e

1 1 s olie |BTYIB |yTlly
& & 1 o et B |7y |y

y Uy tly (B Ao te & |1

wo das durch die Zeile ¢ und Spalte ¢ bestimmte Feld das Produkt
@ P enthilt.

Statt von der obigen Definition der Quaterniongruppe @ kann
man auch von der folgenden ausgehen: die Gruppe @ wird durch
zwei nicht permutable Elemente @, 8 erzeugt, welche den
Bedingungen
(15) Bof =0 ofac=24§
geniigen. Fiihrt man nimlich das dritte Element y — of8 ein, so
nehmen diese Bedingungen die Form (7) an, woraus alle anderen
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Relationen leicht folgen. Durch Multiplikation der ersten Gleichung (7)
mit o ergibt sich zundchst o> = Bya = «By; mit Riicksicht auf
die zweite und dritte Gleichung (7) kann man daher das vierte
Element ¢ durch

e —oa’ = = p?
einfithren, welches folglich mit o, §, y permutabel ist; die aus (7)
folgende Gleichung

By) (ye) (@) = afy

ist daher identisch mit & = &, also mit (3), und hieraus folgen offenbar
die iibrigen Gleichungen, also alle Kompositionen der Tabelle. Da
wir ferner angenommen haben, dafl die beiden erzeugenden Elemente
«, B nicht permutabel sind, so ist y = « 8 verschieden von y—! = fa,
mithin ¢ = ¢? verschieden von 1, d. h. ¢ ist vom zweiten, und o, 3, p,
o~1, 1, p—1sind vom vierten Grade; man iiberzeugt sich auch leicht,
daB alle diese Elemente voneinander verschieden sind.

Mag man aber von der einen oder der anderen Definition aus-
gehen und so zu der obigen Tabelle gelangen, so ist hiermit die
Existenz der Gruppe @ noch nicht vollstindig eirwiesen; es muf
bekanntlich noch gezeigt werden, daB sowohl aus gy — @y wie aus
Y@ = gy immer P = g folgt, und dab aulerdem das Assoziations-
gesetz (¢ ¥)y = @ (¥ ¢) gilt. Die erstere Eigenschaft ergibt sich zwar
leicht aus dem Anblick der Tabelle, welche in jeder Zeile wie in
jeder Spalte lauter verschiedene Elemente enthilt; aber die Verifikation
des Assoziationsgesetzes, wenn sie sich auch auf manche Art abkiirzen
1a6t, wiirde doch schon ziemlich listig sein. In solchen Fillen pflegt
das einfachste Verfahren, um die Existenz einer durch erzeugende
Elemente definierten Gruppe nachzuweisen, darin zu bestehen, dall
man dieselbe als Teiler einer schon bekannten Gruppe G darstellt,
weil dann die beiden obigen Gesetze von selbst erfiillt sind. Fiir unser
Beispiel geniigt es, die symmetrische Gruppe @ aller IT(8) Versetzungen
von acht verschiedenen Dingen a, b, ¢, d, ', b', ¢, d’ zu betrachten;
benutzt man die bekannte Bezeichnung der Zyklen und setzt

« = (dad @) (cbe'b),
16) B = (dbd'b)(aca'c),

y = [decd' o) (bab @),

e = (aa) (0b) (cc) (dd),
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so erfiillen die beiden nicht permutablen Elemente o, 8 der Gruppe ¢
wirklich die beiden Bedingungen (15), und folglich muf die von ihnen
erzeugte Gruppe, welche ein Teiler von G ist, mit unserem System @
der acht verschiedenen Elemente 1, &, «, 8, p, «— 1, f~%, y~! iden-
tisch sein.

Diese Gruppe @, deren Existenz hiermit gesichert ist, verdient
den Namen der Quaterniongruppe zunichst wegen der augenscheinlichen
Analogie zwischen der Komposition der drei Elemente vierten Grades
o, P, y und der Multiplikation der drei Hamiltonschen imaginéiren
Einheiten 4, §, k; es findet aber, wie ich schon im Kebruar 1886
erkannt habe, eine mnoch tiefer liegende Beziehung zwischen der
Gruppe @ und Hamiltons Quaternionen statt, von welcher dem-
nichst an einem anderen Orte gehandelt werden soll. Damals habe
ich auch schon Normalkorper gebildet, deren Permutationsgruppe
mit @ identisch ist; ein einfaches Beispiel, welches unendlich viele
Spezialfille umfalt, liefert die Gleichung

o = r(2+1V2) (3 +V6),

wo 7 irgendeine von Null verschiedene rationale Zahl bedeutet; jede
Wurzel @ einer solchen Gleichung erzeugt einen Quaternionkorper,
d. 1. einen Normalkérper achten Grades mit der Gruppe @, und man
kann beweisen, daB auf diese Weise jeder Quaternionkérper entsteht,
der die Quadratwurzeln aus 2 und 3 enthilt.

DaB aber diese Gruppe @, welche aufierdem schon in ganz
anderen Untersuchungen aufgetreten ist, die in der Kinleitung
angegebene wichtige Bedeutung fiir alle Hamiltonschen Gruppen
besitzt, habe ich erst im Herbste 1895 erkannt, und die Darlegung
dieser Bedeutung bildet den ausschlieflichen Gegenstand der vor-
liegenden Abhandlung.

Man iiberzeugt sich zunichst leicht, dab @ keine anderen Teiler
als Normalteiler besitzt. Bezeichnet man der Kiirze halber die durch
irgendwelche Elemente ¢, 4, g --- erzeugte Gruppe mit dem Symbol
[@, ¥, g, -++], so dab z B. [p] die aus allen Potenzen von ¢ be-
stehende zyklische oder regulire Gruppe oder Periode bedeutet, so
hat @ offenbar nur die folgenden sechs Teiler

(17) (11, [el, [o], [B], [¥], [ Bl =@
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daf [1] und @ Normalteiler von @ sind, ist eine allgemeine Eigen-
schaft aller Gruppen; dasselbe gilt von [¢], weil ¢ mit allen Elementen
von ¢ permutabel ist, und auch z B. von [a], weil

(18) Q = [o] + [«]p
und
(19) B e] B =[] = [«]

ist. Also ist € im Sinne der Einleitung wirklich eine Hamiltonsche
Gruppe.

§ 2.
Kennzeichen der Hamiltonschen Gruppen.

Um die allgemeine Form aller Hamiltonschen Gruppen zu finden,
ist es zweckmilig, aus ihrer Definition, wie sie in der Einleitung
gegeben ist, einfachere charakteristische Kennzeichen abzuleiten, welche
in den folgenden Sitzen enthalten sind; daf dieselben auch fiir die
Abelschen Gruppen gelten, welche also, wenn auch nur vorliufig,
als ein spezieller Fall der Hamiltonschen Gruppen anzusehen sind,
braucht kaum bemerkt zu werden*).

I. Die erforderliche und hinreichende Bedingung dafiir,
daf R eine Hamiltonsche Gruppe ist, besteht darin, daB,
wenn ¢, ¢ irgendwelche Elemente von R bedeuten, das
Element ¢=*¢ ¢ eine Potenz von v, also in der Periode [¢]
enthalten ist.

Denn wenn R eine Hamiltonsche (oder Abelsche) Gruppe ist,
so mub ¢~ '[yp]ep = [¢], also ¢~ !¢ ¢ eine Potenz von o sein.
Umgekehrt, wenn diese Bedingung durch alle Elemente ¢, 3 einer
Gruppe R erfiillt wird, und S irgendeine in R enthaltene Gruppe
bedeutet, so wird, wenn ¢ alle Elemente von S durchliuft, p— 1y g
als Potenz von ¢ ebenfalls in § enthalten sein; mithin ist die aus
den Elementen ¢p—14¢ ¢ bestehende Gruppe ¢—!S ¢ ein Teiler von S
und folglich = S, w. z. b. w.

Dieses Kennzeichen laft sich in einer fiir unseren Zweck noch
bequemeren Form ausdriicken, wenn man das durch die Bedingung

(20) Yo = pye
definierte Element
(21) e= W le ') g = Y (p7 Y o)

*) Man konnte vielleicht beide Arten von Gruppen unter dem gemeinsamen
Namen von Normalgruppen zusammenfassen.
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einfithrt, welches wir der Kiirze halber den Kommutator der
Elemente ¢, ¥ nennen wollen*); der vorige Satz geht dann, weil

[~ 1o = [l = [@] und ¢~'{y] =[]
ist, offenbar in den folgenden iiber:

Il. Die erforderliche und hinreichende Bedingung dafiir,
dal B eine Hamiltonsche Gruppe ist, besteht darin, daB
der Kommutator ¢ von je zwei in R enthaltenen Elementen
¢, ¥ ein gemeinsames Element ihrer Perioden [g¢], [¢] und
folglich auch mit allen Elementen der durch ¢ und o
erzeugten Gruppe [, ¢¥] permutabel ist.

Die nichsten Folgerungen, welche sich hieraus mit Zuziehung
der bekannten, fiir je zwei Elemente g, ¢ einer beliebigen Gruppe
und fiir jede ganze rationale Zahl s giiltigen Identitét
(22) 0 '0'9 = (¢ 'd o)
ergeben, bilden den folgenden Satz:

III. Ist ¢ der Kommutator der Elemente ¢, ¢ einer
Hamiltonschen Gruppe, so ist

(23) Yr @M — @myn gmn,

(24) ((pm w,n)t — ¢mtwnt£%mnt(l-l)’
und die durch ¢ und v erzeugte Gruppe ist
(25) le, v] = [o][¥] = [v][g].
Setzt man ferner

(26) @, = QrYn, Y, = QTS

s0 1st

(27) g = gmi—nr

der Kommutator der Elemente g¢,, v,.
Wendet man nédmlich die Identitdt (22) auf das Beispiel ¢ = ¢,
6 =1, s=mn an, 80 wird g—'69 = @~ 'Yp — P&, und weil ¥
zufolge IT mit & permutabel ist, so erhilt man
q)—lwn‘p — (1[)8)" = " ¢en,
also
PTreTIYn = g1

*) Ohne auf die Bedeutung dieses Begriffes fiir die allgemeine Gruppen-
theorie niher einzugehen, will ich nur den Satz erwihnen, da8 der grofte in
einem Normalkérper von der Gruppe G enthaltene Abelsche Kirper zu derjenigen
Gruppe gehirt, welche durch alle in G enthaltenen Kommutatoren erzeugt wird.
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setzt man daher in (22) jetzt ¢ = ¢y, ¢ = ¢@—!, s = m, so wird

0~ 169 = "¢~ L, und weil & mit p—! permutabel ist, so erhdlt man
w——nlp—-mwn —_ (8"(})"1)7" —_— Sm"(p_m,

also die Gleichung (23), und hieraus folgt leicht durch vollstindige

Induktion der Satz (24); denn wenn derselbe fiir eine bestimmte

ganze rationale Zahl ¢ gilt (wie z B. fiir ¢ — 0), so folgt durch

Multiplikation mit g™y oder mit dem reziproken Element ¢~ g—™

unter Zuziehung von (23), dafl er auch fiir die beiden benachbarten
Zahlen t 11 gilt. Aus (23) und (26) folgt ferner

quwl — q)m(wnq)r) ws — (pm+r1pn+s£nr’

U@y = @T (P PT) Y = @riryntigme,
und da & Potenz von ¢ ist, so sind alle Produkte ¢, v, von je zwei
in dem Komplex [@][v] enthaltenen Elementen ¢,, ¥, in demselben
Komplex enthalten, woraus (25) folgt; zugleich ergibt sich aus den

beiden vorstehenden Gleichungen auch der Kommutator & in der
Form (27), w.z b. w.

§ 3.

Eigenschaften zweier nicht permutablen Elemente
einer Hamiltonschen Gruppe.

Die zuletzt erhaltenen Resultate sind offenbar nur dann von
Interesse, wenn die beiden Elemente ¢, ¥ nicht permutabel sind,
was wir im folgenden annehmen; ihr Kommutator & ist dann ver-
schieden von dem Hauptelement 1 der Hamiltonschen Gruppe R; be-
deutet daher e den Grad des Elementes ¢ und der Periode [], so ist

(28) e>1, & =1.

Wihlt man nun die Exponenten m, n des Elementes ¢, in (26) so,
- daB m, n, e keinen gemeinsamen Teiler haben, so kann man
die Exponenten 7, s des anderen Elementes v, so bestimmen, daf
m8—nr =1 (mod. e) wird; nach (27) folgt hieraus & — ¢, und
da der Kommutator ¢, der Elemente ¢,, ¥, nach Satz II eine Potenz
von ¢, ist, so ergibt sich nach (24) die Existenz einer ganzen Zahl ¢,
welche der Bedingung

29) o
geniigt.
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Um diesen Existenzsatz fiir unseren Zweck zu verwerten, wird
es notig, die Perioden [g@], [#] und deren groften gemeinsamen
Teiler D, welcher bekanntlich selbst eine Periode ist, genauer zu
betrachten. Da die Periode [¢] nach Satz II ein gemeinsamer Teiler
von [@], [#], also auch ein Teiler von D ist, so ist der Grad von D
teilbar durch e, also von der Form de. Da ferner jedes Element
in D von der Form ¢™ und zugleich eine Potenz von v, also auch
mit ¢ permutabel ist, so folgt aus (23), wenn man dort n — 1 setzt,
dafl em =1, also m durch e teilbar sein muf; alle Elemente von D
sind daher Potenzen von g¢¢, und da offenbar auf dieselbe Weise folgt,
dal sie auch Potenzen von u¢ sein miissen, so ist der grofite gemein-
same Teiler D der Perioden [g], [¢] zugleich derjenige der Perioden
[9¢], [¢¢]; bezeichnet man daher die Grade der letzteren, weil sie
durch den von D teilbar sein miissen, mit ade, bde, so sind ade?
bde? die Grade von [g@], [¢], und zufolge (25) ist nach einem
bekannten Satze abde® der Grad von [, ¢], woraus beildufig folgt,
daB der Grad einer Hamiltonschen Gruppe nicht kleiner als acht sein
kann. Zugleich ergeben sich folgende Darstellungen unserer Gruppen:

(30) 6] = [gee] = [v°7),
(31) D = [¢*] = [9"7]
= [¢](1 + @o¢ + @22¢ 4 ... L gd—Dvae)
= [e] (1 4 9P + 92ve ... 4 gld—Dbe),

(32) [p] =D+ ¢ + >+ -+ + @¢Y),
(33) [v] :D(l+¢+¢2++ Pre—1),
(34) lo, v] = [o][v] = [¥][9]

— [(P](l 4+ +¢be—1)
=[]+ @+ 9"+ -+ gt
und aus den beiden ersten Darstellungen von D folgt die Existenz
von zwei ganzen Zablen A, k, welche den Bedingungen
(35) @oe = yvek, bt = @k, hk =1 (mod. de)
geniigen,
Wir wenden uns nun dazu, den Existenzsatz (29) zur Geltung
zu bringen; statt dies in voller Allgemeinheit durchzufiihren, ziehen

wir es vor, ihn auf zwei spezielle Beispiele von Zahlenpaaren m, n
anzuwenden, was bequemer und ebenso erfolgreich ist.
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Erstes Beispiel. Bedeutet ¢ den grofiten gemeinsamen Teiler
der beiden Zahlen
(36) o= ca/, b=-c¢cb,
so setzen wir

m = — ha', n=1";

dann haben die Zahlen m, n, e zufolge (35), (36) keinen gemeinsamen
Teiler, und es gibt daher zufolge (29) eine ganze Zahl ¢, welche der
Bedingung

1
— —ha'bt@t—1)
lp—ha'twb’t£ 2 — ¢

geniigt. Da ¢ Potenz von ¢ ist, so mull ¢*'t in D enthalten, also b'¢
zufolge (31) teilbar sein durch be — b'ce; mithin wird ¢ = ceu,
wo u eine ganze Zahl bedeutet, und da nach (35), (36) hieraus

.wb't —_ wbeu J— (paehu —_— q)ha’t
folgt, so geht die obige Bedingung fiir ¢ in

— -—l—ha’b’ceu (ceuw —1)
g 2

also in die Kongruenz
—3ha'b'ceu(ceu —1) = 1(mod. €)
iiber. Da unter den Faktoren der linken Seite sich auch die Zahl e
befindet, so ergibt sich durch Multiplikation mit 2 das Resultat
2 = 0 (mod. e),

:E’

also zufolge (28)

(37) e =2, & =1,

und hierdurch geht die vorstehende Kongruenz in
ha'b'cu =1 (mod. 2)

iitber, woraus mit Riicksicht auf (36) auch

(38) l=h=d=b=c¢c=a=0b(mod 2)
folgt. Die Grade von [¢], [¢] sind 4ad, 4bd, und zufolge (30) ist
(39) g = q,2ad — .¢,2bd.

Der Grad der Gruppe [g, ¥] ist = 8abd.
Zweites Beispiel. Setzen wir
m = a(d—h), n =",
so haben die Zahlen m, n, e zufolge (37), (38) keinen gemeinsamen
Teiler, und auBerdem ist zufolge (38) das Produkt
mn = d—1 (mod. 2);
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es gibt daher zufolge (29) eine ganze Zahl ¢, welche der Bedingung
1

@ed—Dt gt g @—=ntt=n __

geniigt. Da & Potenz von ¢ ist, so muBl ¢! in D enthalten, also bt
mufolge (31) teilbar sein durch be = 2b; mithin wird { = 2u, wo u
wieder eine ganze Zahl bedeutet, also ¢(f — 1) = » (mod. 2); mit
Riicksicht auf (85), (39) wird zugleich

,wbt — ¢2bu — ¢2ahu —_— (paht,
q,a(d—h)twbt — q)adt — ‘p2adu = &",
mithin kommt die obige Bedingung fiir ¢ auf
gdv — ¢

zuriick, woraus
(40) d =1 (mod. 2)
folgt.

Die in (37), (38), (39), (40) gewonnenen fundamentalen Resultate
fassen wir zusammen in den folgenden Satz:

IV. Die Grade von je zwei nicht permutablen Elementen
@, ¥ einer Hamiltonschen Gruppe sind = 4 (mod. 8); be-
zeichnet man dieselben bzw. mit 8r + 4, 8s+ 4, so ist der
durch ¢y 9 = @ ¢¢ definierte Kommutator
(41) & — q)4r+2 — 1p48+2’

also vom Grade zwel.

§ 4.
Aligemeine Form der Hamiltonschen Gruppen.

Mit Hilfe der eben gewonnenen Grundlage gelingt es nun ohne
Schwierigkeit, die allgemeine Form aller Hamiltonschen (nicht Abel-
schen) Gruppen R zu finden.

Diejenigen Elemente z einer solchen (oder auch jeder anderen)
Gruppe R, welche mit jedem Element @ von R permutabel sind,
bilden bekanntlich eine Gruppe, weil aus #' @ = o=’ und =" @ = o ="
auch (7'7")w = w(a'n") folgt; diese, offenbar Abelsche Gruppe
soll im folgenden durchweg mit P bezeichnet werden. Da R eine
Hamiltonsche, also nicht Abelsche Gruppe ist, so mufl P ein
echter Teiler von R, d. h. verschieden von R sein, und es gibt

mindestens zwei Elemente ¢, v, welche nicht miteinander permutabel
Dedekind, Gesammelte Werke, II. 7
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und folglich auch nicht in P enthalten sind. Behalten wir fiir diese
Elemente die Bezeichnungen unseres letzten Satzes IV bei, und
setzen wir
o=@t = et
80 ist
of = f* =1,
und fiir den Kommutator ¢ der Elemente ¢, ¥, welcher vom zweiten
Grade ist, ergibt sich
e=o = & =1,
wendet man ferner den Satz (23) auf das Beispiel m = 27 4 1,
n = 28 +1 an, so folgt
Bo = afe,
d. h. ¢ ist auch der Kommutator der Elemente «, 8, welche folglich
nicht miteinander, wohl aber mit ¢ permutabel sind. Da nun aus
der letzten Gleichung auch

Bof = afef = afle = 0c® = a,
ofea =o' —=cfe = B =B
folgt, so ergibt sich aus dem Vergleiche mit (15) in § 1, dab o, 8

die erzeugenden Elemente einer Quaterniongruppe @ sind. Es
gilt daher der folgende Satz:

V. In jeder Hamiltonschen Gruppe R ist mindestens
eine Quaterniongruppe @ als Teiler enthalten.

Wir untersuchen nun im folgenden die Beziehungen zwischen
den beiden in R enthaltenen Gruppen P, Q, wobei wir fiir die letztere
alle in §1 benutzten Bezeichnungen heibehalten, und gelangen so zu
der folgenden Reihe von Sitzen.

VL. Der Grad jedes nicht in P enthaltenen Elementes ¢
von R ist = 4 (mod. 8).

Dies folgt unmittelbar aus IV, weil es mindestens ein mit ¢
" nicht permutables Element ¢ in R, gibt.

VIL. Das Quadrat jedes Elementes @ von R ist in P
enthalten.

Denn wenn ® in P enthalten ist, so gilt dasselbe auch von w?,
weil P eine Gruppe ist. Wenn aber das Element @ nicht in P
enthalten ist, so ist nach VI sein Grad = 4 (mod. 8), also der seines
Quadrates = 2 (mod. 4), woraus nach VI folgt, daB w® in P ent-
halten ist, w. z. b. w.



— 99 —

VIII. Jedes Element @ der Gruppe R ist permutabel mit
wenigstens einem der drei Elemente o, 8, y der Gruppe @,
und zwar entweder nur mit einem einzigen oder mit allen
dreien.

Ist ndmlich o nicht permutabel mit «, so mufl das von « ver-
schiedene Element @~ e o — «—! sein, weil es bekanntlich denselben
Grad 4 wie « hat und auBerdem nach Satz I (in § 2) eine Potenz
von o ist; ebenso muf, wenn dasselbe Element o auch mit # nicht
permutabel ist, @~ !fw — B~ sein; da nun y = af ist, so folgt
hieraus

0o lyo — o lofo = e leo o fo = a7 =y,

also yo = @y, d. h. @ ist mit wenigstens einem der drei Elemente
, B, y permutabel. Ist aber o mit zweien von ihnen, z. B. mit «
und mit 8 permutabel, so ist es auch mit deren Produkt p, also mit
allen dreien permutabel, w. z. b. w.

IX. Der Grad eines mit &, 8, y permutablen Elementes o
kann nicht durch vier teilbar sein, und der Inbegriff aller
dieser Elemente o ist die Gruppe P.

Den ersten Teil dieses Satzes beweisen wir auf indirektem Wege,
indem wir annehmen, der Grad eines mit «, 8 (also auch mit y)
permutablen KElementes @ sei teilbar durch vier. Dann gibt es
unter den Potenzen von @, welche alle ebenfalls mit «, § permutabel
sind, auch zwei Elemente vierten Grades ¢ (und ¢—1!); nach der
Fundamentaleigenschaft I der Hamiltonschen Gruppe R ist nun
p~1(oa) B eine Potenz (pu)* von gu; weil aber ¢ permutabel mit 8
ist, so folgt B—1(ox) — @B 'af = oo, und weil ¢ permutabel
mit o ist, so folgt (po)* = @"«"; mithin ist ga—! = oman", also
ol=" = gt+7 DaB dies aber unmoglich ist, ergibt sich, wenn
man die vier Fille n = 0, 1, 2, 3 (mod. 4) durchgeht; im ersten
und dritten Falle. wire nimlich ¢ — o, was dem Umstande wider-
spricht, daB B mit g, aber nicht mit & permutabel ist; im zweiten
oder vierten Fall wire 1 == o? oder g = 1, withrend doch & und ¢
vom vierten Grade sind. Unsere obige Annahme fiihrt daher zu
einem Widerspruch, und folglich ist der erste Teil des Satzes bewiesen.
Es muB daher jedes mit «, B, y permutable Element o in der
Gruppe P enthalten sein, weil nach Satz VI der Grad eines jeden,
in P nicht enthaltenen Elementes durch vier teilbar ist, und da

T*
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umgekehrt jedes Element der Gruppe P zufolge ihrer Definition
mit «, B, y permutabel ist, so ergibt sich auch der zweite Teil des
Satzes, w. z. b. w.
X. Der Inbegriff aller derjenigen Elemente @, welche
nur mit e, nicht mit g, y permutabel sind, ist der Komplex Pe.
Der Grad eines solchen Elementes e, welches nicht mit § per-
mutabel, also auch nicht in der Gruppe P enthalten ist, hat nach
Satz IV die Form 8p + 4, und zufolge (41) wird der Kommutator
der beiden Elemente @, § durch die Potenzen
@'P+2 = B2 = ¢ = o?

dargestellt; wenn ferner @ mit ¢, also auch mit e~ permutabel
ist, so folgt hieraus
(wa-—l)4p+2 — @fP T2y P+ — 22 = I;

mithin ist der Grad des Elementes e~ nicht teilbar durch vier,
und hieraus folgt nach Satz VI, dal dieses Element in P, also @
in dem Komplex Pa enthalten ist. Umgekehrt, wenn o = m«
irgendein Element in Pe, also w# mit allen Elementen permutabel
ist, so ist oo — mwo? — o, ferner @ — ma P, und

o = Bro =nfa =nafe = ofic;

mithin ist jedes Element @ in P« permutabel mit «, aber nicht
permutabel mit 8, w.z b. w.

XL Jede Hamiltonsche Gruppe R ist von der Form

(42) R=PQ=P+PuatPp+Py
wo @ eine in R enthaltene Quaterniongruppe
(48) Q=(>0+e)(1l+ea+p+y)

und P die Abelsche Gruppe der mit allen Elementen von R

‘permutablen Elemente bedeutet; diese Gruppe P enthilt
kein einziges Elemeént vierten Grades, wohl aber das in @
befindliche Element zweiten Grades &, welches zugleich
~der Kommutator von je zwei nicht permutablen Elementen
der Gruppe R ist.

Denn aus den drei vorhergehenden Sitzen folgt, dal jedes
Element @ der Gruppe R in einem, und nur in einem der vier
Komplexe P, Pu, PB, Py enthalten ist; die Behauptungen iiber P
folgen aus IX und VII, weil ¢ — «® ist. Da endlich die Elemente
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von P mit allen Elementen von R, ferner die Elemente von Pu
nach X mit « und folglich auch mit allen Elementen desselben
Komplexes P« permutabel sind, so gehoren zwei nicht permutable
Elemente auch zwei verschiedenen der drei Komplexe Pa, P8, Py
an; wihlt man nun z B. aus Pw«, P nach Belieben die beiden
Elemente ¢’ — n'e, " = =""B, wo also =, " in P enthalten sind,
so ergibt sich ’

¢ =ax'af, ¢'¢ =ax"fo=nn"afe =@ ¢,
mithin sind diese Elemente ¢', ¢ nicht permutabel, und ihr Kommutator
8t = &, w.z b. w.

XII. Wenn in einer Gruppe G eine Quaterniongruppe @
und eine Abelsche Gruppe P enthalten ist, deren Elemente
mit denen von @ permutabel sind, wenn ferner P das in @
befindliche Element zweiten Grades &, aber kein einziges
Element vierten Grades enth#dlt, so ist das Produkt PQ
eine Hamiltonsche Gruppe R.

Aus der Permutabilitit der Elemente von P mit denen von @
folgt zunichst, dal P @ eine Gruppe R ist; wahlt man fiir @ wieder
die bisherige Bezeichnung (43), so ist B von der Form (42), weil
die Periode [¢] = 1+ & der grofSite gemeinsame Teiler von P,  ist.
Dall R keine Abelsche Gruppe ist, folgt daraus, dall ihre Elemente
o, B nicht permutabel sind. Um zu zeigen, dal R eine Hamiltonsche
Gruppe ist, haben wir nach Satz I in § 2 fiir je zwei Elemente ¢,
nachzuweisen, dal @~y ¢ eine Potenz von v ist. Wenn nun wenigstens
eins dieser beiden Elemente in P enthalten ist, oder wenn sie beide
demselben Komplex Po oder PB oder Py angehoren, so sind sie
permutabel, und folglich ist o= 19 o = 3. Wenn aber z. B. v — wa
in Po, und ¢ = #'B in PP enthalten ist, so wird

o Y = flwaf =nflaf = ot
da nun der Grad von m nicht durch vier teilbar ist, weil sonst
unter den (in P enthaltenen) Potenzen von z auch zwei Elemente
vierten Grades wiren, so ist der Grad von n® eine ungerade Zahl
2m+-1, also w— 4m+D) — gz, mithin g~ 1 p =ma— 1=y~ 4m+) w.z.b.w.

Hiermit ist das am Schlusse der Einleitung ausgesprochene
Resultat der Untersuchung in allen Teilen begriindet.

Braunschweig, 9. August 1896.
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Erlduterungen zur vorstehenden Abhandlung.

Weitere Untersuchungen iiber die Struktur der Hamiltonschen Gruppen ver-
dankt man G. A. Miller (Comptes rendus, Paris 126 (1898), S. 1406—1408;
Bull. Amer. Math. Soc. 4 (1898), S. 510—515; & (1899), S.292—296) und
d’Alessandro (Giorn. di Matematica 87). In anderer Weise hat E. Wendt
einige der Millerschen Resultate abgeleitet (Math. Ann. 59 (1904), S. 187—192; 60
(1905), S.8319—320). Verallgemeinerungen der Hamiltonschen Gruppen studierten
Miller (Math. Ann. 80 (1905), 3. 597—606; Arch. d. Math. u. Phys. (3) 11 (1907),
8. 76—79; Transactions Amer. Math. Soc. 8 (1907), S.25—29) und Wendt (Math.
Ann. 62 (1906), S.381—400).

Die wichtigsten Eigenschaften der Kommutatoren und Kommutatorgrappen
hat Dedekind schon 1880 erkannt und brieflich an Frobenius mitgeteilt.
(Man vergleiche die Abhandlung von Frobenius, Sitzungsber. d. Berl. Akad.
1896, S. 1343—1382, §2.) Publiziert ist aber der Satz in der FuBnote S. 93
zuerst von G. A. Miller (Quarterly Journ. of Math. 28 (1896), S.232—284).

Uber die auf S.91 erwihnte Beziehung zwischen Quaternionen und Qua-
ternionengruppen hat Dedekind nichts weiteres plubliziert. Dic Bemerkung be-
zieht sich, wie aus den im NachlaB veroffentlichten Briefen an Frobenius klar
hervorgeht, auf die im Februar 1886 entdeckte Gruppendeterminante und ihre
Zerlegung, die Dedekind im Quaternionenfall vollstindig durchgefiihrt hatte.
Auch die Konstruktion der Quaternionkérper wird im Nachlaf gebracht (XXXIX).

Die Bestimmung aller Gleichungen mit Quaternionengruppe ist von Mertens.
und zwar fiir beliebige Grundkorper durchgefiihrt worden (Sitzungsber. d. Wien. Akad.
111 (1902), Abt. I1a, S.17—37; 125 (1916), Abt. IIa, S.735—740; 130 (1921),
Abt. Ila, S.69—90). Man vgl. auch die Abhandlung von G. Bucht (Ark. for
Math. Astr. och Phys. 6 (1911), Nr.30). o

Teé.




XXVIIL

Uber Zerlegungen von Zahlen durch ihre grofiten
gemeinsamen Teiler.

[Festschrift der Technischen Hochschule zu Braunschweig bei Gelegenheit
der 69. Versammlung Deutscher Naturforscher und Arzte, S.1—40 (1897).]

Liegt ein endliches System von natiirlichen Zahlen vor, und bildet
man alle grofiten gemeinsamen Teiler von zwei oder mehreren dieser
Zahlen, so werden die letzteren hierdurch auf mannigfaltige Weise
in Faktoren zerlegt. Obgleich nun diese Faktoren im allgemeinen
bekanntlich keine Primzahlen sind, so leisten sie doch fiir manche
Untersuchungen ausreichende Dienste, und es verlohnt sich daher wohl
der Miihe, die hierbei auftretenden Gesetze im Zusammenhang dar-
zustellen. Dies ist der néichste Gegenstand des vorliegenden Aufsatzes,
doch soll zugleich die urspriingliche Aufgabe soviel wie moglich ver-
allgemeinert und auch auf Gebiete iibertragen werden, in denen es
gar keine Zerlegungen in eigentliche Primfaktoren gibt. Hierbei ver-
liert zwar die Untersuchung ihr arithmetisches Geprige fast ganz, so
daf sie mathematische Kenntnisse kaum noch voraussetzt, aber zugleich
treten die Gesetze und ihre Griinde deutlicher hervor, und ich darf
hoffen, daf in dieser Hinsicht meine Arbeit doch einigen Mathematikern
willkommen sein mag.

§ 1.
Drei Zahlen.
Sind a, b, ¢ drei gegebene natiirliche Zahlen, so will ich den
grofiten gemeinsamen Teiler
der Zahlen b, ¢ mit a,,

1) ” n 6 & » by
» ” a, b n  Cp
” ” a bc , d
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bezeichnen, dann kann man, weil d offenbar auch der grofite gemein-
same Teiler von je zwei der drei Zahlen a,, b,, c, ist,

) a, =da, b, =db, ¢, =dc

setzen, wo a', b', ¢’ relative Primzahlen sind, womit in iiblicher Weise
ausgedriickt sein soll, dafl je zwei duberlich verschiedene dieser Zahlen,
z. B. ', ¢, relative Primzahlen sind. Hieraus folgt, dafl db'c’ das

kleinste gemeinsame Vielfache der Zahlen b,, ¢, ist, und da @ zufolge 1
durch beide teilbar ist, so erhalt man die Zerlegungen
3) a=4dbca’, b=dcabd', ¢c=da'bc"
wo a’, b", ¢ ebenfalls natiirliche Zahlen sind. Die drei gegebenen
Zahlen a, b, ¢ erscheinen daher als Produkte von je vier der sieben
Zahlen d, a', b, ¢, a", b", ¢", welche wir die Kerne des Systems
a, b, ¢ nennen wollen (vgl. § 7). Zugleich ergibt sich aus der Be-
deutung von a,, b, ¢,, dall jedes der drei Paare

c¢bd" und b'c¢’, a'c¢’ und ¢'a”, b'a” und a'b”
aus zwei relativen Primzahlen besteht; hierin liegt zuniichst wieder,
dall die drei Zahlen a', b', ¢' relative Primzahlen sind; dasselbe gilt
offenbar von den drei Zahlen a”, b", ¢, und aullerdem besteht jedes
der drei Paare

a und @', b und b’, ¢ und ¢’

aus zwel relativen Primzahlen, wihrend die anderen Paare, wie a’
und b", diese Eigenschaft nicht zu besitzen brauchen. Ist z B.

@ = 420, b = 800, ¢ = 216,
8o findet man

a =8, b =12, ¢, = 20, d = 4,
6 =2, b = 3, ¢ = b,
o' =17 b =20, ¢"= 9.

Zufolge (2) und (3) lassen sich die sieben Kerne d, o/, ¥, ¢, a”,
b", ¢ durch die drei gegebenen Zahlen a, b, ¢ und die aus ihnen
gebildeten vier grofiten gemeinsamen Teiler a,, b,, ¢,, d in folgender
Weise darstellen:

d=d,
Y F__ b .G
(4) =3 V=37 =3
au . a'd b/l . bd cu . Cd
~ bye,’ T oca’ T oayb,
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Diese Kerne bleiben, mit Ausnahme von d, ungeindert, wenn man a,
b, ¢ durch drei beliebige, ihnen proportionale Zahlen ersetzt, welche
auch gebrochen sein diirfen, falls man unter dem grobten gemein-
samen Teiler von rationalen Zahlen u, v, w... immer diejenige posi-
tive rationale Zahl e versteht, fiir welche die Quotienten

ganze Zahlen ohne gemeinsamen Teiler werden*).

Ersetzt man aber die drei Zahlen a, b, ¢ durch drei ihnen um-
gekehrt proportionale Zahlen, z B. durch bc, ca, ab oder durch a7,
b=, ¢, so vertauscht sich & mit a”, b mit b", ¢ mit ¢"; diese
Erscheinung steht in unmittelbarem Zusammenhang mit dem Dualismus
zwischen den Begriffen des grofiten gemeinsamen Teilers und des
kleinsten gemeinsamen Vielfachen™*). Fiir jetzt mogen indessen fol-
gende Bemerkungen geniigen. Bezeichnet man das kleinste gemein-

same Vielfache
: der Zahlen b,

c
) » ¢ a » by,
®) ;

» » @,
) » a, b, ¢c , m,

so erhdlt man nach bekannten Regeln

be
a2 —_ dalblc'bllc”,
al
ca
(6) b, = = da'b'c'c'a’,
1
ab .
cs —_— ?— o dalblcl al' b/l.
1

Da ferner nach dem Obigen @ relative Primzahl zu a'b"c” ist, so
haben die Zahlen ¢ und a, zufolge (3) und (6) den groBten gemein-
samen Teiler db'c’, und da m zufolge (5) ihr kleinstes gemeinsames
Vielfaches, also m-db'¢’ = aa, ist, so ergibt sich

(7) m — da'b'c’a”b”c" — abcd .
a,b,¢c,

*) Dirichlets Vorlesungen iiber Zahlentheorie, 4. Aufl., § 172, S.515; dies
Werk soll kiinftig mit D. zitiert werden.
**) Vgl D. § 178, S.555.
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§ 2.
Vier Zahlen.

Hat man mehr als drei gegebene Zahlen zu betrachten, so wird
eine andere Bezeichnungsweise zweckmalig, deren Gebrauch jetzt
erortert werden soll. Die gegebenen Zahlen seien
(1) (1,0), (2,0), (3,0), (4,0)...,
und man bezeichne den grofiten gemeinsamen Teiler

der Zahlen (1,0), (2,0) mit (12,0),

(2) ” ” (1,0), (2,0), (3,0) mit (128,0),
” ” (1,0), (2,0), (3,0), (4,0) mit (1234,0)
usw.,

wobei natiirlich alle Ziffern miteinander vertauscht werden diirfen.

Beschrinken wir uns auf den nichsten Fall, wo vier Zahlen gegeben

sind, so entstehen auf diese Weise elf grobte gemeinsame Teiler,

nimlich sechs von der Form (12,0), vier von der Form (123,0) und

einer von der Form (1234,0). Dieser letzte ist offenbar zugleich der

grobte gemeinsame Teiler von je zweien der Form (123,0), (124,0),

und folglich kann man

(123,0) = (1234,0) (123,4),

(124,0) = (1234,0) (124,3),

(184,0) = (1234,0) (134,2),

(284,0) == (1234,0) (234,1)

setzen, wo die vier ganzen Zahlen

4) (123,4), (124,3), (134,2), (234,1)

relative Primzahlen sind. Hieraus folgt z B., daB das Produkt
(1234,0) (123,4) (124,3)

das kleinste gemeinsame Vielfache der beiden Zahlen (123,0), (124,0)

ist; da andererseits diese letzteren Zahlen beide Teiler von (1,0) und

(2,0), also auch Teiler von deren griBtem gemeinsamen Teiler (12,0)

sind, so muf der letztere auch durch das vorstehende Produkt teilbar

sein. Man erhélt daher die Zerlegungen

(12,0) = (1234,0) (123,4) (124,3) (12,34),

(13,0) = (1234,0) (123,4) (134,2) (18,24),

(14,0) = (1234,0) (124,3) (134,2) (14,23),

(23,0) = (1234,0) (123,4) (234,1) (23,14),

(24,0) = (1234,0) (124,3) (234,1) (24,13),

(34,0) = (1234,0) (134,2) (284,1) (34,12),

(3)

()
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in welchen sechs neue ganze Zahlen
©) { (12,34), (13,24), (14,23),
(34,12), (24,13), (23,14)
auftreten. Setzt man nun
a = (120), b= (13,0, ¢ = (14,0),

und wendet man auf diese drei Zahlen die Betrachtungen und Bezeich-
nungen des § 1 an mit Riicksicht auf (2), (3), (5), so ergibt sich

a, = (134,0), b, = (124,0), ¢, = (123,0), d = (1234,0),

@ = (134,2), b = (124,3), ¢ = (123,4),

o’ = (12,34), b" = (13,24), ¢’ = (14,23),
also

m = (1234,0) (123,4) (124,3) (134,2) (12,34) (13,24) (14,23).
Da nun die Zahl (1,0) zufolge (2) durch jede der drei Zahlen a, b, c,
also auch durch deren kleinstes gemeinsames Vielfaches m teilbar ist,
so erhdlt man schlieflich die folgenden Zerlegungen:

(1,0) = (1234,0) (123.4) (124,3) (134,2) (12,34) (13,24) (14,23) (1,234),
™ (2,0) = (1234,0) (123,4) (124,3) (234,1) (12,34) (23,14) (24,13) (2,134),
) (3,0) = (1234,0) (123,4) (134,2) (234,1) (13,24) (23,14) (34,12) (3,124),

[(4,0) = (1234,0) (124,3) (134,2) (234,1) (14,23) (24,13) (34,12) (4,123),
in welchen abermals vier neue ganze Zahlen:
(8) (1,234), (2,134), (3,124), (4,123)
auftreten, Aus (3), (5), (7) ergeben sich umgekehrt die Darstellungen
der in (4), (6), (8) bezeichneten vierzehn Zahlen durch die fiinfzehn
in (1) und (2) definierten Zahlen; man erhilt z B.

(9) (123,4) — ((1_122334?3)_,
~ _(12,0) (1234,0)
(10) (12,34) = 25.0) (1220)"
(11) (1,234) = (1,0) (128,0) (124,0) (184,0)

' (12,0) (13,0) (14,0) (1234,0)

Fiigen wir zu diesen Gleichungen noch die selbstverstindliche

(12) (1234,0) = (1234,0)

hinzu, und nennen wir (wie in § 1) die fiinfzehn Zahlen (4), (6), (8),
(12) die Kerne des Systems (1) der vier gegebenen Zahlen, so erscheint
jede der letzteren in (7) als Produkt von acht Kernen, und ebenso
erscheinen in den Gleichungen (5), (3), (12) die aus den gegebenen
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Zahlen gebildeten grofiten gemeinsamen Teiler (2) als Produkte von
Kernen, wihrend umgekehrt die fiinfzehn Kerne in den Gleichungen
(9) (10), (11), (12) durch die fiinfzehn Zahlen (1) und (2) aus-
gedriickt sind.

§ 3.

Kombinationen.

Um diese Betrachtungen auf ein beliebiges System von 7 gegebenen

Zahlen
(1:0)’ (2a0) T (n,O)
auszudehnen, und um ihnen zugleich eine viel allgemeinere Bedeutung
unterzulegen, ist es notig, einige Bemerkungen iiber die Kombi-
nationen «, B, y --- vorauszuschicken, welche sich aus dem System
der n verschiedenen Elemente
1,2 m

bilden lassen. Die letzteren, welche hier nicht als Zahlen, sondern
nur als Unterscheidungszeichen aufzufassen sind und durch irgend-
welche andere Zeichen ersetzt werden diirften, bilden zugleich die
Kombinationen ersten Grades. Jedes System o von r verschiedenen
solchen Elementen heifit bekanntlich eine Kombination rten Grades;
hierbei kommt es auf die Reihenfolge, in welcher die Elemente des
Systems o genannt oder geschrieben werden, gar nicht an, und man
kann die Kombination selbst (wie in § 2) am einfachsten durch die
natiirliche Folge ihrer Elemente bezeichnen, so daf z B. 235 die aus
den drei Elementen 2, 3, 5 bestehende Kombination bedeutet; wenn
freilich »>>9 ist, so miissen die Elemente einer Kombination deut-
licher voneinander getrennt werden. FEine Kombination & ist also
bestimmt, wenn iiber jedes der n Elemente 1, 2, ---, n die Entscheidung
getroffen ist, ob es in « aufgenommen wird oder nicht; lilt man
daher — was bekanntlich sehr zweckmiBig ist — auch die leere
- Kombination Oten Grades zu, welche gar kein Element enthilt und
im folgenden immer mit 0 bezeichnet werden soll, so ist 2» die Anzahl
aller verschiedenen Kombinationen. Wenn jedes Element von ¢ auch
Element der Kombination B ist, so heiBt « ein Teil von B, und wenn
zugleich B auch ein Teil von « ist, so ist « identisch mit B, was
immer durch « — 8 ausgedriickt wird. Die Kombination O ist ein
Teil von jeder Kombination.

Unter der Summe o« 4 B von zwei Kombinationen a, B soll die
Kombination verstanden werden, welche aus allen in o oder in B
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(oder in beiden) enthaltenen Elementen besteht, wihrend ihr Durch-
schnitt « — § aus denjenigen Elementen bestehen soll, welche beiden
Kombinationen o, # gemeinsam angehoren; ist kein solches gemein-
sames Element vorhanden, also « — f§ — 0, so sollen «, g fremde
Kombinationen heiflen. Die Kombination 0 ist fremd zu jeder
Kombination.

Um diese einfachen Begriffe durch ein Beispiel zu erldutern,
wihle ich die drei Kombinationen

o = 2347, B = 1357, p = 1267;

dann wird
B+y=123567, y 4o = 123467, o+ f = 123457,
B—y =117, y—o = 27, o —f = 3T.

Man iiberzeugt sich nun ohne weiteres, daf fiir diese beiden
Operationen +- die folgenden sechs Fundamentalgesetze gelten,
deren Inbegriff wir mit 4 bezeichnen wollen:

(1) e+pf=p+o

(1) o—f=p—q

(2) (@+Bp+y=c+(B+v)
(2") (—p)—y=a—(B—7)
(3) et (e—p) =uao

(3") o—(@+f) =

Die vier Doppelgesetze (1), (2) spricht man bekanntlich so aus
dal jede der beiden Operationen symmetrisch (kommutativ) und
assoziativ ist, und hieraus folgt (vgl. D. § 2), dal die Bildung der
Summe oder des Durchschnitts von drei oder mehr Kombinationen
von der Reihenfolge ganz unabhingig ist, nach welcher man immer
ein Paar der vorhandenen Kombinationen auswihlt, um daraus die
Summe oder den Durchschnitt zu bilden. Durch das letzte Doppel-
gesetz (3) treten aber die beiden Operationen in eine dualistische Ver-
bindung, aus welcher zunichst
4) o+ o = «,

(4") o—o0 =«

folgt; denn (4') geht unmittelbar aus (3) hervor, wenn man § durch
(¢4 B) ersetzt und (3") beriicksichtigt, und in dhnlicher Weise folgt
(4") aus (8").

Nun leuchtet freilich die Wahrheit dieses abgeleiteten Doppel-
gesetzes (4) auch unmittelbar aus dem Begriff der Operationen 4 ein,
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aber diese Ableitbarkeit ist doch an sich nicht ohne Bedeutung. Ganz
anders verhdlt es sich ndmlich mit dem folgenden Doppelgesetz:

(5) @—P+(@—y)=a—(B+7)

(57 @+p—(@+y)=at+(B—y)

welches aus den obigen sechs Fundamentalgesetzen 4 schlechterdings
nicht ableitbar ist, wie spiter (in § 4) noch weiter besprochen werden
soll; hier ist es vielmehr erforderlich, nochmals auf die Bedeutung
der Symbole zuriickzugehen. Bedeutet u die linke, v die rechte Seite
der Gleichung (5'), so haben wir zu zeigen, daf jedes Element ' von
p auch in », und ebenso, dali jedes Element »' von » auch in g ent-
halten ist. Zufolge des Summenbegriffes ist u' in (¢ — ) oder in
(e — p) enthalten, und da der Satz zufolge (1') symmetrisch in bezug
auf B, p ist, so diirfen wir das erstere annehmen; dann ist u' gemein-
sames Element von « und f§, und da jedes Element von f§ auch in
(B +7) enthalten ist, so ist u’ auch in dem Durchschnitt » der
Kombinationen « und (8 4 y) enthalten. Umgekehrt, jedes Element v’
dieses Durchschnittes » ist gewill in « und auBerdem in g oder y,
also in einem der beiden Durchschnitte (¢ — g), (¢ — ), mithin auch
in deren Summe u enthalten, w. z b. w.

Auf ganz dhnliche Weise liele sich der Satz (5") beweisen, was
wir dem Leser iiberlassen; aber es ist bemerkenswert, daf dieser
Satz schon eine notwendige Folge des Satzes (5") und der Gesetze 4
ist. Ersetzt man namhch o, B, y in (5) bzw. durch o + y, e, .
so folgt

[+ ) —e] + [(@+2) — ] = (e + ) — (« + B),

was zufolge A zundchst die Form

(6") (@+B)—(@+y)=oa+[f—(«+ )]
annimmt; da ferner aus (5'), wenn « mit # vertauscht wird, sich
-+ =>—BfH+B—7
ergibt, so geht vermoge A die rechte Seite von (6”) in
“+{W~—m+%ﬁ-7H—‘M+%u—ﬁﬂ+%ﬂ~yy—a4ﬂﬁ~7)
itber, womit der Satz (5") bewiesen ist.
Da das System 4 in dem Sinne dualistisch ist, daf es sich durch

die Vertauschung der beiden Operationen 4~ vollstindig reproduziert,
so ist offenbar der Satz (5') umgekehrt eine notwendige Folge von (5")
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und A; wollte man dies, was aber nicht mehr nétig ist, auf dieselbe
Weise wie oben dartun, so wiirde der Weg iiber den Zwischensatz

(6) (@—B)+(@—y) =ea—[B+ (a—7)]
filhren, welcher das Gegenstiick zu dem Satz (6") bildet.

Auf die allgemeinen Beziehungen zwischen den Gesetzen A und
den vier Sitzen (5), (6) werde ich im folgenden § 4 noch niher ein-
gehen, obgleich diese Untersuchung fiir unseren eigentlichen Gegen-
stand nicht erforderlich ist. Dagegen werden wir spiter (in §§ 7, 8)
Gebrauch zu machen haben von dem folgenden

Satz. Geniigen die vier Kombinationen «, §, p, 6 der
Bedingung

(M «+p=y+0,

so gibt es immer drei Kombinationen ¢, 6, w, welche den
Bedingungen

(8) p=0o+ow 0=0dd+n

9) vetoe=y+o6=oa+ty

geniigen.

Der Beweis ergibt sich unmittelbar aus den obigen Satzen,
ohne dafl es notig wire, auf die Bedeutung unserer Zeichen zuriick-
zukommen. Setzt man ndmlich

o=pf—p, 6=a—0, o=p—0
und
T =a— %,
so flieBen aus dem Satze (5) in Verbindung mit der Annahme (7)
und mit dem Satze (3") die Relationen

i+t =—=a—(p+0) =a—(¢+p) = o
eto=—@r+0=F—(+p=5
etr=y—(@+pf) =y—(+9) =y
6+o=0—(u+f)=0—(y+9) =0,

deren zweite und vierte mit (8) iibereinstimmen, wihrend aus den

beiden anderen folgt, daB jede der drei in (9) auftretenden Kom-

binationen = ¢ + 6 + © ist, w.z.b.w.

Der Vollstdndigkeit wegen erwdhnen wir ferner, daf offenbar

Immer

(10) o+0=0 o—0=20

ist, und um die spiteren Untersuchungen nicht zu unterbrechen, fiigen

wir noch folgende Bemerkungen hinzu. Nennt man eine Kombination
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paar oder unpaar, je nachdem ihr Grad gerade oder ungerade ist,
so besitzt jede Kombination «, deren Grad r>> 0’ist, offenbar ebenso
viele paare wie unpaare Teile, nimlich 27—1; die ersteren, zu denen
immer die Kombination 0 gehort, sollen mit «", die letzteren mit o
bezeichnet werden. Die Kombination 0 dagegen besitzt nur einen
einzigen, und zwar paaren Teil, ndmlich 0 selbst. Sind nun e, g
irgend zwei fremde Kombinationen, ist also & — = 0, so leuchtet
ein, daf die paaren Teile («+ )" der Summe (x + f) mit allen
Kombinationen von der Form «” + 8" und von der Form «' 4 #', und
daf die unpaaren Teile (o + B) mit allen Kombinationen von der
Form o' + B” und von der Form «" 4 f' iibereinstimmen; auch ist
jeder Teil von & + f nur in einer dieser vier Formen, und zwar nur
auf eine einzige Weise darstellbar. Ist ferner § — 0, so fallen die
Formen aus, in welchen g’ auftritt.

§ 4.

Bemerkungen iiber Dualgruppen.

Die im vorhergehenden § 3 enthaltenen Betrachtungen sind ihrem
groBten Teile nach keineswegs neu; da eine Kombination nichts anderes
als ein System von Elementen ist, so gehéren sie in die allgemeine
Systemlehre, welche wohl am vollstindigsten in dem umfassenden
und durch eine Fiille origineller Betrachtungen fesselnden Werke
Die Algebra der Logik von E. Schroder, behandelt ist. Zur
Erleichterung der Vergleichung mache ich darauf aufmerksam, daf
der Durchschnitt o — 8 der Systeme o, g in diesem Werke das
Produkt von «, § genannt und demgem&fB mit o 8 bezeichnet wird;
diese Ausdrucks- und Bezeichnungsweise mag manche Vorziige besitzen,
doch schien mir die meinige fiir den gegenwirtigen Zweck haupt-
sichlich deshalb geeigneter, weil hier eine Ubereinstimmung mit der
in der Modul- und Idealtheorie von mir eingefiihrten Bezeichnungsart
wiinschenswert war. Hiernach entsprechen die in § 3 mit (1), (2),
(3), (4), (5) bezeichneten Doppelsitze bzw. den Doppelsitzen (12), (13),
(23), (14), (27) auf S.254, 255, 276, 259, 282 im ersten Bande des
genannten Werkes; im folgenden wird meine Bezeichnung der Sitze
beibehalten, und unter A ist immer das System der Doppelsitze (1),
(2), (8) zu verstehen, deren notwendige Folge der Doppelsatz (4) ist,

Auf 8.292 bis 293 zeigt Herr Schroder ebenfalls, aber auf
etwas andere Weise, als es hier in § 3 geschehen ist, daBl jeder der
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beiden Sitze (5) auf den anderen vermige des Systems A zuriick-
fiihrbar ist. Von besonderem Interesse ist aber die zuerst auf S.286
ausgesprochene, spiter auf S.643 und abermals auf S.686 bewiesene
Behauptung, dal keiner der beiden S#tze (5) eine notwendige
Folge des Systems A4 ist.

Seit vielen Jahren habe ich mich ebenfalls mit diesen Fragen
beschiftigt; doch hat mich hierzu nicht das Studium der Logik,
sondern die Theorie derjenigen Zahlensysteme veranlalt, welche ich
Moduln nenne*). Bei dem Bestreben, diese Theorie auf die kleinste
Anzahl von Grundgesetzen zuriickzufiihren, habe ich ebenfalls — nicht
ohne groBe Anstrengung — die eben erwihnte Tatsache erkannt, und
da der von mir eingeschlagene Weg vielleicht noch einiges Neue
enthdlt, auch wohl etwas einfacher zu sein scheint als die von
Herrn Schroder gegebenen Beweise, die er selbst als nicht miihelose
bezeichnet, so erlaube ich mir, aus einer grofleren, halb vollendeten
Abhandlung einige Betrachtungen hier mitzuteilen, obgleich sie fiir
den vorliegenden Aufsatz nicht erforderlich sind. Zuvor bemerke ich,
dal} selbstverstindlich die Prioritdt fiir die Entdeckung der genannten
Tatsache durchaus Herrn Schroder gebiihrt; auch muB ich gestehen,
daB es mir noch nicht gelungen ist, die spiteren Bédnde seines grolen
Werkes vollstindig durchzuarbeiten, und so mufl ich um Nachsicht
bitten, wenn manche der folgenden Betrachtungen, bei welchen ich
die leicht zu findenden Beweise grofitenteils unterdriicke, schon bekannt
sein sollten. Ich beginne mit der folgenden Erkldrung.

Ein System %A von irgendwelchen Dingen o, 8, p --- soll eine
Dualgruppe heiBen, wenn es zwei Operationen —+ gibt, welche aus
je zwei Dingen «, 8 zwei ebenfalls in U enthaltene Dinge o+ f
erzeugen und zugleich den Bedingungen A geniigen.

Um zu zeigen, wie verschiedenartig die Gebiete sind, auf welche
dieser Begriff angewendet werden kann, erwiihne ich folgende Beispiele:

1. Das nichste und iiberall unentbehrliche Beispiel liefert die
oben erwihnte Systemlehre der Logik; bedeuten die Dinge o, @, 3 ---
endliche oder unendliche Systeme (Kombinationen) von Elementen, und
bezeichnet man mit o + § die logische Summe, mit o — 8 den Durch-
schnitt (das logische Produkt o 8 nach Schréder) von o, B, so bildet
der Inbegriff % aller Systeme a, B, p --- eine Dualgruppe.

*) Vgl 8. 442, 479, 493 der zweiten, dritten, vierten Auflage von Dirichlets
Vor lesungen iiber Zahlentheorie.

Dedekind, Gesammelte Werke, IT. 8
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2. Der Inbegriff % aller Zahlensysteme «, B8, y ---, welche ich
Moduln nenne, bildet eine Dualgruppe, wenn unter « 4 8 der grofite
gemeinsame Teiler, unter « — § das kleinste gemeinsame Vielfache
der beiden Moduln «,  verstanden wird. Dies Beispiel ist keineswegs
in dem vorigen enthalten; denn hier enthdlt der Modul & + g aufler
den in « oder § enthaltenen Zahlen (im allgemeinen) noch unendlich
viele andere Zahlen (Elemente), wihrend « — 8 auch hier der Durch-
schnitt der Systeme «, f, d. h. der Inbegriff aller den Moduln «, f
gemeinsamen Zahlen ist.

3. Einen speziellen Fall der Moduln bilden die Ideale*) «, f,
p +-- eines endlichen Korpers, und da die daraus erzeugten Ideale
o+ f demselben Kérper angehéren, so ist der Inbegriff % aller dieser
Ideale eine Dualgruppe.

4. Ist o eine endliche oder unendliche **) Abelsche oder auch
Galoissche Gruppe, so bildet der Inbegriff % aller Gruppen o, 8, 9 - - -,
welche als Teiler in o enthalten sind (und zu denen auch @ selbst
gehort), eine Dualgruppe, wenn unter o + $ das kleinste gemeinsame
Vielfache, unter « — f der grobte gemeinsame Teiler der beiden
Gruppen «, f verstanden wird.

5. Der Inbegriff % aller Zahlensysteme o, 8, y ---, welche ich
Korper***) nenne, bildet eine Dualgruppe, wenn unter & + 3 das
kleinste gemeinsame Multiplum, unter ¢ — § der groBte gemeinsame
Divisor der beiden Korper e, 8 verstanden wird.

6. Als letztes Beispiel mag das folgende dienen. Unter einem
Punkte o des reellen Zahlenraumes von n Dimensionen sei jede Folgée
von 7 reellen Zahlen «;, «, --- o, verstanden, welche umgekehrt die
erste, zweite - -. nte Koordinate des Punktes o heilen mogen; definiert
man nun fiir je zwei Punkte «, § die Punkte o+ 8 dadurch, daf die
Koordinate (« + B), die algebraisch grofBte, die Koordinate (e — f),
die algebraisch kleinste der beiden Koordinaten e,, 8, sein soll, so
bildet der Raum U als Inbegriff aller Punkte «, 8, y --- eine Dual-

gruppe.

*) Vgl. S.452, 508, 551 der zweiten, dritten, vierten Auflage von Dirichlets
Zahlentheorie.
**) Vgl. § 5 dieses Aufsatzes.
**¥) Vgl S. 424, 435, 452 der zweiten, dritten, vierten Auflage von Dirichlets
Zahlentheorie,
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Wir wenden uns nun zur Untersuchung iiber die Giiltigkeit der
m § 3 mit (5) und (6) bezeichneten Doppelsitze innerhalb der all-
gemeinen Theorie der Dualgruppen. Es ist dort schon gezeigt, daf
die beiden Sitze (5') und (5") vermoge der Grundgesetze A4 wechsel-
seitig auseinander folgen; dieses Doppelgesetz (5) gilt zufolge § 3
wirklich in dem ersten der eben aufgefithrten Beispiele, in der System-
lehre der Logik; es gilt*) aber auch in dem dritten Beispiel, in der
aus allen Idealen eines endlichen Korpers bestehenden Dualgruppe;
aus diesem Grunde will ich diesen Doppelsatz (5) hier das Ideal-
gesetz nennen, und jede Dualgruppe, in welcher dies Gesetz gilt
mag eine Dualgruppe vom Idealtypus heilen.

Von ebenso grofier Wichtigkeit sind aber auch die in § 3 mit
(6) und (6") bezeichneten Sitze, sowie der folgende, bisher noch nicht
erwihnte Satz

M) [e+@B—vI—B+7)=I[e—@+]+B—2)
welcher symmetrisch in bezug auf B, y und zugleich sein eigenes
dualistisches Gegenstiick ist. Ich bemerke zundchst, dal je zwei dieser
drei Sitze (6"), (6"), (M) iquivalent sind, d.h. wechselseitig vermoge
der Grundgesetze A auseinander folgen. Bezeichnet man nimlich
kurz mit (4, w, v) eine Substitution, welche darin besteht, daB die
drei Dinge «, #, y bzw. durch die drei Dinge 4, u, v ersetzt werden,
so iiberzeugt man sich leicht, daf

(6") durch (e p, B, @) in (6"),

(6" » (¢ —p, B, &) » (6"

6) » B+r o B—7) » (M),

(M) » (ﬁ’ o, o — Y) ” (6’)7

6" » B—v, 0 B+y) » (M),

) (B, & o 4 ) » (67)
iibergeht. Dieses dreiformige Gesetz gilt*) nun wirklich in dem
zweiten der obigen Beispiele, in der aus allen Moduln bestehenden
Dualgruppe; ich will es daher das Modulgesetz nennen, und jede
Dualgruppe, in welcher es herrscht, mag eine Dualgruppe vom Modul-
typus heiflen.

*) Dies folgt leicht aus D. § 178.

. **) Vgl. D. § 169; die dortigen Sitze (7), (8), (8') stimmen bzw. tiberein mit
den obigen (M), (6"), (6'); zuerst erwihnt sind sie auf S.17 meiner Schrift:
Uber die Anzahl der Idealklassen in den verschiedenen Ordnungen eines endlichen
Korpers (Braunschweig 1877).

8*
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Da ferner in § 3 die Sitze (6), (6") lediglich vermdge der Grund-
gesetze A aus den Sitzen (5"), (5") abgeleitet sind, so leuchtet die
Wahrheit der folgenden Behauptung ein:

Jede Dualgruppe vom Idealtypus besitzt auch den
Modultypus.

Hiernach entspringen naturgem&fl die beiden Fragen:

Gibt es Dualgruppen, welche den Modultypus nicht
besitzen?

Gibt es Dualgruppen vom Modultypus, welche den Ideal-
typus nicht besitzen?

DaB diese Fragen beide zu bejahen sind, habe ich — nicht ohne
Miithe — dadurch entschieden, daf ich mir die bestimmte Aufgabe
stellte, jedesmal die kleinste Dualgruppe aufzusuchen, welche die
fragliche Eigenschaft hat. Die auf diese Weise gefundenen Gruppen
bestehen aus je fiinf verschiedenen Dingen, o, 8, v, 9, &, und sind
in den beiden folgenden Tabellen dargestellt:

o B y 0 € o B % 0 &
7 o | 0 LY ) o o 0 0 0 o
B || ¢ 8 | 0| B B | e o | 8 | B
y o & 0 Y y & & 0 LY
) o B % 0 0 o B 4 9

& & & & & £ € ] £ 3

Zur Erliuterung dienen folgende Bemerkungen. Bedeutet (g, »)
den Buchstaben, welcher sich im Durchschnittsfeld der Zeile w und
der Spalte v findet, so hitten die Felder der Diagonale eigentlich
mit den Buchstaben (u, p) = p besetzt werden sollen; des deutlicheren
Uberblickes wegen sind sie aber leer gelassen, um die oberhalb und
unterhalb der Diagonale gelegenen Hilften der Tabellen fiir das Auge
leichter zu trennen; in der oberen Hilfte finden sich die Buchstahen
(#, V) =p+v=wv+y, in der unteren die Buchstaben (u, v)
= w—v = v—p. Die durch die richtigen Buchstaben (4, u) = p
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= w4+ u = p—pyu besetzt zu denkenden Diagonalfelder gehoren
sowohl zu der oberen wie zu der unteren Hilfte. Die Tabellen ent-
halten daher fiir beide Operationen + die vollstindige Anweisung zu
ihrer Ausfiihrung.

Die genaue Priifung ergibt, daf in beiden Tabellen die Grund-
gesetze A, in der zweiten auch die Gesetze (6'), (6") erfiillt sind; das
System U der fiinf Dinge e, §, y, 8, ¢ bildet daber in beiden Beispielen
eine Dualgruppe, und die zweite dieser beiden Dualgruppen besitzt
den Modultypus. Aus der ersten Tabelle folgt nun

@+B—(@+y)=0—y=y
vt+B—(@tp)]l=a+B—y)=oa+e=nu
mithin gilt in der ersten Dualgruppe das Modulgesetz (6") nicht.
Aus der zweiten Tabelle folgt

(e+pf)—(e+y)=0—0=14,
e+ (B—y) =at+e =0,
mithin gilt in der zweiten Dualgruppe das Idealgesetz (5”) mnicht.
Hiermit sind die obigen Behauptungen gerechtfertigt.

Die eben dem Leser iiberlassene Priifung, ob die durch die Tabellen
definierten Operationen -+ innerhalb eines Systems ¥ den Grund-
gesetzen 4, eventuell auch dem Modulgesetz geniigen, erweist sich bei
der wirklichen Ausfithrung schon bei diesen einfachen Beispielen, wo
das System 2 endlich ist und nur aus fiinf verschiedenen Dingen
besteht, als ziemlich miihsam. Dies veranlaBt mich, hier noch eine
Transformation der Grundgesetze A4 zu besprechen, durch welche
deren Priifung im allgemeinen wohl etwas erleichtert wird, und die
zugleich ein neues Licht auf das Wesen der Dualgruppen wirft.

Ist « ein bestimmtes Ding in einer Dualgruppe %A, so will ich
mit o das System aller in der Form « 4 o darstellbaren Dinge «,
bezeichnen*), wo @ jedes Ding in % bedeuten kann. Diese Systeme
von der Form o' besitzen die folgenden sechs charakteristischen
Eigenschaften, in welchen die beiden Operationen + gar nicht mehr
auftreten :

L Jedem Dinge « in U entspricht ein vollstindig bestimmter
Teil ' von AU

*) Diese Systeme o’ und die spiter folgenden Systeme «” diirfen nicht mit

den in § 3 erklirten unpaaren und paaren Teilen einer Kombination « verwechselt
werden.
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IL. Das Ding « ist in «' enthalten.

I Aus o = g’ folgt o = 8.

IV. Ist das Ding «, in &' enthalten, so ist das System o, ein Teil
von o
V. Der Durchschnitt von je zwei Systemen «', ' (d. h. der In-
begriff aller ihnen gemeinsamen Dinge) ist selbst wieder ein System »'.

VL Fiir je zwei Dinge o, § in U gibt es ein Ding w in %, welches
den beiden folgenden Bedingungen geniigt: «' und ' sind Teile von ',
und wenn ¢, B’ Teile von einem System p, sind, so ist auch p' ein
Teil von u,.

Dal wirklich diese Eigenschaften eine unmittelbare Folge der
Grundgesetze 4 und der obigen Definition der Systeme o' sind, wird
der Leser ohne jede Miihe finden, und zwar wird V. durch v = o -+ 8,
und VI durch g = o — g erfiillt.

Laft man nun die Erinnerung an die Operationen + ginzlich
fallen, und nimmt man lediglich an, es gelten in einem System A
die vorstehenden sechs Eigenschaften, so kann man den Systemen o
eine zweite Klasse von Systemen o« innerhalb U gegeniiberstellen,
deren Erklirung die folgende ist. Bedeutet o irgendein Ding in 9,
so gibt es zufolge II. mindestens ein Ding o, von der Art, dab «
in oy enthalten ist, und mit o soll der Inbegriff aller dieser Dinge
o, bezeichnet werden. Man wird sich leicht iiberzeugen, daf diese
Systeme «” (wenn man zugleich e«,, v, g, u, bzw. durch oy, g, », v,
ersetzt) genau dieselben sechs Eigenschaften besitzen wie die
Systeme o', und riickwirts ergibt sich aus den Systemen ", falls
diese gegeben sind, auf dieselbe Weise wieder die Konstruktion der
Systeme «'.

Wenn nun in % eine der beiden Klassen von Systemen o, o
und folglich auch die andere gegeben ist, so kann man in %A zwei
Operationen - eindeutig dadurch definieren, dab o +f — v, 0« —
— u gesetzt wird, wo », u die in V., VI. angegebene Bedeutung
haben, und man zeigt leicht, daf diese Operationen die Grundgesetze 4
einer Dualgruppe U erfiillen, und daf die Systeme o, " bzw. die
Inbegriffe aller in den Formen « + @, « — & darstellbaren Dinge o,
o, sind.

Aus diesem Kreislauf von den Operationen + zu den Systemen
o', o'y und zuriick von diesen zu jenen ergibt sich einerseits, daf in
einer Dualgruppe ¥ nur die eine der beiden Operationen + durch
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eine (endliche oder unendliche) Tabelle gegeben zu sein braucht, daf
die andere hierdurch zugleich vollstindig bestimmt ist. Dasselbe
ergibt sich iibrigens auch ohne die Einfiihrung der Systeme o, a”
leicht aus den Grundgesetzen 4; nimmt man ndmlich an, eine dritte
Operation | erfiille fiir sich allein und in Verbindung mit der
Operation + dieselben Gesetze A wie die Operation —, so ergibt
sich, wie der Leser sogleich finden wird, daf immer «|f = a — B,
also die Operation | identisch mit — sein mub.

Andererseits lehrt dieser Kreislauf, daf eine Dualgruppe %A statt
durch eine Tabelle, in welcher die Resultate der Operationen + oder
vielmehr nur eine dieser Operationen dargestellt sind, auch auf ganz
andere Art, nimlich durch Angabe aller Systeme o', oder aller
Systeme o« vollstindig definiert werden kann.

So z B. tritt an die Stelle der beiden obigen Tabellen (oder
deren Hilften) je eine Hilfte der beiden folgenden Tabellen:

® @' o © oy "

o | oy 6 o;, & o o | e« 0 h;, e -
X e BB |

Y| v % ) & Y v Ps €

o]0 w By e 8|0 “ By e
Qs o B,y 0,6 | € e | o By, 0,8 | ¢

Diese Tabellen ergeben nun, ohne die Feder zu gebrauchen, durch
den bloBen Anblick der Zeilen die Bestitigung der obigen sechs
Eigenschaften, also den Beweis, daf die beiden Systeme A wirklich
Dualgruppen sind, und es ist wohl anzunehmen, daf auch bei kom-
plizierteren Beispielen unsere zweite Art der Darstellung von Dual-
gruppen Vorziige vor der fritheren Art besitzen wird. Auch die
Priifung, ob eine Dualgruppe den Modultypus oder gar den Idealtypus
besitzt, 148t sich wohl erleichtern, doch kann ich hierauf nicht mehr
eingehen *).

Zum Schluf erwihne ich noch folgendes. Ist o, in der Form
o + @ darstellbar, also in dem System o« enthalten, so folgt & + &,

*) Vgl. D. § 169, S.499, Anmerkung.
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= oy und hieraus « —e; = o — (« + ;) = «; umgekehrt folgt
auch o 4o, — o, aus & —o, — a, und « ist in dem System o]
enthalten. Diese Beziehung zwischen zwei Dingen «, o, einer Dual-
gruppe A tritt so hiufig auf, daB eine noch kiirzere Bezeichnung
derselben wiinschenswert ist. In der aus allen Moduln bestehenden
Dualgruppe ¥ habe ich hierfiir die doppelte Bezeichnung *)

>0, o <o

eingefiihrt, die freilich bei der Ubertragung auf andere Beispiele von
Dualgruppen dem Sinne, welcher sonst den Zeichen >, < beigelegt
wird, oft widersprechen mag, aber fiir die allgemeine Theorie doch
ganz unbedenklich ist. Aus der groBen Anzahl von Sitzen iiber den
Gebrauch dieser Zeichen erwihne ich erstens, daf aus o, < und
o < &g, Was bequem in e, <C o < o, zusammengezogen werden kann,
stets «; <oy folgt, und zweitens, dab aus o, <o und o, > ot immer
@, = o folgt. Nun ist oben gezeigt, daB es Dualgruppen gibt, in
welchen weder das Idealgesetz (5), noch das Modulgesetz (6) herrscht;
dagegen gelten in jeder Dualgruppe die folgenden Gesetze:

(@—p)+ (@—p)>a—[B+ (x—y)]
@+B)—(e+y) <a+[f—(«+y)]

v —[B+ (=) >0—(B+7),
e+ [B—(e+p] <+ (B—yp),
also auch die beiden folgenden**):
@—=B)+(@—9)>a—(B+y),
@+ B)—@+y)<at+(B—y)

Die Herstellung der leicht zu findenden Beweise mul ich aber dem
Leser iiberlassen.

und

§ 5.
Abelsche Gruppe 6.

Nach dieser Abschweifung kehren wir zu der Aufgabe zuriick,
die wir in den §§ 1 und 2 fiir natiirliche oder allgemeiner fiir (positive)
rationale Zahlen behandelt haben. Diese Aufgabe soll aber jetzt in
doppelter Weise verallgemeinert werden, zuniichst dadurch, dab statt

*) D. § 169, S.495. Vgl. auch das oben zitierte Werk von Schroder,
8. 270, Satz (20).

*¥) Vgl. Satz (25) auf S.280 des Werkes von Schroder.
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drei oder vier Zahlen beliebig viele in endlicher Anzahl » gegeben
sein sollen, wobei uns die in § 3 enthaltenen Betrachtungen iiber
Kombinationen niitzliche Dienste leisten werden. Die zweite Art der
Verallgemeinerung besteht darin, dal wir an Stelle der rationalen
Zahlen die Elemente a, b, ¢--- einer endlichen oder unendlichen
Abelschen Gruppe & treten lassen. Wir setzen also voraus, es
gibe eine der Multiplikation der Zahlen dhnliche Operation, welche
aus je zwei Elementen a, b der Gruppe & ein in derselben enthaltenes
Element a b erzeugt; wir nennen diese Gruppenoperation unbedenklich
eine Multiplikation und das erzeugte Element ab das Produkt
aus den Faktoren a, b. Uber diese Operation machen wir drei An-
nahmen, deren erste darin besteht, dall das Kommutations- und
Assoziationsgesetz

(1) ab = ba, (ab)c = a(bc)

erfiillt ist. Wir setzen zweitens voraus, es gibe in & ein Element o,
welches der Zahl 1 bei der Multiplikation der Zahlen insofern ent-
spricht, dal die Gleichung

(2) a0 —a

fiir jedes Element a der Gruppe @ gilt; es kann nur ein einziges
solches Element o geben, weil, wenn p dieselbe Eigenschaft besitzt,
op sowohl — p wie = o sein mull; dieses Element o heiit das
Hauptelement der Gruppe ®. Unsere dritte und letzte Annahme
besteht darin, dafll zu jedem Element a der Gruppe © ein reziprokes,
mit a=1 zu bezeichnendes Element von & gehort, welches der Bedingung

3) ag~l =0
geniigt; es kann nur ein einziges solches Element geben, weil, falls
aq = o angenommen wird, das Produkt qaa—! sowohl — (qa)a—!

=a"! wie = q(aa~?) = q ist. Offenbar ist a das reziproke Element
von o~ ferner o~ = o.

Wir konnen nun auch eine der Gruppenoperation entgegengesetzte
Division einfiihren; dies ist zwar fiir unseren Zweck nicht durchaus
erforderlich, aber die Schreibweise mancher Formeln wird dadurch fiir
das Auge iibersichtlicher. Wir definieren daher den aus dem Zahler a
und dem Nenner b gebildeten Bruch oder Quotienten durch

(4) a:b = & — ap,
b
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woraus

(5) <%>b —a
folgt. Zugleich leuchtet ein, daB alle Regeln der Multiplikation

Division, Erweiterung und Hebung von Zahlbriichen sich auf diese
neuen Briiche iibertragen, und daf jedes Element a der Gruppe auch
als Bruch (a:0) angesehen werden kann.

Es wird im folgenden oft von Produkten ITa die Rede sein, wo

das Produktzeichen IT sich auf alle m Elemente a« — a,, a;--- ay,
bezieht, welche unter einer gemeinsamen Form enthalten sind oder
gewissen Bedingungen geniigen; ein solches Produkt ist also erklirt
durch
(6) Mo = a,a,--- .
Es kommt aber auch vor, daf} die Anzahl m der fraglichen Elemente a
auf 1 oder 0 herabsinkt, und wir wollen festsetzen, dafl unter ITa im
ersten IFalle immer das einzige Element a, selbst, im letzteren Falle
immer das Hauptelement o der Gruppe zu verstehen ist.

Dieselbe Regel soll auch fiir die Potenz am gelten, d.h. fiir ein
Produkt aus lauter gleichen Faktoren a, deren Anzahl der Exponentm
ist; es wird daher a! = a, und a° = o0 zu setzen sein. Versteht man
ferner unter einer Potenz a—™ mit negativem Exponenten (—im)
die mte Potenz von a—1, so gelten fiir Produkte und Quotienten von
Potenzen dieselben Regeln, wie in der Arithmetik.

Nach diesen Vorbereitungen wenden wir uns zu unserem eigent-
lichen Gegenstand. Wir bezeichnen, wie in § 3, mit o, B, .-+ alle
Kombinationen, welche sich aus den n Unterscheidungszeichen
(7 1, 2,-..n
bilden lassen, und deren Anzahl = 2» ist. Fiir jede solche Kom-
bination ¢ wahlen wir willkiirlich aus unserer Abelschen Gruppe &
ein Element, welches wir durch
€©)] (et, 0)
bezeichnen wollen*). Nachdem dies geschehen ist, definieren wir fiir
jedes Paar von Kombinationen o, 8 ein zugehdriges Element (o, )
der Gruppe & durch (

_ H(ex+ g7, 0)
€) (o, B) = I CEY A

*) Eine Beschrinkung in der Freiheit dieser Wahl wird erst spiter in § 7

eintreten.
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wo das Produktzeichen I sich im Zahler auf alle (in § 3 definierten)
paaren Teile 7, im Nenner auf alle unpaaren Teile g der Kombi-
nation f bezieht*).

Wir bemerken zunichst, daf nach den obigen Festsetzungen iiber
den Gebrauch des Zeichens IT das in (9) definierte Element (o, ),
falls 8 = 0 sein sollte, von selbst mit dem in (8) gewdhlten oder
gegebenen Element (e, 0) identisch wird, weil es in diesem Falle gar
kein unpaares B’ und nur ein einziges paares ' — 0 gibt. Ist
ferner ¢ ein Kombinationselement, d.h. eine der » Kombinationen
ersten Grades (7), so gibt es ein einziges unpaares ¢ =— ¢ und ein
einziges paares ¢’ — 0, und aus der Definition (9) flieft der Sata

(10) (“a 0) — (0‘ + & O) (“a 6),
welcher nur ein spezieller Fall der spiteren Sitze (12) und (13) ist.
Wir stellen nun einige auf die Quotienten (9) beziigliche Sitze auf.

Satz I. Ist « — B von 0 verschieden, haben also « und 8
mindestens ein Element ¢ gemeinsam, so ist
(1) (2 B) = o.

Beweis. Denn wenn man 8 = ¢ + w setzt, wo & das Element &
nicht enthélt, so bestehen die paaren Teile " der Kombination 3
teils aus allen paaren Teilen @” der Kombination e, teils aus allen
Kombinationen von der Form ¢ + w, wo o' jeden unpaaren Teil
von o bedeutet; ebenso bestehen die unpaaren Teile 8’ von f teils
aus diesen Kombinationen ®', teils aus allen Kombinationen ¢ + o'
Bedenkt man nun, daf & auch in o enthalten, also « + & — « ist,
so bestehen die Kombinationen o + " aus allen o + " und allen
o+ @', und ebenso bestehen die Kombinationen o« -+ f' aus allen
o+ o und allen « + @"; mithin ist das System der Kombinationen
« + " identisch mit dem der Kombinationen e« -+ ', und zufolge
der Definition (9) wird (o, 8) = o, W.z.b. W.

Satz II. Ist ¢ eine Kombination ersten Grades, so ist

(12) (e, B) = (a+ ¢ B) (e, B+ &)

Beweis. Falls ¢ in § enthalten, also 4 & = g ist, leuchtet der
Satz unmittelbar ein, weil nach dem vorhergehenden Satze (x -+ &, 8)
= o ist. Im entgegengesetzten Falle sind die paaren Teile (3 + )"

*) Beispiele solcher Quotienten finden sich am Schlusse von § 2.
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teils — ", teils — & + B, und die unpaaren Teile (8 &)’ + teils
= B, teils = ¢ 4 B"; die Definition (9) gibt daher
H(e+ 8", 0) (e + ¢+, 0)
H(—+p, 0)II(«+ ¢+ B7,0)°
woraus durch Vergleichung mit (9) und mit
__ I(e+e+p"0)
“+6 D= Hatet s 0)

die Gleichung (12) folgt, w.z b.w.

Satz III. Sind «, B, y beliebige Kombinationen, so ist

(13) (“a ﬁ) = H(a + Y1y ﬁ -+ 73)a
wo das Produktzeichen IT sich auf alle verschiedenen Paare
von Kombinationen p,, y, bezieht, die den Bedingungen

(14) "ntre=v 7n—p, =0
geniigen.

(“’ﬁ+5):

Beweis. Der Satz gilt fiir y — 0, weil in diesem Falle y nur
eine einzige Zerlegung y, — 0, py, — 0 besitzt; er gilt nach dem
vorhergehenden Satze auch, wenn p ein Kombinationselement ist, weil
dann y nur die beiden Zerlegungen y, =y, p, = 0 und p, = 0
9y = 7 besitzt. Der Induktionsbeweis wird daher vollendet sein, wenn
wir annehmen, der Satz gelte fiir jede Kombination y vom Grade 7,
und hieraus seine Giiltigkeit fiir jede Kombination & vom Grade r -4 1
ableiten. Offenbar kann man 0 — p + ¢ setzen, wo & ein beliebig
gewihltes Element von 0 bedeutet, wihrend y die aus den iibrigen
r Elementen von 0 bestehende Kombination ist. Behalten nun p,, y,
ihre obige Bedeutung, so zerfallen alle Paare 4,, d,, welche den
Bedingungen 9, + 0, =0, 0, — 0, = 0 geniigen, in zwei verschiedene
Arten, je nachdem das Element ¢ in 9, oder §, aufgenommen wird;
im ersten Falle ist 0, = ¢ 4 p,, 0, = p,, im zweiten 8, = y,,
0, = & + 7,, und folglich wird das auf alle Paare d,, 0, ausgedehnte
Produkt

(e +0,, f+0,) = e+ e+, B+ ) T(e+py, B+ &+ 75)
Da nach unserer Annahme der Satz (13) fiir jede Kombination y vom
Grade r gilt, so ist auch

(¢+¢& B) = (e + &+ p,, B+ 7),
(¢, B+¢) = II(x+ 7y, B+ &+ ps)
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woraus mit Riicksicht auf den vorhergehenden Satz (12) sich
(e + 0y, B+ 0,) = (e, B)
ergibt, w.z b.w.

Beispiele zu diesem, im folgenden sehr hiufig anzuwendenden
Satze, den wir kurz den Produktsatz nennen wollen, findet man in
den Gleichungen (3), (5), (7) des § 2. Wir wollen noch bemerken,
dall der Satz zufolge I auch dann gilt, wenn man die zweite der
Bedingungen (14) fallen 1ia6t; doch wiirde diese Verallgemeinerung
nur eine scheinbare und kaum von Nutzen sein.

Satz IV. Sind o, f, y beliebige Kombinationen, so ist
(e + 7’", /3)
H(“ + 7’" ﬁ) '

wo »” alle paaren, ' alle unpaaren Teile von y durchliuft.

(15) (e, B+9p)=

Beweis. Der Satz gilt offenbar fiir y — 0, weil es dann nur
ein einziges p” = O und gar kein »' gibt, also der Nenner — o wird.
Gilt der Satz fiir jede Kombination y vom Grade r, und setzt man
irgendeine Kombination § vom Grade r 4 1 wieder in die Form y + &,
wo ¢ ein Element von § bedeutet, so bestehen die paaren Teile 8"
teils aus den Kombinationen ", teils aus den Kombinationen ¢ + ¢/,
und die unpaaren Teile 0’ bestehen aus den Kombinationen 3" und
& 4+ »"; mithin wird

I(e+ 0" ) = H(x+ 7", B) M(a+e+7, B),
Oe+0, )= I(«-+79, B) Ha—+e+y", B),
also nach unserer Induktionsannahme
H(a‘}“a”v ﬂ) — (“aﬂ +7’)
H(“+6’7 ﬁ) (05“—87[3—1—7),

und da die rechte Seite zufolge (12), wenn dort  durch B + y ersetzt
wird, = (&, p+ y + &) = («, B +9) ist, so gilt unser Satz auch fiir
jede Kombination & vom Grade r + 1, also allgemein, w.z.b.w.

Satz V. Sind «, 8, y beliebige Kombinationen, so ist
I (x, B+ 7")
(e, p+79)’

Wwo »" alle paaren, y' alle unpaaren Teile von y durchliuft.

(16) @+, B8) =
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Den auf dieselbe Weise wie im vorigen Satze zu fiithrenden
Induktionsbeweis diirfen wir dem Leser iiberlassen. Als einen
bemerkenswerten speziellen Fall wollen wir aber noch den Satz

_II(0, 8+ «")
() @B = 0 i)
hervorheben, der sich aus (16) ergibt, wenn man «, y bzw. durch
0, o ersetzt; hieraus geht ndmlich hervor, dafl die durch (9) definierten
Elemente (0, @) unserer Abelschen Gruppe & unabhédngige
Funktionen von den willkiirlich gewihlten oder gegebenen Elementen
(o, 0) sind, insofern die letzteren und iiberhaupt alle (e, B) sich
durch die ersteren ausdriicken lassen.

§ 6.

Ganze Elemente in ®.

Auch die im vorhergehenden § 5 enthaltenen Sétze sind nur als
Vorbereitungen fiir unser eigentliches Ziel anzusehen, welches darin
besteht, die in den §§ 1 und 2 beschriebenen Zahlenbildungen soweit
wie moglich zu verallgemeinern. Zu ihrer Ubertragung auf die
Abelsche Gruppe ® fehlt aber bis jetzt immer noch das wesentlichste
Moment, namlich die Unterscheidung der ganzen und nicht ganzen
Elemente dieser Gruppe, also auch der Begriff der Teilbarkeit und
eine Operation, welche der Bildung des gréften gemeinsamen Teilers
von zwei Zahlen entspricht. Der Kiirze wegen beginnen wir, weil
daraus alles andere folgt, mit dem zuletzt genannten Punkte und
machen die neue Annahme, es gibe in unserer Abelschen Gruppe ©
auler der eigentlichen Gruppenoperation (der Multiplikation), welche
aus je zwei Elementen a, b deren Produkt ab erzeugt, noch eine zweite
Operation 4+, die wir unbedenklich Addition nennen wollen, und
welche aus o, b ein Element a + b derselben Gruppe ®, die Summe
der Glieder a, b erzeugt; und zwar setzen wir voraus, dal diese
Operation + fiir sich allein und in Verbindung mit der Gruppen-
operation den vier folgenden Fundamentalgesetzen

(L ata=na,
(2) a+b="50+a,
3) (@406 +c=a+(@b+0),

4) (a4 b)c = ac be
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gehorcht, deren Inbegriff wir kurz mit G bezeichnen wollen. Diese
Gesetze herrschen, wenn die Operation -+ als Bildung des grofiten
gemeinsamen Teilers gedeutet wird, tatsdchlich in der Theorie der
rationalen Zahlen, ebenso auch in der allgemeineren Theorie der
Moduln *), und mit gewissen Vorbehalten kann man behaupten, daf
sie umgekehrt das Wesen der genannten Bildung erschopfen.

Indem wir die aus (2) und (3) fliefenden bekannten Folgerungen
iibergehen (D. § 2), bemerken wir, daf zufolge (4), wenn ¢ durch ¢!
ersetzt wird, auch die Regeln der Buchstabenrechnung fiir die Addition
von Briichen gelten; durch das Gesetz (1) treten aber wesentliche
Vereinfachungen ein, und wir heben namentlich die beiden folgenden,
leicht zu beweisenden Sitze
(5) (@+b4c)(bc+ca+ab) = (b4 ¢)(c + a)(a + b),

(6) (a+b)m =am 4 am=1p 4 ... 4 abm—1 4 ™

hervor (D. § 170, S.503), von denen wir sogleich Gebrauch machen
werden. Multipliziert man die rechte Seite in (6), wo m = 0 ist,
mit (a™ 4 b™), so wird sie = (a + b)?™, mithin ist in unserer Gruppe
auch (a 4 b)» = am -+ ™.

Vor allem miissen wir darauf aufmerksam machen, dafl durch
die Annahme der Existenz der Operation - innerhalb der Abelschen
Gruppe © die Allgemeinheit der letzteren eine wesentliche Beschrin-
kung erlitten hat; dies leuchtet unmittelbar ein durch den folgenden

Satz: Die einzige in ® als Teiler enthaltene endliche
Gruppe besteht aus dem Hauptelement o.

Beweis. Ist  eine aus A Elementen a bestehende Teilgruppe
in ®, so ist bekanntlich a* — o; aus (6) ergibt sich ferner

(a4 op—t=ar"1 4 a2 4 ... L a0,
a(a ot =o+a*"14 ... 40?4 a = (a+ o)

mithin ¢ = o, w.z.b. w.

Eine Abelsche Gruppe &, in welcher die Operation - existiert,
mufl daher, falls sie nicht aus einem einzigen Element o bestehen
soll — welchen interesselosen Fall wir ausschliefen wollen —, jeden-

also

*) Vgl. D. § 169, S.496 und § 170, S.502, — Die Moduln a bilden aber
in ihrer Gesamtheit keine Abelsche Gruppe; denn wenn es auch einen Modul
0 = [1] gibt, welcher der Bedingung (2) in § 5 geniigt (D. § 170, S.500), so
gibt es doch im allgemeinen keine reziproken Moduln a—1, welche der Bedingung
B)in §5 geniigen.
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falls eine unendliche Gruppe sein. Eine unmittelbare Folge hiervon
ist auch der

Satz: Ist a von o verschieden, so folgt aus o" — o
immer r — s.

Beweis. Denn wenn man annimmt, es sei z B. r > s, so folgt
ar—#¢ = v, und die Potenzen o, a, a2 ... a"—5—1 mogen sie verschieden
oder teilweise einander gleich sein, bilden jedenfalls eine endliche
Gruppe, woraus im Widerspruch mit unserer Annahme folgen wiirde,
daB a = o ist.

Betrachten wir nun die denkbar einfachste unendliche Abelsche
Gruppe ®, welche aus allen Potenzen ar eines von o verschiedenen
Elementes a besteht, so wollen wir uns die Frage stellen: kann es in
einer solchen Gruppe & eine Operation 4 geben, die den obigen
Gesetzen & gehorcht? Gesetzt, es sei der Fall, so muf} es eine ganze
Zahl e geben, welche der Bedingung

(M o+ a=at

geniigt. Falls nun diese Zahl e¢ positiv ist, so addieren wir unter
Beachtung von (1) auf beiden Seiten alle Potenzen a7, deren Expo-
nenten 7 der Bedingung 1 << r < e geniigen, und erhalten

ofa+ .- +at=a- ... 40
(0+af=0a(@+a)yota=nq
mithin mul e = 1 sein. Ist m = 0, so folgt hieraus

am =@ +a” =o+4a+ ... 4 am,
also zufolge (1) auch

also

0 4 am = a™,
und hieraus ergibt sich das allgemeine Gesetz
8) ar + at = at,
wo h die algebraisch grofBte der beiden ganzen rationalen
Zahlen r, s bedeutet. Sieht man umgekehrt dieses Gesetz als Definition
der Operation -+ innerhalb der Potenzengruppe ® an, so leuchtet ein,
dafl hierdurch die Gesetze G wirklich erfiillt sind. Auf &hnliche
Weise 148t sich auch die zweite Annahme behandeln, dal der in (7)
auftretende Exponent e nicht positiv ist; doch kann dieser Fall
kiirzer auf den vorigen zuriickgefiihrt werden. Bedenkt man ndmlich,
daB unsere Gruppe & auch als Inbegriff aller Potenzen des reziproken
Elementes b — a— aufgefallt werden kann, wodurch (7) die Form
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0+ b =Db—¢ annimmt, so muB der nach der jetzigen Annahme
positive Exponent 1 —e =1, also e = 0 sein, und aus dem
obigen Gesetz br + 0* — b» ergibt sich fiir diesen Fall das Gesetz
9) ar 4+ af = ak,

wo k die algebraisch kleinste der Zahlen 7, s bedeutet. In der
aus allen Potenzen eines Elementes a bestehenden unendlichen Abel-
schen Gruppe & gibt es daher zwei verschiedene Operationen +,
deren jede zufolge ihrer Definition (8) oder (9) den vier Gesetzen G
geniigt.

Nachdem das Wesen dieser Gesetze durch das vorstehende Beispiel
der Potenzengruppe einigermaflen erldutert ist, will ich noch zwei
Beispiele von Abelschen Gruppen & anfithren, in welchen es aufler
der Gruppenoperation (Multiplikation) auch Operationen + (Additionen)
gibt, welche den genannten Gesetzen gehorchen. Das System aller
Idealbriiche a eines endlichen Korpers £, unter denen auch die
Ideale als ganze Idealbriiche enthalten sind, bildet eine Abelsche
Gruppe ®, insofern ihre Multiplikation (die Gruppenoperation) die
in § 5 angegebenen Gesetze (1), (2), (3) erfillt (D. § 178, S.560,
Anmerkung); ferner ist der grolite gemeinsame Teiler a 40 von je
zwei solchen Idealbriichen a, 6 ebenfalls in & enthalten, und die
hierdurch definierte Operation + geniigt, weil die Idealbriiche zugleich
Moduln sind, auch den obigen Gesetzen . Dieses Beispiel besitzt
noch die besondere Eigenschaft, dafl jedes Element a der Gruppe &
stets und nur auf eine einzige Weise als Produkt von Potenzen pr
darstellbar ist, deren Basen p gewisse ausgezeichnete Elemente der
Gruppe &, nimlich die Primideale des Korpers & sind, wéhrend
die Exponenten r alle ganzen rationalen Zahlen durchlaufen kénnen;
um nun zu zeigen, dafl diese Eigenschaft nicht etwa, wie man ver-
muten konnte, den tieferen Grund fiir die Existenz der Operation -+
in der Gruppe ® bildet, will ich noch ein zweites Beispiel anfiihren,
dem die genannte Eigenschaft fehlt.

Ist & eine bestimmte von Null verschiedene algebraische
Zahl*) und o das System aller algebraischen Einheiten**), so
bilden alle mit @ assoziierten Zahlen, d.h. alle Produkte von der

*) Vgl. S.427, 452, 524 der zweiten, dritten, vierten Auflage von Dirichlets
Zahlentheorie.

*¥) Daselbst, S.439, 457, 532.
Dedekind, Gesammelte Werke, II. 9
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Form ae, wo ¢ alle Einheiten durchlduft, ein System a, welches
ungeéndert bleibt, wenn a selbst durch irgendeine in a enthaltene
Zahl ae ersetzt wird; dies beruht darauf, dal die Produkte und
Quotienten von irgend zwei Einheiten ebenfalls Einheiten sind. Jede
in o enthaltene Zahl kann daher als Reprisentant oder erzeugende
Zahl von o angesehen werden. Offenbar ist o selbst ein solches
System, als dessen Repriisentant die Zahl 1 oder jede andere Einheit
gelten kann. Ist b ebenfalls ein solches, durch die Zahl b erzeugtes
System, so leuchtet ein, dall alle aus je einem Faktor des Systems a
und je einem Faktor des Systems b gebildeten Produkte dem durch
das Produkt @b erzeugten System angehéren; nennen wir dieses
letztere System (dessen Zahlen umgekehrt immer, und zwar auf
unendlich viele Arten als solche Produkte von Zahlen aus a und b
dargestellt werden konnen) das Produkt der Systeme a, b, und
bezeichnen wir dasselbe mit ab, so bildet der Inbegriff aller dieser
Systeme a vermoge dieser Operation der Multiplikation offenbar eine
Abelsche Gruppe ©, deren Hauptelement das System o aller Ein-
heiten ist, wihrend das zu a reziproke Element a—! durch die Zahl
o~ ! erzeugt wird. Auf einem viel tiefer liegenden Grunde beruht
aber die Moglichkeit, in diese Gruppe ® eine zweite Operation -
einzufiihren, welche den Gesetzen G gehorcht. Ich habe bewiesen*)
dal je zwei algebraische Zahlen a, b einen sogenannten groften
gemeinsamen Teiler d besitzen, welcher dadurch charakterisiert ist
daf es vier ganze**) algebraische Zahlen @', b, », y gibt, welche
den Bedingungen

(10) a=4da, b=4db, ax+by=d

geniigen; dieser Satz ist zwar nur fiir den damals allein wichtigen
Fall bewiesen, wo @ und b (also auch d) ganze Zahlen sind; da
aber zwei beliebige algebraische Zahlen a, b durch Multiplikation
mit einem von Null verschiedenen Faktor m stets in ganze Zahlen
ma, mp verwandelt werden konnen***) so leuchtet die allgemeine
Giiltigkeit des Satzes sofort ein, wenn man den grofiten gemeinsamen
Teiler der ganzen Zahlen ma, mb mit md bezeichnet. Aus der
Form der charakteristischen Gleichungen (10) ergibt sich ferner, daf

*) Vgl. S. 465, 541, 577 der zweiten, dritten, vierten Auflage von Dirichlcts
Zahlentheorie.

%) Daselbst, S.437, 452, 524.
#4+) Daselbst, S. 439, 493, 525.
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zu zwei gegebenen Zahlen g, b immer unendlich viele solche Zahlen d
gehoren, deren Inbegriff das in der obigen Weise durch irgendeine
von ihnen erzeugte System b ist, und dieses System b bleibt auch
ungeéindert, wenn a, b durch irgendwelche Zahlen der ihnen ent-
sprechenden Systeme a, b ersetzt werden. Das Element d unserer
Gruppe © ist daher durch die Elemente a, b vollstindig bestimmt,
und folglich wird eine neue Operation + durch die Festsetzung
a ++ b =1» eindeutig erklirt; daf dieselbe den vier Gesetzen @ geniigt,
wird der Leser ohne Miihe aus den Gleichungen (10) ableiten. Ich
bemerke aber zum Schluf, daf in dieser Gruppe & eine Darstellung
aller Elemente a als Produkte von Potenzen von festen Primelementen
nicht vorhanden ist (vgl. D., § 174).

Wir verlassen diese Beispiele und wenden uns zur Betrachtung
irgendeiner Abelschen Gruppe ©, in welcher es eine Addition +
mit den obigen Eigenschaften gibt. Indem wir nun eine Reihe von
Benennungen einfiihren, die denen der Zahlentheorie mnachgebildet
sind, bemerken wir vor allen Dingen, daB dieselben sich stets auf
diese eine Operation -+ beziehen; dies muf deshalb hervorgehoben
werden, weil es, wie sich bald zeigen wird, in jeder solchen Gruppe &
mindestens zwei verschiedene solche Operationen + gibt (vgl. das
obige Beispiel der aus allen Potenzen a” bestehenden Gruppe auf S. 128),

Wir nennen ein Element a der Gruppe ® ganz, wenn a + o
== o0 ist, im entgegengesetzten Falle gebrochen. Dann ergibt sich
zuniéichst, dafl alle Produkte und Summen von ganzen Elementen
ebenfalls ganz sind; denn durch Addition der beiden Gleichungen
@40 =0, b4 0o = o erhilt man (a 4 b) + 0 = o; multipliziert man
ferner die erste mit b, so folgt ab+ b — b, und wenn man auf
beiden Seiten o addiert, so ergibt sich ab 4 o0 = o, w.z b.w.

Das (ganze oder gebrochene) Element a soll teilbar durch b
heiflen, wenn a + b = b ist; dies kommt offenbar darauf hinaus, daB
ab=1 ein ganzes Element g, also a = bg ist; wir nennen zugleich
a ein Vielfaches von b, und b einen Teiler von a, und es leuchtet
ein, da die durch das Hauptelement o teilbaren Elemente, und nur
diese ganz sind. Benutzt man (wie in der Modultheorie) fiir diese
Teilbarkeit die doppelte Bezeichnung

a>5b b<Jq,
S0 findet man leicht, dal aus a>b und 6> ¢ auch a > ¢, und daB
aus a>b und 6> a auch a = b folgt.

9*
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Die Summe a + b von zwei beliebigen Elementen a, b ist immer
ein gemeinsamer Teiler derselben, und jeder gemeinsame Teiler n
von a, b ist ein Teiler von der Summe a 4 b, weil aus a +n =n
und b+ n = n durch Addition auch (a +b)+ n = n folgt; der
Analogie wegen kann man daher die Summe a 4 b auch den gréfBten
gemeinsamen Teiler von a, b nennen.

Zwei Elemente a, b sollen fremd*) heiflen, wenn ihre Summe
a 4+ b — o ist; zwei solche Elemente a, b sind offenbar stets ganze
Elemente, und o ist ihr einziger ganzer gemeinsamer Teiler.

Ist o fremd zu b und zu ¢, so ist a auch fremd zu b¢; multipliziert
man namlich die erste der beiden Gleichungen a +b =0, a 4 ¢=01,
aus deren letzter auch ¢ 4+ o = o, also ac + a =— a folgt, mit ¢, so
erhilt man ac 4+ bc = ¢, und wenn man auf beiden Seiten a addiert,
so folgt (a 4 ac¢)+bc=a-+¢ also a+bc =10, w.zb.W.

Umgekehrt, wenn a fremd zu dem Produkt bc der beiden ganzen
Elemente b, ¢ ist, so ist a auch fremd zu jedem der beiden Faktoren
b, ¢; denn aus der letzten der drei Annahmen a-f bc =0, b+ o=y,
¢c+o=—no folgh b=">bc+0b also a+b=(a4bc)4+b=0+b
=, w.z.b.w.

Durch wiederholte Anwendung dieser beiden Sitze ergibt sich
der allgemeinere: zwei Produkte p, q sind gewill fremd, wenn jeder
Faktor von p fremd zu jedem Faktor von q ist, und umgekehrt folgt
das letztere auch aus dem ersteren, wenn zugleich alle diese Faktoren
ganz sind. )

Sind q, b beliebige Elemente, so sind die aus ihnen gebildeten
Elemente

,__ & . b
a+b’ " a+b
immer fremd, d.h. es ist o’ 4 b = o; man kann daher

a = (a+b)a, b= (a4 bV ‘
setzen, und jeder Quotient (a:b), also auch jedes Element a = (a:0),
kann folglich in der Form (a’:0’), d.h. als Quotient von zwei fremden
Elementen o', b’ dargestellt werden; daf es nur eine einzige solche
Darstellung gibt, ist leicht zu beweisen.

*) Dieses Wort wird hier in ganz anderem Sinne gebraucht wie bei den
Kombinationen in § 3, nimlich analog dem Begriff der relativen Primzahlen in
der Zahlentheorie.



— 133 —

Indem wir eine Reihe anderer, ebenso leicht zu beweisender
Satze iiber fremde Elemente iibergehen, wenden wir uns zur Betrach-
tung der gemeinsamen Vielfachen ¢ von zwei Elementen q, b,
wobei wir die eben festgesetzte Bedeutung von a', o' beibehalten. Aus
den Annahmen ¢+ a = qa, ¢+ b =— b folgt durch Multiplikation mit
b, a bzw. bc 4 ab = ab, ac+ ab = ab, und hieraus durch Addition
(a +b)c+ab = ab, oder wenn man durch (a - b) dividiert und

ab

a-+b
setzt, ¢ +m = m, d. h. ¢ ist teilbar durch m; da nun fremde Ele-
mente o, b’ stets ganz sind, so ist m ebenfalls teilbar durch a und b,
mithin sind die gemeinsamen Vielfachen ¢ von a, b identisch mit den
simtlichen Vielfachen dieses Elementes m, welches daher nach Ana-
logie mit der Zahlentheorie das kleinste gemeinsame Vielfache von
a, b heillen mag. Wir wollen nun die Bildung dieses Elementes m
. aus den Elementen a, b als eine neue Operation — in unsere Gruppe
einfiithren; dieselbe wird also definiert durch

ab
a-+b

m —

= ab’ = ba’ = (a 4+ b)a'V’

(11) a—b =

oder, was dasselbe sagt, durch
(12) a—b= (a4 b)),
und zugleich gilt der Satz
(13) (a +b)(a —b) = ab.
Vor allem bemerken wir, dall diese neue Operation — fiir sich

allein und in Verbindung mit der Gruppenoperation — den vier fol-
genden Gesetzen

1) a—a =auq,

(2) a—b="5—aq,

() @—B—c=a—(@—0),
(%) (a—bec=ac—bc

gehorcht, welche vollstindig den Gesetzen G entsprechen, und deren
Inbegriff wir mit (' bezeichnen wollen. Die Beweise von (1) und (2')
liegen auf der Hand. Ferner ergibt sich aus der Definition

_ (a—=1b)c
(a—~b)-——€-—-—m7
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und wenn man den Bruch rechter Hand unter Beachtung von (13)
durch (a 4 b) erweitert, so erhilt man

W+ac[;c+ ap = @ e
woraus wegen der Symmetrie (3') folgt. Ebenso ergibt sich die
Gleichung (4'), weil jede ihrer beiden Seiten, wenn sie mit (a 4 b)¢
= (ac 4 bc) multipliziert wird, dasselbe Produkt abc® gibt.

Es erscheint also hier die schon oben angekiindigte merkwiirdige
Tatsache, da, wenn es in einer Abelschen Gruppe © eine Operation
+ gibt, welche den Gesetzen @ gehorcht, daraus immer eine zweite
Operation — abgeleitet werden kann, welche genau dieselben Gesetze
befolgt. Es fragt sich daher: konnen diese beiden Operationen -+
vielleicht identisch sein? Nehmen wir an, zwei Elemente a, b geniigen
der Bedingung a —b =— a + b, woraus durch Multiplikation mit
(e +b) auch ab = (a +b)*> = a® 4 ab 4 b* folgt, so erhdlt man
durch Addition von o® und von b* die beiden Gleichungen a(a 4 b)
= (a+b)® und b(a+b) = (a +0)%, mithin.a =b=a-+41b; da
also fiir je zwei verschiedene Elemente a, b auch (a — b) verschieden
von (a 4 b) wird, so sind die beiden Operationen 4 nicht identisch
miteinander; aus (12) geht aber zugleich hervor, daf sie sich voll-
stindig miteinander vertauschen, wenn jedes Element a der Gruppe &
durch das reziproke Element a—1 ersetzt wird (vgl. das oben an-
gefiihrte Beispiel der einfachen Potenzengruppe). Hierbei wollen
wir auch bemerken, daff der Satz (12), auf eine beliebige Anzahl von
Elementen ausgedehnt, in der doppelten Form*)

(14) @—b—c— )yt =qal4blfclq4 ...
(15) (@+b4c+ - )yrt=at—b1—ct—...
dargestellt werden kann, was durch vollstindige Induktion leicht zu
beweisen ist.

Es erscheint ferner die andere merkwiirdige Tatsache, daB
zwischen den beiden Operationen 4 auch die Beziehungen

(16) i +@—8)=q
an a—(@+b)=na

bestehen, welche schon daraus folgen, daf ¢ —b durch o, und a
durch a 4+ b teilbar ist; man kann sie aber auch dadurch beweisen,

(@a—b)—c=

*) Vgl. D. § 178, S.555.
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daf man die linke Seite der ersten Gleichung mit (a 4 b), die der
zweiten mit (a —b) multipliziert, wodurch zufolge (13) bzw. die
Produkte a(a 4 b), a(a —b) entstehen. Offenbar stimmen nun die
sechs Gesetze (2), (3), (2'), (3"), (16), (17), in welchen die eigentliche
Gruppenoperation gar nicht auftritt, genau mit den sechs Gesetzen A
des § 3 iiberein, welche dann die Grundlage fiir die Betrachtungen
des § 4 gebildet haben; wir konnen daher sagen, dafl unsere Abel-
sche Gruppe ®, wenn man von der Multiplikation ihrer Elemente
ganz absieht und nur die beiden Operationen =+ in das Auge fafit,
auch eine Dualgruppe ist, und wir wollen zum Schlufl noch zeigen,
dal dieselbe den Idealtypus besitzt, d. h., daf in ihr das Doppel-
gesetz (5) des § 3 gilt:

(18) (@—b)+(a—c¢) =a—(b+c),
(19) (@+b)—@+c)=a++bB—0).
Dies ergibt sich aus der Definition der Operation — durch die fol-
genden Rechnungen:
__ab ac  a(bec4ca-+ab)
=)= T T T T et
b
et = aa-f—;_-i-c)c’
b
@+8)—@+9=LEDEED,
be  bec+4ca+ab

a4+ (b—0¢ =a+

b+c¢ b+¢ ’
und aus dem obigen Satze (5) folgt die Identitit der beiden ersten
und ebenso die der beiden letzten Ausdriicke, w.z.b.w.

§ 1.
Losung der Aufgabe.
Wir kehren jetzt zuriick zu der in §§ 1 und 2 fiir rationale

Zahlen behandelten Aufgabe, um dieselbe auf ein beliehig gegebenes
System von 7 Elementen

1) &y gy ey

der in den §§ 5 und 6 betrachteten Abelschen Gruppe & zu iiber-
tragen. Es handelt sich darum, diejenigen Zerlegungen dieser Ele-
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mente in Faktoren zu finden, welche sich aus der Bildung der groBten
gemeinsamen Teiler '

a, +ag, a4 a5

a,+a,4+a5, a,+a,4aqa,- -

a1-|—a,+a3+a4--~,
von irgendwelchen Kombinationen aus diesen Elementen ableiten
lassen; diese groften gemeinsamen Teiler sind, da ihre Bildung als
stets ausfiihrbar angenommen wird, ebenfalls als gegeben anzusehen.

Zu diesem Zwecke benutzen wir die in § 5 beschriebene Bezeich-

nungsweise, indem wir zundichst die n gegebenen Elemente (1) der
Reihe nach mit den Zeichen

(2) (LO)’ (210) T (n’ 0)

belegen. Wéahrend nun in § 5 auch alle anderen Elemente von der
Form (&, 0), wo « jede beliebige Kombination aus den » Unter-
scheidungszeichen 1, 2 ... n bedeutet, als willkiirlich wahlbar oder

gegeben angesehen werden durften, so wollen wir jetzt diese Wahl-
freiheit génzlich aufheben, indem wir festsetzen, daf

(3) (e, 0) = (&;, 0) + (&5, 0) + -+~

sein soll, wo &, &, --- die simtlichen Kombinationen ersten Grades
bedeuten, deren Summe die Kombination « ist; es wird also (e, 0)
definiert als der grofite gemeinsame Teiler aller derjenigen in der
Reihe (2) enthaltenen Gruppenelemente (s, 0), welche den in e« ent-
haltenen Kombinationselementen & entsprechen; falls o selbst vom
ersten Grade ist, so besteht die Summe (3) aus einem einzigen Gliede,
welches das entsprechende Element in der Reihe (2) ist. Hiermit
sind alle Elemente (¢, 0) durch (2) vollstindig gegeben, mit Aus-
nahme des Elementes (0,0), das vorliufig noch willkiirlich
bleiben mag.

Aus diesen Elementen («, 0), deren Anzahl — 2» ist, bilden wir
nun nach der Definition (9) in § 5, also durch Multiplikation und
Division, alle Elemente von der Form («, 8); diese sind daher, wenn
a von 0 verschieden ist, ebenfalls durch die » Elemente (2) voll-
stindig gegeben, wihrend in allen Ausdriicken von der Form (0, )
auch das Element (0, 0) auftritt. Dann gelten die in § 5 bewiesenen
Sitze I bis V, und von diesen gibt der allgemeine Produktsatz III
die vollstindige Losung unserer Aufgabe. Die Beschaffenheit
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dieser Losung wollen wir aber durch die folgenden Sitze deutlich
machen, welche aus der Definition (3) fliefen.

Satz I. Sind die Kombinationen «, 8 von 0 verschieden
und @ beliebig, so ist

(4) (ot ®) -+ (B, w) = (¢ + B, ®).

Beweis. Zunichst leuchtet ein, daB dieser Satz fiir @ = 0 gilt.
Denn wenn ¢ alie Elemente der Kombination o, ebenso % alle Elemente
der Kombination 8 durchliuft, so ist («, 0) zufolge (3) die Summe
aller (&, 0), ebenso ist (B, 0) die Summe aller (», 0), und (& + g, 0)
ist die Summe aller (6, 0), wo 0 alle Elemente der Kombination
(¢ + B) durchlduft. Nun tritt zwar, wenn « und B gemeinsame Ele-
mente ¢ = 7 besitzen, das Glied (¢, 0) = (7, 0) auf der linken Seite
der zu beweisenden Gleichung (4) sowohl in der Summe (e, 0) wie
in der Summe (B, 0) auf, allein zufolge des Satzes a 4 a = a braucht
ein solches Glied nur einmal gezéhlt zu werden, und da die Elemente
von o und die von f zugleich alle Elemente 6 der Summe (« + f)
erschopfen, so ergibt sich die Wahrheit des Satzes fiir diesen Fall
o = 0. Wir nehmen nun an, der Satz sei fiir alle Kombinationen e
vom Grade r bewiesen, und wollen zeigen, dall er dann (falls r <n
ist) auch fiir jede Kombination vom Grade (» 4 1) gilt. Jede solche
Kombination 146t sich in die Form @ 4 & setzen, wo & jetzt irgend-
eine Kombination ersten Grades bedeutet, welche in der Kombination e
vom Grade r nicht enthalten ist. Setzen wir ferner zur Abkiirzung

(0!, O’) = q (ﬁ’ CO) =D, (Ev w) =

so folgt aus unserer Induktionshypothese

(¢ +¢w) = a4 B+ew) =Db+c

(c+po)=a+b (@+p+e&w) =a+b+trg
und aus dem speziellen Produktsatz II in § 5 ergibt sich

e = (@4 )(w,0+¢), b= ©0+)B o+ e,
a+b=(@+b+c)(x+ B, o+ ¢)
Hieraus folgt weiter
@+ +9{wet+a+B ot =ab+c)+ba+o
= be+ca+tab;

multipliziert man diese Gleichung mit der vorhergehenden, und dividiert
man die Produktgleichung durch die Gleichung (5) in § 6, ndmlich
durch

b+ +a)a+b) = (a4 b4 c)(bc 4 ca+ ab),
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so erhélt man

(wot+e+Bote=(@+paote),
d. h. unser Satz gilt auch fiir jede Kombination (w + ¢) vom Grade
(r 4+ 1), also allgemein, w.z.b.w.

Satz II. Sind die Kombinationen «, 8 von 0 verschieden,
80 ist (o, B) ein ganzes Element der Gruppe .

Beweis. Ist 8 von 0 verschieden, so sind die Elemente (B, §)
und (« - B, 8) nach Satz I in § 5 beide = o, und da, wenn o« ebenfalls
von O verschieden ist, nach dem eben bewiesenen Satze (e, §) + (B, )
= (& + B, B) ist, so ergibt sich (&, ) + 0 = o, w.z. b. w.

Satz III. Geniigen die vier Kombinationen «, §, y, 8 der
Bedingung «+ 8 = y + 0, und sind auberdem die Durch-
schnitte « —0 und g —y beide von 0 verschieden, so sind
(e, B) und (p, 0) fremde Elemente, in Zeichen

(5) (e B) + (9, 0) = 0.
Beweis. Wenn die Bedingung « 4+ 8 = p + 0 erfiillt ist, so
wird nach einem in § 3 bewiesenen Satze (S.111)

B=o+o d=0+0

eteoe=y+o=oa+ty,
wo zur Abkiirzung

p—y =9, a—0 =90, f—0 =
gesetzt ist. Wir wenden jetzt den allgemeinen Produktsatz III des
§ 5 auf die beiden Elemente (o, @), (y, ) an, indem wir die dort
mit y bezeichnete Kombination einmal durch g, das andere Mal durch
¢ ersetzen; in den so erhaltenen Gleichungen

(0, @) = II(ox + @,y @ + 04),

(7, @) = H(y + 6,, ® + 6y)
bezieht sich das erste Produktzeichen auf alle Zerlegungen ¢ = ¢, + ¢,
mit der Bedingung ¢, — ¢, = 0, das zweite auf alle Zerlegungen
6 = 6, + 6, mit der Bedingung 6, — 6, = 0. Da nun nach unserer
Annahme die beiden Durchschnitte ¢, 6 (also auch «, 8, y, d) von 0
verschieden sind, so besteht jedes dieser beiden Produkte aus mindestens
zwei Faktoren, und zwar sind die Faktoren (e + o, @) und (y + 6, @),
welche den Zerlegungen ¢, = ¢, 93 — 0 und 6, — 6, 6, — 0 ent-
sprechen, identisch mit (e + 9, ®); bezeichnen wir daher die Produkte
aller iibrigen Faktoren bzw. mit p und q, so wird

(% 0) =(e+ 9. 0)p (o)= @ty o)
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da ferner, wie schon bemerkt, auch «, y von O verschieden sind, so
ist (¢ + 9, @) nach Satz I die Summe der beiden vorstehenden Ele-
mente, mithin

P+q =y,

d.h. die genannten Produkte p, q sind fremd zueinander. Nun war
p das Produkt aus allen denjenigen Faktoren (¢ + ¢,, ® + 9,), In
welchen g, von O verschieden ist, und da letateres auch von e, also
auch von o + o, und @ + g4 gilt, so ist (nach Satz II) jeder solche
Faktor (« -+ ¢,, @ -+ @,) ein ganzes Element der Gruppe, und dasselbe
gilt offenbar von jedem Faktor (y 4 ¢,, ® + 6,) des Produktes g,
weil y und ¢4, also auch y + 6, und @ + 6,, von O verschieden sind.
Da aber das Produkt p der ganzen Faktoren (o + o,, @ + g,), wie
oben gezeigt ist, fremd zu dem Produkt q der ganzen Faktoren
(y + 6,, o + 6,) ist, so folgt nach einem in § 6 bewiesenen Satze
(S.182) daB auch jeder der Faktoren von p fremd zu jedem der Fak-
toren von q ist; unter den ersteren befindet sich aber der der Zer-
legung o, =— 0, ¢, — ¢ entsprechende Faktor («, ® 4+ ¢) = (e, B)
und unter den letzteren befindet sich der der Zerlegung ¢, = 0
6, = ¢ entsprechende Faktor (y, @ + 6) = (p, 0); mithin ist (e, )
fremd zu (p, ), w.z.b.w.

Satz IV. Sind die Kombinationen «, 8 von 0 verschieden
und @ beliebig, so ist

(6) (o, 0‘) + (&7, B) = (03, o+ ﬂ)

Beweis. Nach dem allgemeinen Produktsatz III des § 5 konnen wir

(0,0) = (0 + B, «+ Ba);
(o, f) = (o + &, ﬂ""%)

setzen, wo sich das erste Produktzeichen auf alle Zerlegungen § — 8,
+ B, mit der Bedingung 8, — f, = 0, das zweite auf alle Zerlegungen
# = &, + o, mit der Bedingung &, — g = 0 bezieht. Da o, 8 nach
unserer Annahme von O verschieden sind, so besteht jedes dieser
beiden Produkte aus mindestens zwei Faktoren, und zwar sind die
den beiden Zerlegungen 8, = 0, B, = f und «, = 0, &, = « ent-
sprechenden Faktoren identisch mit (@, & 4 B); bezeichnen wir daher
die Produkte aller iibrigen Faktoren bzw. mit p und g, so wird

(o2, a) = (GJ, o+ ﬁ)ps (o, ﬂ) - (a’aa + ﬁ)q
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Vergleichen wir nun irgendeinen Faktor (@ + f,, « + ,) von p mit
irgendeinem Faktor (w 4 «;, f# + &) von g, so geniigen die vier
in ihnen auftretenden Kombinationen zundchst der Bedingung

(@+ B,) + @+ By) = (@ + &) + (B + ay),
weil jede dieser beiden Summen — @ + « + f ist; da ferner B, ein
von 0 verschiedener Teil von §, und e, ein von O verschiedener Teil
von o ist, so sind auch die Durchschnitte

(@+B)—(B+ o), (0+e)—(x+ By
beide vou O verschieden. Aus diesen Eigenschaften der vier Kombina-
tionen folgt aber (nach Satz III), dafl jeder Faktor (o + 8,, « + B,)
von p fremd zu jedem Faktor (o + a,, 4 ,) von q ist; nach einem
in § 6 bewiesenen Satze (S.132) ist daher auch p fremd zu q, also
Pp+q=0y,
und hieraus folgt durch Addition der beiden letzten Darstellungen
von (@, ) und (@, B) die Gleichung (6), w.z b.w.

Satz V. Ist die Kombination &« von 0 verschieden,
® beliebig, so ist (o, «) die Summe aller (o, ), wo ¢ alle in «
enthaltenen Kombinationen ersten Grades durchlduft.

Dies ist offenbar eine unmittelbare Folge des vorhergehenden
Satzes IV. Vergleicht man den speziellen Fall @ — 0 mit der obigen
Definition (3) der Elemente (x, 0), so zeigt sich, daf die schon am
Schluf von § 5 hervorgehobene Analogie zwischen den Elementen
(e, 0) und (0, «) auch nach unseren jetzigen Beschréinkungen hin-
sichtlich der Wahl dieser Elemente bestehen bleibt.

Satz VI. Ist die Kombination « von O verschieden,
@ beliebig, so ist der Quotient

(», 0)
@ (@)
das kleinste gemeinsame Vielfache aller Elemente (@ + ¢, 0),
wo & alle in « enthaltenen Kombinationen ersten Grades
&, & --- durchlauft.

Beweis. Nach dem speziellen Produktsatz (10) des § 5 ist

(0,0) = (o + & 0)(w, &), also
(@, 0) (@ + &, 0)~1 = (w, &).
Bezeichnet man nun das im Satze genannte kleinste gemeinsame
Vielfache
(@+&,0)—(0+&, 0)—--
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zur Abkiirzung mit m, und wendet man den Satz (14) des § 6 an,
so folgt
ml = (@ + &, 0)1 4+ (0 + &, 0)"1 4 .-+,

(c") 0)m—! = (e, 51) + (o, 32) +
und da nach dem vorhergehenden Satze V diese Summe = (@, )
ist, so ergibt sich

also

(@, 0)m™ = (w,0), WM = 2—"—=

w. 7. b. w.

Hiermit sind wohl die wichtigsten Eigenschaften der Ausdriicke
(e, B) erschopft, welche zuerst in § 5 durch die Gleichung (9) ein-
gefiithrt, jetzt aber durch die Definition (3) siamtlich auf die n ge-
gebenen Elemente (2) und, falls « = 0 ist, auf (0,0) zuriickgefiihrt
sind. Von diesen Ausdriicken (e, 8), deren Anzahl — 4 ist, bieten
diejenigen, in welchen « — § von O verschieden ist, gar kein Interesse
dar, weil sie nach Satz I in § 5 alle = o sind; wir wollen daher nur
noch die iibrigen betrachten, in denen ¢ — 8 — 0, und deren Anzahl
= 37 igt. Von diesen wollen wir vorldufig auch alle diejenigen aus-
schliefen, in denen & = 0 ist, also nur solche Elemente (&, 3) bei-
behalten, die durch das System (2) ohne Zuziehung des Elementes
(0, 0) gegeben sind. Bezeichnen wir nun mit » immer die aus allen
n Zeichen 1, 2 --- n bestehende Kombination, und nennen wir jedes
Element (v,, v,), welches der Bedingung v, + », — v geniigt, einen
Kern [sc. des in (2) gegebenen Systems], so ergibt sich aus dem
allgemeinen Produktsatz III des § 5, dal jedes andere Element (e, 8)
als ein Produkt von lauter Kernen darstellbar ist; wdhlt man
nimlich dort fiir y diejenige Kombination, welche aus allen in («+ )
fehlenden Kombinationselementen besteht, so leuchtet ein, dal alle
Faktoren des Produktes

(8) (& B) = (e + 9, B+ 7’2)

Kerne sind, weil (¢ +p,)+(B+9,) =a-+pf+y=v ist. Die
Anzahl aller Kerne [zu denen (0, ») nicht gehort] ist = 27 — 1, und
wenn @, b, ¢ die Grade der Kombinationen e, 8, y bedeuten, so ist
@ +b-+c=n, und 2¢ ist die Anzahl aller Kernfaktoren von (e, 8).
Von besonderer Wichtigkeit fiir diese Darstellungen, unter denen sich
offenbar auch die in der Uberschrift dieses Aufsatzes genannten Zer-
legungen der » gegebenen Elemente (2) befinden, ist ferner unser
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obiger Satz III, weil er lehrt, wann zwei Kerne gewif zueinander
fremd sind. Fiir den Fall n = 4 geben die Gleichungen (3), (), (7)
des § 2 die Kernzerlegungen der Elemente (e, 0); die iibrigen Elemente
(o, ) und ihre Zerlegungen, wie z B.
(1,2) = (134,2) (13,24) (14,23)(1,234),

sind damals absichtlich gar nicht erwdhnt, um die Aufmerksamkeit
nicht von der Hauptsache, der Herstellung der Zerlegungen (7), ab-
zulenken. Schliefllich ist zu bemerken, dafl zufolge des obigen
Satzes II alle Kerne mit Ausnahme von (v, 0) gewil ganze Elemente
der Gruppe ® sind, was fiir (», 0) dann, und nur dann gilt, wenn die
gegebenen Elemente (2) sdmtlich ganz sind.

Nun noch einige Worte iiber die Bedeutung der Elemente von
der Form (0,«)! Sie laBt sich am einfachsten aussprechen, wenn
man fiir das bisher willkiirliche Element (0, 0) das Hauptelement o
der Gruppe @ wahlt. Aus dem Satze VI geht dann, wenn o — 0
gesetzt wird, das spezielle, der Definition (3) dualistisch entsprechende
Resultat hervor, dal (0, )~ das kleinste gemeinsame Vielfache aller
Elemente (e, 0) ist, wo ¢ alle in « enthaltenen Kombinationen ersten
Grades durchliduft. Wendet man aber auch auf diese Elemente (0, o)
die Zerlegung (8) an, so ergibt sich

0 =(0,0) = (v, v), (0,¢) = II(p,, o + 7,);

in der ersten dieser beiden Formeln findet sich das Produkt aller
Kerne multipliziert mit (0, ), und folglich ist dieses Produkt das
kleinste gemeinsame Vielfache aller » Elemente (2); auch die Faktoren
des zweiten Produktes sind mit Ausnahme von (0, ») lauter Kerne,
und wenn man die erste Gleichung durch die zweite dividiert, so stellt
sich auch das obengenannte kleinste gemeinsame Vielfache (0, a)—1
als Produkt von lauter Kernen dar, worauf wir aber hier nicht weiter
eingehen wollen.

§ 8.
Endliche Dualgruppen in G.

Wir wollen zum Schluf noch eine Anwendung von den be-
sprochenen Zerlegungen machen. In § 6 ist gezeigt, daf die Abel-
sche Gruppe ®, wenn es aufler der Gruppenoperation (Multiplikation)
in ibr noch eine Addition + gibt, welche den dort angegebenen
Gesetzen G gehorcht, keine endliche Gruppe (auller o) als Teiler
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enthalten kann, wobei natiirlich als Operation der Teilgruppe dieselbe
Multiplikation angesehen wurde. Dieselbe Gruppe © besitzt nun
aber in bezug auf die beiden Operationen + auch den Charakter einer
Dualgruppe vom Idealtypus, und sie kann, so aufgefalit, sehr
wohl endliche Dualgruppen als Teiler enthalten. Nehmen wir
wie in § 7 an, es sei ein System von 7 Elementen
(1) (1?0)’ (2a0) U (na 0)
der Gruppe ® gegeben, und bilden wir aus ihnen durch stets wieder-
holte Anwendung beider Operationen + immer neue Elemente, welche
dem gegebenen System hinzugefiigt werden, so wird, wie wir beweisen
wollen, diese Bildung nach einer endlichen Anzahl von Schritten ihr
Ende finden, insofern die Operationen -+ aus je zwei Elementen, welche
in dem so entstandenen System P enthalten sind, nur noch solche
Elemente erzeugen, welche schon in P enthalten sind. Zugleich wird
sich ergeben, daf alle Elemente dieser endlichen Dualgruppe B sich
durch die in § 7 betrachteten Kerne des Systems (1) ausdriicken
lassen. Am kiirzesten gelangt man synthetisch zum Ziele, indem
man umgekehrt von der gemeinsamen Form dieser Ausdriicke ausgeht,
deren Auffindung mir erst nach lingerem Nachdenken gelungen ist.
Ich erinnere zunichst an die in der Gleichung (8) des § 7 ent-
haltene Darstellung jedes Elementes von der Form («, 0), wo «, wie
immer im folgenden, von O verschieden sein soll, als Produkt von
lauter Kernen; stellt man die Kombination 3, welche aus allen in «
fehlenden Elementen besteht, auf alle verschiedenen Arten als Summe
B, + B; von zwei fremden Kombinationen §,, B, dar, so wird

(2) (, 0) = H(d + B1, ﬂﬂ)a
und alle Faktoren (¢ + B,, B,) sind offenbar Kerne, weil (¢ + 8,) + f,
= o+ f = v ist, wo v wieder die aus allen » Elementen 1,2...7n
bestehende Kombination bedeutet; der Zerlegung 8, = 0, g, — B
entspricht der Kern (e, f), und ebenso wird der Kern (», 0) durch
die Zerlegung B, = B, B, = 0 erzeugt.

Unter einem vollstindigen Produkt p verstehe ich nun jedes
Produkt aus lauter verschiedenen*) Kernen f, welches folgende Eigen-
schaft besitzt: wenn unter den Faktoren f sich der Kern («, 8) befindet,

*) Dies Wort ist hier und im folgenden immer nur im Sinne der #uBerlichen
Be.zeichnung aufzufassen; es kann sehr wohl geschehen, daB in bestimmten Bei-
spielen zwei #uflerlich verschiedene Elemente einander gleich werden.
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so enthilt p auch alle anderen Kernfaktoren (o + g,, ;) des Elementes
(%, 0) in (2). Unser Ziel besteht darin, zu beweisen, dafl die oben-
genannte Dualgruppe ¥ nichts anderes ist als der Inbegriff aller
dieser vollstindigen Produkte p. Hierzu fithren die folgenden Be-
trachtungen.

Zunidchst iiberzeugt man sich leicht, daff das Produkt («, 0) in (2)
selbst die genannte FEigenschaft besitzt; denn wenn man aus seinen
Faktoren f einen bestimmten Kern (a + §,, 8,) herausgreift und die
Kombination f, auf alle Arten als Summe 8, 4+ 8, von zwei fremden
Kombinationen f;, 8, darstellt, so erhdlt man

(¢ + By, 0) = II(e + B, + Bs: B
offenbar befinden sich aber alle Faktoren dieses Produktes auch unter
den Faktoren f des Produktes (2), und folglich ist (e, 0) wirklich ein
vollstandiges Produkt.
Aber diese Elemente (o, 0) sind keineswegs die einzigen voll-
stindigen Produkte; wahlen wir z. B. n =— 4 und betrachten das aus
sechs verschiedenen Kernen (w, ) gebildete Produkt

p = (1234,0)(123,4) (124,3) (134,2) (12,34) (13,24),
so erhilt man nach (2) fiir die Elemente (x, 0) die Zerlegungen

(1234,0) = (1234,0),
(123,0) = (1234,0)(123,4),
(124,0) = (1234,0)(124,3),
(134,0) = (1234,0) (134,2),
(12,0) = (1234,0) (123,4) (124,3) (12,34),
(13,0) = (1234,0)(123,4) (184,2) (13,24),

und da alle rechts auftretenden Kerne auch Faktoren des Produktes p
gind, so ist letzteres vollstindig, wihrend z B. das Produkt

(1234,0) (134,2) (12,34)

unvollsténdig ist, weil unter seinen Faktoren die beiden in (12,0)
enthaltenen Kerne (123,4), (124,3) fehlen.

Die wichtigste Grundlage fiir unsere Untersuchung bildet aber
der folgende

Satz I. Sind p, q vollstindige Produkte, so gilt dasselbe
auch von p+gq, und zwar ist p +q das Produkt aller der-
jenigen verschiedenen Kerne, welche beiden Produkten p, g
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gemeinsam sind, und p —q ist das Produkt aller verschie-
denen Kernfaktoren von ypg.

Beweis. Wir teilen die in den Produkten p, q auftretenden
Kerne in drei Arten ein, in solche (y, #), welche beiden gemeinsam
sind, ferner in solche (e, 8), welche nur in p, nicht in q auftreten,
endlich in solche (y, d), welche nur in q, nicht in p auftreten; setzen
wir zur Abkiirzung die drei entsprechenden Produkte

H(’I], '3) =T, H(“v ﬁ) = m, H('J"v 6) =1,
so wird
p=1rm q=1mn
Wir vergleichen zundchst jeden Faktor (o;, 8) von m mit jedem Faktor
(y,0) von n und setzen § —y — ¢, « — 0 — 6. Macht man nun
die Annahme, es sei ¢ = 0, so folgt aus dem in § 3, S. 111 bewiesenen
Satze, daB § = ¢ + 0, y = « + ¢ ist; mithin ist (y, d) = (« + o, )
ein Kernfaktor von («, 0), er mull daher, weil (o, B) ein Faktor des
vollstindigen Produktes p ist, ebenfalls Faktor von p sein; dies wider-
spricht aber der obigen Definition von (p, d), und folglich ist unsere
obige Annahme ¢ — 0 unzuldssig. Da aus denselben Griinden auch
der Durchschnitt ¢ = § — y von 0 verschieden und auBlerdem « -+
=y + 0 = v ist, so folgt (nach Satz III in § 7), dal jeder Faktor
(«, B) von m fremd zu jedem Faktor (p,d) von n, mithin auch
m4n=o pH+qg=rm-4n) =t

ist. Betrachtet man nun irgendeinen Faktor (7, #) von r und zerlegt
(m, 0) in seine Kernfaktoren nach (2), so mufl jeder solche Faktor,
weil (5, &) den beiden vollstindigen Produkten p,q gemeinsam ist,
ebenfalls gemeinsamer Faktor von ¥, q, also auch Faktor von t sein,
und folglich ist v ein vollstindiges Produkt, womit die Behauptungen

des Satzes iiber p + q erwiesen sind. Der andere Teil des Satzes
ergibt sich leicht aus

— P
I
denn jeder Faktor (4, u) dieses Produktes rmn ist entweder in p oder
in q enthalten, mithin ist auch jeder Kernfaktor von (4, 0) ebenfalls
Faktor von p oder q, also gewil Faktor von p — g, und da auch alle

Faktoren (4, u) verschieden sind, so ist auch p — q ein vollstindiges
Produkt, w.z b. w.

Dedekind, Gesammelte Werke, II. 10

P—q

—=rtmn =— pn — qm;,
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Durch wiederholte Anwendung dieses Satzes ergibt sich ohne
weiteres, dall er auch fiir beliebig viele vollstindige Produkte p,, v,
p, - - gilt; sowohl ihr grofiter gemeinsamer Teiler p, + p, + p, + -
wie ihr kleinstes gemeinsames Vielfaches p, — p,— p,—--- sind
wieder vollstindige Produkte; der erstere ist das Produkt aller der-
jenigen verschiedenen Kerne, welche allen Produkten p,, p,, p,---
gemeinsam sind, und das letztere ist das Produkt aller verschiedenen,
in dem Produkt p,p,p, --- auftretenden Kerne. Hieraus ergibt sich
sofort der

Satz II. Jedes vollstindige Produkt p von Kernen («, )
ist das kleinste gemeinsame Vielfache aller ihnen ent-
sprechenden Elemente (e, 0).

Beweis. Jedes Element (e, 0) ist, wie schon oben bemerkt, ein
vollstéindiges Produkt (2), mithin ist ihr kleinstes gemeinsames Viel-
faches a (nach der eben bewiesenen Regel) das Produkt aller in dem
Produkt I7 (e, 0) auftretenden verschiedenen Kerne t; alle diese Kerne £
miissen aber auch in p auftreten, weil p als vollstindiges Produkt
zugleich mit (e, B) auch alle Kernfaktoren f von («, 0) zu Faktoren
hat. Da umgekehrt jeder in p auftretende Kern (¢, ) auch ein Faktor
des Elementes (e, 0), also einer der Kerne f ist, und da alle diese
Kerne («, ) auch verschieden sind, so folgt » = a, w.z.b.w.

Wir kehren nun zu der Dualgruppe P zuriick, welche aus den
gegebenen n Elementen (1) durch wiederholte Anwendung der beiden
Operationen + entstehen soll. Durch die Operation + werden zunichst
alle Elemente von der Form («, 0) erzeugt, und diese sind, wie oben
bemerkt, lauter vollstindige Produkte; wendet man sodann auf be-
liebig viele Elemente («, 0) des so erzeugten Systems die Operation —
an, so erhilt man (nach Satz I) immer wieder vollstindige Produkte,
und zwar entstehen auf diese Weise (nach Satz II) alle vollstindigen
Produkte; endlich leuchtet ein, daf hiermit die Bildung des Systems P
schon vollendet ist, weil der Inbegriff aller vollstindigen Produkte
(nach Satz I) die charakteristischen Eigenschaften einer Dualgruppe
besitzt *).

*) Vgl. D. § 169, S.499, Anmerkung. — Die daselbst erwidhnte, aus drei
Moduln erzeugte Dualgruppe von 28 Moduln, welche den Idealtypus nicht besitzt,
erfordert zu ihrer Bildung eine mehrmals abwechselnde Anwendung der beiden
Operationen.
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Die Anzahl der in dieser Gruppe P8 enthaltenen Elemente scheint
mit der Anzahl n der gegebenen Elemente (1) sehr rasch zu wachsen;
gie ist = 18 im Falle » = 3, und (wenn ich nicht irre) =— 166 im
Falle n — 4; einen allgemeinen Ausdruck fiir diese Anzahl zu finden,
habe ich noch nicht versucht. Dagegen leuchtet ein, daf} die Elemente
von P, d.h. die vollstindigen Produkte p sich nach der Anzahl der
in ihnen auftretenden Kerne in (2 — 1) Stufen verteilen, und daf
jede folgende Stufe die nidchsten Vielfachen von den Elementen der
vorhergehenden Stufe enthilt. Endlich will ich bemerken, daf die-
jenigen Elemente von P, welche auf symmetrische Weise aus den
Elementen (1) gebildet sind, in einfachen Beziehungen zu den sym-
metrischen Funktionen stehen, welche aus den Elementen (1) auf
dieselbe Weise wie in der Algebra zusammengesetzt sind*); doch
kann ich auf die Darstellung dieser Beziehungen hier nicht mehr
eingehen.

Erlduterungen zur vorstehenden Abhandlung.

Diese wenig bekannte Arbeit ist vor allem interessant als frithe axiomatische
Untersuchung. Die Dualgruppen werden axiomatisch festgelegt durch zwei Ver-
kniipfungen und zwischen diesen bestehenden Rechengesetzen, wobei sich ins-
besondere die eine Verkniipfung als Mengen- oder auch als Modulsumme deuten
148t, die andere als Durchschnittsbildung. Zu den Dualgruppen gehioren die Modul-
und Idealbereiche, die durch das Hinzutreten von Modul- und Idealgesetz gekenn-
zeichnet sind; die Unabhingigkeit dieser neuen Gesetze wird durch Konstruktion
passender Beispiele erhirtet (§4).

Interessant ist auch der Nachweis des § 6, daB eine Abelsche Gruppe not-
wendig unendlich oder gleich der Einheit sein mufi, wenn auflerdem noch die eine
Verkniipfung der Dualgruppe in ihr erklirt und distributiv mit der Gruppen-
verkniipfung verbunden ist. Und weiter, daf eine solche aus einem Element er-
zeugte Gruppe notwendig auf ganzzahlige, nichtarchimedische Bewertungen fiihrt.

Die Idealtheorie auf Grund der Dedekindschen oder etwas modifizierter
Axiome ist von H. Grell (Math. Ann. 97) und W. Krull (Math. Zeitschr. 28)
entwickelt worden.

Noether.

*) Vgl. D. § 170, S. 503, Anmerkung.

10*
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Uber die Anzahl der Idealklassen in reinen kubischen
Zahlkorpern.
[Journal fiir reine und angewandte Mathematik, Bd. 121, S.40—123 (1900).]

Die vorliegende Abhandlung ist im Laufe des Winters 1897/98
durch Umarbeitung eines aus dem Jahre 1871 oder 1872 stammenden
Entwurfes entstanden; ihr Hauptergebnis habe ich (Februar 1873) in
meiner Anzeige™) der Vorlesungen iiber die Kreisteilung von P. Bach-
mann bei Besprechung des kubischen Reziprozititsgesetzes mit den
folgenden Worten kurz angedeutet: ,Bedeutet k& eine ganze rationale
Zahl, deren Kubikwurzel irrational ist, so entspringt aus der Gleichung
2°® — k ein reiner kubischer Korper, dessen Grundzahl die Form
D = — 3¢* hat, wo g eine aus k leicht abzuleitende ganze Zahl ist.
Fragt man nun nach allen in % nicht aufgehenden Primzahlen p von
der Form 3% + 1, von welchen die gegebene Zahl k kubischer Rest
ist, so gelangt man mit Hilfe des Reziprozititssatzes zu folgendem
interessanten Resultat, welches im wesentlichen schon Gauf3 bekannt
gewesen ist (und sich auf beliebige kubische Korper ausdehnen lifit):
Die simtlichen nicht &quivalenten, urspriinglichen positiven qua-
dratischen Formen az® +bxy +cy? in welchen b* —4ac = D,
zerfallen in drei Abteilungen von gleich vielen Individuen, deren erste
eine Gruppe bildet, durch deren Formen alle und nur solche Prim-
zahlen p dargestellt werden, von welchen % kubischer Rest ist. Mit
Hilfe desselben wird die Bestimmung der Anzahl der Idealklassen des
kubischen Korpers auf einen bekannten Teil der Theorie der Theta-
funktionen zuriickgefiihrt. Zur Vergleichung bemerke ich, daf die hier
gebraucliten Zeichen %, z, g in der folgenden Abhandlung bzw. durch
0, O, k ersetzt sind; der Satz iiber die fiir den kubischen Korper

*) Schlémilchs Zeitschrift fiir Mathematik und Physik, Jahrgang 18; 1873.
Literaturzeitung 8. 22, 43.
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charakteristische Drittelung der Gruppe der quadratischen Formen
von der Diskriminante D findet sich in §11. Die eingeklammerten
Worte, welche sich auf die Ausdehnung dieses Satzes auf alle
kubischen Korper beziehen, habe ich damals, weil ich im Besitze des
Beweises zu sein glaubte, dem Manuskripte der Anzeige gleich nach-
geschickt, ihre Einfigang an der bezeichneten Stelle ist aber iiber
dem groBen Leipriger Setzerstrike versiumt, und sie sind erst im
folgenden Hefte der Literaturzeitung (S.438) abgedruckt. Durch Uber-
héufung mit Amtsgeschiften wurde ich in jemer Zeit fiir mehrere
Jahre an jeder wissenschaftlichen Titigkeit gehindert, und erst spéter
habe ich erkannt, daf die mir zu Gebote stehenden Mittel zum
Beweise der Allgemeingiiltigkeit des Satzes nicht ausreichten. Seitdem
bin ich nur voriibergehend und ohne den gewiinschten Erfolg zu
dieser Untersuchung zuriickgekehrt; doch zweifle ich auch heute nicht
an der Wahrheit des Satzes, den ich in allen Beispielen bestitigt
gefunden habe, und ich glaube auch, daf fiir Kérper von negativer
Grundzahl die jetzt mehr ausgebildete Theorie der komplexen Multi-
plikation der elliptischen Funktionen zum Beweise wobl ausreichen
wird; vielleicht wird, wenn dies gelingt, hierdurch auch ein Weg zur
Losung des grofen Ritsels gebahnt, welche algebraische Zahlkorper
den Klassen der bindiren quadratischen Formen (oder Moduln) von
positiver Digkriminante entsprechen. Meine bisherigen auf diese
Fragen beziiglichen Versuche gedenke ich in einer Abhandlung iiber
die Invarianten beliebiger kubischer Korper mitzuteilen. Die gegen-
wirtige Abhandlung, welche sich ausschliefilich mit den reinen
kubischen Korpern beschiftigt, verfolgt lediglich das in der oben
erwahnten Anzeige vom Jahre 1873 angedeutete Ziel und endigt mit
der Einmiindung der Untersuchung in die Theorie der komplexen
Multiplikation. Ich erwihne schlieflich, daB die Theorie der reinen
kubischen Korper meines Wissens bisher nur von A. Markoff behandelt
ist; seine Abhapdlung*) ,Sur les nombres entiers dépendants d’une
racine cubique d’un nombre entier ordinaire“ beschrinkt sich im
wesentlichen auf die (von mir in §§1—5 behandelte) Bestimmung
der in dem Korper vorhandenen Ideale, wobei die Auffassung von
Zolotareff zugrunde gelegt ist; aullerdem gibt sie am Schiusse eine
sehr wertvolle Tabelle von Einheiten (vgl. unten §13).

. *) Mémoires de I'Académie impériale des sciences de St.-Pétersbourg, VIIe série,
ome 38.
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§ 1.

Reine kubische Zahlkorper.

Ist die rationale Zahl 0 nicht die dritte Potenz einer rationalen

3
Zahl, so sind die drei Kubikwurzeln ® = V0 irrational, und es kann
auch keine von ihnen die Wurzel einer quadratischen Gleichung
@ + m® + n — 0 mit rationalen Koeffizienten m, » sein; multi-
pliziert man nimlich mit @, so wiirde hieraus (n — m?)® 4 (0 —mn)
= 0, also, weil @ irrational ist, » = m? und 0 = mn = m?® folgen,
was im Widerspruch mit unserer Annahme iiber @ steht. Mithin ist
jede der drei Wurzeln @ eine algebraische Zahl dritten Grades (vgl
§ 167, S.492 der vierten Auflage von Dirichlets Zahlentheorie, die
ich mit D. zitieren werde). Im folgenden bezeichnen wir mit @ die
reelle Kubikwurzel aus 0, mit @, @' die beiden imaginiren
Wurzeln

0 = O9, @' = @92,

wo ¢ eine imagindre dritte Einheitswurzel, also
, +eoet+1=0
1st.

Aus dem Korper R der rationalen Zahlen entsteht durch Adjunk-
tion der Zahl ® der reine kubische Zahlkorper K = R (@) vom
Grade (K, R) = 3; er besteht aus allen Zahlen von der Form

x == 2,0 + 2,0 + z,

WO &,, ¥, x; beliebige Zahlen in R bedeuten, und jede Zahl % kann
auch nur auf eine einzige Art in dieser Form dargestellt werden,
weil die drei Potenzen ®2, @, 1 eine irreduzible Basis von K bilden
(D. § 164, 8.472). Die beiden Korper R und K sind die -einzigen
Divisoren von K; denn wenn der Kérper L in K enthalten ist, so
folgt (nach D. § 164, S.473), daB (K, L) (L, R) = (K, R) = 3, also
entweder (K, L) = 3, (L, R) = 1, L = R oder (K,L) =1, (L, R)
= 8, L = K ist. Betrachtet man nun irgend eine in K enthaltene
Zahl % von der obigen Form, so ist der von ihr erzeugte Korper
R (x) jedenfalls Divisor von K, und zwar tritt der Fall R(x) = R
immer und nur dann ein, wenn x rational, also z, — xz, =— 0 ist;
jede irrationale Zahl x» des Korpers K erzeugt daher stets denselben
Korper R(x) — K und (ist folglich eine algebraische Zahl dritten
Grades.
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Diese Schliisse sind offenbar unabhingig von der Voraussetzung,
daB @ reell ist, und gelten daher ebenso fiir die beiden reinen
kubischen Korper K' = R (@) und K" = R(®"). Bedeutet z. B. »'
eine irrationale Zahl des Korpers K', so ist R(x) =— K', und folglich
kann %' nicht reell sein, weil sonst K' aus lauter reellen Zahlen
bestehen wiirde, wihrend doch die imaginére Zahl @ — @¢ in K’
enthalten ist; mithin enthalten die Korper K', K" aufier den rationalen
nur imagindre Zahlen, wihrend K nur aus reellen Zahlen besteht.
Die beiden Korper K', K" sind aber nicht allein von K, sondern
auch voneinander verschieden; denn wire K'— K", so miilite die
Zahl @' = @'g, also auch die Zahl ¢ =— @":@ in K' enthalten
sein, was nach dem Obigen nicht angeht, weil ¢ eine algebraische
Zahl zweiten Grades ist.

Der Korper K besitzt drei Permutationen (D. §165), durch
welche er in die drei konjugierten Korper K, K', K" iibergeht; jede
in K enthaltene Zahl » von der obigen Form

x = 2,0 + 2,0 4 =,
geht durch die erste, die identische Permutation in sich selbst, durch
die zweite und dritte in die konjugierten Zahlen »' — x,0"* 4 2,6’

+ 2, und %" = 2,0"* + 2,0" + z, iber; ist ' = u + vi, Wo u, v
reelle Zahlen bedeuten, wihrend ¢ = V—1 ist, so ist »" = u — vi.
§ 2.

Invarianten des Korpers K.

Jede von Null verschiedene rationale Zahl 0 kann offenbar immer

und nur auf eine einzige Weise in der Form
0=ab’c
dargestellt werden, wo ¢ rational ist, und a, b natiirliche Zahlen
bedeuten, deren Produkt @b durch kein Primzahlquadrat teilbar ist;
da in unserem Falle 0 nicht die dritte Potenz einer rationalen Zahl
ist, so ist aulerdem
ab>1.

3
Setzt man nun @ — ca, so wird die positive Zahl o = Vab?, und
da ¢ irrational und in K enthalten ist, so ist auch K = R («); da
3 3 [ S
ferner o — Va?b* — b Va?b ist, so wird, wenn man Va?b = § setat,
o> =bp, = oae, aff =ab;
o = ab®, p° = a’bh,
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und die allgemeine Form aller in K enthaltenen Zahlen x ist:

®x =2+ xo+ y}p,
WO 2, z, y beliebige Zahlen in R bedeuten.
Die mit & und die mit g konjugierten Zahlen ¢, «" und g, g"
ergeben sich aus
co =0, co’ = 0" =09 = cag, ca' = 0" = @9 = cnp®
und aus
ab =aff = o' = o' B",
néamlich
W=ag, o« =ue’ f=4pe, p'=Spe
und hieraus folgt allgemein

# =z+axao+yPfo’ *x' = z+ xao®+ ypPo
oder

¥ = (xa—2)0+ (yf—2)0*; » = (va—2)0*+ (yf—2)o-
Fiir das Supplement und die Norm der Zahl x erhilt man daher
(nach D. §176, S.542 und §167, S.486) die Darstellungen

r

®x' = (xo—2)' —(za—2)(y p—2)+ (yp—2)*
=@ —abxy)+(ay’ —z22)a+ (b2’ —zy)B

Nx)=xu's"=22—8abzaxy+ ab®a®+ o®b y*

Wir stellen uns jetzt die Aufgabe, alle diejenigen Zahlen x in K
zu finden, deren dritte Potenz rational ist. Nehmen wir an, es sei
%* = ¢, Wo ¢ eine rationale Zahl bedeutet, so folgt auch »'3 — ¢,
also muf

und

#=12x oder x — xo oder x = x¢?
sein; da aber allgemein
¥ —x=(1—¢")(vao—yph)
#*—xe =(1—0)(z—yPo)
# —xg' = (0" —@)(z0 — 7 ),
und auferdem die Zahl ¢ nicht in K enthalten ist, so muf im
ersten, zweiten, dritten Falle entsprechend

x=y =0, x =2 e=2,

=y =0, » =2xa ¢=abz?

r=x=0, x=yp, e =a®by’
sein. Im ersten Falle ist x rational, also R(x) = R, und dasselbe
gilt auch fiir den zweiten und dritten Fall, wenn 2 baw. y = 0 ist;
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in allen diesen Fillen ist ¢ die dritte Potenz einer rationalen Zahl.
Soll also die Zahl x (ebenso wie ®) die Kubikwurzel. aus einer
rationalen Zahl e sein, welche (wie 0) nicht die dritte Potenz einer
rationalen Zahl ist, so geschieht dies nur im zweiten oder dritten
Falle, wenn # bzw. y von Null verschieden gewdhlt wird, und gleich-
zeitig wird R (x) = K; vergleicht man ferner die Formen e = a b® 2,
e = ba2y? der Zahl ¢ mit der Form 0 — ab’c®, so ergibt sich,
daB alle diese irrationalen Zahlen % des Korpers K, deren dritte
Potenz ¢ rational ist, auf dasselbe Paar @, b oder b, a fiihren.
Wir nennen daher diese beiden natiirlichen Zahlen a, b, durch welche
der reine kubische Korper K vollstindig bestimmt ist, die In-
varianten des Korpers K.

Nr “ ab | a | b | ab? i azb I k ! K l'_ A
1 2 2 1 2 4 6 1 1

2 3 3 1 3 9 9 1 1
3 5 5 1 5 25 15 2 1

4 6 6 1 6 36 18 3 1

5 6 3 2 12 18 18 3 1

6 7 7 1 7 49 21 2 3
(7) 10 10 1 10 100 10 2 1
8 10 5 2 20 50 30 6 3
9 11 11 1 11 121 33 4 2
10 13 13 1 13 169 39 4 3
11 14 14 1 14 196 42 6 3
(12) 14 7 2 28 98 14 2 3
13 15 15 1 15 225 45 6 2
14 15 5 3 45 75 45 6 1
(15) 17 17 1 17 289 17 2 1
(16) 19 19 1 19 361 19 2 3
17 21 21 1 21 441 63 6 3
18 21 7 3 63 147 63 6 6
19 22 22 1 ‘ 22 484 66 12 3
(20) 22 11 2 | 44 242 22 4 1
21 23 23 | I 1 23 . 529 69 8 1

Da der Koérper K durch Vertauschung von @ mit b nicht
geindert wird, so kann man, um alle reinen kubischen Korper K
und jeden nur einmal zu erhalten, so verfahren: man betrachte alle
natiirlichen Zahlen, welche > 1 und durch kein Primzahlquadrat
teilbar sind, und zerlege jede auf alle Arten in zwei Faktoren g, b,
von denen a der grofere ist; bezeichnet man dann mit « und 8 die
positiven Kubikwurzeln aus @¢b® und a@?b, so ist R(x) = R(f) ein
reeller reiner kubischer Korper K, zu welchem jedesmal zwei konju-
gierte imagindre reine kubische Korper K', K" gehoren. Hier folgt
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der Anfang einer solchen Tabelle (siehe S.153) aller reinen kubischen
Korper K; die in ihr auftretenden Spalten k£ und %" werden spiter
(8§38, 4, 9) erklirt werden, und % bedeutet die Anzahl der Ideal-
klassen des Korpers.

§3.

Die in 3 @b aufgehenden Primideale.

Es sei o die Hauptordnung des Korpers K, d. h. der Inbegriff
aller in ihm enthaltenen ganzen algebraischen Zahlen, und

A(0) =D
die Diskriminante oder Grundzahl von K (D. §175, S.538). Um o
und D zu bestimmen, betrachten wir zunichst den Modul

n = [1, e f],
d. h. den Inbegriff aller derjenigen Zahlen » — z + xw« + y 3, welche
durch beliebige ganze rationale Zahlen z, x, y erzeugt werden; da
die Basiszahlen 1, «, 8 ganze (algebraische) Zahlen sind, so gilt
dasselbe von allen diesen Zahlen %, d. h. der Modul n ist teilbar
durch den Modul o, was in Zeichen durch n>>o0 oder (m,0) =1
ausgedriickt wird (D. § 171, 8. 510); zugleich ist
A () = D (o, n)?,

wo (o,n) die Anzahl der nach dem Modul n inkongruenten Zahlen
in o bedeutet (D. § 175, S.539). Zufolge der Definition der Dis-
kriminante eines Moduls (D. § 175, 8. 536) ist nun 4 (n) das Quadrat
der Determinante

1’u7 ﬁ ‘17 a, ﬂ

Lo, f| = lae Bo°| = 3af(e®—o0)
La", " 1, e Be
und da f = ab, und (¢®> — ¢)* — — 3 ist, so ergibt sich
4(n) = — 3(3ab)%;

aus der Vergleichung mit der obigen Form von (n) folgt, dal die
Anzahl (o, n) ein Divisor von 3ab, also

3ab =k(o,n), D = — 3k
ist, wo k eine natiirliche Zahl bedeutet. Die Bestimmung dieser fiir
alles Folgende sehr wichtigen Zahl &k wird erleichtert, wenn wir vorher
alle in 3 a b aufgehenden Primideale des Korpers K aufsuchen, unter
welchen sich jedenfalls auch alle in der Grundzahl D aufgehenden
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Primideale befinden; mit dieser ohnehin unerlaflichen Aufgabe wollen
wir uns daher jetzt beschéftigen.

Betrachten wir zundichst ein in ¢ aufgehendes Primideal p, so
mufl die durch p teilbare natiirliche Primzahl p, welche zugleich die
kleinste in p enthaltene natiirliche Zahl ist (D. § 179, S.563), eben-
falls in @ aufgehen, und da ab nicht durch p® teilbar ist, so wird

o = ab® = pq,
wo ¢ nicht durch p, also auch nicht durch p teilbar ist; da nun p
in p, pg, &%, also auch in o aufgeht, so muB p* in pg, also auch
in p aufgehen; nach einem allgemeinen, aus der Betrachtung der
Normen folgenden Satze kann aber die Anzahl der (gleichen oder
verschiedenen) Primideale, deren Produkt — o p ist, nicht groBer als
der Grad des Korpers, in unserem Falle also nicht grofier als 3 sein;

mithin ist 0p =, N@F) = (09) = p,

d. h. op ist die dritte Potenz eines Primideals p vom ersten Grade
(D. §180, S.565). Ganz dasselbe gilt offenbar fiir alle in b auf-
gehenden natiirlichen Primzahlen p und Primideale p.

Ein anderer Weg, um zu dem vorstehenden Resultate zu ge-
langen, stiitzt sich auf die Multiplikation und Reduktion der end-
lichen Moduln (D. §170, S.502 und §172, S.519); wir wollen ihn
kurz andeuten, seine nidhere Ausfiihrung aber, weil sie keine Schwierig-
keit darbietet, dem Leser iiberlassen. Jeder natiirliche Divisor m
von g¢b hat die Form m — a,b,, wo g, Divisor von g, b, Divisor
von b ist; betrachtet man nun den Modul

m = [m, o, ﬁ]?
so findet man leicht
w?* = [m, a, o, b, B, m* = mn;
da nun on = o ist, weil n die Zahl 1 enthilt, so ergibt sich
om = (om)’,
wo om offenbar ein Ideal ist. Als spezieller Fall entspringt hieraus
fiir das oben mit p bezeichnete Primideal die Darstellung

b =o[p, e ]

Unsere Aufgabe, alle in 3 ab aufgehenden Primideale zu finden,
ist durch das Vorstehende offenbar erledigt, wenn @b durch 3 teilbar
ist; im entgegengesetzten Falle, wo

@ =b =1 (mod 3),
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kommt es aber noch darauf an, die Zerlegung von 03 in Primideale
zu finden, und hierbei werden wir auf eine wichtige Einteilung aller
reinen kubischen Korper K in zwei verschiedene Arten gefiihrt
werden. Hierzu betrachten wir die irrationale ganze Zahl

b =0e—a,
welche zufolge o® = ab® der irreduziblen Gleichung

W+ 3ap®+3atu+ a(@®—0b>) =0

geniigt. Da der Koeffizient 3 a® von g im dritten Gliede nicht durch 9
teilbar ist, so kann g nicht durch 3 teilbar sein (D. § 173, S. 531),
aber das erste Glied p® ist durch 3 teilbar, weil dies von allen
folgenden Gliedern gilt. Aus der Existenz einer durch 3 nicht teil-
baren Zahl u, deren dritte Potenz durch 3 teilbar ist, folgt be-
kanntlich, dafl 03 nicht ein Produkt von lauter verschiedenen Prim-
idealen, sondern durch das Quadrat eines Primideals p teilbar ist;
setzt man demgemaf}

03 = Py,
so folgt aus der Betrachtung der Normen leicht, daB p und p, Prim-
ideale ersten Grades sind; denn wenn man N (p) = 3m, N(p,) = 3
setzt, wo m =1, n =0, so folgt N (03) = 3% = 32m+n  algo
3 = 2m + n, mithin m = » — 1; es ist daher

N@E) = N@F) =3,

und folglich ist auch p, ein Primideal. Aber nun entsteht die Frage,
ob p, identisch mit p ist oder nicht; hierauf antwortet der folgende

Satz: Die in der Zerlegung 03 = p’p, auftretenden Prim-
ideale ersten Grades y, p, sind gleich oder verschieden, ]e
nachdem @® — b* unteilbar oder teilbar durch 9 ist.

Zum Beweise benutzen wir die obige kubische Gleichung, welche
zufolge u 4+ @ = a die Form

W+ 3aap+a(@®—5p?) =0

annimmt, und bezeichnen mit » den Exponenten der hgchsten in (¢® — b?)
aufgehenden Potenz von 3, welcher jedenfalls =1 ist, wihrend g
und « relative Primzahlen zu 3 sind. Ist nun erstens p = p,, also
03 = 9% und p* die hochste in p aufgehende Potenz von p, so ist
1< s <2, weil g durch p, aber nicht durch 3 teilbar ist, und die
Exponenten der hochsten in p, 3aay, a(a®—b%) aufgehenden
Potenzen von p sind der Reihe nach 3s, 345, 3, Die beiden
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ersteren sind voneinander verschieden, weil 3 4 s nicht durch 3
teilbar ist, und da der kleinere von ihnen zufolge der obigen
Gleichung mit dem dritten 37 iibereinstimmen muB, so ergibt sich
3r = 388<3+s=5, also r = s = 1, mithin ist (¢® — b*) nicht
durch 9, und g nicht durch p* teilbar. Ist aber zweitens p
verschieden von p,, also 03 = p*p, nicht teilbar durch p3, so ist p]
die hochste in (a® — b?) aufgehende Potenz von p,; da nun g’ durch 3,
also w gewil durch p, teilbar ist, so sind die Zahlen u® 3aap
mindestens durch p? teilbar; zufolge der obigen Gleichung mubl
daher auch (a? — b?) durch p} teilbar sein, mithin ist r =2, also
(a®* — b?) teilbar durch 9. — Die beiden einander ausschliefenden
Annahmen iiber p und p,, welche alle Fille erschopfen, fithren also
zu zwei Folgerungen iiber die Zahl (g — b%), welche ebenfalls ein-
ander ausschlieBen und alle Fille erschopfen; mithin muB umgekehrt
p = p, oder p von p, verschieden sein, je nachdem (a® — b*) unteilbar
oder teilbar durch 9 ist, w. z. b. w.

An den vorstehenden Satz kniipfen wir noch die folgenden Be-
merkungen. Obgleich derselbe nur fiir den Fall ausgesprochen und
bewiesen ist, wo @b nicht durch 3 teilbar ist, so umfalt er doch
offenbar auch den schon vorher erledigten Fall, wo ab durch 3
teilbar ist, weil dann ebenfalls 03 = y% und a? — b? nicht einmal
durch 3, geschweige durch 9 teilbar ist. Wir teilen daher alle
reinen kubischen Korper K nach dem Verhalten der Zahl 3 in zwei
Arten ein und nennen K einen Korper erster oder zweiter Art,
je nachdem o? — b* unteilbar oder teilbar durch 9 ist, oder — was
nach dem Vorstehenden hiermit gleichbedeutend ist — je nachdem
die in der Zerlegung 03 = p*p, auftretenden Primideale p, p, gleich
oder verschieden sind.

Hierauf wollen wir den Fall eines Korpers K von zweiter Art
noch etwas niher betrachten; dann kann man

@ =pP=1—3c (mod 9)

setzen, wo ¢ eine nach dem Modul 3 bestimmte ganze rationale Zahl
bedeutet. Da das Produkt a® — 4® der beiden Faktoren ¢+ b durch 9
teilbar, ihre Summe 2@ aber unteiibar durch 3 ist, so konnen sie
nicht beide durch 3 teilbar sein, und folglich mufl einer von ihnen
durch 9 teilbar sein; mithin ist

a==+b (mod 9),
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und umgekehrt folgt hieraus, daf K ein Korper zweiter Art ist.
Unter den 21 Kérpern der Tabelle am Schlusse von §2 sind daher
die 5 durch Einklammerung ihrer Nummern (7), (12), (15), (16),
(20) kenntlich gemachten Korper von zweiter, die iibrigen 16 von
erster Art. Wir wollen nun darauf ausgehen, die beiden in 3 auf-
gehenden Primideale p, p, deutlich zu unterscheiden. Da die dritte
Potenz der Zahl y = « — o durch 3 teilbar ist, so mull g durch pp,,
also u? durch p?p; — 3yp,, mithin auch durch 3 teilbar sein; nun
ist aber
Ww=@—aP =a’>—2aa+0a> =50 —2aa+ a
=04+aa+bp)+ (a*—1—3aa),

und da der zweite eingeklammerte Bestandteil offenbar durch 3 teilbar
ist, so gilt dasselbe auch von dem ersten; setzen wir daher

1+au+bp
p=——a

so ist y eine ganze Zahl; durch Einfilhrung derselben geht die obige
Gleichung, weil > — 1= — 3¢ (mod. 9) ist, in die Kongruenz
Ww=3(kp—c—aa) (mod. 9)
iiber, und da die Zahlen u? und 9 durch 3yp, teilbar sind, so folgt
y =c+ ao (mod. p,); da ferner u == a — a durch p, teilbar, also
a=a, ac = a® = 1 (mod. p,) ist, so ergibt sich
y=c+1 (mod. y)).
Um eine &hnliche Kongruenz fiir das andere Primideal p zu

erhalten, setze man die kubische Gleichung, deren Wurzel u ist, in

die Form
p'+3aa)+a(a®—10%) = 0;

da a® — p* durch 9, also durch p* teilbar ist, so folgt hieraus die

Kongruenz
pE*+3a0) =0 (mod. p*);

nun ist w zwar durch pyp,, aber nicht durch p® teilbar (weil sonst u
durch y®p,, also durch 3 teilbar wire), mithin

W+ 3aa =0 (mod. p%);
vergleicht man dies mit der obigen Kongruenz

w4+ 3aa = 3(y —c) (mod. 9),
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welche, weil 9 durch p* teilbar ist, auch fiir den Modul p? gilt, so

folgt, dab 3(y —c) durch p® teilbar ist, und da 3 zwar durch p?

aber nicht durch p® teilbar ist, so ergibt sich die gesuchte Kongruenz
, y = c¢ (mod. p).

Besonders hervorzuheben ist aber noch das obige Resultat, daf
es in jedem Korper zweiter Art eine ganze Zahl y gibt, welche nicht
in dem Modul n enthalten ist; hieraus folgt, dal die Hauptordnung o
ein echter Teiler von n, also (o, 1) > 1 ist.

§ 4.
Die Grundzahl D.

Mit Hilfe der eben gefiihrten Untersuchung iiber die in 3ab
aufgehenden Primideale gelingt es nun ohne Schwierigkeit, die Haupt-
ordnung o jedes reinen kubischen Korpers K und hiermit seine
Grundzahl D sowie die in den Gleichungen

3ab = k(,n), D —=—3k?
auftretenden natiirlichen Zahlen % und (o, n) zu bestimmen. Nach
einem allgemeinen Satze der Modultheorie (D. § 171, L, 8.511) ist
o(o,m)>mn, d. h. jede Zahl des Moduls o wird durch Multiplikation
mit (o, n) in eine Zahl des Moduls n verwandelt. Bedeutet daher @
jede beliebige ganze Zahl des Korpers K, d. h. jede in o enthaltene
Zahl, so wird (o, n) @, also auch k(o,1)@ = 3 abw in dem Modul n
enthalten sein, und folglich ist
3abo =24 xu -+ yB,
wo z, w, y ganze rationale Zahlen bedeuten; um daher alle

Zahlen ® zu finden, haben wir alle Systeme 2, ¥, y zu suchen,

i
iir welche ¢+ xu+yp =0 (mod 3ab)

wird. Bedeutet nun zundichst p eine in o aufgehende natiirliche
Primzahl, so ist, wie in § 3 gezeigt ist, op = p%, und da «® = ab?
B® = o2b ist, so leuchtet ein, daB p die hochste in o, und p? die
héchste in B aufgehende Potenz des Primideals p ist. Aus der

K
ongruenz et zutyB=0 (mod p)
folgt daher zunsichst z = 0 (mod. p), mithin muf 2z als rationale

Zah] auch durch p, also durch p? teilbar sein (D. § 179, S.563), und
hierdurch kommt die vorstehende Kongruenz auf

ro+ypf =0 (mod p?)
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zuriick. Aus dieser Kongruenz folgt wieder zo = 0 (mod. y?), und
da o nicht durch p? teilbar ist, so mull die rationale Zahl x durch p,
also auch durch p teiibar sein. Hierdurch reduziert sich unsere
Kongruenz auf y § = 0 (mod. p*), und da B nicht durch p* teilbar
ist, s0 mufl auch die rationale Zahl y durch p, also auch durch p
teilbar sein. Mithin sind alle drei Zahlen 2z, x, y durch p teilbar.

Offenbar gilt ganz dasselbe fiir jede in 3, also fiir jede in ab
aufgehende natiirliche Primzahl p, und da @b ein Produkt von lauter
verschiedenen Primzahlen p ist, so miissen die ganzen rationalen
Zahlen z, x, y alle durch b teilbar, also von der Form

z=abw, x=abu, y=abv
sein, wo w, u, v wieder ganze rationale Zahlen bedeuten; zugleich wird

3o =w+ua-+v§p,
mithin ist 03 >n, d. h. jede ganze Zahl @ wird schon durch Multi-
plikation mit 3 in eine Zahl des Moduls n verwandelt.

Ist nun gb teilbar durch 3, gehort also die Zahl 3 zu den eben
betrachteten Primzahlen p, so miissen auch die Zahlen w, u, v durch 3
teilbar sein, mithin ist jede Zahl @ auch in n enthalten, d. h. es ist
o=m, (yn) =1, k = 3ab. Betrachten wir ferner den anderen
Fall, in welchem K ebenfalls ein Korper erster Art, also o> =b* =1
(mod. 3), aber o® — b* nicht durch 9 teilbar ist, so ist (nach §3)
auch jetzt 03 — p% und die Zahl g — « — @ ist durch p, aber nicht
durch p? teilbar. Multipliziert man nun mit » und bedenkt, daB
bp = o> = (u + a)® ist, so wird

3bo = bw+bu(p+a)+vu+a)
= %, + @, 4 + Ty,
wo die Zahlen
%y = bw + abu+ a*v, x, = bu+2av, xz =12
ebenfalls ganze rationale Zahlen sind und der Kongruenz

T+ @ p + x,u* =0 (mod. p°)
geniigen; da aber p und p? die hochsten bzw. in w und w? aufgehenden
Potenzen von p sind, so ergibt sich ebenso wie oben, dafll die Zahlen
%, %, «, der Reihe nach durch p, also auch durch 3 teilbar sind,
und hieraus folgt offenbar, dal auch die Zahlen v, w, w der Reihe
nach durch 3 teilbar sind; mithin ist auch in diesem Falle jede
Zahl @ in dem Modul n enthalten, und es gilt folglich der
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Satz. Ist K ein Korper erster Art, so ist

o — u = [l, o, B],
k= 3ab, D= —3FK.

Zugleich ergibt sich fiir diesen Fall, wie der Leser aus § 3 leicht
ableiten wird, die folgende Darstellung aller in der Grundzahl D
aufgehenden Primideale p. Geht p in @b auf, so ist

p = [pa o, ﬁ]a
wo p wieder die durch p teilbare natiirliche Primzahl bedeutet; geht
aber p nicht in @b auf, ist also p = 3, und @ b nicht teilbar durch 3,
0 18t '
y=[3,« —a, f— b

Hierauf wenden wir uns zu den Korpern K von zweiter Art,
also zu den Korpern K, welche durch die Kongruenz ¢ =+0b
(mod. 9) charakterisiert sind, woraus zugleich folgt, dali ab nicht
durch 3 teilbar ist. Wir haben schon am Schlusse von §3 hervor-
gehoben, daB in diesem Falle die Hauptordnung o ein echter Teiler
des Moduls n, also (o, 1) > 1 ist; da ferner in dem gegenwiirtigen § 4
bewiesen ist, dal der Modul n immer ein Teiler des Hauptideals 03
ist, so ist nach zwei allgemeinen Sitzen der Modul- und Idealtheorie
(D. §171, S.510 und §180, S.564)

(o,m)(n,08) = (0,03) = N (03) = N(3) = 3,
also ist (o, n) eine der Potenzen 3, 3% 3%; zufolge § 3 ist aber auch
3ab = k(o,n), und da @b nicht durch 3 teilbar ist, so ergibt sich
(o,n) = 3, k = ab. Es ist nun auch leicht, die Hauptordnung o
als endlichen Modul darzustellen. Zu diesem Zwecke erinnern wir an
das in § 3 gewonnene Resultat, dal die in n mnicht enthaltene Zahl
_l4aat+bp
- 3

eine ganze Zahl, also in o enthalten ist; setzen wir daher

o, =n+[y] =1, ¢ B 7]
80 ist der Modul o, ein Vielfaches von o und zugleich ein Teiler von n
(ndmlich der groBte gemeinsame Teiler von n und [y]), und hieraus
folgt nach dem schon vorher benutzten Modulsatze

(0, 0) (0, 1) = (0, 1) = 3;

Dedekind, Gesammelte Werke, II. 11
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da endlich die in o, enthaltene Zahl p nicht in n enthalten, also o,
ein echter Teiler von n, mithin (o, n)> 1 ist, so folgt*), daf
(05m) = 3, (0,0)) = 1, also o = o, sein mull, womit die gesuchte
Darstellung von o gefunden ist. Bedenkt man noch, daf 1 = 8y
—ao—bf ist, so leuchtet ein, da o auch als dreigliedriger Modul
[y, @, B] darstellbar ist. Das Resultat unserer Untersuchung besteht
daher in dem folgenden
Satz. Ist K ein Korper zweiter Art, so ist

o =nu+[y] =1, B y] = [y, B,
k:a,b, D ——3kK.

Auch fiir diesen Fall 148t sich die Darstellung der in D auf-
gehenden Primideale p in Form von endlichen Moduln leicht aus § 3
ableiten; da sie aber fiir den weiteren Verlauf unserer Untersuchung
nicht erforderlich ist, so begniigen wir uns, die Resultate kurz an-
zugeben. Geht die durch p teilbare natiirliche Primzahl p in ab
auf, so ist

y= [PY, o, B] = o[p, &, B];
ist aber p — 3, so findet man fiir die in der Zerlegung 03 = p%p,
auftretenden Primideale p, p, und deren Produkt die Darstellungen
vy, =30 —a, f—0],

p=9py+[y—c]= [3,7—0,a——a,ﬁ——b],

= pp1—|—[7—6—-]] =[By—c—1la—a, B —bl,
und das Produkt yp, ist zugleich der Fiihrer der Ordnung n, d. h.
der Quotient n:o oder auch der groBte gemeinsame Teiler aller in
der Ordnung n enthaltenen Ideale (D. § 180, S.572).

Nachdem in allen Fillen gezeigt ist, wie die Grundzahl
D = — 3 k? von den beiden Invarianten a, b abhingt, bemerken wir
zum Schlufi, dal — im Gegensatz zu der Theorie der quadratischen
Koérper — der reine kubische Korper K oder vielmehr das System
der drei konjugierten Korper K, K', K" offenbar durch die gemein-
same Grundzahl D im allgemeinen noch nicht vollstindig bestimmt
ist; so z. B. tritt in den beiden Zeilen 4 und 5 der Tabelle (§ 2)
derselbe Wert k& — 18 auf, mithin haben die beiden ginzlich ver-

*) Diese Folgerung (0;, n) == 3 bestiitigt sich leicht durch die Bemerkung,
da die drei Zahlen O, y, 2y offenbar ein Restsystem von 0, nach n bilden
(D. §171, S.509).
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3 e
schiedenen Korpersysteme K, K', K", von denen das eine durch V6,

3

das andere durch Y12 erzeugt wird, dieselbe Grundzahl D — — 2%.35,
und #hnliches wiederholt sich in den Zeilen 13, 14 und in den
Zeilen 17, 18 der Tabelle. Dafi dieselbe Krscheinung auch bei
Kérpern zweiter Art auftritt, zeigt die Vergleichung des Invarianten-
paars @ = 34 = 217, b =17 mit dem Invariantenpaar ¢ = 119
= T-17, b = 2, denen derselbe Wert k = aqb = 2.7-17, also
dieselbe Grundzahl D =— — 3.2%2.72.17% entspricht, weil in beiden
Fillen ¢ = b (mod. 9) ist.

§ 5.
Die in der Grundzahl nicht aufgehenden Primideale.

Wir wenden uns jetzt zu der Aufgabe, auch alle diejenigen
natiirlichen Primzahlen p, welche nicht in der Grundzahl D auf-
gehen, in ihre idealen Primfaktoren p zu zerlegen. Um die Koérper
von erster und zweiter Art gemeinsam zu behandeln, erinnern wir
daran, daB (nach §4) jede ganze Zahl @ in K durch Multiplikation
mit 3 jedenfalls in eine Zahl des Moduls n = [1, &, 8] verwandelt
wird; da p =11 (mod. 3), so ist also auch das Produkt (1 F p) e,
welches = w (mod. p) ist, in n enthalten, und man kann daher immer

o =z+2e+yp (mod p)

setzen, wo 2, &, ¥ ganze rationale Zahlen bedeuten. Durchliuft jede
von ihnen ein bestimmtes System von p inkongruenten Zahlen (mod. p),
so nimmt der Ausdruck rechter Hand p® verschiedene Werte » an,
und jede in n enthaltene Zahl ist wenigstens einer dieser Zahlen »
kongruent (mod. p); zufolge der vorstehenden Kongruenz ist aber auch
jede ganze, d. h. jede in o enthaltene Zahl w mit einer Zahl » kon-
gruent, und da die Anzahl (o,0p) aller nach p inkongruenten
Zahlen @ ebenfalls = N (0p) = N (p) = p? ist, so ergibt sich, daB
die genannten Zahlen v simtlich inkongruent (mod. p) sind und
folglich ein Restsystem von o nach op bilden (D. § 180, S.564); es
kann daher auch nur dann o = 0 (mod. p) werden, Wenn z = x
=y = 0 (mod. p) ist¥*).

*) In der Zeichensprache der Modul- und Idealtheorie (D. § 169, S.496, 498
und §171, S.510 und §180, S.564) driicken sich diese Beziehungen zwischen
0, 1 und p auf folgende Weise aus: 1+ 0p = 0, n—0p = nyp, also (1, 0 p)
= (mnp) = (0,0p) = N(p) = p*

11*
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Benutzt man nun den fiir alle ganzen algebraischen Zahlen &, 9, &---
geltenden Satz (D. § 185, S.617)
Etntit-p=tq+et mod p)
und bedenkt, dal nach Fermat fiir jede ganze rationale Zahl z
immer 2? =z (mod. p) ist, so ergibt sich
0 =z+xa? 4 ypr (mod. p)
und durch Wiederholung dieses Verfahrens allgemein
o’ =z+ x4+ ypr"  (mod. p),
wo n jede natiirliche Zahl bedeutet. Das Verhalten der Primzahl p
ist nun ganz verschieden, je nachdem p = 4 1 oder p = — 1 (mod. 3)
ist; wir trennen daher unsere Untersuchung in zwei Hauptteile und
betrachten zuerst den einfacheren Fall
L p=3m—1=—1 (mod. 3)
Dann ist p* —1 = (p+ 1)(p—1) =3m(p—1), und da abd
nicht durch p teilbar ist, so folgt aus dem Satze von Fermat
o1 = (ab?)"@?—V =1 (mod. p)
pr*—1 = (a’by»*—V =1 (mod. p),
o =a, fP° = (mod. p),
und folglich geniigt jede ganze Zahl & des Korpers K der Kongruenz

also

o’ = o (mod. p).

Hieraus folgt erstens, dafl p durch kein Primidealquadrat teilbar
sein kann; denn wenn in irgendeinem endlichen Korper jede ganze
Zahl o einer Kongruenz von der Form

0o =20+ pe®+rve*+ - (mod. q)
geniigt, wo a ein bestimmtes Ideal und A, w, v --- bestimmte ganze
Zahlen dieses Korpers sind, so miifite, wenn a durch das Quadrat
eines Primideals p teilbar wire, jede durch p teilbare Zahl @ auch
durch p? teilbar, d. h. es miiite p selbst durch p® teilbar sein, was
unmoglich ist.

Da ferner die Anzahl der inkongruenten Wurzeln @ der obigen
Kongruenz = (o, 0 p) = 9% also groBer als ihr Grad p* ist, so folgt
zweitens (D. §180, S.570), daB op selbst kein Primideal, also ein
Produkt von zwei oder drei verschiedenen Primidealen ist. Im letz-
teren Falle miilten diese drei Primideale, weil das Produkt ihrer
Normen = N (0 p) = p® ist (D. §180, S.564), alle vom ersten Grade
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gein, es miifte daher (D. § 180, V, S. 570), wenn o jede ganze Zahl
bedeutet, @? — o durch jedes dieser Primideale, also auch durch ihr
Produkt o p teilbar sein; nun ist aber z. B. 0?2 = o&*™ =D = (a d*)"~?
und o = bB, also a? = gf, wo g eine ganze rationale Zahl be-
deutet, mithin ist die in n enthaltene Zahl ¢ — a? = o — g  nicht
durch p teilbar, und folglich unsere Annahme unzulissig. Das
Resultat unserer Untersuchung besteht also darin, daB o p ein Produkt
von zwei verschiedenen Primidealen p, y, ist; offenbar mufl das eine
vom ersten, das andere vom zweiten Grade sein, und wir kénnen daher

op = PP, N®=p NO)= P’
setzen. — Hierauf wenden wir uns zu dem Fall
IL p=3m+1=+1 (mod. 3)
Dann hat bekanntlich (D. §31, 8.73) die Kongruenz u® =1
(mod. p) drei inkongruente rationale Wurzeln v = 1, r, 7%, wo

»+7r+1=0 (mod p)
ist; bedeutet ferner ¢ irgendeine durch p nicht teilbare ganze rationale
Zahl, so ist ¢»—1 = ¢3™ = 1 (mod. p) und folglich ¢® = r¢ (mod. p),
wo der Exponent e nach dem Modul 3 bestimmt ist; je nachdem e
durch 3 teilbar oder unteilbar ist, ist die Zahl ¢ kubischer Rest
oder Nichtrest von p, d. h. die Kongruenz w® = ¢ (mod. p) hat
im ersten Fall drei inkongruente Wurzeln w, im letzteren gar keine.

Wendet man dies auf die Zahl ¢ — ab* an und bedenkt, dal
(ab®)(a’b) = (ab)® ist, so kann man gleichzeitig
(ab®)m = re, (ab)” = ?¢ (mod. p)
setzen, und hieraus folgt
aP = are, o = aqrt, o =«

pr=pre, pr=pr, pr=5p
mithin geniigt jede ganze Zahl o der Kongruenz
o?* = o (mod. p).

Hieraus folgt wieder erstens, dall p durch kein Primideal-
quadrat teilbar ist. Wir wollen zweitens beweisen, dafl p durch
kein Primideal zweiten Grades p teilbar sein kann; wire dies namlich
der Fall, so miite (D. § 180, V, 8.570) jede ganze Zahl @ aufler
der vorstehenden auch den Kongruenzen w?* = o (mod. p), 0?’ = o?
(mod. p), mithin auch der Kongruenz @? = @ (mod. ) geniigen;
dann wire aber die Anzahl (o, ¥) = N (p) = p2 der inkongruenten

} (mod. p),
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Wurzeln o dieser letaten Kongruenz groBer als ihr Grad p, was
unmdoglich ist (D. § 180, S. 570), und folglich ist unsere Annahme
p sei durch ein Primideal aweiten Grades teilbar, unzuliissig.

Es bleiben daher nur zwei Fille iibrig: entweder ist op ein
Produkt von drei verschiedenen Primidealen ersten Grades b, Py Pay
oder op ist selbst ein Primideal dritten Grades. Im ersteren Fall
ist w?» — o fiir jede ganze Zahl @ durch jedes der drei Primideale
P, P, Py also auch durch ihr Produkt op teilbar; wendet man dies
auf die Zahl @ = « an, so folgt, daB a(l —7r¢) durch p teilbar ist,
und da « relative Primzahl zu p ist, so ergibt sich r¢ = 1 (mod. p),
also €= 0 (mod. 3), d. h. die Zahl @ b? (und ebenso a2b) ist kubischer
Rest von p. Umgekehrt, wenn dies der Fall, also e durch 3 teilbar
ist, so folgt @? = «, f» = B (mod. p), also auch allgemein w? = o
(mod. p), und es kann daher op kein Primideal sein, weil sonst die
Anzahl (o, 0p) = p* der inkongruenten Wurzeln @ dieser Kongruenz
grofer als ihr Grad p wire. Das Resultat unserer Untersuchung
besteht also hierin: Es ist

0P = PP by, N(p):N(p,):N(pz)::p,
WO P, P, by drei verschiedene Primideale bedeuten, oder es ist op

selbst ein Primideal dritten Grades, je nachdem die Zahl @b? kubischer
Rest oder Nichtrest von p ist.

§ 6.
Die Dirichletsche Idealfunktion.

Das Ziel, welches wir in der gegenwirtigen Abhandlung zu er-
reichen suchen, besteht in der Bestimmung der Anzahl % der
Idealklassen im Korper K. Die hierzu fiihrende, von Dirichlet
vorgezeichnete Methode stiitzt sich bekanntlich (D. § 184, S.609—611)
auf die Betrachtung der Funktion

1 1
J — EN(Q)S - Hl___—’
N (py
wo a in der Summe alle Ideale und p in dem Produkte alle Prim-
ideale des Korpers durchlauft, und zwar kommt alles darauf an zu
untersuchen, wie sich diese Funktion J der Variablen s fiir unend-
lich kleine positive Werte von s— 1 verhiilt. Bezieht sich nimlich
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das Grenzzeichen lim auf diese Anndherung der Variablen s an die
Zahl 1, so wird

lim (s — 1)J = gh,
wo h die Klassenanzahl der Ideale und g eine wesentlich von der
Grundzahl D und von den Einheiten des Korpers abhingende Kon-
stante bedeutet, deren allgemeiner Ausdruck

g — QP gn—
R)

jetzt fiir unseren Fall eines reinen kubischen Korpers K zu speziali-
sieren ist. Der Nenner V(D) ist die positive Quadratwurzel aus dem
absoluten Werte (D) der Grundzahl D — — 342, also Viﬁ) = kl/g,
wo V3 positiv. und k — 3 ab oder = ab ist, je nachdem K ein
Korper erster oder zweiter Art ist. Das Zeichen = hat die gewGhn-
liche Bedeutung der Ludolfschen Zahl 3,14159 ..., und % ist der
Grad des Korpers K, also n — 3. Die Zahl v ist dadurch bestimmt,
dal (2v —m) die Anzahl der reellen, also 2(n — v) die Anzahl der
imaginiren unter den mit K konjugierten Korpern K, K', K" ist;
mithin ist » = 2. Die Konstante £ bestimmt sich durch rE = §,
wo r die Anzahl 2 aller in dem (reellen) Korper K enthaltenen
Einheitswurzeln + 1 und S’ den Regulator eines Fundamentalsystems
S von (v —1) Einheiten in K bedeutet (D. § 183, S. 597, 602); da
v = 2 ist, so besteht S aus einer einzigen Einheit ¢ > 1, und der
Regulator §' ist = loge, mithin £ — 1loge (und alle Einheiten in
K haben die Form 4 &™, wo m alle ganzen rationalen Zahlen durch-
liuft). Durch das Eintragen aller dieser Werte in den obigen Aus-
druck erhalten wir
__2mloge
e

mithin
2mloge
kY3

Fiir die Bildung der Funktion J, zu welcher wir jetat iibergehen,
legen wir die Produktform zu Grunde; durchlauft p alle natiirlichen
Primzahlen, und bezeichnen wir mit F(p) denjenigen Faktor von J,
welcher von allen verschiedenen in p aufgehenden Primidealen p
herriihrt, so wird

J = IIF (p);
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setzen wir ferner zur Abkiirzung
1
P n — 1°
p’nb’
wo n irgendeine natiirliche Zahl bedeutet, so ergeben sich (nach
§§ 3, 5) die folgenden Regeln zur Bestimmung des Faktors F(p).

1. Geht p in k auf, so ist o p == p°, wo p ein Primideal ersten
Grades, also N (p) = p, mithin F(p) = P,.

2. Geht p nicht in k, aber in D auf, so ist p = 3 und K ein
Korper zweiter Art; dann ist op = 03 = p*p,, wo p und p, zwei
verschiedene Primideale ersten Grades bedeuten, also N(p) = N (p,)
—= 3 = p, mithin F(p) = P2

3. Gelt p nicht in D auf, und ist p = — 1 (mod. 3), so ist
op = pp,, N(») = p, N(p,) = p? within F(p) = P, P,.

4. Geht p nicht in D auf, ist ferner p = + 1 (mod. 8) und
ab® kubischer Rest von p, so ist op = ypyp p,, N() = N(p,)
= N(p,) = p, mithin F(p) = P}.

5. Geht p nicht in D auf, ist ferner p = + 1 (mod. 3) und
ab® kubischer Nichtrest von p, so ist 0p ein Primideal dritten Grades,
mithin F(p) = P,.

1

§ 7.
Der quadratische Koérper von der Grundzahl — 3.

Aus der Vergleichung der beiden letzten Regeln fiir die Prim-
zahlen p, welche = + 1 (mod. 3) sind und nicht in D aufgehen,
leuchtet ein, dafl zur Bildung unserer Funktion J die Theorie der
kubischen Reste durchaus erforderlich ist. GauB hat sich seit
dem Jahre 1805 mit dieser Theorie und derjenigen der biquadrati-
schen Reste beschéftigt*) und hierbei bald die iiberaus folgenreiche
Entdeckung gemacht, daB, um dieselben auf einen gleichen Grad von
Vollkommenheit zu erheben wie die Lehre von den quadratischen
Resten, das Gebiet der hoheren Arithmetik, in welcher bis dahin nur
rationale ganze Zahlen betrachtet waren, durch die Einfiihrung von
neuen ganzen Zahlen erweitert werden mull, welche aus dritten oder
vierten Wurzeln der Einheit gebildet sind, und hiermit war zugleich
der Grund fiir die allgemeine Theorie der ganzen algebraischen

*) Vgl. Bd. II seiner Werke, S.50, 67, 102, 161, 165, 166, 171.
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Zahlen gelegt. Gaufl hat aber von seinen Untersuchungen nur die
auf die biquadratischen Reste beziiglichen teilweise veréffentlicht,
und die in seinem Nachlall vorgefundenen Aufzeichnungen iiber die
aus dritten Wurzeln der Einheit gebildeten Zahlen sind wegen ihrer Un-
vollstandigkeit nicht in die Herausgabe seiner Werke aufgenommen*)[*)].
Den in diesem Zahlengebiete @ (dem quadratischen Korper von der
Grundzahl — 3) geltenden Reziprozititssatz fiir die kubischen Reste
hat zuerst Jacobi**¥) bekanntgemacht und in seinen Vorlesungen
bewiesen; derselbe aus der Theorie der Kreisteilung gezogene Beweis
ist spdter von Eisenstein***), der ihn ohne Zweifel unabhingig von
Jacobi gefunden hat, zuerst verdffentlicht. Da dieser Gegenstand
geitdem von mehreren Autorent) behandelt und als hinreichend
bekannt anzusehen ist, so begniigen wir uns, die wichtigsten, fiir
unsere Untersuchung notwendigen Tatsachen kurz in Erinnerung zu
bringen.

Der durch die imaginére dritte Einheitswurzel ¢ erzeugte qua-
dratische Korper @ von der Grundzahl — 3 besteht aus allen Zahlen
® von der Form x4 yo, wo x,y rationale Zahlen bedeuten, und
jede solche Zahl @ geht durch die nicht identische Permutation des
Korpers in die konjugierte Zahl @' = 2+ yo* — x—y —y ¢ iiber.
Da von den Zahlen des reinen kubischen Korpers K im folgenden
gar nicht mehr die Rede sein wird, so bezeichnen wir die Norm
oo =— 2 —zy -+ y* unbedenklich mit N (@), und ebenso setzen wir
die aus allen ganzen Zahlen & bestehende Hauptordnung [1, o] = o.
Die sechs Einheiten des Korpers sind die Zahlen + 1, 49, + %
die wir gemeinsam immer mit ¢ bezeichnen. Alle Ideale des Korpers
sind Hauptideale, d. h. jede von 0 und den Kinheiten ¢ verschiedene

*) Vgl. unten § 11.

#¥) Uber die Kreisteilung und ihre Anwendung auf die Zahlentheorie (Monats-
berichte der Berliner Akademie vom Jahre 1837, wieder abgedruckt in Crelles
Journal, Bd. 30, 1846).

*%+) Beweis des Reziprozititssatzes fiir die kubischen Reste in der Theorie der
aus dritten Wurzeln der Einheit zusammengesetzten komplexen Zahlen (Crelles
Journal, Bd. 27, 1844). — Nachtrag zum kubischen Reziprozititssatz fiir die aus
dritten Wurzeln der Einheit zusammengesetzten komplexen Zahlen. Kriterien des
kubischen Charakters der Zahl 3 und ihrer Teiler (Crelles Journal, Bd. 28, 1844).

1) Vgl. namentlich Bachmann: Die Lehre von der Kreisteilung und ihre
Bezichungen zur Zahlentheorie. Leipzig 1872 (Vorlesungen 14 und 15).

[*) Man vgl. C. F. Gauli, Werke Bd. VIII, S.5—20 und die dazu gehsrigen

Bemerkungen von Fricke.]
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ganze Zahl ist entweder eine Primzahl z des Korpers, oder sie ist
zusammengesetzt, und im letzteren Falle kann sie stets und wesent-
lich nur auf eine einzige Art als Produkt von lauter Primzahlen =
dargestellt werden, wobei die sechs mit einer Zahl @ assoziierten
Zahlen 6w als nicht wesentlich verschieden angesehen werden. Das
System aller Primzahlen = ergibt sich in folgender Weise aus der
Betrachtung der durch sie teilbaren natiirlichen Primzahlen p. Die
Zahl p =38 = (1 —¢)(1 —9?) = —*(L —o)* ist wesentlich das
Quadrat der Primzahl ersten Grades = = 1—g; ist p = + 1
(mod. 3), so ist p = wa' = N(x) = N(x') das Produkt von zwei
konjugierten, wesentlich verschiedenen Primzahlen ersten Grades =
und #'; ist p = — 1 (mod. 3), so ist p selbst eine Primzahl zweiten
Grades z in @, also N(z) = p° Mit Ausnahme des ersten dieser
drei Fille ist daher immer N(x) = + 1 (mod. 3).

Ist w irgendeine von O verschiedene Zahl in o, so ist N (u) die
Anzahl (o, ou) aller nach p inkongruenten Zahlen in o; bezeichnen
wir ferner mit ¢'(u) die Anzahl derjenigen inkongruenten Zahlen e,
welche relative Primzahlen zu u sind, so ist ¢'(6) = 1 und, wenn
¢ keine Einheit ist,

9'(w) = N(H)H<1 -ﬁ)

wo z alle wesentlich verschiedenen, in u aufgehenden Primzahlen
durchlduft; zugleich ist

0?”® =1 (mod. ).

Ist w eine von (1 — g) verschiedene Primzahl, also N (z) = 3m
+ 1, ¢'(®) = 3m, so geniigt jede durch m nicht teilbare Zahl @
der Kongruenz
" —1 = (0"—1)(o™—g)(0™ — %) = 0 (mod. =),

und da bekanntlich keine der drei Kongruenzen

o™ = ¢¢ (mod. x),
wo e = 0 1, 2 (mod. 3) zu setzen ist, mehr als s inkongruente
Wurzeln o ha,ben kann, so muf jede von ihnen genau m solche
Wurzeln haben. Diejenigen m Zahlen w, fiir welche ¢ = 0 (mod. 3)
wird, sind die kubischen Reste der Primzahl =, d. h. fiir jede
dieser Zahlen @ (und nur fiir diese) gibt es eine oder vielmehr drei
inkongruente Wurzeln ¢ der Kongruenz £ = o (mod. z). Die iibrigen
2m Zahlen ® sind die kubischen Nichtreste von =, und sie ver-
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teilen sich in gleicher Anzahl m auf die beiden Fille e = 1, 2
(mod. 3). In allen Fillen nennen wir die durch o vollstindig be-
stimmte Einheitswurzel ¢¢ den kubischen Charakter oder kurz
den Charakter der Zahl @ in bezug auf die Primzahl z und setzen

nach Jacobi
<2> — e
7 o5

weil hier und in der Folge eine Verwechselung mit dem Symbol
von Legendre in der Theorie der quadratischen Reste nicht zu

befiirchten ist*). Unser Symbol wird also vollstéindig erklirt durch
8

(ﬂ) =1, <%) = o™ (mod. m),

T

wo m die obige Bedeutung hat. Hieraus folgt zuniichst, dall der
Wert des Symbols ungeindert bleibt, wenn die Primzahl = durch
eine assoziierte Zahl 6z, oder wenn @ durch eine nach z kongruente
Zahl ersetzt wird, und da fiir je zwei durch = nicht teilbare Zahlen
©,, ©, offenbar das Gesetz

w w/\x
gilt, so fillt das Symbol, als Funktion aller durch = nicht teilbaren
Zahlen o angesehen, unter den allgemeinen Begriff eines Charakters
einer Abelschen Gruppe, welche letztere hier von den 3m Zahl-
klassen @ (mod. z) gebildet wird (D. § 184, S. 612); diejenigen m Zahl-
klassen, welche aus den kubischen Resten von z, also aus den Zahlen o
bestehen, deren Charakter =— 1 ist, bilden ebenfalls eine Gruppe,
d. h. sie reproduzieren sich durch Multiplikation. Da £ 1 = (& 1)},

80 ist stets 11
(:;-) = 1.

Beaenkt man ferner, dal jede Potenz g¢ durch die nicht identische
Permutation des Korpers in o2¢, also die obige Kongruenz o™ = o¢
(mod. 7) in die Kongruenz o™ = ¢2¢ (mod. =) iibergeht, so ergibt
sich aus der Definition des Symbols das Gesetz

(5)=(3)

*) Von dieser Ausdrucks- und Bezeichnungsweise weicht die von Eisenstein
benutzte ein wenig ab.
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Wenden wir dies auf den Fall an, wo ® eine rationale Zahl ¢,
also ¢’ = ¢ ist, so ergibt sich

&=

Ist nun erstens die durch = teilbare natiirliche Primzahl p = — 1
(mod. 38), so sind # und =’ assoziiert mit p = p', mithin

<—%> =1, wemn p = — 1 (mod. 3);

dasselbe ergibt sich auch daraus, daf} in diesem Falle 3 m = (p-+ 1) (p—1),
also m teilbar durch p— 1, und folglich ¢» = 1 (mod. p) ist. Wenn
aber zweitens p =— 3m + 1 = + 1 (mod. 3) ist, so sind =, =’ zwei
wesentlich verschiedene Primzahlen ersten Grades, und es ist entweder

©)=(5)=

oder

oder
AN c\

F)=e (7)=e
Im ersten dieser drei Fille, und nur in diesem, ist ¢ kubischer Rest
von m, also ¢™ = 1 (mod. x), und da hieraus offenbar auch ¢» = 1
(mod. p) folgt, so ist (nach § 5, II) die Zahl ¢ auch kubischer Rest
von p im Korper der rationalen Zahlen; und umgekehrt, wenn
letzteres der Fall ist, so leuchtet unmittelbar ein, daf ¢ auch im
Kérper @ kubischer Rest von z (und «') ist; mithin tritt der erste
der drei obigen Fille dann und nur dann ein, wenn ¢ im Korper
* der rationalen Zahlen kubischer Rest von p ist.

An dieser Stelle brechen wir die Aufzihlung der fiir uns wichtigen
Eigenschaften des Korpers @ vorldufig ab, um sie spiter wieder auf-
zunehmen. Das Vorstehende reicht nimlich schon aus, um die in
§ 6 begonnene Darstellung der Idealfunktion .J des reinen kubischen
Korpers K wesentlich zu vereinfachen. Zu diesem Zweck fithren
wir, wenn die Invarianten g, b des Korpers K und die daraus ab-
geleiteten Zahlen £ und D — — 3 & ihre frithere Bedeutung (§§ 3, 4)
behalten, fiir jede Primzahl m des quadratischen Korpers @ eine
Funktion ¢ (x) ein, welche fiir alles Folgende von der grifiten
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Wichtigkeit ist; bedeutet p wieder die durch z teilbare natiirliche
Primzahl, so definieren*) wir auf folgende Weise:
I. Geht m, also auch p in k auf, so setzen wir
(@) = 0.
II. Geht 7, also auch p nicht in k, wohl aber in D auf, so ist

;= 3, also x assoziiert mit (1 —g), und der Kérper K ist von
zweiter Art; in diesem Fall setzen wir

b(m) = 1.

III. In den iibrigen, also in allen denjenigen I“illen, wo =, also
auch p nicht in D aufgeht, setzen wir

ab?
¥ = (7).

wo das Symbol rechter Hand die oben angegebene Bedeutung hat,
also eine Potenz von ¢ ist.

Aus dieser Definition folgen offenbar fiir alle Primzahlen =
zunichst die beiden Sitze

Iv. Y(on) = ¢¥(n), (@) = ¥(=x)
Man iiberzeugt sich ferner leicht, dafl in allen fiinf Fillen,

welche am Schlusse von § 6 aufgezihlt sind, die dort erklirte
Funktion F(p) durch den Ausdruck

1 1
)= om—t
L ¥ (z)
P N(zy

dargestellt wird, wo das Produktzeichen IT sich auf alle wesent-
lich verschiedenen, in p aufgehenden Primzahlen = bezieht. Um
dies zu beweisen, bezeichnen wir den Ausdruck rechter Hand vor-
laufig mit F,(p); gehen wir die fiinf Félle am Schlusse von § 6
unter Beibebaltung der dortigen Bedeutung von P, einzeln durch,
so ergibt sich folgendes:

1. Zufolge der Definition I ist ¢(x) = 0 fiir jede in p auf-
gehende Primzahl, mithin F,(p) = P..

¥) Die hier fiir die Primzahlen =, spiter fiir alle ganzen Zahlen » des
Korpers @ erklarte Funktion vy hingt offenbar unsymmetrisch, aber so von den
Invarianten g, b des Korpers K ab, daB sie durch deren Vertauschung in ihr
Quadrat iibergeht.
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2. Zufolge der Definition II ist y(x) = 1 fiir die wesentlich
einzige in p aufgehende Primzahl = — 6(1 —y¢), und da N(=)
= 3 = p ist, so wird F,(p) = P2

3. Die wesentlich einzige in p aufgehende Primzahl » ist p
selbst; zufolge der Definition III und weil p = — 1 (mod. 3) ist,
wird daher

() = (5’5;—2) =1,

und da N(w) = p?® ist, so wird F,(p) = P, P,

4. In diesem (wie in dem folgenden) Falle ist p durch zwei
wesentlich verschiedene Primzahlen =, z’ teilbar, deren Normen N (x)
= N(a') = p sind; da ferner ab® kubischer Rest von p, also auch
von w und 7z’ ist, so ist zufolge der Definition IIL:

ab? ab?

v = (25) =1 v@) = (%) =1

b/ /
mithin wird F,(p) = P3.
5. Da in diesem Falle ab? kubischer Nichtrest von p, also auch
von =z, m' ist, so folgt aus der Definition III entweder

ab? , ab?
W =(7) =0 v =()=¢
oder
ab? , ab?
v =(7) = v =(7) = e
mithin wird in beiden Fillen
1 1 1
F = . . = P,.
1(P) ] _l ) e _(f 3

r o P
Nachdem hiermit fiir alle Fille die Identitit F(p) = F,(p) be-
wiesen ist, ergibt sich fiir die Idealfunktion J = IIF(p), wo p alle
natiirlichen Primzahlen durchlduft, die folgende Zerlegung

J = GH,;
hier ist
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wo sich das Produktzeichen I7T auf alle natiirlichen Primzahlen p,
das Summenzeichen ¥ auf alle natiirlichen Zahlen n bezieht, wihrend

1
H=T "5
N(m)
ist, wo das Produktzeichen IT sich auf alle wesentlich verschiedenen
Primzahlen = des Korpers @ bezieht. Wir wollen nun dieses un-
endliche Produkt H ebenfalls in Form einer unendlichen Reihe dar-
stellen.

Sobald eine Funktion (=) fiir alle Primzahlen = in @, und
zwar so definiert ist, daf fiir alle sechs mit m assozilerten Prim-
zahlen 6x immer ¥(6w) — v (x) wird, so laft sich die Funktion o
stets zu einer Funktion ¥ (@) jeder ganzen Zahl o in @ so erweitern,
daB fiir je zwei solche Zahlen @,, w, das Gesetz

V. Y (0,0,) = ¥(0,) ¥(0,)
gilt; schlieBt man noch die beiden leicht zu behandelnden, fiir uns aber
ginzlich interesselosen singuliren Fille aus, wo die gegebenen Zahlen
¥(x) alle = 1 oder alle = 0 sind, so kann eine solche Erweiterung
der Funktion ¥ auch nur auf eine einzige Weise ausgefiihrt werden.
Soll ndmlich das Gesetz V bestehen, so mufl zunéchst ¢(0) = ¢(0) (=),
mithin

VI ¥(0) =0
sein; da ferner nach unserer Voraussetzung v (6x) — ¢ () ist, so mul

Y(0) v(x) = (=), also

VIL Y(e) =1
und folglich auch immer
VIIL Y(ow) = ¥(o)

sein. W&hlt man nun aus jedem System von sechs assoziierten
Primzahlen eine bestimmte nach Belieben aus und nennt dieselbe
etwa eine primére Primzahl, so ist jede zusammengesetzte Zahl @
von der Form
O == G Wy =+,

w0 ¢ eine bestimmte Einheit und wo das System der priméren Prim-
zahlen m,, m, =, --- ebenfalls vollstindig bestimmt ist; nach dem
obigen Gesetze, welches offenbar fiir eine beliebige Anzahl von
Faktoren gelten mubB, ist dann

IX. ¥(w) = (m) P(m,) P(m,) -+
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und folglich ist die geforderte Erweiterung der Funktion ¢ nur auf
eine einzige Weise moglich. Dal aber umgekehrt die durch die vor-
stehenden Bestimmungen VI, VII, IX erhaltene Funktion 9 auch dem
obigen Multiplikationsgesetz V geniigt, leuchtet unmittelbar ein. Zugleich
ergibt sich aus IV fiir unsere Funktion @ der Satz

X. b(@) = b(a).

Entwickelt man nun jeden Faktor des unendlichen Produktes H,
in welchem =z ausschlieflich alle primdren Primzahlen durchlduft, in
eine geometrische Reihe

1 V(@) | Y@ | (@)
v T Nap T W@t @t
N(z)

so nimmt die letztere zufolge der Erweiterung unserer Funktion %
die Form ) ( |
Y(m P(n*) P(x%) <y Y@
L Ny T Nty T M@y T 3 Ny
an, wo n den Wert O und alle natiirlichen Zahlen durchlduft. Multi-
pliziert man ferner alle diese den priméren Primzahlen = entsprechen-
den Reihen, so erhalt man

-z

wo © jede Zahl von der Form
0 — n;;'qﬂ;gznga...

einmal durchlduft, in welcher =, =,, =, --- voneinander verschiedene
primire Primzahlen und n,, »,, n, --- ganze, nicht negative Zahlen
bedeuten. Bedenkt man endlich, daf je zwei verschiedene solche
Zahlen @ auch nicht assoziiert sind, und dafl zu jeder Zahl m sechs
assoziierte Zahlen y — 6w gehoren, denen dieselbe Norm N (u) — N(w)
und derselbe Wert ¢ (u) = ¢/(w) zukommt, so erhdlt man das Resultat

_ P(w)
6H == Ny’

wo das Summenzeichen sich auf alle von Null verschiedenen ganzen
Zahlen u des Korpers @ bezieht.

Aus der Definition der Funktion ¢ geht hervor, dal ¢ (u) immer
und nur dann = 0 ist, wenn g durch eine in der Zahl % aufgehende
Primzahl » teilbar ist; 1a6t man alle diese verschwindenden Glieder
weg, so ist die obige Summe nur noch auf alle diejenigen Zahlen w
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auszudehnen, welche relative Primzahlen zu der Zahl & sind, und
¥(u) ist immer eine Potenz von ¢. Um aber die allgemeine Form aller
Zahlen u zu finden, fiir welehe ¢(u) einen vorgeschriebenen Wert 1
oder ¢ oder o® besitzt, bediirfen wir des kubischen Reziprozitéitssatzes.

§ 8.

Der kubische Reziprozititssatz.

Indem wir die in § 7 begonnene Aufzihlung der fiir unsere Unter-
suchung wichtigen Eigenschaften des Kérpers @ wieder aufnehmen,
schreiten wir zuniichst zu einer schon von Jacobi empfohlenen und
auch von Eisenstein benutzten Erweiterung des Symbols

@

fiir alle Fille, wo u relative Primzahl zu 3 @ ist, wihrend bisher
w als Primzahl  vorausgesetzt war; diese Erweiterung ist genau auf
dieselbe Weise durchzufiihren wie diejenige der Funktion ¢ in § 7.
Wir setzen daher
®
(5)="

wo 6 wieder jede Einheit bedeutet; ist ferner die zusammengesetzte Zahl
p = Ty my

als Produkt von lauter Primzahlen =, , m,, =, - - - dargestellt, so setzen wir

@)= (2)EE)-
w/ A\ \my/ \mg/
und diese Definition ist eine durchaus eindeutige, weil das vorstehende
Produkt ungesndert bleibt, wenn die Primzahlen z durch assoziierte
Primzahlen 6m ersetzt werden. Aus den friiher erwihnten Eigen-

schaften des einfachen Symbols ergeben sich offenbar fiir das neue
Symbol die Gesetze

=1 (=6 GH=1 ()=C)
() =) G =)

Dedekind, Gesammelte Werke, IT. 12
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und wenn g, das Produkt aller wesentlich verschiedenen, in u auf-
gehenden Primzahlen = oder auch irgendeine durch dieses Produkt
teilbare Zahl (z.B. u) bedeutet, so folgt aus
— , &) _ (“’J)
®, == ®, (mod. u,) auch <H p

Unser Symbol ist daher, als Funktion des Zihlers o angesehen, auch
jetzt ein Charakter der Abelschen Gruppe, welche von den o'(1)
Zahlklassen & (mod. u) gebildet wird.

Ist nun der Nenner g des Symbols assoziiert mit der dritten Potenz
einer Zahl v (in @), so leuchtet ein, dafl fiir alle ¢'(u) Zahlklassen
® das Symbol den Wert 1 hat, weil aus u = 6v® auch

O= (=)= -

folgt. In jedem anderen Falle gibt es aber unter den hochsten in w
aufgehenden Primzahlpotenzen z¢ mindestens eine, deren Exponent e
nicht durch 3 teilbar ist, und man kann nach § 7 einen kubischen
Nichtrest 4 der Primzahl m so wihlen, daf

l) .

<n: — ¢

wird; setzt man nun g = wv=?, so ist v relative Primzahl zu =¢, und

man kann bekanntlich eine Zahl @, (mod. g) durch die Kongruenzen
@, = 1 (mod. ), @, = 1 (mod. z°)

bestimmen; dann ist @, relative Primzahl zu g, und aus den obigen

Sétzen ergibt sich

()= () (2= ()&= e =

bezeichnet man nun mit e, alle diejenigen nach u inkongruenten
Zahlen, welche der Bedingung

<ﬂ>> _
w
geniigen und offenbar fiir sich eine Gruppe bilden, so folgt leicht, daf

@

<‘—‘> = 1 oder ¢ oder o*
wird, je nachdem

® = o, oder wyo, oder w,w2 (mod. w)
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ist, und jede dieser drei Arten von Zahlen besteht aus } ¢'(u) Zahl-
klassen @ (mod. u).

Die durch die Primzahl (1 — ¢) nicht teilbaren Zahlen u zer-
fallen in bezug auf die vier Moduln 1 —pg, (1 —9)% (1 — )
(1 — @)* bzw. in 2, 6, 18, 54 Zahlklassen, welche auf folgende Weise
dargestellt werden konnen:

p= +1 (mod. 1 —g), p =6 (mod. 3),
w-=6-4m (mod. 3 —39), w=06-4m(4—30) (mod. 9),
wo ¢ jede Einheit und jeder der Exponenten m, # die Zahlen 0,
1, 2 durchlguft; aus der letzten Darstellung gehen die anderen
sukzessive hervor, weil 4 —3 ¢ == 1 (mod. 3 —3¢), 4 — 1 (mod. 3),
6 = 11 (mod. 1 — o) ist; zugleich wird

Nu) = pp' = 4m= 14+6m (mod.9).

Legen wir diese Darstellung der Zahlen u zugrunde, so nehmen
die zuerst von Eisenstein aufgestellten und bewiesenen sogenannten
Erganzungssitze folgende Formen an:

N@—1

(g>=9 Po=gm, (L;;g>=om+",

(5= Q=

der erste dieser vier Sitze folgt sehr leicht aus der urspriinglichen
Definition des kubischen Charakters in bezug auf eine Primzahl =,
wihrend der zweite eine tiefer liegende Begriindung erfordert, die
man am angegebenen Orte findet; durch Multiplikation ergibt sich
hieraus der dritte und endlich durch Quadrieren der vierte Satz,
weil (o — @%)> = — 3 ist. Aus diesen Sitzen folgt, dall die vier
vorstehenden Symbole ungedndert bleiben, wenn die Zahl w durch
irgendeine nach dem Modul 9 kongruente Zahl ersetzt wird; fiir
das erste Symbol gilt dies sogar schon dann, wenn diese Kongruenz
in bezug auf den Modul (3 — 3 ¢) stattfindet.

Wir wenden uns endlich zu dem von Eisenstein bewiesenen
allgemeinen Reziprozititssatze. Da jede durch (1 — o) unteil-
bare Zahl mit einer, und nur einer der sechs Einheiten 6 nach dem
Modul 3 kongruent ist, so finden sich unter den sechs mit ihr asso-
zilerten Zahlen immer zwei Zahlen u, welche der Bedingung u =41
(mod. 3) oder, was dasselbe sagt, der Bedingung u> = 1 (mod. 3)

12*
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geniigen; fiir je zwei relative Primzahlen g, v, welche zugleich
diese Bedingung u? = »* = 1 (mod. 3) erfiillen, gilt dann das Gesetz

©-()

falls aber die Zahlen py, » die genannte Bedingung nicht erfiillen,
so findet zwischen den beiden vorstehenden Symbolen eine Be-
ziehung statt, welche mit Hilfe des ersten der obigen vier Er-
ginzungssitze immer leicht abzuleiten ist.

Wir benutzen jetzt die vorstehenden Sitze zu einer wesentlichen
Umformung unserer in § 7 erkldrten Funktion ¢(u) unter der Vor-
aussetzung, daf u relative Primzahl zu k ist. Hierbei miissen
wir die beiden Fille unterscheiden, wo der reine kubische Korper K
von erster oder zweiter Art ist (§ 3).

Im ersten Falle ist £ = 3 ab, und da ab durch 3, aber nicht
durch 9 teilbar sein kann, so bezeichnen wir mit 3%, 3¥ die hochsten
in a, b aufgehenden Potenzen von 3 und setzen

a = 3%.a, b= 3.5,
wo entweder 4 — v = 0, oder u = 1, v = 0 oder v — 0, v =1
ist, wihrend a, und b, nicht durch 3 teilbar sind. Ist nun g rela-
tive Primzahl zu k, und stellen wir dieselbe in der Form y — =, w7, - - -
als Produkt von lauter Primzahlen = dar (von denen keine in
D — — 3k* aufgehen kann), so folgt aus den Definitionen Il und

IX in § 7 zundchst
2 2 ] u+2v
() () =0 =0 ()

ab*
v = (%)
wihlt man nun eine Einheit ¢ so, dall 6u = + 1 (mod. 3) wird,
und bedenkt, daf auch a,b2 = + 1 (mod. 3) ist, so folgt aus dem
allgemeinen Reziprozititssatze

(%) = (20 = (%)
w/ New/  \a b2’
und wir erhalten das Resultat
. 3 \Nu+ 20 6“
XL P(w) = <‘H‘> <m) )
6p = +1 (mod. 3), k= 3ab = 31tutv.qb.

Im zweiten Falle, wo K von zweiter Art, also bk — ab = +1

(mod. 3), und a® = b* (mod. 9), also auch ab® = ¢® = + 1 (mod. 9)
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ist, ergibt sich aus den obigen Erginzungssitzen (wo u, 6, m, »
bzw. durch ab?, +1, 0, 0 zu ersetzen sind)

(=1 (5=

und, weil jede Einheit 6 = =+ o” ist, auch

4=

Ist nun u relative Primzahl zu k, so kann man stets
p=20(1—eo)v
setzen, wo 6 eine Einheit, und v = 1 (mod. 3), also v relative

Primzahl zu 3k, mithin auch zu D ist; aus den vorstehenden
Gleichungen ergibt sich mit Hilfe des Reziprozititssatzes

B = (2 (0 () = () = .

<ab5> T <a,b2 ( ab? a,b2> - <ab2> o < v

Gehen wir jetzt zur Bestimmung von w(u) iiber, so folgt aus der
obigen Darstellung von w mit Riicksicht auf V, VII, II in §7
mundichst ¥(w) = ¥(¥); stellt man ferner die Zahl v als Produkt

T, mymy -+ von lauter Primzahlen dar, von demen keine in D auf-
gehen kann, so folgt aus III und IX in § 7

0= () ()() - =()
und wir erhalten daher das einfache Resultat

XIL b(B) = <a£b§> wenn k = ab.

Aus diesen Darstellungen XI und XII der Funktion 4 (u) er-
geben sich die folgenden wichtigen Sitze.

XIII. Die Funktion ¢(u) hat fiir alle Zahlen w, welche
derselben Zahlklasse in bezug auf den Modul £ angehdren,
einen und denselben Wert.

Dies leuchtet fiir den zweiten Fall unmittelbar aus XII ein,
weil & durch jede in ab® aufgehende Primzahl = teilbar ist, mithin

aus w, = u (mod. k) auch
o
<a b“)’

@) =
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also ¢ (u,) = ¢(u) folgt. Dasselbe ergibt sich fiir den ersten Fall
auf folgende Weise aus XI. Da k = 3ab ist, so folgt aus p, = p
(mod. k) auch p, = u (mod. 3); ist daher die Einheit ¢ so gewihlt,
dal 6p = £ 1 (mod. 3) wird, so ist auch 6p, = + 1 (mod. 3), also
. 3 U+ 2v 6[.74517 )
w(("’l) - <M1> \alb;"’>’

da nun 6y, = 6y (mod. k), und £ durch jede in a,b® aufgehende
Primzahl = teilbar ist, so folgt

(fﬂ) = (ﬁ)
» a, b? a, b?
und hieraus, falls % 4 2v = 0 ist, ¥(u,) == p(u); wenn aber
%+ 2v > 0, also k& durch 9 teilbar ist, so ist auch u, =

(mod. 9), also ; , B
(o) =G

mithin ist auch in diesem Falle y(u,) = ¥ (u), w. z b. w.

XIV. Ist w = r (mod. k), wo 7 eine rationale relative
Primzahl zu & bedeutet, so ist ¢(u) = 1.

Bedeutet ' wie frither die mit u konjugierte Zahl, so folgt aus
unserer Annahme auch u' =7, also*) w = u’ (mod. k), mithin zu-
folge XIII auch 9 (u) = ¢ (u); da ferner nach X in § 7 stets y(u’)
= ¢ (u)? ist, so folgt ¥(u) = 1, w. z b. w.

XV. Ist p eine in k aufgehende natiirliche Primzahl,
und k& = pg, so gibt es immer eine relative Primzahl w zu k,
welche den beiden Bedingungen

g =1 (mod. q), o) =y

geniigt.
Bei dem Beweise haben wir eine Reihe von Fallen zu unter-
scheiden, und wir wollen zunichst den Fall p = 3 betrachten,

welcher nur dann eintreten kann, wenn der kubische Kérper K von
erster Art ist; wir haben fiir den Beweis also die Darstellung XI
der Funktion % zu benutzen und dabei zu beriicksichtigen, dal
¢ = ab = 3v*v.q,b, ist; sodann miissen wir die drei Fille trennen,
welche die beiden dort mit u, v bezeichneten Zahlen darbieten
konnen,

*) Aus # = ' (mod. k) folgt umgekehrt, daf x« einer rationalen Zahl kon-
gruent ist (mod. £).
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Ist erstens v — v = 0, also @, — @, b, = b, so ist ab = +1
(mod. 3), aber es kann nicht ab® = 41 (mod. 9) sein, weil hieraus
a?b* = 1, also auch a® = b* (mod. 9) folgen wiirde, was unméglich
ist, weil der Korper K von erster, nicht von zweiter Art ist. Man

kann daher
ab® = + 4™ (mod. 9)

setzen, wo m nicht durch 3 teilbar ist, und nach dem ersten Er-
ginzungssatze ist zugleich
e\
(Zﬁ) = o'

Da nun ¢ = ab relative Primzahl zu 3 ist, so gibt es bekanntlich
immer Zahlen u, welche den beiden Kongruenzen

p=1 (mod. ¢), = o™ (mod. 3)
geniigen, und jede solche Zahl p ist offenbar relative Primzahl zu
k = 3¢. Zufolge der ersten dieser beiden Kongruenzen ist die erste,

im Satze an die Zahl u gestellte Forderung erfiillt, und da ¢ = ab
durch jede in ab® aufgehende Primzahl = teilbar ist, so folgt zu-

gleich
(=)=
ab)  \ab?® —

Aus der zweiten der vorstehenden Kongruenzen folgt ferner, dafl die
Einheit 6 — ¢2™ die in XI geforderte Bedingung 6u = 1 (mod. 3)
erfiiilt, mithin wird

40 = ()= G~ () = e =

d. h. die Zahl p geniigt auch der zweiten, im Satze an sie gestellten
Korderung, w. z. b. w.

Ist zweitens « = 1, v = 0, also @ = 3a,, b = b,, k = 9a,b,
q = 3a,b, so gibt es, weil a, b relative Primzahl zu 9 ist, Zahlen g,
welche den beiden Kongruenzen

g =1 (mod. a,b), wu = (4—3p) (mod. 9)

geniigen, und jede solche Zahl u ist relative Primzahl zu k. Aus
der zweiten Kongruenz folgt w = 1 (mod. 3), und hieraus in Ver-
bindung mit der ersten Kongruenz auch g =1 (mod. g), also ist
die erste, im Satze an u gestellte Forderung erfiillt. Zugleich er-
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gibt sich, dafl die in XI auftretende Einheit ¢ = 1 gewihlt werden
kann, und es wird folglich

0= ()

Da jede in a@,b® aufgehende Primzahl = auch in dem Modul a,b
der ersten Kongruenz aufgeht, so ist

(J, _ <_1_ —1

alb“>— a1b2> 7

und da aus der zweiten Kongruenz in Verbindung mit dem vierten
Ergénzungssatze (wo » — 2 zu setzen ist)

folgt, so wird auch ¢ (u) = o, wie gefordert war.

Ist drittens w —= 0, v =1, also 6 = a,, b = 3b,, k = 9ab,,
q = 3ab,, so werden die Forderungen des Satzes erfiillt, wenn man
g durch die beiden Kongruenzen

p=1 (mod. ad,)), u=4—39 (mod. 9)
bestimmt. Den Beweis, welcher auf dieselbe Weise wie im vorigen
Falle zu fiihren ist, diirfen wir dem Leser iiberlassen.

Nachdem hiermit der Fall p = 3 erledigt ist, nehmen wir jetst
an, es sel p verschieden von 3. Um die hierbei auftretenden Unter-
fille so viel wie moglich zusammenzufassen, setzen wir e — 1 oder
= 2, je nachdem p in @ oder in b aufgeht; dann ist p¢ die hichste
in ab® aufgehende Potenz von p. Da p im Korper @ entweder eine
Primzahl oder ein Produkt von zwei verschiedenen Primzahlen ist,
80 kann es in @ keine Zahl geben, deren dritte Potenz mit p asso-
zilert wire, und hieraus folgt nach einer fritheren Bemerkung
(S.178) die Existenz einer relativen Primzahl @ zu p, welche der

Bedingung
®
G)=

geniigt. Mag nun der kubische Kérper K von erster oder zweiter Art,
mag also £ durch 3 teilbar sein oder nicht, immer sind die beiden
Faktoren p, ¢ der Zahl k — pgq velative Primzahlen, mithin gibt es
immer Zahlen u, welche den beiden Kongruenzen

g =1 (mod. ¢)y p = w° (mod. p)
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geniigen, und jede solche Zahl u ist relative Primzahl zu k. Durch
die erste Kongruenz ist die erste, im Satze an u gestellte Forderung
erfilllt, wir haben daher nur noch zu zeigen, dal o (u) = ¢ ist, und
hierzu miissen wir die beiden Hauptfille voneinander trennen.

Ist X = 3ab, so haben wir die Darstellung XI zu Grunde zu
legen. Da ¢ durch 3, im Falle w4 2v > 0 sogar durch 9 teilbar
ist, so folgt aus der ersten Kongruenz und aus dem vierten Er-
ginzungssatz zundchst

\u+2v
G =
®

und da auBerdem die Einheit 6 = 1 der Bedingung 6u = 1 (mod. 3)

geniigt, so wird .
v = () = (0)(5):

wo a,b? — cp¢ gesetzt, also ¢ nicht durch p teilbar ist. Jede in
¢ aufgehende Primzahl = geht daher auch in ¢ auf, und da p =1

(mod. q) ist, so folgt
ORCE

Aus der zweiten, bisher nicht benutzten Kongruenz p = w¢ (mod. p)

folgt ferner
(=)= (= (=

mithin ist auch ¢ (u) = 9, w. z b. w.

Ist aber £ =— ab, so haben wir die Darstellung XII anzuwenden.
Setzen wir jetzt ab® = cp?, so ist ¢ nicht teilbar durch p, und es
wird wie in dem vorigen Fall

o= 5 = O - )z~

Der hiermit vollstindig bewiesene Satz 148t sich allgemeiner in
folgender Weise aussprechen.

XVL Ist £ = mmn, wo m, » natiirliche Zahlen bedeuten,
deren erstere m < k ist, so gibt es relative Primzahlen p
zu k, welche den Bedingungen

. w=1 (mod. m), ) =290
geniigen.
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Da ndmlich » > 1 ist, so gibt es mindestens eine in n, also
auch in k aufgehende natiirliche Primzahl p, und wenn man &k — pgq
setzt, so ist ¢ teilbar durch m; nach dem vorigen Satze gibt es aber
Zahlen p, welche den Bedingungen g = 1 (mod. g), P(u) = o ge-
niigen, und da aus der ersteren auch w = 1 (mod. m) folgt, so ist
unser Satz bewiesen.

§ 9.

Die Funktion vy als Gruppencharakter.

Mit Hilfe der im vorstehenden bewiesenen Eigenschaften der
Funktion ¢ wird es gelingen, die am Schlusse von § 7 betrachtete
Summe H so umzuformen, daB die Bestimmung der Anzahl % der
Idealklassen im Korper K auf die Theorie der komplexen Multi-
plikation der elliptischen Funktionen zuriickgefiihrt wird. Hierbei
werde ich ofter ein Symbol benutzen, welches mir seit Jahren bei
meinen Studien in der Gruppen- und Korpertheorie niitzliche Dienste
geleistet hat. Sind %, B Komplexe von Elementen einer Gruppe &
(in welcher die Gruppenoperation wie eine Multiplikation bezeichnet
wird), so soll das Zeichen AY den Inbegriff aller verschiedenen Ele-
mente bedeuten, welehe in der Form «pf darstellbar sind, wo « jedes
Element von 2A, ebenso B jedes Element von B durchliuft. Sind
A, B selbst Gruppen, also Teiler von & (was durch AY — A, BB
= B ausgedriickt wird), so soll das Symbol (¥, B) die Anzahl der
voneinander verschiedenen Komplexe %S bedeuten, welche allen
Elementen 8 der Gruppe ¥ entsprechen, und aus welchen der Kom-
plex AP besteht*). Dann ist immer (A, B) = (D, B), wo D den
groliten gemeinsamen Teiler der beiden Gruppen %A, B bedeutet.
Wenn ferner der Komplex A% selbst eine Gruppe ist (was durch
AP = BU ausgedriickt wird und immer dann eintritt, wenn R eine
Abelsche Gruppe ist), so ist zugleich (%, B) = (¥, AB). Endlich
erwihne ich noch den Satz (€, ®) = (€, §) (¥, ®), welcher immer
gilt, wenn die Gruppe € ein Teiler der Gruppe 3, und diese ein
Teiler der Gruppe & ist.

*) Ist ® die Gruppe aller Permutationen eines Normalkérpers (, und sind
4, B die zu den Gruppen 9, B gehorigen Korper (so daf z B. 4 der Inbegriff
‘aller derjenigen Zahlen in (' ist, welche durch jede Permutation der Gruppe
in sich selbst iibergehen), so ist das Gruppensymbol (%, B) identisch mit dem
‘Symbol (A4, B), welches ich in der Korpertheorie gebrauche (D. § 164, S.471).



Nachdem dies vorausgeschickt ist, beschiftigen wir uns mit der
Abelschen Gruppe &, deren Elemente diejenigen ¢'(k) Zahlklassen
(mod. k) sind, in welche die sidmtlichen, im Kérper @ enthaltenen,
relativen Primzahlen zu k& zerfallen. Bezeichnen wir mit o wieder
den Inbegriff aller ganzen Zahlen w, wihrend w eine bestimmte
relative Primzahl zu %k bedeutet, so wollen wir die aus allen Zahlen
von der Form gy + wk bestehende Zahlklasse kurz die Klasse u
nennen, wobei der Représentant u durch jede andere Zahl derselben
Klasse ersetzt werden darf. Die Gruppenoperation besteht in der
Multiplikation dieser Klassen: multipliziert man jede Zahl der Klasse u,
mit jeder Zahl der Klasse u,, so sind alle Produkte in derselben
Kiasse u,p, enthalten, welche deshalb auch das Produkt jener beiden
Klassen g, und u, beiflen mag. Die Klasse 1 ist das Hauptelement
unserer Gruppe & und bildet fiir sich allein eine Gruppe; mit Be-
nutzung des oben erklérten Symbols wird daher (1, &) = ¢'(k). Um
diese Zahl (den Grad der Gruppe &) zu bestimmen, haben wir den
in § 7 angegebenen Satz anzuwenden; da % rational, also N (k) — &*
ist, so erhalten wir

¢ (k) = kﬂn(l — IV%)

wo = alle wesentlich verschiedenen, in %k aufgehenden Primzahlen =
des Korpers @ durchliuft. Bedeutet nun p jede in £ aufgehende
natiirliche Primzahl, und bezeichnet man zur Abkiirzung mit p, die-
jenige der drei Zahlen 0, + 1, welche der Bedingung p, = p (mod. 3)
geniigt *), so liefern die in p aufgehenden Primzahlen z zu dem
vorstehenden Produkte den Beitrag

O

und folglich wird _ ‘
¢' (k) = o (k) 9" (k),

wo
1 p
B=tm(1——2) g =km(1—2)
o) = EI(1— ) 9'(® :
gesetzt ist.
Hier bedeutet ¢(k) wie iiblich die Anzahl derjenigen nach k
inkongruenten rationalen Zahlen, welche relative Primzahlen zu k

*) Offenbar ist p, identisch mit dem hier zu vermeidenden Symbol (—g) von
Legendre und mit meinem Symbol (— 3, p) (D. S.637, 655).
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sind, also die Anzahl derjenigen Zahlklassen unserer Gruppe &, in
welchen sich auch rationale Zahlen r befinden; dieselben bilden
offenbar fiir sich eine Gruppe, einen Teiler von &, den wir mit %
bezeichnen wollen, und die Bedeutung der obigen Zerlegung von
¢’ (k) kann durch
(L, %) = ok), O 8 =9¢"k)
ausgedriickt werden, weil (1, &) = (1, ®) (N, &) ist. Wir wollen
schon jetzt bemerken, daB fiir alle hier in Betracht kommenden
Zahlen k, die nach § 4 aus den Invarianten @, b des kubischen
Kérpers K abzuleiten sind, ¢'(k) durch 9 teilbar ist. Da nim-
lich k¥ = 3 ab oder = ab ist, je nachdem K von erster oder zweiter
Art ist, und da ab durch kein Primzahlquadrat p® teilbar ist, so
wird £k = c¢IIp, wo ¢ — 3 oder — 1 ist, je nachdem @b durch 3
teilbar ist oder mnicht, mithin
9" (k) = cII(p — p).
Da nun jeder Faktor (p — p,) durch 3 teilbar ist, so leuchtet unsere
Behauptung fiir alle die Félle ein, wo & durch mindestens zwei ver-
schiedene Primzahlen p teilbar ist. Wenn aber % nur durch eine
einzige Primzahl p teilbar, also @" (k) = ¢(p — p,) ist, so sind zwei
Fille zu unterscheiden. Ist K von erster Art, also k = 3ab, so
ist p=3, p, =0, und da ab > 1 ist, so muBl ab = 3, k = Y,
¢ =23, also ¢"(k) = 3.3 = 9 sein. Ist aber K von zweiter Art,
also @® = b* (mod. 9), so ist £ = ab = p verschieden von 3, also
P, = 1, ¢ =1, und der Symmetrie halber diirfen wir annehmen,
es sei @ = p, b = 1; hieraus folgt a®— b2 = (p — p,) (p + p,)
= 0 (mod. 9), und da von den beiden Faktoren (p — p,), (p + p,)
nur der erste durch 3 teilbar ist, so folgt ¢"(k) = p—p, = 0
(mod. 9). Nachdem hiermit ynsere Behauptung fiir alle Idlle er-
wiesen ist, wollen wir, wo es bequem erscheint,
"(k) = 9k"

setzen; die Werte der hierdurch erklirten natiirlichen Zahl %" sind
fiir die ersten 21 Korper K in der vorletzten Spalte der Tabelle am
Schlusse von § 2 angegeben.

Wir kehren nun zur Betrachtung der Funktion v (u) zuriick,
wo p jede in @ enthaltene relative Primzahl zu & bedeutet. Da o (u)
nach Satz XIII in § 8 fiir alle Zahlen w, welche derselben Klasse
(mod.‘ k) angehoren, einen und denselben Wert hat, so kénnen wir
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die Funktion 3 von den Zahlen u auf die Klassen yu iibertragen,
welche die Elemente der Gruppe & bilden, und da (nach V in § 7)
fiir je zwei solche Klassen u,, u, und deren Produkt u,u, das Gesetz
¥ (p, ug) = ¥ (u,) ¥ (uy) gilt, so ist p ein Charakter der Gruppe &
(D. § 184, S.612). Aullerdem wissen wir (vgl. den Schlub von § 7),
dal ¢ (u) immer eine Potenz von ¢ ist, also keine anderen Werte
als 1, g, ¢* annehmen kann; zufolge VII in § 7 ist nun gewil (1)
= 1, und da aus dem Satze XV oder XVI in § 8 (weil immer
k > 1 ist) beildufig folgt, dal es eine Zahl t gibt, fiir welche v ()
= g, also auch ¢ (%) = ¢? wird, so nimmt ¢ (u) wirklich alle drei
Werte 1, g, 0> an. Bezeichnen wir nun mit u, alle diejenigen Klassen,
welche der Bedingung v (u,) = 1 geniigen, so folgt aus dem Multi-
plikationsgesetz des Charakters ¢, dafl diese Klassen eine Gruppe¥)
bilden, welche wir im folgenden stets mit ¢, bezeichnen wollen.
Behidlt ferner v die eben festgesetzte Bedeutung, so leuchtet ein, daf
alle in dem Komplex ¢,z enthaltenen Klassen u, — u,z der Be-
dingung o (u,) = ¢ geniigen; umgekehrt, wenn u, der Reprisentant
einer solchen Klasse ist, fiir welche ¢ (u,) = ¢ wird, so kann man
immer, weil v relative Primzahl zu % ist, eine Zahl p so bestimmen,
dal wr = p, (mod. k) wird, und da hieraus ¥(u,) = ¥ (ur)
= ¢ (u)¥(r), also ¢(u) = 1 folgt, so ist die Klasse p in der
Gruppe v, der Klassen u, enthalten, mithin ist der Komplex v,z
der Inbegriff aller verschiedenen Klassen w,, welche der Bedingung
Y (u,) = o geniigen. Genau ebenso ergibt sich, dal der Komplex
,7? der Inbegriff aller verschiedenen Klassen u, ist, fiir welche
P (uy) = o wird, und da jeder der drei Komplexe v, 9,7, ¥,7°
aus gleich vielen verschiedenen Klassen besteht, so ist

(1, ‘/’o) = lﬁ‘p'(k) - 3k"¢(k)a ("poa ®) = 3,
weil jede Klasse der Gruppe £ einem und nur einem dieser drei
Komplexe angehéren muf **).

*) Vertauscht man die beiden Invarianten @, b des Koérpers K miteinander,
wodurch die Funktion v in ihr Quadrat tibergeht (§ 7, Anm. auf 8. 173), so bleibt
diese Gruppe vy, ungedndert, d. h. sie ist ebenfalls eine Invariante des Kirpers K.

**) Ist 1 ein beliebiger Charakter einer beliebigen Abelschen Gruppe R,
bedeutet ferner vy, die Gruppe aller derjenigen Elemente von R, fiir welche =1
wird, und setzt man (g, ®) = n, so ist n zugleich die Anzahl aller verschie-
denen Werte von v, und diese Werte v sind die simtlichen Wurzeln der Gleichung
wn = 1; zugleich ist ® — vy, P, wo P eine Periode, d. h. eine Gruppe be-
deutet, welche aus den Potenzen eines einzigen Elementes = besteht. Umgekehrt,
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Nach dem Satze XIV in § 8 ist nun gewil ¢ (u) = 1, wenn u
einer rationalen Zahl r kongruent ist (mod. k), d. h. wenn u einer
der @ (k) Zahlklassen der oben mit % bezeichneten Gruppe angehort;
mithin ist # ein Teiler der Gruppe v,, und fiir alle ¢ (k) Klassen
eines Komplexes Rv hat der Charakter ¢ denselben Wert ¢ (v). Dies

v

wollen wir jetzt auf die am Schlusse von § 7 betrachtete Summe

P(p)
OH = 2 Ny

anwenden, wo w alle relativen Primzahlen zu k durchliuft. Da die
Gesamtgruppe & aller ¢’ (k) Zahlklassen u aus ¢ (k) Komplexen von
der Form 9w besteht, so wollen wir zur Abkiirzung
1

= Ny
setzen, wo u alle Zahlen der in dem Komplex Nv enthaltenen ¢ (k)
Klassen durchifuft; dann wird offenbar

6H = Yy(v)SHRw),
wo die Summe Y auf ein System von ¢"(k) geeignet gewihlten
Zahlen v auszudehnen ist, der Art, dall die entsprechenden Kom-
plexe 3ty alle Zahlklassen der Gruppe £ erschopfen. Die weitere
Umformung des vorstehenden Ausdrucks bildet den Hauptgegenstand
unserer ferneren Untersuchungen.

SHRv) =

§ 10.
" Die Wurzeln der Ordnung [1, ko].

Betrachtet man einen bestimmten Klassenkomplex von der Form Jiv,
so ist die eben definierte entsprechende Summe S(Rv) iiber alle und
nur diejenigen Zahlen p auszudehnen, welche = rv (mod. k) sind,
wo r jede rationale Zahl bedeutet, welche relative Primzahl zu &
ist. Das System aller dieser Zahlen u bildet einen Teil des Systems
aller derjénigen Zahlen A, welche = zv (mod. k) sind, wo z jede
ganze rationale Zahl bedeutet; jede solche Zahl 2 ist also von der

wenn R — HP ist, wo $ und P Gruppen bedeuten, deren letztere P eine
Periode ist, so gibt es, wenn (9, K) = (9, P) = n gesetzt wird, genau ¢ (n)
verschiedene Charaktere yw der Gruppe R, welche der Bedingung y, — $ ge-
niigen. — Ist ferner Y eine in R enthaltene Gruppe, so ist die iiber alle Ele-
mente « von Y ausgedehnte Summe X (a) immer und nur dann — O, wenn Y
kein Teiler von v, ist.
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Form @k + zv, wo @ alle Zahlen in o (d. h. alle ganzen Zahlen des
Korpers @), und z alle Zahlen des Moduls [1] durchléuft, und umgekehrt
ist jede in dieser Form darstellbare Zahl A = zv (mod. k). Das durch
k und v vollstindig bestimmte System dieser Zahlen i, welches wir
kurz mit k, bezeichnen wollen, ist offenbar ein endlicher Modul,
und wenn man die in der Modultheorie iibliche (auch oben in §§ 3, 4
benutzte) Bezeichnung anwendet, so wird
ky, = [k, k97 v] = ok + [v];

wir wollen vorliufig diese Form eines dreigliedrigen Moduls bei-
behalten und erst spiter die Zuriickfiilhrung auf einen zweigliedrigen
Modul mit irreduzibler Basis betrachten. Die Theorie dieser Moduln k,,
welche ich die Wurzeln der Ordnung k, = ok +[1] = [1, ko]
genannt habe, ist in Dirichlets Vorlesungen iiber Zahlentheorie
ausfithrlich dargestellt (§ 181, S. 622—627 der dritten, und § 187,
S. 651—657 der vierten Auflage), und ich werde mich spéter auf
diese Darstellung berufen; fiir unseren nédchsten Schritt ist aber diese
Theorie noch entbehrlich. Offenbar sind zwei solche Moduln k., k,
stets und nur dann identisch, wenn die beiden Zahlen g, v (die
immer als relative Primzahlen zu % vorausgesetzt werden) denselben
Klassenkomplex Ry = v erzeugen, und folglich ist die Anzahl ¢" (k)
aller verschiedenen, in & enthaltenen Komplexe Rv zugleich die An-
zahl aller verschiedenen Moduln %,. Setzen wir nun zur Abkiirzung

JOESSFRAS

wo A alle Zahlen des Moduls k2, mit einziger Ausnahme der
Zahl Null, und zwar jede solche Zahl nur einmal durchliuft, so
enthilt diese Summe alle Glieder der in § 9 mit S(R») bezeichneten
Summe und auBerdem unendlich viele andere Glieder; aber wir wollen
beweisen, daf trotzdem
6H = Z¢@)S(Nv) = 29 @)S(k)

ist, wo die zweite Summe ¥ auf alle ¢" (k) verschiedenen Moduln £,
auszudehnen ist.

Um den Gang des Beweises, welcher auf dem Satze XVI in § 8
beruht, nicht zu unterbrechen, schicken wir folgende Betrachtungen
iber gewisse Teiler der Gruppe & voraus. Ist &k = mn, wo m, n
natiirliche Zahlen bedeuten, so ist jede relative Primzahl u zu k£ von
selbst auch relative Primzahl zu m, und wir wollen den Inbegriff



— 192 —

aller derjenigen von diesen Zablen g, welche =1 (mod. m) sind,
mit N bezeichnen; derselbe besteht offenbar aus einer gewissen An-
zahl von Zahlklassen (mod. k), welche eine Gruppe, einen Teiler der
Gruppe & bilden. Umgekehrt, wenn eine gegebene Zahl e relative
Primzahl zu m ist, so folgt hieraus im allgemeinen zwar noch nicht,
dall @ auch zu k relative Primzahl ist, aber man iiberzeugt sich
leicht *), daB es immer Zahlen gibt, welche = w (mod. m) und zu-
gleich relative Primzablen zu % sind, und wenn e, irgendeine be-
stimmte solche Zahl bedeutet, so wird ihre Gesamtheit durch den
in der Gruppe & enthaltenen Klassenkomplex Nw, dargestellt; wendet
man daher das in § 9 erklirte Gruppensymbol an, so wird

9 ® _
(1’92) - (;/"(ﬁ)a (ma ‘Q) =9 (m)?

weil zu jeder der ¢'(m) Zahlklassen @ (mod. m) ein und nur ein
Komplex Nw, gehort, und weil (1, %) (N, R) = (1, 8) = ¢’ (k) ist**).

Bedeutet nun % wie bisher die Gruppe aller derjenigen ¢ (k)
Klassen in &, in welchen sich auch rationale Zahlen r befinden, so
leuchtet ein, daf die Gruppe RN aus lauter solchen Klassen besteht,
deren Zahlen nach dem Modul m mit rationalen Zahlen kongruent
sind; umgekehrt, wenn u relative Primzahl zu % und zugleich
=z (mod. m) ist, wo z rational, so ist z gewill relative Primzahl
zu m, man kann daher eine ebenfalls rationale Zahl r, welche zu-
gleich relative Primzahl zu % ist, so wihlen, daf r = z (mod. m),
also auch u = r (mod. m) wird, und hieraus folgt nach dem Obigen,
daf u in einer Klasse des Komplexes N, also auch in einer Klasse
der Gruppe RN enthalten ist. Mithin ist diese Gruppe RN der
Inbegriff aller derjenigen Klassen in &, deren Zahlen nach dem
Modul m mit rationalen Zahlen kongruent sind, und es ist auch
leicht, den Grad dieser Gruppe, d. h. die Anzahl (1, ®R) der in ihr
enthaltenen Klassen zu bestimmen. Da ndmlich ¢(m) die Anzahl

*) Die Kongruenz @, = @ (mod. m) ist (nach D. § 180, II, S.568) vereinbar
mit w; = 1 (mod. x), wo x das Produkt aller Primzahlen n bedeutet, die in £,
aber nicht in m aufgehen.

**) Dieselben Sitze wiederholen sich in der Zahlentheorie jedes endlichen
Korpers £ bei der Vergleichung der Zahlklassen, die sich auf irgend ein Ideal k
beziehen, mit den Zahlklassen, die sich auf ein in R aufgehendes Ideal m be-
ziehen. Ist £ der Korper der rationalen Zahlen, so bilden die entsprechenden
Sdtze eine wesentliche Grundlage fiir die gesamte Theorie der Kreisteilung.
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derjenigen nach m inkongruenten rationalen Zahlen z ist, welche
relative Primzahlen zu m sind, und da jeder dieser Zahlen z ein
Komplex Mr von (1, N) Klassen in RN entspricht, deren Zahlen
g = z (mod. m) sind, so ist ® k
PPy _ (k) o' (k)

(1, 9XN) = @(m) (L, N) = @(m) o m) — 9" (m)
Da ferner (1, %) (MR, RN) = (1, KN), und (1, R) = ¢ (k) ist, so ergibt
sich zugleich

R 9 — 9’ (k) __ 9" (k) .

O = oW om ~ 9
Zu denselben Resultaten gelangt man auch, wenn man bedenkt, daB
R, RR) = (N, N) = (D, N) ist, wo D den grobten gemeinsamen
Teiler der Gruppen 9, M bedeutet; denn jede in D enthaltene Klasse
wird durch eine rationale Zahl » reprasentiert, welche relative Prim-
zahl zu k und zugleich =1 (mod. m) ist, mithin ist ihre Anzahl

_ 9@
(17 ('D) - q‘)‘(,h?):
und da ®
‘ — — 2\
LDE®R)=01N) = o (m)
sein mul, so ergibt sich fiir (D, N), also fir (N, RN) wieder der
obige Ausdruck.

Aus der eben festgestellten Bedeutung der Gruppe R ziehen
wir endlich noch folgenden Schluf. Ist @ wieder eine gegebene
relative Primzahl zu m, und bedeutet @, wie oben eine bestimmte
relative Primzahl zu k, welche = ® (mod. m) ist, so war Nw, der
Komplex aller der Klassen in &, deren Zahlen ebenfalls = o (mod. m)
sind; ebenso leuchtet jetzt ein, dall RNew, der Komplex aller der
Klassen in & ist, deren Zahlen = zw (mod. m) sind, wo z alle
rationalen relativen Primzahlen zu m durchlduft.

Nach diesen Vorbereitungen wenden wir uns zum Beweise des
oben ausgesprochenen Satzes iiber die Umformung der Summe 6 H.
Wir heben zuniichst die charakteristische Eigenschaft aller in den
Moduln %, enthaltenen Zahlen A hervor, welche darin besteht, dab
der groBte gemeinsame Teiler von k¥ und A immer eine
natiirliche Zahl ist. Da nidmlich 4 = 2v (mod. k), und 2 rational,
ferner v relative Primzahl zu k ist, so ist der rationale (positiv ge-

nommene) grofite gemeinsame Teiler n der beiden rationalen Zahlen k, x
Dedekind, Gesammelte Werke, II. 13
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auch derjenige von ¥ und zv, also (nach D. § 180, S.566) auch der-
jenige von k£ und A; setzt man daher k£ = mn, so wird A = wn,
wo @ relative Primzahl zu m ist.

Umgekehrt, wenn eine solche Zahl 4 — wn gegeben ist, so
suchen wir alle Moduln %,, in denen i enthalten ist. Die erforder-
liche und hinreichende Bedingung dafiir, daB i in %, enthalten sei,
besteht in der Existenz einer rationalen Zahl x, welche der Kon-
gruenz xv = A — on (mod. k) geniigt, und da k& = mn, und »
relative Primzahl zu k ist, so muBl zunichst x durch » teilbar, also
& = ny sein; hieraus folgt yv = @ (mod. m), und weil @ relative
Primzahl zu m ist, so gilt dasselbe auch von der rationalen Zahl y;
es gibt daher rationale Zahlen 2, welche der Kongruenz yz=1 (mod. m)
geniigen, und hieraus folgt v = 2w (mod. m); zufolge der obigen
Bemerkung mufl daher » einer Klasse des Komplexes %N w, an-
gehoren, wo @, wieder eine relative Primzahl zu £ bedeutet, welche
= @ (mod. m) ist, und umgekehrt leuchtet ein, dal dann die Zahl i
wirklich in dem Modul %, enthalten ist, weil aus v = z@ (mod. m)
rickwirts y» = o (mod. m), xv = wn = 4 (mod. k) folgt, wo
yz = 1 (mod. m) und x = ny ist. Mithin ist der Komplex RN,
der Inbegriff aller derjenigen Zahlklassen v, welche die Eigenschaft
haben, dafi die gegebene Zahl A — wn in dem Modul %, enthalten
ist ¥), und die Anzahl dieser verschiedenen Moduln k,, d. h. die An-
zahl der in dem Komplexe %9 wm, enthaltenen verschiedenen Kom-
plexe Rv, ist = (R, RN) = ¢"(k): 9" (m). Wir haben nun zwei
wesentlich verschiedene Fille zu betrachten.

Ist die gegebene Zahl 4 selbst relative Primzahl zu k, so ist
n=1m==Fk N =1; die Zahl 4 tritt daher nur in einem ein-
zigen Modul %k, = k; auf und erzeugt nur ein einziges, mit dem
Koeffizienten (1) behaftetes Glied N (4)—¢, und dieses Glied findet
sich ebenso in der ersten wie in der zweiten Summe, deren Identitit
wir zu beweisen haben.

Ist aber A nicht relative Primzahl zu k, ist also n > 1, m < k,
5o liefert A gar keinen Beitrag zu der ersten Summe; da aber die
Zahl 4 in (R, RN) verschiedenen Moduln %, enthalten ist, so liefert

*) Dasselbe ergibt sich auch aus dem leicht zu beweisenden Satze on — £,
= nm,, wWo on — k, das kleinste gemeinsame Vielfache der beiden Moduln on, k
und m, = om -+ [»] = k,m, ist.

v
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sie zu der zweiten Summe ebensoviele Beitrige ¥ (»)N(1)~¢; um
daher auch fiir diesen Fall die Identitit der beiden Summen und
hiermit unseren Satz zu beweisen, brauchen wir nur noch zu zeigen,
daf die iiber alle diese Moduln k, erstreckte Summe Xy (v) = 0
ist. Hierzu berufen wir uns auf den Satz XVI in § 8, den wir nach
unserer jetzigen Bezeichnung offenbar so aussprechen konnen, dal es
in der Gruppe R eine Zahlklasse u gibt, fiir welche ¢ (u) = o, also
nicht =1 wird. Die Gruppe R ist daher kein Teiler*) der in
§ 9 definierten Gruppe v,, und folglich ist der grolite gemeinsame
Teiler € dieser beiden Gruppen ein echter Teiler von R, d. h. €
ist verschieden von %, mithin (€, ) = (v,, N) = (Yo, YoN) > 1,
und da (¢, Yo N) (W, N, &) = (¥,, &) = 3 sein mub, so folgt (&, N) =3
(und (y, M, &) =1, also p,N = ). Mithin besteht die Gruppe
aus den drei verschiedenen Komplexen €, €y, €u? und fiir die in
ihnen enthaltenen Klassen nimmt der Charakter 3 bzw. die Werte
1, o, ¢* an, wihrend ¥ (u®) = ¢ (u)® =1, also €u® = € ist. Be-
denkt man ferner, dal die Gruppe R (nach § 9) ein Teiler der
Gruppe v,, also die Gruppe R€ ein gemeinsamer Teiler der beiden
Gruppen ,, RN ist **), so ergibt sich ebenso, daf die Gruppe RN
aus den drei verschiedenen Komplexen R €, RNEu, NEu® und folglich
der Komplex RNw, aus den drei verschiedenen Komplexen RCa,,
RC€uw,, RE€u’w, besteht. Zerlegt man nun die Gruppe RE in
lauter verschiedene Komplexe von der Form e (deren Anzahl offen-
bar = ¢@"(k):3¢" (m) ist), so ist hiermit auch der Komplex %% w,
in lauter verschiedene Komplexe Rv zerlegt, und zwar hat » alle
Klassen ew,, eépw,, eéu’w, zu durchlaufen, welche den verschiedenen
Klassen ¢ entsprechen. Hiermit sind zugleich alle Moduln %, ge-
funden, in denen die Zahl A enthalten ist; vereinigt man nun immer
die drei Klassen », welche derselben Klasse ¢ entsprechen, und be-

*) Vgl. den Schluf der zweiten Anmerkung zu §9 auf S.189, worin das
Wesen des obigen Beweises enthalten ist.

*%) Offenbar ist RE der groBte gemeinsame Teiler von vy, R, und dieser
Satz gilt allgemein fiir irgendwelche Teiler y,, R, I einer beliebigen Abelschen
Gruppe R, wenn R Teiler von vy, und € der grobte gemeinsame Teiler von vy, N
ist. Bedient man sich einer kiirzlich von mir vorgeschlagenen Ausdrucksweise
(§4 des Aufsatzes ,Uber Zerlegungen von Zahlen durch ihre gréfiten gemeinsamen
Teiler* in der Festschrift zur Braunschweiger Naturforscher-Versammlung 1897),
so ist diese Eigenschaft so auszusprechen, daf die sdmtlichen Teiler einer be-
liebigen Abelschen Gruppe immer eine Dualgruppe vom Modultypus bilden.

13*
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denkt man, dal v¢(cw,) = ¥ (o,), ¥(pw,) = 0¥ (w,), ¥(cp’w,)
= 0*¢(@,) und folglich die Summe dieser drei Werte = 0 ist, so
ergibt sich, daf auch die iiber alle Klassen » erstreckte Summe
S ¢ (v) = 0 ist, und hiermit ist unser obiger Satz vollstindig bewiesen.

§ 11.

Binire quadratische Formen.

Die séimtlichen ¢" (k) verschiedenen Moduln k, = ok + [v] sind
(nach D. § 187, S. 651—657) dadurch vollstindig charakterisiert, dal
sie die Ordnung %k, = [1, ko] haben und der Bedingung ok, = o
geniigen, und da k,k, = k,, ist, so bilden sie hinsichtlich ihrer
Multiplikation eine Abelsche Gruppe. Da ferner unsere Funktion ¢
fiir alle diejenigen in einem solchen Modul %, enthaltenen Zahlen,
welche relative Primzahlen zu % sind, denselben Wert besitzt, so
kann man sie von den Zahlen oder Zahlklassen v auf die Moduln £,
eindeutig iibertragen, indem man ¢ (k,) = ¥ (v) setzt; aus der Eigen-
schaft ¢ (uv) = ¢ (u)w(v) folgt damn ¢ (k.k,) = ¢ (ku,) = v (uv)
= (k)¢ (k,), mithin ist ¢ jetzt auch ein Charakter der eben
genannten Gruppe aller Moduln k,. Zugleich wird

6 H = X (k)8 (k)
wo die Summe Y iiber alle ¢”(k) Moduln k, auszudehnen ist, und
hier ist

JOESSERT

wo A alle Zahlen des Moduls %, (mit Ausnahme der Null) zu durch-
laufen hat.

Bezeichnet man nun die Moduln %, mit f, £, ¥, je nachdem
P(k,) = v (v) = 1,0, ¢® ist, so nimmt der obige Ausdruck die Form
6H = 38()+e28(t) + e’ 28(t)
an, wo die erste, zweite, dritte Summe bzw. iiber alle Moduln %, f,, £,
auszudehnen ist. Die Moduln f, bilden fiir sich eine Gruppe,
welche offenbar der Gruppe v, in § 9 entspricht, und wenn man
wieder @ (k) = 9k" setzt (wie in § 9), so ist ibre Anzahl — 3k,

und ebenso grof ist die der Moduln f, wie die der Moduln £,.
Da zwischen den in §§ 6, 7 erklidrten Funktionen J, G, [ der
Variablen s die Relation J = G H besteht, und da J und G durchaus
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reell sind, so gilt dasselbe auch fiir H; hieraus folgt, daf in dem
vorstehenden Ausdruck 3 S(t,) = X 8(t;) und folglich
6H = ¥8(f) — 28(t)

sein mub. Dasselbe bestitigt sich leicht auf folgende Weise. Ist v
relative Primzahl zu der rationalen Zahl k, so gilt dasselbe von der
mit v konjugierten Zahl »', und die beiden Moduln %, = ok + [v],
ky — ok + [v'] sind ebenfalls miteinander konjugiert, d. h. jede
Zahl 4 des Moduls %, ist konjugiert mit einer Zahl A’ des Moduls k,,
und umgekehrt. Da nun N (1) = N (1), so ist anch S(k,) = S(k.);
da ferner ¢ (») = ¢ (v)?* ist (nach § 7, X), so wird, je nachdem £,
ein Modul t, ¥, f, ist, &, ein Modul £, f;,, sein*); die Moduln f,
sind daher die simtlichen mit den Moduln f, konjugierten Moduln,
und folglich ist ¥ S(f,) = X 8(f), w.z b. w.

Eine zweite Vereinfachung ergibt sich aus der Betrachtung der
dquivalenten Moduln k,. Die sdmtlichen mit der Ordnung £k,
dquivalenten Moduln %, sind (nach D. S. 655) von der Form &k,
wo ¢ alle Einheiten + 1, 4 ¢, -+ ¢? durchlduft, und da jeder Modul
durch Multiplikation mit (— 1) in sich selbst iibergeht, so sind nur
die drei Moduln

ky =10k +[1], ok, =ok+[e]=k, ok, =0k +[0*]=FK

zu betrachten; diese drei dquivalenten Moduln sind aber wirklich
voneinander verschieden, weil £ > 1 ist, und weil folglich die
drei Klassenkomplexe R, R, Ro? verschieden sind. Bezeichnet man
mit & die Gruppe der durch die sechs Einheiten ¢ reprisentierten
Klassen (welche alle verschieden sind, weil k> 2 ist), so haben 3t
und & die beiden Klassen + 1 gemein, und die Gruppe RS besteht
aus den drei Komplexen %, Rg, RNo?; zugleich ist (RS, &) = 3%",
und man erkennt leicht, daf jedem Komplex RSwv ein Tripel von
drei verschiedenen Moduln

Fyy kyo=okyy Ky = o'k,

entspricht, welche miteinander, aber mit keinem anderen Modul
dquivalent sind. Da nun, wenn A alle Zahlen in k, durchlduft, ¢4
alle Zahlen in @k, und 9?4 alle Zahlen in @2k, durchlauft, so folgt

*) Dasselbe ergibt sich auch aus dem Satze k k, = k,,, = k;, welcher

daraus folgt, daB die Zahl w2’ rational ist, also einer Klasse der Gruppe R an-
gehirt (vgl. D. S. 645, 653).
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S(k,) = 8(kyg) = S(kyg2), weil N(1) = N(gA) = N (o) ist; da
aullerdem ¥ (6) =1, also v (k,) = ¢(ky) = ¥ (k,e2) ist, so gehoren
je drei solche dquivalente Moduln entweder alle zu den Moduln £,
oder alle zu den Moduln f,, oder alle zu den Moduln ¥,. Behilt
man daher von je drei Moduln k,, k,,, k,,2 immer nur einen bei, so
geht unsere obige Gleichung in
2H = Y'S(t) — Y'S()

iiber, wo die Summationen Y’ auf alle nicht &dquivalenten
Moduln f;, f, auszudehnen sind; jede dieser beiden Summen besteht
daher aus k" Gliedern.

Die Anzahl aller nicht dquivalenten Ordnungswurzeln &, ist daher
= 3%", und ebenso grof ist (nach D. S. 656) die Anzahl aller der-
jenigen nicht dquivalenten endlichen Moduln m des Korpers @, deren
Ordnung m® — k, = [1, ko] ist. Dies beruht wesentlich darauf,
daB alle Ideale (und Idealbriiche) des Korpers @ (d. h. alle Moduln
von der Ordnung o) nur eine einzige Klasse bilden, also dquivalent
sind, oder dal, was dasselbe sagt, je zwei Zahlen v, 6§ des Korpers @
stets (und zwar auf sechs verschiedene Arten) in die Form # — 4,
i — B0 gesetzt werden konnen, wo «, B ganze relative Primzahlen
bedeuten*); ist nun m irgendein endlicher Modul von der Ordnung
m® = k,, so enthdlt er gewill zwei voneinander unabhingige Zahlen
und ist folglich (nach D. § 172, VI) ein zweigliedriger Modul
m = [n,0] = 0[e, f] = 0t; der mit m dquivalente Modul = [«, ]
hat (nach D. § 181, S. 579 oder § 187, S.655) dieselbe Ordnung
1 — m® = k,, und da zugleich of = oe 4+ 0 = o ist, so ist ¥ eine
der Wurzeln %, der Ordnung k,, w.z b. w.

Um nun die dem Modul %, entsprechende Summe S(k,) = X N(4)~*
zu bilden, wo A alle Zahlen in k, (mit Ausnahme der Null) durch-
lauft, ist es zweckmiBig, die dreigliedrige Basis des Moduls

ky = ok + [v] = [k, ko, ]

durch eine irreduzible, also aus zwei Zahlen «, 8 bestehende Basis
zu ersetzen, was bekanntlich auf unendlich viele Arten geschehen
kann (D. § 172, 8.517—523). Wir bemerken zuvor, dab k, ein
Teiler von ok ist und, weil v relative Primzahl zu % ist, aus k Zahl-

*) Dafl a, 8 hier und im folgenden eine ganz andere Bedeutung haben wie
in §§ 2—5, kann wohl keine Stérung verursachen.
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klassen (mod. k) besteht, deren Reprisentanten die Zahlen 0, v, 2v ...

(k— 1)v sind; nach der Bezeichnung der Modultheorie ist daher
(ky, ok) =k,

und da o ein Teiler von k,, also (o, k) (k,, 0k) = (0, 0k) = N (k)

— 12 3

= k? ist, so folgt auch (o, ) = F.

ky = o, B],
so folgt aus ok, = o, dal «, B relative Primzahlen sind, und wenn

man «=a,+ a0, =0 +bye

setzt, wWo a,, @y, b, by ganze rationale Zahlen bedeuten, so ist (nach
D. § 172, VII, 8. 523) die Determinante a,b, — b,a, = =+ (o, k)
= 4% Da nun der Modul %, durch Vertauschung der beiden
Basiszahlen «, f§ nicht gefindert wird, so diirfen und wollen wir fest-
getzen, dall immer aby — bya, = + k

sein soll, und demgemil soll « die erste, p die zweite Basis-
zahl von k, heiflen; zufolge dieser Bezeichnung wird gleichzeitig
by =[o ] = [— o, — ] = [B, —a] = [— B, o],
und die allgemeinste Darstellung ist
ky = [y, B;], @ = aa+cf, B, =Dba+dp,
wo a, b, ¢, d vier ganze rationale Zahlen bedeuten, die der Bedingung
ad —bec = +1
geniigen *). [Fiihrt man die mit o, § konjugierten Zahlen o', 8’ ein,
so ist der mit k, konjugierte Modul
oy = [oly — B
Benutzt man ferner die bekannte Bezeichnung fiir die Zusammen-
setzung der Substitutionen (D. § 55, S. 134), so wird

(“1 ﬁ) —_ (11 @)(a’v bl)
o, B 1, ¢*/ \ag, b,/
und wenn man die Determinanten nimmt, so driickt sich die obige

Unterscheidung zwischen der ersten und zweiten Basiszahl durch
die Gleichung

af — B =k(e*—9) = —k(1+2¢) = —kV—3

Setzt man nun

*) Die Zahlen g, b sind natiirlich nicht zu verwechseln mit den Invarianten
des kubischen Korpers K in §§ 2—9.
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aus, welche zugleich lehrt, wie aus «, 8 riickwirts die Zahl %k, also
auch die Ordnung &, — [1, ko] des Moduls [«, 8] zu bestimmen ist.

Zufolge dieser letzten Bemerkung gilt auch die folgende Um-
kehrung: wenn zwei relative Primzahlen «, B der vorstehenden Be-
dingung e’ — o' = k(o® — o) geniigen, so ist der Modul t = [«, 8]
gewill eine Wurzel der Ordnung k, — [1, kg]. Da nimlich «p’
— B’ nicht verschwindet, so folgt zundchst, daB die Basis «, g
irreduzibel ist, mithin besitzt ¥ (nach D. S. 642) eine Ordnung ¥
von der Form [1, mg], wo m eine natiirliche Zahl ist; da ferner
o, B relative Primzahlen sind, so folgt of — o, mithin ist ¥ (nach
D. 8.651—652) eine Wurzel der Ordnung ¥, und hieraus folgt
nach der obigen Untersuchung, daB «f' — o’ = m(p® — ¢), also
m =k, ¥ = [1, ko], mithin f einer der Moduln k, ist, w. z. b. w.

Hat man nun eine bestimmte Basis &, 8 des Moduls %, gewihls,
so ist jede in %, enthaltene Zahl 4 stets und nur auf eine einzige
Weise in der Form

A=ax+ By
darstellbar, wo z als erste und y als zweite Variable unabhingig
voneinander alle ganzen rationalen Zahlen durchlaufen; zugleich
wird
NRA) =4V = (ex+By)(wz+ f'y) = A2* + Bay + Cy*,
wo zur Abkiirzung
A =uoa0, B=uaf +p«, C=8p
gesetzt ist, und dem Modul %, entspricht die Summe
1
S®) = = gm T Bay L ogy

welche iiber alle Paare z, y mit Ausnahme des Paares 0, 0 aus-
zudehnen ist.

Offenbar sind A4, C' positive und, wie auch B, ganze rationale
Zahlen, und da o« relative Primzahl zu g, also auch o relative
Primzahl zu ' ist, so konnen 4, B, C' keinen gemeinsamen Teiler
haben; denn wenn = eine in 4 und O aufgehende Primzahl des
Korpers @ bedeutet, so sind von den vier Zahlen e, §, ¢, B ent-
weder nur die beiden ersten oder nur die beiden letzten durch =

teilbar, und in beiden Fillen kann z nicht in B aufgehen. Da
ferner
B —4A4AC = (afp —Bo) = —3k* =D
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ist, so entspricht jeder Basis o, 8 des Moduls k, eine bestimmte
positive, urspriingliche, bindre quadratische Form (4,
1B, 0), deren Diskriminante®*) die Grundzahl D des kubi-
schen Korpers K ist (§4) Ersetzt man aber «, § durch die
oben angegebene allgemeinste Basis «,, ,, und bezeichnet man mit
x,, y, die zugehorigen Variablen, welche wieder alle ganzen ratio-
nalen Zahlen durchlaufen, so folgt aus der doppelten Darstellung
A=ax+ By =02+ By,
dafi die alten und neuen Variablen durch die Gleichungen

€ =ax+by, y=cz+dy
verbunden sind; mithin geht die Form (4, } B, C) durch die Sub-

stitution (ZJ’ g) in diejenige Form iiber, welche der neuen Basis «,,

B, entspricht. Alle diese Formen sind daher eigentlich &quivalent
(D. § 56, S.136) und bilden die sidmtlichen Individuen einer be-
stimmten Formenklasse §,, welche dem Modul %, entspricht. Die-
selbe Formenklasse entspricht aber auch den beiden anderen, mit
k, dquivalenten Moduln

ko = ok, = [0, fo), kv = 0"ky = [a0? o],
weil die Zahlen A4, B, C' offenbar ungeiindert bleiben, wenn «, §
bzw. durch ag, fo oder durch «g? B2 ersetzt werden; es ist daher
& = %v@ - %vgﬂ-
Umgekehrt, wenn irgendeine positive urspriingliche Form (4,

3 B, C) von der Diskriminante

B —44C =D = —3k*?
gegeben ist, so fragen wir, ob es eine Basis «, 8 eines Moduls £,
= [«, B] gibt, welcher diese Form im obigen Sinne entspricht. Um
dies zu untersuchen, betrachten wir die beiden konjugierten, offenbar
ganzen Zahlen

__B+kV—38 B+k

0 )
., _B—kY—3 B—k
o= 2 =g ke
welche mit 4, B, C, k durch die Gleichungen
6+0 =B 0600 =40, 6 —0 = —k(1+29)

*) Vgl. D. § 145. Anmerkung auf S. 388—389.
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verbunden sind. Soll nun die gegebene Form der Basis &, 3 entsprechen,
so ist erforderlich und hinreichend, daf «, 8 relative Primzahlen sind,
welche den obigen Bedingungen e’ — e’ = — k(1 + 29), ao’ = 4,
af + o’ = B, B = O, also den Bedingungen

o’ = A, B =06, af =6, B =C
geniigen. Durch die beiden ersten und ebenso durch die beiden
letzten dieser vier Bedingungen ist zunichst das Verhiltnis der

beiden gesuchten relativen Primzahlen o, 8 aus den gegebenen Zahlen
A, 0, @', C vollstindig zu bestimmen in den beiden Formen

B_06_°C
o A 0’
welche vermoge der Relation AC — ® @' miteinander iiberein-

stimmen. Offenbar gibt es immer nur sechs verschiedene solche
Paare von relativen Primzahlen o, §; denn die beiden gegebenen
Zablen A, ® besitzen im Korper  sechs verschiedene assoziierte
grofite gemeinsame Teiler p, und jeder von ihnen liefert ein ent-
sprechendes Zahlenpaar

A ®

o = — _

4 p 14
Hat man nun eine bestimmte Wahl iiber y, also auch iiber «, 8
getroffen, so folgt aus Ca — @', dal C durch B, ebenso @' durch

o teilbar ist; wir haben daher eine Zerlegung von der Form
=ay, O =fy, O = ad, =40,
wo 0 ein durch die Wahl von p bestimmter, grofter gemeinsamer

Teiler von @', C' ist. Durch den Ubergang zu den konjugierten
Zahlen ergibt sich hieraus die zweite Zerlegung

=dy, 0 =d0, =gy, C = f?,

mithin mufi ¢ als gemeinsamer Teiler von A4, ® ein Teiler von y
sein, und wenn man y — o'c setzt, so folgt aus 4 — «a's, dab
& — ¢ eine natiirliche Zahl ist, weil dasselbe von a«' und von dem
ersten Koeffizienten 4 der positiven Form (4, 1 B, C) gilt; aus der
doppelten Darstellung von @ folgt ferner By — Po's = &', also
0" = Be, d = B'¢, und die beiden obigen Zerlegungen flielen zu-
sammen in die folgende:

A = ad's, 0O — ﬁa'a, A = (xﬁ'i, C = ﬂﬂ'&.
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Die natiirliche Zahl & ist daher gemeinsamer Teiler von 4, C, @, @',
also auch von B =— @ + @', und da (4, ; B, O) eine urspriingliche
Form ist, so folgt ¢ = 1, also
A =ad, O =, "=aff, (= pp.

Jedes der auf die obige Weise aus den gegebenen Zahlen 4, ® ab-
geleiteten sechs Paare von relativen Primzahlen o, 8 ist daher wirk-
lich eine Basis eines Moduls k,, der die gegebene Form (A4, i B, C)
entspricht, und auller diesen Basen gibt es keine andere. Bezeichnet
man eine bestimmte von ihnen mit «, 8, so haben sie die gemein-
same Form a6, f6, wo ¢ alle sechs Einheiten + 1, + ¢, + ¢? durch-

lduft, und sie liefern immer drei verschiedene, aber &Hquivalente
Moduln

k, = [‘xv ﬁJv kw - [“97 ﬁ@]’ k"OZ - 17“92*, ﬁ(’ﬂ]'
Das hiermit gewonnene Resultat konnen wir so aussprechen:

Jedem Tripel von dquivalenten Moduln &, %, &y, ent-
spricht eine bestimmte Klasse &, von eigentlich &dquiva-
lenten quadratischen Formen der Diskriminante D — — 3 k%,
und umgekehrt entspricht jede solche Formenklasse immer
einem, und nur einem solchen Tripel von Moduln. Die ge-
meinsame Anzahl der Modultripel und Formenklassen ist
= 3k".

Jeder Basis «, § des Moduls %, entspricht, wie oben bemerkt,
eine Basis o/, — ' des mit £, konjugierten Moduls k,:; ersetzt man
aber «, B bzw. durch o', — ', so gehen die drei Zahlen A4, B, C
bzw. in A, — B, C iiber, also entsprechen diesen Basen der Moduln
ky, ky die beiden entgegengesetzten Formen (4, 1B, ¢) und
(4, — 5 B, 0); zugleich ist kg2 mit k,o[")], und ebenso &, , mit Z,
konjugiert, und zwei solchen konjugierten Tripeln entsprechen zwei
entgegengesetzte Formenklassen §, und ,.

Hinsichtlich der Auswahl der Basen «, 8 und der entsprechenden
Formen (4, } B, O) erwihnen wir zwei verschiedene Regeln, deren
jede sich durch besondere Vorziige empfiehlt. Die eine besteht darin,
daf man (nach D. § 187, S.652—655) fiir die erste Basiszahl «
eine natiirliche Zahl m wiblt; setzt man dann die zweite Basiszahl

[Y) Es mufl offenbar k"(’ heifien.]
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B =t + no, so wird immer mn — k, und die entsprechende Form
hat die Koeffizienten

A=m’ B= mQ@2t—n), C=1—tn-+n

diese Formen bilden einen speziellen Fall derjenigen Formen, welche
Gaull in den Artikeln 254, 255 der Disquisitiones Arithmeticae be-
trachtet (vgl. D. §§ 150, 151). Nach der zweiten Regel wihlt man
die Basis immer so, dafl ihr eine sogenannte reduzierte Form
(4, 1 B, O) entspricht, in welcher absolut genommen B <4A=<C0C
und welche aus der ersten Form leicht abzuleiten ist (Art. 171 der
Disqu. Arithm. oder D. § 164).

Wir erinnern noch daran, da (nach D. § 187) der Multi-
plikation der Moduln, welche durch %k, = k., ausgedriickt
wird, die Komposition der Formenklassen §.§, — v ent-
spricht, und kniipfen hieran die folgende Betrachtung. Da jeder
Formenklasse §, ein und nur ein Tripel von Moduln %,, kyoy kyg
entspricht, welche denselben Charakter w(v) haben, so kann man
diesen Charakter eindeutig auf die Formenklasse iibertragen, indem
man ¢ (§,) = ¢(k) = ¢ (v) setzst, und da hieraus P (5. &)
= 9 (Fu) ¥ (5,) folgt, so ist jetzt ¥ ein Charakter der Abelschen
Gruppe 9, welche ans den 3%" Formenklassen § besteht. Wir
haben oben mit f, alle diejenigen Moduln %, bezeichnet, deren
Charakter 4 (k,) = 1 ist; sie bilden eine aus k" Tripeln bestehende
Gruppe, und ebenso bilden die zugehorigen %’ Formenklassen eine
Gruppe ®, welche wieder der Gruppe ¢, in § 9 entspricht; zu-
gleich ist (®, ) = 3, und wenn man mit §, eine bestimmt ge-
wihlte Formenklasse bezeichnet, deren Charakter = ¢ ist, so besteht
die Gesamtgruppe $ der 3%” Formenklassen aus den drei Kom-
plexen &, 8§, = ©,, 837 = ©,, denen bzw. die Charaktere 1, 0, 0°
zukommen. In welcher Beziehung steht nun diese Gruppe ® zu
unserem kubischen Kérper K? Um diese Frage zu beantworten,
betrachten wir alle diejenigen in D nicht aufgehenden natiirlichen
Primzahlen p, welche = 1 (mod. 3) sind, von welchen also die
Grundzahl D quadratischer Rest ist. Im quadratischen Korper Q
ist daher p — mx', wo =, n' zwei konjugierte, wesentlich verschie-
dene Primzahlen bedeuten, die nicht in 3% aufgehen; diese Prim-
zahlen sind bzw. in den beiden konjugierten Moduln k,, k, ent-
halten, und da p = N (z) = N (') ist, so ist p darstellbar durch
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jede in den beiden entgegengesetzten Formenklassen §,, & enthaltene
Form (4, 1 B, C). Da umgekehrt (nach D. § 60) jede solche Form,
durch welche p darstellbar ist, mit einer Form (p, 37, g) dquivalent
ist, wo 7 = D + 4pg = D (mod. 4p), und da die letztere Form,
wie oben gezeigt ist, immer nur drei #quivalenten Moduln £,
= [e, B] entspricht, wo «a’' =— p, also « mit = oder =’ assoziiert
und folglich auch relative Primzabl zu % ist, so mul %, = k;, oder
= ks~ sein, mithin gehort die Form (p, ;7, ¢) einer der beiden
Formenklassen §., §» an, und die natiirliche Primzahl p ist daber
ausschlieBlich darstellbar durch die Formen dieser beiden Klassen
(vgl. D. §§ 86, 87). Nun gehort die Formenklasse F,. dem Kom-
plexe ®, ©,, ®,, und gleichzeitig gehort die Formenklasse y dem
Komplexe &, ®,, &, an, je nachdem o (x) = 1, o, ¢* ist; nach der
Definition der Funktion ¢ in § 7 tritt aber der erste dieser drei
Fille dann, und nur dann ein, wenn a@b® kubischer Rest der
natiirlichen Primzahl p ist, wo a, b die Invarianten des kubischen
Korpers K bedeuten. Wollen wir diesen Korper K nicht ausdriick-
lich erwdhnen, so besteht das hiermit gewonnene Resultat in dem
folgenden

Satz. Ist mindestens eine der beiden natiirlichen Zahlen
a,b>1 und ab durch kein Quadrat einer natiirlichen Prim-
zahl teilbar, setzt man ferner £k — 3 ab oder — ab, je nach-
dem (a® —b®) durch 9 unteilbar oder teilbar ist, so ist die
Anzahl aller nicht Aquivalenten, positiven, urspriinglichen
bindren quadratischen Formen (4, B, ) von der Diskri-
minante B2 —4 AC = D — — 3k? immer ein Vielfaches 3 %"
von 3, und ein Drittel der durch diese Formen vertretenen
Formenklassen bildet eine Kompositionsgruppe &, welche
durch die folgende Eigenschaft charakterisiert ist: Be-
deutet p jede natiirliche Primzahl, welche = 1 (mod. 8) ist
und nicht in D aufgeht, so sind durch die #" Formen der
Gruppe ® alle und nur solche Primzahlen p darstellbar,
von denen abd? also auch o?b kubischer Rest ist, wihrend
durch die Formen der iibrigen 2% Klassen alle und nur
soleche Primzahlen p darstellbar sind, von denen ab® kubi-
scher Nichtrest ist.

Wollen wir aber die Bedeutung der quadratischen Formen fiir
den kubischen Korper K hervorheben, so erinnern wir uns daran,
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daB (nach § 5) die natiirliche Primzahl p, je nachdem @b* kubischer
Rest oder Nichtrest von p ist, im Korper K durch drei verschiedene
Primideale ersten Grades teilbar oder selbst eine Primzahl dritten
Grades ist, und erhalten den folgenden *)

Satz. Bedeutet D die Grundzahl eines kubischen Kor-
pers K, so ist die Anzahl der Klassen, in welche die
urspriinglichen bindren quadratischen Formen von der
Diskriminante D zerfallen, ein Vielfaches von 3, und ein
Drittel dieser Klassen bildet eine durch folgende Eigen-
schaft charakterisierte Kompositionsgruppe &: Bedeutet »
jede, in D nicht aufgehende, natiirliche Primzahl, von
welcher D quadratischer Rest ist, so wird p im Koérper K
durch drei verschiedene Primideale teilbar oder selbst eine
Primzahl sein, je nachdem p durch eine Form der Gruppe &
darstellbar ist oder nicht.

Auf einem der Papiere aus dem Nachlasse von Gaufl, welche
mir — wahrscheinlich im Jahre 1860 — zur Ansicht, aber nicht
zur Herausgabe mitgeteilt wurden, befand sich eine Bemerkung
iiber kubische Reste, welche nach meiner Abschrift folgendermaGen
lautet [*)]:

Observatio venustissima inductione facta.

2 est Residuum vel non Residuum cubicum numeri
primi p formae 3n 4 1, prout p repraesentabilis est
per formam

zx + 27Tyy
vel 4z + 22y + Tyy.

3 est Residuum vel non Residuum, prout p re-
praesentabilis est per

rx + 243 yy aut 4z 4 2xy 4 61lyy
vel Txx + 6zy + 36yy aut 9xx + 62y + 28yy.

*) Die Form, in welcher ich diesen Fundamentalsatz hier ausspreche, ist so
gewidhlt, daB sie, wie ich glaube, fiir alle kubischen Korper ohne Ausnahme, selbst
fiir die Kreiskorper gilt; den allgemeinen Beweis dieses Satzes zu finden, ist mir
aber bisher nicht gelungen. Dagegen bietet die Zerlegung aller anderen Prim-
zahlen p in Primideale keine erhebliche Schwierigkeit dar.

[) C. F. GauBl, Werke Bd. VIII, 8.5.]
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. (1, 2, 97)
S1
(1, 0, 675) 9, 3, 76)
25, 0, 27) | fae_ (19, 3, 36)
(13, 1, 52) gepnta_ (25, 5, 28)
(4, 1, 169) t‘ur op | (355 10, 31)
PEX | (27, 9, 28)

In diesen Sitzen mufl man ohne Zweifel die frithesten Ent-
deckungen erblicken, die Gaufl auf dem Gebiete der kubischen (und
biquadratischen) Reste gemacht hat, und durch welche er bald daranf
zu der Erweiterung des Begriffs der ganzen Zahl gefiihrt ist (vgl. § 7).

Noch bevor dieses merkwiirdige Fragment mir bekannt geworden
war, hatte ich den ersten dieser drei Sitze bei dem Versuche
gefunden, die Methode, durch welche Gaull den biquadratischen
Charakter der Zahl 2 bestimmt (Theoria residuorum biquadraticorum I,
Art. 15—23), auf die Theorie der kubischen Reste zu iibertragen.
Der Beweis, den ich am 7. Januar 1858 in einer algebraischen Vor-
lesung zu Géttingen vorgetragen habe, ergibt sich in der Tat sehr
einfach aus Art. 358 der Disquisitiones Arithmeticae; behidlt man
namlich die dortige Bezeichnung bei, bedeutet also » eine natiirliche
Primzahl, welche = 1 (mod. 3) ist, so zeigt Gaull, dal immer

dn =MM 4+ 27NN
und gleichzeitig, wenn M = 1 (mod. 3) gewahlt wird,
9a=n+1+M

ist, wo @ — 1 = (R &) die Anzahl derjenigen inkongruenten kubischen
Reste z von 7 bedeutet, welche die Eigenschaft besitzen, dal auch
(z + 1) kubischer Rest von » ist. Setzt man nun z + 1 =2, (mod. 7) .
und bedenkt, dall die Zahl (— 1) immer kubischer Rest von = ist,
so folgt aus —z, + 1 = —z (mod. n), dal die Zahl (— z,) dieselbe
Eigenschaft wie z besitzt. Man kann daher alle diese (@ — 1) Zahl-
klassen z in eine Reihe von Paaren z und (— z — 1) ordnen, und
folglich wird @ — 1 eine gerade Zahl sein, wenn nicht etwa der Fall
vorkommt, daf die beiden Zahlen derselben Klasse angehoren, also
22 = — 1 (mod. n) ist; dies geschieht immer und nur dann, wenn
die Zahl 2 selbst ein kubischer Rest von 7 ist, und da es in diesem
Falle auch nur fiir eine einzige Klasse z geschieht, so ergibt sich,
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daB a gerade oder ungerade ist, je nachdem die Zahl 2 kubischer
Rest oder Nichtrest von n ist*). Da ferner immer a = M = N
(mod. 2) ist, so folgt, daB die Primzahl n im ersten Falle und nur
in diesem durch die Hauptform (1, 0, 27) = xx 4 27 yy darstellbar
ist; wenn aber 2 kubischer Nichtrest von = ist, so mull » durch die
beiden anderen reduzierten Formen (4, + 1, 7) =4zz+2xy+ Tyy
der Determinante — 27 oder der Diskriminante — 108 darstellbar
sein, Hiermit ist der obige Satz vollstindig bewiesen, und man iiber-
zeugt sich leicht, dal er mit unserer allgemeinen Theorie iiberein-

3
stimmt, weil die Invarianten des durch die Zahl V2 erzeugten kubischen
Korpers K, die Zahlen 2 und 1 sind, woraus k¥ = 6, k" = 1 folgt.
Unterhalb 100 gibt es nur zwei Primzahlen n oder p, von denen
die Zahl 2 kubischer Rest ist, ndmlich
31 = 22 27.12 43 = 42 4 2712
und wenn ¢ eine willkiirliche Zahl bedeutet, so ist
#—2=(@t—4)(t— 7@+ 11) (mod 31),
£ —2=(t+9) @+ 11)(—20) (mod. 43),
wie man leicht mit Hilfe des Canon Arithmeticus von Jacobi findet.
Gehen wir jetzt zu den beiden anderen Sitzen iiber, um sie
ebenfalls mit unserer Theorie zu vergleichen, so ist es auch hier
zweckmifig, zu jeder der von Gaull angegebenen reduzierten Formen,
falls sie nicht eine zweiseitige (eine forma anceps) ist, die entgegen-
gesetzte Form hinzuzufiigen. In dem zweiten Satze, der von dem
kubischen Charakter der Zahl 3 handelt, ist das Formensystem der
Determinante — 243 auflerdem mnoch durch die beiden oben
tehlenden Formen (13, + 2, 19) zu ergénzen, und wir wollen (wie im
folgenden § 12) zur Abkiirzung

(1, 0,243) = (00), (7, —3,36) = (10), (7, 3,36) = (20),
(4, 1, 61)=(01), (9, 3,28 = (11), (13, —2,19) = (21),
(4, —1, 61) = (02), (13, 2,19) = (12), (9, —3,28) = (22)
setzen. Die Bedeutung dieser Bezeichnung ist folgende. Jede Form (yz),
wo die beiden Zahlen g, z durch beliebige nach dem Modul 3 kon-

*) Aus der Bedeutung der GaubBschen Zahlen b = (RK'), ¢ = (] R]"),
welche nicht beide ungerade sein konnen, ergibt sich allgemeiner, da8 die Zahl 2
dem Komplex R oder K oder R angehort, je nachdem ¢ = b = ¢ = 0 oder
a+l1=b+1=c=0odera+1=0b=c+1=0 (mod 2) ist.
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gruente Zahlen ersetzt werden diirfen, soll auch als Zeichen fiir die
durch sie reprisentierte Formenklasse angesehen werden; dann ist
die aus den Klassen (y,2,) und (y,z,) zusammengesetzte Klasse

(1:2) (¥22) = (¥2), WO y =y, + ¢, 2=2+2 (mod 3),
also auch
(yz) = (10)(01)5,  (10)* = (01)° = (00),
und der Satz von Gaull besteht darin, dafl die Zahl 3 kubischer
Rest oder Nichtrest der natiirlichen Primzahl p ist, je nachdem p
durch eine der drei Formen (00), (01), (02) darstellbar ist oder nicht.
Die kleinsten durch die Formen (00), (01) darstellbaren Primzahlen sind

307 =— 8% 4 243.1°, 61 = 4.0°4+2.0.1 4+ 61-1?,
und es ist
#—3 = (t4 79)(t + 113) (¢ + 115) (mod. 307),
#—38=(t—4)(t—5)({t+9) (mod. 61).
Vergleichen wir nun diesen zweiten Satz von Gaufl mit unserer
Theorie, so ergibt sich folgendes. Die Invarianten des durch die

3
Zahl V3 erzeugten Korpers K, sind die Zahlen 3, 1, und da folglich
k=9, k' = 1 ist, so miissen schon die drei reduzierten Formen

(1,3.61), (1,£39)

der Diskriminante — 243 die Entscheidung iiber den kubischen
Charakter der Zahl 3 geben; die oben mit ® bezeichnete Gruppe
besteht allein aus der Hauptklasse (1, }, 61), und die Zahl 3 ist daher
kubischer Rest von allen und nur von denjenigen Primzahlen p, welche
durch diese Form darstellbar sind. In der Tat ist wieder

307 = T2+ 7-2461.2%, 61 =024+0.1+61.12
und man erkennt leicht, dall der Satz von Gaul vollstindig mit dem
unsrigen iibereinstimmt. Dies beruht auf den allgemeinen Sétzen
iber den Zusammenhang zwischen den Formen verschiedener Ordnung;
jede Gruppe © innerhalb der Gesamtgruppe § aller Formen der
Diskriminante D liefert eine entsprechende Gruppe @' innerhalb der
Gesamtgruppe ' aller Formen, deren Diskriminante D' irgend ein
quadratisches Vielfaches De? von D ist, und zwar bleibt die Anzahl
(®', &) invariant = (®, $), weil jede Formenklasse der Diskriminante D
sich in gleich viele Formenklassen der Diskriminante D' zerteilt*).

*) Vgl. D. §§ 150, 151, 187 und die obige Anmerkung zu § 10 auf S. 192.
Dedekind, Gesammelte Werke, II. 14
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Jede solche, aus einer Gruppe ® abgeleitete Gruppe &' ist daran
kenntlich, dal sie die Gruppe aller derjenigen Formenklassen der
Diskriminante D’ in sich enthdlt, welche durch Komposition mit der
Hauptklasse der Diskriminante D diese selbe Hauptklasse erzeugen. In
unserem Falle ist e = 2, D = — 3(9)’, D' — — 3(18)% und je drei
Formenklassen (y z) der letzteren Diskriminante liefern durch Kompo-
sition mit der Klasse (1, §, 61) eine Klasse der Diskriminante D, was
in leicht verstdndlicher Weise durch

{(00), (01), (02)} (1, 5, 61) = (1, g, 61)
{(10), (11), (12)} (1, § 61) = (7, —§, 9)
{(20)’ (21)a (22) } 1, %’ 61) = (T, %’ 9
oder durch
(w2 (1, 3 61) = (7, — 5 9y
bezeichnet werden kann.

Aus demselben Grunde konnte man in umgekehrter Weise den
ersten Satz von GauB so umformen, dal zur Entscheidung iiber
den kubischen Charakter der Zahl 2 die Formen der Diskriminante
D = — 3(6)* durch je drei Formen der Diskriminante D' = — 3(18)?
ersetzt werden; in der Tat ist

{(00), (11), (22)} (1, 0, 27) = (1, 0, 27)
{(01), (12), 20)} (1, 0, 27) = (4, —1, T)
{(02), (10), @V} (1,0,2T) = (4, 1, T)

(y z)(la 0,27) = (4a —1, 7)2y+z’
und die Zahl 2 ist kubischer Rest oder Nichtrest einer Primzahl p,
je nachdem letztere darstellbar oder nicht darstellbar durch eine der
drei Formen (00), (11), (22) ist; so z B. werden die beiden oben ge-
nannten Primzahlen 31 und 43, von denen 2 kubischer Rest ist,
durch die Form (11) = (9, 3, 28) dargestellt:

31=19-1246-1-(—1)428-(—1)%, 43=19-1246-1-1-428.12

Ganz dhnlich verhélt es sich mit dem dritten Satz von GauB,
wo zur Entscheidung iiber die Zahl 5 die 18 Formen der Diskriminante
D' = — 3(30)® benutzt werden, wihrend nach unserer Theorie schon
die 6 Formen der Diskriminante D — — 3(15)® hierzu ausreichen.
Um die Komposition der ersteren 18 Formen miteinander iibersichtlich
darzustellen (wie bei dem zweiten Satze), wollen wir sie gemeinsam

oder
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durch (y z) bezeichnen, wo z wieder nach dem Modul 3, aber y jetat
nach dem Modul 6 zu nehmen ist; setzen wir

(10) = (7, 2, 97), (01) = (4, 1, 169), (yz) = (10} (01,
so wird

termor (60) = (03) = (00),

(00)= (1, 0,675), (01)= (4, 1,169), (02)= (4, —1,169)
(10)= (7, 2, 97), (11)=(27,—9, 28), (12)=(25, 5, 28)
(20)= (19, 3, 36), (21)=(25, 10, 31), (22)= (9, —3, 176)
(30)= (25, 0, 27), (81)=(18, 1, 52), (32)=(13, —1, 52)
(40) = (19, —3, 36), (41)= (9, 3, 76), (42)=(25,—10, 31)
(50) = (1,—2, 97), (5l)=(25,—5, 28), (52)=(27, 9, 28)
und die Komposition dieser Formenklassen mit der Hauptklasse
(1, 3, 169) kann durch

((00), (01), (02)} (1, 3, 169) = (1, %, 169)
{(10)’ (11)a (12) } 1, ";'7 169) = (7, _%7 25)
{(20), (21), 22)}(1, 5 169) = (9, —3, 19)
{(30)’ (31)7 (32) (1, %7 169) = (13, %a 13)
{(40)’ (41), (42)} 3 169) = 9, & 19)
{(50), (51), (52)} 3 169) = (7, 3, 2b)
oder kurz durch

(y2) (1, 3, 169) = (7, — 3, 25y
dargestellt werden. Die Zahl 5 ist dann und nur dann kubischer Rest
der Primzahl p, wenn p durch eine der beiden zweiseitigen Formen
(1, 3, 169), (13, 3, 13)

darstellbar ist; offenbar ist 13 die kleinste solche Primzahl, und sie
ist darstellbar durch die Formen (31), (32); zugleich ist

B—5=(@¢+2)(@¢+ 5)(+ 6) (mod 13).

Die 18 Formen (yz) der Diskriminante D' = — 3(30) geben,
weil je sechs von ihnen aus einer Form der Diskriminante D =— — 3 (6)?
entstehen, auch wieder die Entscheidung iiber den kubischen Charakter
der Zahl 2; aus

(10)(1, 0, 27) = (01)(1, 0, 27) = (4, 1, 7)

(1,
1

folgt
(y2)(1, 0, 27) = (4, 1, Tp+s
mithin entspricht der Hauptklasse (1, 0, 27) die Gruppe der sechs
Klassen (00), (12), (21), (30), (42), (51), welche die Potenzen der
14*
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Klasse (12) oder (51) sind, und die Zahl 2 ist dann und nur dann
kubischer Rest der Primzahl p, wenn p durch eine Form dieser Gruppe
darstellbar ist; so z. B. wird die oben angefiihrte Primzahl 43 durch
die beiden Formen (12), (51), und ebenso die Primzahl 31 durch die
beiden Formen (21), (42) dargestellt.

Wir haben an den drei Sétzen von Gaull soeben gezeigt, wie der
kubische Charakter einer Zahl ab? der nach unserer Theorie von den
Formen der Diskriminante D — — 3%? abhéngt, auch durch die
Formen jeder Diskriminante D' — De?* —= — 3 (ke)® bestimmt werden
kann, welche ein quadratisches Vielfaches von D ist. Aus der De-
finition der Funktion ¢ in § 7 und aus dem Satze XVI in § 8 folgt
aber auch, wie der Leser leicht finden wird, dall die Grundzahl D
des kubischen Korpers K wirklich die absolut kleinste Diskriminante
ist, deren Formen die fragliche Fntscheidung geben, und hierin liegt
eine wesentliche Vervollstindigung des oben in doppelter Form aus-
gesprochenen allgemeinen Satzes. Noch wichtiger ist aber der Umstand,
dall die in § 10 bewiesene Umformung der Funktion H nicht mehr
gelten wiirde, wenn man statt der Moduln %,, denen die Formen-
- klassen &, von der Diskriminante D entsprechen, solche Moduln (ke),
einfithren wollte, denen Formen von absolut groBerer Diskriminante
D' = Dé* entsprechen; auch dies beruht auf dem Satze XVI in § 8,
doch wollen wir uns hier begniigen, die Tatsache an den folgenden
" Beispielen nachzuweisen.

§12.

Beispiele.

Wir haben schon am Schlusse von § 4 hervorgehoben, dafl ein
(reeller) reiner kubischer Korper K durch seine Grundzahl D — — 3k?
im allgemeinen noch nicht vollstindig bestimmt ist, dall es also ver-
schiedene Korper K geben kann, welche demselben Werte der natiir-
lichen Zahl k entsprechen. Zu allen diesen Korpern K gehort dann
auch dasselbe System von Moduln %, des quadratischen Korpers @
(in § 10) und dasselbe System $ von bindren Formen (in § 11); aber
diese Korper K werden sich immer voneinander unterscheiden durch
die zugehorige Funktion ¢ (in § 7) und folglich durch die Gruppe ®
(in § 11), welche aus einem Drittel der Gruppe § besteht. Zufolge
der Tabelle in § 2 tritt dieser Fall zuerst fiir den Wert & = 18 ein,

3 _ 3__
welchem die beiden durch die Zahlen V6 und V12 erzeugten Korper K,



und K, entsprechen, und da die Zahl 18 durch die beiden ersten in
der Tabelle auftretenden Werte 6 und 9 von k teilbar ist, so wird
die Untersuchung des Falles £ — 18 zugleich die Theorie der durch

3 3
die Zahlen Y2 und V3 erzeugten Korper K, und K, umfassen, mit
welchen wir uns eben schon in § 11 beschéftigt haben; die Durch-
fithrung dieses Beispiels wird daher besonders lehrreich sein.
Zunéchst kommt es nach § 9 darauf an, im quadratischen Korper @

alle ganzen Zahlen u iibersichtlich darzustellen, welche relative Prim-
zahlen zum Modul £ — 18 sind; da 2 und 3 die einzigen in 18 auf-
gehenden natiirlichen Primzahlen sind, so erhalten wir

ok) = @(18) = 18(1—3)(1 —3) =6,

¢ (k) =9k = ¢@"(18) = 18(1 —F)(1 — ) = 27.
also £ = 3, und die Anzahl der inkongruenten Zahlen g ist

9 (k) = p(k)g"(K) — ¢'(18) = 162 — 2.3%

Die Gruppe & dieser Zahlklassen p 1408t sich durch

u=>5"0"(4 —30(1+ 90)* (mod. 18)
darstellen, wo der Exponent w nach dem Modul 6, die Exponenten
%, 9, 2 aber nach dem Modul 3 zu nehmen sind, weil

M=pP=4—-30P=(1+4+90PF =1 (mod 18)
ist. Daf diese Darstellung vollstindig und wesentlich nur auf eine
einzige Weise moglich ist, erkennt man leicht daraus, dal sie aus
den heiden folgenden Darstellungen
p=(—1)wg*-4v(4 —30) (mod.9),
p = @*+tv+22 (mod. 2)

zusammengesetzt ist; die erstere stimmt mit der in § 8, S. 179 an-
gegebenen iiberein und dient dazu, um aus der gegebenen Zahl u die
Exponenten w (mod. 6), #(mod.3) und y(mod. 3) zu bestimmen,
wahrend aus der letzteren Darstellung sich die Zahl z(mod. 3) ergibt;
zugleich folgt aus §8, S. 179 die Bestimmung

3

— ) = 2%V,

(;)="¢
6:92’”,

so geniigt diese Einheit der Bedingung ¢y = + 1(mod. 8), und zu-
gleich wird

Setzen wir ferner

Gu = @¥*t2%* (mod. 2);
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da nun die Zahl 2 auch im.Ko6rper @ eine Primzahl und N (2) = 4
= 3.1+ 1 ist, so folgt aus der Definition des kubischen Charakters

in § 7 auch
g._“ — oV +2z2
<2>_‘” '

Endlich bemerken wir, daf aus der obigen Darstellung der Zahlen u
(mod. 18) auch die Darstellung

p= 5" (4 —30)Y(1 4 9)*

der konjugierten Zahlen u' folgt, weil 4 — 32
14 9¢® = (1 + 90)*(mod. 18) ist.

Gehen wir nun dazu iiber, nach den Regeln in §§ 10, 11 die

27 Moduln k, zu bestimmen, so ist zunfichst zu bemerken, daf die

Gruppe Rt derjenigen Klassen, welche auch rationale Zahlen enthalten,
aus den 6 Klassen

5w =1, 5,7, 17, 13, 11 (mod. 18),

und die Gruppe % (in § 11, S. 197) aus den 18 Klassen 5 ¢* besteht.
Wir werden daher alle Moduln %, und jeden nur einmal erhalten,
wenn wir in der obigen Darstelhmg immer w == 0 setzen, wahrend
jede der Zabhlen =z, y,z ihre drei Werte durchlaufen muB. Da ferner
diese 27 Moduln in 9 Tripel von der Form k,, ku,, k,,: zerfallen,
welche je einem Komplex %Sy entsprechen, und da fiir unseren
Zweck von je drei solchen dquivalenten Moduln nur einer erforderlich
ist, so diirfen wir auch # =— O setzen und erhalten die folgende,
sogleich zu erlduternde Tabelle:

(mod. 18)
= (4 —3¢)* und

Y|z w (18)“ 9 6, Y| U | Yy | Y5
0|01 1,18 190 1,6 0 10111
10| 44+150(62+390(32+30|230 e |e*|1 |o
20| 7T+30 |61+30(31+30|21+30 |0 |1 |¢*
0| 1] 1+99 [214+990|199 21+30|0*|1 |0%| 0
1118460 [31+60|32+30|160 1 e%|e*| ¢
2 1(164+3¢ |64+30|31+30[230 0 o |1
0210490 |290 1,90 2,30 e |1 |0 |0
1] 2113+ 150(65+3¢(32+3¢|21+3¢|0% 0%|e |1
22| 74+120|824+69(31+3¢0]|160¢ 1 lolo o
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Die Zahlen y, z der beiden ersten Spalten bestimmen in Ver-
bindung mit w =— x — 0 die Zahlenklasse w(mod. 18) der dritten
Spalte, und in der folgenden Spalte ist fiir den zugehdrigen Modul
(18). = [18, 18 ¢, u] eine zweigliedrige Basis angegeben, deren erstes
Glied eine natiirliche Zahl ist; diese Basis ist nach bekannten Regeln
(D. § 172, S. 519—520) immer leicht zu finden. Die 9 Moduln (18),
bilden eine Gruppe, und das Gesetz ihrer Multiplikation ergibt sich
aus ihrer Darstellung

(18). = [6, 2+ 3 ol[2, 1+ 9¢F-

Die bindren quadratischen Formen (4, } B, O) von der Diskrimi-
nante — 3 (18)%, welche den hier angegebenen Modulbasen entsprechen
(§11), sind nicht reduziert, aber es hat (nach D. § 64) keine Schwierig-
keit, die ihnen #quivalenten reduzierten Formen herzustellen, und
diese letzteren sind mit denjenigen identisch, welche wir in § 11 bei
der Besprechung des zweiten Satzes von Gaul mit (yz) bezeichnet
haben. In der fiinften und sechsten Spalte findet man zweigliedrige
Basen fiir die durch die Zahl w bestimmten Moduln

9 =[9, 90, u] = (18)u[1, 9¢] = (18),9,,

6. = [6, 60, u] = (18).[1, 60] = (18).6,,
und die ihnen entsprechenden Formenklassen von den Diskriminanten
—3-9% und — 3.6 ergeben sich durch Komposition der Formen (yz)
mit den Formen (1, 3, 61) und (1, 0, 27), wie ebenfalls schon in
§ 11 besprochen ist.

Die vier letzten Spalten enthalten endlich die Werte der Cha-

3__ 3__ 38_ 3 ___
raktere ¢ (u) fiir die durch V2, V3, V6, V12 erzeugten reinen kubi-
schen Korper K, K,, K,, K, welche den Zeilen 1, 2, 4, 5 der Tabelle

in § 2 entsprechen. Da alle vier Korper von erster Art sind, so ist
die Formel XI in § 8 (8.180) anzuwenden, also

o 3\¢t2v/ g w
v = (y) <a,1 bf)’
wo die Einheit ¢ der Bedingung ¢u = 11 (mod. 3) geniigen muf,

und wo die Zahlen u, v, a,, b, aus den Invarianten a, b des Korpers K
s0 zu bestimmen sind, dal

a = 3%-q, b = 38v.b,
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und @,, b, nicht durch 3 teilbar werden. Die Einheit ¢ ist oben
schon fiir jede Zahl u bestimmt, und zugleich ist

B E)=e

hieraus ergeben sich fiir unsere vier Korper die folgenden Bestim-

mungen :
Korper K;; k= 6; k' =
a=2b=1;, u=00v=0; q =2, b, =1

P, (5‘) = (%) = gVt 22,

Kérper Ky k= 9; k' = 1.
=23 b=1, u=1v=0; a, =1, b = 1;

Yy () = <%> = o%.

Korper K,; k — 18; k' = 3.
a=6,b=1, u=1v=0; a, =2, b, = 1;

¥, (0) = (y> (%“) = @%.

Korper K; k = 18; k" = 3.
6a=3b=2 u=1,v=0; a =1, b = 2;

o= ()8 = ()2 = o

Nachdem hiermit die vier letzten Spalten unserer Tabelle aus-
gefiillt sind, ergeben sich aus diesen Werten von ¢ die (nicht dqui-
valenten) Moduln £, £,, £, fiir welche ¢ (t,) =1, v (f,) = o, ¥ (f,) = o*
und deren gemeinsame Anzahl = k" ist:

Korper K,.

t,=1[1,60] t, =[2, 30}, {, = [2, 1 4+ 3]
Korper K,.

fp=1[1,90], &, = [3, 1 + 3¢], £, = [3, 2 4 3¢}
Korper K,.

[1, 18¢], [6, 1 4 3¢], [6, 2 + 3¢],
(2, 9¢], [3, 21+ 6¢) [6, 5+ 3e],
[2, 14+ 9], [3, 14 6¢9], [6,4+ 30]

|I [ H
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Korper K.

E'o == Uv 189]a [6» 4+39]v [Ga 5 +39]’
f, = [2, 1+ 99], 3,2+ 6g], [6, 2 + 3 0],
£, =1[2,90)], [3,1 +60¢], [6, 1+ 39]

Die zu diesen 15 Moduln gehorigen reduzierten quadratischen
Formen sind schon frither angegeben, und hiermit sind zugleich die
beiden ersten Sitze von Gaufl in § 11 durch unsere allgemeine Theorie
bestdtigt. Um nun fiir die hier betrachteten vier Korper K,, K,,
K,, K, auch die entsprechenden Funktionen H,, H,, H,, H, zu be-
stimmen, welche in § 11 (8. 198) in der Form

2H — X' 8(t)— 38 (1)

dargestellt sind, setzen wir zur Abkiirzung
U = 8[1, 189] = 3 (2* + 243 y°)~,
U =8[3,1+60]=28[3,2+60] =292+ 6xy+4 28y,
Uy =8[2,9¢] = S[2, 1 +9¢] = 2(42° + 22y + 61y°)>,
U, =8[6,1+30]=_8[6,2+30] =2(T2*+62y+ 36y,
U, = 8[6,4+389] =8[6,5+30] =213+ 42y + 19¢%)+,
ferner
V, = 8[1, 6] = X(a* + 279") %,
W,=28[2,80]=28[2,14+30] =2U@2>+2xy + 7Ty,
Ve = 8[1,90] = Z(2* + zy + 61y°)¢,
Wy =S8[8,1+380] = 8[3,2+30] = X(T2* +- 3y +9¢°)*
und erhalten

2H, =V, —W,, 2H,=V,—W,,

2H, = (U +2U0)— (U, +U,+ U,),

2H, = (U +2U0,)— (U, + U, + U,

Wir wollen jetzt, wie wir schon am Schlusse von § 11 angekiindigt
haben, diese Beispiele benutzen, um noch einmal auf die in § 10 be-
wiesene Umformung der Funktion H zuriickzukommen. Wir haben
dort, wenn %, irgendeine Wurzel der Ordnung &, = [1, k¢] bedeutet,
mit S(k,) die Summe der Grofen N (1)—¢ bezeichnet, wo i alle (von
Null verschiedenen) Zahlen des Moduls %, durchliuft; wir wollen jetzt
unter dem Zeichen k5 den Inbegriff aller derjenigen von diesen Zahlen 4
verstehen, welche relative Primzahlen zu k sind, und wollen den
von diesen Zahlen herrithrenden Teil der Summe S (k,) mit S(&¥)
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bezeichnen; offenbar ist diese letztere Summe identisch mit der am
Schlusse von § 9 erkldrten Summe S (% v), und der in § 10 bewiesene
Satz lautet

6H = Sy()S (&) = 3 () S(k)

wo k, alle Wurzeln der Ordnung %, durchlduft. Wir haben dann
in § 11 die zweite Summe durch die Betrachtung der Paare von
konjugierten Moduln und der Tripel von #quivalenten Moduln ver-
einfacht, und da dieselbe Vereinfachung offenbar auch fiir die erste
Summe gilt, so nimmt der vorstehende Satz die folgende Form an:

2H = Y'S(8)— X' S(¥) = X'S(¢t)— I'8(t),

wo die Summationen nur auf alle nicht #quivalenten Moduln f,, t,
auszudehnen sind. Diese beiden Ausdriicke fiir 2H unterscheiden
sich dadurch voneinander, dall in beiden Bestandteilen des ersten
Ausdrucks nur solche Glieder N ()¢ auftreten, in welchen 4, also
auch N (4) relative Primzahl zu k ist, wihrend in beiden Bestandteilen
des zweiten Ausdrucks auch solche Glieder N (1)—* auftreten, in
welchen N (1) nicht relative Primzahl zu £ ist, und der Satz besteht
also darin, dal diese letzteren Glieder sich gegenseitig aufheben.
Dies wollen wir jetzt wenigstens an unseren Beispielen bestitigen.

Es ist in § 10 schon gezeigt, dal der grofite gemeinsame Teiler
von k und irgend einer in k%, enthaltenen Zahl A immer mit einer
natiirlichen Zahl n assozilert ist, und wenn man k& =— mn setzt, so
iiberzeugt man sich leicht, da der Inbegriff aller der in %, enthaltenen
Zahlen A, welchen dieselbe Zahl % entspricht, = n-m], d. h. der
Inbegriff aller mit » multiplizierten Zahlen des Systems m; ist, und
hieraus ergibt sich offenbar der allgemeine Satz

Sk) = 3209

bl

wo das Summenzeichen sich auf alle Zerlegungen k¥ = mmn bezieht;
multipliziert man mit %2¢, so erhilt man

K28 (k) = 3 m2e S (m}),

wo m alle natiirlichen Divisoren von % durchliuft, und hieraus folgt
nach bekannten Regeln (D. § 138, S. 362), wie umgekehrt die Summen

von der Form S (%)) sich durch Summen von der Form §(m,) dar-
stellen lassen.
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Um diesen Satz auf unsere Beispiele anzuwenden, betrachten wir
auch die Moduln 3,, 2,, welche je ein Tripel bilden, und den Modul
1, = [1, o] und setzen

X =8[,30]l=2@"+zy+ Ty )5
= 8[1, 2¢] = X(2* + 3:’/2)_81
Z=2_8[,eo=X2@F+zy+ y*) >

Bezeichnen wir ferner, falls S(m,) = M gesetat ist, mit M*

immer die Summe S (m;), so erhalten wir die Relationen

Z = Z¥, ¥ = Y* 4 2-27% X = X* 4 3~ 7%,
Vi—Vi=W,— W= 3T,
Vo= Vi = Wy — Wi= 382X,
U—U* =32V} {272 Vi + T,
Uy— Ut = 3= Vi 4 22 W5 + T,
Up— U = 3-2 Wi+ 272 V3 + T,
Uy— U = Uy — U} = 32 Wi 4 22 Wi 4 T,

wo zur Abkiirzung
T — 6—2s X* + g—2s Y* __|_ (18)«28Z*
gesetzt ist, und hieraus folgt
2H, =V, — W, = Vi— W%
2H, = Vo— Wy = Vi— W3,
2H, = (U+ 2U4)’_(U1+ U, + Us)
— (U* 42U — (Ut + Ut + U,
9OH, = (U +2U)— (U, + U, + U,
— (U* +2U3) — (Ut + Ut + U3),
wodurch die in § 10 bewiesene Umformung bestitigt wird.

Bei der Besprechung des zweiten Satzes von Gauf} iiber den
kubischen Charakter der Zahl 3 haben wir bemerkt, daB derselbe
vollstindig mit unserer Theorie iibereinstimmt, obgleich Gaufl die
Darstellung der Primzahlen p durch quadratische Formen von der
Diskriminante — 3-(18)* benutzt, wihrend schon die Darstellung
durch quadratische Formen von der Diskriminante — 3-92 dieselbe
Entscheidung liefert; jede der letzteren Formen iost sich gewisser-
malen in drei Formen der hoheren Diskriminante auf. Ganz dasselbe
gilt von dem ersten Satze iiber den kubischen Charakter der Zahl 2;
jede der von GauB (in Ubereinstimmung mit unserer Theorie) be-
trachteten Formen der Diskriminante — 3.62 konnte durch drei
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entsprechende Formen der hoheren Diskriminante — 3-(18)® ersetat
werden. Aber um so wichtiger ist es hervorzuheben, daf die Wahl
der einen oder der anderen Diskriminante durchaus nicht freisteht,
wenn es sich um die Herstellung der Funktion
2H = Y'8(t,)—2'S(t)
handelt. In der Tat, wollte man (nach § 11) die Formen von den
Diskriminanten — 3.6 und — 3-9% durch je drei entsprechende
Formen der Diskriminante — 3-(18)® ersetzen, so wiirde man fiir
2H, und 2H, die beiden Ausdriicke
P1 - (U+ 2U1)—(Us+ U4+ U5)7

P,=U+2U)—(U,+U,+ Uy
erhalten, die aber von den oben gefundenen Ausdriicken (¥, — W,)
und (V, — W,) wesentlich verschieden sind. Behilt man von den
Gliedern N (1)~ dieser Summen nur diejenigen bei, in denen N (1)
relative Primzahl zu 18 ist, so erhélt man die beiden entsprechenden
Ausdriicke

Py = (U* +2U1) —(Us + Ut + Up),

P} = (U* 4+ 2U$)— (Ut + Ut + UY),
und aus den obigen Formeln ergibt sich

P, = P+ 3-325(V¥— W},
Py = P+ 3.2-25(Vy — W)

Hieraus folgt zuniichst, dall P,, P, bzw. verschieden sind von P}, P};
ferner leuchtet aus der ersten Gleichung ein, daff P, auch von 2 H,,
d. h. von (V¥ — WY) verschieden ist, weil sonst das Aggregat P¥ auch
solche Glieder NV (1)~ ¢ enthalten miiBte, in denen N (1) durch 3 teilbar
ist, was nicht der Fall ist; dal aber auch P, verschieden von 2 H,,
d. h. von (V3 — W73) ist, folgt aus der zweiten Gleichung erst dann,
wenn man aus §§ 6, 7 noch die Tatsache hinzuzieht, daB H, von der
Form (1 — 2—28)=1 M ist, wo M nur solche Glieder N(4)—* enthilt,
in denen N () relative Primzahl zu 2 ist.

Um nun den Zusammenhang zwischen den Funktionen H,, P,, P¥
und den zwischen H,, P,, P; vollstindig aufzukliren, wollen wir
bemerken, daB aufer dem obigen Satze iiber die Zerlegung der
Summe £2¢S (k,) in Summen von der Form m2*§ (m¥) noch eine Reihe .
von Relationen zwischen unseren Summen S (m,) besteht, die mit der
Transformation der elliptischen Funktionen nahe zusammenhéingen, und
denen ebenso viele Relationen zwischen den Summen S (m?) entsprechen.
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Fiir unseren Zweck geniigt es, den einfachsten Fall dieses allgemeinen
Satzes zu betrachten, der sich in sehr verschiedenen Einkleidungen
darstellen l40t; wir wihlen die folgende. Sind «, 8 zwei Konstanten
von irrationalem Verhiitnis, und ist p eine natiirliche Primzahl, so bilden
wir zwel Systeme von je (p 4 1) zweigliedrigen Moduln; das erste
System M, soll aus den (p 4 1) Moduln

le, B], [pe, pBL [pow pB), ---[po B

bestehen, welche mit Ausnahme des ersten [, 3] simtlich mit |pe, p ]
identisch sind, wihrend das zweite System I, aus den (p + 1) Moduln

le, pB), [po, B, [pe, e« + ) - [pe, (p— Da+ B]
bestehen soll, welche mit Ausnahme des ersten [o;, pf] von der Form
[pe, ca + B] sind, wo ¢ die p Zahlen 0, 1, 2--- (p — 1) durchlduft.
Alle in diesen (2p + 2) Moduln enthaltenen Zahlen 4 sind von der
Form 4 — xoa + y B, wo @, y ganze rationale Zahlen bedeuten, und
jede solche Zahl 4 tritt, wie der Leser leicht finden wird, ebensooft
in den Moduln des Systems I, wie in den Moduln des Systems I,
auf; sind ndmlich beide Zahlen x, y durch p teilbar, so ist 4 in allen
(p+ 1) Moduln des Systems M, und in allen (p 4+ 1) Moduln des
Systems I, enthalten; ist aber mindestens eine der beiden Zahlen z, ¥
unteilbar durch p, so ist 4 in einem einzigen Modul des Systems I,
und in einem einzigen Modul des Systems 9, enthalten. Man kann
dabher sagen, daB 9, und M, denselben Gehalt von Zahlen i be-
sitzen, wobei zugleich die H#ufigkeit des Auftretens dieser Zahlen
beriicksichtigt werden soll. Wir nehmen jetzt ferner an, daf das
Verhiltnis der Konstanten o, 8 nicht reell ist, und setzen wie friither
N@A)y =21V = (za+ yB) (xo' + yp'), wo A" die mit 4 konjugierte
komplexe Zahl bedeutet, und

S[OC, ﬁ] - EN(A')wsa

wo 4 alle von Null verschiedenen Zahlen des Moduls [&, ] einfach
durchlduft, wihrend die Konstante s > 1 ist; dann folgt aus der
obigen Ubereinstimmung der Systeme 9,, M, der Satz

Sla, Bl +pS[pe, pBl = Sle, pBl + 2 8[pe, ca + B,
wo das Summenzeichen 3 sich auf die p Zahlen ¢ bezieht; die linke
Seite dieser Gleichung lift sich offenbar auch in der Form

1+p-p29) 8 B]
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darstellen, und die Beispiele p = 2, p — 3 liefern die beiden
folgenden Sitze

(14 2-27298[«, B] = Sle, 28]+ S[2¢, ]+ S[2e, & + B,
(14 3:-37298[e, B] = S[e, 3]+ S[3e, ] + S[3e, o + B]
+ 8[8e, 2« + B].

Wendet man den ersten Satz auf die vier Moduln

[e, Bl =[1, 0], [1,3¢0) [1,9¢] [3, 1+ 30]

den zweiten auf die fiinf Moduln

[# Bl =[1, 0], [1,20] [1,30] [1,6¢) [2 3e]
an, und beriicksichtigt die Identititen

[2, 0] = o[1, 20], [2, 1+ o] = o*[1, 2¢),
[3, o] = e[1,3 ¢} [3,1+4e]=0[1,30] [3,2+e]=(2+0)[1,e)
[3, 2¢] = o[2, 1+ 39]? [3, 2 + 29] = 0°[2, 3], [3, 1+ 29]
= (1+20)[1, 2,
[3, 3] = 3[1, 0], [3, 60]=3[1,20], [6,30] =3e[l, 2¢]
so erhdlt man die folgenden neun Relationen
(1+2.-2-29Z —=3Y; (1+3.3-2¢*—3-9Z = 3X,
(143320397 = (14 2-22)X =V, 4 2W,,
1+3.329X —-3"2Z =V, +2W,,
(143-329V,—3-2YV = U 4 20U,
(1+3-329W,—3-2Y = U, + U, + Uy,
(1+2.229V, = U +20,,
(142-22)W, = U, + U, + U,,
von denen aber nur acht voneinander unabhingig sind.

Driickt man nun jede Summe M nach den obigen Formeln durch
Summen von der Form M* aus, so ergeben sich fiir die letzteren die
einfacheren Relationen

(1 —2-29)Z*= 3 Y*; (1 — 3% Z* = 3 X*,

Q—3"9)Y* = (1 —22)X* = Vi+2W} X*= Vi 2Ws,
V= U*+2Us Wi= Ui+ U+ UL
(1—22)V§=U*+20U3; 1 —22)W5 = Ut + Uf + U}

Wir wollen bemerken, dall man diese letzteren Relationen auch
auf einem ganz anderen Wege ableiten kann, bei welchem der leicht
zu beweisende Hilfssatz zur Anwendung kommt, dal, wenn w (ebenso
wie v) relative Primzahl zu k ist, der Inbegriff der durch u teilbaren
Zahlen in k, identisch mit w - &, ist, wo u’ wieder die mit u konjugierte
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Zahl bedeutet. Ist nun p eine natiirliche Primzahl und » relative
Primzahl zu pk, so kann man jede der ¢ (k) Zahlklassen (mod. k),
aus welchen das System %} besteht, in p* Zahlklassen (mod. pk)
zerlegen, welche sich, wenn p in k aufgeht, in Systeme von der Form
(pk)i zusammenfassen lassen, wihrend im entgegengesetzten Falle
auch noch die Zahlen in & zu gruppieren sind, welche nicht relative
Primzahlen zu p sind. Fiir unseren Zweck geniigt es, die Resultate
fir die beiden Primzahlen p = 2, p = 3 anzugeben. Ist k gerade,
so besteht das System £} aus den beiden Systemen

k)3, (2ka+re
d. h. jede in k; enthaltene Zahl findet sich in einem und nur einem
dieser beiden Systeme, und umgekehrt sind alle Zahlen dieser beiden
Systeme auch in k) enthalten. Ist aber & ungerade, so besteht &
aus den vier Systemen

2.k, (2kF, 2kNa+ra, CEVa+re,
deren erstes der Inbegriff aller mit 2 multiplizierten Zahlen des
Systems &y ist. Wenn ferner & durch 3 teilbar ist, so besteht A}
aus den drei Systemen

BEy, Bklarrgr BENa+ies
und wenn k nicht durch 3 teilbar ist, so besteht &k} aus den vier
Systemen
A—0)karp: (BEY, Bkletra Btk
Der erste dieser vier Sitze kann hier nicht zur Anwendung kommen.
weil 18 nicht durch 4 teilbar ist; wendet man aber den zweiten,
dritten, vierten Satz bzw. auf die Beispiele

k, =1[1,0], [1,3¢] [1,9¢) [3,1+ 30|

k, = [la 3 9]’ [11 6 9]7 [2a 3 9]7

k,=1[1,0], [1, 2¢]
an und bildet die entsprechenden Summen S (%), so erhdlt man die
obigen neun Relationen zwischen den Funktionen M*, von denen die
eine aus den iibrigen folgt.

Aus den letzten vier dieser Relationen ergeben sich nun fiir die

oben mit P¥, P} bezeichneten Aggregate die Ausdriicke

Pt =Vi—Wi, Pi=(QQ-—272)(Vi—W3)
deren Form sich dadurch erklirt, daB jede relative Primzahl zu 6
auch relative Primzahl zu 18 ist, wihrend die relativen Primzahlen
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zu 9 nicht alle auch relative Primzahlen zu 18 sind. Beriicksichtigt
man noch die oben gefundenen Beziehungen zwischen P§, P§ und
P,, P,, so vervollstindigen sich unsere fritheren Ausdriicke fiir die
beiden Funktionen 2 H,, 2 H, in folgender Weise:

P
2H, =V,—W, :VT—WTZPTZW’

Py, _ P
1—2-28 7 1 42.2725

2H, = Vo= Wy =V;— W; =

und hiermit ist unsere Absicht, diese Funktionen durch die Formen
der Diskriminante — 3 (18)® darzustellen, wirklich erreicht.

§13.

Der Grenzsatz von Kronecker.

Nachdem wir durch die vorhergehenden Beispiele die Bildung
des Charakters v, der Moduln k,, und hiermit auch der Funktion

’ 2H = Y'8()—X'S8E)
hinreichend erliutert haben, wenden wir uns zur Losung der Auf-
gabe, welche wir uns in § 6 gestellt haben. Es handelt sich darum,

die Anzahl % der Idealklassen des reinen kubischen Kérpers K durch
die wirkliche Ausfithrung des in der Gleichung

2 x log &
kY3
angedeuteten Grenzprozesses zu bestimmen, welcher darin besteht,
daB die positive Variable (s — 1) unendlich klein wird. In §7 ist
die Dirichletsche Idealfunktion J in die beiden Faktoren @, H

zerlegt, von denen der erste die iiber alle natiirlichen Zahlen n aus-
gedehnte Summe

h

— lim (s — 1)J

1
GZE';I:‘;

ist, wihrend der zweite Faktor H nach manchen Umformungen in
§ 11 die obige Gestalt angenommen hat. Da nun bekanntlich
lim(s—1)G =1
ist, so wird
p2Elge _ m
kY3



— 225 —

und dieser Grenzwert 148t sich mit Hilfe eines beriihmten Satzes
von Kronecker leicht bestimmen. Da die Anzahl k" der nicht
dquivalenten Moduln f; mit der der Moduln f, iibereinstimmt, so
geniigt hierzu schon der Ausdruck fiir den Grenzwert der Differenz

YA+ Bey+Cy»)y*— 2,2+ Byry+Cyd) 5

wo (4, 1B, 0), (4,, § B, C,) irgend zwei positive Formen von der-
selben negativen Digkriminante D = B?-—4 AC bedeuten. Die
Darstellung dieses Grenzwertes durch Thetafunktionen hat Kron-
ecker zuerst im Monatsbericht der Berliner Akademie vom 22. Januar
1863 ohne Beweis mitgeteilt. Es lag nun nahe, diesen ersten Satz
als AusfluB eines zweiten aufzufassen, durch welchen das Verhalten
der von einer einzelnen Form (4, 1B, O) erzeugten Summe

Y(Aax*+ Bzxy+ Cy?)—*

fir unendlich kleine positive Werte von (s — 1) genauer ermittelt
wird. Bekanntlich hat Dirichlet zuerst bewiesen, dal diese Funktion
unendlich grof wird wie

2x

und hierin besteht eine wesentliche Grundlage seiner Methode, die
Klassenanzahl der Formen von der negativen Diskriminante D zu
bestimmen. Jetzt kam es darauf an, einen Schritt weiter zu gehen.
ndmlich den endlichen Grenzwert der Differenz

\ 2 2)—s “,,‘,,.,g_g_z,. S
zu ermitteln. Diese Aufgabe ist zuerst fiir beliebige reelle Ko-
effizienten 4, B, C von H. Weber in einem an mich gerichteten
Briefe vom 12. Oktober 1881 vollstéindig gelost, dessen Inhalt er
spiter veroffentlicht hat im Bd. 33 der Mathematischen Annalen (1889)
und in § 113 seines Werkes ,,Elliptische Funktionen und Algebraische
Zahlen“ (1891). Inzwischen ist aber auch Kronecker in zahlreichen
Aufsitzen iiber die elliptischen Funktionen auf diesen Gegenstand
zuriickgekommen; schon im Sitzungsberichte der Berliner Akademie
vom 30. Juli 1885 findet sich seine, von der Weberschen wesentlich
verschiedene Ableitung des fraglichen Grenzwertes, zuniichst fiir

rationale Koeffizienten, und endlich hat er im Sitzungsberichte vom
Dedekind, Gesammelte Werke, II. 15
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21. Februar 1889 den Satz auch auf Formen mit komplexen Ko-
effizienten ausgedehnt. Wir beschrinken uns hier auf Formen mit
reellen Koeffizienten und stellen den Satz in der fiir unseren Zweck
geeigneten Form folgendermafien dar.

Es seien « und § — ow irgend zwei komplexe Konstanten von
imaginirem Verhéltnis @, und zwar setzen wir fest, dal der reelle
Teil von 2@ negativ sei; bezeichnen wir immer mit « die mit «
konjugierte komplexe Zahl und mit N («) das stets positive Produkt ee’,
80 konnen wir dies auch durch die Bedingung

=1@f —fo) = i(0'— @) N(@)>0
ausdriicken, und wir nennen zugleich « die erste, 8 die zweite Basis-
zahl des bindren Moduls f = [« 8] = «[1, @], dessen Zahlen von
der Form 4 — «xz + By sind, wo z, y alle ganzen rationalen Zahlen
durchlaufen. Sind &, und B, = o, @, ebenfalls eine erste und zweite
Basiszahl desselben Moduls f = [«, 8] = [«,, B,], s0 bestehen zwischen
diesen beiden Basen Relationen von der Form
oo, —aae+cf, B, =0batdp,
wo a, b, ¢, d vier ganze rationale Zahlen bedeuten, die der Bedingung
ad—bc = +1
geniigen (vgl. § 11). Hieraus geht hervor, dal die oben mit 4 be-
zeichnete positive Grofle eine Invariante des Moduls f, d. h. unab-
hingig von der Wahl seiner Basis ist. Bedient man sich ferner einer
in der Theorie der elliptischen Modulfunktionen iiblichen Ausdrucks-
weise*), so gehoren die durch die Gleichung
o — b+de
"7 atcw
verbundenen Zahlen @, w, derselben Klasse dquivalenter Zahlen
an, und diese Klasse ist also ebenfalls eine Invariante des Moduls ¥,
oder vielmehr eine Invariante der Modulklasse, welche aus allen
mit f dquivalenten Moduln besteht. Von hervorragender Wichtigkeit
fiir die eben genannte Theorie ist die Funktion

niw

n(w) = e12 II(1 — e2mion),

*) Vgl. meinen Aufsatz in diesem Journal, Bd. 83, und meine Erlduterungen
zum Fragment XXVIII in der zweiten Auflage von Riemanns Werken (1892).
Eine ausfiihrliche Darstellung der ganzen Theorie findet man in dem oben zitierten
Werke von H. Weber und in den Vorlesungen iiber die Theorie der elliptischen
Modulfunktionen von F. Klein und R. Fricke (1890—1892).
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wo n in dem Produkte IT alle natiirlichen Zahlen durchlauft; das
Gesetz ihrer linearen Transformation wird durch die Gleichung

(@) = 7(a + co)ry (o)
ausgedriickt, wo 7 — 1 und w, die obige Bedeutung hat; beriick-
sichtigt man noch, daB 5(— @) die mit 5(w) konjugierte Grole,
und dafl ,
. 0 —
T (@4 co)(a+ca)
ist, so ergibt sich hieraus leicht, daB die Grole

H(w) = H(— o) = 1(0)n(— o) Vi(e'— ),

wo die Quadratwurzel immer positiv genommen werden soll, fiir alle
mit @ &quivalenten Zahlen einen und denselben positiven Wert
besitzt, welcher mithin eine Invariante der aus allen diesen Zahlen
bestehenden Klasse ist. Durchlduft nun 4 alle von Null verschiedenen
Zahlen des Moduls f, und bezeichnen wir (wie in §§ 10, 11, 12)
mit § (f) die Summe aller entsprechenden Potenzen N (1)—%, so besteht
der Satz von Kronecker darin, daB

St = ?A—“{s—i—i — 20" (1) — log 4 — 2log H @)} + (0)

ist, wo die Funktion (0) gleichzeitig mit (s — 1) unendlich klein
wird, widhrend — I"(1) = 0,5772.-- die bekannte Eulersche Kon-
stante ist.

Um pun diesen Satz auf unsere Moduln f — k, anzuwenden,
bemerken wir zundchst, dall die obige Unterscheidung zwischen der
ersten und zweiten Basiszahl mit der in § 11 festgesetzten iiberein-
stimmt, wenn wir jetzt noch annehmen, dafl dort unter ¢ immer
diejenige Kubikwurzel der Einleit verstanden wird, fir welche

1+20=V—3=4iV3
wird, wo V3 positiv zu nehmen ist; behilt man die dortigen Be-
zeichnungen bei, so wird zugleich

4 =1i(@p —po)=1rkYV3

@) — 6,

und

B _b+be  B+ikVs

« a, + a,0 24

wo (4,1B,C) wieder die der Basis «, [ entsprechende biniire
quadratische Form bedeutet. Hat man nun fiir jeden der k" Moduln ¥,

15%

W =
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und fiir jeden der 4" Moduln f, nach Belieben eine Basis «, # gewahlt,
und bezeichnet man mit w,, w, die entsprechenden Werte von w, so
liefert der Satz von Kronecker das Resultat

lim /= ];2‘% {E' log H (w,) — X'log H (@,)1,
und hieraus ergibt sich die Bestimmung der Anzahl 2 der Ideal-
klassen im Korper K durch die Gleichung
n . TH (o)

T IIH(w,)’
wo ¢ die Fundamentaleinheit des Korpers K bedeutet, und wo die
Produktzeichen IT im Nenner und Zahler sich auf alle nicht aqui-
valenten Zahlen w,, @, beziehen.

Mit diesem Resultat, in welchem der Zusammenhang zwischen
den reinen kubischen Korpern und den aus der komplexen Multi-
plikation der elliptischen Funktionen entspringenden algebraischen
Zahlkorpern enthalten ist, brechen wir die gegenwértige Abhandlung
ab; doch fiigen wir noch die folgenden Bemerkungen hinzn, die sich
auf die wirkliche Berechnung der Klassenanzahl A beziehen. Ifir diesen
Zweck ist, wie wir gestehen miissen, die Brauchbarkeit des ge-
wonnenen Resultats noch an gewisse Bedingungen gebunden, die zur-
zeit keineswegs als allgemein erfiillt anzusehen sind. Vor allem ist
zu bemerken, daB hierzu die Kenntnis der Fundamentaleinheit ¢
des Korpers K erforderlich ist; nun haben sich zwar verschiedene
ausgezeichnete Mathematiker damit beschéftigt, die zuerst von Jacobi*)
angegebene und an einigen Beispielen durchgefithrte Methode zu ver-
vollkommnen, aber ein einfacher und zugleich nachweislich unfehl-
barer Weg zur Gewinnung von ¢ der sich mit der Losung der
Pellschen Gleichung in der Theorie der quadratischen Korper ver-
gleichen liefe, ist meines Wissens bisher noch immer nicht gefunden.
Fiir die Beispiele der in § 2 aufgestellten Tabelle ist es freilich ohne
grofle Miihe moglich, die Aufgabe zu losen, und zwar gelingt dies
meistens durch die Zerlegung einiger wenigen Zahlen des Korpers in
ibre idealen Primfaktoren; fiir diejenigen, welche solche Berechnungen
anstellen mogen, bemerke ich folgendes. Gibt man den Buchstaben

*) Allgemeine Theorie der kettenbruchihnlichen Algorithmen, in welchen
jede Zahl aus drei vorhergehenden gebildet wird (Journal fiir reine und an-
gewandte Mathematik, Bd. 69).
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@, b, o, B wieder dieselbe Bedeutung wie in § 2, so findet man leicht,
dal jede im Kérper K enthaltene Zahl

x=1z+ xoa+yp,
von deren rationalen Koordinaten z, x, ¥ hochstens eine verschwindet,
auch als Quotient in den Formen

— Yo —bx, — rf—ay, — 2 — Y P AT
bx—yo ay —xf z2—2za z—yp

darstellbar ist, wo
z,=22—abry, % =ay*—z2, y, =ba*—zy

die Koordinaten ihres Supplements

v

wr =z, +x a0+ y, B
bedeuten. Hierdurch wird man veranlaBt, nur solche Zahlen % zu
betrachten, in welchen eine der Koordinaten =z, y verschwindet,
wihrend die beiden anderen ganze Zahlen ohne gemeinsamen Teiler
sind; eine solche Zahl % ist pur durch Primideale ersten Grades
teilbar, und x kann auch nicht durch zwei verschiedene, in derselben
natiirlichen Primzahl p aufgehende Primideale teilbar sein, aus-
genommen den Fall p — 3 bei den Korpern zweiter Art, wo
03 = p?p,, und wo jede Zahl x» entweder relative Primzahl zu 3
oder teilbar durch pp,, aber niemals teilbar durch p? ist. Auf Grund
dieser Eigenschaften schlieit man aus der Norm von x, welche die
leicht zu berechnende Form 2% 4+ ab®x® oder 2° + a®by® hat, sofort
auf die Zerlegung des Ideals ox in seine Primfaktoren. Um zu
bewirken, dal eine solche Zahl x durch ein in der natiirlichen Prim-
zahl p aufgehendes Primideal ersten Grades p teilbar wird, braucht
man nur mit Hilfe des Canon Arithmeticus die beiden rationalen
Zahlen u, » zu bestimmen, fiir welche & = u, § = v(mod. p), also
' = qb% v* = a*b, uv = ab (mod. p) wird; dann ist der Modul
[p, &« —u, B —v] das kleinste gemeinsame Vielfache p —mn von p
und der Ordnung n = [1, &, #], und unter den in ihm enthaltenen
Zahlen » wird man vorzugsweise diejenigen wihlen, deren Koordinaten
s0 klein wie moglich sind. In allen Beispielen der Tabelle in §2
und einigen anderen, die ich untersucht habe, findet man bald, daB
aus wenigen so zerlegten Zahlen x sich zwei Produkte von ver-
schiedenem Absolutwert bilden lassen, welche aus denselben Prim-
idealen zusammengesetzt sind, deren Quotient folglich eine irrationale
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Einheit ist. Die Aufsuchung der Fundamentaleinheit & welche
hierdurch bekanntlich in endliche Grenzen eingeschlossen ist, kann
freilich noch ziemlich miihselig sein, obgleich die Anzahl der anzu-
stellenden Versuche durch Zuziehung gewisser Kongruenzen sich noch
beschrianken 1a8t.

Am Schlusse der in der Einleitung erwihnten Abhandlung gibt
Herr Markoff eine wertvolle Tabelle von Einheiten fiir diejenigen

3

52 aus o« = Vab? gebildeten Korper, in welchen a <70 ist (von
den 54 in der Tabelle angegebenen Einheiten treten zwei je zweimal
auf, die eine bei @b® = 12 und ¢ b® = 18, die andere bei ab? =20
und @ b? = 50); dal der von ihm eingeschlagene Weg der Berechnung
mit dem eben beschriebenen wesentlich iibereinstimmt, geht teils aus
der Darstellungsform dieser Einheiten hervor, teils aus der in §5
(S.20) enthaltenen Bemerkung: ,Ne nous arrétant pas aux méthodes
slires mais fatigantes pour déterminer l'unité complexe fondamentale
nous remarquons, que pour les valeurs petites de a et b il est facile
de trouver les unités complexes par le titonnement en considérant
plusieurs nombres £ composés des mémes facteurs premiers“. Unter
diesen 52 Korpern befinden sich auch alle in meiner Tabelle (§2)
angegebenen 21 Korper (ab=<23), und die in diesem Umfange an-
gestellte Vergleichung mit meinen Rechnungen hat ergeben, daf} die
von Herrn Markoff gefundenen Einheiten simtlich fundamental
sind mit einziger Ausnahme des Beispiels ab® = 28, in welchem
die von ihm angegebene Einheit das Quadrat der Fundamental-
einheit ist.

Wihrend die von Herrn Markoff und mir angewandte Methode
auf der Zerlegung der Zahlen in ihre idealen Primfaktoren beruht,
hat Herr Mehmke schon seit dem Jahre 1885 den zuerst von
Jacobi angegebenen, spiter von Herrn Bachmann*) behandelten
Algorithmus der Annéherung wieder aufgenommen und durch gewisse
Modifikationen zu vervollkommnen gesucht, woriiber er mir brieflich
in den Jahren 1889 bis 1893 interessante Mitteilungen gemacht hat,
die mir die Veroffentlichung seiner Methoden sehr wiinschenswert
erscheinen lassen; mit bestem Danke erwihne ich einer von ihm

*) Zur Theorie von Jacobis Kettenbruch-Algorithmen (dieses Journal Bd. 75,
1873). Vgl. Fr. Meyer, Uber kettenbruchihnliche Algorithmen (Verhandlungen
des Mathematikerkongresses in Ziirich 1897).
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berechneten Tabelle von 39 Einheiten, unter denen sich acht auf die
Beispiele @b® = 76, 124, 126, 140, 198, 207, 234, 350 beziehen,
also nicht in der Markoffschen Tabelle enthalten sind.

Die weiter unten zu benutzenden Fundamentaleinheiten ¢ der
in §12 mit K, K,, K,, K, bezeichneten Kérper und ihre reziproken
Werte ¢—1! sind die folgenden:

g =14+a+4 8 gl=—1+ue,
&g =4+ 3+ 28, gl=—244,
g, =109 +60a 4338, e&'1=1—6a+4 30,
& = 55 - 240 + 214, el =1+3a—34.

Wenden wir uns jetzt zu der Berechnung der Funktion H(w),
welche fiir alle einander #quivalenten Zahlen @ denselben Wert
besitzt, so ist es vorteilhaft, fiir den Reprisentanten einer solchen
Klasse immer die in derselben enthaltene reduzierte Zahl o zu
wihlen, welche den Bedingungen

— 1<t +1 =1
geniigt, weil dann der analytische Modul (oder absolute Betrag) von
e2miv hekanntlich so klein wie moglich wird; da es ohnehin feststeht,
dal h eine ganze Zahl ist, so geniigt in der Regel die An-

niherung

niw _ﬂz’w'
12 ' 12
nw) =e¢", g(—e)=c .
_ nmi(w' —w)

Hw)=c¢e o Vi(o — co)

Setzt man wie oben

_BitVs o —Baiky3 o o kY

0 = 94 , 0 = 9 A , (o ©) = —r,
wo (4, 3B, O) die der reduzierten Zahl w entsprechende reduzierte
Form von der Diskriminante B*— 4 AC = D = — 3%* bedeutet,
so wird _ _

log H(w) = —ﬁ];fi—%logA + 5log (kV3);

setzt man hierin fir o die " Werte @, und die k" Werte @, ein
und bezeichnet die entsprechenden Werte von 4 mit 4, und 4,, so
ergibt sich

hoge ="V (5 L 4y Stog 4, Sieg )
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fiihrt man endlich statt der natiirlichen Logarithmen log die gemeinen
Logarithmen Log ein und setzt zur Abkiirzung

M ::7111/2—?i Loge — 0,196 9308---, Log M — 0,2943137-.-— 1,
so erhidlt man die Anndherung
1 1
hLoge = M {Z 4 — S| +1{ S Loy 4, —Z Loy 4, ],
4,7 =4,

welche, wie gesagt, zur Berechnung der ganzen Zahl & in der Regel
vollstéindig ausreicht*). Um eine Probe fiir die Genauigkeit dieser
Formel zu machen, deren rechte Seite mit I bezeichnet werden moge.
wollen wir sie auf die vier Korper K,, K, K, K, anwenden, fiir
welche die Werte der Zahlen A4, A4, in § 12 angegeben sind; die
hiernach zu berechnenden Werte von 9 sind dann mit den obigen
Werten der Fundamentaleinheiten ¢ zu vergleichen.

Korper K,.
k=6k=1;4,=1; 4, = 4; M = 0,585 1586
¢ — 38473221, Loge = 0,585 158 5.

Korper K,.
k=9, k' —1; A4y = 1; 4, = 7; M = 1,096 631 5,
& =— 12,486 916 4, Loge = 1,096 455 0.
Korper K,.
k=18, k"=3; 4,= 1,7, 7; A, =4, 9, 13; M = 2,514 7929,
& = 326,990833 6, Loges — 2,514 535 6.

Korper K,.
k=18, k"=3; A,=1,13, 13; A, =4, 7, 9; M =2,2169007;
& — 164,981 8558, Loge — 2,217 436 2.

In allen diesen Beispielen schlieft man aus der obigen Niherungs-
formel hLoge — M mit Sicherheit, daB die Klassenanzahl A — 1
ist, weil M nahezu mit Log ¢ iibereinstimmt.

Auf dieselbe Weise habe ich die Klassenanzahl A fiir alle Korper
der Tabelle in § 2 und aufierdem fiir die drei Beispiele ab® = 35,
53, 91 berechnet, denen die Werte A~ — 3, 1, 9 entsprechen.

*) Nach einer oberflichlichen Schitzung ist fiir jede reduzierte Zahl o der

absolute Betrag der Differenz Log 7 () — 31123 Log e immer << 0,001 894 3.
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Bedenkt man, daf fiir diese Bestimmungsart der Klassenanzahl A
auber der Kenntnis der Fundamentaleinheit ¢ auch die Aufstellung
der Moduln ¥ und ihrer Charaktere ¢ erforderlich ist, welche fiir
grofiere Werte von ab immer zeitraubender wird, so kann man dem
oben gewonnenen Resultate nur einen sehr geringen oder gar keinen
praktischen Wert beilegen. Auf Grund des schonen Satzes von
Herrn Minkowski*), dal es in jeder Idealklasse mindestens ein
Ideal gibt, dessen Norm absolut kleiner ist als die Quadratwurzel
aus der Grundzahl des Korpers, gestaltet sich die Berechnung von 4
viel kiirzer; die oben beschriebene Zerlegung der Zahlen x von der
Form z 4 xe oder z 4 yf in ihre idealen Primfaktoren liefert (in
allen 24 von mir behandelten Beispielen) so viele Aquivalenzen
zwischen den fraglichen Idealen, daB sie sich wirklich in A Klassen
einordnen, und es kommt nur noch darauf an zu zeigen, daf diese
Klassen auch voneinander verschieden sind, was meistens keine
Schwierigkeit macht; in den Fillen, wo ab durch Primzahlen p von
der Form 3m 4 1 teilbar ist, dient hierzu namentlich die Be-
merkung, dall N(z + x« + yf) = 2° (mod. ab), also die Norm jedes
Hauptideals kubischer Rest von jeder solchen Primzahl p ist, worauf
zugleich die Einteilung der Idealklassen in Geschlechter beruht.
Ich bemerke schlieflich, daf auch Herr Markoff in § 6 seiner Ab-
handlung fiir einige Beispiele die Klassenanzahl 2 auf ganz dhnliche
Weise bestimmt hat.

Ich habe im Vorwort leider versdumt, die kiirzlich in der Viertel-
jahrsschrift der Naturforschenden Gesellschaft in Zirich (1897,
Jahrgang 42) verdffentlichte nachgelassene Abhandlung: ,Zur Theorie
der zerlegbaren Formen, insbesondere der kubischen“ von Arnold
Meyer zu erwihnen; sie ist schon im Jahre 1870 verfalt und
bietet, abgesehen von der Ermittlung der Idealzahlen, nur wenige
Beriihrungspunkte mit meiner Arbeit dar.

*) Théorémes arithmétiques (Compte rendu der Pariser Akademie vom
86. Januar 1891).
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Erlduterungen zur vorstehenden Abhandlung.

Dedekind verwendet in dieser Arbeit zum erstenmal die bekannte Dirichlet-
Dedekindsche Grenzformel zur Bestimmung der Klassenanzahl in Kirpern, welche .
nicht Unterkérper eines Kreisteilungskérpers sind, und zwar mit Methoden, die
auch fiir allgemeinere Untersuchungen bedeutungsvoll sind. Die in der Einleitung
und friiher in der Anzeige der Bachmannschen Vorlesungen ausgesprochene
Vermutung, daf die Resultate iiber den Zusammenhang zwischen kubischen Resten
und Klassen der quadratischen Formen auch fiir beliebige kubische Korper richtig
bleiben, ist von Takagi [Comptes rendus 171 (1920), S.1202—1205] bewiesen.
Der Satz folgt als Spezialfall eines allgemeineren Satzes fiber auflosbare Korper
vom Primzahlgrad, und der Beweis beruht auf den allgemeinen Zerlegungsgesetzen
in relativ-Abelschen Korpern, entspricht also der Dedekindschen Vermutung,
dal das Problem bei belicbigen kubischen Korpern unter Anwendung der Theorie
der komplexen Multiplikation behandelt werden kounte. Die Klassenzahl der
Korper der komplexen Multiplikation hat zuerst Fueter [Gott. Nachr. 1907,
8. 288—298, Rendiconti di Palermo 29 (1910), S.380—395] bestimmt.

Zu §§1—5. Die in diesen Paragraphen enthaltenen Resultate iiber Dis-
kriminante und Primidealzerlegung bei reinen kubischen Korpern hitte man auch
einfach aus den allgemeineren Abhandlungen XV und X1V, Bd.I folgern kénnen.
Die Abhandlung iiber die Invarianten beliebiger kubischer Kirper, die Dedekind
in der Einleitung in Aussicht stellt, hat er leider nicht publiziert.

Fiir allgemeine kubische Korper hat eine Reihe von Autoren sich' mit der
Aufstellung einer Basis, Bestimmung der Korperdiskriminante und Primidealzerlegung
und mit der damit eng verbundenen Berechnung der Klassenzahl beschiftigt. Es
sollen hier nur einige der wichtigsten Arbeiten erwihnt werden: G. Woronoj,
Diss. St. Petersburg 1894; L. W. Reid, Amer. Journ. of Math. 28 (1901), S.68—84;
L.Sapolsky, Diss. Gottingen 1902; W.E.Berwick, Proc. London Math. Soc.
(2) 12 (1918), S.393—429; (2) 28 (1925), S.359—378; G. E. Wahlin, Amer.
Journ. of Math. 44 (1922), S.191—203. Eine vollstindige Untersuchung der
kubischen Kérper und ihrer Invarianten mittels der Theorie der Klassenkorper gab
H.Hasse [Math. Zeitsehr. 31 (1930), S.565—582].

§§ 7—8. Die neuere Literatur iiber Reziprozititsgesetze findet man bei Hasse:
Bericht usw. Teil II: Reziprozititsgesetze. Ergiinzungsband VI, Jahresbericht d.
Deutschen Math.-Ver. 1930.

Den Quotienten aus der Zetafunktion eines Korpers und der Zetafunktion eines
Unterkorpers (wie speziell die Dedekindsche Funktion H, S.174—175) hat Artin
[Math. Ann. 89 (1923), 8. 147—156] fiir metazyklische und andere Korper unter-
sucht, ganz allgemein in der Arbeit iiber die Z-Reihen [Hamburg. Abhandl. 3
(1924), S.89—108].

Fiir beliebige kubische Kérper hat C. G.Jaeger [Amer. Journ. of Math. 52
(1930), 8.85—96] ein Charaktersymbol ¥ eingefithrt, das ahnliche Eigenschaften
wie das Dedekindsche besitzt.

§11. Das auf S. 206—207 erwihnte Fragment von GauB ist in Bd. VIII, S. 5
seiner Werke mit verschiedenen anderen, teilweise weitergehenden Notizen iiber
kubische und biquadratische Reste abgedruckt. Nach den Erliuterungen von
Fricke war die Notiz auf dem Vorsatzblatt des Einbandes von GauB’ Hand-
exemplar der Disquisitiones geschrieben und stammt wahrscheinlicherweise aus der
Zeit 1804—1805.
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§13. Ein einfacher Beweis des Kroneckerschen (Grenzsatzes findet sich
z. B. in H.Weber, Lehrbuch der Algebra, Bd. IlI, § 141 (2. Auflage). Neuere
Untersuchungen iiber den Kroneckerschen Grenzsatz findet man bei Fueter
[Rendiconti di Palermo 29 (1910), S.380—395] und Herglotz [Leipziger Berichte
756 (1923), S.3—14, 31—37]; vgl. auch L.J.Mordell, Proc. Roy. Soc. London 125
(1929), 8.262—276.

Hinsichtlich der notwendigen Berechnung der Fundamentaleinheit soll bemerkt
werden, daB die oben erwihnte, in russischer Sprache verfafite Arbeit von
G.Woronoj angeblich eine Methode zur Bestimmung der Fundamentaleinheit in
beliebigen kubischen Korpern mit negativer Diskriminante enthalten soll.

Es ist hier nicht méglich, auf die reichhaltige Literatur iiber die Dedekind-
sche Zetafunktion niher einzugehen; es muB nur auf die fundamentalen Arbeiten
von Hecke, Landau, Artin u. a. verwiesen werden. Unter Benutzung der
Dedekindschen Vorarbeiten studierte Landau die Eigenschaften der Zeta-
funktionen reiner kubischer Korper (Festschrift zu H. A. Schwarz, 1914, S.244
—273).

Ore.



XXX.

Uber die von drei Moduln erzeugte Dualgruppe.
[Mathematische Annalen, Bd. 53, S.371—403 (1900).]

In der vierten Auflage von Dirichlets Vorlesungen iiber Zahlen-
theorie (die im folgenden mit D. zitiert werden soll) habe ich ge-
legentlich (in den Anmerkungen auf S.499, 510, 556) die Dualgruppe
erwiahnt, die aus drei beliebigen Moduln durch fortgesetzte Bildung
der gemeinsamen groften Teiler und kleinsten Vielfachen erzeugt
wird und im allgemeinen aus 28 verschiedenen Moduln besteht. Da
die Gesetze dieser Gruppe sich auf ganz andere Gebiete iibertragen
lassen und oft eine niitzliche Hilfe gew#hren, so sollen dieselben im
folgenden dargestellt werden; daran schlieflen sich verschiedene
Untersuchungen iiber allgemeinere Dualgruppen *).

§ 1.
Aligemeine Eigenschaften der Dualgruppen.

Bezeichnet man (wie in D. § 169) mit a 4 b den grofiten ge-

meinsamen Teiler (oder die Summe), mit a — b das kleinste gemein-
same Vielfache (oder den Durchschnitt) der beiden Moduln a, b, so
gilt fiir jede einzelne dieser beiden Operationen + zunéichst das
kommutative und assoziative Gesetz
(1) a4b=>06-4nq, a—b=—1>0—aq,
2) (@+b)+c=a+ (40, (@a—b)—c=a—(—¢)
mit den bekannten Folgerungen, die sich auf eine beliebige endlichie
Anzahl von Elementen a, b, ¢ --- beziehen (D. § 2).

Die beiden Operationen + sind ferner durch die beiden Gesetze

(3) a4 (a—0) =nuq a—(a4b)=a

miteinander verbunden, und hieraus folgt ohne Zuziehung von (1),
(2) auch

4) at+a=—na, a—a = a;

*) Vgl. §4 meines Aufsatzes ,Uber Zerlegungen von Zahlen durch ihre
groften gemeinsamen Teiler“ in der Festschrift unserer Technischen Hochschule
tir die Naturforscher-Versammlung 1897.
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bezeichnet man nidmlich die erste und zweite Halfte einer Doppel-
gleichung (n) bzw. mit (n') und (n"”), so ergibt sich (4'), wenn man b
in (3") durch a 4 b ersetzt, mit Riicksicht auf (3"), und ebenso ergibt
sich (4"), wenn man b in (3") durch a —b ersetzt und (3") beachtet.

Wenn zwei Operationen + aus je zwei Elementen a, b eines (end-
lichen oder unendlichen) Systems & zwei Elemente a + b desselben
Systems © erzeugen und zugleich den Gesetzen (1), (2), (3) geniigen,
so soll ® in bezug auf dieses Operationspaar 4 eine Dualgruppe
heilen, wie auch sonst diese Elemente beschaffen sein mdgen. Die
Gesamtheit aller Moduln ist daher eine Dualgruppe beziiglich der
beiden Operationen, welche in der Bildung des grofiten gemeinsamen
Teilers und des kleinsten gemeinsamen Vielfachen bestehen*). Zu-
nidchst betrachten wir aber einige Eigenschaften, welche jeder Dual-
gruppe ® zukommen.

Zufolge (4) bildet jedes Element a einer Dualgruppe & fiir sich
allein eine Dualgruppe.

Fir zwei beliebige Elemente a, b ergibt sich aus (2) und (4),
wenn man b, ¢ bzw. durch a, b ersetzt,

(5) a+(@+b)=a+b a—(a—Db) =a—b;

ersetzt man ferner ¢ in (2') durch (a —b), in (2") durch (a + b), so
folgt mit Riicksicht auf (3) auch

6) (@454 (@—0b) =a-40 (@ —b) —(a4b) = a—b;
mithin bilden die vier Elemente a, b, (a 4- b), (¢ — b) gewil} eine Dual-
gruppe, und es fragt sich nur, wie viele von ihnen verschieden sind.

Nimmt man an, es sei a4 b = a—050, also auch a 4 (a +b)
= a 4 (a — b), so folgt aus (5") und (8") auch a4+ b = q, und da
die Annahme symmetrisch in bezug auf a, b ist, so folgt ebenso
a+b=~»0, also a = b; und umgekehrt, wenn a — b ist, so sind
alle vier Elemente identisch miteinander.

Machen wir jetzt die (allgemeinere) Annahme, es sei a4 b
identisch mit einem der beiden Elemente a, b, also z. B. a + b = q,
so folgt aus (3") durch Vertauschung von a mit b auch a —b =,
und umgekehrt, wenn letzteres der Fall ist, so ergibt sich aus (3')
auch a 4+ b = a. Da dieser Fall sehr hiufig auftritt, so iibertragen
wir die in der Modultheorie iibliche Ausdrucks- und Bezeichnungs-

*) Andere Beispiele von Dualgruppen findet man in der obenerwihnten
Schrift (1897). Vgl. den Schluf (§8) der gegenwirtigen Abhandlung.
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weise (D. § 169) auf alle Dualgruppen ® und sagen*): das Element b
ist teilbar durch das Element a, zugleich heifit b ein Vielfaches
von a, und a ein Teiler von b; diese Teilbarkeit wird durch a<CU
oder 6>>a bezeichnet, und es ist daher jede der vier Aussagen

(M a+b=4gqa a—b=0b a<b, b>a
gleichbedeutend mit jeder der drei iibrigen; zwei solche Elemente a, b
bilden fiir sich allein eine Dualgruppe. Es ist zweckmillig, hierbei
den Fall a = b nicht auszuschlieffen; wenn aber a und b verschieden
sind, so soll b ein echtes Vielfaches von a und zugleich a ein echter
Teiler von b heiflen.

Ist endlich keines der beiden Ilemente a, b durch das andere
teilbar, so besteht die durch sie erzeugte Dualgruppe aus vier ver-
schiedenen Elementen a, b, a b, a — 0.

Fir die durch (7) charakterisierte Teilbarkeit von b durch a
ergeben sich durch alleinige Anwendung der Grundgesetze (1), (2), (3)
die folgenden Sitze, deren Beweise der Leser leicht finden wird.

I. Immer ist a <Ta, a>>a.

IL Aus a<b und a>"b folgt a = b.

III. Aus a <Zb und b <c¢, was kurz in a <b <c¢ zusammen-
gefalit wird, folgt a < e

IV. Immer ist a + b5 <Ta und a <7a —¢, also auch a +b<Ta —c.

V. Aus a<7b, o' <<V folgt a +0a' < b+ b0 und a —a' <b—0V".

VL Aus a <{b, o' <b folgt a — a’ <0, d.h. jedes gemeinsame
Vielfache b von a, a' ist teilbar durch a — o', und aus a <b, a <V
folgt a <b 4+ 0, d. h. jeder gemeinsame Teiler a von b, b’ ist Teiler
von b+ b. Wegen der Analogie mit der Zahlen- und Modultheorie
heift daher « — o' das kleinste gemeinsame Vielfache von a, o', und
b+ 0 heiBt der grofte gemeinsame Teiler von b, 0'. Diese Aus-
drucksweise dehnen wir auch auf mehr als zwei Elemente aus, und
durch wiederholte Anwendung des Vorhergehenden ergibt sich der
Satz: ist jedes der Elemente a’, a”, o’ ... ein Teiler von jedem der
Elemente b, b”, b ..., so ist

0 — @ —a" — e <O 0 B e
d. h. das kleinste gemeinsame Vielfache der Elemente a ist ein Teiler
des groBten gemeinsamen Teilers der Elemente b.

*) Fir besondere Dualgruppen &, deren Elemente schon eine bestimmte
Bedeutung haben, kann diese Ausdrucksweise hichst unpassend erscheinen; man
wird dann ganz andere, dem Gegenstande entsprechende Namen und Zeichen
wihlen, wodurch das Wesen der Gesetze offenbar nicht gedndert wird.
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VIL Ist b ein Teiler von m, also b <m, und p ein beliebiges

Element, so ist

(P4 m)—><](p—0)+m
denn jedes der beiden Elemente p 4 m, d ist ein Teiler von jedem
der beiden Elemente p — b, m.

§ 2.
Die von drei Moduln erzeugte Dualgruppe D.

Hier ist nun der Ort, um eine besondere Eigenschaft der Moduln
und der aus ihnen durch die Operationen + erzeugten Dualgruppen
hervorzuheben, durch welche die letateren sich vor anderen Dual-
gruppen von allgemeinerem Charakter auszeichnen. In der Modul-
theorie gilt ndmlich an Stelle des letzten Satzes VII der bei weitem
schirfere Satz (D. § 169, 8. 498):

VIII. Ist der Modul » ein Teiler des Moduls m, also d < m, und
p ein beliebiger Modul, so ist

(p4m)—d=(p—10)+m

Aber dieses Modulgesetz ist, wie ich in § 4 meines in der
Einleitung zitierten Aufsatzes bewiesen habe*), schlechterdings nicht
ableitbar aus den Grundgesetzen (1), (2), (3) und bildet daher eine
fiir die Modultheorie wesentliche Erginzung derselben. Wir formen
dieses Gesetz zundchst in folgender Weise um. Sind a, b, ¢ drei
beliebige Moduln, und ersetzt man p, d, m bzw. durch a, 0+
b—¢, so ist die Bedingung b < m erfiillt, und es ergibt sich
®) (@+E—0)— bt =(a—0+0)+0—0),
und umgekehrt folgt hieraus wieder das Modulgesetz VIII, wenn man
a, b, ¢ bzw. durch p, b, m ersetzt und die Annahme b < m hinzufiigt.

Hierauf wenden wir uns zu dem in der Uberschrift bezeichneten
Gegenstande, nimlich zur Beschreibung der aus drei beliebigen
Moduln a, b, ¢ durch die Operationen + erzeugten Dualgruppe .
Dieselbe ist endlich und besteht aus 28 Moduln, die im allgemeinen
voneinander verschieden sind. Vier von diesen Moduln sind sym-
metrisch aus a, b, ¢ gebildet und sollen gemeinsam mit d bezeichnet,
aber durch Akzente und Indizes voneinander unterschieden werden,
deren Bedeutung spiter einleuchten wird:

9) ¥ =a-+b4e¢ b,=—a—b—c¢
(10) b':(b+c)j—(c+a)—(a+h), b, =(0—c)+ (c—a)+ (a—0)

¥) Vgl. den Beweis des Satzes IX in §6 des gegenwirtigen Aufsatzes.
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Die iibrigen 24 Moduln haben die Eigenschaft, durch alle Ver-
tauschungen von a, b, ¢ nur drei verschiedene Formen anzunehmen,
und diejenigen acht Moduln, welche (wie z. B. a selbst) durch Ver-
tauschung von b mit ¢ nicht gedindert werden, sollen gemeinsam mit a
und zugehorigen Akzenten und Indizes bezeichnet werden, woraus
die Bedeutung der mit b und ¢ bezeichneten 16 Moduln von selbst
erhellt. Da die drei Moduln a, b, ¢ durch sich selbst erkliart sind,
so bleiben nur die folgenden 21 Definitionen:

[a"’_—_b+c, a, =b—¢
(1) P =c¢ +a, bszc——a;,
lc"':a-}-b, (g —=a—b

lu":(c—ka)——(a-{—b), a2:(c——a)+(a——b)}
(12) 1V =@+0) =0+, b=(@—B+E—0)
lc"_—:(b+c)—(c+a), cS:(b——c)—i-(c—a)l

’a':a—l-(b—c), a, =a—(b+4¢)
(13) 10 =04 (c —a), bl:h——(c—}—a)',
lc’:c+(a—b), ¢, =c¢—(a+4b)

lao =@+0—)—00+)=(@@—04+09)+0—¢
(14) m=w+«—m—@+®=®—@+w+@—®}
lco =(C+@—0)—@+)=(c—@+b)+@—0D

Hier sind iiberall, wie schon in (9) und (10), die beiden Formen
nebeneinander gestellt, welche durch Vertauschung der beiden Opera-
tionen + auseinander hervorgehen, und hiermit ist immer eine Ver-
tauschung eines oberen Akzentes mit dem entsprechenden unteren
Index verbunden; die Doppeldefinitionen (14) beruhen auf dem oben
hervorgehobenen Modulgesetz (8).

Wir haben nun zu zeigen, dafi der Komplex © dieser 28 Moduln
wirklich eine Dualgruppe ist, dafl also, wenn m, n irgend zwei dieser
Moduln bedeuten, auch die beiden Moduln m + 1 in D enthalten sind.
Zufolge (4) brauchen wir nur solche Paare zu betrachten, die aus zwei
verschiedenen*) Moduln m, n bestehen, und deren Anzahl — 14.27 =378
ist. Es ist zweckm#lBig, zundchst diejenigen 261 Paare auszusondern,
in welchen der eine Modul, z B. m durch den anderen n teilbar ist,
so daf m 4 n = 1n, m —n = m wird, was wir wieder durch m> n

*) Weiter unten wird durch ein Beispiel bewiesen, daf die 28 Moduln wirklich
alle voneinander verschieden sein konnen, und der Kiirze halber nennen wir sie
auch hier verschieden, obgleich sie z. B.in dem Falle a = b — ¢ alle = q sind.
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oder n < m bezeichnen. Des Raumes wegen begniigen wir uns, von
diesen 261 Teilbarkeiten nur die 48 urspriinglichen, d. h. diejenigen
aufzuschreiben, aus welchen die iibrigen 213 nach dem obigen Satze ITI
in §1 sich ableiten lassen:

(19) <, b, Y b >, by, o,
L ;0 a, > by,
(16) [bm < B by > ¢, aq }7
¢ <la" b 3G >0y, by
a” <V, o ;0 ag>b, a,
(17) [b" <0, 0 ;0 by >0, [’1}7
Y, A
b <y, by, ¢ 5 Dy >0, by,
(18) g:<a’ao 5 a, >a,q,
<b, b, ;0 b, >10.,5,

¢ <lc, ¢ ;G >,

Die Teilbarkeiten (15) folgen unmittelbar aus der Vergleichung
von (9) mit (11), ebenso ergibt sich (16) aus (11) und (12). Von
den Teilbarkeiten (17) folgen die auf " und b, beziiglichen aus dem
Vergleich von (10) mit (12), die iibrigen aus (12) und (13) nach
dem Satze VI in §1. Von den Teilbarkeiten (18) fliefen die auf a,
b, ¢ beziiglichen unmittelbar aus (13); da ferner a, = o' — (b 4 ¢)
= a, -+ (b—c) ist, so folgt z. B. o’ <Ta, <Ta,; da endlich ' = a" —(b 4 ¢)
und 9, = a, + (b —c), zufolge (17) aber auch a” <<a' und a, > a,
ist, so ergibt sich d <Ta, <(b,, womit (18) vollstdndig bewiesen ist.

Fiigt man zu diesen urspriinglichen Teilbarkeiten noch diejenigen
hinzu, welche aus ihnen nach Satz III in § 1 ableitbar sind, und be-
zeichnet man mit ¢ (m) die Anzahl aller so erhaltenen Teiler n von m,
welche von m und voneinander verschieden sind, so ergibt sich sukzessive

()= 0, ¢@)= 1, ¢() = 3, ¢@®)= T,

o(@) = 4 @@ =5 o¢@) =9, ¢0)=14,

p(a) =11, @(9) =17, ¢@(5) =21, ¢(d) =27,
rechnet man noch die entsprechenden Anzahlen fiir die mit b, ¢ be-
zeichneten Moduln hinzu, so wird die Summe aller ¢ (m) = 261, und
dies ist also die Anzahl aller auf diesem Wege gewonnenen Teilbarkeiten
m>n. Daf hiermit auch alle Teilbarkeiten innerhalb der allgemeinen
Gruppe D erschopft sind, ergibt sich zugleich aus dem folgenden.

Dedekind, Gesammelte Werke, II. 16
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Wir wenden uns jetzt zu den iibrigen Paaren m, n, um die ent-
sprechenden Moduln m + n anzugeben; des Raumes und des leichteren
Uberblicks wegen begniigen wir uns, nur 29 solche Paare zu be-
trachten, aus denen die iibrigen durch Vertauschungen von a, b, ¢
hervorgehen; unter diesen 29 dualistischen Formelpaaren sind 19 Re-
prisentanten von je 3, und 10 Reprisentanten von je 6 Formel-
paaren, woraus sich ihre Gesamtanzahl — 3-.19 4 6 .10 = 117 ergibt.

a +aNI bl!l! a _a3: b4'\
a + a/ll b/ll' al . a3 — b4
(19) an+avu_ b””’ a2_a3: b4 k)
b”+ aYII: bl)//, bs . a3 J— b4
b +¢ =a", b —c¢ = q
b +¢ =", b —¢ =uq
b+ =a", by —¢, = q
(20) b +cn — al!l7 b _c2 —_ aa K
b+ =", b —¢ =n0,
bll + cl/ f— aIH’ b2 _c2 p— a3
a +b —=a", a —b =q,
a +0b, =a", — b, = q,
o 4+b =ada", L — b0 = a
(1) o +b =10a", a—b=naq,f
a +d =a", a —b =—aq
o 4+ =", 1 — 0 = ag
a, +b, =1b , o —b =1
(22) G +b, =,  a—b =19, },
[ +bo =9 y ao—bozbl
ra +as__:a/, a___avn:al
. a +b, =a a b= q,
(2'3) a +b1:a,, a——b’:al b
a +a =a, e —a,=q
a, +a; =a,, a —a"=nq,
(24) al + bﬁ =a, , a — b= Ay ¢y
a, +d =aq,, ' —d =q,
aa +a8 :bl R a/l_—a!’I: b'l
(25) {ag +bz — b] , an blr: b' J,

(26) b ¢, =@, b'—"=a".
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Der Beweis dieser 29 Doppelsdtze, welche hier in acht Gruppen,
(19) bis (26), geteilt sind, ist nun keineswegs so miihselig, wie man
auf den ersten Blick befiirchten kénnte. Zunfchst ergibt sich aus
dem dualistischen Charakter der Grundgesetze (1), (2), (3) und des
spezifischen Modulgesetzes VIII oder (8), sowie aus der entsprechenden
Bezeichnung durch obere Akzente und untere Indizes in den Definitionen
(9) bis (14), dal von jedem Doppelsatze nur der erste, auf die
Operation + beziigliche Teil bewiesen zu werden braucht, weil hieraus
durch génzliche Vertauschung von + mit — der zweite Teil von
selbst hervorgeht. Sodann iiberzeugt man sich leicht, dafl von den
in einer Gruppe vereinigten Sdtzen immer nur der erste m +n =y
besonders zu beweisen ist, weil die iibrigen die gemeinsame Form
m’ 4+ n’" — p haben, wo m’, n' zufolge der schon bewiesenen Teilbar-
keiten (15) bis (18) den Bedingungen m™>m'>yp, n>n" >
geniigen, woraus nach den Sitzen V und III in § 1 wirklich m'4+n" =1
folgt. Hiernach erledigt sich unser Beweis durch die folgenden
Betrachtungen.

Der erste Satz in der Gruppe (19) folgt unmittelbar aus den
Definitionen (9") und (11') von »"" und o’

Die ersten Sitze in den fiinf Gruppen (20°), (23), (24), (25'), (26")
erscheinen nur als Wiederholungen der Definitionen (11'), (13"), (14"),
(10"), (12"), wenn man die Definitionen (11"), (18"). (12") beachtet.

Stiitzt man sich hierauf, so ergeben sich endlich auch die ersten
Sitze in den beiden Gruppen (21"), (22') auf folgende Weise aus dem
unter der Voraussetzung b < m geltenden Modulgesetze VIII

(p—0)+m = (p+m—n

Setzt man nimlich y = b, d =c4+a=1"b", m —=a, so ist die
Voraussetzung b << m erfiillt, und zufolge der schon bewiesenen
Saitze (23"), (26") wird p—bd = b—b"" = b,, also (h —d) + m=b, +q,
ferner p+m =0+a=1¢", (p + m) —bd = " — "= a”, wodurch
(21') bewiesen ist. Setzt man aber p —a, b =104 c¢ =a",
m=2>5b—(c+a)=2>, so ist zufolge IV in §1 die Voraussetzung
b <7m erfiillt, und zufolge der schon bewiesenen Sitze (28"), (21'),
(25") wird p — b = a —a"”" = q,, also (p — d) +m = a, + b, ferner
Y+m=—a+b =da", (p+m—>d=10a"—a"" =1V, wodurch auch (22’)
bewiesen ist.
16%
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Hiermit ist der vollstindige Beweis erbracht, dafl je zwei Moduln
m, n unseres Systems © immer zwei in demselben System enthaltene
Moduln m + n erzeugen; mithin bilden diese 28 Moduln wirklich
eine Dualgruppe ©. Die Gesamtheit aller Erzeugnisse m - n ist
in der beigefiigten Tabelle (S.246, 247) dargestellt, zu deren Er-
lauterung ich nur folgendes bemerke. Je nachdem das Kreuzungs-
feld der Zeile m mit der Spalte n in die rechte obere oder in die
linke untere Hilfte fallt, enthdlt dasselbe den Modul m +4 n oder
den Modul m —n, und um die Trennung zwischen diesen beiden
Hilften fiir das Auge recht deutlich zu machen, sind die den Fillen
m = n = m + n entsprechenden Diagonalfelder leer gelassen; die
durch stdrkere Linien bewirkte Teilung der Tabelle in Rechtecke
von verschiedener Grofie entspricht der spiter (in § 5) zu be-
trachtenden Einteilung aller 28 Moduln in neun verschiedene Stufen.

Aber nun konnte die Frage aufgeworfen werden, ob nicht in der
Natur der Moduln gewisse, bis jetzt verborgen gebliebene Eigen-
schaften liegen, vermoge deren einige, dullerlich zwar verschieden
gebildete Moduln dieser Gruppe © doch immer miteinander identisch
sein miissen. Dal diese Frage zu verneinen ist, daB also diese
28 Moduln im allgemeinen wirklich voneinander verschieden sind,
ergibt sich aus dem folgenden Beispiel von zweigliedrigen
Moduln (D. §168, S.494). Es seien a, b, ¢, d vier natiirliche
Zahlen, alle > 1 und so beschaffen, dal je zwei der drei Zahlen
a, b, ¢ relative Primzahlen sind, und dal d relative Primzahl zu
dem Produkt (b —c¢) (c —a) (a— b) ist (die kleinsten Zahlen dieser
Art sind @ =2, b =38, ¢ == d = 5); bedeutet ferner ® eine
irrationale Zahl, und setzt man

a =[ad, 1+ bcw], b=[bd, 1+caw], ¢=[cd, 1+ abw],
so wird

»"'=[1, o], b, = abed[l, w],
¥ =1, abcw], b, = d[1, abcw],
" =11, aw], a, = bed[l, ao],
o' =11, bew], a, = ad[l, bcw],

o =[d, 1+bcw], o = ald, 1+ bcw],
a, = [d, a + abcw],

woraus die iibrigen 14 Moduln durch Vertauschungen von a, b, ¢
hervorgehen. Der allgemeine Satz, aus welchem diese Bestimmungen
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tolgen und auf den ich bei einer anderen Gelegenheit zuriickkommen
werde, lautet: Sind p, p,, P, ¢, ¢, ¢; sechs (ganze oder gebrochene)
rationale Zahlen, von denen wir p, p,, ¢, ¢, als positiv voraussetzen
wollen, und setzt man
p=Ip o +pol, 1=I[¢¢+gel

so wird

v+ 9 = [d, d; 4 dyw], p—q = [m, m, + myw],
wo die sechs Zahlen d, d,, d,, m, m , mg, von denen man d, d,, m, m,
positiv wiahlen kann, durch folgende Regeln bestimmt werden:

[dy] = [Py, @, [ddy] = [PDys DL, 4Ps> 9205 P13 — T4 Pals
Th=mr Fd=q (mdd

d
und
1 1 1
I:;n—] - [—29—’ —q"]) ddsmma = PDP:99,,
@m, = Adp,, i m, = Bg, (mod. m),
p q
WO

__ 99,  mm, — __Pp, Mmm,
A= 00 =5g,= Yy, PTOP=00 =0y,

Den Beweis dieses Satzes unterdriicke ich der Kiirze halber, und
ebenso iiberlasse ich es dem Leser, die Verschiedenheit der obigen
28 Moduln zu bestdtigen, wobei es offenbar nur darauf ankommt
zu zeigen, dall in den Teilbarkeiten (15) bis (18) nirgends eine
Identitdt auftritt, daB sie also echte Teilbarkeiten sind (D. § 169,
S. 496).

§ 3.
Das Symbol (i, n) in der Dualgruppe D.

Ist die Anzahl der nach dem Modul n inkongruenten Zahlen
des Moduls m endlich, so wird sie durch das Symbol (m, n) be-
zeichnet, wihrend im entgegengesetzten Falle (m, n) — 0 gesetzt
wird (D. §171, 8. 509—510). Zufolge dieser Bedeutung des Symbols
gelten fiir je zwei Moduln m, n zunéchst die beiden Sitze

(27) (III, II) - (m + n, n),
(28) . (m, n) = (m, m — n),
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Tabelle der grofiten gemeinsamen Teiler (+4) und
Dualgruppe von 28 Moduln, welche durch
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der kleinsten gemeinsamen Vielfachen (—) in der
drei beliebige Moduln a, b, ¢ erzeugt wird.
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die wir jetzt auf unsere durch drei beliebige Moduln a, b, ¢ erzeugte
Dualgruppe ©® anwenden wollen. Hierbei wihlen wir fiir m, n immer
das letzte Modulpaar, welches in den Sitzen (19) bis (26) des § 2
auftritt. Auf diese Weise ergibt sich aus (19) und (26), wenn man
a, b, ¢ zweckmibig vertauscht,

(b(lll, alll) — (blll’ all') —_— (blll’ c'l)’
(43, 0,) = (a5, b5) = (¢ , by),
hierauf aus (20) und (25)
(blii, c/I) — (a’/’ c”) —_— (al!’ bl)’
(cg 5 b5) = (¢, 05) = (¥, ay),
hierauf aus (21) und (24)
(", ¥) = (@', V) = (¢, q),
(bu as) — (bn a]) - (aoa a1)1
endlich aus (23)
(@, ao) = (a a.ao) = (a, a,),
(@, a1) = (8, a) = (ala a)
Wendet man auf diese Kette von Gleichungen alle Vertauschungen
von a, b, ¢ an, so ergibt sich, dall man sechs Zahlen o', ¥, ¢, a,, b,, ¢,
in folgender Weise durch je sechs Gleichungen definieren kann:
al — (b/!”’ a”’): (b”l’ c[/):(cllf’ bll):(all, b/):(al’ ao) f— (a’ al)
(29) br — (b””, b!/l) — (C”I, au) — (a”,, cu) — (b”, bl) —_ (bl, 50) —_ (b, [,1) ,
cI —_ (b!'ll’ cll!):(a"” b”):(blﬂ, all): (cll’ bl) — (c/’ co) — (c, cl)
@, = (a5, 0,) = (¢, bg) = (by, ¢5) = (by, 08y) = (8, 0;) = (@', 2)
(80) 15, = (bg, d,) = (8, ¢3) = (¢4, ag) == (b, by) = (by, b,) = (¥’, b)
¢, = (¢, ) = (bg, 1) = (a5, b;) == (;, &) = (¢, &) = (¢, ©)
In ganz dhnlicher Weise folgt aus (21) und (24)
(@, ") = (', ") = (¥, ),
(ay, 0,) = (a5, b)) = (a, ),

@', a)) = (by, ) = (by, b)),
(89, ;) = (89, bp) = (¥, by),
und wenn man in diesen Gleichungen alle Vertauschungen von a, b, ¢
vornimmt, so ergibt sich, dal man eine siebente Zahl d definieren
kann durch die zwolf Gleichungen
(31) {d =@, d)=©0",0)=(", )= (1",a0) =@, b)) = (', ¢,)) .
= (a;, 0y) = (by, by) = (¢&;, &) = (85, ;) = (by, B,) = (o, b,)f

und aus (22)
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Offenbar enthalten die Gleichungen (29), (30), (31) alle diejenigen
48 Symbole (m, n), in welchen die Moduln m, n eine der 48 in (15)
bis (18) aufgestellten urspriinglichen Teilbarkeiten m < n darbieten.

Die sidmtlichen in unserer Dualgruppe ® auftretenden Symbole
(m, n), deren Anzahl — 28.28 — 784 ist, zerfallen nun in drei
Klassen, je nachdem die Teilbarkeit m > n oder m <{n oder keine
solche Teilbarkeit besteht. Aus der Definition des Symbols folgt
unmittelbar (D. 8. 510), daf alle 289 Symbole der ersten Klasse, zu
denen wir auch die 28 Symbole (m, m) rechnen, = 1 sind*). Die
234 Symbole der dritten Klasse lassen sich vermoge der Satze (27),
(28) auf zwei Arten durch Symbole der zweiten Klasse ausdriicken.
Unter den 261 Symbolen dieser zweiten Klasse befinden sich zundchst
die 48 Symbole (29), (30), (31), deren Werte wir durch die sieben
Zahlen d, o', b, ¢, a,, b,, ¢, bezeichnet haben, und die iibrigen
213 Symbole, in welchen die Teilbarkeit m < n keine urspriingliche,
sondern eine abgeleitete ist, lassen sich als Produkte dieser Zahlen
darstellen; hierzu reichen aber die beiden Sitze (27), (28) nicht aus,
sondern dies geht aus einem dritten Satze (D. S. 510) hervor, welcher
darin besteht, dafl aus p < q <t stets

(32) () = (¥ a) (@)
folgt.

Wir begniigen uns, das hiernach einzuschlagende Verfahren an
denjenigen Symbolen (m, n) der dritten Klasse durchzufiihren, in
denen m, n mit zwei der drei Moduln a, b, ¢ iibereinstimmen. Aus (27)
und (11') folgt zuniichst

(0 ¢) = (", 0);
nach (16'), (17), (18') ist aber
a’ << <,
mithin ergibt sich durch zweimalige Anwendung von (32)

(b, ) = @, ") (", ) (¢, 9);

*) Stiitzt man sich nicht auf die Definition des Symbols, sondern nur auf
die beiden Sitze (27), (28), so ergibt sich zwar, daB alle Symbole der ersten
Klasse denselben Wert haben; daBl aber dieser Wert — 1 ist, folgt erst aus dem
dritten Satze (32), wenn man auBerdem noch die Voraussetzung hinzufiigt, daB
das Symbol (a, B) nicht fir alle Modulpaare a, b verschwindet. Ahnliches gilt
fir das in den Gottinger Nachrichten (1895, Heft 2) erklirte Modulsymbol (a; b).
— Vgl. §8 des gegenwirtigen Aufsatzes.
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vertauscht man hierin q, b, ¢ miteinander und drickt man die
Faktoren rechter Hand durch die kiirzeren Zeichen in (29), (30), (31)
aus, so erhidlt man

(6, ¢) = b'de,, (¢, 0) = c'db,
(33) (¢, 0) = cda,, (0,¢) =a'dc, ;.
(a, ) = a'db,, (b, a) =10V'da,

Zu demselben Resultate gelangt man aber auch, wenn man
den Satz (28) statt (27) anwendet; man erhalt zunéchst (b, ¢) = (b, a),
und da b <b, <<by <, ist, so folgt

(6, &) = (b, b,) (b;, by) (g, ),
was mit (33') identisch ist. Auch in allen anderen Beispielen wiirde
sich zeigen, daBl die verschiedenen Wege, welche man zur Darstellung
eines Symbols (m, n) durch die sieben Zahlen d, a', b', ¢, a,, b,, ¢,
einschlagen kann, immer zu identischen Resultaten fiithren, dafl also
keine Relationen zwischen diesen Zahlen bestehen; doch wollen wir
auf den Beweis dieser Behauptung hier nicht eingehen.

Aus den Darstellungen (33), welchen man auch die Form

(b, ¢) = (b, b") (¢, ¢),
(34) |(ca a) - (C, cm) (a”’ a)a

(0, 0) = (a, a™) (6", b),
oder die Form

(6, ) = (b, by) (c5, ©),

(a, ©) = (8, ") (¢", ©)

(c, ) = (¢, <) (b, b)
(6, a) = (b, ") (a", a)}

(@, ¢) = (8,8 (c5, ©)

(35) [(c, a) = (¢, ¢,) (a4, q),
(aa b) — (aa as) ([)3’ b)?
geben kann, flieft auch der Satz
(36) (b, ©) (¢, a) (a, b) = (¢, b) (a, ¢) (b, a),
welchen ich zuerst in der zweiten Auflage von Dirichlets Vor-
lesungen iiber Zahlentheorie erwdhnt habe (Anmerkung auf S.490).
Daselbst findet sich auch (in etwas abweichender Ausdrucksweise)
die folgende Bemerkung. Nennt man zwei Moduln a, b verwandt,
wenn (q, b) und (b, a) von Null verschieden sind (im Sinne von
D. §171, 8. 509), so sind je zwei mit a verwandte Moduln b, ¢ auch
miteinander verwandt. Dies ergibt sich unmittelbar daraus, daf alle
Faktoren, welche in den vorstehenden Ausdriicken (33) oder (34)
oder (35) von (b, ¢) und (c, b) auftreten, auch Faktoren von mindestens
einem der vier Symbole (a, b), (b, a), (a, ¢), (¢, a) sind. Man kann

(cv b) = ( cz) (b?n b)
(b’ a) == (ba b2) (asa a)}
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daher alle Moduln in Familien einteilen, indem man je zwei Moduln
in dieselbe oder in verschiedene Familien aufnimmt, je nachdem sie
miteinander verwandt sind oder nicht; jede Familie ist durch jeden
in ihr enthaltenen Modul als Reprisentanten vollstindig bestimmt.

§ 4.
Idealgruppen.

In § 2 ist gezeigt, daf die 28 Moduln, aus denen unsere Dual-
gruppe D besteht, im allgemeinen voneinander verschieden sind; wir
wollen jetzt einen besonders bemerkenswerten Fall anfiihren, in
welchem die Anzahl der verschiedenen Moduln erheblich geringer
ist. Dies tritt immer dann ein, wenn die drei erzeugenden Moduln
a, b, ¢ und folglich auch die iibrigen Moduln der Gruppe © Ideale
(oder auch Idealbriiche) eines endlichen Korpers & sind, weil dann
sehr einfache Beziehungen zwischen den beiden durch + bezeichneten
Operationen und der Multiplikation der Moduln bestehen (D. § 178);
alle Moduln der Gruppe, von denen hochstens 18 verschieden sein
konnen, lassen sich, wie man leicht findet, in folgender Weise
durch " und sechs vollsténdig bestimmte Ideale ¥', q', 1, ¥,, 9, 1,
ausdriicken:

a=q't'p ", b =1"p'q 0", ¢ = pqrd”
a" = p'd"", b = q'v"", ¢ ="
' =0 =gV, V=0 =1pd, ¢ = =ypqd”

l

37 V=0, =0, =¢, = b = pqrd"”
a, = a, = P, 0y, by = b, = q;b,, 6§ =¢=1
ag = q, 1,0y, by = 1,90, G = Pa,0,
b, = pyq1, 0,

jedes der drei Paare von Produkten
q'r, und 1'qq, v'p, und p'r,, p'q, und q'p,

besteht aus zwei relativen Primidealen, und wenn N die Norm im
Korper £ bedeutet, so gehen die Gleichungen (29), (30), (31) in

@ =N@), b=N@), ¢=DN(
(38) a,=N(®), b =DN(@), ¢=N(

d=1

itber,
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Wir wollen die drei in diesem Falle auftretenden Spezialgesetze *)
0" =a, ag = a;, b =15,, d. h. die Gesetze
39) c+a)—(@+b)=a4+0b—c), (c—a)+(@—0)=a— (40,
40) O+ )—(c+a)—(@+b)=0—)+(Cc—a)+(a—Db)
noch etwas niaher betrachten und beweisen, dall, wenn in irgendeiner
Dualgruppe 3 aufler den Grundgesetzen (1), (2), (3) noch eins dieser
Spezialgesetze allgemein gilt, gewill auch das Modulgesetz VIII und
die beiden anderen Gesetze gelten. In der Tat folgt VIII (unter
der Voraussetzung b < m) aus (39") oder (39") oder (40), wenn
man a, b, ¢ bzw. durch m, b, p oder b, m, p oder p, b, m ersetzt;
mithin gelten in J auch alle Sitze (19) bis (26). Nimmt man nun
an, es gelte das erste Spezialgesetz a” — o', also auch " = V', so
folgt daraus das zweite a, — o, und das dritte b, =V, weil
zufolge (21"), (23"), (22"), (25") bzw. a6 =a—V0, a, =a—"b",
b, =a' —b, ¥ =10a"—0b" ist. Ebenso folgt umgekehrt das erste
Gesetz aus dem zweiten, weil o" = a + 0,, o' = a 4 b, und aus
dem dritten, weil a” = a + ', o' = a + b, ist. Hiermit ist unsere
Behauptung offenbar erwiesen, und wir konnen jedes der drei #qui-
valenten Gesetze (39), (40) als das Idealgesetz bezeichnen; jede
Dualgruppe 3 vom Idealtypus ist auch eine Gruppe vom Modul-
typus, wihrend umgekehrt, wie aus dem Beispiel der zweigliedrigen
Moduln in § 2 erhellt, durchaus nicht jede Gruppe vom Modultypus
auch den Idealtypus besitat.

§ 5.
Das Kettengesetz in der Dualgruppe D.

Die nun folgenden Betrachtungen sind dazu bestimmt, das Wesen
des Modulgesetzes VIII noch tiefer zu ergriinden und dessen Folgen
fiir alle Dualgruppen M vom Modultypus zu entwickeln, durch welche
diese sich unter den allgemeinen Dualgruppen & auszeichnen. Hierzu
fithren wir die folgenden, fiir jede Dualgruppe ® giiltigen Benennungen

ein. Ein Element d soll in @ ein ndchster Teiler**) des Elementes m

*) Sie entsprechen in gewisser Weise dem Operationsgebiet, das in Schrioders
Algebra der Logik (Bd. 1, S.291) als der identische Calcul bezeichnet
wird, im Gegensatz zu dem logischen Calcul, dem unsere allgemeinen Dual-
gruppen entsprechen.

#*) Vgl. D. § 171 S.511, wo in der Anmerkung diese Benennung fiir die
aus allen Moduln bestehende Dualgruppe eingefiihrt ist.
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heillen, wenn erstens d < m, zweitens d verschieden von m, also ein
cchter Teiler von m ist, und wenn es drittens in dieser Gruppe &
auber » und m kein Element gibt, das ein Teiler von m und zugleich
ein Vielfaches von b ist; zugleich soll m ein ndchstes Vielfaches
von b in ® heilen. Nach dieser Erklirung ist es also, wie wir
hervorheben miissen, sehr wohl moglich, dall ein Element b, welches
in @ ein ndchster Teiler des Elementes m ist, in einer groBeren
Dualgruppe 9, welche aufier den Elementen von ® noch andere
Elemente enthilt, zwar immer ein echter, aber doch kein nichster
Teiler von m ist; solange es sich aber nur um die Elemente einer
einzigen bestimmten Gruppe ® handelt, wollen wir unbedenklich den
Zusatz ,in &% fortlassen.

Nehmen wir als Beispiel unsere aus drei beliebigen Moduln a, b, ¢
erzeugte Gruppe ®©, und setzen wir voraus, dafl alle 28 Moduln dieser
Gruppe verschieden sind, so leuchtet ein, dall in den 48 urspriing-
lichen Teilbarkeiten (15) bis (18) sich alle und nur solche Paare
von Moduln 5, m finden, von denen der eine d ein nichster Teiler
des anderen m in 9D ist. Die vier Moduln ", ¥, b,, b, bilden aber
fiir sich eine Dualgruppe &, und jeder von ihnen ist in €, aber
nicht in D, ein néchster Teiler des folgenden. KEbenso bilden die
vier Moduln b, ¢, o", a, fiir sich eine Gruppe A, und b, ¢ sind in U,
aber nicht in D, nichste Vielfache von a"" und néchste Teiler von a,.

Unter einer Kette der Dualgruppe & wollen wir eine endliche
Folge von mindestens zwei Elementen in & verstehen, deren jedes
ein nichster Teiler des nichstfolgenden Elementes ist; diese Elemente
sollen die Glieder der Kette, und das erste und letzte Glied sollen
bzw. der Anfang und das Ende der Kette heillen; die um eins
verminderte Anzahl der Glieder nennen wir die Linge der Kette.
Wenn zwei Ketten denselben Anfang und dasselbe Ende haben, so
mogen sie Aquivalent heiflen, und wenn alle Glieder einer Kette £
auch Glieder einer Kette & sind, so nennen wir $ eine Teilkette
von &.

Nehmen wir als Beispiel wieder unsere aus 28 verschiedenen
Moduln bestehende Gruppe 9, so leuchtet ein, daf alle in ihr vor-
handenen Ketten sich ebenfalls aus den Teilbarkeiten (15) bis (18)
ergeben miissen. Wir wollen nur einige von ihnen betrachten. Es
gibt zwei verschiedene dquivalente Ketten

26" a"a’a und d"'c"a"a'a,
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welche vom Anfang 5" zum Ende a fithren, wahrend acht ver-
schiedene dquivalente Ketten

b’,” [’m an av a bnu C”’ ﬂ” av a

0° 0°
b”” bn/ a// br ao, b”” cm a// b/ ao’
b”” cu: b// bv ao, b;w aru [)u b, ao’
b”” am cu bv ao’ buu brn C” b! ao

den Anfang »"” und das Ende a, haben. Man iiberzeugt sich ferner
leicht, dafl jede von " nach b, fithrende Kette einen und nur einen
der sechs Moduln a, b, ¢, a,, b,, ¢, als Glied enthalten muf,
und aus der Symmetrie der Gruppe ® folgt, dal die Anzahl
aller dieser verschiedenen &quivalenten Ketten — 3.2° 4 3.8?
= 204 ist; in diesen Ketten sind alle anderen als Teilketten
enthalten.

Die wichtigste Erscheinung in dieser Modulgruppe © besteht
aber darin, daf je zwei dquivalente Ketten auch dieselbe
Gliederanzahl, also auch dieselbe Linge besitzen. Um
dieses Kettengesetz in D tatsdchlich nachzuweisen, verteilen wir
die 28 Moduln in neun verschiedenen Stufen S,, wo = die
ganzen Zahlen von — 4 bis -+ 4 durchlduft, und zwar soll bestehen
die Stufe

ner
S—_, aus d"", S, aus d,
"r e
S—-3 ” a, b y &y Ss ” a37 [)3, 03
n " 1
(41) 18—, , a”,b", ", S, 5 0y, by, 0

’ ’ ’ ’
Sy ” b ,a,B,c,

S, aus qa, b, ¢, a,, by, ¢,

o

» Dy oap, byyg

Betrachtet man nun zwei beliebige aufeinanderfolgende Stufen S,
und S,, so lehrt ein Blick auf die Teilbarkeiten (15) bis (18), daB
die nichsten Vielfachen eines beliebigen Elementes der
Stufe S,—; simtlich in der Stufe S, enthalten sind, woraus
von selbst folgt, dafl auch die nadchsten Teiler eines be-
liebigen Elementes der Stufe §, samtlich der Stufe S,_;
angeh6ren. Hat man sich hiervon iiberzeugt, so leuchtet die
Wahrheit des obigen Kettengesetzes unmittelbar ein; denn, wenn der
Anfang einer Kette in der Stufe §,, iht Ende in der Stufe S, ..,
liegt, so ist offenbar ihre Lange — n.
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§ 6.
Beziehung zwischen dem Modul- und dem Kettengesetz.

Durch die Wahl der Bezeichnung in der Gruppe © von 28 Moduln
erscheint das eben besprochene Kettengesetz so selbstverstindlich,
dal man versucht sein konnte zu glauben, es miisse in jeder Dual-
gruppe herrschen. Um dieser Meinung sogleich entgegenzutreten,
stellen wir folgenden Satz auf:

IX. Wenn in einer Dualgruppe § das Modulgesetz VIII nicht
allgemein gilt, so ist in  eine aus fiinf verschiedenen Elementen
bestehende Dualgruppe @ enthalten, in welcher weder das Modul-
gesetz noch das Kettengesetz gilt.

Beweis. Wir wollen zundchst den auch sonst niitzlichen Satz
beweisen, dafi drei Elemente a, b, ¢ einer beliebigen Dualgruppe 9,
welche eine Teilbarkeit

b<e¢, btec=b, b—c=c
darbieten, im allgemeinen eine aus neun Elementen bestehende

Dualgruppe ' erzeugen; dieselbe enthilt auller a, b, ¢ noch sechs
Elemente, die wir wie in (11) und (13) durch

b, —=a—q¢, "= a-D,
b= a -+, [ a—b,
by =b—(a+0), ¢ ¢+ (a—b)

definieren. Zundchst ergeben sich die folgenden 11 urspriing-
lichen Teilbarkeiten

cl/l< B , bn/; b3>c , cg,

I

b <b 5 >0,
"< a, b, ; G>a, ¢
b, < ¢ ;0 ¢ >b,

deren letzte mit dem Satze VII in § 1 iibereinstimmt, wenn dort die
Elemente , b, m bzw. durch o, b, ¢ ersetzt werden; die iibrigen
folgen mit Riicksicht auf b < ¢ unmittelbar aus den Definitionen.
Es gibt nur sechs Paare von Elementen, welche keine Teilbarkeit
darbieten; die beiden Paare a, ¢ und a, b erzeugen durch die Ope-
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rationen 1 die oben definierten Elemente b,, b, ¢, ¢;; fiir die
iibrigen vier Paare ergibt sich aus den Definitionen:

b4 6" =", ¢ — ¢y = by,
b—b"=1",, c4¢ =1,
(42) a4 =10 a—b, = ¢,
(43) a+b =1b", a—c = g,

und zwar folgen die Sitze (43) aus den Sitzen (42) mit Riicksicht
auf 0, <, 0" <Tb,, ¢g >
Hiermit ist bewiesen, dall die neun Elemente
<", b, b b, a, ¢ ey, c, by

wirklich eine iu $ enthaltene Dualgruppe ' bilden, und wir wollen
ihre Konstitution, weil sie fiir manche Untersuchungen wichtig ist,
in der folgenden Tabelle darstellen.

R T A A R R
c”l cIH cIN c/II C'// c/// c/!l | cI/’ cIII cII!
b b "1b b [ b b | b b
[)NI I'HI []1 b”l bHY [,NI I)III b”l bl!' blll
e
by b, | b, |0y b b, | b, | b, | b, |0,
a la [ ¢ la |¢ B a [0 a |la
[ [ A A I U I O
’

T I A E P T A [ I N
¢ fe fe fe fe |bylc |b ¢ lec

1 b3 bs b3 bS bB b3 b3 b3 58 b8
— " b b, fa [ e e | by

Das Durchschnittsfeld der Zeile m und der Spalte n enthilt das
Element m - n oder m —un, je nachdem dieses Feld der rechten
oberen oder der linken unteren Hilfte der Tabelle angehort; die
Diagonalfelder, welche den Féllen m — n =— m + n entsprechen, sind
zur Erleichterung des Uberblicks leer gelassen.
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Wenn in der Dualgruppe $ das Modulgesetz VIII herrscht, so
ist b, = ¢/, und die durch q, b, ¢ erzeugte Dualgruppe $' besteht
also aus hochstens acht Elementen. Dasselbe ergibt sich aus der
Konstitution der oben betrachteten Gruppe © von 28 Moduln; denn
aus der jetzigen Annahme b <Cc folgen leicht die 20 Identitéiten

"

==V =0q,=b, = ¢, =0, = b, = by,
a”':b":b’:b; (= ( = (g = Qg,
b = a" = d' a, = Ay = ¢4,
= ¢"; b, = b,.

Wenn aber, wie wir im folgenden annehmen wollen, in der
Dualgruppe $ das Modulgesetz VIII nicht allgemein gilt, so diirfen
wir voraussetzen, die obigen drei Elemente a, b, ¢ seien mit Beriick-
sichtigung der Bedingung b <c¢ aus  so ausgewihlt, daf b, ver-
schieden von ¢, also b, ein echter Teiler von ¢ ist. Wir wollen
nun zeigen, daf in diesem Falle die fiinf Elemente

mn ’
b, by, a, ) ¢y,

welche zufolge der mittleren 25 Felder der obigen Tabelle offenbar
fiir sich eine Dualgruppe © bilden *), gewifl voneinander verschieden

*) Denn je zwei Elemente m, n in & erzeugen zwei in & enthaltene
Elemente m 4 n, und auflerdem gelten die Grundgesetze (1), (2), (3) fiir alle
Elemente der Dualgruppe $), also auch fiir alle Elemente von &. Dieser Schluf
berubt also auf der Hypothese, daf wirklich eine Dualgruppe §) existiert, in
welcher das Modulgesetz nicht allgemein gilt, und es bleibt daher immer noch
zweifelhaft, ob diese Hypothese unseres durchaus richtigen Satzes IX an sich
zulidssig ist, weil sie vielleicht den Grundgesetzen (1), (2), (3) einer jeden Dual-
gruppe widersprechen kénnte. Dieser Zweifel, welcher fiir den allgemeinen Begriff
der Dualgruppe von Bedeutung ist, wird nur dadurch beseitigt, dal fir das
System &, in welchem die Zeichen 4 durch die obige Tabelle und die Annahme
der Gesetze (1) und (4) vollstindig erklirt sind, auch die Gesetze (2) und (3)
als identisch erfiillt nachgewiesen werden. Dies ist in §4 meiner in der Ein-
leitung zitierten Schrift (1897) wirklich geschehen; in der Tat geht die erste der
beiden dort auf S.14 angefiibrten Dualgruppen in unsere Gruppe & iiber, wenn
man «, B, y, 0, ¢ bzw. durch ¢, a, by, b'", ¢3 ersetzt. Der auf S.17 daselbst
gegebene Beweis besteht aber nicht in der unmittelbaren Verifikation aller
Identititen (2) und (3), sondern er beruht auf einer allgemeinen Transformation
der Grundgesetze (1), (2), (8) in eine ganz andere Gestalt, in welcher die Ope-
rationen + selbst gar nicht mehr auftreten. Ich bemerke hierbei, daf fiir
endliche Dualgruppen 9 die dortige Eigenschaft VI auf 8. 15 durch die
folgende einfachere ersetzt werden kann: Fiir je zwei Dinge «, 8 in U gibt es
mindestens ein Ding u, in A von der Art, daB «, 8 beide in dem System ug
enthalten sind.

Dedekind, Gesammelte Werke, II. 17
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sind; hierbei stiitzen wir uns auf die Identititen (42), (43) und auf
die schon vorher aufgestellten Teilbarkeiten

(44) b <<a <,

(45) b <b, < ¢ <y

und behaupten zuniichst, daB

(46) weder b, <a moch a<T¢

sein kann. Wére nimlich b, < a, so wiirde aus (43'), (42"), (43"),
(42) der Reihe nach b, = 0", a = ¢;, ¢'<a, ¢ = b, also auch
b, = ¢ folgen, und zu demselben Widerspruch mit unserer Voraus-
setzung wiirde die Annahme a <C ¢’ fithren, weil hieraus nach (43"),
(42"), (43"), (42") sich ¢ = ¢, a = 0", a <b,, b, = ¢, ergeben
wiirde. Da ferner b, < ¢’ ist, so folgt aus (46) offenbar, daB keins
der beiden Elemente b,, ¢ ein Teiler oder ein Vielfaches von a
sein kann, und hieraus ergibt sich weiter, daf in (44) und
(45) nur echte Teilbarkeiten auftreten; wire namlich b — a
oder a = ¢;, so wiirde aus (45) entsprechend a < ¢ oder b, <<a
folgen, und wire b” — b, oder ¢ = ¢;, so wiirde aus (44) ent-
sprechend b, < a oder a <{c¢ folgen, was alles im Widerspruch
mit (46) steht. Wir schliefen hieraus, daf alle fiinf Elemente
der Dualgruppe & wirklich voneinander verschieden sind, weil auch
jede der beiden Annahmen a = b, oder a = ¢’ durch (46) ver-
boten ist.

In dieser Dualgruppe ® gilt das Modulgesetz VIII nicht,
denn sonst miilte, weil b, < ¢’ ist, auch (a — b)) + ¢ = (a 4-¢') —b,
sein, wihrend doch aus (42) folgt, dafl

(@—b)4+d=¢+=¢ und (a4c)—b =b"—0b, =0,
‘ist. Wir behaupten endlich, daf die drei Elemente b, aq, ¢; in (44)
und ebenso die vier Elemente b, b,, ¢, ¢, in (45) eine Kette in &
bilden; wére ndmlich b kein n#achster Teiler von a, oder ¢; kein
nichstes Vielfaches von o, so miillte mindestens eins der beiden
anderen Elemente b,, ¢ -ein Teiler oder ein Vielfaches von a sein,
was, wie schon erwdhnt, zufolge (46) unméoglich ist, und aus dem-
selben Grunde folgt offenbar, dall auch die vier Elemente in (45)
eine Kette bilden. Da nun beide Ketten denselben Anfang b und
dasselbe Ende ¢,, aber verschiedene Linge besitzen, so gilt in der
Gruppe @ auch das Kettengesetz nicht.
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Den hiermit bewiesenen Satz IX konnen wir offenbar auch so
aussprechen:

X. Wenn in einer Dualgruppe § und in allen ihren Teilgruppen
das Kettengesetz gilt, so gilt in ihr auch das Modulgesetz.

Hierzu ist folgendes wohl zu bemerken. Man konnte es viel-
leicht fiir erlaubt halten, die strenge Primisse dieses Satzes dahin
abzuschwichen, dall die Giiltigkeit des Kettengesetzes nur fiir die
Gruppe $ selbst vorausgesetzt wird; von dieser irrigen Meinung wird
man aber sogleich zuriickkommen, wenn man sich erinnert, daf die
Definitionen eines nachsten Teilers und einer Kette in $ sich wesent-
lich auf die Betrachtung aller Elemente von § und nur dieser
Elemente stiitzen (§ 5). Man kann sich in der Tat leicht iiber-
zeugen, daf das Kettengesetz in einer Dualgruppe § giiltig und
doch in einer Teilgruppe ® von $ ungiiltig sein kann. Das ein-
fachste Beispiel dieser Erscheinung erhdlt man, wenn man zu den
finf verschiedenen Elementen m =— b, b,, a, ¢, ¢,, aus denen die
eben betrachtete Dualgruppe & besteht, noch ein von ihnen ver-
schiedenes sechstes Element n hinzufiigt und fiir dasselbe die Ope-
rationen + gemal (4) und (1) durch n+n=mn m—+n—=n+m,
und zwar im einzelnen durch

n4+ 0" =0b", n4+b, =b", n4a=aqa n4+=0" n4¢=n,
n—b"=m n—b =¢ n—a=mn n—0=¢, n—c=¢
definiert. Die genaue Priifung (vgl. die letzte Anmerkung) ergibt
dann, dafl diese sechs Elemente wirklich eine Dualgruppe  bilden,
und dal in derselben das Kettengesetz gilt, weil das einzige Paar
dquivalenter verschiedener Ketten aus den beiden Ketten b anc,
und b"'b, ¢'¢c; besteht, welche dieselbe Lidnge 3 besitzen.

Nennen wir jede Dualgruppe M, in welcher das Modulgesetz VIII
allgemein gilt, eine Modulgruppe, auch wenn ihre Elemente keine
Moduln sind, so wollen wir nun umgekehrt zeigen, daB in jeder

solchen Gruppe auch das Kettengesetz gilt. Dies geschieht durch
die folgende Reihe von Sitzen.

XI. Sind a, b zwei beliebige Elemente einer Modulgruppe IR,
8o besteht zwischen der Gruppe aller derjenigen Elemente b in I,
welche den Bedingungen

(47) a+b<b <H
17%
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geniigen, und der Gruppe aller derjenigen Elemente a, in IR, welche
den Bedingungen

(48) a<la <a—b

geniigen, eine gegenseitige eindeutige Korrespondenz, welche durch
jede der beiden, wechselseitig auseinander folgenden Beziehungen

(49) a, = a—1",
(50) "=1b+aq
ausgedriickt wird (D. § 169, S. 499, Anmerkung).

Beweis. Unsere Behauptung besteht darin, daf aus (47)
und (49) sich (48) und (50) ergibt, und umgekehrt. Aus (47) folgt
zundchst o — (a +b) <a—b' < a—0b, was zufolge (3) und (49)
mit (48) iibereinstimmt, und da b <Tb ist, so folgt nach dem Modul-
gesetz VIII auch (a 4 b) —b" = (a —b’) 4 b, was nach (47) und (49)
mit (50) iibereinstimmt. Umgekehrt folgt aus (48) und (50) zunichst
a-+b<a, +b<(a—b)+ b also (47), und da a < e, ist, so folgt
nach dem Modulgesetz auch (a —b)+4 o, = (a, + b) —a, was zu-
folge (48) und (50) mit (49) iibereinstimmt, w. z. b. w.

XII. Sind o, b Elemente einer Modulgruppe MM, und ist a + b
ein nichster Teiler von b, so ist a ein nichster Teiler von a —b,
und umgekehrt.

Beweis. Ist a + b ein nichster, also auch ein echter Teiler
von b, so folgt zuniichst, dal a auch ein echter Teiler von a —b
ist, weil aus a == a —b auch a 4 b = b folgen wiirde; geniigt nun
ein in M enthaltenes Element o, den Bedingungen (48), so gehort
auch das entsprechende Element §’ in (50) der Gruppe M an, und
da zugleich (47) und (49) gilt, so ist entweder b= a 4 b, also
a, =(a+b)—a =140, oder ¥=12"0, also a, == a —Db; mithin ist
wirklich a ein nichster Teiler von a — 6. Umgekehrt, wenn letzteres
der Fall, also a auch ein echter Teiler von a —b ist, so folgt
zunichst, daB o« -+ b auch ein echter Teiler von b ist, weil aus
a+06=0"b auch a = a—"b folgen wiirde; geniigt nun ein in I
enthaltenes Element b’ den Bedingungen (47), so gehort auch das
durch (49) definierte Element a, der Gruppe I an, und da zugleich
(48) und (50) gilt, so ist entweder o, = q, also ' = a + b, oder
a, =a—05, also V= (a —b)+b = b; mithin ist wirklich a b
ein nichster Teiler von b, w.z b. w.
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XIIL. Ist b ein ndchster Teiler von m in der Modulgruppe I
und p ein beliebiges Element in M, so ist entweder p+d=9p 4+ m
und p — b ein nichster Teiler von p —m, oder es ist p —d —p—m
und p -+ d ein nichster Teiler von p + m.

Beweis. Aus der Annahme b < m folgt nach dem Modul-
gesetz VIII, daB man ein Element q in der doppelten Form

g=@F+m—>t=(@F—0+m

definieren kann; dasselbe ist offenbar in I enthalten und geniigt
den Bedingungen b < q < m, mithin muf, weil b ein n#chster Teiler
von m ist, einer und nur einer der beiden Fille ¢ — b oder ¢ = m
eintreten. Im ersten Falleist b=(p—>)4+m und dap+(p—d)=1»
ist, so folgt hieraus p 4 b = p 4+ m; setzt man nun a = p — b,
b=m, so wird a+0 =09 a—b=p—0d—m=p—m; es ist
daher a 4 b ein niachster Teiler von b, also nach dem vorigen Satze
auch p — b ein nichster Teiler von p —m. Im zweiten Falle ist
m=(p+4m—> und da p—(p+m)=yp ist, so folgt p—m
— p —b;setzt man jetzt a =0, b=yp+mssowirda +b=pt+m+4>
= p-+b, a—Db=m; es ist daher a ein niichster Teiler von a —b,
also nach dem vorigen Satze auch p 4 d ein nichster Teiler von
p 4 m, w.oz b.ow.

XIV. Wenn ein Element d einer Modulgruppe 9t zwei ver-
schiedene nichste Vielfache a, b besitzt, so ist a + 0 = b, und a—b
ist ein n#chstes Vielfaches von a und von b. Besitzt ein Element m
zwei verschiedene nichste Teiler o, b, so ist a —b = m, und a0
ist ein nichster Teiler von a und von b.

Beweis. Zufolge der ersten Annahme ist  ein gemeinsamer

Teiler von a, b, also auch ein Teiler von a -+ b, mithin
db<la+b0<Ta, d<Ta+b<b;

widre nun a + b verschieden von b, so miilite, weil d ein n#chster
Teiler von o und von b ist, a +b = a und zugleich a4+ b =,
also auch a = b sein, was unserer Annahme widerspricht; mithin
ist a4+b="> ein nichster Teiler von a und b, woraus mnach XII
folgt, dafl b und o nichste Teiler von a —b sind. Zufolge der

zweiten Annahme ist m ein gemeinsames Vielfaches von a, b, also
auch ein Vielfaches von a — b, mithin

a<la—b<Tm b<Ta—b<m;
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wire nun ¢ —b verschieden von m, so miifite, weil a und b nichste
Teiler von m sind, a — b = a = b sein, was unserer Annahme wider-
spricht; mithin ist a — b — m ein n#chstes Vielfaches von a und b,
woraus nach XII folgt, dall a + b ein nichster Teiler von b und a
ist, w. z. b. w.

Um alle wesentlich verschiedenen Beispiele zu diesem Satze zu
finden, welche unsere obige Gruppe ©® von 28 verschiedenen Moduln
darbietet, braucht man nur die letzten Sétze in (19) bis (26) mit
den Teilbarkeiten in (15) bis (18) zu vergleichen; so erhilt man

aNI+ b!” — bllll, a///— h”l: cll
all + bl’ — c”l’ a'l _— bll —_— bl ,
al + b' o all s a' — bl

’
a, +b, = b, a, — by = by,
a +aq, =a a —a, = aqa,,

L

a, +5 =aq,, a, —d, = a,,
0 + b =1b,, 0y — by = ¢y,
a, +b, = ¢, a, — by, =1,.

Wir wollen ferner bemerken, dall die im ersten Teile des
Satzes aufgestellte Behauptung a 4 b — b offenbar fiir jede Dual-
gruppe gilt, wihrend die auf a —b beziigliche Behauptung wesent-
lich auf der Voraussetzung des Modulgesetzes beruht; betrachten
wir z. B. die Dualgruppe &, welche wir bei dem Beweise des Satzes IX
gebildet haben, so sind die beiden Elemente a, b, nichste Vielfache
von b = a 4+ b,, aber nur q, nicht b, ist ein niichster Teiler von
¢g —= a—D0,. Ebenso gilt im zweiten Teile nur die Behauptung
a —b — m allgemein fiir jede Dualgruppe, wihrend die auf a 4 b
beziigliche wieder auf dem Modulgesetz beruht.

XV. Wenn in der Modulgruppe M eine Kette & aus den n+ 1
Gliedern

(51) |75 25 AU S
besteht, und wenn ein Element p der Gruppe I den Bedingungen
(52) L<p<h

geniigt, so gibt es in M mindestens eine mit & dquivalente Kette P,
in welcher das Glied p auftritt.
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Beweis. Durchliuft ¥ alle Elemente der Kette £, und bildet
man alle Elemente p + ¥, so erhélt man zufolge (52) die beiden Reihen

(53) p+f0:foap+f1"'p+fn—17 P+fn:P7
(54) p—ro:p7 p——fl"'p'—fn—l’p"fn:fw

Sieht man die zweite als eine Fortsetzung der ersten an, so entsteht
eine Gesamtreihe P, in welcher offenbar jedes Element ein Teiler
des folgenden ist. Sind zwei solche aufeinanderfolgende Elemente
verschieden, so folgt aus dem Satze XIII, daB das erste ein
nichster Teiler des folgenden ist; behilt man daher von mehreren
gleichen aufeinanderfolgenden Elementen immer nur eins bei, so
entstebt aus P’ eine Kette B, deren Anfang — ¥,, deren Ende =¥,
ist, und in welcher das Glied p auftritt, w. z. b. w.

Zusatz Diese Kette P hat dieselbe Linge » wie & Um
dies zu beweisen, verteilen wir die » Indizes 0, 1, 2 .-- (n—1) in
zwei getrennte Klassen, deren erste alle diejenigen p Indizes r ent-
halt, fiir welche p 4 f, verschieden von p + ¥, , wird, wihrend die
zweite Klasse aus allen iibrigen ¢ Indizes s besteht, fiir welche also
p+ ¥t =yt ist; dann ist p + ¢ = n, und offenbar ist p 41
die Anzahl aller verschiedenen, in der Reihe (53) enthaltenen Elemente.
Aus dem Satze XIII (welcher bei dem vorhergehenden Beweise von XV
nur teilweise benutzt ist) folgt aber, dal gleichzeitig p — ¥, — p—¥, . ,,
und daf p — ¥, verschieden von p — f;;, ist; mithin ist ¢ + 1 die
Anzahl aller verschiedenen, in der Reihe (54) enthaltenen Elemente.
Da ferner p das einzige Element ist, welches in beiden Reihen zugleich
auftritt, so ist die Anzahl aller in der Kette P enthaltenen Elemente
=@{pP+1)+@+1)—1=mn+1, w.zb.w

Bezeichnet man die aufeinanderfolgenden Elemente dieser
Kette P mit

PoP1 o Pn—1Pu
so ist p, = ¥, p, = f,, und zugleich leuchtet aus der Bedeutung
von p ein, dafl p, = p ist.

Um diese durch ein Element p bewirkte Transformation einer
Kette  in eine #quivalente Kette B durch Beispiele zu erliutern,
kehren wir zu der oben behandelten, aus 28 verschiedenen Moduln
bestehenden Gruppe D zuriick und betrachten die aus neun Elementen

N "o.r
""" a"a"aa, agb, b,
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bestehende Kette & von der Linge acht. Wiblen wir p = ¢, so
bestehen die beiden Reihen (53), (54) aus den Elementen
LI R R R
¢ ¢ ¢ b a, a,0a,0,0,,
und die Kette P wird
DB ¢ ¢ ey by ay by D,
zugleich 8t p = 8, ¢ — 5. Wahlen wir aber p — b und dieselbe
Kette &, so bestehen die beiden Reihen (53), (54) aus den Elementen
LI S A N )
b b, 0, b, ¢y c5¢5 0,0,
und die Kette p wird
¥ B b, by ¢, b,
zugleich ist p —= ¢ = 4.

Aus den beiden vorhergehenden Siatzen XIV und XV ergibt
sich nun leicht das Kettengesetz, d. h. der Satz

XVI. In jeder Modulgruppe M haben je zwei dquivalente Ketten
dieselbe Linge.

Beweis. Um die Methode der vollstindigen Induktion an-
zuwenden, sprechen wir den zu beweisenden Satz so aus: Wenn eine
Kette & der Modulgruppe M die Lange m hat, so hat jede mit &
dquivalente Kette $ dieselbe Linge m. Die Wahrheit dieses Satzes
fiir den Fall m — 1 ergibt sich daraus, daf eine Kette & von der
Linge 1 nur mit sich selbst fquivalent ist; besteht ndmlich & aus
den beiden Elementen a, b, so ist a ein nichster Teiler von b, und da
jedes Element § einer Kette & ein Vielfaches von ihrem Anfang und
zugleich ein Teiler von ihrem Ende ist, so mufl, wenn § mit &
dquivalent ist, a <{h < b, mithin § = a oder §) — b sein, woraus
die Identitdt von  und & folgt. Nach dem Wesen der Induktions-
methode machen wir nun die Hypothese, dall, wenn n eine be-
stimmte natiirliche Zahl bedeutet, unser Satz schon fiir jede Kette &
bewiesen sei, deren Ldnge m =— n ist, und haben zu zeigen, dal er
dann gewil auch fir jede Kette & gelten mul, deren Linge
m = mn-+1 ist. Es sel also & eine aus den Gliedern

at o bbb
bestehende Kette von der Lénge » 4+ 1, und irgendeine mit &
dquivalente Kette $ moge aus den e 4 2 Gliedern

ai)lt)a he—lf)cb
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bestehen; wir sollen beweisen, dal ¢ = n ist. Unterdriicken wir in
beiden Ketten &, ® den gemeinsamen Anfang a, so entsteht aus &
eine Teilkette &, von der Linge n, deren Anfang und Ende bzw.
die Elemente f,, b sind, und ebenso entspringt aus § eine Teilkette §,
von der Linge e, deren Anfang und Ende bzw. die Elemente §,, 0
gind. Falls nun f, = §, ist, so sind diese beiden Ketten &, $,
dquivalent, und da die Lénge der ersteren — = ist, so muf nach
unserer Hypothese auch £, dieselbe Linge haben, woraus wirklich
e—=mn folgt. Im entgegengesetzten Falle, wenn die beiden Elemente f,, §,
verschieden sind, schliefen wir aus dem Satze XIV, dal sie als
néichste Vielfache desselben Elementes a auch ndchste Teiler des-
selben Elementes f, — 1, sind, das wir mit p bezeichnen wollen.
Da f, und §, auch Teiler desselben Elementes b sind, so geniigt p
oftenbar den Bedingungen ¥, <Zp <5, und folglich gibt es nach dem
Satze XV eine mit &, &dquivalente Kette P, in welcher p als Glied
auftritt, und welche nach unserer Hypothese dieselbe Linge n be-
sitzen mul wie &, (das letztere wiirde auch aus dem Zusatze
zu XV folgen, den wir aber bei diesem Beweise nicht zu benutzen
brauchen). Da ferner, wie schon bemerkt, ¥, ein nichster Teiler
von P ist, so mufl in dieser Kette B das Glied p unmittelbar auf ¥,
folgen; die Kette ¥ hat daher die Form

f]p ..o b

Nun ist, wie oben bemerkt, auch §, ein nichster Teiler von p;
ersetzen wir daher den Anfang f, der Kette P durch §,, so entsteht
abermals eine Kette

bl p e b’

welche dieselbe Linge n besitzt wie P und mit der Kette H, dqui-
valent ist; mach umserer Hypothese muf daher die Lénge e dieser
Kette $, ebenfalls = » sein, w. z b. w.

§ 7.

Stufen in endlichen Modulgruppen.

Nachdem durch die Sitze X und XVI die Bezichung zwischen
dem Modulgesetz und dem Kettengesetz nachgewiesen ist, fiigen
wir noch einige Bemerkungen iiber endliche Modulgruppen hinzu,
deren Beweise der Leser leicht finden wird. Unter den Elementen m
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einer solchen Gruppe I gibt es offenbar ein, und nur ein Element p,
welches ein Teiler von allen m, und ebenso gibt es ein, und nur ein
Element g, welches ein Vielfaches von allen m ist. Wenn m ver-
schieden von q ist, so gibt es in 9 mindestens ein néchstes Viel-
faches von m, und wenn m verschieden von p ist, so gibt es in I
mindestens einen nichsten Teiler von m. Wenn ferner a ein echter
Teiler von b ist, so gibt es immer mindestens eine Kette, deren
Anfang a und deren Ende b ist. Hierauf konnen wir alle Elemente
der Gruppe I in eine Reihe getrennter, aufeinanderfolgender Stufen S
einteilen; die unterste oder niedrigste Stufe soll aus dem einzigen
Element p bestehen, und diese Stufe wollen wir mit S, bezeichnen,
wo p eine beliebig gewahlte ganze rationale Zahl ist; wenn ferner m
ein von p verschiedenes Element, also ein echtes Vielfaches von p
ist, und wenn A die gemeinsame Linge aller Ketten bedeutet, deren
Anfang p und deren Ende m ist, so nennen wir die Summe m =p+ A
die Stufenzahl von m und nehmen m in die Stufe S,, auf; ebenso
nennen wir p die Stufenzahl des Elementes p; ist & die Linge aller
von p nach q fiihrenden Ketten, und ¢ — p + k, so besteht die
oberste oder hochste Stufe S, offenbar aus dem einzigen Elemente g,
und k41 ist die Anzahl aller verschiedenen Stufen. Ist m ein
Element der Stufe S,,, und m <{4gq, so finden sich alle nichsten
Vielfachen von m in der Stufe S,.;, und wenn m > p ist, so
finden sich alle niichsten Teiler von m in der Stufe S, _;. Bezeichnet
man die Stufenzahl m des Elementes m allgemein mit s(m), so gilt
fiir je zwei Elemente a, b der Satz

(53) s(a) + 8(b) = s(a 4 b) + s(a —b),

dessen Beweis wir ausfiihren wollen. Falls eins der beiden Elemente,
z. B. a ein Teiler des andern b ist, so leuchtet der Satz von selbst
ein, weil dann a 4+ b =—10a, a —0 = b ist. Wenn aber keins der
beiden Elemente durch das andere teilbar, also a4 b ein echter
Teiler von b ist, so gibt es mindestens eine von a + b nach b
fiithrende Kette R, und wenn % ihre Léinge bedeutet, so ist offenbar
s(b) = s(a+b)+n; da nun jedes Element b’ dieser Kette den
Bedingungen a4 b <{ b < b geniigt, so ist immer a 4 b= a + b;
sind daher b, m irgend zwei aufeinanderfolgende Glieder dieser Kette,
so ist auch a 4 b = a 4 m, woraus nach Satz XIII folgt, dall a —?d
ein nichster Teiler von a — m ist; mithin bilden die # + 1 Elemente



— 267 —

a, = a — 1" eine Kette, deren Anfang a — (a +b) = qa, und deren
Ende a — b ist; hieraus folgt offenbar, dal s(a — b) = s(a) 4 n ist,
und wenn man hiermit das obige Resultat s(b) = s(a 4 b) 4 n
verbindet, so ergibt sich der zu beweisende Satz (55), dessen Zu-
sammenhang mit dem Satze XI einleuchtet.

Alles dies bestitigt sich an dem frither behandelten Beispiele
der aus 28 verschiedenen Moduln bestehenden Gruppe ©; hier ist
p=10", q=1", k=8, und da wir in (41) die Zahl p = — 4
gewihlt haben, so ist ¢ = + 4. Doch mull man nicht glauben, dab
die Symmetrie, welche hier in dem Bau von je zwei gleichweit
vom Anfang und Ende entfernten Stufen S.,, auftritt, eine allgemeine
Eigenschaft aller Modulgruppen M ist. Es bilden z B. die in dieser
Gruppe enthaltenen fiinf Elemente b,, b,, ¢,, a,, d, fiir sich eine
Modulgruppe mit vier Stufen §’, von denen

S; aus b,
S2’ ” [)27 c21
Si; ” a87
Si o, b,

besteht; die vier ersten Elemente bilden fiir sich eine symmetrische
Modulgruppe mit den drei Stufen Sy, S;, S;, aber diese Symmetrie
wird durch das Hinzutreten des fiinften Elementes b, gestort.

§ 8.
Beziehung zwischen dem Modulgesetz und dem Symbol (m, n).

Wir wollen nun noch den Zusammenhang besprechen, welcher
zwischen dem Modulgesetz VIII und den Symbolgesetzen (27), (28),
(32) besteht. Wir haben die letzteren schon in § 3 durch die
Bemerkung vervollstindigt, dal nach der Bedeutung, welche das
Symbol (m, n) in der Modultheorie besitzt, aus der Teilbarkeit m > b
immer (m, ) =1 folgt; wir fiigen jetzt noch hinzu, daf zufolge
derselben Bedeutung auch umgekehrt aus (m, ) =1 immer die
Teilbarkeit m > b folgt, dafl also die beiden Aussagen

(56) (m,?) =1 und m>>
vollig gleichbedeutend sind (D. § 171, S. 510).

Nehmen wir nun an, in irgendeiner Dualgruppe  entspreche je
zwei Elementen m, n ein mit (m, n) bezeichneter, und zwar von Null
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verschiedener Zahlwert, und dieses Symbol gehorche den Gesetzen (27),
(28), (32) und (56), so wollen wir beweisen, dafl in dieser Dual-
gruppe  auch das Modulgesetz VIII herrscht. In der Tat,
wihlen wir aus § drei Elemente a, b, ¢ aus, welche der Bedingung
b < c geniigen, so erzeugen dieselben, wie aus dem Beweise des
Satzes IX in § 6 hervorgeht, eine aus hochstens neun Elementen
bestehende Dualgruppe $', und wenn wir die dortigen Identitéten (42),
(43) mit den Symbolgesetzen (27), (28) kombinieren, so ergibt sich

(0", 0) = (@a+0,0) = (s, b)) = (0, a — b)) = (a, ¢y),
0", ) = (4, )= (4,¢) =(a,a—¢) = (a, ¢),

(b”', bl) —_— (b”l’ cl);
da ferner nach (45) auch 0" <Cb, << ist, so folgt aus dem Symbol-
gesetz (32)

also

(0", ¢) = (b, by) (b, <),
also auch

(6", b)) (b, &) = (0", b)),
und da nach unserer Annahme die Zahl (6", b;) von Null verschieden
ist, so ergibt sich (b,, ¢)) = 1, was nach (56) gleichbedeutend mit
b, > ¢’ ist; da endlich auch b, <T¢' ist, so folgt b, — ¢/, also ist in
der Dualgruppe  die Identitit

b—(+4c¢)=c+(a—b)
eine notwendige Folge der Annahme b <Cc. Dies ist aber nichts
anderes als das Modulgesetz VIII, welches mithin in jeder Dual-
gruppe $ herrschen mul, fiir welche die obigen Voraussetzungen
" gelten. — }

Nachdem dieser Zusammenhang erkannt ist, liegt es nahe, eine

besonders wichtige Klasse von Dualgruppen § zu betrachten, in
welchen die genannten Symbolgesetze wenigstens teilweise erfiill
sind, ich:  meine die Dualgruppen §, deren Elemente die simtlichen
Teilgruppen einer gewéhnlichen endlichen Galoisschen Gruppe g
sind. Die Elemente «, f, p, --- einer solchen Gruppe g reproduzieren
sich bekanntlich durch eine Operation, welche in der Regel wie eine
Multiplikation bezeichnet wird und dem assoziativen Gesetz (xf)y
= a(By) gehorcht; aulerdem wird vorausgesetzt, dal sowohl aus
ey = By wie aus yoo — pf immer o — B folgt. Sind a, b irgend-
welche Komplexe von Elementen in g, und bezeichnet man allgemein
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mit ab den Komplex aller in der Form «f enthaltenen Elemente,
wo o, 3 bzw. alle Elemente in o, b durchlaufen, so ist a dann, und
nur dann eine Gruppe, ein Teiler von g, wenn aa — a ist. Sind
a, b zwei solche Teilgruppen von g, so ist ihr groBter gemeinsamer
Teiler oder ihr Durchschnitt (d. h. der Inbegriff aller ihnen gemein-
samen Elemente) wieder eine Gruppe, die wir hier, um mit unserer
bisherigen Ausdrucksweise im Einklang zu bleiben, durch a b
bezeichnen wollen; aus demselben Grunde soll das Zeichen a —b
diejenige Gruppe bedeuten, welche durch fortgesetzte Multiplikation
aus allen Elementen von o, b erzeugt wird *) und das kleinste gemein-
same Vielfache von a, b heiflit; sie ist der Durchschnitt aller der-
jenigen Teilgruppen von g, welche (wie z B. g selbst) gemeinsame
Vielfache von a, b sind, d. h. welche sowohl a als b zum Teiler
haben, Offenbar geniigen diese beiden Operationen 4 den Grund-
gesetzen (1), (2), (3), mithin ist der Inbegriff $ aller in g als Teiler
enthaltenen Gruppen aq, b, ¢ .-+ eine Dualgruppe im Sinne von § 1,
auf welche wir auch die Bedeutung der Teilbarkeitszeichen <7 und >
ibertragen wollen.

Hierzu tritt nun folgendes. Ist die Gruppe a ein Teiler von g,
und sind B, y irgend zwei Elemente in g, so sind die beiden Komplexe
a B, ap entweder vollstindig identisch, oder sie haben kein einziges
gemeinsames Element, und wenn b ebenfalls eine Teilgruppe von g
bedeutet, so wollen wir durch das Gruppen-Symbol (a, b) die An-
zahl aller voneinander verschiedenen Komplexe a 8 bezeichnen, die
allen Elementen f der Gruppe b entsprechen, und aus welchen
offenbar der Komplex ab besteht**). Man iiberzeugt sich nun leicht,
dal fiir dieses Gruppensymbol, welches immer eine natiirliche, also
von Null verschiedene Zahl ist, die drei Gesetze (27), (32) und (56)
gelten, wihrend man dasselbe von dem vierten Symbolgesetz (28)
nicht allgemein behaupten kann. Offenbar sind ndmlich alle Elemente
des Komplexes ab in der Gruppe a — b enthalten, aber im allgemeinen
wird die letztere noch andere Elemente enthalten, und da der
Komplex ab schon aus (a, b) verschiedenen Komplexen af besteht,
so wird im allgemeinen (a, a —b) gr6Ber als (a, b) sein; der Fall

¥) Es ist also a—b — ababa ..- = baba -.., wenn diese Produkte
hinreichend weit fortgesetzt werden.

**) Vgl. §9 meiner Abbandlung: Uber die Anzahl der Idealklassen in reinen
kubischen Zahlkérpern (Crelle’s Journal, Bd. 121, S.77).
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(a, b) = (a, a —b) tritt daher immer und nur dann ein, wenn der
Komplex a b eine Gruppe, alsc — a — b ist, und das charakteristische
Merkmal hierfiir besteht in der Identitit ab = ba. Wenn also je
zwei Teiler a, b der Gruppe g in diesem Sinne permutabel sind,
go gelten in der Dualgruppe § alle vier Symbolgesetze (27), (28),
(32), (56), und hieraus folgt nach der vorhergehenden Betrachtung,
dall in § das Modulgesetz VIII, also auch das Kettengesetz herrscht *).

Dies bestitigt sich leicht auf folgende Weise. Da mnach der
jetzigen Voraussetzung immer a — b — ab = ba ist, so nimmt das
aus der Annahme b <m zu beweisende Gesetz VIII die Gestalt
(P +m)d = pd 4 m an. Nun steht jedes Element des Durchschnittes
pd 4+ m unter der doppelten Form = d — g, wo =, 8, p bzw. Elemente
der Gruppen p, d», m bedeuten, und da d nach Voraussetzung ein
Teiler von m, also 0 auch Element von m ist, so gilt dasselbe
bekanntlich auch von zr; mithin ist # in dem Durchschnitte p + m,
also p in der Gruppe (p + m)d enthalten; folglich ist die Gruppe
pd 4+ m ein Teiler der Gruppe (p 4+ m)d, und da nach dem Satze VII
umgekehrt (p 4+ m)d gewiB ein Teiler von pd 4 m ist, so sind beide
Gruppen miteinander identisch, w.z b.w. Offenbar stimmt dieser
Beweis mutatis mutandis vollstindig mit dem Beweise des ent-
sprechenden Satzes in der Modultheorie iiberein (D. § 169, S. 498—499).

Zu den Gruppen g, deren sidmtliche Teiler a, b diese Eigenschaft
ab = ba besitzen, gehoren augenscheinlich alle Abelschen Gruppen,
ferner diejenigen, welche ich Hamiltonsche Gruppen genannt habe *¥),
auflerdem aber noch unendlich viele andere, von denen ich hier nur
die beiden einfachsten Beispiele anfiihren will. Benutzt man die
bekannte Bezeichnung der zyklischen Vertauschungen von beliebigen
verschiedenen Dingen 0, 1, 2, 3 ..., so wird die erste Gruppe g vom
Grade 16 erzeugt durch die Elemente achten und zweiten Grades

« = (01234567), B = (04) (26),

welche der Bedingung fa = o°f geniigen. Ebenso wird die zweite
Gruppe g vom Grade 27 erzeugt durch die Elemente neunten und
dritten Grades

« = (012345678), B = (174) (258),

*) Doch lehrt schon das Beispiel der Gruppe g, welche aus den sechs Ver-
tauschungen von drei Dingen besteht, daB dieser Satz nicht umgekehrt werden darf.
*%) Mathematische Annalen, Bd. 48, S.548.
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welche der Bedingung fo — o' geniigen. Die allgemeine Theorie
aller dieser Gruppen mit permutablen Teilern werde ich in einem
besonderen Aufsatze behandeln.

Braunschweig, den 8. Januar 1900.

Erlduterungen zur vorstehenden Abhandlung.

Diese Arbeit, die' in Inhalt und Auffassung direkt an XXVIII anschlieft,
ist vor allem interessant als axiomatische Untersuchung iiber die Giiltigkeit des
4Kettengesetzes* in Dualgruppen. Darunter wird der Kompositionsreihensatz ver-
standen, unter alleiniger Voraussetzung der Existenz einer Kompositionsreihe, in
der durch die Axiomatik bedingten abgeschwichten Form von der Invarianz der’
Linge; genauer handelt es sich um Hauptreihen. Und zwar zeigt sich (§6) die
vollige Aquivalenz von Modulgesetz, Kettengesetz und ,zweitem Isomorphiesatz®,
letzterer ebenfalls in einer durch die Axiomatik bedingten Form: eineindeutiges
Entsprechen aller Zwischengruppen durch Summen- und Durchschnittbildung
(§6, XI). Zugleich wird noch eine Axiomatik des Normbegriffs gegeben und der
Zusammenhang mit dem Modulgesetz untersucht (§ 8).

Die Tatsache, daB allein aus der Existenz einer Kompositionsreihe sich alle
Folgerungen ziehen lassen, ist — anfangs unabhingig von der vorliegenden Arbeit
wiedererkannt — ein wichtiges Hilfsmittel der neueren Algebra geworden.

Noether.




XXXI.

Uber die Permutationen des Korpers
aller algebraischen Zahlen.
[Festschrift zur Feier des hundertfiinfzigjihrigen Bestehens

der Koniglichen Gesellschaft der Wissenschaften zu Gottingen. Abhandlungen der
mathematisch-physikalischen Klasse, S. 1—17 (1901).]

Die vorliegende, rein algebraische Untersuchung verfolgt das
Ziel, gewisse Sitze, die sich auf endliche Kérper beziehen, auf un-
endliche Koérper auszudehnen; um aber ihren Gegenstand genauer
zu bezeichnen, ist es notig, an die Bedeutung der in der Uberschrift
gewihlten Ausdriicke und an einige Sdtze zu erinnern, welche sich
auf dieselben beziehen. Eine ausfiihrliche Entwicklung dieser Begriffe
und der Beweise findet man in der vierten Auflage (1894) von
Dirichlets Vorlesungen iiber Zahlentheorie (Supplement XI), die
ich im folgendep mit D. zitieren werde; hier beschrinke ich mich
in den beiden ersten Paragraphen darauf, aus dieser Darstellung mit
Ubergehung der Beweise nur das zu entlehnen, was fiir unseren Zweck
unerldBlich ist.

§ 1.
Korper und irreduzibele Systeme.

. Ein System 4 von reellen oder komplexen Zahlen heifit ein
Korper (D. § 160), wenn die Summen, Differenzen, Produkte und
Quotienten von je zwei dieser Zahlen demselben System A4 angehéren.
Der kleinste Korper B besteht aus allen rationalen, der grofite
Kérper Z aus allen komplexen Zahlen. Ein Korper 4 heifit Divisor
eines Korpers B, und zugleich heiit B ein Multiplum von A,
wenn jede in A4 enthaltene Zahl auch dem Korper B angehort; der
Korper R ist ein gemeinsamer Divisor, der Korper Z ein gemeinsames
Multiplum aller Koérper 4. Ist B Multiplum von A4 und Divisor
von C, so ist A Divisor von C. Jedes bestimmte System von
Korpern 4, mag ihre Anzahl endlich oder unendlich sein, besitzt einen
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bestimmten gréBten gemeinsamen Divisor D; dieser Korper besteht
aus denjenigen Zahlen, welche allen diesen Korpern 4 gemeinsam
angehoren, und jeder gemeinsame Divisor dieser Korper A ist Divisor
von D. Dasselbe Korpersystem besitzt ein bestimmtes kleinstes
gemeinsames Multiplum M; dieser Korper M ist der grofite gemein-
same Divisor aller derjenigen Kérper, welche (wie z. B. Z) gemein-
same Multipla der Korper 4 sind.

Ein endliches System 7' von m Zahlen ¢, t,--- ¢, heiit redu-
zibel in bezug auf den Korper A4, wenn es m Zahlen a,, a, --- a,,
in 4 gibt, welche der Bedingung

a,t, 4 agtg+ -+ apt, = 0
geniigen und nicht alle verschwinden; im entgegengesetzten Falle
heiflt das System 7' irreduzibel nach 4 (D. § 164).

Eine Zahl ¢ heifit algebraisch in bezug auf den Kérper A4,
wenn es eine natiirliche Zahl n gibt, fiir welche die n 4 1 Potenzen
1,6,82 - gn—1 ¢n
ein nach A reduzibeles System bilden; die kleinste Zahl n, fiir welche
dies eintritt, heifit der Grad von ¢, und wir sagen, ¢ sei eine alge-
braische Zahl nte» Grades in bezug auf 4. Offenbar ist eine solche

Zahl t die Wurzel einer (irreduzibelen) Gleichung
tn+a1tn—l+“'+a/n—1t+a'n =0,
deren Koeffizienten a,, a, --- @, Zahlen des Korpers A sind, wihrend
die n Potenzen
1, ¢ 2. g1
ein nach A irreduzibeles System bilden. Man iiberzeugt sich leicht
(D. § 164, IX), dall der Inbegriff U aller Zahlen % von der Form
U= &, "1t w2 e b wpt X,
WO Z,, Xy Tn—q, X, willkiirliche Zahlen in 4 bedeuten, wieder
ein Korper, und zwar ein Multiplum von A4 ist; diesen Korper U be-
zeichnen wir mit A (£), und wir sagen, er entstehe aus 4 durch Ad-
junktion von ¢ Je m + 1 Zahlen dieses Korpers A (f) bilden ein
nach A reduzibeles System, mithin ist jede Zahl u algebraisch in bezug
auf A4, und ihr Grad nicht grofer als n; ist dieser Grad = m, so
ist A4 (u) identisch mit 4 (¢).

Ein Korper B heiit endlich in bezug auf den Korper 4 und
vom Grade n, wenn es in B ein aus n Zahlen bestehendes, nach A4
irreduzibeles System gibt, wihrend je n -+ 1 Zahlen des Korpers B

Dedekind, Gesammelte Werke, IT. 18
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ein nach A reduzibeles System bilden; diesen Grad n, welcher immer
eine natiirliche Zahl ist, bezeichnen wir durch das Symbol (B, 4).
Dann sind alle Zahlen in B algebraisch in bezug auf A4, darunter
gibt es auch (unendlich viele) Zahlen #, deren Grad = n ist
(D. § 165, VI), und der durch Adjunktion einer solchen Zahl ¢ aus
A entstehende Korper 4 (¢) ist das kleinste gemeinsame Multiplum M
der beiden Korper A4, B; mithin besteht der Satz

(1) (B, 4) = (M, A).

Wenn B selbst ein Multiplum von A4, also M = B ist, so
heiBt B ein endliches Multiplum von 4; ist zugleich der Korper ¢
ein endliches Multiplum von B, so ist C' auch ein endliches Multiplum
von A, und es gilt der Satz (D. § 164, X)
©) (€, 4) = (C, B) (B, A)

DaB ein Korper D Divisor eines Korpers M ist, wird durch
(D, M) = 1 vollsténdig ausgedriickt.

Ist aber B nicht endlich in bezug auf 4, gibt es also in B,
wie groB auch die natiirliche Zahl m gewahlt sein mag, immer
m Zahlen, die ein nach A4 irreduzibeles System bilden, so wollen wir
(B, A) = oo setzen *), wodurch wir erreichen, daf die beiden Sitze (1)
und (2) allgemein gelten, der letztere natiirlich unter der friiheren
Annahme, daf B Multiplum von 4 und Divisor von C ist.

§ 2.

Permutationen eines Korpers.

Eine Abbildung ¢ des Korpers 4, durch welche jede in 4
enthaltene Zahl a in eine entsprechende Zahl a ¢ iibergeht, heifit eine
Permutation von A4, wenn sie den vier Gesetzen

(wtve=up+tvy (u—29=1up—ry,
U\ Qe
- @)g = (ug) ("9), (;)qv =
gehorcht, wo u, v willkiirliche Zahlen in 4 bedeuten (D. § 161); wir
sagen auch, die Permutation ¢ beziehe sich auf den Korper 4, und
nennen den letzteren kurz den Korper von ¢, um hierdurch aus-
zudriicken, daf die Abbildung ¢ auf keine aulerhalb A liegende
Zahl wirken soll. Ist ferner 7 irgendein Teil von 4, d. h. ein

*) Vgl. den SchluB von D. § 164, wo fiir diesen Fall (B, 4) = 0 gesetzt
wird, was aber fiir die jetzige Untersuchung weniger vorteilhaft ist.

-
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System von Zahlen #, die alle in A enthalten sind, so bezeichnen
wir mit 7'¢ den Inbegriff aller Bilder ¢¢ dieser Zahlen . Die
Zahl t@ heillt konjugiert mit i.

Aus dieser Definition folgt leicht, dal das Zahlensystem A ¢
wieder ein Korper ist, und daB je zwei verschiedene Zahlen des
Korpers A durch ¢ in zwei verschiedene Zahlen des konjugierten
Korpers 4 ¢ iibergehen; aus diesem Grunde 1a6t sich die Permutation ¢
eindeutig umkehren, und wenn man mit ¢—! diejenige Abbildung des
Korpers 4 ¢ bezeichnet, durch welche jede in A ¢ enthaltene Zahl a ¢
in @ iibergeht, so leuchtet ein, daf diese Umkehrung ¢—! eine
Permutation von Ag, und (4¢)p—"' — A4 ist.

Jeder Korper A4 besitzt mindestens eine, nimlich die sogenannte
identische Permutation, durch welche jede seiner Zahlen in sich selbst
iibergeht; wir wollen sie im folgenden mit A4, bezeichnen. Ist ¢ eine
beliebige Permutation von 4, und r eine rationale, also auch in 4
enthaltene Zahl, so ist r¢ = r, woraus zugleich folgt, daB der
Korper R der rationalen Zahlen nur eine einzige, die identische
Permutation R, besitzt.

Ist der Korper 4 ein Divisor des Korpers B, so ist in jeder
Permutation ¥ von B eine entsprechende Permutation ¢ von 4 enthalten,
welche fiir jede Zahl ¢ des Korpers 4 durch @@ = a1 definiert
wird, woraus zugleich folgt, dafl der Koérper 4¢p — A, also ein
Divisor des Korpers By ist. Diese Permutation ¢ heilt der auf 4
beziigliche Divisor von ¢, und umgekehrt heilt 3 ein auf B
beziigliches Multiplum von ¢ (D. § 163). Im Falle 4 — B ist
offenbar ¢ — 7; ist aber A4 verschieden von B, also ein sogenannter
echter Divisor von B, so ist auch ¢ wesentlich verschieden von 4,
weil die Wirkungsgebiete beider Permutationen verschieden sind.
Die einzige Permutation R, des Korpers R der rationalen Zahlen
ist gemeinsamer Divisor aller Kérperpermutationen, und jeder Divisor
einer identischen Permutation ist ebenfalls eine identische Permutation.
Ist die Permutation ¢ des Kérpers A4 ein Divisor der Permutation 1,
und letztere ein Divisor der Permutation g, so ist ¢ zugleich der
auf 4 beziigliche Divisor von y.

Aus der unendlichen Menge von Sitzen, zu welchen diese Begriffe
fihren, wollen wir hier nur zwei besonders wichtige hervorheben;
um sie bequem aussprechen zu konnen, schicken wir noch folgende
Erkldrung voraus (D. § 161). Ist $ ein (endliches oder unendliches)

18%*
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System von Permutationen 9 beliebiger Korper B, so geht eine
in dem groften gemeinsamen Divisor dieser Korper B enthaltene
Zahl ¢t durch jede Permutation ¢ in eine entsprechende Zahl ¢ iiber,
und sie heilt n-wertig zu B, wenn » die Anzahl der voneinander
verschiedenen Werte ist, welche sich unter diesen Zahlen £ finden;
offenbar ist jede rationale Zahl einwertig zu . Hiernach lautet
unser erster, leicht zu beweisender Satz (D. § 163) so:

I Ist P ein System von Korper-Permutationen v, so bildet die
Gesamtheit aller zu P einwertigen Zahlen einen Korper 4; die
Permutationen 4 haben alle einen und denselben auf A beziiglichen
Divisor @, und jeder gemeinsame Divisor der Permutationen 3 ist
Divisor dieser Permutation ¢.

Diesen Korper A4, welcher durch das System P vollstindig be-
stimmt ist, wollen wir kurz den Korper von P nennen, und seine
Permutation ¢ soll der gré 8te gemeinsame Divisor der Permutationen
oder kiirzer der Rest von B heillen; besteht das System P nur aus
einer einzigen Permutation 1, so ist offenbar auch im fritheren Sinne 4
der Korper von ¢, und ¢ = 9.

Wihrend die Existenz der Divisoren einer gegebenen Korper-
Permutation unmittelbar einleuchtet, so liegt die umgekehrte Frage
viel tiefer; sie wird wenigstens teilweise durch den folgenden zweiten
Satz (D. § 165, III) beantwortet:

IL. Ist der Kérper B ein endliches Multiplum des Korpers 4,
und ¢ eine Permutation von A4, so ist der Grad (B, 4) auch die
Anzahl aller verschiedenen Permutationen ¢ von B, welche Multipla
von ¢ sind; zugleich ist 4 der Korper, und ¢ der Rest des Systems B
dieser Permutationen .

Das bekannteste Beispiel zu diesem Satze ergibt sich aus der
Betrachtung des Korpers Z aller Zahlen und des Korpers X aller
reellen Zahlen. Offenbar ist Z — X (¢), wo ¢ eine Wurzel der
quadratischen Gleichung ¢ 4+ 1 = 0 bedeutet; die beiden Zahlen 1,
¢ bilden ein nach X irreduzibeles System, jede Zahl in Z ist auf
eine einzige Weise in der Form z, 4 42, darstellbar, wo z,, &, in X
enthalten sind, und folglich ist (Z, X) — 2. Bedeutet nun ¢ die
identische Permutation von X, so gibt es wirklich zwei und nur zwei
verschiedene Permutationen ¢ von Z, die Multipla von ¢ sind; die eine
ist die identische Permutation von Z, wihrend die andere durch
(z, + 12,) ¥ = 2, — iz, definiert ist.



§ 3.

Permutationen des Korpers aller algebraischen Zahlen.

Der zuletzt hervorgehobene Hauptsatz II setzt voraus, daB der
Kérper B ein endliches Multiplum des Korpers A4 ist; 1aBt man
diese Voraussetzung fallen, so scheint mir die Beantwortung der
Frage, ob jede Permutation ¢ von 4 mindestens ein auf B beziigliches
Multiplum 4 besitzt, auf die groBten Schwierigkeiten zu stoBen.
Nehmen wir z B. den reellen quadratischen Korper 4 = R (V2).
welcher aus dem rationalen Korper R durch Adjunktion von }2 entsteht,
so besitzt A eine nicht identische Permutation ¢, durch welche V2
in — V2 iibergeht, und da 4 ein Divisor des Korpers X aller reellen
Zahlen ist, so entsteht die Frage: gibt es ein auf X beziigliches
Multiplum von ¢? Ich weil es nicht, doch glaube ich, daB diese
Frage zu verneinen ist; die Zahlen des reellen Korpers X scheinen
mir durch die Stetigkeit so unloslich miteinander verbunden zu sein,
dafi ich vermute, er konne aufler der identischen gar keine andere
Permutation besitzen, und hieraus wiirde folgen, daf der Kérper Z
aller Zahlen nur die beiden, am Schlusse von § 2 genannten Permu-
tationen besitzt. Nach einigen vergeblichen Versuchen, hieriiber
Gewilheit zu erlangen, habe ich diese Untersuchung aufgegeben; um
so mehr wiirde es mich erfreuen, wenn ein anderer Mathematiker
mir eine entscheidende Antwort auf diese Frage mitteilen wollte.

Dieselbe Frage kann aber vollstindig beantwortet werden, wenn
man sich auf das unstetige Gebiet H aller algebraischen Zahlen be-
schrinkt. Unter einer algebraischen Zahl schlechthin wird hier
jede Zahl ¢ verstanden, welche algebraisch in bezug auf den rationalen
Kérper R, also die Wurzel einer Gleichung

o tr a2+ da,t+a, =0
mit rationalen Koeffizienten a,, ay---ay_1, @, ist. Der Inbegriff H
aller dieser Zahlen ¢ ist bekanntlich ein Kérper, und unter einem
algebraischen Korper schlechthin verstehen wir jeden Divisor von H ;
offenbar ist H kein endliches Multiplum von R, also (H, R) = oo.
Wir erwihnen ferner, daB jede mit einer algebraischen Zahl ¢t konju-
gierte Zahl ¢ (§ 2) ebenfalls algebraisch ist; denn weil die rationalen
Koeffizienten a,, a,:--a, durch jede Permutation 3 in sich selbst
ibergehen, so mul ¢4 derselben Gleichung geniigen, deren Wurzel ¢
ist. Hierauf schreiten wir zum Beweis des folgenden Existenzsatzes:
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ML Ist @ eine Permutation eines algebraischen Korpers A4, so
besitzt der Korper H aller algebraischen Zahlen mindestens eine
Permutation @, welche Multiplum von ¢ ist.

Ist H ein endliches Multiplum von 4, so ist unser Satz eine
unmittelbare Folge des oben (in § 2) erwidhnten Hauptsatzes II; wir
beschriinken uns daher im folgenden auf den entgegengesetzten Fall
(H, A) = oo, wihrend (4, R) endlich oder auch unendlich sein
kann. Der Beweis beruht dann hauptséchlich auf einer wichtigen
Eigenschaft des Korpers H, welche zuerst von G. Cantor*) hervor-
gehoben ist und darin besteht, daB alle Zahlen dieses Korpers H sich
in eine einfach unendliche Reihe

Byy by, by By, By g e (%)

anordnen lassen, in der Art, daf jeder natiirlichen Zahl 7 eine be-
stimmte algebraische Zahl 4,, und dal umgekehrt jeder algebraischen
Zahl t eine (und nur eine) natiirliche Zahl r entspricht, fiir welche
h, =t wird. FEine solche Anordnung (Abbildung des Korpers H
durch die Reihe der natiirlichen Zahlen 7) laft sich auf unendlich
viele verschiedene Arten herstellen; unserem Beweis legen wir eine
bestimmte solche Anordnung (%), gleichgiiltig welche, zugrunde, und
wir nennen die natiirliche Zahl » den Index der algebraischen Zahl &,.

Da nun (H, A) = oo vorausgesetzt wird, so ist 4 ein echter
Divisor von H, d. h. es gibt in H, also in der Reiie (k) Zahlen,
welche nicht in A4 enthalten sind; unter allen diesen Zahlen gibt
es eine vollig bestimmte Zahl ¢ = h,, welche den kleinsten Index r
hat, und wir wollen diese Zahl # auch den Index des Korpers 4
nennen; ist » > 1, so sind die der Zahl ¢ vorausgehenden 7 —1
Zahlen hy, hy+--h,—, alle in A enthalten. Da nun die Zabl ¢ auch

algebraisch in bezug auf A ist, so entsteht (nach § 1) aus A durch
Adjunktion von ¢ ein Korper

. 4, = A(@),
welcher ein endliches Multiplum von A4 und zugleich ein Divisor
von H ist. Der Kiirze halber wollen wir diesen Korper 4,, welcher

*) Uber eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen
(Crelles Journal, Bd. 77). Diesen, auf den Korper H ausgedehnten Satz hatte
ich ebenfalls gefunden, aber ich zweifelte an seiner Fruchtbarkeit, bis ich durch
den schonen Beweis der Existenz von transzendenten Zahlen, den Cantor in § 2
seiner Abhandlung gefiihrt hat, eines Besseren belehrt wurde.
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durch 4 und die zugrunde gelegte Anordnung (%) vollig bestimmt
ist, das nichste Multiplum von A4 nennen. Der Kérper H kann
aber kein endliches Multiplum von A, sein, weil sonst [nach (2)
in § 1] H auch ein endliches Multiplum von A4 wire, mithin ist
(H, A,) = oo; man kann daher auf A4, dieselbe Betrachtung anwenden
wie eben auf A, und so entspringt, indem man auf dieselbe Weise
fortfahrt, aus dem Korper A eine offenbar unendliche Kette (A4)

von Korpern

4, Au Az"'As’ Y P (A)
in der jedes folgende Glied 4; ., das ndchste Multiplum des vorher-
gehenden A, ist, wihrend sie alle zugleich Divisoren von H sind.
Da ferner der Korper 4, — A (t) auller den schon in A enthaltenen
Zahlen h,, hg--- h,—; auch noch die neue Zahl ¢ = h, enthiilt, so
ist sein Index = 7 4 1, und durch Wiederholung desselben Schlusses
ergibt sich, dafl der Korper 4, gewil alle diejenigen Zahlen der
Reihe (h) enthélt, deren Index < 7 + s ist. Da nun jede algebraische
Zahl einen bestimmten endlichen Index hat, so kann man, wenn eine
oder mehrere solche Zahlen w, v --- in endlicher Anzahl gegeben sind,
die natiirliche Zahl s immer so grol wihlen, dal alle diese Zahlen
in dem Korper A4, mithin auch in allen folgenden Korpern 4, ..,
Ay o --- enthalten sind.

Wir nehmen jetzt an, es sei irgendeine Permutation ¢ des
Korpers 4 gegeben. Da die Zahl £ — k, nicht in A4 enthalten, also
der endliche Grad (4,, 4) = 2 ist, so gibt es nach dem f{iir endliche
Multipla geltenden Hauptsatz II (in § 2) immer mehrere verschiedene
Permutationen ¢ des Korpers 4, — A(t), welche Multipla von ¢
sind, und jede dieser Permutationen o ist vollstindig bestimmt durch
die konjugierte Zahl v, in welche die Zahl ¢ durch v iibergeht.
An sich wire es fiir unseren Beweis ganz gleichgiiltig, welche von
diesen Permutationen v, deren Anzahl — (4,, 4) ist, wir auswihlen
wollen; um aber alles auf vollig bestimmte Regeln zu bringen, ver-
fahren wir folgendermaflen. Da die Zahlen {4 (wie oben erwihnt
ist) ebenfalls algebraisch, also in der Reihe (%) enthalten und aufer-
dem alle voneinander verschieden sind, so setzen wir fest, dall von
den Permutationen ¢ immer diejenige gewahlt werden soll, fiir welche
der Index von t9 so klein wie moglich ausfillt; diese Permutation
von A,, welche durch ¢ und die Anordnung (h) vollig bestimmt ist,
wollen wir mit ¢, bezeichnen und das nédchste Multiplum der ge-
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gebenen Permutation ¢ nennen. Offenbar kann man nun mit dieser
Permutation ¢, des Korpers 4, genau so verfahren, wie eben mit
der Permutation ¢ des Korpers 4, und durch bestindige Fortsetzung
dieser Bildung entspringt aus der gegebenen Permutation ¢ eine
unendliche Kette

P> P1y Pa " Py Pst1°° (®)
in der allgemein @, eine Permutation von A4,, und ¢, ; das nichste
Multiplum von g, ist.

Nachdem die beiden Ketten (4) und (¢) der Korper 4, und
ihrer Permutationen ¢, gebildet sind, gestaltet sich der Beweis unseres
Satzes III sehr einfach. Wir definieren eine Abbildung e des
Korpers H auf folgende Weise. Ist % irgendeine algebraische Zahl,
so gibt es nach einer fritheren Bemerkung in der Kette (A4) auch
solche Korper A;, in denen die Zahl w enthalten ist, und wenn =
die kleinste Zahl s bedeutet, fiir welche dies eintritt, so setzen wir
fest, daB w durch die Abbildung ® in das Bild

UD = UP,

iibergehen soll; hierdurch ist die Abbildung @ des Korpers H voll-
stindig bestimmt, und wir wollen jetzt beweisen, dal} sie eine Permu-
tation von H und zugleich ein Multiplum von ¢ ist. Zunichst
bemerken wir, dall die Zahl  des Korpers A, auch in allen folgenden
Korpern A4, 4, 4y 4 --- der Kette (4), also allgemein in A4, enthalten
ist, wenn s = n genommen wird, und da ¢, zugleich ein Multiplum
von g, ist, so folgt aus der Definition von @ auch

UD = U ;.
Bedeutet nun v ebenfalls eine algebraische Zahl, so kann man s so
grof wihlen, dafl beide Zahlen u, v und folglich auch deren Summe,
Differenz, Produkt und Quotient demselben Korper A4, angehoren,
und hieraus folgt, wie eben bemerkt ist, auch
‘ UD = UP;, VO = Vs,
@+v)o=w+v)p, (B—v)o = (¥ —v)p,

(uv)o = (uv) @, <%>(D = <%> Qs

da nun ¢, eine Permutation des Korpers A, ist, also den in § 2
angegebenen Grundgesetzen gehorcht, so ergibt sich unmittelbar, daB
die Abbildung o des Korpers H denselben Grundgesetzen gehorcht,

—
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also eine Permutation von H ist. Bedeutet ferner a irgendeine
Zahl des Korpers A, so ist zufolge der Definition von @ auch aw = a g,
also ist ® ein Multiplum von ¢, w. z b. w.

§ 4.
Verallgemeinerung.

Wir wollen nun den eben bewiesenen Satz III durch die folgenden
Bemerkungen vervollstindigen und verallgemeinern, wobei wir unter
immer den aus allen algebraischen Zahlen bestehenden Kdrper ver-
gtehen. Zunidchst erkennt man leicht, dall der Satz bestehen bleibt,
wenn der Korper H durch irgendeinen algebraischen Korper B ersetat
wird, der ein Multiplum des Korpers 4 ist. Wenn ndmlich ¢ wieder
eine Permutation von A4 ist, so gibt es, wie wir jetzt wissen, mindestens
eine Permutation @ von H, welche Multiplum von ¢ ist; bedeutet
nun ¢ den auf B beziiglichen Divisor von @, so ist @ nach einer
fritheren Bemerkung (§ 2) zugleich der auf A bezigliche Divisor
von 9. Es gilt daher der folgende Satz:

IV. Ist der Korper A ein Divisor des algebraischen Korpers B,
so besitzt jede Permutation ¢ von A mindestens ein auf B be-
ziigliches Multiplum.

Dies ist, falls B ein endliches Multiplum von A4 ist, offenbar
nur ein spezieller Fall des Satzes II (in § 2), welcher zugleich die
schirfere Bestimmung enthélt, dal der Grad (B, 4) die genaue Anzahl
aller verschiedenen Permutationen 1 ist. Wir konnen nun auch leicht
beweisen, daB im entgegengesetzten Falle, wenn B kein endliches
Multiplum von A ist, die Anzahl der Permutationen ¢ von B, welche
Multipla derselben Permutation ¢ von A4 sind, unendlich grofB,
also wieder — (B, 4) ist, wenn wir die am Schlusse von § 1
festgesetzte Bedeutung des Symbols beibehalten. Hierzu fithrt die
Betrachtung derjenigen Korper 4', welche (wie z. B. 4 selbst) endliche
Multipla von 4 und zugleich Divisoren von B sind. Da jeder solche
Korper A’ verschieden von B, also ein echter Divisor von B ist, so
gibt es in B gewill solche Zahlen ¢, die nicht in A’ enthalten sind,
und folglich entsteht aus A’ durch Adjunktion einer solchen alge-
braischen Zahl ¢ ein Korper 4" = A’ (¢), der ein endliches Multiplum
von A’, also auch von A4, und zugleich wieder ein Divisor von B ist;
da ferner (4", A') = 2, also (4", 4) = (4", 4') (4', 4) = 2(4', 4)
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© ist, so leuchtet ein, dafl, wenn m eine gegebene, beliebig grofie natiirliche
Zahl bedeutet, unter allen Korpern A’ es auch solche gibt, fiir welche
(4, A) = m ist. Nach dem Satze I (in § 2) besitzt ein solcher
Korper A’ gewifi mindestens m verschiedene Permutationen

P P, Pms
welche Multipla der gegebenen Permutation ¢ von A4 sind, und da
A’ ein Divisor von B ist, so besitzt nach dem eben bewiesenen
Satze IV jede dieser m Permutationen ¢' mindestens ein auf B be-
ziigliches Multiplum v; die so erhaltenen m Permutationen

Py Py oo Uy

sind folglich auch Multipla von ¢, und sie sind alle voneinander
verschieden, weil jede Permutation ¢ von B nur einen einzigen, vollig
bestimmten, auf A’ beziiglichen Divisor ¢’ besitzt. Da m beliebig
grof genommen werden kann, so ergibt sich, daf die Anzahl aller
verschiedenen Permutationen ¢ von B, welche Multipla derselben
Permutation ¢ von A sind, unendlich grof, also = (B, 4) ist, w. z. b. w.

Unter derselben Voraussetzung wollen wir endlich noch zeigen,
dall auch der letzte Teil des Satzes II (in § 2) bestehen bleibt. Das
System P aller Permutationen ¢ von B, welche Multipla der Permu-
tation ¢ von A sind, besitzt (nach dem Satze I in § 2) einen be-
stimmten grofiten gemeinsamen Divisor oder Rest y, und da ¢ ein
gemeinsamer Divisor aller Permutationen 4, also auch Divisor von
x ist, so ist der Korper C dieser Permutation y ein Multiplum
von A und zugleich Divisor von B. Machen wir nun die Annahme,
C sei verschieden von 4, also (C, 4) = 2, so besitzt C, wie eben
bewiesen ist, mindestens eine von y verschiedene Permutation g/,
welche ebenfalls Multiplum von ¢ ist; da ferner C Divisor von B ist,
so hat B mindestens eine Permutation ', welche Multiplum von g/,
also auch von ¢ ist und folglich auch dem System P angehort;
mithin mufl 4 als Rest von 9 auch Divisor von 4’ sein; es besifle
daher o' zwei verschiedene, auf denselben Korper C beziigliche
Divisoren g, ', was unmdoglich ist. Unsere obige Annahme, die
Korper A4, C seien verschieden, ist daher unzulissig, und hieraus folgt
offenbar, daB y = ¢ ist. Hiernach konnen wir den obigen Satz IV
in folgender Weise vervollstindigen:

V. Ist der Korper A ein Divisor des algebraischen Korpers B,
und ¢ eine Permutation von A4, so ist der Grad (B, 4), mag er

-
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endlich oder unendlich sein, die Anzahl aller verschiedenen Permu-
tationen ¢ von B, welche Multipla von ¢ sind; zugleich ist A der
Korper, und ¢ der Rest des Systems P dieser Permutationen 4.

§ 5.
Gruppen von Permutationen.

Aus dem Vorhergehenden folgt unmittelbar, dafi der Korper H,
welcher aus allen algebraischen Zahlen besteht, unendlich viele ver-
schiedene Permutationen @ besitzt. Da nun jede in H enthaltene
Zahl ¢ durch eine Permutation @ wieder in eine algebraische Zahl tw
ibergeht, so ist der mit H konjugierte Korper H w gewill ein Divisor
von H, aber wir konnen leicht zeigen, dall immer Hewo — H ist.
Denn betrachtet man wieder irgendeine mit rationalen Koeffizienten
behaftete Gleichung, deren Wurzel eine gegebene algebraische Zahl ¢
ist, und bezeichnet mit ¢,, ¢, --- ¢n alle diejenigen m Wurzeln dieser
Gleichung, die voneinander verschieden sind, so gehoren dieselben
auch dem Korper H an, und sie gehen (wie in § 2 erwihnt ist) durch o
in ebenso viele verschiedene Zahlen ¢ w, t,0 --- t,@ iber; da die
letzteren aber derselben Gleichung geniigen, so muf} eine von ihnen
mit der gegebenen Zahl ¢ iibereinstimmen, mithin ist jede Zahl ¢
des Korpers H auch in Hw enthalten, woraus offenbar die obige
Behauptung H w — H folgt. Diese Eigenschaft des Korpers H, durch
jede seiner Permutationen in sich selbst iiberzugehen, bezeichnen wir
dadurch, dal wir ihn einen Normalkérper nennen (vgl. D. § 166).
Eine unmittelbare Folge, oder vielmehr nur eine andere Ausdrucksform
dieser Eigenschaft besteht darin, daf die Umkehrung w—*! einer jeden
Permutation & von H ebenfalls eine Permutation von H ist (§ 2).

Es ist nun an der Zeit, noch einen Begriff aus der allgemeinen
Theorie der Korper-Permutationen in Erinnerung zu bringen, ndmlich
den ihrer Zusammensetzung (D. § 162). Hierbei beschriinken wir
uns der Kiirze halber auf den folgenden speziellen Fall*). Es sei M

*) Ich will hier beildufig bemerken, dafi man die Resultante @y auch ganz
allgemein erkldren kann, wenn ¢, v Permutationen von zwei beliebigen
Korpern A, B sind; es gibt einen und nur einen Divisor 4’ von 4, welcher durch ¢
in den groften gemeinsamen Divisor von 4 ¢ und B iibergeht, und die Resultante ¢y
wird als Permutation dieses Kérpers 4’ durch x(pv) = (x @) ¢ definiert, wo x
jede Zahl in 4’ bedeutet. Die beiden Sitze (pv) ! =y lo~lund (py)x =9 (yx)
behalten ibre Giiltigkeit, wihrend andere Sitze gewisse Modifikationen erfordern.
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ein beliebiger Korper, und € der Inbegriff aller derjenigen Permu-
tationen ¢ von M, durch welche M in sich selbst iibergeht, welche
also der Bedingung M e — M geniigen; es gibt immer wenigstens
eine solche, ndmlich die identische Permutation M, von M, und jede
Umkehrung ¢! ist ebenfalls in € enthalten. Je zwei (gleiche oder
verschiedene) solche Permutationen ¢, 1 erzeugen eine Resultante ¢ v,
welche fiir jede in M enthaltene Zahl 2 durch

z(py) = (@) ¥

definiert wird und ebenfalls eine in € enthaltene Permutation von M
ist. Hieraus folgen die beiden Sitze

(ev)"' = v~ (p¥)y = @(¥1)

wo y ebenfalls jede in € enthaltene Permutation bedeutet, und die
Resultante ¢ @—! ist die identische Permutation 2/,. Ein in ¢
enthaltenes System ¥ von Permutationen « heilit eine Gruppe, wenn
1. die Resultanten von je zwei Permutationen « und 2. alle Um-
kehrungen ¢—*' demselben System 2 angehoren, und sie heilit endlich
oder unendlich, je nachdem die Anzahl der Permutationen « endlich
oder unendlich ist; im ersteren Falle findet man leicht, dafl die
Bedingung 2. schon eine notwendige Folge der Bedingung 1. ist.
Der Inbegriff € ist selbst eine Gruppe, und ebenso bildet die identische
Permutation M, fiir sich allein eine Gruppe, welche in jeder Gruppe U
enthalten ist. Fiir endliche Gruppen gilt nun der folgende Funda-
mentalsatz (D. § 166, I):

VI. Besteht eine endliche Gruppe ¥ aus n Permutationen des
Korpers M, und ist A der Korper von ¥, so ist (M, A) = n, also
M ein endliches Multiplum von A, und der Rest von U ist die
identische Permutation 4, von A. Zugleich folgt aus dem Satze II
(in § 2), daf die Gruppe A auch der Inbegriff aller auf M beziiglichen
Multipla von A, ist.

Man iiberzeugt sich leicht, daf dieser Satz VI in Verbindung
mit dem Satze IT (in § 2) die Theorie von Galois vollstindig in sich
schlieft. Um dies etwas naher auszufiihren, nehmen wir an, die obige
Gruppe € sei endlich, woraus natiirlich auch die Endlichkeit jeder
in € enthaltenen Gruppe U folgt. Bedeutet £ den Korper der
Gruppe €, und E, seine identische Permutation, so ist M nach VI

-
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ein endliches Multiplum von Z, der Rest von € ist £, und umgekehrt
ist € der Inbegriff aller auf M beziiglichen Multipla von E,. Der
Kern der Theorie von Galois besteht nun darin, dal einerseits die
Korper A, welche Divisoren von M und zugleich Multipla von & sind,
und andererseits die in € enthaltenen Gruppen 2 sich gegenseitig
eindeutig entsprechen. Erstens besitzt jede solche Gruppe A einen
bestimmten Korper A, welcher aus allen zu U einwertigen Zahlen -
des Korpers M besteht, also ein Divisor von M ist, und da jede
in E enthaltene, also zu € einwertige Zahl auch einwertig zu % ist,
so ist 4 auch Multiplum von E. Da ferner U nach VI der Inbegriff
aller auf M Dbeziiglichen Multipla der identischen Permutation A4,
von A ist, so haben zwei verschiedene Gruppen U auch zwei ver-
schiedene Korper 4. Wir haben daher zweitens nur noch zu zeigen,
daB umgekehrt jeder Korper A, welcher Divisor von M und Multiplum von
E ist, auch wirklich der Korper einer in € enthaltenen Gruppe U ist.
Zunschst folgt aus dem in § 1 erwihnten Satze (M, B) — (M, 4) (4, E),
daB M ein endliches Multiplum von A4 ist; mithin ist der Grad (M, 4)
nach dem Satze II (in § 2) auch die Anzahl aller derjenigen Permu-
tationen « von M, welche Multipla der identischen Permutation A4,
von A sind, und zugleich ist A der Koérper, 4, der Rest des Systems %
dieser Permutationen «. Wir brauchen also nur noch zu beweisen,
daB dieses System ¥ eine in € enthaltene Gruppe ist. Da A Multiplum
von E, also E, der auf E beziigliche Divisor von 4, ist, so ist jede
Permutation « auch Multiplum von E, und folglich in der Gruppe €
enthalten. Bedeutet ferner x jede Zahl des Korpers A, so ist
r = x A, = xa, also auch xe—! = z, und wenn «;, o, zwei solche
Permutationen « sind, so folgt hieraus auch (e, ey) = (Tay)e,
= wo, = x, also gehort die Resultante @, @, demselben System «A
an, welches folglich eine Gruppe ist, w. z. b. w.

Aus der hiermit nachgewiesenen Korrespondenz zwischen den
Korpern 4 und den Gruppen U fliefen unmittelbar die iibrigen Sitze
der Theorie von Galois, welche von den Beziehungen zwischen
mehreren solchen Korpern 4 und von den entsprechenden Beziehungen
zwischen den zugehorigen Gruppen % handeln (D. § 166). Auf alles
dies brauchen wir, weil es hinreichend bekannt ist, hier nicht ein-
zugehen, und wir haben auch das Vorstehende nur deshalb wieder
in Erinnerung gebracht, um jetzt auf das abweichende Verhalten
unendlicher Permutationsgruppen aufmerksam zu machen.
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§ 6.
Unendliche Gruppen von Permutationen.

Wir haben gesehen, daB der aus allen algebraischen Zahlen
bestehende Korper H unendlich viele Permutationen @ besitzt, und
daB er durch jede von ihnen in sich selbst iibergeht; diese Permu-
tationen @ bilden daher eine unendliche Gruppe, die wir mit @
bezeichnen wollen, und wir fragen, ob wohl auch hier eine gegenseitig
eindeutige Korrespondenz zwischen den algebraischen Korpern A
(den Divisoren von H) und den in ® enthaltenen Gruppen U besteht.

Geht man von irgendeinem algebraischen Korper A aus, und
bezeichnet mit A, dessen identische Permutation, so gibt es nach
dem Satze V (in § 4), welcher hier den Satz II (in § 2) vollstédndig
ersetzt, immer Permutationen o des Korpers H, welche Multipla von 4,
sind; mag ihre Anzahl (H, 4) endlich oder unendlich sein, immer
ist A der Korper, und A4, der Rest des Systems A dieser Permu-
tationen . Da ferner A, eine identische Permutation ist, so findet
man leicht (wie zuletzt in § 5), dab dieses in & enthaltene System A
eine Gruppe ist; wir wollen sie die Identititsgruppe des
Korpers A nennen. Da ferner, wie schon bemerkt, 4 der Korper
von U ist, so folgt, dafl zwei verschiedene Korper 4 auch zwei ver-
schiedene Identitdtsgruppen U haben. Die oben aufgeworfene I'rage
wiirde daher zu bejahen sein, wenn man beweisen kionnte, dali jede
in ® enthaltene Gruppe ¥ die Identitéitsgruppe eines Korpers A ist,
was ja fiir endliche Gruppen % nach dem Satze VI (in § 5) wirklich
der Fall ist. Nun hat zwar auch jede unendliche Gruppe U einen
bestimmten Koérper A4, der Divisor von H, also algebraisch ist, und
da in ¥ immer die identische Permutation von H enthalten ist, so
ist der Rest von U gewil die identische Permutation A4, dieses
Korpers 4, also enthdlt U nur solche Permutationen o von H, welche
auch in der Identititsgruppe A' des Korpers A enthalten sind;
aber es fehlt der Nachweis, dafl umgekehrt jede in A’ enthaltene
Permutation o, d. h. jedes auf H beziigliche Multiplum von A, auch
in der gegebenen Gruppe U enthalten ist, oder anders ausgedriickt,
daB die Korper zweier verschiedener Gruppen auch verschieden sind.
Dies habe ich anfangs fiir sehr wahrscheinlich gehalten, und erst nach
mehreren vergeblichen Versuchen, es zu beweisen, ist es mir gelungen,
mich von der Unrichtigkeit dieser Vermutung durch ein Beispiel zu

-
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iiberzeugen, welches ich zum Schlul dieser Arbeit jetzt noch mit-
teilen will

Dieses Beispiel bezieht sich nicht auf den vollen Korper H, sondern
auf die einfachste Klasse unendlicher Kreiskorper. Ist p eine
bestimmte natiirliche Primzahl, so entspricht jeder natiirlichen Zahl »
eine bestimmte Einheitswurzel

27 . . 2=
1 Uy == COS —— + 4 81N —
M) " '

und wir wollen mit P, den durch sie erzeugten Kreiskorper R (u,)

vom Grade @ (p*) = (p — 1) p"—* bezeichnen, wihrend P, der Korper R
der rationalen Zahlen ist. Aus

(2) U, = uﬁ-!—l
folgt, dafl in der unendlichen Kette von Korpern
Pm Pla Paa Ps"’
jedes Glied P, Divisor des nichstfolgenden P, .., also auch jedes
folgenden Gliedes P,y ist.

Wenn irgendeine Kette von Korpern P, vorliegt, welche diese
letztere Eigenschaft besitzt, so kann ihr Kkleinstes gemeinsames
Multiplum M keine anderen als solche Zahlen ¢ enthalten, die
schon mindestens einem Korper P, und also auch allen folgenden
Korpern P, angehoren; denn der Inbegriff aller dieser Zahlen ¢
bildet, wie man leicht findet, wirklich einen Kérper, welcher offenbar
ein Divisor von M, zugleich aber auch Multiplum aller P,, also
auch Multiplum von M, mithin — M ist; man kann daher dieses
Multiplum M zweckmiBig auch mit P, bezeichnen. Ist nun &
irgendeine Permutation von M und ¢, der auf P, beziigliche Divisor
von &, so entsteht eine unendliche Kette von Permutationen

€0y €1y &9y &5 1y
in der jedes Glied &, Divisor aller folgenden Glieder ¢, . ; ist. Umgekehrt,
wenn eine bestimmte Kette von Permutationen &, der Korper P, vor-
liegt, welche diese letztere Eigenschaft besitzt, so folgt aus der oben
besprochenen Konstitution des Korpers M leicht (wie in § 3), daB es
eine und nur eine Permutation ¢ von M gibt, welche Multiplum aller
dieser Permutationen s, ist.

Wenden wir dies auf unseren Fall der Kreiskorper P, — R(u,)
an, und bezeichnen mit & den Inbegriff aller Permutationen & ihres
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kieinsten Multiplums M = P, so ist der auf P, beziigliche Divisor &,
von ¢ vollig bestimmt durch die mit u, konjugierte Zahl u, &, = u,¢,
und diese ist bekanntlich immer eine Potenz von w,, deren Exponent
eine durch p nicht teilbare Zahl ist und durch jede nach dem Modul p»
kongruente Zahl ersetzt werden darf; bezeichnen wir diese Zahl
mit (n, &), so wird daher
(3) Up en = U — UL,
und da aus (2) auch

Up & — (u11+1£)pa
also

u;n, 9 __ Z(-knj_l’ 89 ___ u;n%—l, €)
folgt, so ist
(4) (n, &) = (n + 1, &) (mod. p"),
und diese Kongruenz driickt aus, dal g, Divisor von &,,, ist.
Umgekehrt, wenn eine Kette von solchen, durch p mnicht teilbaren
Zahlen (n, &) vorliegt, welche den Bedingungen (4) geniigen, so folgt
aus den obigen allgemeinen Bemerkungen, dal} ihr eine und nur eine
Permutation ¢ von M entspricht, welche durch (3) bestimmt ist.
Hierbei darf man festsetzen, dal (n, &) positiv und kleiner als p» sein
soll, und wenn man (n + 1, &) = (n, &) 4 ¢, p" setzt, so wird 0 < ¢, <p;
jede willkiirlich gew#hlte unendliche Reihe von solchen Zahlen c¢,, ¢,,
¢y -+ liefert in Verbindung mit jeder der p — 1 Zahlen (1, ¢) eine
bestimmte Permutation ¢ und hieraus folgt, dafll der Inbegriff € aller &
in gewissem Sinne eine stetige Mannigfaltigkeit bildet, worauf wir
hier nicht weiter eingehen.

Bekanntlich geht der Korper P, durch jede Permutation in sich
selbst iiber, es ist also P,& — P, ¢, = P,, und hieraus folgt offenbar
auch M ¢ = M, mithin bildet der Inbegriff € (nach § 5) eine Gruppe.
Sind &, &', also auch s¢' in € enthalten, so folgt aus (3)

olso Uy, (88,) — (u” 8)8, — (un 8')(”” & — uﬁ:&, € (n, e’),

(5) (n, e€') = (n, &) (n, &) (mod. p"),
und da die rechte Seite sich durch Vertauschung von &, &' nicht dndert,
so folgt, dal
(6) eg' = ¢'s,
also € eine Abelsche Gruppe ist.

Jede Permutation & erzeugt durch wiederholte Zusammensetzung
mit sich selbst und ihrer Umkehrung ¢—! die Reihe aller Potenzen &,

-
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welche eine Gruppe bilden, die wir mit [¢] bezeichnen wollen. Von
einigem Interesse ist nun die Frage, ob es aufler der identischen
Permutation M, von M, welche fiir sich allein eine Gruppe bildet,
noch andere endliche, d. h. solche Permutationen o« gibt, die eine
endliche Gruppe [«] erzeugen. Bedeutet m die Anzahl der in einer
solchen Gruppe [«] enthaltenen verschiedenen Permutationen o, so
ist bekanntlich ™ — M, und umgekehrt, wenn eine natiirliche
Zahl m diese Bedingung erfiillt, so folgt hieraus, dal « endlich ist.
Diese Forderung driickt sich nach (3), (4), (5) dadurch aus, dafl «
fiir jede natiirliche Zahl » den Bedingungen

@) (@) =1, (n, @) = (n+ 1, @) (mod. pv)

geniigen mufl. Schlieft man den Fall p = 2 aus, so ergibt die genaue
Untersuchung, welche keine erheblichen Schwierigkeiten darbietet,
dall es nur p— 1 endliche Permutationen « gibt; diese sind durch

(8) (n, @) = (1, "' (mod. p)
bestimmt, und man erhdlt sie alle, wenn man (1, &) irgendein voll-
stindiges System nach p inkongruenter Zahlen durchlaufen laft,

welche nicht durch p teilbar sind; die entsprechenden Zahlen (n, «)
bilden alle p — 1 Wurzeln z, der Kongruenz

9) zh ' = 1 (mod. p),
und hieraus folgt, dall diese p — 1 Permutationen o die Bedingung
(10) =1 = M,

erfiillen. Sie bilden eine Gruppe A, und wenn man fiir (1, «) eine
primitive Wurzel der Primzahl p wihlt, so ist diese Gruppe ¥ = [«].
Bedeutet ferner A den Korper von %, so folgt aus dem Satze VI
(in § 5), da (M, 4) = p—1, also M ein endliches Multiplum
von A4 ist¥).

Es ist nun auch nicht schwer, alle endlichen und unendlichen
Divisoren des Korpers M aufzufinden und die zugehorigen, in €
enthaltenen Identitatsgruppen zu bestimmen. Der Kiirze wegen ver-
zichten wir hierauf, und wir wollen nur noch zum Schlufl an einem
Beispiel den oben versprochenen Nachweis liefern, dafl nicht jede in €

#) In dem oben ausgeschlossenen Falle p — 2 findet man leicht, daf es
zwei endliche Permutationen von 3{ gibt, ndmlich die identische und eine andere,
durch welche jede Einheitswurzel u,, in u;l iibergeht.

Dedekind, Gesammelte Werke, II. 19
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enthaltene Gruppe eine Identititsgruppe ist, oder anders ausgedriickt,
dal zwei verschiedene Gruppen denselben Korper haben konnen.

Wir bezeichnen mit ¢ eine bestimmt gewihlte primitive Wurzel
aller Potenzen der (ungeraden) Primzahl p und definieren eine Permu-
tation B unseres Korpers M durch die fiir jede natiirliche Zahl n
geltende Kongruenz

(n, B) = g (mod. pr),
wodurch die Existenz-Bedingung (4) erfiillt ist. Bedeutet g, wieder
den auf P, beziiglichen Divisor von g, so ist also
Unp ﬁn - u;qn unﬁ; — u"lgrw
und da die Potenzen
J, 92’ g3 ce g‘l’(ll")

nach dem Modul p» ein vollstéindiges System inkongruenter, durch p
nicht teilbarer Zahlen bilden, so erschopfen die Potenzen

ﬁm /3'3’ ﬁfl te Z)(p“)

alle Permutationen des endlichen Kérpers P,; mithin mufl nach
einem bekannten Satze (oder nach II in § 2) jede in P, enthaltene
Zahl ¢, welche der Bedingung ¢ 8 —1, also auch den Bedingungen 87 = ¢
geniigt, rational sein, also dem Korper R angehéren. Wir kehren
nun zu der Permutation § des Korpers M zuriick, betrachten die
aus allen Potenzen von B bestehende Gruppe B — [8] und suchen
deren Korper, d. h. den Inbegriff B aller zu B einwertigen Zahlen ¢
des Korpers M; diese Einwertigkeit wird schon vollstindig durch die
Forderung ¢8 — t ausgedriickt, weil hieraus auch {f—! = und
allgemein ¢f3” = ¢ folgt. Da nun, wie frither bemerkt, jede Zahl ¢
des unendlichen Korpers M gewill auch einem endlichen Koérper P,
angehort, woraus ¢ — ¢ 8, folgt, so muf} ¢ auch der Bedingung ¢ 8, =

geniigen und folglich rational sein, mithin ist B =— R. Andererseits
leuchtet aber ein, dafl die Identitdtsgruppe von R, d. h. der Inbegriif
aller auf M beziiglichen Multipla der identischen Permutation R,
die voile Gruppe € aller Permutationen ¢ von M, und daf R der
Korper dieser Gruppe € ist, weil jede zu € einwertige Zahl auch
einwertig zu B sein muf. Dal endlich die in € enthaltene Gruppe 8
verschieden von € ist, ergibt sich schon daraus, daf von den oben
gefundenen p — 1 endlichen Permutationen & nur eine einzige, nimlich
die identische Permutation M, in B enthalten ist. Also haben die
beiden verschiedenen Gruppen B und ¢ denselben Kérper R, w.z. b.w.

-
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Zusatz aus dem Nachlal:

Bestimmung der Divisoren von M und ihrer Identitdtsgruppen.

Wir suchen jetzt alle Divisoren D von M. Enthilt D eine Zahl g
vom Exponenten 2* (wo s = 1)*), so ist D als Multiplum von
R(p) = 4,-Q.**) auch Multiplum von A, Gibt es daher in D
Zahlen p, deren Exponent p* jeden gegebenen Wert iibertrifft,
so ist D gemeinsames Multiplum aller 4, und folglich auch’ ein
Multiplum von A, mithin

(M’ 4) = (Ma D)(D: A) =p—1,
(D, 4) =, (M’D) =f p—1=c¢f

und folglich (leicht) D— 4.9

Im entgegengesetzten Fall ist D kein Multiplum von A4;
dann gibt es eine Zahl s von der Art, dal A, Divisor von D, aber
A,y 4 nicht Divisor von D ist; mithin sind die Exponenten aller in
D enthaltenen Zahlen << p%, d. h. D ist Divisor von P, = A4,- P,
also D ein endlicher Korper,

D= 4,-Q. [Im Falle s =0 ist D = R.]

Identitéitsgruppen der Unterkorper von M,
Korper M, , —= A4;-Q¢; p—1 = ce-f.
Identitatsgruppe €; ,: Alle Permutationen & von M, die Multipla
der identischen Permutation von 4, - @, sind.
Up& = 1,™ ;5 (Mye) = (1, &)P" ' (mod. pr),
(s,6)' =1 (mod. p¥).
Korper 4.Q,; Identititsgruppe €, ,:
Upe = u,M D5 (n, &) = (1, &)P" 7' (mod. pr),
(1, &) =1 (mod. p).

*) Jede Zahl x in M hat einen bestimmten Exponenten ps, d. h. sie ist in
P,, aber nicht in P, _, enthalten.

*+) Bezeichnet man, wenn ¢ jeden Divisor von p —1 = ¢-f bedeutet, mit
@, den in P, enthaltenen Korper vom Grade ¢, so sind alle endlichen Kérper,

die in M enthalten sind, von der Form
As.Qe [8:1725"']'
wo A_ der Durchschnitt des Korpers 4 mit P, ist.

19*
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Erlduterungen zur vorstehenden Abhandlung.

In einem Brief an Frobenius (18. April 1897) schreibt Dedekind, nach-
dem er einen kurzen Uberblick iiber den Inhalt der Arbeit gegeben hatte: ,Fir
die unendlichen Korper hat bisher ein Noli me tangere gegolten; nur deshalb
mochte ich gern einmal von ihmen sprechen.

Seitdem hat die Entwicklung der Algebra dieses ,Noli me tangere“ iiber-
wunden: Auf Grund der Steinitzschen Theorie der Kirper konnte fiir beliebige
unendliche Korper die volle Automorphismengruppe aufgestellt werden, im wesent-
lichen nach der Dedekindschen Methode; nur dafi eine beliebige Wohlordnung
zugrunde gelegt werden mufl, und neben der algebraischen noch eine vorher ab-
zuspaltende rein transzendente Erweiterung zu beriicksichtigen ist. Dabei treten
im Fall der komplexen Zahlen neben dem Ubergang zum konjugiert Komplexen
noch beliebig viele, allerdings ,extrem unstetige® Abbildungen auf, entgegen
der von Dedckind am Anfang von § 3 ausgesprochenen Vermutung [vgl. dazu
A. Ostrowski, Journ. f. Math. 143 (1913); E. Noether, Math. Ann. 77 (1916);
in geometrischer Einkleidung der Fragestellung: H. Lebesgue, Atti Torino 42
(1907); E. Kamke, Jahresber. d. d. Math.-Ver. 36 (1927)].

Die Galoissche Theorie der unendlichen Korper ist von W. Krull im engen
Anschluf an Dedekind entwickelt [Math. Ann. 100 (1928)]. Bei geeigneter
Topologisierung — die sich im abzihlbaren Fall direkt aus den Dedekindschen
Fundamentalfolgen ergibt — zeigt sich, dafi alle und nur die abgeschlossenen Unter-
gruppen ,Identititsgruppen sind, und dal bei jedem unendlichen Korper (erster
Art) anch Nicht-Identititsgruppen auftreten, entsprechend dem Dedekindschen
Beispiel. Auch der Zusammenhang mit den p-adischen Zahlen, der sich schon
deutlich bei Dedekind zeigt, kehrt allgemein bei allen ,idealzyklischen“ Gruppen
wieder.

Die von Dedekind selbst noch nicht betrachtete Idealtheorie der unendlichen
Korper ist seither ebenfalls entwickelt: in den Grundziigen durch E. Stiemke
[Math. Zeitschr. 25 (1926)), unter ausdriicklicher Berufung auf die Methoden der
vorliegenden Abhandlung, und weitergehend durch W. Krull [Math. Zeitschr. 29
(1928) und 31 (1930)].

Noether.




XXXII.

Gaub in seiner Vorlesung
uber die Methode der kleinsten Quadrate.
[Festschrift zur Feier des hundertfiinfzigjihrigen Bestehens der Koniglichen Gesell-

schaft der Wissenschaften zu Gottingen. Beitrige zur Gelehrtengeschichte Gottingens.
S. 45—59 (1901).]

Als geborener Braunschweiger habe ich schon frith von Gauf
sprechen horen, und ich glaubte gern an seine Grofe, ohne zu
wissen, worin sie bestand. Um so tieferen Kindruck machte es auf
mich, als ich zuerst von seiner geometrischen Darstellung der imagi-
piren oder, wie man zu jener Zeit wohl noch sagte, der unmoglichen
Grofen horte. Ich war damals als Student auf dem Collegium
Carolinum (der heutigen Technischen Hochschule) ein wenig in die
hohere Mathematik eingedrungen, und bald darauf, als GauB im
Juli 1849 sein 50jihriges Doktor-Jubildum feierte, sandte unser Lehr-
korper einen von dem geistreichen Philologen Petri verfaliten Gliick-
wunsch an ihn, worin mir der Passus, er habe das Unmogliche mog-
lich gemacht, ganz besonders gefiel. Zu Ostern 1850 kam ich nach
Gottingen, und hier wuchs mein Verstindnis schon etwas mehr, als
ich im Seminar durch eine kurze, aber sehr interessante Vorlesung
von Stern in die Elemente der Zahlentheorie eingefiihrt wurde und
den Reziprozititssatz kennen lernte. Auf meinen Wegen nach oder
von der Sternwarte, wo ich eine Vorlesung des trefflichen Professors
Goldschmidt iiber populidre Astronomie horte, begegnete ich zuweilen
GauB und erfreute mich des Anblicks seiner stattlichen, Ehrfurcht
gebietenden Erscheinung, und sehr oft sah ich ihn in grofter Nahe
auf seinem festen Platze im Literarischen Museum, das er regel-
mifbig besuchte, um Zeitungen zu lesen.

Zu Anfang des folgenden Wintersemesters hielt ich mich fiir reif,
seine Vorlesung iiber die Methode der kleinsten Quadrate zu héoren,
und so betrat ich, mit dem Testierbuch ausgeriistet und nicht ohne
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Herzklopten, zum ersten Male sein Wohnzimmer, wo ich ihn an
seinem Schreibtisch sitzend fand. Meine Meldung schien ihn wenig
zu erfreuen, ich hatte auch wohl gehort, dal er sich ungern ent-
schloB, Vorlesungen zu halten; nachdem er seinen Namen in das
Buch eingetragen hatte, sagte er nach kurzem Schweigen: ,Sie wissen
vielleicht, dall es immer sehr zweifelhaft ist, ob meine Vorlesungen
zustande kommen; wo wobnen Sie? bei dem Barbier Vogel? Nun,
das trifft sich ja gliicklich, denn der ist auch mein Barbier, durch
ihn werde ich Sie benachrichtigen.“

Einige Tage darauf trat dann Vogel, eine stadtbekannte Person-
lichkeit, ganz erfiillt von der Wichtigkeit seiner Mission, bei mir ein,
um zu bestellen, dafl sich noch mehrere Zuhorer gemeldet hitten,
und dall Herr Geh. Hofrat Gaull die Vorlesung halten wiirde.

Wir waren neun Studenten, von denen ich A. Ritter (spiter
Professor der Mechanik in Hannover und Aachen) und Moritz Cantor
(spiter Professor in Heidelberg) nach und nach niher kennen lernte;
wir alle kamen sehr regelmillig, es hat wohl selten einer von uns
gefehlt, obgleich der Weg nach der Sternwarte im Winter bisweilen
nicht angenehm war. Das Auditorium war durch ein Vorzimmer von
Gauf’ Arbeitszimmer getrennt und ziemlich klein. Wir safen an
einem Tisch, dessen Lingsseiten fiir je drei, aber nicht fiir vier
Personen bequemen Platz darboten. Der Tiir gegeniiber am oberen
Ende sall Gaull in mé#Biger Entfernung vom Tische, und wenn wir
vollzdhlig waren, so mufiten zwei von uns, die zuletzt kamen, ganz
in seine Néhe riicken und ihr Heft auf den SchoB nehmen. Gaul}
trug ein leichtes schwarzes Kédppchen, einen ziemlich langen braunen
Gehrock, graue Beinkleider; er sal meist in bequemer Haltung,
etwas gebeugt vor sich niedersehend, mit iiber dem Leib gefalteten
Hénden. Er sprach ganz frei, sehr deutlich, einfach und schlicht;
wenn er aber einen neuen Gesichtspunkt hervorheben wollte, wobei
er ein. besonders charakteristisches Wort gebrauchte, so erhob er wohl
plotzlich den Kopf, wandte sich zu einem seiner Nachbarn und
blickte ihn wihrend der nachdriicklichen Rede ernst mit seinen
schonen, durchdringenden blauen Augen an. Das war unvergeblich.
Seine Sprache war fast ganz dialektfrei, nur bisweilen kamen An-
klinge an unsere stadt-braunschweigische Mundart; beim Zihlen z B..
wobei er auch den Gebrauch der Finger nicht verschmihte, sagte er
nicht eins, zwei, drei, sondern eine, zweie, dreie usf., wie man es

-
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noch jetzt bei uns auf dem Markte horen kann. Ging er von einer
prinzipiellen Erorterung zur Entwicklung mathematischer Formeln
iiber, so erhob er sich, und in stattlicher, ganz aufrechter Haltung
schrieb er an einer neben ihm stehenden Tafel mit der ihm eigenen
schonen Handschrift, wobei es ihm immer durch Sparsamkeit und
zweckmibige Anordnung gelang, mit dem ziemlich kleinen Raume
auszukommen. Fiir die Zahlenbeispiele, auf deren sorgfiltige Durch-
fiihrung er besonderen Wert legte, brachte er die erforderlichen Data
auf kleinen Zetteln mit.

Indem ich nun zu dem Inhalt der (wochentlich dreistiindigen)
Vorlesung iibergehe, beziehe ich mich auf einen Brief von Gau8 an
Schumacher aus dem Jahre 1844, welcher im Band VIII von Gauf}’
Werken (S. 147—148) abgedruckt ist; er berichtet dort, dafl seine
Vorlesung aus drei Teilen besteht, von denen der erste eine nur auf
Prinzipien der ZweckmaBigkeit basierte Begriindungsart und die eigent-
liche praktische Anwendung der Methode der kleinsten Quadrate
gibt, wihrend der zweite und dritte Teil die beiden wesentlich ver-
schiedenen Begriindungsarten der Methode durch die Wahrscheinlich-
keitsrechnung behandelt, wie sie in der Theoria motus corporum
coelestium und in der Theoria combinationis observationum dargestellt
sind. Denselben Weg schlug Gaull auch zu meiner Zeit ein, und ich
mochte hier einiges aus dem ersten Teile mitteilen, was, wie ich
glaube, weniger bekannt ist als der Inhalt der anderen Teile; freilich
kann ich es auch hierbei nicht vermeiden, sehr bekannte Dinge mit
einzuflechten. Den Zweck der Methode der kleinsten Quadrate und
ihre elementare Begriindung stellte Gaufll ungefdhr so dar:

Es liegt eine Reihe von Beobachtungen (Messungen) vor, die
dazu dienen sollen, gewisse unbekannte Grofen =z, y, z-.- zahlen-
mifig zu bestimmen; die unmittelbaren Gegenstinde dieser Beob-
achtungen konnen diese Unbekannten selbst, allgemeiner aber ge-
wisse Funktionen von ihnen sein, d. h. Gréfen V, V', V" ..., welche
sich streng berechnen lassen wiirden, wenn die Werte von z, y,2 .-
schon bekannt wiren. Werden nun fiir diese Funktionen durch
unmittelbare Beobachtungen die Werte M, M', M"--. gefunden, so
erhdlt man ein entsprechendes System von sogenannten Beobachtungs-
gleichungen V—=M,V'=M',V"'=M"---, aus denen die unbekannten
Elemente z, y,2--- ermittelt werden sollen; dies ist natiirlich nur
dann moglich, wenn die Anzahl der Beobachtungen mindestens ebenso
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groll ist, wie die der unbekannten Elemente. Da aber alle unsere
Messungen nur einen begrenzten Genauigkeitsgrad besitzen, also
Fehlern unterworfen sind, so sucht man deren schadlichen EinfluB
durch Vermehrung der Anzahl der Beobachtungen zu bekimpfen,
und dann fragt sich, wie soll man ein solches, mit unbekannten
Fehlern M — V, M'—V', M" —V" ... behaftetes, iiberzihliges System
von Beobachtungsgleichungen V=M, V'—=M', V"'—=M" ... behandeln,
um die unvermeidlichen Widerspriiche zwischen ihnen auszugleichen
und so die plausibelsten Werte der unbekannten Elemente x, y,2z---
zu finden? Hierbei wird vorausgesetzt, dall diese Beobachtungen
gleiche Zuverléssigkeit besitzen, d. h., daB wir keinen Grund haben,
einer von ihnen gréferes Zutrauen zu schenken als den iibrigen.
Macht man eine bestimmte Hypothese iiber die Werte z, y, z - --
und berechnet daraus die entsprechenden Werte der Funktionen
V, V', V"..., so erhdlt man ein entsprechendes System von Fehlern
M—V, M —V,M"—V"... aber es fragt sich, welchen Mafistab
soll man zugrunde legen, um nach Beschaffenheit dieser Fehler
einer solchen Hypothese den Vorzug vor einer anderen zuzuerkennen?

Hier konnte man, da die Beobachtungen wegen ihrer gleichen
Zuverlissigkeit eine gleichmiiflige Behandlung verdienen, zunichst
an die algebraische Summe der Fehler denken, um nach ihrer Klein-
heit die Brauchbarkeit einer Hypothese zu beurteilen, und dies wiirde
geradezu dahin fiihren, die Hypothese fiir die beste zu erkliren, fiir
welche diese Summe gleich Null wird. Allein man sieht sofort, dafl
dies nicht als allgemeines Prinzip gelten kann, weil, sobald die An-
zahl der unbekannten Elemente mindestens gleich zwei ist, unendlich
viele verschiedene Hypothesen dieser Forderung geniigen wiirden,
und aullerdem wiirde eine Hypothese, bei welcher groBe Fehler
durch die entgegengesetzten Vorzeichen sich in der Summe aufheben,
fiir ebenso gut gelten, als eine andere, in welcher die einzelnen
Fehler absolut genommen kleiner sind.

Dies kann uns veranlassen, nur die absoluten Werte der Fehler
zu betrachten und die Hypothese fiir die beste zu erklaren, fiir welche
deren Summe so klein wie moglich ausfillt. Allein auch gegen
dieses Prinzip lassen sich mehrere triftige Einwiinde erheben, néimlich:

a) Es verstoBt gegen den mathematischen Sinn, daB hierbei
die negativen Fehler auf andere Weise in die Rechnung eintreten
sollen als die positiven.
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b) Die Behandlung wird bei einer grolleren Anzahl unbekannter
Elemente z, y, 2z --- bald sehr verwickelt.

¢) Selbst im einfachsten Falle, wo nur eine einzige unbekannte
Grolie auftritt, und diese zugleich der unmittelbare Gegenstand der
sdmtlichen Beobachtungen ist, fiihrt dieses Prinzip zu Resultaten,
denen wir unseren Beifall nicht schenken konnen. Héatte man z. B. vier
Beobachtungen = 900, x = 903, x = 917, x = 921 gemacht, so wiirde
jeder zwischen 903 und 917 liegende Wert x fiir gleich brauchbar
gelten miissen, weil fiir alle diese Werte x die Summe der absoluten
Fehler denselben kleinsten Wert (x — 900) + (x—903) + (917 —z) +
(921 — x) — 35 erhalten wiirde; dieselbe Erscheinung tritt immer auf,
wenn die Anzahl der Beobachtungen gerade ist, wihrend bei einer
ungeraden Anzahl immer der in der Mitte liegende Wert x fiir den
besten gelten miilite, so daf die iibrigen Beobachtungen auch hier
gar keinen Einfluf auf die Bestimmung von x ausiiben wiirden.

d) Von besonderem Gewicht ist endlich der Einwand, dafl nach
diesem Prinzip bei einer grofleren Anzahl von Beobachtungen ein
grofer Fehler keinen stirkeren Einflul auf das Resultat ausiiben
wiirde, als eine Reihe kleiner Fehler, deren absolute Werte dieselbe
Summe besitzen, wihrend doch die Hypothese, welcher die letztere
Erscheinung entspricht, nach unserem Gefiihl gewii den Vorzug
vor der ersteren verdient.

Aus allen diesen Griinden ist dieses Prinzip zu verwerfen, und
wir miissen einen anderen MaBstab suchen, durech welchen diese
Mangel beseitigt werden, zumal die Wahl dieses Malistabes ganz
unserer Willkiir itberlassen ist. Hierzu fiihrt uns von selbst der letat-
genannte Einwand; die Riicksicht darauf, dal ein Fehler, welcher
a-mal so groll ist als ein Fehler, der g-mal vorkommt, stirker ins
Gewicht fallen muf}, als diese a einzelnen Fehler, veranlaBt uns,
statt der Fehler selbst ihre Quadrate zu nehmen und die Brauch-
barkeit einer Hypothese nach der Kleinheit der ihr entsprechenden
Summe der Fehlerquadrate zu schitzen. So gewinnen wir den Grund-
satz der sogenannten Methode der kleinsten Quadrate, nach
welchem diejenige Hypothese iiber die Werte der unbekannten
Groflen x,y,z--- als die beste gelten soll, fiir welche die Summe
der Fehlerquadrate so klein wie moglich wird. Durch die Wahl dieses
MafBstabes weichen wir den obigen Einwénden a) und d) aus, ebenso
gestaltet sich der unter b) erwihnte Ubelstand weit besser, und die
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unter ¢) bemerkte Erscheinung wird ganz unmoglich. Wollte man,
um den Einwand d) zu beseitigen, eine noch hohere Potenz der Fehler
einfiithren, so miifite dieselbe jedenfalls eine paare sein, um dem
ersten Vorwurf zu begegnen; aber dann werden die Rechnungen
so aulerordentlich verwickelt, dafl diese Behandlung die Miihe nicht
lohnen wiirde.

Nach dieser sehr einleuchtenden, nur auf Prinzipien der Zweck-
mifigkeit beruhenden Begriindung der Methode ging Gaull sofort
zur Bildung der sogenannten Normalgleichungen iiber, die durch
partielle Differentiation der Summe

Q= (V—Mp+ (V'— M) + V'~ MP+ -

der Fehlerquadrate in bezug auf jede der unbekannten Grofien a,
Y,z --- gewonnen werden. Der Kiirze wegen will ich hier

A = 2(Xdax+ Ydy +Zdz+ )

setzen, dann gibt die Forderung des Minimums von & die auf z,
9,z -+ beziiglichen Normalgleichungen

X =0, Y—=0, Z=0--,
die von Gaul vollstindig entwickelt dargestellt wurden.

Der zuniichst behandelte und wichtigste Hauptfall ist der, wo die
Grofen V, V', ¥V"..., also auch X, Y, Z... lineare Funktionen
von z,y,z --- sind. Zuerst wurde natiirlich der spezelle Fall vor-
gefiihrt, wo eine einzige unbekannte Grofe x durch wiederholte
unmittelbare Messungen bestimmt werden soll, und wo die entsprechende
Normalgleichung zu der altbekannten Regel des arithmetischen Mittels
fiihrt. Ein dazugehoriges Zahlenbeispiel — Bestimmung der Pol-
hohe von Lauenburg aus 11 Beobachtungen — benutzte GauB, um
uns auf gewisse Rechnungsvorteile aufmerksam zu machen. Da
alle beobachteten Werte natiirlich dieselbe Anzahl 53 der Grade auf-
wiesen und erst in den Minuten zwischen 21 und 22 schwankten, so
wire es ja toricht, bei der Bildung des arithmetischen Mittels diese
so weit miteinander iibereinstimmenden Werte wirklich zu addieren
und ihre Summe nachher durch ihre Anzahl zu dividieren; statt dessen
ist es offenbar vorteilhafter, etwa 53° 21’ oder 53° 22’ als geniherten
Wert von « anzusehen, also & = 53°21" 4 ¢" oder & — 53°22' + "
zu setzen, und nur das arithmetische Mittel dieser Korrektionen ¢ oder »
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in Sekunden zu berechnen. Das war freilich sehr einleuchtend, aber
Gaul verschmihte es mnicht, eine solche scheinbare Kleinigkeit
hervorzuheben, weil in ihr der Keim eines allgemeinen Prinzips
enthalten war, und ebenso verfuhr er in den folgenden Aufgaben mit
einer oder mehreren Unbekannten; immer wurde die allgemeine Regel
an bestimmten Zahlenbeispielen durchgefiihrt, die zu #hnlichen Be-
merkungen Veranlassung gaben. Von allen diesen Aufgaben glaube
ich hier die letzte (fiinfte) mitteilen zu diirfen, weil sie wohl auch
heute noch einiges Interesse darbietet.

Es handelt sich um die als nahezu gleich zuverlissig anzusehenden
Messungen der Hohendifferenzen (in Metern) von den folgenden fiinf
Punkten: P (Boden der Gottinger Sternwarte), @ (Meridianzeichen
der Wehnder Papiermiihle), R (Fliche des Postamentes auf dem
Hobhenhagen), S (ostlicher Abhang des Hils, eine Viertelstunde von
Ammensen), 7' (Brocken, Marmorplatte des vormaligen, im Hause
gelegenen Turms). Bedeuten diese Zeichen zugleich die Hohen der
entsprechenden Punkte, so liegen folgende sieben Beobachtungen vor:

Q=P+ 64334
R — P+ 349,366
R — Q + 283,596
S = Q 1 206,580
S — R— 76,108
T — R+ 648,427
T — 8§ 4 719,612

In diesen Gleichungen treten tatsichlich nur vier Unbekannte
auf, namlich die relativen Hohen Q—P, R—P, S—P, T—P iiber
Gottingen; denn absolute Hohen konnen natiirlich hieraus nicht
gefunden werden. Nun wird man sich zuniéichst durch geschickte
Kombinationen geniiherte Werte fiir diese Unbekannten verschaffen
und hierauf

— P+ 64334 +¢q
R — P 1 348,648 +
S = P+ 271,727 + s
T — P+ 994,207 + ¢

setzen, wo g, 1, s, t die Korrektionen dieser Niherungswerte bedeuten.
Fiihrt man sie als neue Unbekannte ein und driickt sie in Millimetern
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aus, so nehmen die obigen sieben Beobachtungsgleichungen folgende
Form an:

0+g =20

— 71847 =0

+ TI8—q4r=0

+ 813 —q+4+s=0

— 813 —r+4+s=20

9868 —7r 4+t = 0

42868 —s 4t = 0

und die vier Normalgleichungen lauten:

0= —153143¢q— r— s
0= 43681— q+4r— s— ¢
00— —2868— q— r+3s—
0 = — r— 842t

Nach einigen Bemerkungen iiber die direkte Auflosung dieser
Gleichungen durch zweckmifige Anordnung der sukzessiven Elimina-
tionen teilte uns Gaub eine indirekte Auflésungsmethode mit, einen
Kunstgriff, durch den man sich die beschwerliche Eliminationsarbeit,
wie er sagte, oft erleichtern konne. Derselbe besteht wesentlich darin,
die konstanten Glieder durch fortgesetzte Substitutionen auf immer
kleinere absolute Werte herabzudriicken, und dieser Proze beginnt
in unserem Beispiel auf folgende Weise. Ignoriert man in der zweiten
Gleichung, welche das grofite konstante Glied (3681) enthilt, die
Unbekannten ¢, 8, ¢ neben dem Gliede 47, welches den groften
Koeffizienten (4) hat, und vernachlissigt Bruchteile, so erhdlt man fiir r
den Wert — 920; man betrachtet ihn als eine Annéherung und fiihrt
eine Korrektion 7’ als neue Unbekannte ein, indem man r = — 920 4+
setzt; die unbekannten Glieder werden hierdurch nur insofern beriihrt,
daB 7 an Stelle von r tritt, wihrend die konstanten Glieder in
— 611, + 1, — 1948, + 920 iibergehen. Indem man nach derselben
Regel fortfihrt, wird man in der dritten Gleichung die Unbekannten g,
7', t ignorieren und s — 4 649 4 &' setzen, wodurch die konstanten
Glieder in — 1260, — 648, — 1, -4 271 iibergehen. Offenbar kommt
es immer nur darauf an, die neue Substitution zu notieren, wobei
man die Akzente der neuen Unbekannten fiiglich unterdriicken darf,
und die neuen Werte der konstanten Glieder zu berechnen; den ganzen
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Mechanismus kann man in leicht verstdndlicher Weise durch eine
Tabelle darstellen, deren Anfang hier folgen mag:

: T w'l’ S duqmw'"ﬁ’ﬁr r S
— 920 + 649 +420 | 4267 | + 229
1531 | — 611 | —1260 | 0 | —267 | — 496
18681 | + 1| — 648 | —1068 | 0 | — 229
9868 | — 1948 | — 1 | — 421 | —688 | — 1
0 ! L 920 | + 271 | + 221 | + 4 | —225

Hat man 73 solche Operationen gemacht, so sind die konstanten
Teile so klein geworden, daf sie durch eine neue Substitution
nicht mehr vermindert werden konnen, und es geniigt dann, jede
der urspriinglichen Unbekannten durch Addition ihrer sukzessiven
Niherungswerte zu berechnen:

q— +420..

r= —920 + 267 -
8= + 649 4 229...
P — ...

Noch viel kiirzer wird die Arbeit, wenn man mit diesem Kunst-
griff einen zweiten verbindet, welcher im folgenden besteht. Man
fithrt noch eine neue Unbekannte p ein, indem man den Anfangs-
punkt verlegt und ¢, r, s, ¢ durch ¢ — p, r — p, s — p, t — p ersetat;
behandelt man die hierdurch umgeformten Beobachtungsgleichungen
wieder nach der Methode der kleinsten Quadrate, so erhilt man die
folgenden fiinf Normalgleichungen:

0=+ TI84+2p— q— r

0= —1531— p+43q— r— s
0= +3681— p— qg+4r— s— t
0 = — 2868 — q— r+3s— 1
0= — r— s 21,

von denen die vier letzten in die fritheren iibergehen, wenn p = 0
gesetzt wird. Sie haben zwei merkwiirdige Eigenschaften, deren Grund
man leicht erkennt: erstens ist die Summe der konstanten Glieder, und
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ebenso die Summe der Koeffizienten jeder einzelnen Unbekannten gleich
Null, und zweitens ist auch die Summe der Koeffizienten aller Unbe-
kannten in jeder einzelnen Gleichung gleich Null. Zufolge der ersten
Eigenschaft ist jede Gleichung eine identische Folge der vier anderen,
und es ist daher unméglich, bestimmte Werte der fiinf Unbekannten
aus ihnen abzuleiten. Wendet man aber die oben beschriebene
indirekte Auflosungsmethode an, so wird man finden, daf} dieselbe jetzt
viel schneller zum Abschluf kommt, und auBlerdem ergibt sich aus
dem Umstande, dal die Summe der konstanten Glieder stets gleich
Null bleiben muB, eine iiberaus angenehme Kontrolle der fortlaufenden
Rechnung, deren Anfang wieder durch die folgende Tabelle dargestellt
werden mag:

r S p q
920 | 4+ 649 | —819 | + 147
f 718 | 11638 | + 1638 0] — 147
1531 | — 611 | —1260 | —441 | 0O
+3681 | + 1 | — 648 | +171 | + 24
2868 | — 1948 | — 1| — 1| —148
0 | 4+ 920 | 4+ 271 | 4271 | + 271

Nach etwa 20 Operationen schliefit diese Rechnung ab und liefert
bestimmte Werte der fiinf Unbekannten, aus denen sich schlieBlich
die eigentlichen Unbekannten ¢ —p, r —p, § —p, t — p ergeben.
In der Vorlesung wurden natiirlich nur die ersten Schritte dieses wie
des fritheren Prozesses wirklich ausgefiihrt. Uber die Vorziige und
Nachteile dieser indirekten Auflosungsmethode gegeniiber der ge-
wohnlichen durch sukzessive Elimination der Unbekannten muf ich
mich jeder Bemerkung enthalten; es geniigt mir, durch die Mitteilung
dieses Beispiels wieder darauf hinzuweisen, wie unablissig Gaull be-
miiht war, auch bei dem praktischen Rechnen sinnreiche Kunstgriffe
zu erfinden,

Hierauf folgte die Behandlung des Falles, wo die Beobachtungs-
gleichungen V = M ... die Unbekannten nicht mehr, wie bisher, in
linearer Form enthalten. Die Einfithrung gendherter Werte, welche
frither nur als ein die Zahlenrechnungen vereinfachender Kunstgriff
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auftrat, wird hier zu dem Prinzip ausgebildet, durch welches dieser
Fall auf den friitheren der linearen Gleichungen zuriickzufithren ist,
indem man die kleinen Korrektionen als neue Unbekannte behandelt
und deren Produkte bei der Entwicklung nach dem Satze von Taylor
vernachlissigt. Als Beispiel diente die Pothenot’sche Aufgabe in der
praktischen Geometrie, speziell die Ortsbestimmung von Rosdorf bei
Gottingen aus sechs Einschnitten.

Nun ging Gaull zu einer ebenfalls elementar gehaltenen Ent-
wicklung des Begriffs der Pridzision einer Beobachtungsmethode
iiber. Wenn die vorliegenden Beobachtungen V. — M, V' = M"-..
nicht mehr, wie bisher vorausgesetzt wurde, gleiche Zuverlassigkeit
besitzen, so mul man sie als auf verschiedene Malstibe bezogen
ansehen und jede Gleichung mit einem entsprechenden, die gleiche
Zuverlassigkeit wiederherstellenden Koeffizienten k& multiplizieren. Die
hieraus nach der Methode der kleinsten Quadrate abgeleiteten Normal-
gleichungen enthalten diese (relativen) Prédzisionen %4 nur in ihren
Quadraten, und diese heiflen die entsprechenden Gewichte p der
Beobachtungen.

Diese Betrachtung gibt zugleich ein Mittel an die Hand, die
Zuverlissigkeit der durch die Methode der kleinsten Quadrate ge-
wonnenen Resultate im Vergleich mit der Zuverldssigkeit der ge-
gebenen Beobachtungen zu bestimmen. Das Prinzip, auf welches sich
diese Ableitung griindet, ist das der Konsequenz Man denkt sich
zu der urspriinglich vorhandenen Gruppe von Beobachtungen, die
wieder als gleich zuverlissig vorausgesetzt werden, und deren Prézi-
sion =— 1 angenommen wird, eine beliebige Anzahl anderer Beob-
achtungen von derselben Prézision hinzu, wodurch die zuerst gefundenen
plausibelsten Werte der Unbekannten w, y, z-.- in andere Werte
iibergehen werden. Um diese zn finden, kann man nun zwei ver-
schiedene Wege einschlagen, welche aber notwendig zu denselben
Resultaten fithren miissen. Der erste Weg besteht darin, daf man
nach der Methode der kleinsten Quadrate sémtliche Beobachtungs-
gleichungen beider Gruppen gleichzeitig behandelt, der zweite darin,
dall man die allein aus der ersten Gruppe (der wirklich gegebenen -
Beobachtungen) abgeleiteten Resultate mit gewissen, noch unbestimmt
gelassenen Prézisions-Koeffizienten & multipliziert und hierauf mit der
zweiten, hinzugedachten Gruppe von Beobachtungen kombiniert. Durch
die Forderung, dal die auf diesen beiden verschiedenen Wegen er-
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haltenen Schlufiresultate miteinander tibereinstimmen miissen, ergeben
sich dann die Werte der Prizisionen % und ihrer Quadrate, der Gewichte p.

Diese allgemeine Anleitung zur Gewichtsbestimmung der durch
die Methode der kleinsten Quadrate gewonnenen Resultate wurde zu-
nichst an den einfachsten Fillen durchgefiihrt, wo die (immer als
linear vorausgesetzten) Beobachtungsgleichungen nur eine Unbekannte
enthalten. Um aber fiir eine beliebige Anzahl n von Unbekannten
X,y -, deren letzte z sein moge, die Regel allgemein auszudriicken
(wobei die uns damals noch wenig geldufige Sprache der Determinanten-
Theorie ginzlich vermieden wurde), beschrieb Gaul zundchst ein
Verfahren zur Auflosung der auf «,y-.-2z beziglichen Normal-
gleichungen X =0, ¥ =— 0-..Z =— 0, welches er mit dem Namen der
rechten Elimination belegte (vgl. Disquisitiones circa elementa ellip-
tica Palladis). Man eliminiere die erste Unbekannte z aus allen n»
Gleichungen, indem man nur die erste, auf a beziigliche Normal-
gleichung X — 0 mit geeigneten Koeffizienten multipliziert und von den
folgenden, unverinderten Normalgleichungen abzieht, welche dadurch

in Y'=0-.-Z" = 0 iibergehen und frei von x sind; nun eliminiere
man ebenso die zweite Unbekannte y aus allen diesen (n—1)
Gleichungen, indem man nur die erste Gleichung Y' — 0 mit ge-

eigneten Koeffizienten multipliziert und von allen folgenden abzieht;
fahrt man so fort, so gelangt man schlieflich zu einer Gleichung von der
Form H (z — C) = 0, in welcher nur noch die letzte Unbekannte z
auftritt, und wo H, C' bekannte Werte bedeuten, die sich aus dem
Verlauf dieser rechten Elimination mit Bestimmtheit ergeben. Die
Auflosung der Normalgleichungen liefert also fiir 2 den plausibelsten
Wert O, und die Regel von Gaul} besteht darin, dafi der Koeffizient H
zugleich das Gewicht dieses Resultats z — C darstellt, d. h. also:
In der Methode der kleinsten Quadrate wird das Gewicht jedes ein-
zelnen Resultats fiir eine Unbekannte durch den Koeffizienten dar-
gestellt, welchen diese Unbekannte bei rechter Elimination in der
letzten Gleichung erhélt.

Bei dem Beweise dieses Satzes, den ich hier des Raumes wegen
mit einer kleinen Anderung der Bezeichnung wiedergebe, beschriinkte
sich Gaufl auf den Fall von drei Unbekannten z, y,2. Durch die
rechte Elimination von z, y werden offenbar zwei Koeffizienten «, 8
gewonnen, welche bewirken, dafl identisch

X +BY +Z=H (z—C)
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wird. Denkt man sich nun zu den wirklich vorhandenen m Beob-
achtungsgleichungen, denen die Normalgleichungen X =— 0, ¥ = 0,
Z = 0 mit dem Resultat z =— C entsprechen, noch eine Beobachtung
z =D von derselben Prizision hinzu und schligt den oben beschriebenen
ersten Weg ein, bei welchem alle (m + 1) Beobachtungen gleichzeitig
behandelt werden, so bleiben offenbar die auf x, y beziiglichen Normal-
gleichungen X = 0, ¥ =— 0 ungeiindert bestehen, wihrend die dritte
Z = 0 in Z + (z— D) = 0 iibergeht; zufolge der obigen Identitit
ergibt sich daher z jetzt aus der Gleichung

H(z—C)+(z—D)=0.

Schligt man aber den zweiten Weg ein, indem man das aus den m
wirklich vorhandenen Beobachtungen durch die Methode der kleinsten
Quadrate gewonnene Resultat z — C' mit einer noch unbestimmten
Prizision k multipliziert und nun nach derselben Methode mit der hinzu.
gedachten Beobachtung z — D kombiniert, so erhédlt man, wenn das
unbekannte Gewicht kk — p gesetzt wird, die einzige Normalgleichung

p(z—CO)+(— D) = 0,

und durch den Vergleich mit dem Resultate des ersten Weges folgt
p=H, w.z.b. w.

In nahem Zusammenhang mit der eben beschriebenen rechten
Elimination steht die sukzessive identische Umformung der Summe £
der Fehlerquadrate in eine Reihe von Quadraten linearer Funktionen
A, B/ C... die so gewdhlt werden, dal # nur in 4, ¥ nur in 4
und B, z nur in A, B, C usf. auftritt. Der zuletzt verbleibende
konstante Bestandteil stellt dann das Minimum von £ dar, und die
plausibelsten Werte der Unbekannten x, y, z--. ergeben sich aus
den Gleichungen 4 — 0, B = 0, C = 0 --- in umgekehrter Folge.

Mit dieser Darstellung schlof Gaufl am 24. Januar 1851 den
ersten Teil seiner Vorlesung, durch den er uns mit dem Wesen der
Methode der kleinsten Quadrate vollkommen vertraut gemacht hatte.
Es folgte nun eine iiberaus klare und durch originelle Beispiele
erlduterte Entwicklung der Grundbegriffe und der Hauptsitze der
Wahrscheinlichkeitsrechnung, die als Einleitung zu der zweiten und
dritten Begriindungsart der Methode diente, worauf ich hier nicht mehr
eingehen darf. Ich kann nur sagen, dall wir diesem ausgezeichneten

Vortrage, in welchem auch einige Beispiele aus der Theorie der be-
Dedekind, Gesammelte Werke, II. 20
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stimmten Integrale behandelt wurden, mit immer steigendem Interesse
gefolgt sind. Aber es schien uns auch, als ob Gaul} selbst, der vorher
wenig Neigung gezeigt hatte, die Vorlesung zu halten, im Laufe
derselben doch einige Frcude an seiner Lehrtitigkeit empfand. So
kam es am 13. Mirz zum Schlufl, Gaul erhob sich, wir alle mit ihm,
und er entliel uns mit den freundlichen Abschiedsworten: ,Iis bleibt
mir nur noch iibrig, Ihnen zu danken fiir die grofe RegelmiBigkeit
und Aufmerksamkeit, mit der Sie meinem, doch wohl recht trocken
zu nennenden Vortrage gefolgt sind.“ Seitdem ist nun ein halbes
Jahrhundert verflossen, aber dieser angeblich trockene Vortrag steht
mir unvergellich in der Erinnerung als einer der schonsten, die ich
je gehort habe.



XXXTII.

Uber bindre trilineare Formen und die Komposition
der biniren quadratischen Formen.
[Journal fiir reine und angewandte Mathematik, Bd. 129, S.1—34 (1905).]

Bei der Besprechung der in lineare Faktoren zerlegbaren Formen,
welche zu einem endlichen algebraischen Zahlkorper gehoren, habe
ich bemerkt, dab die drei Formen, deren eine durch eine bilineare
Substitution in das Produkt der beiden anderen iibergeht, im wesent-
lichen, d. h. abgesehen von konstanten Faktoren, umgekehrt durch
diese Substitution bestimmt sind*). In dem einfachsten Falle der
bindren quadratischen Formen ist diese Tatsache zwar nicht aus-
driicklich von GauB ausgesprochen, aber sie ist vollstindig in der
Schlubbemerkung des Art. 235 der Disquisitiones Arithmeticae ent-
halten, in welchem die Transformation einer Form in ein Produkt
aus zwei Formen durch eine bilineare Substitution in der allge-
meinsten Weise behandelt wird. Bei meinem ersten Studium dieser
Untersuchung erregte die genannte Tatsache meine besondere Auf-
merksamkeit, und ich erkannte bald, daf mit einer solchen gegebenen
Substitution immer zwei andere Substitutionen und drei quadratische
Formen von der Art verbunden sind, dafl jede der drei Formen durch
eine ihr entsprechende Substitution in das Produkt der beiden an-
deren Formen iibergeht. Hat man sich hiervon iiberzeugt, was bei
zweckmifiger Wahl der Bezeichnung keine Schwierigkeit darbietet,
so wird die Losung des allgemeinen von Gaull behandelten Problems
.in hohem Grade vereinfacht. Da dies noch nicht bekannt zu sein
scheint, so wage ich es, meine Untersuchung zu veroffentlichen und
dem Andenken an meinen groflen Lehrer Dirichlet zu widmen, der
selbst eine Ehre darein gesetzt hat, durch eine Reihe von Abhand-
lungen das Verstdndnis des von ihm am hdchsten bewunderten Werkes
von Gaufll zu erleichtern.

*) Dirichlets Vorlesungen iiber Zahlentheorie, vierte Auflage, § 182, S. 586.
20*



— 308 —

§ 1
Wir betrachten im folgenden drei Paare von unabhingigen
Variabeln
(@1, Y1) (%a, Ya)y (¥ ¥s)
und zwei Reihen von je vier willkiirlichen Konstanten

o= oy, 0, &g, Oy,

B = Bos By Ba, Bs-
Bedeutet r, s, #, wie immer im folgenden, irgend eine Permutation
der drei Indizes 1, 2, 3 (wihrend der Index O ungedindert bleibt),
so diirfen wir jeden aus den Variabeln und Konstanten gebildeten
Ausdruck, der in bezug auf die beiden Indizes s, ¢ symmetrisch
ist, als eine durch den Index 7 bestimmte Grofe ansehen und dem-
gemill bezeichnen. In diesem Sinne bilden wir drei bindre qua-
dratische Formen F,, F,, F, durch die gemeinsame Definition

[ F'r - Fr(xn yr) = Arx;‘; + Brxryr +Ory2

1 |
o | = (8o + @) (Ber + otay) — (oo + Botr) (@, + Br Y,
wo also
(2) [ Ar = ﬁsﬁt = Ol Oy Cr = U0 — ﬂoﬁm

]_ Br = “sﬁs + ’xtﬂt - “rﬁr — “oﬁO'

Wir wollen beweisen, dall diese drei IF'ormen ein und die-
selbe Diskriminante

(3) D= B} —4A4,0, =B} —44,C, — B} —44,C,
haben, und dall jede von ihnen durch eine entsprechende
bilineare Substitution in das Produkt der beiden anderen
Formen iibergelt.

Das erstere folgt leicht aus einem bekannten Satz iiber partiale
Determinanten. Bildet man aus zwei Reihen von je vier Griofen

p’ p,, pu, T)”,7

g ¢ 99"
die sechs Determinanten

(4) { P=1pq —qp, Q=pq9" —qp', B=pg" —qp",
| U —_— plfqlll _— qllp/”’ T — pquIV — qlp!”, S — plqll —_ q'pll’
so geniigen die drei letzteren den beiden Gleichungen

I‘]pr_ Tp” + Spur — 0‘ []qv__ Tqu + Squr —_ 0;
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multipliziert man die erste mit — g, die zweite mit p und addiert,
so erhilt man den in Rede stehenden Satz

() PU—QT-+RS=0.

Wenden wir ihn auf das Beispiel

(6) [ P = B, 1’1 = Og, p:: = Oy, P::: = Py,
‘q:_“oaq:_ﬁhq :—"ﬁs,(l = — 0Oy

an, so wird zufolge (2):

] P——4, Q=—4, R——1(B+B).
™ :
lU:'—“Os, T:_Oh S:_'{Z‘(Bt_'Bs)v
also
A,C,— A, C + %(Bt + Bs) (Bt - Bs) =0
oder

B} —4A4,C, = B} — 44,0,

womit unsere Behauptung iiber die Diskriminanten der drei Formen
bewiesen ist. Wir bemerken zugleich, dafl diese gemeinsame Dis-
kriminante D, die eine homogene Funktion vierten Grades von den
acht Konstanten «, B ist, nicht identisch verschwindet; denn wenn
man z B. g — B, = 0, alle anderen sechs Konstanten «, § — 1
setzt, so werden alle neun Koeffizienten 4,, B,, C, gleich 1, also
D= —3.

Um auch die zweite Behauptung zu beweisen, setzen wir zur
Abkiirzung

(8) g-f: = QA,.III,. + B,y,. = 2u,, g—z:r

— B,x, - QCryr = 27,
woraus
9 w2 + 0.y, = F,

folgt, und nehmen die Konstanten (6) zu Koeffizienten der beiden
bilinearen, in bezug auf s, # symmetrischen Funktionen

(10) Xr = ﬁrxsxt + s Ts Yy + 0 Ys Xy + ﬁoysyh
Y, = — ot% 0 — BesYi — BsYs ¥t — 0 Ys Yo
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Fliminiert man der Reihe nach jedes der vier Produkte x,x;, %,y
Ys Ty, Ys Yz, S0 erhdlt man mit Riicksicht auf (4), (7), (8) die Gleichungen

o, X, + B.Y,

= — Ao,y — Ay — %(BH— B)y.ye = — Yottt — Wy
B: X, + Y,

— A, xox, — —;—(Bt— By y,xs — Coys ¥y = — YoV + s 4,
B X, + e Y,

— Ayxgx, + %(Bt — B xyyy — Coysyy =  Touy — 0 Yy,
. X, + B,Y,

— —;-(Bt + By)x,x, + Ciz,y; + Cotfety =  x,0; + V24,

die man mit Benutzung der bekannten Bezeichnung fiir die Multi-
plikation von zwei bindren Substitutionen auch in der Form

<ﬂsX,~+at Yo o Xy 4 Bo X _( g, vs>< Ugy Uy
%X, + B Yy, B X + oY,/ Ny U/ \— Y1, xt>
darstellen kann, und da bekanntlich die Determinante des Produkts
von zwel Substitutionen das Produkt aus deren Determinanten ist,
so ergibt sich aus der Definition (1) der Formen F, — F,(z,, y,)
und aus (9) das Resultat

(11) F.(X,,Y,) = F.F,

" womit auch unsere zweite Behauptung bewiesen ist.

Man erkennt iibrigens leicht, dall dieser zweite Satz (11) den
ersten (3) iiber die Diskriminanten in sich schlieft. Sieht man
nimlich x;, y, als Konstanten an, so nimmt die obige bilineare Sub-
stitution (10) die Form einer einfachen binéren Substitution

X, = (ﬁ'rxs + o ys) xy + (as x, + ﬁ(} ys) Yty
Y, = — (e @ + Bsys) T — (Be%s + & Ys) 41

an, deren Determinante zufolge (1) gleich — F; ist, und durch diese
Substitution geht die Form

Fr(XM Ya‘) = Arsz + Br X,‘Y,- + CrYg
nach dem Satz (11) in die Form

FsFt(-”b‘ta Z/t) = F; 4,2} + Fthxtg/t + FsUt:lj%
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iiber. Nach dem bekannten Fundamentalsatz iiber die Trans-
formation einer bindren quadratischen Form durch eine einfache
lineare Substitution ist aber die Diskriminante der neuen Form gleich
der der alten, multipliziert mit dem Quadrat der Substitutions-
determinante. Bezeichnet man nun mit D,, D,, D, die Diskrimi-
nanten der Formen F,, F,, F,, so ist in unserem Falle die Dis-
kriminante der neuen Form
(FyB)* — A(F, 4y (F,Cy) = D F,

und da D, die Diskriminante der alten Form, und — F, die Sub-
stitutionsdeterminante ist, so folgt D,F} — D,(— F,)? also D, = D,,
was zu beweisen war.

Die acht Konstanten o, 8 bilden daher immer die Koeffizienten
von drei verwandten bindren bilinearen Substitutionen, deren Zu-
sammenhang wesentlich in der Identitit
(12) X, — Y, =X, —xY, =y X;— a7,
besteht, und erzeugen zugleich drei quadratische Formen, deren jede
durch eine dieser Substitutionen in das Produkt der beiden anderen
iibergeht.

Indem wir uns vorbehalten, auf diese Identitit spiter (in § 4)
zuriickzukommen, beschliefen wir diese Betrachtungen mit einer Be-
merkung, die sich auf den Fall bezieht, wo die bisher willkiirlichen
acht Konstanten «, § ganze rationale Zahlen sind. Dann sind
auch die Koeffizienten der drei Formen F,, F,, F; und deren Dis-
kriminante D ganze Zahlen; wir wollen annehmen, daf keine dieser
Formen identisch verschwindet, und wollen mit M, den Teiler der
Form F,, d. h. den positiven grofiten gemeinsamen Teiler ihrer
Koeffizienten A4,, B,, C. bezeichnen. Bedeutet ferner K, den groSten
gemeinsamen Teiler von M, M,, also auch den der sechs Koeffi-
zienten 4,, B, C, 4;, B;, C;, so folgt aus (3) auch B,= B; (mod. 2 K,),
mithin ist K, auch gemeinsamer Teiler der sechs partialen Determi-
nanten (7), und zwar der grofte, weil umgekehrt jeder gemeinsame
Teiler dieser Determinanten offenbar auch in B,, B;, also in M,
M,, K, aufgeht.

Entwickelt man nun beide Seiten der in bezug auf die vier
Variabeln #,, y,, #;, y: identischen Gleichung (11) durch Auflésung
aller die Variabeln einschlieBenden Klammern, so leuchtet ein, daB
alle Koeffizienten der linken Seite durch M, teilbar sind, wihrend
offenbar das Produkt M, M, der grofite gemeinsame Teiler der neun
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Koeffizienten der rechten Seite ist; mithin ist M, M, teilbar durch
M,, also

(1) M, M;=MN, MM, = M,N,, M\M, — M,N,,

wo N, N,, N, ebenfalls natiirliche Zahlen bedeuten; dann ist zugleich

(14) M} —= N,N,, M} = N,N,, M} = N,N,,
und wenn z. B. M,, M, relative Primzahlen sind, also K, — 1,
so folgt
(15) M,=MM, N, =1, N,= M N, = M;.
§ 2.

Nach dieser Vorbereitung wenden wir uns zu der Aufgabe,
welche Gaufl im Art. 235 der Disquisitiones Arithmeticae behandelt
hat. Ich will aber vorher bemerken, daf ich hier wie schon frither*)
statt der von Gaul zugrunde gelegten Formen ax® 4 2bzxy + cy?
deren zweiter Koeffizient den Faktor 2 enthilt, immer Formen
f(x,y) = ax®+ bxry + cy® betrachte, wo @, b, ¢ beliebige Kon-
stanten bedeuten, die nur der Beschrinkung unterliegen sollen, daf
die aus ihnen gebildete Diskriminante 0 = b* — 4ac der Form
f = f(x, ) von Null verschieden ist.

Sind nun f, = f, (%, ¥,) fa = fa(@, Yo) fs = fs (24, Y5) drei
solche Formen mit den Diskriminanten 0,, d,, 0;, so besteht die
Untersuchung darin, alle Folgerungen aus der Annahme zu ziehen,
daff die erste Form f, durch eine bilineare Substitution in das Pro-
dukt f,f, der beiden anderen Formen iibergeht; bezeichnet man da-
her mit X, ¥, zwei bilineare Funktionen der beiden Paare (=,, y,),
(24, y5), so wird diese Annahme durch die Identitit

H(Xy, YY) = fofs
ausgedriickt; um aber die Symmetrie so viel wie moglich zu be-
wahren, fiigen wir dem Produkt noch einen von Null verschiedenen
konstanten Faktor £, hinzu und setzen also
(16) Hh(Xy Yy) = kyfofs.

Aus den acht Koeffizienten o, 8 der bilinearen Funktionen, die
wir (gemif (10) in § 1) in die Form

(17) X, = By + 0y Ty Yy + o3 Y3 T3 + By Yy Yss
Y, — 0y Ty Ly — Py gYy — Py Ya Ty — 0, Yy Ys

*) Zuerst in §§ 169, 170 der zweiten Auflage (1871) von Dirichlets Vor-
lesungen iiber Zahlentheorie.

I
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setzen, bilden wir nach § 1 die drei Formen F,, F,, F,; dann be-
steht das Endresultat der Untersuchung wesentlich darin, dafl
diese Formen sich beziehungsweise von den Formen f,, f5, f; nur
um konstante, von Null verschiedene Faktoren n,, n,, m, unter-
scheiden, dafl also identisch

(18) F, = nf,, Fy = nyfs, Fy = myf,

ist.

Um dies in aller Kiirze zu beweisen, verfahre man ebenso wie
bei dem zweiten Beweise des Diskriminantensatzes (3) in § 1. Sieht
man in den Gleichungen (17) erst z,, y,, dann x,, y, als Konstanten
an, so nehmen sie die Gestalt von einfachen linearen Substitutioner
an, deren Determinanten bzw. — F,, —F, sind, und der Funda-
mentalsatz iiber solche Transformationen einer Form f, ergibt zufolge
der Annahme (16) die beiden Gleichungen

Oy (= Fo)f = 05 (ks fo)*s 0y (—Fy)* = 05(k: 1)
und da k,, 0,, 0,, 0, nach unserer Annahme von Null verschieden
sind, so folgen hieraus die beiden letzten Gleichungen (18), wo n,, n,
von Null verschiedene Konstanten bedeuten. Multipliziert man diese
beiden Gleichungen miteinander, so geht die Annahme (16) mit Riick-
sicht auf den Satz (11) in § 1 in die Gleichung

kF (X, Y,) = nyngf,(X,, ¥,)

itber, welche identisch in bezug auf die vier Variabeln z,, y,, ;, ¥,
bestehen mufl. Da nun 0, nicht Null ist, also auch die Form f,
nicht identisch verschwindet, so gilt dasselbe auch von der Form
F, = n,f,; man kann daher den Variabeln z,, y, in (17) solche
Werte beilegen, dal F, einen von Null verschiedenen Wert erhilt,
und folglich kann man hierauf z,, y, immer so wihlen, dall XY,
beliebig vorgeschriebene Werte x,, ¥, annehmen; man darf daher in
der vorstehenden Gleichung X,, ¥, durch die unabhéngigen Variabeln
x,, y, ersetzen, und folglich gilt auch die erste der Identititen (18),
was zu beweisen war.

Umgekehrt, wenn zwischen drei Formen f,, f,, f; und den in
§ 1 definierten Formen F,, F,, F; die drei Identitdten (18) bestehen,
WO %, My, n, von Null verschiedene Konstanten bedeuten, so folgen
aus dem Satze (11) in § 1 die drei Identititen

(19) fr(XH Y?) - kr,fsftx



wo
(20) ke, — Mt

n,

d. h. jede der drei Formen f,, f,, f, geht durch eine bilineare Sub-
stitution in das mit einer Konstanten multiplizierte Produkt der
beiden anderen Formen iiber.

3\

Die drei Gleickungen (18), aus denen unmittelbar die Relationen
(21) D = 0,7} = 0,n3 = 0d,n}

zwischen den Diskriminanten der sechs Formen F,, f, folgen, schliefen
diejenigen neun Gleichungen in sich, welche GauB in der Schlub-
bemerkung des Art. 235 mit & bezeichnet, und die als Grundlage
fiir die in den Artikeln 2836—241 folgenden Untersuchungen dienen.
Die Gleichungen (18), bei deren Ableitung wir gar keine Voraus-
setzung iiber die besondere Natur der Koeffizienten der Formen f,, f,, 7,
und der bilinearen Funktionen X,, ¥, gemacht haben, enthalten den
algebraischen Teil der Untersuchung; wir wollen jetzt annehmen,
alle diese Koeffizienten seien ganze rationale Zahlen, und wollen
die zahlentheoretischen Folgerungen aus der Annahme (16) ziehen,
die bei Gaufl schon im Laufe seiner Untersuchung auftreten.

Aus (18) folgt zundchst, dal =,, n,, », ganze oder gebrochene
rationale Zahlen sind, mithin haben zufolge (21) die Diskriminanten
D, 9,, d,, 0, dasselbe Vorzeichen, und sie verhalten sich wie
Quadrate von ganzen Zahlen (Conclusio prima bei GauB). Be-
zeichnen wir ferner mit s, den Teiler der Form f, und (wie in §1)
mit M, den der Form F,, so ist zufolge (18)

(22) M, = emn, M, = ¢e¢myng, M, = e;myn,,
wo

(23) &l = &) = &} — 1,

also &Ny, & 7,, &n,; positiv sind.

Jetzt kehren wir, indem wir die Symmetrie aufgeben, zu der
eigentlichen Annahme von Gauf zuriick, dal niimlich f, durch die
bilineare Substitution (17) in das Produkt f,f, selbst iibergeht, daB also

(24) fl(Xn Yl) - fefsﬂ

mithin

(25) k, =1, n, = nyn,, & — &5



ist, woraus nach (21), (22) auch

(26) . d2 - 01 ng, dJ — 01 11221

(27) 0ymi; = 0, M3, 0ym3 = 0, M;

folgt. Bedeutet daher K, wieder den grofiten gemeinsamen Teiler
von M,, M, (wie in § 1), so ist 0, K? der grolite gemeinsame
Teiler der beiden Produkte dymj, d;mj (Conclusio secunda et
quarta bei Gaub).

Nach der Definition von Gaull heiit nun die Form f, zu-
sammengesetzt (composita) aus den beiden Formen f,, f,,
wenn K, =1 ist, also M,, M, relative Primzahlen sind. Be-
schrinken wir uns jetzt auf diesen Fall, so folgt aus (27), daB die
Diskriminante 0, der aus f,, f, zusammengesetzten Form f,
der groBte gemeinsame Teiler von dym?, d;mi ist. Da
ferner nach (15) in § 1 aus der jetzigen Annahme auch M, — M, M,
folgt, so ergibt sich aus (22), (25) auch m, = m,m,, d. h. der
Teiler m, der zusammengesetzten Form f, ist das Produkt
aus den Teilern m,, m, der Formen f;, f, (Conclusio quinta bei
Gaub).

Hiermit ist der wesentliche Inhalt des Art. 335 der Disquisi-
tiones Arithmeticae erschopft. Die daselbst zum Ziele fiihrenden
Rechnungen, die zum groflen Teil nur angedeutet sind, und deren
wirkliche Ausfithrung dem Leser iiberlassen ist, glaube ich in der
hier vorliegenden Darstellung erheblich vereinfacht zu haben. Da
diese Vereinfachung hauptsiichlich auf der in § 1 vorausgeschickten
Einfiilhrung der mit einer jeden bilinearen Substitution verbundenen
drei Formen F,, F,, F, und auf deren symmetrischer Behandlung
beruht, welche mit geringer Rechnung zu dem Hauptsatz (11) fiihrt,
80 war es eben wegen dieser Symmetrie nicht moglich, die Bezeich-
nungen von Gaul beizubehalten. Zur Erleichterung einer Vergleichung
bemerke ich folgendes. Gaufl untersucht die Transformation einer
Form F in das Produkt von zwei Formen f, f, deren Variable ent-
sprechend bezeichnet sind, durch die bilineare Substitution

X = pea’ +pay +p'y2' +9"yY,

Y =gqza' 92y +9"y2 +¢"yy
und gebraucht die Zeichen P, @, R, S, T, U in derselben Bedeutung
wie in Gleichung (4). Um daher von dieser Bezeichnung zu der
meinigen in (24) iiberzugehen, hat man F, f, f' baw. durch f,, f,, f;
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zu ersetzen, und die vorstehende bilineare Substitution geht in (17)
iiber, wenn die Koeffizienten p, p' --- ¢ wie -in (6) ausgedriickt
werden, wobei die Indizes r, s, ¢ bzw. durch 1, 2, 3 zu ersetzen sind.
Beachtet man nun die Vorzeichen der hieraus entspringenden Aus-
driicke (7), so erkennt man, dal man die in den neun SchluB-
gleichungen £ bei Gaull auftretenden beiden Zahlen %, n' bzw. durch
—ny, —m, zu ersetzen hat, um diese Gleichungen & in Uberein-
stimmung mit unseren Gleichungen (18) zu bringen, in denen zu-
tolge (25) m, = m,m, ist. Dies ist deshalb erwidhnenswert, weil
Gaull auf die Vorzeichen der Zahlen =», n' eine wichtige Unter-
scheidung hinsichtlich der Art griindet, wie die Formen f, f in die
Transformation oder Komposition F' = ff' eintreten, worauf wir hier
aber nicht niher eingehen konnen.

$ 3.

Der Satz (11) in § 1, auf welchem alles andere beruht, ist dort
wohl auf dem kiirzesten Wege hergeleitet, nimlich durch unmittel-
bare Rechnung mit den acht Konstanten o, 3, aus denen die Koeffi-
zienten der sechs bilinearen Funktionen (10) und die der drei qua-
dratischen Formen (1) gebildet sind. Man kann aber zu demselben
Resultat und zu einem tieferen Einblick in den Gegenstand der
Untersuchung auf einem ganz anderen Wege gelangen, wobei diese
Konstanten «, 8 gar nicht explizite in die Rechnung eintreten, son-
dern die in (12) angefiihrte bindre trilineare Form als alleiniger
Ausgangspunkt der Untersuchung dient. Der Weg, den ich hierbei
einschlage, beruht auf der freiesten Ausnutzung der totalen Diffe-
rentiation in der Auffassung, wie ich sie mir seit vielen Jahren ge-
bildet und gelegentlich auch befreundeten Mathematikern mitgeteilt
habe*). Da dieselbe nicht nur in der reinen Analysis, sondern auch
in der. Geometrie, Mechanik, in der mathematischen Physik niitzlich
verwendet werden kann und noch nicht so allgemein bekannt zu
sein scheint, wie sie es wohl verdient, so will ich wenigstens das,
was fiir unseren Zweck erforderlich ist, zunichst besprechen.

*) Vgl. §159 der zweiten Auflage (1871) von Dirichlets Vorlesungen iiber
Zahlentheorie und meinen Aufsatz: Zur Theorie der aus » Haupteinheiten ge-
bildeten komplexen GroBen (Gottinger Nachrichten 1885), wo von dieser Auf-
fassung Gebrauch gemacht ist.
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Ich betrachte einen analytischen Raum, in welchem jeder Punkt
durch die Werte von 7 unabhingigen Variabeln (Koordinaten) z,,
Xy, -+, T, bestimmt ist, und bezeichne mit @ den Inbegriff aller
derjenigen Funktionen ¢ dieser Variabeln, welche partielle Derivierte
von beliebig hoher Ordnung besitzen und zugleich der Bedingung

(28) ai,. («%) = adxs <c07%>

geniigen. Dann soll das Zeichen d eine Operation bedeuten, welche
aus jeder solchen Funktion ¢ eine entsprechende, ebenfalls in @
enthaltene Funktion dg in der Weise erzeugt, dall das bekannte
Grundgesetz der totalen Differentiation erfilllt wird, d. h. jede

zwischen m solchen Funktionen ¢,, @,, -+, @, bestehende Identitat
(29) F(p1, o -+, om) = 0
soll die Identitét
oF
(30) Jg. to +a dog + - + dtpm =0

zur Folge haben.

DaBl solche Operationen d iiberhaupt moglich sind, geht aus
der gewohnlichen Auffassung der Differentiale als unendlich kleiner
Anderungen der Variablen hervor; wir miissen aber jetzt feststellen,
in welchem Umfange solche Operationen d in der obigen allgemeinsten
Auffassung existieren, und wodurch sie vollstindig bestimmt werden.
Die letztere Frage 140t sich sofort beantworten; denn wenn ¢ irgend
eine in dem System @ enthaltene Funktion ist, so besteht zwischen

ihr und den » unabhingigen Variablen z,, z,, ---, @, eine Identitit,
die wir in der Form
(31) @ = f(%y, %, -*+, Tn)

darstellen diirfen, und hieraus soll nach der obigen Definition der
Operation d die Identitat

. Jg 9o ;. _ K99

(32) dq)_(? dx+ d&2+ +0 dx, 20 dzx,

folgen; mithin lst die Opelatlon d vollstindig bestimmt, sobald in
jedem Punkte unseres Raumes die Werte der » Funktionen

(33) dz,, dz,, ---, dz,

gegeben sind. Umgekehrt, hat man diese » Funktionen willkiirlich
aus @ gewihlt, und bildet man daraus nach (32) fiir jede Funk-
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tion @ eine zugehorige Funktion d¢ (welche fiir ¢ = x, offenbar
mit der gewidhlten KFunktion dux, iibereinstimmt), so ist leicht zu
zeigen, dafl die hierdurch bestimmte Operation d wirklich der obigen
Grundforderung geniigt. Denn durch partielle Derivation in bezug
auf die Variable x, ergibt sich aus der oben angenommenen Identitit
(29) bekanntlich ’

OF g, 0F 09, | OF o,
0p, 0z, ' dg, 0z, 09, Oz,

multipliziert man mit d«, und summiert, indem man r die Indizes
1, 2, ---, n durchlaufen 1ilit, so ergibt sich mit Riicksicht auf (32)
die zu beweisende Gleichung (30).

Aus dem in (29), (30) ausgedriickten Grundgesetz einer solchen
Operation d leuchtet auch unmittelbar ihre Invarianz ein, d. h. sie
bleibt dieselbe, wenn statt der Koordinaten x ein anderes System von n
voneinander unabhiingigen Funktionen y zur Ortsbestimmung gewihlt
wird, wobei die ihnen entsprechenden Funktionen dy gemiB (32) aus
den Funktionen dx zu bestimmen sind. Auch versteht sich von
selbst, dall zufolge desselben Gesetzes alle Regeln der gewGhnlichen
Differentiation, wie

dp, L 9)) = do, £ dg,, d(9,9) = 9:dg, + ¢,dg,
ihre volle Geltung behalten.

Unter den vielen verschiedenen Namen, welche man je nach der
Beschaffenheit des Anwendungsgebietes einer solchen Operation d
beilegen mochte*), will ich hier den in einem solchen Gebiet ein-
gebiirgerten, freilich in viel speziellerer Bedeutung gebrauchten Namen
Vektor wihlen, wihrend die durch d erzeugten Funktionen d¢ un-
bedenklich Differentiale genannt werden konnen. Die partielle Deri-

vation

d‘; in bezug auf die Variable x, ist offenbar der spezielle
Vektor d, fiir welchen die Differentiale (33) mit Ausnahme von dz,,
welches = 1 ist, identisch verschwinden. Es ist auch zweckmiBig,
den Vektor Null einzufithren, und durch d = 0 anzudeuten, daf

alle n Funktionen (33), also auch alle d¢ identisch verschwinden;

*) Immer von einer Differentiation erster Ordnung oder Variation erster Ord-
nung zu sprechen, ist zu unbequem. Sophus Lie gebraucht fiir seine Symbole X o
die mit den Vektoren identisch sind, den Namen infinitesimale Transformation
(Theorie der Transformationsgruppen; Abschnitt 1, Kapitel 3, §13, 8. 54).
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eine Verwirrung ist hierbei nicht zu befiirchten, weil aus dem Zu-
sammenhang sich immer ergeben wird, ob von der Zahl oder dem
Vektor Null die Rede ist.

Da ein Vektor d aus jedem Llement ¢ des Systems @ ein eben-
falls in @ enthaltenes Element d¢ erzeugt, so fillt diese Operation
unter den viel allgemeineren Begriff einer Abbildung des Systems @
in sich selbst. Solche Abbildungen, die im folgenden ausschliefilich
durch Buchstaben e (mit Akzenten oder Indizes) bezeichnet werden
sollen, gestatten sehr mannigfaltige Verbindungen und symbolische
Rechnungen, die ich jetzt erkldre, um sie spiter auf unsere Vektoren
anzuwenden. Eine Abbildung e von @ in sich selbst erzeugt aus
jedem Element ¢ des Systems @ ein mit eqp zu bezeichnendes Bild,
welches wieder eine in & enthaltene Funktion ist, und die Ab-
bildungen e, €' gelten stets und nur dann fiir eine und dieselbe —
was durch e = ¢’ ausgedriickt wird —, wenn fiir jede Funktion ¢
die Identitit eqp — €' besteht. Aus je zwei Abbildungen e, e,
entspringt eine als Produkt e, e, zu bezeichnende Abbildung, welche
durch die fiir jede Funktion ¢ geltende Identitit (e, e,)p — e, (e,9)
— e,e, @ erklirt wird und von dem Produkt e,e, wohl zu unter-
scheiden ist; ersetzt man aber in dieser Definition die willkiirliche
Funktion ¢ durch e;¢, wo e, eine beliebige Abbildung bedeutet, so
ergibt sich unmittelbar die Geltung des Assoziationsgesetzes

(ere)es = €,(ey85) = €, 6565,

und hieraus folgt in bekannter Weise die bestimmte Bedeutung eines
aus m Abbildungen in vorgeschriebener Folge gebildeten Produkts
e, --- e, Zwei Abbildungen e,, e, heifflen permutabel, wenn
e e, — e,e, ist.

Ebenso sollen Summe und Differenz (e, + e,) und, wenn i eine
Funktion in @ ist, das Produkt ie durch

(ate)g =cptep wd (g =i(ep) = ieyp

erklart werden, und eine symbolische Gleichung von der Form

(34) e =146, + Ageg+ -+ Ape, = > A,
wo die A, Funktionen in @ sind, soll bedeuten, daf fiir jede Funk-
tion ¢ die Identitit

(35) etP:ZMWP
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besteht. Ersetzt man ¢ durch e'gp, wo ¢ eine beliebige Abbildung
bedeutet, so ergibt sich, dafl die symbolische Gleichung

L
(36) _ hee = > ihece,

wo A eine Funktion bedeutet, eine notwendige Folge der Gleichung (34)
ist, d. h. man darf eine solche Gleichung gliedweise von links mit
einer Funktion 4, von rechts mit einer Funktion ¢ oder einer Ab-
bildung €' multiplizieren; ebenso darf man solche Gleichungen ad-
dieren und subtrahieren, wie wenn die Abbildungen e Griflen wiren.
Da ferner ein Vektor d alle Regeln der gewohnlichen Differentiation
befolgt, so ergibt sich aus (35) ebenso, dall auch die symbolische
Gleichung

(37 de = Ade, + > die,
eine Folge von (34) ist.

Wir betrachten im folgenden nur solche Abbildungen e, welche
entweder selbst Vektoren oder Produkte von mehreren Vektoren
sind. Hat man ein System von m Vektoren d,, d,, ---, d,, und
ebenso vielen Funktionen 4,, 4,, ---, 4,, so ergibt sich aus der
Gleichung (32), wenn man sie fiir jeden Vektor d, in Anspruch
nimmt und von links mit 4, multipliziert, dafl jede Abbildung von
der Form

(38) d=2ad +Ady+ -+ Apd, =>4,

wieder ein Vektor ist; einen solchen Vektor ¢ nennen wir ab-
hingig von den m Vektoren d,, und ebenso sagen wir, daB diese
m Vektoren d, voneinander abhingig seien oder ein reduzibles
System bilden, falls es m Funktionen A, gibt, die nicht alle identisch
verschwinden, und fiir welche der vorstehende Vektor d — 0 wird.
Offenbar tritt dieser Fall immer ein, wenn m > m ist; ist aber
m < n, so wird er dadurch charakterisiert, dafi alle Determinanten
m-ten Grades, die man aus den m Zeilen und aus m Spalten des
Systems

d,x,, dyx,, -, d =z,

dyzy, dyxy, -+, dyw,
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bilden kann, identisch verschwinden. Wir sagen ferner, die m Vek-
toren d, in (38) seien voneinander unabhingig oder sie bilden
ein irreduzibles System, wenn die Forderung d = 0 nur durch
das identische Verschwinden aller m Funktionen 1, eifiillt wird.
Bilden n Vektoren d,, d,, ---, d, ein solches irreduzibles System, so
a6t sich jeder Vektor d in der Form

(39) d=2a,d, + A,dy + -+ A, d, = > 1,.d,

darstellen, wo die n Funktionen 1, durch d vollstindig bestimmt
sind. Ein solches System bilden offenbar die » partiellen Deriva-

tionen a—%, und die vorstehende Gleichung geht dann in

. 0
d=2 dxrm
iiber, die mit (32) iibereinstimmt.

Wir wollen jetzt zwei beliebige Vektoren d,, d, betrachten und
die daraus entspringenden Produkte d,d, und d,d, miteinander ver-
gleichen. Zufolge (32) ist

r o 0 s 0 /0
dy sza%dgxr, dlﬁzzm(a%w,xs,
wo 7, s die Indizes 1, 2, --., n durchlaufen, und da jeder Vektor

die Regeln der totalen Differentiation befolgt, so wird

r a 7',8 0 d
dld2q>:20—q’rdld,x,+2 —ql>dlx,d2x,

x 0z, \0z,

und ebenso durch Vertauschung von d,, d,

r

ddo =92 qd +§—d—<22>d 2, d, ,;

2 ox, 217" dx,\dx,) 27177
vertauscht man in der letzten Doppelsumme die beiden voneinander
unabhingigen Summationsbuchstaben r, s miteinander, so ergibt sich
aus der Annahme (28) ihre Identitit mit der Doppelsumme, welche
in der Daistellung von d,d,q auftritt; durch Subtraktion erhilt
man daber die Gleichung

L0
(dlds _dsdl)q’ == 2 o—:.)r(dﬂia —dqyd,) ,,

Dedekind, Gesammelte Werke, II. 21
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in welcher nur die Derivierten erster Ordnung der willkiirlichen
Funktion ¢ auftreten. Definiert man daher eine neue Operation
oder Abbildung (d,, dg) durch

(40) (du dz) - d; ds - d‘z d’] - (d2> d1)7
so wird

T 0 ‘p
(41) @y, d)) p = 23_%“ (dy, dg)

und durch Vergleichung mit (32) ergibt sich der wichtige Satz, dali
diese Abbildung (d,, d,) wieder ecin Vektor ist. Dieser Satz ist
meines Wissens zuerst von Jacobi gefunden (in § 23 der nach-
gelassenen Abhandlung Nova methodus, aequationes differentiales
partiales primi ordinis inter numerum variabilium quemcunque pro-
positas integrandi, dieses Journal Bd. 60) und bildet eine wesentliche
Grundlage seiner Untersuchungen iiber die partiellen Differential-
gleichungen. Ich bemerke ausdriicklich, daf die von ihm mit 4, B
bezeichneten Operationen vollstindig identisch mit unseren Vektoren
sind; daf aber diese Operationen nicht nur die Gesetze der totalen
Differentiation befolgen, sondern dali gerade in dieser, alles andere ein-
schlieffenden Eigenschaft ihr ganzes Wesen besteht, scheint nirgends
deutlich erkannt und in aller Schirfe ausgesprochen zu sein.

DaB zwei Vektoren d,, d, permutabel sind, dab also d,d, —d, d,
ist, wird jetzt durch (d,, d,) = 0 ausgedriickt. Wir betrachten nun
drei beliebige Vektoren d,, d,, d, und bilden darams die Abbildung
(42) (dy5 dy, dg) == d,(dy, ds) — (dy, dy)d, = — (d;; dy, d),
welche zufolge des eben erhaltenen Fundamentalsatzes ebenfalls ein
Vektor ist; verfahrt man nach den bei (34), (86), (37) angegebenen
Regeln, so erhilt man

(dy; dyy dg) = (d,dydy + dydyd,) — (dydyd, + dydgdy),
und hieraus ergibt sich durech zyklische Vertauschung und Addition
der Satz*)
(43) (dy; dgy ds) + (dg; dy, dy) + (dy; dy, dy) = 0.

Wenden wir dieselben Regeln auf die Gleichung (38) am, die
wir wieder in der Form

(44) d =X Ad,

*) Derselbe Satz findet sich in dem angefiihrten Werke von Lie (Abschnitt 1,
Kapitel 5, §26).
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darstellen, und bezeichnen wir mit d' einen beliebigen Vektor, so
erhalten wir

dd =S rdd, dd=21dd +>did;

subtrahiert man die erste Gleichung von der zweiten und wendet
die Symbolik (40) an, so ergibt sich die Vektorgleichung

(45) @, dy = S a(d, d) + S d 1.4,
als eine notwendige Folge von (44).

Bezeichnet man die aus einem Vektor d durch Wiederholung
entspringenden Abbildungen dd, ddd --- bzw. mit d?, d® ..., so
gelten auch fiir diese Operationen die gewohnlichen Regeln der Diffe-
rentiation, z. B.

r s

Pop = S%dﬁxr—}—z 03 gA»dx,dxs.

2
“r s

Geniigen die n Differentiale dz, den partiellen Differentialgleichungen
d*x, = 0 (was z B. immer dann eintritt, wenn sie konstant sind),
so folgt

78 0gq)
2 J— -y
Py = > Jx. o dz, dx,,
und wenn man fiir ¢ eine ganze homogene Funktion zweiten Grades
F = F(x,, «,, -+, &,) wihlt, so wird
(46) - d*F = 2F (dz,, dz,, --, dx,).

Im Falle n =— 2 wollen wir mit z, ¥ die unabhingigen Variabeln
und mit d einen Vektor bezeichnen, der den Bedingungen d?z =d?y =0
geniigt. Betrachten wir nun eine binire quadratische Form

(47) F = F(x,y) = Aa*+ Bzy + Cy*
und setzen deren Diskriminante
(48) B —4A4AC = D,
s0 wird
(49) { dF — (2Ax+ By)dx + (Bx + 2Cy)dy
| = 2(2Adx + Bdy) + y(Bdx + 2Cdy)

und
(50) 3@F = Ada® + Bdxdy + Cdy* = F(dx, dy).
21*
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Diese Gleichungen lassen sich, wenn man die Multiplikation der
bindren Substitutionen benutzt, auch in der Form

1) <2F dF> (x, ><2A B ><x, dx>

dF, d'F dz, dy/\B, 2C)\y, dy
darstellen, und aus dem Satze iiber die Determinante eines Produkts
von Substitutionen ergibt sich
(52) dF? — 2Fd*F = D(xdy — ydzx)*
Es braucht aber kaum gesagt zu werden, dal dies nichts anderes
ist als der bekannte, auch in § 1 benutzte Fundamentalsatz fiir die
Transformation einer bindren quadratiscLen Form F von der Dis-

kriminante D durch eine bindre Substitution (a:, Z;), und dal der

k)
vorstehende Beweis ganz unabhingig von der hier vorgetragenen
Theorie der Vektoren ist; der Satz sollte nur im Anschluf an diese
Tleorie in einer solchen Form dargestellt werden, wie wir ihn dem-
nichst gebrauchen werden.

§ 4.

Wir kehren jetzt zu der in §1 gefithrten Untersuchung zuriick,
um sie in anderer Form zu wiederholen und fortzusetzen. Wir be-
trachten, wie dort, drei Paare von unabhéingigen Variabeln (z,, y,),
(%9, %)y (%5, ¥s), die wir kurz die Paare z;, 2,, z; nennen, und
wollen in diesem sechsfach ausgedehnten analytischen Raume die
Eigenschaften einer bindren trilinearen Form H untersuchen, d. h.
einer ganzen Funktion, welche in bezug auf jedes der drei Paare
homogen vom ersten Grade ist. Hieraus folgt zunichst

J0H 0H 0H 0H  0H J0H
10 + Y 102/'* 20_‘%24‘ 29y, 3(’9“‘%“*“?/3(‘)“;/;-

Bezeichnen wir (wie in § 1) mit », s, ¢ 1rgendeine Permutation
der drei Indizes 1, 2, 3, so konnen wir drei Vektoren d,, d,, d,
durch die gemeinsame Definition
_O0gp 0H oO0¢ 0H
"~ 0%, 0y, 0y, Ox,
einfilhren, wo ¢, wie immer im folgenden, jede willkiirliche Funktion
der sechs Variabeln bedeuten soll. Zufolge (32) ist daher
0H Do — 0H
a_?;: ) rYr =— — 5"%:

(53) H =

(54) dro

(55) d, z, =
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und

(56) dexy, = d,y, = d, 2, = d,y, = 0;

fiir den Vektor d, verhalten sich daher die Paare z,, z, wie Kon-
stanten, wéhrend d, z,, d,y, bilineare Funktionen dieser beiden Paare,
also konstant in bezug auf das Paar 2z, sind. Ist daher ¢ homogen
in bezug auf jedes einzelne Paar, und zwar vom Grade m, in bezug
auf z,, so ist d,¢ homogen von den Graden m,—1, m, + 1, m;+ 1
in bezug auf die Paare z,, z,, z;. Aus (54) folgt zundchst

(57) d,H = 0,
und zufolge (55) nehmen die Gleichungen (53) die Form
(58) H = y,d, &, — z,d,y,
an.
Um nun den in (40) erklirten Vektor (d,, d;) = — (d,, d,) zu

bilden, entwickeln wir die Gleichung (57), indem wir die Operation d,
an dem Ausdruck (58) mit Riicksicht auf (56) vollziehen, woraus
Ysd,ds 2, = x,d,dyy, folgt; setzt man diese durch a, und y,, also
auch durch x,y, teilbare ganze Funktion — x,y,F, s, so wird

(59) dydsx, = x,F, s, d.dyy, = y,F, .

Da nun d,x,, d,y, bilineare Funktionen von z,, 2, also d,d 2, und
d,d,y, homogen vom ersten Grade in bezug auf z,, vom zweiten
Grade in bezug auf z, und frei von 2, sind, so ist ', ; eine bindre
quadratische Form des Paares z; mit konstanten Koeffizienten.
Zufolge (56) ist nun

dyd, x, = dyd,y, = 0,
mithin konnen wir die Gleichungen (59) durch
(dra ds)ws == chr,sa (dm ds) Ys — ysFr,s

ersetzen; vertauscht man » mit s, wodurch (d,, d,) in (dy, d,) = — (., dy)
iibergeht, so folgt hieraus
(dm ds)xr - — era,ra (dm ds)yr _ — yrFs,n

wo F, . ebenfalls eine quadratische Form des Paares z; bedeutet.
Da ferner die Variabeln w;, y, sich fiir beide Vektoren d,, d, wie
Konstanten verhalten, so ist (d,, d)z, = 0, (d,, d,) ¥, = 0.

Hiermit ist der Vektor (d,, d,) vollstindig bestimmt, und zufolge
(32) wird

_ 99 9 99 |
(60) (dr’ ds)‘p — Fr,s(xsdxs + ysd__?;;)—F ( dx + Toy
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Dies Resultat gibt Veranlassung, drei neue, von der Form H
ganz unabhéingige Vektoren e,, e,, e, durch die gemeinsame Erklirung

(61) o = x,g"’ + v, g:
einzufithren, woraus

(62) 6 X, = T, €Y, =Y,

und

(63) e, = €.y, = ¢, 4 — €,y — 0

folgt. Dall eine Funktion ¢ homogen in bezug auf das Paar z,
und zwar vom Grade m, ist, wird jetzt durch e, — m,q aus-
gedriickt; die Gleichungen (53) lauten daher

(64) e.H — H,

und die Gleichung (60) geht iiber in

(dr’ ds)‘p - Fr,ses‘p - F’s,rer‘P-

Setzt man nun ¢ = H und bedenkt, dal zufolge (57) auch
(d,, d))H = 0 ist, so erhiilt man (F,,—F,,)H — 0, und da wir
annehmen, dal} die Form H nicht identisch verschwindet, so ergibt
sich F, , = F,, (was iibrigens auch in dem ausgeschlossenen Falle
H = 0 gelten wiirde, weil zufolge (55), (59) dann beide Formen
F, ., F,, identisch verschwinden); wir diirfen daher diese quadratische
Form des Paares z; einfacher durch F, — F;(a, y;) bezeichnen, und
zugleich nimmt die vorhergehende Gleichung die Form

(65) @, d) @ = Fi(e;p — e, )

an, welche nach (34) symbolisch auch durch

(66) @y, d;) = Fy(e,—e,)

ausgedriickt werden kann, und die Gleichungen (59) lauten jetzt
(67) d,dyx, = x,F,, d.dyy, = y. 1.

DaB iibrigens die durch die erste Gleichung (59) vollstindig
definierte Grofe F,, symmetrisch in bezug auf r, s ist, hitte man
schon dort leicht zeigen konnen; denn setzt man in (54) die will-
kiirliche Funktion

J0H

P = d,x, = 0‘3/3

b

so erhdlt man
0*H oH 0*H tﬁi_
0x,0y, 0y, 0y, 0y, 0x,’

xsF,’s =



und da die hier auftretenden Derivierten zweiter Ordnung ebenso
wie F,, nur noch die beiden Variabeln x;, y, enthalten, so ergibt
sich die genannte Symmetrie durch partielle Derivation nach z, und
wir erhalten fiir die Form F, , == F,, — F, den Ausdruck
__ 0*H 0*H 0*H o0*H
T 0z,0y, 0y.0x, 0y, 0y, 0z, 0x,
Um jetzt den Zusammenhang der gegenwirtigen Untersuchung mit
der in § 1 deutlich zu machen, bemerke ich folgendes. Identifiziert
man die Form H mit der dort in (12) dargestellten Funktion, so
sind die Konstanten e«,, B,, o, §, bzw. die Koeffizienten von z,z,x.,
Y1 Yo Yss TrYsYs, Yrsy; die in (55) erklirten Grofen d,x,, d,y, sind
identisch mit den Funktionen X,, Y, in (10), und der vorstehende
Ausdruck fiir F; stimmt vollstindig mit der dortigen Definition (1)
der drei Formen F,, F,, F, iiberein.

Den Satz (65) wenden wir jetzt auf zwei Beispiele an. Setzt
man zuerst ¢ = F,, so folgt

(69) d.dF, = 2FF,,
weil d.F, = 0, ¢F, = 2F,, e F, — 0 ist. Setzt man zweitens

¢ = d;x; und bedenkt, dafi diese Funktion bilinear in bezug auf
die beiden Paare z,, z,, dal} also

(68) F,

(70) esdtxt jummd erdtxt ponnd dtwt
ist, so erhilt man d,d,d,x; = d,d,d;x;; zufolge (67) ist aber d,d;a;
= x,F,, uwnd d,d;x, = «, I, mithin wird d,(zF,) = dg(x,F,), und
da z, fiir beide Vektoren d,, d, konstant ist, so folgt der wichtige Satz
(71) drFr - dst-

Diese Funktion ist also symmetrisch in bezug auf alle drei In-
dizes 1, 2, 3 und offenbar eine neue trilineare Form, die wir mit H'

bezeichnen und die zu H adjungierte Form nennen wollen; es
ist also

(72) H = dF, = d,F, — d,F,,
und der Satz (69) geht in
(73) d,H — d}F, = 2FF,

iiber. Da zufolge (55) der Vektor d, den Bedingungen d}z, =d}y,=0
geniigt, so konnen wir hier die am Schlusse von § 3 bewiesenen Sitze
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(50), (52) anwenden. Zufolge (50) 1aft sich die Gleichung (73) auch
in der Form
(74) F, (dr ,, d, yr) = F,F,
darstellen, und dies Resultat ist offenbar vollstindig identisch mit
dem Hauptsatz (11) in § 1, welcher dort auf ganz anderem Wege
bewiesen ist. Bezeichnet man ferner mit D, die Diskriminante der
Form F,, so folgt aus (52) die Gleichung

d,F? —2F,d}F, = D, (x,d,y, — y,d,x,)
welche zufolge (72), (73), (58) die Form

H?®—4AF.FF, — D, H*

annimmt; da F,F,Fy, = F F,F, und H, H' symmetrisch in bezug
auf die Indizes 1, 2, 3 sind, so folgt hieraus, daf die Formen F,
F,, F; dieselbe Diskriminante
(75) D =D, =Dy= D,
besitzen, was mit dem Satze (3) in § 1 iibereinstimmt, und zugleich
ergibt sich, dall zwischen den beiden trilinearen Formen H, H' und
den drei quadratischen Formen F,, F,, F, die Identitit
(76) H?— DH* = 4F | F,F,
besteht.

Der Satz (71), auf welchem die Einfiihrung der zu H adjungierten
Form H' beruht, 148t sich auf einem zwar nicht kiirzeren, aber mehr
symmetrischen Wege beweisen, den ich hier noch andeuten will. Aus
den Definitionen (55), (56), (62), (63) ergibt sich leicht die Vektor-
identitdt
(7 (d:, €) = —dy;
vertauscht man r mit & und subtrahiert, so folgt (d;, ¢;, —e,) = 0,
d. h. die beiden Vektoren d; und (¢, —e,) sind permutabel. Unter-
wirft man daher die Gleichung (66) nach der in (45) angegebenen
Regel dem Vektor d, und benutzt das in (42) erklirte Symbol, so
erhilt man
(78) (ds; d,, dg) = diFy(e; —e,),
und aus dem Satze (43) folgt

(dyFy— dsFy)e, + (dy Fy — d, F\)e, + (d, F, — d, F,) e, = 0;
da aber die drei Vektoren e, ¢,, e, zufolge ihrer Definition (62), (63)
offenbar ein irreduzibles System bilden, so miissen die drei Differenzen
(d,F,— d,F,) identisch verschwinden, wie zu beweisen war.
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Ich bemerke endlich noch folgendes. Wenn fiir eine partikulidre
Form H die Form F, identisch verschwindet, so mufl zufolge (72),
(74) auch H' und mindestens eine der beiden Formen F,, F; identisch
verschwinden. Man findet leicht, dall das Verschwinden der beiden
Formen F,, F, stets und nur dann eintritt, wenn H = b, , k, ist, wo
hy,. eine bilineare Funktion der Paare 2,, 2,, und A, eine lineare
Funktion des Paares z, bedeutet. Verschwinden alle drei Formen
F, F, F,, soist H=h hyh, ein Produkt von drei linearen Faktoren,
und umgekehrt.

§ 5.

Es liegt nahe, die eben gefiihrte Untersuchung von der Form H
auf die zu ihr adjungierte Form H' zu iibertragen. Bezeichnet man
mit d;, F, die Vektoren und quadratischen Formen, die hierbei aus
den auf H beziiglichen Vektoren und Formen d,, F, hervorgehen,
wihrend die in (61) erkldrten Vektoren e, ihre von H ginzlich unab-
hingige Bedeutung behalten, so ist

odp O0H' Jd¢ O0H

(79) d;(P:d_a;B—y:—(—?—y:g;::;
hieraus folgt zunichst die mit (57) analoge Gleichung
(80) d,H' =0,

und durch den Vergleich mit (54), (73) ergibt sich
(81) dH = —d H = —2F Fy
ebenso entspricht der Gleichung (64) die Gleichung
(82) e,H — H'

Sodann bemerken wir, dafi die drei Vektoren d,, e,, d, gewill
ein reduzibles System bilden, weil die beiden Paare z,, 2; sich
gegen sie wie Konstanten verhalten; es mufl also eine Identitdt von
der Form

Ad,+ 2d, + we, = 0
bestehen, wo 4, 4, u Funktionen bedeuten, die nicht alle verschwinden;
unterwirft man dieser Identitit die beiden Formen H, H' und be-
riicksichtigt (57), (64), (80), (81), (82), so folgt

VM(—2FF)+uH =0, L2F,F)+upuH =0,
mithin wird
(83) —H'd,+ Hd, +2F,F,e, — 0.
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Wendet man dieses Resultat auf die Funktion F, an und be-

denkt, dall d,.F, = H', e, F, — 2F, ist, so folgt
—H?*4+ Hd, F,+4F,F.F, = 0,

und zufolge (76) ergibt sich
(84) d,F, = DH.

Ubertriigt man jetzt den Satz (66) auf die Form H', so erhiilt man

(dy, dy) = Fi(e,— &),

was als Definition der quadratischen Form F; angesehen werden
kann. Lift man diesen Vektor auf die Form F, wirken, so wird
die rechte Seite — 2F F;; da ferner d.F, = 0, d;F;, = DH, also
d,, d)F, — dd;F; — Dd,H — D(— 2FF,) ist, so folgt
(85) F, = — DFy
die gemeinsame Diskriminante 1)’ der drei Formen Fi, Fy, Fi ist
daher

(86) D = D3
und die vorhergehende Vektoridentitit wird
(87) (d,, d;) = — DF(e;,— e,) = — D(d,, dy).
Endlich folgt aus der Definition (72) der zu H adjungierten
Form H', daf die zu H' adjungierte Form = d;F; — — Dd;F,

= — D®H, also die mit (—D?) multiplizierte erste Form H
ist, und hiermit leuchtet ein, daf die Identitiit (76) bei dem Uber-
gang von H zu H' sich nur mit (— D?%) multipliziert. —

Die Form H und ihre Adjungierte A’ bilden die Basis einer
Schar von unendlich vielen trilinearen Formen
(88) H' = Hp+ H'q,
wo p, ¢ zwei willkiirliche Konstanten bedeuten. Behandelt man
eine solche Form H" ebenso wie H in § 4 und definiert drei ibr
entsprechende Vektoren d, durch

__Ogp 0H" Jdg 0H"

(89) d:(p“m—@_d—wm’

so wird offenbar

(90) GH =0, d = pd,+qd,

und aus den fiir die Vektoren d,, d, gefundenen Resultaten ergibt sich
91) dH — —2F,F,q, d/H = + 2F,F;p,

(92) d/F, — H'p + DHgq,
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also

(93) (dy, dYF, — d/d/F, = 2F F,m,
WO

(94) m = p* — Dg*

Die aus der Form /" entspringenden quadratischen Formen
Iy, By, F') sind nach (66) durch die Vektoridentitit

(@, &) = F} (e, —e¢,)
zu erkldren, und aus (93) folgt
(95) F;{ = mF,,
(96) (dy, di) = mF(e;, — e,) = m(d,, d).
Die Trias der zu den trilinearen Formen A" der Schar (88)
gehérenden quadratischen Formen ist daher invariant, wenn man

von gemeinsamen konstanten Iaktoren m absieht. Drei solche
I'ormen (95) besitzen die gemeinsame Diskriminante

D" = Dm?,

und fiir die zu A" adjungierte Form H'' = d,/F, findet man nach
(95), (92) den Ausdruck
(97) H" = mH p+ DHgq);
diese Form ist daher ebenfalls in der Schar (88) enthalten.

Um endlich die aus (76) hervorgehende Identitit
(98) H1112 _—DI/HIIQ - 4F;7Fé/ ;;I
zu bestétigen, wollen wir die Quadratwurzeln aus den Diskrimi-

nanten D und D" = Dwm? einfithren und‘ihren Zusammenhang immer
so bestimmen, dal

(99) VD' = mVD
wird; dann folgt aus (88), (97) die Gleichung
(1000 A"+ H'VD" = m(p+q VD)(H' + L VD);
ersetzt man hierin VD durch — VD, also auch VD" durch — VD",
und multipliziert beide Gleichungen miteinander, so folgt
H" —D'"H" = m*(H'*— DH?),

was zufolge (76), (95) mit der zu beweisenden Gleichung (98) iiber-
einstimmt. —
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Der in (96) erhaltene Satz gibt noch zu folgenden Bemerkungen
Veranlassung. Entwickelt man den Vektor (d;, dy) nach den in §3
angegebenen Regeln aus der Definition (90), so wird

/s &) = p*(ds, d) + pg{(dyy &) -+ (d, d)) + ¢*(dr, do);
die Vergleichung mit (96), wo m = p* — D¢? ergibt daher wieder
den Satz (87), und da der mit pg multiplizierte Vektor verschwinden
mub, so erhilt man den neuen Satz, dafl der Vektor
(101) @y, dy) = (ds, dy),
also symmetrisch in bezug auf die beiden Indizes r, s ist. Dasselbe
Resultat ergibt sich auch, wenn man nach der in § 3 angegebenen
Regel (45) die Identitdt (83) dem Vektor d, unterwirft und hierbei
die Sitze (66), (77) benutzt; auf diese Weise erhilt man den sym-
metrischen Ausdruck
(102) H(d_,,d;.) :Ft{2Fl'dr~“H’er+2Fsds_H'es}7
der sich aber noch einfacher darstellen laft.

Fiihrt man ndmlich noch drei Vektoren 4,, d,, 0, durch die
gemeinsame Erklirung
. O0p 0F, 0¢ OF,

(103) %9 = 5 9y Oy, O,

ein*), so folgt unmittelbar

(104) 0, F, = 0;

vergleicht man ferner (103) mit den Definitionen (54), (79) und be-
riicksichtigt (72), (84), so erhdlt man

(105) 6,H = —d,F, = —H', §,H = —d,F, = — DH.

Die drei Vektoren 0,, d,, e, bilden offenbar wieder ein reduzibles
System, und wenn man #hnlich verfihrt, wie bei der Herleitung des
Satzes (83), indem man die beiden vorstehenden Ausdriicke fiir 8,.F,,
0, H benutzt, so ergibt sich

(106) H¢§, = 2F,d,— H'e,,
wodurch die Gleichung (102) in
(107) (ds, dr) = Fy(0, + 0,) = (d,, dy)

iibergeht. Eliminiert man aus den beiden Gleichungen (83), (106)
einmal d,, dann e,, mit Riicksicht auf (76), so erhdlt man noch zwei
dhnliche Relationen, die sich aber auch aus (104), (105) ableiten

*) Ich bemerke beildufig, daB hieraus 8 ar = Dar, Jzyr = Dyr folgt.
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lieBen; das System dieser vier Gleichungen, durch welche die Ab-
hingigkeit von je drei der vier Vektoren e,, d,, d;, 0, ausgedriickt
wird, ist das folgende:

* DHd,— H'd.+ 2F,F,5, = 0,
— DHe, x 4 eF.d.—  HS, = 0,
(108) He, —2F,d, x +  H§ =0,
—2F . Fie, + H'd.— Hd, = = O.

§ 6.

Da jede biniire quadratische Form ein Produkt von zwei linearen
Faktoren ist, so folgt aus (76), daB jede der beiden konjugierten
trilinearen Formen

(109) U=3#+HVD), V=1i®H—HVD)
deren Produkt
(110) UV =F,F,F,

ist, und welche als spezielle Fille in der Schar der Formen (88)
enthalten sind, ein Produkt von drei linearen Faktoren ist. Wir
nehmen im folgenden an, dal H eine allgemeine Form ist, d. h. dal
ihre acht Koeffizienten «, $ willkiirliche Konstanten sind, und be-
zeichnen mit

(111) A= %+ @ Y, Wt = %+ @Y,

lineare Funktionen des Paares z,, in denen die Variable z, den
Koeffizient 1 hat. Bezeichnet man ferner die Koeffizienten der
Formen F, wie in (1), so kann man zufolge (110) gleichzeitig

(112) U= Lidh;, V= DMy p,p,
und

(113) F, = A,4u,

setzen, wo L, M Konstanten sind, die der Bedingung
(114) LM = A4,4,4,

geniigen*), und die Konstanten ®,, @, sind als Wurzeln einer qua-
dratischen Gleichung in ibrem Komplex durch

(115) A (o, + @) = B,, A.0.0, = C,
bestimmt; es kommt darauf an, sie genau voneinander zu unterscheiden.

*) Bezeichnet man die den Koeffizienten «, 8 der Form H entsprechenden
Koeffizienten von H’' nit o', 8, so ist offenbar

0L = oy +ay VD, 2M = o) —a,{D.
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LaBt man die Form A" in (88) mit der Form U in (109) zu-
sammenfallen, indem man 2p — VD, 2¢q = 1 setzt, und behalt fiir
diese spezielle Form H” — U die Vektorbezeichnung d, bei, so ver-
schwindet die Konstante m in (94), mithin verschwinden zufolge (95)
auch die drei quadratischen Formen F, identisch, was mit den am
Schlul von § 4 gemachten Bemerkungen vollstindig iibereinstimmt.
Aus der Definition von d; und aus (112) ergibt sich sodann

d) x, = gg— = LA M0, d&'y, = —gg = — L4,
und hieraus folgen die beiden Gleichungen

dyd, = 0, dyu, = LiA(00, — @),
deren erste auch eine unmittelbare Folge der Gleichung d, H" =d, U=0
ist. Zufolge (113) wird daher

d/F, = A4, d)u, = A,U (0, — @),
und da andererseits die Gleichung (92) in

A)F, = XH VD + DH) = U VD
iibergeht, so ergibt die Vergleichung beider Ausdriicke das unter-
scheidende Resultat

(116) A, (o0, — o)) = VD.

Verbindet man dasselbe mit (115), so folgt
_B4VD _ B—\D

(117) 0, = 24, 0y = 24,

und hierdurch sind die sechs linearen Funktionen A,, w, vollstindig
bestimmt.

Wir kehren nun noch einmal zu den durch die Form H ge-
gebenen Vektoren d, zuriick, um ihnen die Funktionen U, V, i,, u,
zu unterwerfen. Da d,H — 0 und d,H' — 2F F, ist, so folgt aus
den Definitionen (109)

d,-U j— d,V: FsFt;
andererseits ergibt sich aus denm Darstellungen (112)
a4, U = LiAd,h,, .V = Muy,u:d,p,;

vergleicht man diese Ausdriicke mit einander und beriicksichtigt (113),
(114), so folgt

(118) Ardrlr = Ml‘sl‘tv Ardrlv"r = LAk,
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und die vorhergehenden Ausdriicke vereinigen sich in
(119) d,U = d,V=F,F, = A,d, 4, d.y,.

Bedenkt man nun, dal die homogenen linearen Funktionen 4., w,,
wemn z,, y, durch d,.z,, d,y, ersetzt werden, in d,A,, d,u, iiber-
gehen, so liBt sich diese letzte Gleichung zufolge (113) auch in
der Form
F.d, x, d.y,)—= FF,

darstellen, die wir frither in (74) erhalten haben, und die, wie schon
bemerkt, mit dem Hauptsatze (11) in § L iibereinstimmt. Die
Gleichungen (118) dagegen enthalten eine wichtige Erginzung zu
diesem Transformationssatz, weil sie lehren, in welcher Weise hierbei
die beiden Linearfaktoren von F, sich transformieren, und dies ist
von Bedeutung fiir die Art, in welcher nach Gaull die Formen F, F
in die Transformation eintreten (vgl. den Schluf von § 2).

In dhnlicher Weise folgt aus (105), wenn man den Vektor 0,
auf die Darstellungen (109), (112) wirken laft,

8,U= —UYVD, &, V=VYVD,

(120) =~ —

67'}'1" = _lera ‘Sry'r:ﬂl‘r‘/D’

und hieraus nach (113) wieder die Gleichung (104).
§ 7.

Es ist schon in § 1 bemerkt, dafl die Diskriminante D der drei
Formen F,, F,, F, eine homogene Funktion vierten Grades von den
acht Konstanten «, 8 ist, welche nach § 4 zugleich die Koeffizienten
der Form H sind. Ich will jetzt zum Schlufl noch auf die be-
herrschende Stellung aufmerksam machen, welche diese Funktion D
einnimmt, indem ich nachweise, dafl aus ihren partiellen Derivierten
auch die Koeffizienten der zu H adjungierten Form H' und die der
drei Formen F,, F,, F, sich bilden lassen.

Nach § 4 sind «,, B,, @, B, bzw. die Koeffizienten der Produkte
Xy Xq sy Yy Y Ysy TrYsYsy Yr&ey in H, d. h. es ist

. _ 0°H
“ = 35,0200, P T oy,0y,00°
0*H 0*H
“ = 9a,0y,0y.° P ay, 05,00,
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und wir wollen mit o, B¢, or, B, die entsprechenden Koeffizienten
in der adjungierten Form H' bezeichnen. Fiir die letatere ergibt
sich aus ihrer Definition (72) der Ausdruck

, 0H
== (z A,- x, + B,‘ y'r) a——y—’ —_— (Br X, + 2 Or yr) a—x; )
mithin wird
OH' o 4 OH oH OJOH 0H 0H
oz, ~ "oy, " Pan oy, = oy, %0
und durch fortgesetzte Derivationen erhilt man daher
121) { “:) == 2Arﬁr"—Bra07 ﬁ(’) = Brﬁo_Qoran
( o, — 2A4,8,— B.o,, pr—=B,p —2C,a,
Aus den in (2) angegebenen Ausdriicken fiir die Koeffizienten
A,, B,, C, der Form F, folgt nun

0C, 04, 9C, 04,

doy — 0f, 0w 0B, "

0B, 04, 0B, oC,
‘o‘ﬁ_‘):aar:‘-“m (T‘Zo_:d—ﬁ:—:—ﬂo’
04, 0B, 9C, 0B,

day 3B, ™ 9B, da  Pr

mithin erhidlt man mit Riicksicht auf D — B2 — 4 4,0, ftiir die
Koeffizienten von H' die Formeln

wo=—2457+ 8 Jr= 292,
fo=—B Gori2050 =222
=24 gg’ +B Gr = 357
g, = — B, a +20,3A :—.;-g%.

Bezeichnet man daher mit (e, 8) jedes der vier Paare (o, f,),

(0t By (b3, By), (05, B5) und mit (a', ') das entsprechende Paar fiir
die Form H', so wird

Y

,_ 10D . 10D



— 337 —

Hieraus erhilt man fiir die beiden Paare (ay, 8;), (e%t, Bt), indem
man den Ausdruck D = B! — 4 4,C, beibehilt und die Derivierten
von A,, B,, C, gemif (2) bildet, die Ausdriicke
(123) { a,} = B,oa,— 20,8, ﬁ% = 24,0, — B, 8,

oy = B, —2C, 8, Bt = 24,0,— B, ;.

Bedient man sich der Bezeichnung fiir die allgemeine Kom-
position von rechteckigen, nach Zeilen und Spalten geordneten GroBen-
systemen (Matrizen), so kann man die acht Gleichungen (121), (123) in

Bra _201' ﬂm Oy Oy ﬂo . ﬁ;a “:9’ a;a ﬁ()
(124) <2 A-rs _Br ><°‘oa ﬁh ﬁsa ar> o <“:Jv ﬁ;, ﬁ;a “r,>
zusammenfassen; permutiert man die Indizes 7, s, ¢, so erhdlt man
fiir jeden der acht Koeffizienten o, 8’ drei &ullerlich verschiedene
Ausdriicke, die alle aus (122) entspringen, wenn man D wie in (3)
durch die Koeffizienten der Formen F, oder F, oder F, darstellt.

Hiermit ist gezeigt, dall die Koeffizienten der zu H adjungierten
Form H' durch Derivierte erster Ordnung von D dargestellt werden;
durch fortgesetzte Derivation erhdlt man fiir die Koeffizienten der
quadratischen Formen F,, F,, F, die folgenden Ausdriicke

b _ oD ., __ D _ oD
08,0, Oo,0e;’ "7 de,0a,.  0B,0B;’
6B, — 0*D n D D D ’

du, 0B,  0eydf; O, 0B, Ooy0p,
deren Analogie mit den Darstellungen (2) von —C,, — 4,, + B,
ersichtlich ist; die Ausfiihrung der Rechnung mag aber dem Leser
iiberlassen bleiben.

Das in (122) erhaltene Resultat reizt dazu, in dem von den

sieben Paaren (o, B), (., ¥,) gebildeten, vierzehnfach ausgedehnten
Raume einen Vektor & einzufiihren, welcher durch

64, =

(125)

(126) e — o, aﬁ:ﬂ', 6:1:,:6«3/,:0,
also durch

_1@P/9g dD dg dD
(127) O =7 <W?9?“‘6’E‘07>

definiert wird, wo ¢ eine willkiirliche Funktion bedeutet, und die
Summe iiber alle vier Paare («, f) auszudehnen ist. Da H eine
homogene lineare Funktion der GroBen o, # ist, so folgt aus (126)
unmittelbar

(128) 0H = H.

Dedekind, Gesammelte Werke, II. 29
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99 99
oz’ dy,’
dp 0d¢ 60(}) __dig

Ersetzt man ¢ in (127) durch so folgt

dx, Ox,’ dy, 0y’

d. h. der Vektor 8 ist permutabel mit den Vektoren agx_’ 0—0;/—;
deutet daher o, eine beliebige Funktion, welche frei von den beiden
Variabeln z,, y, des Paares 2, ist, so hat 4, dieselbe Eigenschaft,
und wenn &, irgend einen der vier in (54), (61), (79), (103) erklérten
Vektoren d,, e,, d,, 8, bedeutet, die alle nur auf das Paar 2, wirken,
so folgt hieraus

(129) b

be-

0, &), = de, ¢, — &, 09, = 0,
weil & ¢, = & 09, = 0 ist. Um also einen solchen Vektor (9, &,)
vollstindig zu bestimmen, braucht man nur noch die beiden Funk-
tionen (0, &)z, und (9, &)y, zu ermitteln.

Beginnt man mit dem Vektor & = d, und beriicksichtigt (126),
(128), (129), so erhilt man
0H 00H OH

©0,d)x, = dd,x, = 63—_1/; = 5y, —dy. = d, x,,
6 dyp =3y =3(-50) = -D0 = - —ay,
und da zugleich (0, d,)v, = 0 = d, ¢, ist, so folgt
(130) 4 0,d,) = d,.
Verfahrt man &hnlich mit dem Vektor & — e,, so ergibt sich,
daBl & permutabel mit e,, also auch mit (e, —e,) ist, d. h. es ist
(131) (0,e,) =0, (0,e,—e,) = 0.

Wendet man nun den Satz (43) auf die drei Vektoren 4, d,, d,
an und bedenkt, dal

(dy,d) = Fi(e,—e,), (do,d) = —d;, (8,d,)=d,
ist, so folgt zunichst
(6, F, (es - er)) - (dr’ d;) + (dsa d;) = 0;

zufolge (101) ist aber (d,, d;) = (dy, d;), und da nach der in (45)
angegebenen Regel

(0, Fi (e, —e,)) = Fy(0, e,— ¢,) + 0F;(e;— e,)
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ist, wo das erste Glied rechts nach (131) verschwindet. so ist
0F;(e,—e) — 0, und hieraus folgt

(132) O0F, —0; 04, = 0B, = §C, — 0,
also auch
(133) 0D = 0,

was iibrigens auch unmittelbar aus (127) folgt.
Laft man jetzt den Vektor (130) auf F, wirken, so wird

0d,F, —d.0F, —=d,F,, wdda d.F,==H' 0F, =0, d,F, = DH
ist, so folgt

(134) 0°H — 0H' = DH,
mithin
(135) 0w = 0o’ = Do, 6 = 08 = Dp,

was sich auch aus (121) mit Riicksicht auf 0 4, = 0B, — 6C, =0
leicht ergeben wiirde.

Verfihrt man endlich auf dieselbe Weise mit den Vektoren
d,, 8,, so erhidlt man, wie der Leser sofort finden wird,

(136) O, d) = Dd,, (3,8,) = 0.

Erlduterungen zur vorstehenden Abhandlung.

Dedekind behandelt hier wieder die Komposition der quadratischen Formen,
ein Problem, das er schon wiederholt in den Supplementen zu Dirichlets Zahlen-
theorie studiert hat. Die Bemerkung Dedekinds, dal jede bilineare Form die
entsprechenden komponierbaren Formen bestimmt, hat schon Cayley (Journ. f.
Math. 39 (1850), S.14—15) gemacht. Arndt (Arch. f. Math. u. Phys. 15 (1850),
8. 429—480) hat sich auch mit #hnlichen Fragen beschiftigt. L. E. Dickson
(History of the theory of numbers, Bd.3, S.75) bemerkt: ,Dedekind war offen-
bar nicht mit den Resultaten von Arndt und Cayley bekannt, indem er das
Problem von neuem angriff und eine einfache und symmetrische Behandlungsweise
entwickelte.“

Eine iibersichtliche Darstellung der Geschichte der Theorie der Komposition der
quadratischen Formen findet man in dem eben erwihnten Buch von L. E. Dickson,
Bd. 3, Kap. 3. Unter den wichtigsten neueren Arbeiten iiber die Komposition quadrati-
scher Formen sollen die folgenden erwihnt werden: H. Weber, Gott. Nachr. 1907,
S.86—100. A.Speiser, Festschrift zu H. Weber, 1912, S.375—3895. H.Brandt,
Journ. f. Math, 143 (1913), S.106—127; 150 (1920), S.1—46. Math. Zeitschr.
17 (1923), 8.153—160; Math. Ann. 91 (1924), S. 300—315. o

Te.




XXXIV.

Uber den Zellerschen Beweis des quadratischen
Reziprozititssatzes.

[Festschrift Heinrich Weber zu seinem siebzigsten Geburtstag am 5. Mdrz 1912
gewidmet von Freunden und Schiilern. Leipzig und Berlin 1912, S. 23—36.]

Das Lemma, auf welches Gauf} seinen dritten und fiinften Beweis
des Reziprozititssatzes gegriindet hat, ist spiter der Ausgangspunkt
tiir viele andere Beweise desselben Satzes geworden?). Unter allen diesen
Beweisen scheint mir der einfachste der zu sein, welchen Chr. Zeller?)
mir in einem Briefe vom 8. Juli 1872 mitgeteilt hat; dieser Brief
schlieBt mit den durchaus zutreffenden Worten: ,Man braucht also
jene HilfsgroBen nicht, welche bisher bei dem Beweise unseres Satzes
verwendet worden sind und denselben umstidndlich gemacht haben.“
In der Tat vermeidet Zeller ginzlich die in dem dritten Beweise
von Gaul eingefiihrten grofiten Ganzen [x] und gelangt zum Ziele,
indem er zwel neue Betrachtungen mit dem Lemma von Gauf} ver-
bindet. FEinige Monate spiter hat Zeller (in dem Sitzungsberichte
der Berliner Akademie vom 16. Dezember 1872) einen sehr dhnlichen
Beweis veroffentlichen lassen, in welchem an Stelle der zweiten Be-
trachtung eine dritte tritt, wodurch aber die Einfachheit nach meiner
Ansicht ein wenig gelitten hat. Mag nun diese Abinderung noch so
geringfiigig scheinen, so glaube ich doch Zellers Verdienst in ein
helleres Licht zu riicken, wenn ich den wesentlichen Inhalt des ge-
nannten Briefes in freier Umarbeitung und gednderter Bezeichnung
jetzt bekannt mache.

Hierzu ist es freilich notig, die bekannten Tatsachen, auf denen
das Lemma von Gaufl beruht, kurz in Erinnerung zu bringen, und

1) Eine sehr eingehende Darstellung dieser Beweise findet man bei P. Bachmann
(Niedere Zahlentheorie, erster Teil, 1902, Seite 212—286).

2) Damals Pfarrer und Bezirks-Schulinspektor zu Weiler bei Schorndorf
(Wiirttemberg), spiter Seminarrektor in Markgroningen, wo er im Jahre 1899 als
Oberschulrat verstorben ist.
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zwar in der Form, dali unter dem Reste einer ganzen Zahl in bezug
auf einen ungeraden Modulus p> 1 immer ihr absolut kleinster,

also zwischen den Grenzen i;—) gelegener Rest verstanden werden soll.

Labt man nun, wenn g relative Primzahl zu p ist, den Faktor A
alle ganzen Zahlen

des Intervalles 0 <A <12: durchlaufen, und bildet man die Reste a

und die Quotienten y fiir die Produkte
(1) hg = a4+ yp = a (mod. p),
so sind diese Reste a alle von Null und auch voneinander verschieden,
weil zwei verschiedene Faktoren A immer zwei inkongruente Produkte hq
erzeugen; da ferner auch die Summe von zwei Produkten A¢q niemals
durch p teilbar ist, so sind sogar die absoluten Werte aller Reste a
verschieden und stimmen folglich in ihrem Komplex mit den Faktoren h
vollig iiberein; jeder Faktor A ist auch der absolute Wert von einem
und nur einem Reste a. Bedeutet daher P das Produkt aller Fak-
toren A, und m die Anzahl derjenigen Reste @, welche negativ sind,
so ist P(— 1)» das Produkt aller Reste @, und durch Multiplikation
aller Kongruenzen (1) ergibt sich

p—1

Pq * = P(— )" (mod. p).
Wird jetzt angenommen, dal die ungerade Zahl p eine Primzahl

ist, so ist das Produkt P nicht teilbar durch p, mithin

p—1

q * = (— )™ (mod. p).
Das nach Euler benannte Kriterium besteht bekanntlich darin, daB
die Potenz linker Hand = + 1 oder = — 1 (mod. p) ist, je nachdem ¢
quadratischer Rest oder Nichtrest von p ist, und wenn man diese

positive oder negative Einheit nach Legendre durch das Symbol (%)

bezeichnet, so kann das Resultat der vorhergehenden Betrachtung
durch die Gleichung
(q__) f— (____ l)m

p
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ausgedriickt werden'). Hierin besteht das obenerwihnte Lemma von
Gaub.

Ist ¢ ebenfalls eine ungerade positive Primzahl, so wird der zu
beweisende Reziprozitidtssatz bekanntlich durch die Gleichung

p—1g—1
BB -
q/ \p
ausgedriickt, welche jetzt mit Hilfe des Lemma von Gaul} eine ein-

fachere Gestalt annimmt. Durchliuft ndmlich der TFaktor L alle
ganzen Zahlen

—1
1, 2, ’qT

des Intervalls 0 <k <%—, und bildet man wie in (1) die Reste b und

die Quotienten x fiir die Produkte
(2) kp =1>b+4 xq = b (mod. g),
so sind die absoluten Werte der Reste b wieder alle verschieden, und

ebenso wird
72) —(— 1)
( 7 (— 1),

wo n die Anzahl derjenigen Reste b bedeutet, die negativ sind;
hierdurch verwandelt sich der zu beweisende Satz offenbar in die
Kongruenz

3) m4n= p_'_;_l g—;—l(mod. 2),
welche auch so ausgesprochen werden kann: Die Summe m 4 n ist
stets und nur dann ungerade, wenn p = ¢ = — 1 (mod. 4) ist.

Nachdem diese Umformung des Reziprozitiitssatzes, welche die
Grundlage fiir den dritten und fiinften Beweis von Gaufl bildet, in
Erinnerung gebracht ist, will ich jetzt die beiden Hauptpunkte hervor-
heben, auf denen Zellers Beweis beruht. Hierbei setze ich lediglich
voraus, es seien p, ¢ relative?) Primzahlen, beide ungerade, positiv

1) E. Schering hat bemerkt, daB dieselbe auch fiir das von Jacobi ver-
allgemeinerte Symbol von Legendre gilt (Monatsbericht der Berliner Akademie
vom 22. Juni 1876).

2) Der folgende Beweis gilt daher zufolge der vorhergehenden Anmerkung
auch fiir den verallgemeinerten Reziprozititssatz.
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und > 1; auch soll (wie in der Berliner Darstellung) p die kleinere
dieser beiden Zahlen bedeuten.

Die erste Bemerkung Zellers geht aus einerVergleichung der beiden
Reihen (1) und (2) hervor und besteht darin, dafl alle Gleichungen (1)
aus ebenso vielen Gleichungen (2) nur durch Umsetzung ihrer Glieder
entspringen. Ist z. B. p = 11, ¢ = 27, so erhilt man die Reihe (2)
und daraus die Reihe (1) in der folgenden Tabelle:

l-p=+11+0-q
2.p=—5+19q|l.q=+5+2-p
3:p=+ 6+1.¢g
4.p=—10+2-q
5op=+ 1+4+2.q|2.¢g=—1+5-p
6:p= +12+42.q
T p=— 4+3.q 3.gq=+4+7p
8-p=+ T+3-q
9.p = — 94 4.¢q
10-p=+ 2+4+4.q 4.g=—2+4+10-p
11-p =+ 134+ 4-¢q
12.p—=— 3+5.q|b.gq=+34+12.p
13.p=+ 8+5-¢

Um diese Beziehung zwischen den beiden Reihen allgemein zu
beweisen, setze man jede Gleichung (1) in die Form

yp = —a+hg;
aus der Definition der Zahlen @, » und aus unserer Annahme p <Zgq

folgt
—Pc—a<+? p<re<le

hieraus durch Addition und Division durch p

mithin auch 0 <y <%. Also ist jeder in der Reihe (1) auftretende
Quotient y auch einer der Faktoren k£ in der Reihe (2), und da jede
Zahl — a zwischen den Grenzen -+ g , also gewil auch zwischen 4+ %

liegt, so ist — a der diesem Faktor £ — y entsprechende Rest b des
Produktes kp in (2), und der Quotient x = h, w.z b. w.
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Mit diesen Resten b — — @, deren Anzahl = P ; L ist, sind aber

alle zwischen den Grenzen 4 g liegenden Reste b in (2) erschoptt,

weil, wie oben bemerkt, die absoluten Werte aller Reste b voneinander
verschieden sind. Die Anzahl m der negativen Reste a in (1) ist daher
zugleich die Anzahl derjenigen positiven Reste b in (2), welche

<g sind; fiigt man zu diesen m positiven Resten b noch alle # nega-

tiven Reste b hinzu, so ist die Summe m 4+ n die Anzahl aller
Reste b in (2), welche in dem Intervalle

) —fcb<t ®
liegen.

In dem obigen Beispiel p = 11, ¢ = 27, wo m = 2, n — b,
liegen im Intervalle (4) die sieben Reste b — — 10, — 9, — 5, — 4,

— 3, + 1, 4 2; die iibrigen sechs Reste sind b =6, 7, 8, 11, 12, 13.

Nachdem hiermit die Bedeutung der Summe m + n fiir die
Reihe (2) festgestellt ist, beantwortet Zeller die Hauptfrage nach
ihrer Paritdt, ob sie gerade oder ungerade ist, durch eine zweite
Betrachtung, deren einfacher Grundgedanke in Folgendem besteht.
Wenn es in einem endlichen System von Elementen & ein Gesetz gibt,
das jedem b ein bestimmtes Element 0" desselben Systems zuordnet, und
zwar so symmetrisch, dab umgekehrt (b')' = b wird, so hat die Anzahl
aller b offenbar dieselbe Paritit wie die Anzahl der Fille, in denen
b = b ist. Fiir unsere Untersuchung, wo es sich um die Reste b in
der Reihe (2) handelt, gewinnt Zeller eine solche Verteilung in sym-
metrische Paare b, ' auf folgende Weise.

Durchlduft der Faktor k& alle seine Werte, und setzt man

(5) k—}—k’:q_*_Tl,

so durchlauft k' offenbar dieselben Werte in umgekehrter Folge, und
jedem solchen Faktorenpaar k, k&' entspricht ein Restepaar

b=kp, b =Fkp (mod g).
Da jeder Rest b durch einen und nur einen Faktor k& erzeugt wird,
so ist durch b vermoge (5) auch der Faktor %', mithin auch der zu-

gehorige Rest &' vollstdndig bestimmt, und aus der Symmetrie der
Gleichung (5) in bezug auf k, k' folgt, dal umgekehrt (b')' = b ist.
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Durch Addition der beiden vorstehenden Kongruenzen mit Riicksicht
auf (5) folgt die Kongruenz

b+b=2LTLp (mod.g),

welche die gegenseitige Abhingigkeit der beiden, ein symmetrisches
Paar bildenden Reste b, b’ vollstindig ausdriickt. Dies lifit sich
aber noch genauer verfolgen. Zufolge der Definition der Reste b, b’
liegt einerseits ihre Summe b 4 b gewil zwischen den Grenzen + g¢;
andererseits ist das ihr kongruente Produkt

(6) qtlp p;q+pglq p;qur 5 tq,
mithin
b+ b = ———g—gngq(mod.q),
und da zufolge unserer Annahme p < ¢ die beiden Zahlen P f 9 eben-
falls zwischen den Grenzen + ¢ liegen, so ist
entweder b + b — B—é—g
oder b+ b = %

Im ersten Fall sind beide Reste b, b’ algebraisch <C 123; wire nim-

lich einer derselben, z. B. &' > g, so ware der andere b < — %, was

der Definition von b widerspricht. Im zweiten Fall sind beide
Reste > é—); wire namlich z B. & <C 22—0, so wire b > %-, was abermals

unmoglich ist. Mithin sondern sich die beiden Fille in folgender
Weise scharf voneinander:

M Lob+b=4 Loy pyil

2
(8) o4y =29 4Pyt

und zugleich leuchtet ein, dab & in jedem dieser beiden Intervalle
dieselben Werte wie b, aber in umgekehrter Groflenfolge durchlauft.
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Wir betrachten jetzt nur noch das erste Intervall (7), welches
identisch mit dem obigen in (4) ist und folglich genau m + n Reste b
enthalt. Diese Summe m + n wird daher immer gerade sein, wenn
jedes symmetrische Restpaar.in (7) aus zwei ungleichen Resten b,
b besteht. Da ferner der Fall b — &' immer und nur dann eintrifft,
wenn zugleich k¥ = k' ist, so geschieht dies in (7) gewil und nur in
dem einzigen Fall, wenn gleichzeitig
b—b =P8 2T
also 4 4
9) p=gqg=—1 (mod. 4)
ist, und da alle anderen, etwa in (7) enthaltenen Restpaare aus zwei
ungleichen Resten b, ' bestehen, so ist die Summe m + n in diesem
und nur in diesem Falle (9) ungerade.

Hiermit ist die Kongruenz (3), also auch der Reziprozititssata
wirklich bewiesen.

Zur Erlduterung bemerke ich noch folgendes. Ist ¢ = 1 (mod. 4),
so folgt aus (5), dall der Fall £ — %' niemals eintreten kann; es wird
daher jedes Restpaar sowohl in (7) wie in (8) aus zwei ungleichen
Resten b, b' bestehen, und folglich ist sowohl die Anzahl m 4+ n der

Reste b in (7), wie die Anzahl g ; ! —m —n der Reste bin(8) gerade.

Ist dagegen ¢ = — 1 (mod. 4), so tritt der Fall £ — k', also auch
b=1">', gewil} einmal ein, ndmlich in (7) oder (8), je nachdem p=—1
oder = + 1 (mod. 4) ist.

In dem obigen Beispiel p = 11, ¢ = 27, wo m = 2, » = b,
ordnen sich die sieben Reste des Intervalles (7) in die vier Paare
b, b) = (—10, +2), (— 9, + 1), (— 5, — 3), (— 4, — 4)
mit der Summe b -+ b’ = — 8, und die sechs Reste des Intervalles (8)

zerfallen in die drei Paare

(b, b)) = (86, 13), (7, 12), (8, 11)
mit der Summe b 4 b'= -+ 19. Da dieses Beispiel den Bedingungen (9)
geniigt, so entspricht dem Faktor ¥ — k' — 7 das im Intervall (7)
liegende, aus zwei gleichen Resten bestehende Paar b — ' —= — 4.

Im vorstehenden habe ich Zellers scharfsinnigen Beweis (auf
Grund des Briefes vom 8. Juli 1872) etwas ausfiihrlicher dargestellt,
weil er mit geringstem Aufwande von Rechnung eine sehr deutliche



Finsicht in den Bau und den Zusammenhang der beiden Reihen (1),
(2) gibt und deshalb besonders geeignet zum Vortrage vor Anfingern
erscheint. Um ihn mit der sehr kurz gefalten Berliner Darstellung
(vom 16. Dezember 1872) bequem zu vergleichen, #ndere ich die in
der letzteren gewihlte Bezeichnung so ab, dal sie mit unserer obigen
iibereinstimmt, und aullerdem will ich zur Abkiirzung die Anzahl der
Reste b innerhalb des Intervalles

q Y
(10) —§<b<—~-2°

mit ¢ bezeichnen. Durch eine Betrachtung, die nahezu mit dem ersten
Teile des obigen Beweises iibereinstimmt, ergibt sich zuniichst die
Zerlegung

—1
(1) mtn =0+t L
und handelt sich es daher jetzt moch um die Frage, wann die An-
zahl ¢ gerade oder ungerade ist. Dazu dient wieder eine Verteilung "
der Reste b in symmetrische Paare, die aber von der obigen, durch (5) "
bestimmten wesentlich abweicht und deshalb hier néher behandelt

werden soll. SchlieBt man in (2) den grofiten Faktor & = g;_l

aus, dem zufolge (6) nach Subtraktion von p der positive Rest

b= g_—i—__p entspricht, und setzt man

(12) Bk =171,

80 durchlduft £” dieselben q-—2— 3 Faktoren wie k, und jedes Paar

von Resten b = kp, b" = k"p (mod. q) liefert eine zwischen den
Grenzen + ¢ liegende Summe

b+b' = q____—2—1 p= _pte_a—p (mod. g).
Verfiahrt man &dhnlich wie oben, so erhdlt man wieder zwei scharf
getrennte Intervalle

M. b+4b — —p—“;q; L <<t

7
2
V. b+b":+‘-’__2_7_’;_1_;<b’ et L
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in denen b"” immer dieselben Werte wie b durchliaft. Da das
Intervall III mit dem in (10) identisch ist und folglich # Reste &

enthilt (weil der einzige ausgeschlossene Rest b — q—) P auBerhalb
dieses Intervalles liegt), so ergibt sich durch deren Veiteilung in
symmetrische Paare b, b”, dal diese Anzahl ¢ stets und nur dann

ungerade ist, wenn der Fall

I X7 q — 1 N X M_g
E=Fk = X b=0b"= 1
eintritt, was immer und nur dann geschieht, wenn ¢ = I, p = — 1

(mod. 4) ist. Durch Kombination dieses Resultates tit der obigen
Zerlegung (11) gelangt schliefilich die Berliner Darstellung, indem sie
die einzelnen Fille der Reste von p, ¢ (mod. 4) durchgelit, ebenfalls
zu dem Endergebnis, daf die Summe m -+ n dann vand nur dann
ungerade ist, wenn p = ¢ = — 1 (mod. 4) ist, w. z. b. w.

Aus mehreren Griinden verdient wohl der frithern Beweis den
Vorzug vor diesem zweiten. Da der Charakter der Summe m + n
(mod. 2) das einzige Ziel der Untersuchung bildet, so erscheint ihre
Zerlegung (11) in zwei Bestandteile von vornherein als ein Umweg,
der sich am Schlufl nochmals fiihlbar macht; auflerdern ist die hier
benutzte, durch (12) bestimmte Verteilung der Reste b in symmetrische
Paare weniger einfach als die frithere, schon weil sie den Ausschlufl
~ eines Faktors & und des entsprechenden Restes b erfordert.

Als Zeller mir seinen Beweis mitteilte, kannte er den dritten
Beweis von Gaufl nur in der schon vereinfachten Darstellung, wie
sie sich in §§ 43, 44 der Vorlesungen iiber Zahlentheorie yon Dirichlet
(zweite Auflage 1871) findet. In meiner Antwort (vom 13, Juli 1872)
driickte ich ihm meine Freude iiber seinen Beweis aus, der so
geradenwegs auf das Ziel zusteuert, und fiigte eine kurze Darstellung
des fiinften Beweises von Gaul hinzu, der ihm augenscheinlich noch
unbekannt war. Dies hat Zeller veranlaBt, mir noch einmal zu
schreiben (am 7. Oktober 1872); auch in diesem Briefe findet sich
noch keine Spur von der eben besprochenen zweiten Symmetrie der
Reihe (2), die den Nerv des Beweises in der Berliner Darstellung
bildet; er enthdlt aber noch zwolf Formeln, die von gewissen Summen
der Reste @, b und der Quotienten x, y in den Reihen (1), (2)
handeln und damals, wie ich glaube, noch unbekannt warven. Diese
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Formeln, deren Beweise Zeller zum Teil andeutet, sind eigentlich
nur Kombinationen von sechs verschiedenen Relationen, die ich jetst
im Anschluff an den ersten Beweis von Zeller noch ableiten will.
Hierbei bezeichne ich die Reste a, b bzw. mit a,, b, oder mit a,, b,
je machdem sie negativ oder positiv sind, und die Summen der

Zahlen
h? a‘) al? a2’ y; k’ b’ bl’ bﬁ’ x
bzw. mit
H, A, A, A, Y; K, B, B,, By, X.

Da die absoluten Werte — a,, a, aller Reste ¢ mit den I':uk-
toren h, ebenso die absoluten Werte — b,, b, aller Reste b mit den
I'aktoren % tihereinstimmen, so erhilt man zundchst

B _ Lptilp—1
(13) A+ 4, =H="0-0—

_ _ lgt+lg—1
(14) B+ B, =K =51-15

Zwei ncuc Gleichungen folgen aus der Betrachtung der beiden
Intervalle (7), (8). Wihrend die m + n Reste b in (7) aus den 7
negativen Resten b, und den m positiven Zahlen — a, bestehen, so
verbleiben nach Entfernung der letzteren aus den Resten b, die
= —m—n Reste & in (8), und da &' in jedem der beiden Inter-
valle dieselben Werte wie b durchliduft, so foigt durch Summation

(15) 2 (B, —4) =L Lm 4 ),
(16) 2 (B, + 4,) = + (-q—;i —m —n).
Durch Avflosung dieser vier Gleichungen ergibt sich
(17) — 44, = p(m+n) — p"lq’z‘l,
p—1lg—1
(18) ——4B1:q(m+n)——————2——2———,
2 1p—1
(19) +4 4, = p—|—2q+ p2 —p(m + n),

2 1g—1
(20) +aB =TT 0] gy,
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woraus auch noch

—1
@)  2d=2(4,+4)="TIP 1 pm i)

@) 2B=2B +B) =TI g

2
folgt.

Es leuchtet ein, dafl aus jeder dieser Formeln auch die Kou-
gruenz (3), also der Reziprozititssatz folgt; aullerdem will ich be-
merken, daB diese Kongruenz durch die schirfere
(23) mtn = — p—; . 97;1 (mod. 4)
ersetzt werden kann, die man leicht erhilt, wenn man z B. die
Gleichung (17) mit p multipliziert und bedenkt, dal p*> = 1, also
p(p—1)= —(p— 1) (mod. 8) ist.

Besonders hervorzuheben ist aber, dab alle diese Formeln, obwohl
sie auf der ausdriicklichen Annahme p < ¢ beruhen, augenscheinlich
auch fiir die entgegengesetzte Annahme p > g gelten, weil die Aus-
driicke fiir B,, B, und B aus denen fiir 4,, 4, und 4 durch
gleichzeitige Vertauschung von p mit ¢ (und von m mit ») hervorgehen.

Um endlich die Summen X, Y der Quotienten z, y ebenfalls
durch p, g, m, » auszudriicken, kann man verschiedene Wege einschlagen.
Da die Ausdriicke fiir H, 4, K, B schon bekannt sind, so liegt es
nahe, hierzu die beiden Gleichungen
(24) Hq=A+Yp, Kp= B+ Xgq
zu benutzen, die aus (1), (2) durch Summation entstehen, und zu-
folge der eben hervorgehobenen Bemerkung geniigt es, nur eine der
beiden Summen, z B. X zu berechnen, weil hieraus die andere Y
durch Vertauschung von p mit ¢ hervorgehen muf.  Aus (14) und
(22) folgt nun

1 —1
2\(Kp—B):"J2“pq2 A I

_(r—1 q
= < 2 Smt )

und da die in der Klammer rechts enthaltene Summe bei Vertauschung

von p mit ¢ ungeindert bleibt, so folgt aus (24) die Doppel-

gleichung

(25) 2X=2Y:3:—lq—+m+w
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worin abermals der Reziprozititssatz enthalten ist. Zugleich ergibt
sich aus der Kongruenz (23), dal die Summe X == Y stets gerade ist.

Ein anderer Weg, die Summe X zu bestimmen, ergibt sich aus
der durch (5) bestimmten Verteilung der Reste b in symmetrische
Paare. Bezeichnet man mit z, ' die den Faktoren £, k" entsprechenden
Quotienten, so ist

=b+xq, kp=1"b+2q,

also
b+ ) @+ =110,
und aus (6), (7). (8) folgt
x4 = P —; L im Intervalle (7).

v +a =2 ; ! im Intervalle (8)-
Da nun z' sowohl in (7) wie in (8) dieselben Werte wie

q.._—_
2

p—1 (q—gl—m—n>,

durchlduft, deren Anzahl bzw. m 4+ » und 1 m — n ist, 80 er-

hélt man im ganzen

_pt+1
2X = 5

was mit (25) iibereinstimmt.

Hiermit ist das Wesentliche der Formeln erschopft, die Zeller
mir in seinem zweiten Briefe (vom 7. Oktober 1872) mitgeteilt hat,
wo er auch beildufig bemerkt, daB die Grofen X, X —n, X —m
bzw. mit den auf ganz andere Weise definierten Anzahlen «, 8, y im
fiinften Beweise von Gaub iibereinstimmen (wo die Zeichen m, M,
n, N durch die ihnen hier entsprechenden p, ¢, m, n zu ersetzen
sind); doch wird der Zusammenhang zwischen den beiden verschiedenen
Definitionen nicht untersucht.

Die Gleichheit der beiden Quotientensummen X, Y ist hier auf
einem Wege erkannt, der alle friiheren Resultate voraussetzt. Diese
Gleichheit besteht, wie ich mnoch bemerken will, selbst dann, wenn
die beiden ungeraden Zahlen p, ¢ irgendeinen gemeinsamen Teiler
haben; der kiirzeste Weg, sie zu beweisen, scheint der folgende zu
sein, wobei es auch gleichgiiltig bleibt, welche der Zahlen p, ¢ die
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kleinere ist. L#aBt man die Faktoren A, k alle ihre Werte durch-
laufen, so kann die Anzahl « der Fille, in denen die Produktsumme

hq +ep>22

wird, auf zwei verschiedene Arten bestimmt werden. W&hlt man zuerst
einen bestimmten Faktor ¥ und setzt kp — b + xq wie in (2), s0
findet man leicht, daB dieser Quotient x zugleich die Anzahl aller
derjenigen Faktoren % ist, welche fiir diesen Wert k& der vorstehenden
Forderung geniigen, und hieraus folgt offenbar « — X. Wihlt man
aber zuerst einen bestimmten Faktor 7 und setzt hg =— a + yp wie
in (1), so erhilt man auf dieselbe Weise die Antwort @ = Y'; mithin
ist X =Y, w.z b w.



Aus dem Nachla8.

Die folgenden aus dem NachlaB publizierten Stiicke haben zum grofien Teil
neben dem historischen Interesse auch solches durch Auffassung und Methode,
wenn auch die Resultate unterdes unabhingig wiedergefunden sind. Es handelt
sich um fertige oder fast fertige Ausarbeitungen; auf die Publikation von Un-
ausgearbeitetem konnte um so eher verzichtet werden, als Dedekind in den
folgenden Briefen an Frobenius davon ein viel klareres Bild gegeben hat, als
es der NachlaB bot.

Der NachlaB bestand aus etwa 50 Mappen, Dedekind hatte alles und jedes
aufgehoben; es ist also nicht ausgeschlossen, dafi sich gelegentlich noch etwas zur
Publikation Geeignetes findet. Als historisch interessant ist vielleicht noch zu
erwihnen eine wohl unmittelbar an die ersten Vorlesungen anschlieBende Dar-
stellung der Galoisschen Theorie; oder auch eine sehr ausfithrliche, aus friither
Zeit stammende Darstellung der Riemannschen Geometrie, aus der in die Rie-
mann-Ausgabe (Lateinische Preisarbeit) nur kurze Ausziige durch Weber iiber-
nommen wurden. Noether.

XXXV.
Allgemeine Sitze tiber Riume.

§ L.

Ein System von Punkten p, p'-.. bildet einen Korper, wenn fiir
jeden Punkt p desselben sich eine Ldnge 6 von der Beschaffenheit an-
geben 146t, dab alle Punkte, deren Abstand von p kleiner als d ist, eben-
falls dem System P angehoren. Die Punkte p, p'--- liegen innerhalb P.

§ 2.

Ist P’ ein Korper, dessen sdmtliche Punkte auch Punkte des
Korpers P sind, so heilt P’ ein Teil von P.

§ 3.

Satz. Alle Punkte, deren Abstand von einem festen Punkte p
kleiner als eine gegebene Linge 0 ist, bilden einen Korper (der Kugel
heifit; p heift der Mittelpunkt, 6 der Durchmesser desselben).

Beweis. Ist pp' <9, so wihle man 0’ < d — pp'; so sind alle
Punkte p", fiir welche p'p"” < §' ist, auch solche Punkte p", fiir welche
pp" <98 ist (weil pp” < pp' + p'p").

Dedekind, Gesammelte Werke, II. 23
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§ 4.

Ist P ein Kérper und m ein Punkt, um welchen sich eine Kugel
beschreiben 148t, deren simtliche Punkte nicht innerhalb P liegen,
80 sagt man, der Punkt m liege auflerhalb P.

§ 5.

Satz. Ist P ein Korper, und existiert wenigstens ein Punkt m
aulerhalb P, so gibt es auch unendlich viele solche Punkte auler-
halb P, und dieselben bilden einen Korper.

Beweis. Da m aullerbalb P liegt, so gibt es eine um m be-
schriebene Kugel K, deren simtliche Punkte m' nicht innerhalb P
liegen. Alle diese Punkte m' liegen aufllerhalb P; denn ist § der
Halbmesser von K, und also mm' <9, so beschreibe man um m'
mit einem Halbmesser 8 <0 —mm' eine Kugel K', so bildet K'
einen Teil von K; also liegt m' (nach § 4) auflerhalb P. Dal das
System M aller auflerhalb P liegenden Punkte m einen Korper
bildet, folgt auf dieselbe Weise.

§ 6.

Ist P ein Korper und = ein Punkt, welcher weder innerhalb P
noch auBerhalb P liegt, so heillt = ein Grenzpunkt von P.

§ 7.

Ist P ein Korper und IT das System aller Grenzpunkte = von P
(wenn iiberhaupt solche vorhanden), so heift IT die Begrenzung
von P.

§ 8.

Satz Liegen simtliche Punkte eines Korpers P’ nicht inner-
halb eines Korpers P, so liegen sie auch simtlich aullerhalb P.

Beweis. Es sei m' ein beliebiger Punkt von P’; so lafit sich
um m' eine Kugel beschreiben, deren samtliche Punkte innerhalb P,
also nicht innerhalb P liegen. Nach § 4 liegt m' aullerhalb P.

§ 9.

Satz. Ein System IT' von Punkten =, welche simtlich Grenz-
punkte eines Korpers P sind, kann keinen Korper bilden.
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Beweis. Die Punkte = von IT' liegen (nach § 6) sidmtlich nicht
innerhalb von P. Wire IT' ein Korper, so ligen alle Punkte x von
IT' (nach § 8) auBerhalb P. Weil aber die Punkte = von IT' simtlich
Grenzpunkte von P sind, ist dies (nach § 6) unmoglich.

Erlduterungen zur vorstehenden Abhandlung.

Diese ersten Begriffe der Punktmengenlehre — eine Weiterfithrung findet
sich in dem né#chsten Stiick — werden des historischen Interesses halber wieder-
gegeben. Dedekind sagt dariiber in cinem Brief an Cantor (vom 19. Januar 1879,
iiber Invarianz der Dimension):

,Bei einer Publikation wiirde ich es fiir wiinschenswert halten, wenn die
Namen oder Kunstausdriicke der Mannigfaltigkeitslehre (beildufig gesagt, ich wiirde
dem ebenfalls Riemannschen Wort ,Gebiet® seiner Kiirze halber entschieden den
Vorzug vor dem schwerfilligen Worte ,Mannigfaltigkeit® geben) recht genau
definiert wiirden; es wire sehr verdienstlich, wenn diese ganze ,Gebietslehre* ab
ovo dargestellt wiirde, ohne die geometrische Anschauung zuzuziehen; und dabei
miiite z. B. der Begriff einer von dem Punkte ¢ nach dem Punkte § innerhalb
des Gebietes (¢ stetig fithrenden Linie recht bestimmt und deutlich definiert werden.
Die Definitionen von Netto*) (dessen Abhandlung mir sehr wohl gefillt, und
dessen Beweis, wie ich glaube, mit einigen Modifikationen ganz zutreffend wird)
enthalten einen guten Keim, aber sie scheinen mir der Vereinfachung und zugleich
einer Vervollstindigung fihig. Ich wiirde mir ein solches Urteil nicht erlauben,
wenn ich nicht vor vielen Jahren, als ich noch die Dirichletsche Potential-
vorlesung herausgeben und dabei das sogenannte Dirichletsche Prinzip strenger
begriinden wollte, mich schon recht viel mit solchen Fragem beschiftigt hitte.
Ich habe einige solche Definitionen, die mir eine recht gute Grundlage zu geben
scheinen; aber ich habe spiter die ganze Sache liegen lassen, und koénnte fir
den Augenblick nur Unvollstindiges geben, da ich durch die Umarbeitung der

Dirichletschen Zahlentheorie ganz in Anspruch genommen bin.*
Noether.

*) Crelle 1878.

23*



XXXVI.

Beweis und Anwendungen eines allgemeinen Satzes
uber mehrfach ausgedehnte stetige Gebiete.

In meiner Schrift ,Stetigkeit und irrationale Zahlen®
(§ 5, IV), welche im Jahre 1872 erschienen und kiirzlich unveréindert
wieder abgedruckt ist, habe ich den Beweis desjenigen Prinzips
verdffentlicht, welches ich schon seit dem Herbst 1858 als eine sichere
und zugleich einfache Grundlage fiir die Infinitesimal-Analysis und fiir
die Untersuchung aller stetigen Gebiete erkannt und auf die wichtigsten
dahingehorigen Fragen immer mit dem gewiinschten Erfolg angewandt
hatte. Das Prinzip ist auszusprechen: Zerfallen alle reellen Zahlen
in zwei Klassen von der Art, daf jede Zahl der ersten Klasse alge-
braisch kleiner ist als jede Zahl der zweiten Klasse, so gibt es ent-
weder in der ersten Klasse eine grofte, oder in der zweiten Klasse
eine kleinste Zahl

DafB auller mir noch andere Mathematiker, insbesondere Weier-
straf und G. Cantor, sich mit solchen Fragen beschiftigten, habe
ich zuerst durch die Veroffentlichung einer Abhandlung von Heine
(Die Elemente der Funktionenlehre, Crelles Journal, Bd. 74) im
Jahre 1872 erfahren. Seitdem ist bekanntlich dieser Gegenstand in
mehreren verdienstlichen Werken ausfiihrlich und auf sehr verschiedene
Art behandelt, doch scheint es mir, als ob die in denselben vor-
getragenen Beweise nicht immer den kiirzesten Weg einschlagen;
insbesondere halte ich die oft benutzte Halbierungsmethode der Inter-
valle, die meines Wissens von Bolzano herriihrt*), fiir einen zu weit-

*) Sie findet sich wohl zuerst in einer kleinen Schrift aus dem Jahre 1817,
deren Titel ich nicht mehr genau anzugeben wei, in welcher Bolzano den Satz
zu beweisen versucht, daB eine stetige reelle Funktion einer reellen Variabelen in
einem Intervall, in welchem sie sowohl positive wie negative Werte besitzt, auch
den Wert Null annehmen muB. Diese Schrift ist wegen der vortrefflich geschriebenen
Einleitung sehr lesenswert, aber an einer entscheidenden Stelle (in §7) verfallt



— 357 —

liufigen Umweg, auf welchem das erstrebte Ziel nicht frith genug
zum Bewufitsein kommt. Nun ist es oft nur Sache der GewGhnung
und des Geschmackes, ob man dem einen oder dem anderen Beweis
den Vorzug zuerkennen will, und deshalb erlaube ich mir, als Bei-
spiel meiner Beweismethode im folgenden einen allgemeinen Satz zu
behandeln, welcher zahlreiche Anwendungen auf bekannte Fille ge-
stattet.

§ 1.

Ich bespreche zunichst eine Erscheinung, die bei Systemen von
beliebigen Elementen eintreten kann, und benutze hierbei einige Be-
griffe und Kunstausdriicke in demselben Sinne wie in meiner Schrift
sWas sind und was sollen die Zahlen?“ (Braunschweig, 1888);
doch wird es zum Verstindnis wohl geniigen, wenn ich an folgendes
erinnere. Ein System 8 ist bestimmt, wenn alle Elemente bestimmt
sind, aus denen es besteht. Ein System 7' heilit Teil von S, wenn
jedes Element von 7' auch Element von S ist, und zwar heilit 7'
ein echter Teil von S, wenn 7' von § verschieden ist. Ein System 7'
heifit Gemeinteil der Systeme A, B, C---, wenn 7T Teil von jedem
dieser Systeme ist, und unter ihrer Gemeinheit wird das System aller
derjenigen Elemente verstanden, welche zugleich Elemente von jedem
dieser Systeme sind; wenn es gar kein solches, allen Systemen A4,
B, C --- gemeinsames Element gibt, so besitzen sie auch keinen
Gemeinteil und keine Gemeinheit. Dagegen gibt es in allen Fillen
ein, aus 4, B, C -.. zusammengesetztes System M, welches dadurch
vollstindig bestimmt ist, dal jedes und nur jedes solche Ding als

der Verfasser in vollstindige Verwirrung, und der Beweis millingt ginzlich, der
ohne vorgingige Feststellung der Stetigkeit des reellen Zahlgebietes auch gar
nicht gelingen kann.

Nach einer Mitteilung (1892, 12. 19.) von Herrn Prof. H. A. Schwarz
(Villenkolonie Grunewald bei Berlin, Hubertusallee 13), der mir auch frither dies
Werk von Bolzano eine zeitlang geliehen hatte, ist der Titel desselben folgender:

Beweis des Lehrsatzes, dass zwischen je zwey Werthen, die ein entgegen-
gesetztes Resultat gewihren, wenigstens eine reelle Wurzel der Gleichung liege;
von Bernard Bolzano. — Fiir die Abhandlungen der Konigl. Gesellschaft der
Wissenschaften. — Prag 1817. —

Vgl. Brief von H. A. Schwarz (1888, 4. 21.) an mich, und meine Antwort
(1888, 4. 25.) mit Kritik von Bolzano und einigen Beweisen. —

Ferner: Brief von H. Weber (1892, 11. 18.) mit Beweis der Existenz einer
Wurzel jeder algebraischen Gleichung; zu vergleichen auch mit meinem Beweise
in meinem Briefe (1878, 6. 23.) an R. Lipschitz. —
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Element von M gilt, welches Element von mindestens einem der
Systeme A4, B, C --- ist. Statt der etwas schwerfilligen Bezeichnung,
welche ich aus gewissen Griinden in der oben erwdhnten Schrift
gebraucht habe, will ich hier nach Schroder dieses System M mit
A+ B+ C + ... bezeichnen und die Summe der Systeme 4, B,C---
nennen. Jedes der letzteren ist ein Teil dieser Summe.

Hierauf gehe ich zur Erorterung eines, wie ich glaube, neuen
Begriffs iiber, der fiir unsere Untersuchung von besonderer Wichtig-
keit ist. Unter einem Teilschnitt ¢ eines Systems S verstehe ich
eine Einteilung aller seiner Teile in zwei Arten, ndmlich in reine
und unreine Teile, welche den folgenden drei Bedingungen geniigt.

1. Jeder Teil von S ist entweder rein oder unrein, aber niemals
beides zugleich.

2. Jeder Teil eines reinen Teils ist rein.

3. Die Summe von je zwei reinen Teilen ist rein.

Offenbar lassen sich die beiden letzten Bedingungen auch in die
folgende zusammenziehen:

4. Die Summe von zweil Teilen ist dann und nur dann rein, wenn
beide Teile rein sind. Oder mit anderen Worten: die Summe von
zwei Teilen ist dann und nur dann unrein, wenn mindestens einer
der beiden Teile unrein ist.

Diese letzte Fassung erinnert an den Satz iiber das Verschwinden
eines arithmetischen Produktes und fiihrt zu der folgenden Charak-
terisierung des Teilschnittes ¢, von der ich bisweilen Gebrauch machen
werde. Belegt man jeden Teil A des Systems 8 mit einer Zahl ¢ (4),
welche — 1 oder = 0 sein soll, je nachdem A rein oder unrein ist, so ist

b. 9(4+ B) = ¢(4) p(B),
wo A, B beliebige Teile von S bedeuten. Und umgekehrt, wenn
jedem Teile A eines Systems S eine Zahl ¢ (4) in der Weise ent-
spricht, daB das vorstehende Gesetz 5. erfiillt wird, so ist hierdurch
ein Teilschnitt @ von S bestimmt; denn aus A + 4 = A ergibt
sich zundchst, dal ¢ (4) = 1 oder = 0 sein muf, und wenn man
A rein oder unrein nennt, je nachdem das Erstere oder das Letztere
der Fall ist, so sind die obigen drei Bedingungen eines Teilschnittes
wirklich erfiillt.

Ich fiige noch die folgenden Bemerkungen hinzu. Jeder be-
stimmte Teil 7' eines Systems S erzeugt einen Teilschnitt von S,
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welcher dadurch bestimmt ist, dall jeder beliebige Teil 4 von § als
rein oder unrein gilt, je nachdem A Teil von 7 ist oder nicht:
T gelbst ist folglich ein reiner Teil. Auf den ersten Blick konnte
es auch scheinen, als miilite jeder Teilschnitt ¢ von S auf solche
Weise durch einen bestimmten Teil 7' von S erzeugt werden; da
namlich jedes Element von S auch ein Teil von § und folglich ent-
weder rein oder unrein ist, so liegt es nahe, den Inbegriff 7' aller
reinen Elemente zu betrachten und nach 3. zu glauben, der Teil-
schnitt @ werde durch 7' erzeugt. Allein dieser Schluff ist nur dann
sicher, wenn 7' ein endliches System ist, d. h. aus einer endlichen
Anzahl von FElementen besteht; in der Tat kann aus der Eigen-
schaft 3. durch vollstindige Induktion (durch den Schlufi von » auf
n 4 1) nur gefolgert werden, dall die Summe von lauter reinen
Teilen 4, B, C ... gewil} rein ist, wenn ihre Anzahl endlich ist, wihrend
eine Summe von unendlich vielen reinen Teilen sehr wohl unrein sein
kann. Um sich hiervon zu iiberzeugen, geniigt es, das folgende Bei-
spiel zu betrachten: ist S ein unendliches System, und nennt man
jeden Teil 4 von S rein oder unrein, je nachdem A endlich oder
unendlich ist, so sind die obigen drei Bedingungen eines Teilschnittes
offenbar erfiillt; aber obgleich alle Elemente von S rein sind, so ist
ihre Gesamtheit S doch unrein. Hieraus geht hervor, dafi ein Teil-
schnitt durch die Einteilung aller Elemente in reine und unreine
noch keineswegs bestimmt ist. Man konnte sich nun vielleicht ver-
anlafit fithlen, den Begriff eines Teilschnittes so abzuindern, dafl die
Bedingung 3. fiir jede Summe von lauter reinen Teilen gelten soll;
allein hierdurch wiirde die Tragweite des DBegriffs wesentlichen
Schaden erleiden.

Eine zweite Bemerkung besteht in folgendem. Wéhrend die
Fassung des in der Einleitung ausgesprochenen Prinzips der Stetig-
keit schon die Voraussetzung enthilt, dall jede der beiden dortigen
Klassen mindestens eine Zahl enthilt, also wirklich existiert — weil
sonst von einer Vergleichung der Zahlen der einen Klasse mit denen
der anderen gar keine Rede sein koénnte —, so sollen hier bei dem
Begriff des Teilschnittes auch die beiden Fille zugelassen werden,
daBl alle Teile rein, oder daf alle Teile unrein sind. Man kann dann
allgemein behaupten, dafl, wenn 7' ein Teil von § ist, in jedem Teil-
schnitt ¢ des Systems S ein Teilschnitt ¢ des Systems 7' enthalten
ist, welcher dadurch vollstindig bestimmt wird, daf jeder Teil 4
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von 7' fiir rein oder unrein gelten soll, je nachdem er durch den
Teilschnitt g fiir rein oder unrein erklart ist; dies kann mit Benutzung
der oben erwihnten Charakterisierung durch die Zahlen 1 und 0
auch so ausgesprochen werden, dall allgemein ¥ (4) = ¢ (A4) sein
soll. Fiir unsere Zwecke ist aber besonders wichtig, dal umgekehrt,
wenn 7' ein echter Teil von S ist, jeder Teilschnitt ¢ des Systems 7'
zu einem Teilschnitt ¢ des Systems S in der Weise erweitert
werden kann, daf ¢ in ¢ enthalten ist; eine solche Erweiterung kann
auf verschiedene, hiufig auf unendlich viele Arten geschehen*), doch
soll hier, wenn schlechthin von der Erweiterung ¢ des Teil-
schnittes ¢ die Rede ist, immer nur die folgende Art gemeint sein:
jeder Teil 4 von S soll dann und nur dann fiir unrein gelten, wenn
es einen Gemeinteil von 4 und 7' gibt, welcher durch den Teilschnitt
fiir unrein erklart ist. Dal diese auf ¢ gegriindete Einteilung ¢
aller Teile von 8 wirklich einen Teilschnitt von S bildet, ergibt sich
leicht; denn von den drei obigen Bedingungen sind die beiden ersten
offenbar erfiillt, und wenn weder in 4 noch in B ein unreiner Teil
von T enthalten ist, so gilt dasselbe auch von der Summe 4 + B,
weil jeder Teil der letzteren entweder Teil von A, oder Teil von B,
oder von der Form A, + B, ist, wo A4, Teil von 4, und B, Teil
von B ist; mithin ist auch die dritte Bedingung erfiillt, also ¢ ein
Teilschnitt von S, und offenbar ist ¢ in ¢ enthalten.

Eine dritte und letzte Bemerkung bezieht sich auf eine Ver-
bindung des Teilschnittes ¢ eines Systems S mit irgendeiner Ab-
bildung desselben Systems. Das Wesen einer solchen Abbildung
besteht bekanntlich darin, dal jedem bestimmten Element a des
Systems S ein Bild, d. h. ein bestimmtes Element entspricht, welches
wir mit o' bezeichnen wollen; ist 4 irgend ein Teil von S, so soll
der Kiirze halber unter dem Bilde von A dasjenige System A’ ver-
standen werden, dessen Elemente die Bilder aller Elemente von A
sind. . Vermoge einer solchen Abbildung entspringt nun aus einem
Teilschnitt ¢ des Systems S eine bestimmte Einteilung ¢’ aller Teile
P des Systems S’ in reine und unreine Teile, wenn nimlich fest-
gesetzt wird, dall P stets und nur dann fiir unrein gelten soll, wenn
es einen unreinen Teil U von S gibt, dessen Bild U’ Teil von P

*) Die allgemeinere Frage, wann und wie sich gegebene Teilschnitte von
Systemen 4, B, C- - - zu einem einzigen Teilschnitte ihrer Summe 4 +~ B+ C 4 - --
zusammensetzen lassen, ist leicht zu beantworten.
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ist; daB diese Einteilung ¢’ wieder einen Teilschnitt des Systems '
bildet, ergibt sich auf #hnliche Weise, wie in der vorhergehenden
Bemerkung, und wir diirfen es daher dem Leser iiberlassen, diesen
Nachweis zu fiithren.

§ 2.
Um diesen Begriff des Teilschnittes auf Systeme von Zahlen —
und zwar immer nur von reellen Zahlen — anzuwenden, schicke

ich folgende Erklirungen voraus. Ist ¢ eine Zahl, so soll das
Zeichen [¢] das System aller derjenigen Zahlen bedeuten, welche im
algebraischen Sinne < ¢ sind. Bedeutet ferner A eine positive Zahl
(nicht Null), so bezeichne ich mit (c), das System aller derjenigen
Zahlen z, welche den Bedingungen ¢ — k <X << ¢ + & geniigen, und
ich nenne jedes solche System eine Hiille von ¢, A ihren Halbmesser,
¢ ihren Mittelpunkt. Zufolge der Erklirung einer Summe von
Systemen (§ 1) ist dann

[e + k] = [¢c — k] + (O,

wo selbstverstiandlich das Zeichen ¢ + & die arithmetische Summe
der Zahlen ¢ und %, nicht nur das aus den beiden Elementen ¢
und A bestehende System bedeutet. Ist 7' irgendein System von
Zahlen, so soll die Zahl ¢ eine Beizahl von 7' heillen, wenn in
jeder Hiille von ¢ mindestens eine Zahl des Systems 7' enthalten
ist; offenbar ist jede Zahl des Systems 7' auch eine Beizahl von 7,
und wenn zugleich das Umgekehrte gilt, so soll 7' ein selbstindiges
System heifien*). Man erkennt leicht, dal das System 7', aller
Beizahlen von 7' stets selbstindig ist; denn wenn ¢, eine Beizahl
von T, bedeutet, so ist in jeder Hiille (c,), mindestens eine Zahl des
Systems 7',, also eine Beizahl ¢ des Systems 7' enthalten, und da
in der Hiille (c),, also auch in jeder Hiille (c,)., mindestens eine
Zahl des Systems 7' enthalten ist, so ist ¢, selbst eine Beizahl
von T, also in 7, enthalten, w. z. b. w. Nennen wir ferner 7' ein
begrenztes System, wenn es eine Zahl gibt, welche absolut grofier
ist, als jede Zahl in 7', so besteht folgender Satz:

Werden alle Teile eines begrenzten Zahlensystems 7'
durch einen Teilschnitt 9 in reine und unreine Teile ein-

*) Diese Begriffe einer Beizahl und eines selbstindigen Systems sind wohl
zu unterscheiden von dem, was G. Cantor einen Grenzpunkt eines Systems und
eine perfekte Mannigfaltigkeit nennt.
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geteilt, und ist 7' selbst unrein, so gibt es eine kleinste
Zall ¢ von der Art, dafi in jeder Hiille von ¢ ein unreiner
Teil von 7' enthalten ist.

Der Beweis gewinnt die einfachste Ausdrucksweise, wenn man
nach der in § 1 gegebenen Vorschrift den Teilschnitt ¢ zu einem Teil-
schnitt ¢ des Systems S aller Zahlen erweitert, wodurch die Be-
hauptung des Satzes sich offenbar in die folgende verwandelt: es gibt
eine kleinste Zahl ¢, deren Hiillen samtlich unrein sind. Um die-
selbe zu beweisen, teile man alle Zahlen x in zwei Klassen 4, B
ein, indem man z in 4 oder in B aufnimmt, je nachdem das
System [x] rein oder unrein ist. Da 7' begrenzt ist, so gibt es
eine positive Zahl e, welche absolut grofler ist als jede Zahl in T
dann gehort — e der Klasse 4 an, weil das System [— e] gar keine
Zahl mit 7' gemein hat und folglich rein ist; aber + e gehort zu B,
weil das unreine System 7' ein Teil von [e], also auch letzteres
System unrein ist. Mithin existieren beide Klassen A4, B. Jede
Zahl ¢ der Klasse 4 ist algebraisch kleiner als jede Zahl b in B,
weil, wenn @ = b wire, das reine System [a] einen unreinen Teil [b]
besifie, was dem Begriff des Teilschnittes widerspricht. Nach dem
in der Einleitung ausgesprochenen Prinzip der Stetigkeit gibt es
daher eine Zahl ¢, welche entweder die grofite in 4 oder die kleinste
in B ist, so daBl, wenn A irgendeine positive Zahl bedeutet, ¢ — &
in A, ¢ + h in B enthalten ist; da nun das unreine System [c¢ + A]
die Summe des reinen Systems [¢ — k] und der Hiille (c), ist, so
folgt aus dem Begriff des Teilschnittes, dali die letztere stets unrein
ist. Wenn endlich @ < ¢ ist, so kann man eine positive Zahl A so
wihlen, daB a 4+ A auch der Klasse A angehort, woraus folgt, daB
die Hiille (a), als Teil des reinen Systems [a + %] ebenfalls rein ist.
Mithin ist ¢ die kleinste Zahl, deren simtliche Hiillen unrein sind,
w. z. b. w.

‘Die Zahl ¢ ist offenbar eine Beizahl des Systems 7'; ist daher
letzteres selbstdndig, so ist ¢ selbst in 7' enthalten.

Der bewiesene Satz umfalit sehr viele, vielleicht alle diejenigen
Existenz-Sitze, welche in der Theorie der Funktionen von einer
reellen Veranderlichen behandelt zu werden pflegen. Es wird aber
nicht nétig sein, dies hier auszufiihren, weil wir spiter (§ 4) die-
selben Satze fiir Funktionen von mehreren Veriinderlichen beweisen
werden.
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§ 3.

Ein ganz dhnlicher Satz gilt nun auch fiir den n-fach ausgedehnten
stetigen Zallenraum S. Unter einem Elemente oder einem Punkte a
dieses Raumes verstehe ich, wie iiblich, jede bestimmte Folge von n
reellen Zahlen a,, @y-+-a@,_,, @,, und diese sollen die Koordinaten
von a heiflen. Ist % irgendeine positive Zahl (nicht Null), so soll
mit (a), das System aller der Punkte bezeichnet werden, deren
Koordinaten =,, , --- x, den Bedingungen
a—h<e, <a,+h a,—bh<x, < ay+h -, ay—h<z,<a,+h
geniigen, und ich nenne jedes solche System (a), eine Hiille von a,
k ihren Halbmesser, a ihren Mittelpunkt. Ist 7' irgendein System
von Punkten, also ein Teil von S, so soll der Punkt ¢ ein Beipunkt
von 7' heiflen, wenn in jeder Hiille von ¢ mindestens ein Punkt von 7
enthalten ist; offenbar ist jeder Punkt des Systems 7' auch ein Bei-
punkt von 7', und wenn zugleich das Umgekehrte gilt, so soll 7' ein
selbstindiges System heiflen; man iiberzeugt sich leicht (wie in § 2),
daB das System 7', aller Beipunkte von 7' stets selbstindig ist. Das
System 7' heifit begrenzt, wenn es eine Zahl gibt, welche absolut
grofer ist als jede Koordinate jedes in 7' enthaltenen Punktes.

Sind a, b zwei verschiedene Punkte, deren rte Koordinaten bzw.
mit a@,, b, bezeichnet werden, so will ich a den tieferen, b den
hoheren nennen, wenn in der Folge der Differenzen

bl_a’l’ bs"’a’b vy by —an

die erste, welche nicht verschwindet, einen positiven Wert hat, und
dies soll kurz durch die Symbole a <0, b > a bezeichnet werden *).
Von je zwei verschiedenen Punkten ist immer einer der tiefere, der
andere der hohere, und der Gebrauch des Komparativs rechtfertigt
sich dadurch, dafl aus a <0 und b < ¢ stets a < ¢ folgt. Zugleich
leuchtet ein, was es heifen soll, wenn ein Punkt der tiefste oder
der hochste Punkt eines Systems genannt wird.

Alle diese Namen und Bezeichnungen entsprechen, wenn n —1
ist, denjenigen, welche in § 2 gebraucht sind; ist aber n > 1, so
tritt noch folgendes hinzu. Unterdriickt man die letzte Koordinate a,
des Punktes a, so bildet die Folge der iibrigen a,, a,---@,—, einen

*) Bei dieser Unterscheidung ist von wesentlicher Bedeutung die Reihenfolge
der Koordinaten, die natiirlich durch jede andere ersetzt werden kann.
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Punkt o' des (n — 1)fachen Zahlenraumes; dieser Punkt a’ soll das
Bild oder die Projektion des Punktes a heifilen, und wenn 7'
irgend ein Teil von S ist, so soll unter seiner Projektion 7' dasjenige
System verstanden werden, dessen Elemente die Projektionen aller
in T enthaltenen Punkte sind, und welches folglich ein Teil des
ganzen (n — 1) fachen Zahlenraumes S’ ist. Die Projektion der
Hiille (a), ist die Hiille (a’), der Projektion a’. Jeder Punkt a des
Raumes S ist vollstindig bestimmt durch Angabe seiner Projektion o'
und seiner letzten Koordinate @, und kann daher durch das Symbol
(o', a,) bezeichnet werden; allgemeiner, wenn P irgendein Teil von S,
und @ irgendein Teil des einfachen Zahlenraumes ist, so soll mit
(P, @) das System aller derjenigen Punkte a in S bezeichnet werden,
deren Projektion a' in P, und deren letzte Koordinate a, in @ ent-
halten ist. Die Einfithrung der Projektionen soll dazu dienen, um
mit Hilfe der vollstindigen Induktion den folgenden allgemeinen
Satz zu beweisen:

I. Ist 7' ein begrenztes System von Punkten im n-fachen
Zahlenraum S, und werden alle Teile von 7' durch einen
Teilschnitt ¢ in reine und unreine Teile eingeteilt, so gibt
es, wenn 7 selbst unrein ist, einen tiefsten Punkt ¢ von
der Art, dall in jeder Hiille von ¢ ein unreiner Teil
von T enthalten ist.

Auch hier erleichtern wir uns den Beweis, indem wir den Teil-
schnitt 9 des Systems 7' nach der in § 1 gegebenen Vorschrift zu
einem Teilschnitt ¢ des ganzen m-fachen Zahlenraumes S erweitern
wodurch unser Satz sich offenbar in den folgenden verwandelt:

Ist T' ein begrenzter Teil von S, und werden alle Teile von S
durch einen Teilschnitt ¢ in reine und unreine Teile so eingeteilt,
daf 7' fiir unrein, und daB jeder Teil, welcher mit 7' keinen Punkt
gemein hat, fiir rein gilt, so gibt es einen tiefsten Punkt ¢, dessen
Hiillen sdmtlich unrein sind.

Dies ist fiir den Fall » — 1 schon in § 2 bewiesen, und wir
brauchen daher nur zu zeigen, dal aus der Wahrheit dieses Satzes
fiir den (n — 1) fachen Raum S’ auch seine Wahrheit fiir den n-fachen
Raum § folgt. Zu diesem Zwecke leiten wir nach der am Schlusse
von § 1 gegebenen Vorschrift aus dem Teilschnitt ¢ einen Teil-
schnitt @' des Raumes S’ ab, indem wir irgendeinen Teil P des
letzteren dann und nur dann fir unrein erkliren, wenn es einen

k)
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unreinen Teil U von S gibt, dessen Projektion U’ Teil von P ist.
Die Projektion 7' des begrenzten und unreinen Teiles 7' von S
ist offenbar ein begrenzter und unreiner Teil von S, und jeder
Teil P von §', der mit 7' keinen Punkt gemein hat, ist gewil rein;
denn jeder unreine Teil U von S hat mindestens einen Punkt a
mit 7' gemein und seine Projektion U’ kann daher, weil sie mindestens
einen Punkt o' mit 7" gemein hat, nicht Teil von P sein. Nehmen
wir daher an, der oben ausgesprochene Satz gelte fiir den (n— 1)fachen
Raum §’, so gibt es in demselben einen tiefsten Punkt ¢, dessen
Hiillen sémtlich unrein sind, und folglich gibt es, wenn k& irgend
eine positive Zahl bedeutet, immer einen unreinen Teil U von S,
dessen Projektion U’ Teil der Hiille (¢'), ist. Bedeutet nun @ den
ganzen einfachen Zahlenraum, so ist U jedenfalls ein Teil des
Systems ((¢), @), und folglich ist auch letzteres ein unreiner Teil
des Raumes S. Da ferner T begrenzt ist, so gibt es eine positive
Zahl e, welche absolut grofler ist, als jede Koordinate jedes Punktes
in 7T'; bezeichnet man daher mit E das System aller derjenigen
Zahlen, welche algebraisch grofler als e sind, so hat das System
(), E) keinen Punkt mit 7' gemein und ist folglich rein, und
da das unreine System

(@ @) = (s B) + (@), [e])

ist, so ist auch das zweite System rechter Hand unrein. Zugleich
leuchtet ein, dafi das System ((¢')x, [— e]) rein ist, weil es keinen
Punkt mit 7' gemein hat. Hierauf teilen wir alle reellen Zahlen x
in zwei Klassen 4, B ein; die Zahl = soll zur zweiten Klasse B
gehoren, wenn jeder positiven Zahl k ein unreines System ((¢), [«])
entspricht; im entgegengesetzten Falle soll x zur ersten Klasse 4
gehoren. Offenbar ist —e in A, aber 4 e in B enthalten, also
existieren beide Klassen. Jede Zahl @ der Klasse 4 ist algebraisch
kleiner als jede Zahl b der Klasse B, weil, wenn a = b wire, es
ein reines System ((¢');, [a]) gébe, welches einen unreinen Teil ((¢')y, [b])
besifle, was dem Begriff eines Teilschnittes ¢ widerspricht. Nach
dem in der Einleitung ausgesprochenen Stetigkeitsprinzip gibt es
daher eine Zahl ¢, welche entweder die grofite in A oder die kleinste
in B ist, und wir wollen zeigen, dafl der hierdurch bestimmte Punkt
¢ = (¢, ¢) die in dem obigen Satze behauptete Eigenschaft besitzt.
Bedeutet h irgendeine positive Zahl, so gehort ¢ — & zur Klasse 4,
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und folglich gibt es eine positive Zahl k, welche ein reines System
("), [c— h]) erzeugt, und wenn ! die kleinste der beiden Zahlen A, &
bedeutet, so ist das System ((¢');, [c — &]) als ein Teil des vorigen
ebenfalls rein. Da andererseits ¢ + & zur Klasse B gehort, so ist
das System ((¢');, [c + &]) unrein, und da es die Summe des vorigen
und des Systems ((¢');, (c),) ist, so ist letateres ebenfalls unrein; dieses
ist aber, weil I << h ist, ein Teil des Systems ((¢)s, (¢)s) == (O)», und
folglich ist jede Hiille des Punktes ¢ unrein. Wir haben noch zu
zeigen, dall ¢ der tiefste solche Punkt ist, daf also jeder tiefere
Punkt o mindestens eine reine Hiille besitzt. Aus a <Tc¢ folgt gewil
o' << ¢; ist nun zuniichst o' <<, so gibt es zufolge der Definition
des Punktes ¢’ und des Teilschnittes ¢’ mindestens eine reine Hiille (a'),
und da dieselbe die Projektion der Hiille (a), ist, so mull auch
letztere rein sein. Ist aber o' = ¢, so ist die letzte Koordinate a
des Punktes a algebraisch kleiner als ¢; man kann daher eine positive
Zahl | so wihlen, dal auch a -+ zur Klasse 4 gehort; dann gibt
es eine positive Zahl k, welche ein reines System ((¢')y, [@ 1 1)) erzeugt;
bedeutet nun % die kleinste der beiden Zahlen £, I, so ist die Hiille (a),
als Teil dieses reinen Systems ebenfalls rein, w. z. b. w.

Nachdem der Satz hiermit allgemein bewiesen ist, mag noch
bemerkt werden, dafl der Punkt ¢ ein Beipunkt des Systems 7' und
folglich, falls letzteres selbstdndig ist, selbst in 7' enthalten ist.

§ 4%).

Bei den nun folgenden Anwendungen beschridnke ich mich auf
einige sehr bekannte Sitze; ihr Beweis kommt immer auf eine zweck-
miflige, den Bedingungen 1 bis 4 geniigende Definition der reinen
und unreinen Systeme zuriick.

IL Ist U ein bestimmter Teil von 7', so gibt es einen
tiefsten Punkt von der Beschaffenheit, dall jede seiner
Hiillen mindestens einen Punkt von U enthilt.

Dies geht unmittelbar aus dem obigen Satze I (§ 3) hervor, wenn
man jeden Teil von 7' unrein oder rein nennt, je nachdem er
mindestens einen oder keinen Punkt von U enthilt; denn diese
Definition geniigt offenbar den Bedingungen 1 bis 4 (§ 1).

*) [In diesem der ersten Fassung entnommenen Paragraphen (vgl. die Er-
lauterungen) ist 7' als beschrinkt und abgeschlossen vorausgesetzt, so daf der
obige Punkt ¢ stets zu 7' gehort (§ 3, SchluB). E. N.]
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Die folgenden S#tze beziehen sich auf irgendeine eindeutige
reelle Funktion der beiden Variabelen z, y; jedem Punkte p — (x, y)
von 7T entspricht eine bestimmte reelle Zahl y’, die ich das Bild
des Punktes p nenne, und wenn U irgendein Teil von 7' ist, so
soll U’ das Bild von U, d. h. den Inbegriff der Bilder p’ aller in U
enthaltenen Punkte p bedeuten.

III. Es gibt einen tiefsten Punkt (@, b) von folgender
Beschaffenheit: ist ¢ irgendeine Zahl des Systems 7", so
gibt es in jeder Hiille von (@, b) mindestens einen Punkt p,
dessen Bild p' << ¢ ist.

Dies geht unmittelbar aus dem Satze I hervor, wenn man jeden
Teil U von T rein oder unrein nennt, je nachdem es in 7" mindestens
eine oder keine Zahl gibt, die kleiner als jede Zahl in U’ ist; denn
diese Definition geniigt den Bedingungen 1 bis 4.

IV. Ist ¢ ein Beiwert (§2) des Systems 7", so gibt es
einen tiefsten Punkt (a, b) von folgender Beschaffenheit: ist
H irgendeine Hiille von (a, b), so ist ¢ auch Beiwert des
Systems H'.

Dies geht unmittelbar aus dem Satze I hervor, wenn man jeden
Teil U von T unrein oder rein nennt, je nachdem ¢ Beiwert von U’
ist oder nicht; denn diese Definition geniigt den Bedingungen 1 bis 4.

Die Abbildung (Funktion) heiit stetig im Punkte yp, wenn, wie
klein auch die positive Grofle & gegeben sein mag, man immer eine
Hiille H von p so wihlen kann, daf alle Zahlen in H' um weniger
als k von p’, also um weniger als 2 k& voneinander verschieden sind.
Die Funktion heilt stetig in 7', wenn sie in jedem Punkte von 7'
stetig ist. Dann ergeben sich aus den Sétzen IIT und IV die folgenden
Satze:

V. Eine in 7T stetige Funktion besitzt einen kleinsten
Wert, und es gibt einen tiefsten Punkt, in welchem die
Funktion diesen Minimumwert annimmt.

Denn wenn es in 7' eine Zahl ¢ gibe, welche kleiner als (a, b)'
ist, wo (a, b) den in III bestimmten Punkt bedeutet, so kénnte man
eine Hiille H von- (@, b) so wihlen, dal alle Zahlen in H' grofer
als ¢ wiren, was im Widerspruch mit der dort bewiesenen Eigen-
schaft des Punktes (@, b) steht; mithin ist (a, b)" die kleinste Zahl
in 7. Und es kann auch keinen tieferen Punkt (e, ) geben, in
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welchem  derselbe Minimumwert («, ) = (a, b) auftritt, weil ein
solcher Punkt (, B) gewil dieselbe, in III angegebene Beschaffenheit
besitzt, wie (a, b).

VL Ist die Abbildung (Funktion) stetig in 7, so ist
jeder Beiwert ¢ von 7" auch eine Zahl in 7", und es gibt
einen tiefsten Punkt (a, b), in welchem die Funktion diesen
Wert ¢ = (a, b)) annimmt.

Denn weun (a, b) den in IV bestimmten Punkt bedeutet, so
kann (a, b)' nicht von ¢ verschieden sein, weil man sonst eine Hiille H
von (a, b) so wihlen konnte, daB alle Zahlen in H' um mehr als
eine bestimmte positive GroBe von ¢ verschieden wiren, also ¢ kein
Beiwert von H' wiire, was in Widerspruch mit IV steht; mithin ist
(@, b)Y = ¢. Und es kann auch keinen tieferen Punkt («, §) geben,
dessen Bild («, 8) = ¢ ist.

VII*). Besitzt eine in 7' stetige Funktion sowohl positive
als auch negative Werte, so gibt es auch einen tiefsten
Punkt, in welchem sie verschwindet.

Dies versteht sich von selbst, wenn die Funktion im Nullpunkte (0,0)
verschwindet. Ist aber (0,0) positiv (auf welchen Fall wir uns be-
schrinken diirfen), so soll ein Teil U von T rein heiflen, wenn U’
aus lauter positiven Zahlen besteht; im entgegengesetzten Falle heiflle
U unrein. Da diese Definition den Bedingungen 1. bis 4. geniigt, so
gibt es (nach SatzI) einen tiefsten Punkt (@, b) von der Beschaffen-
heit, daB jede seiner Hiillen H unrein ist.

Ich behaupte, daB (@, b) = 0 ist. Denn jedenfalls kann (a, b)
nicht positiv sein, weil es sonst zufolge der Stetigkeit auch reine
Hiillen H gibe. Nehmen wir ferner an, (@, b) sei negativ, so kann
man zufolge der Stetigkeit eine Hiille H so wihlen, dal H' aus lauter
negativen Zahlen besteht; da aber (a, b) nicht der Nullpunkt ist, so
gibt es in H gewil einen Punkt (x, §), der tiefer ist als (a, b), und
da (e, B) megativ ist, so wire auch jede Hiille von (e, ) unrein,
wihrend doch (a, b) der tiefste Punkt ist, der diese Eigenschaft be-
sitzt. Mithin ist (@, b)) = 0, und es kann auch keinen tieferen Punkt
als (a, b) geben, in welchem die Funktion verschwindet, weil wieder
jede Hiille eines solchen Punktes unrein ist, w. z. b. w.

*) [Der Beweis gilt in der hier gegebenen Fassung nur fir das Quadrat
0<x<1 0<y<1 Dedekind hatte die aligemeinere Giiltigkeit des Satzes
bemerkt, ohne die notigen Abinderungen hinzuschreiben. E. N.]
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Ich schliefle mit folgendem, fiir den Begriff des Doppelintegrals
wichtigen Satze:

VIIL Ist z eine in 7 stetige Funktion, und % eine posi-
tive Grolle, so kann man eine fiir alle Punkte p gemeinsame
positive Grofie b so wihlen, dall z in jeder Hiille (p, k) sich
um weniger als k dndert.

Um dies zu beweisen, bemerke ich zundchst folgendes. Ist p
ein bestimmter Punkt in 7', so gibt es zufolge der Stetigkeit der
Funktion z eine Hiille (p, 2 %), in welcher z sich um weniger als k
andert; betrachtet man nun alle Punkte q der Hiille (p, &), so ist
jede Hiille (q, %), deren Halbmesser =— &, ein Teil von (p, 24), und
folglich &ndert sich z auch in jeder solchen Hiille (q, 2) um weniger
als k; das Punktsystem U — (p, h) hat daher die Eigenschaft, welche
unser Satz dem ganzen 7' zuschreibt: man kann alle Punkte des
Systems U in Hiillen vom gemeinsamen Halbmesser % so einschliefien,
dal z in jeder einzelnen solchen Hiille sich um weniger als &
andert. Nehmen wir nun an, unser Satz sei unrichtig, so nennen
wir, wenn dies auch unpassend klingen mag, einen Teil von 7T rein
oder unrein, je nachdem er die eben ausgesprochene KEigenschaft
besitzt oder nicht besitzt. Diese Einteilung geniigt offenbar den Be-
dingungen eines Teilschnittes, auch der letzten; dennwenn 4,, A, gentigend
kleine (geeignete) Halbmesser fiir die reinen Systeme U,, U, sind,
so ist die kleinste der beiden Zahlen %, hy ein geniigend kleiner
Halbmesser fiir das aus U, und U, zusammengesetzte System. Nach
dem Satz I miilite es daher mindestens einen Punkt p geben, dessen Hiillen
sdmtlich unrein sind, wihrend doch oben gezeigt ist, dal jeder Punkt p
eine reine Hiille besitzt. Mithin mufl auch 7 rein sein, w. z. b. w.

Erlduterungen zur vorstehenden Abhandlung.

Das Manuskript lag in zwei Fassungen vor, von denen die zweite von
Dedekind als ,sorgfiltigere Fassung desselben Gegenstandes“ bezeichnet war. In
dieser zweiten Fassung fehlte aber die Einleitung und der Paragraph mit den An-
wendungen, die daher aus der ersten Fassung iibernommen sind (wobei z, y statt
@y, +++, x, stehen blieb).

Zur Terminologie ist zu bemerken, daB die Dedekindschen Bezeichnungen
»Beipunkt“ und ,selbstindiges System“ dem ,Berithrpunkt“ (vgl. Hausdorff,
Mengenlehre) und der ,abgeschlossenen Menge® entsprechen; der Ubergang von T
zum ,selbstindigen System T,“ ist der Ubergang zur ,abgeschlossenen Hiille“

Dedekind, Gesammelte Werke, II. 24
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(Dedekind gebraucht den Ausdruck ,Hille“ fiir n-dimensionale abgeschlossene
Wiirfelumgebung eines Punktes).

Den Anwendungen kann vielleicht noch hinzugefiigt werden der Heine-
Borelsche Uberdeckungssatz:

Es sei jedem Punkt p von 7' (wo 7 ahgeschlossen und beschrinkt) eine p
enthaltende offene Menge b‘p zugeordnet. Man nenne eine Untermenge U von 7'
rein oder unrein, je nachdem [ durch endlich viele d, iiberdeckt wird oder
nicht. Ist 7 unrein — d.h. der Uberdeckungssatz nicht erfiillt —, so gibt es
einen Punkt ¢ von 7T derart, daf jede Wiirfelumgebung von ¢ unrein. Das ist
aber ein Widerspruch; denn ist J_ die ¢ zugeordnete offene Menge, W, < J, eine
Wiirfelumgebung von ¢ (eine solche existiert, da die W eine Basis aller Umgebungen
bilden), so ist W, rein; denn es wird von einem J, iiberdeckt.

Noether.
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Stetiges System aller Abbildungen der naturlichen
Zahlenreihe N in sich selbst.

1. Abbildung « von N in sich selbst. Ist = eine natiirliche
Zahl, so sei ne das durch « erzeugte Bild von n; no ist eine
natiirliche Zahl.

2. Sind «, 8 Abbildungen von N in sich selbst und verschieden
voneinander, so gibt es mindestens eine natiirliche Zahl n, fiir welche
die Differenz no — n 8 von Null verschieden ist, und unter diesen
Zahlen n gibt es eine kleinste r. Dann ist

xe — zf, falls x <,
und re—rf ist entweder positiv oder negativ. Im ersten Falle

rea>71p

heifle & groBer als B, B kleiner als o, in Zeichen

a>f und g <o

Im zweiten Falle ist 78 > re, mithin § > o, « <. Also:
von zwei verschiedenen Abbildungen o, § ist immer eine und nur
eine grofler als die andere.

3. Satz: Sind «, B, y drei verschiedene Abbildungen von N in
sich selbst, und ist « > B, f > y, so ist auch « > y.

Beweis: Zufolge der beiden Annahmen o« > 8, B > y gibt
es zwel natiirliche Zahlen r, s von folgender Beschaffenheit:

ra>rp, zea=—azpf fir z<r,
sp>sy, yp=yy fir y s
Nun sind zwei Félle denkbar: entweder ist » < s, oder es ist
r> s Im ersten Falle ist ra& > 7 und, je nachdem r < s oder
r=-gy ist, rf = ry oder rf > ry, also gewil roa > ry, und da
24 *
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jede Zahl z, welche <(r, auch <(s ist, so ist ra—=2f und 2§ =z,
also auch 2« — xy, mithin

ra>ry und xe = zy fir x <r also >y,
w. z. b. w.

Im zweiten Falle » > s ist s& = sf und sf > sy, also auch
s> sy, und da jede Zahl y, welche <Us, auch <Cr ist, so folgt
yo = ypB, und yf = yyp, also y« = yyp, mithin

sa>sy und yo=yy fir y <s, also a>y,
w. z. b. w.

[Diese kleine Bemerkung trigt das Datum 1891. 1. 2.]



XXXVIII.
Charakteristische Eigenschaft einklassiger Korper £.

Die erforderliche und hinreichende Bedingung dafiir, daB
ein endlicher Korper £ einklassig ist, besteht darin, daf tiir
je zwel ganze Zahlen «, § in &, deren letztere § von Null ver-
schieden ist, immer zwei ganze Zahlen u, v in & gewihlt
werden konnen, deren erstere u relative Primzahl zu 8 ist,
und fiir welche die Norm N(ap + fv) absolut < N(B) ist.

Beweis. I Ist£ einklassig, und o die Hauptordnung, d.h. das
System aller ganzen Zahlen in £, so ist

oe -+ 0 = 0d (Hauptideal).

Ist o teilbar durch g, so kann man 6 =8, « = By, p = — I,
v = p setzen, wodurch den Forderungen geniigt wird, weil u relative
Primzahl zu 8, wo N (ap + fv) = 0 abs. <N (B) ist. Wenn aber «
nicht teilbar durch g ist, so setze man

¢« =20w, f =08, also oa 408, =0;
mithin sind e, f, relative Primzahlen, und es gibt ganze Zahlen o,
die der Kongruenz
o, 0, = 1 (mod. B,)
geniigen (§ 174, S.533, § 178, XIII, S.559 und S.556).

Ist nunz das Produkt aller derjenigen ind aufgehenden Primzahlen
des Korpers &, die nicht in 8, aufgehen (evtl. # — 1, wenn es keine
solche Primzahl gibt), so sind g,, # relative Primzahlen, und folglich
(§ 180, II, S.568) gibt es in o Zahlen u, die den simultanen Kon-
gruenzen

¢ = ay (mod. 8,), ¢ = 1 (mod. =)
geniigen; hieraus folgt, dall u relative Primzahl zu » und (wie «,)
zu B,, also auch zu B ist, weil jede in B — 0 B, aufgehende Prim-
zahl entweder in f, oder in 0, also in = aufgeht. Aus der ersteren
dieser Folgerungen folgt ferner

o= a, 0, = 1 (mod. §,),
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also gibt es in o eine Zahl v, die der Bedingung

autprv=1 apt+pr=29
geniigt, woraus der Beweis von I, nimlich

N+ ) = N@) = 55 abs. <N (@)

folgt, weil B, keine Einheit, also N(8,)>1 ist (« nicht teilbar
durch p).

II. Umkehrung: Der endliche Korper £, dessen Hauptordnung o,
ist gewil einklassig, wenn es fiir je zwei Zahlen @, in o, deren
letztere von Null verschieden ist, immer zwei Zahlen w,» in o gibt,
deren erstere relative Primzahl zu § ist, und die der Bedingung

) N(op + Bv) abs. <N (B)
geniigen.

Bei dem Beweise wollen wir, wenn «, §, o', ' Zahlen in o sind,
durch das Zeichen

(o B) ~ (', B)
andeuten, dafi der Komplex aller gemeinsamen Teiler von e, 3 iden-
tisch mit dem aller gemeinsamen Teiler von ¢/, ' ist. Sind nun o,
gegeben, und pu,v so gewihlt, daB sie den beiden Bedingungen ge-
niigen, und setzen wir

y = ap+ B,
(“’ﬁ)’\’(ﬁ’?);

denn offenbar ist jeder gemeinsame Teiler von o, auch ein Teiler
von p, also gemeinsamer Teiler von f,y; und aus ap — y — B folgt,
dal jeder gemeinsame Teiler von f,p auch ein Teiler von ep und,
weil er als Teiler von § relative Primzahl zu p ist, auch Teiler von «,
also gemeinsamer Teiler von o, B ist, wie behauptet war. Aus jedem
Paare o, 8, wo 8 von Null verschieden, kann man daher eine Zahl y
in o bilden, die den Bedingungen

(@B) ~ (B,y) und N(y) abS-<N ®

so folgt daraus

geniigt.

Der Fall y = 0 tritt offenbar nur dann ein, wenn jeder Teiler
von 3, also auch g selbst in ¢ aufgeht (und umgekehrt, wenn o durch
teilbar ist, so kann man y,v wie in I so wihlen, daf y = 0 wird);
in diesem Fall besitzen also o, 8 einen groften gemeinsamen Teiler §.
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Ist aber y von Null verschieden, so kann man wieder eine Zahl ¢ in o
bilden, die den Bedingungen

(,0) ~ (B,7) ~ (a,8) und N@)<N(y)<<N(B)
geniigt, woraus offenbar auch (y,0) ~ (e, f) folgt. Fihrt man, wenn §
nicht Null ist, so fort, so erhilt man eine Reihe von Zahlen 8,y,0,¢,---
in o, deren Normen absolut immer kleiner werden; es muf daher in
dieser Reihe nach einer endlichen Anzahl von Schritten auch die Zahl
Null auftauchen, und wenn z in ihr die letzte von Null verschiedene
Zahl ist, so ergibt sich:

(‘xv ﬁ) ~ (t* 0)7
woraus wie oben folgt, dal je zwei Zahlen «, § in 0, deren letzte nicht
verschwindet, einen groften gemeinsamen Teiler ¢ in o besitzen, was
auch durch

vee +0of = oz
ausgedriickt werden kann; mithin ist (§ 178, XII, S.559) jedes Ideal
des Korpers & ein Hauptideal, d. h. & ist einklassig, w.z b. w.

Erlduterungen zur vorstehenden Abhandlung.

Das hier gegebene Kriterium ist erst in neuester Zeit — im Rahmen all-
gemeinerer Untersuchungen — wiedergefunden worden: H.Hasse, Uber eindeutige
Zerlegung in Primelemente oder in Primhauptideale in Integritdtsbereichen. J.f. M.
159 (1928), S.3—12. Die Zitate bezichen sich auf die 4. Auflage von Dirichlet-
Dedekind; der Satz selbst liegt aber viel weiter zuriick, wie eine nicht druck-
fertige, sehr alte Ausarbeitung zeigt.

Noether.



Konstruktion von Quaternionkérpern.

Der in dem Quaternionkdrper £ enthaltene biquadratische

XXXIX.

- Korper sei H; man kann dann

Q = H (w),

setzen, wo p eine ganze Zahl in H bedeutet.
von der Form z + yw, wo z, ¥ in H enthalten; soll das Quadrat
(x+ yo)P=(2+ py’) + 22y o in H enthalten sein, so mull xy =0
sein, also # = 0, falls  + y® nicht in H enthalten (also nicht

y = 0) ist.

Bezeichnet man die Quaterniongruppe @ des Korpers £ mit 1,

o, B, y, & ea, e, ey, wo

0 =u

= e = 7" =y~

& =1,
£:a2:ﬁ2—y2
By = o, yo =2, aff =y,

=o' —=¢a, ay = 1 =¢f,

halten ist, so kann man

und entsprechend

0e— U®
®0f = v,
Oy = wWae

Bo=7y~! = &y,
go liegt (we)® = pe in H, und da wo in &, aber nicht in H ent-

setzen, wo u, v, w Zahlen in H sind. Sodann ist

Lo ®E 0, @E =y,
we® —w = —0 — ouuoa),
e =wey = —ow = ou(va),
oye =off = ov=oouwae),

Jede Zahl in Q ist
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und entsprechend ergibt sich

ow= ov (), —0v = ow (uyp),
—o = wv (v§), ou=ow (vy),
—ou = aov (wp), —0 = ow (wy),
folglich
lua:: — ug = wrvl, wy = —owl
1) vee = —wu—l vf = — v} vy = uwl
lwoc: vu~l, wp— —wuv-l, wy= —wl
pe = pu, wp = wy = pw'

Ist H insbesondere einklassig, so kann man u als eine durch
kein Primzahlquadrat in H teilbare ganze Zahl in A annehmen.
Dann sind auch po, wf, wy durch kein Primzahlquadrat teilbar,
und somit miissen %, », w Einheiten sein. Ist daher = eine in p
aufgehende Primzahl in H, so miissen auch ze, =, =y in p auf-
gehen; bedeutet p die durch = teilbare natiirliche Primzahl, so
mul} daher, wenn p durch kein Primzahlquadrat in H teilbar ist,
also p nicht in der Grundzahl von H aufgeht, die Zahl p durch
das Produkt p aller verschiedenen in p aufgehenden Primzahlen =
teilbar sein. Die Zahl u ist also das Produkt aus einer natiirlichen
Zahl m, einer Einheit und moglicherweise noch einer oder mehreren
voneinander verschiedenen in der Grundzahl aufgehenden Primzahlen
in H; dabei ist m ein Produkt von lauter voneinander und von den
Primteilern der Grundzahl verschiedenen natiirlichen Primzahlen.

Beispielsweise sei H der einklassige Korper R (V2, V3, V6),
wo R den Korper der rationalen Zahlen bedeutet; u sei wiederum
eine durch kein Primzahlquadrat in H teilbare ganze Zahl in H.
Die Grundzahl (48%) von H setzt sich aus den Primfaktoren 2 und
3 zusammen. Dabei ist 3 das Quadrat der Primzahl V3 in H, und
2 ist bis auf eine Einheit als Faktor die vierte Potenz der Primzahl

LEYE 415 s
Vo V2

in H. Die Fundamentaleinheiten in H sind ferner

L+ =1+

a—1412, n:‘jfzvuvuvg,
r=1V2 + V3 = Vo = V5 + 2.



— 378 —

Also kann man setzen
w = tmanyees(l 4 e (V3)%,
wo m eine durch kein Primzahlquadrat teilbare natiirliche Zahl und
relative Primzahl zu 6 ist und jede der Zahlen e, e,, e, e,, e, gleich
0 oder 1 ist.
Man kann jetzt setzen

(VE, V5, V6,0) « = ( V2, — V3, — V5, uo),
(ng Via V(iv ﬁ?)ﬁ:(— V%1 VE_VE ’Uﬁo), WE = — @, Y& = Wu.
(V2,V3,V6,0) y = (—V2, — V3. V6,ww),

Dann ist
ao =  a, af = —a"t, ay = —a},
ne=—n"% gf=—n qy= 717}
e = —17Y f= <, ty=—r,

A+o=—n"A—n), 1+pp=1—n (L+ny=9"(1+9),

also, da man leicht

—
l

=

|

-

|

—
=

bestitigt, T
Qt+ne=0+ny 1z I+ =—(N+ns
, Lty =Q0Q+n7

endlich _ _ . _ _ _

(V8)e = —1V3, (¥38)p=13 (V3)y=—1Vs.

Also ist

po = tmar(—ny)e2(—z ) (l 4 n)sq sz (—“_Vg)eb
= +mat (—1eztestey—ea—eg—ea—e(] 4 "I)e4 (Vd )657

f;__“ = (— L)eetestesy—2e—ep—2e3—es — g2

also
' e,—=0, ¢ +e+e =0(mod?2), u= (L) 1%

‘ w = iman ne2 o (Vg)‘s.
Hieraus ergibt sich weiter
wf=tm(—a)n (= v (13)"
up
w
e, +e,=0(mod.2), e =¢, v=(+)'a 7%
u = +mat g1 (VB )’5

P— (_ ])61+02 a 26 7—2€3 — ,U‘J,

also
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und mit Riicksicht auf das Obige auch
w= (&) e,
e, + e, + e, = 0 (mod. 2).
Unter Benutzung von (1) erbilt man weiter
wa = () (— )~ (— e = () (= D e e
= — U ! = — (i)' nel 7,
also
(—Date = —1, e + e =1 (mod. 2);
also ist
e, = 1,
n = imael tnel [AZ] ‘/—‘g
und entweder e, = 0, ¢; = 1 oder ¢, == 1, ¢, = 0. In #hnlicher
Weise ergibt sich
0B = () (—a- e = (1) (— 1t as
= —p 1l = ——(i)” att 1%,
also
(1= —1, ¢ =1, ¢ =0,
(2) g = +manVs.
Mein erstes Beispiel (1886) war

w=(+7V2) (V2 +13)V2V8 = azV2 V3.
Diese Zahl hat nicht die Gestalt (2); das erkldrt sich daraus, dall
u oben als durch kein Primzahlquadrat teilbar vorausgesetzt wurde.
In der Tat unterscheidet sich w von der unter (2) fallenden Zahl
anV3 nur durch den Faktor

o¥2 _ 2(Y2 +3)
] 14+vV3

der das Quadrat der Zahl 1 — 1 ;;3 in H ist.

Ist umgekehrt g von der Gestalt (2), wo m eine beliebige durch
kein Primzahlquadrat teilbare und zu 6 teilerfremde natiirliche Zahl
ist, und ist @® = g, so erzeugt o iiber dem Korper H einen Qua-
ternionkorper. Das erkennt man folgendermalien:
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Man bezeichne mit «, B, y drei Permutationen des Korpers £
= H (»), welche die auf den biquadratischen Korper R (V2, V 3)
beziiglichen Eigenschaften

(V2,V3,V6) « = ( V2, V3, -V6),
(3) (V21 Vga Vﬁ) ﬁ = (_ 21 V39 "_VG)a

(V21 ‘/3a V6)7:(—V2,—V3, VG)
besitzen [solcher Permutationen o, 8, y gibt es je eine oder je zwei,
je nachdem der noch unbekannte Grad von &£ gleich 4 oder § ist,
da zu jeder Permutation des biquadratischen Korpers R (V2,V3)
genau eine bzw. zwei Permutationen von & als Multipla gehéren]:
die identische Permutation von £ sei 1. Nun ist

;Vg (—138) = (1 ygvg)%’

Y vz)li_vfi V3 —o(1— y3)

= tm(1+V3) !

aty == m(1 VD) X y5) — w21 — v (1_%&)‘,
mithin '
wa—ml‘—‘/g.e
yz "
W jeb=o(—V2).q (el = et = e} = 1),
wy=m<1—v=z>1;v3 ‘

Hieraus folgt weiter

1— 5 1 3
0w’ = o Vs e - + Vs e, = — @,

V2 D)
) e =0(1—VDe(1+12e=—a

0wy = o(l— VQ) ——Tv3 e,-(1 —{~V2) 1—_—}—& 6 — —a,

also

© (V2,V3,0)e = (V2,V3,0) # = (V2,V3,0)y* = (2,15, a).
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Man kann also setzen
(7 o =p =9y ==

Aus (5) oder (6) geht hervor, dal e nicht in R (V2, V3) ent-
halten ist, weil sonst zufolge (V2, V3) & = (V2, ¥3) auch o a? gleich
® sein miilte; mithin ist R(V2, V3.0) vom Grade 8, und da der-
selbe durch fiinf verschiedene Permutationen 1, «, 3, 9, & in sich selbst
iibergeht, so mul dasselbe auch fiir seine iibrigen drei Permutationen
gelten; mithin ist er ein Normalkéorper. Aus (5) und (4) folgt

weiter
1—V3

0w = —we = — e,

V2
0 =—0pf=—o(l—12)e,
0y —=—oy—= ——co(l——VQ)l;;/ es;

vergleicht man mit (4) und bedenkt, dal o? p% »* auf den
Korper R(V—2—, VE) genau so wirken wie «, 8, ¥ in (3), so diirfen

wir offenbar e, — e, — e, — — 1 annehmen, wodurch

00 =—@ 1- V3, o :—m(l—‘/a), @y :—m(l—Vg)l—lle‘
V2 V2

0o’ = w1~l/3, wpt= 0(1-V2), oy*= oj(l—VQ) V3

V2
wird. Zufolge (7) ist ferner
W =ca=as=—a, B=sf=Pe=p, y=cy=ye=p,
(VEVE o), ~ (VEVE @) ea = (VYT -a)e=( V3,15, -00),
(V2,V3,0)8, = (V2,V3,0) s = (V2,V3,~)p = (-V2, V3,~ap),
(V2av31&7>7’1 = (V27V3,‘0)8')’ = (VZ,V?),—w)y = (”‘V2w_v3v_ﬁ77)’
und da
(V2,V3,0) e = (V2,V3,— ) e =(V2,V3,0),
80 ist
32:1:a4:ﬁ4:y4:a::ﬁi:»y:;
af = Bl =y} =&

oy =@ B =B, i = .
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Ferner ist

08y =l-a(l—¥Dly =o(—1D 7120 +7D)

=o' —on (VBB = (< VYD) = (2 V)
= (V2,V3) &
. —1—V3 1—\3 1+V3
a)ya_[~--w(l—v2) V3 ]oc—— (1—1/2)—‘73—
= —m<1-v5>———w_g,<_vzm>y_a——_— (—V2,—V3)«
= (—V2,V3) = (V2, V"’)ﬁ;
maﬁ:—( 001——‘7:113') (I—VQ) ._ :a)f)}’
(V2,V3)ep = (V2,—V3)p = (—Vz,—vu) :(vzvﬁ)y.
Daraus ergeben sich die drei ersten der sechs folgenden Gleichungen:
By =a, ya=4§, af=y,

yYB=ua, ay =24, pa=y,
aus denen die ibrigen und das Schema der Komposition folgen.

Notwendige und hinreichende Bedingung bei allgemeinem
biquadratischem Unterkorper.

Uber dem Korper H —= R (V;, VZ)_), wo @ und b relative Prim-
zahlen, voneinander und von 1 verschieden und durch kein Primzahl-
quadrat teilbar sind, sei ein Quaternionkorper & — H (@) errichtet.
Sind a, B, p, ¢ Permutationen dieses Korpers mit den Eigenschaften

&2 = 1,
o ==y =
By =0a, ya=2p «f=ry,

8o liegen die Zahlen
‘ owe) =u ow@p) =7 oy =w
in H¥*), und es ist

0WE—=— — 0,
o@o) =u=—ua, (@f)(0y) =uf= —uy;
o@f)=v=—vph (0p)(we) =vy = —va;
o(@y) =w=—wy, (wa)@p)=wo= —wp

*) [Vgl. den Anfang.]
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Bezeichnet man o (o a) (o f) (@) mit &, so ist

0 (@a)© P (@) = uwp) = v(y) = wwa) = h

. uwvw
O = —.
h

Man kann annehmen, es sei

(Va, Vo, VaVb)e =( Va,— Vb —Va¥b),
(Va, Vo, Vayb) = (—Va, Vb, —Vayb),
(Va,Vb,VaVbo)y = (—Va,— Vb, VaVb).
Man setze nun
u=gq+zVa+ yVEJr-zVEVE
mit rationalen ¢, x, ¥, 2. Dann ist
we =g+aVa—yVb—zVaVb,
und wegen 4 =— — wo mul
w=(y +2Va)Vb, up=(y—zVa)Vb
sein. In entsprechender Weise ergibt sich
v = (?/1 +2 VB—) Va vy = — (yl =% VB) VEIT,
w = Y, VE + 2, VE we = y,l/a~—z2v5
mit rationalen y,, 2,, ¥, 2,, also
h=b(y?—az’) = —a(y?—02)) = ayl — b2}
Man kann voraussetzen, dab y, 2, y,, 2, ¥, %, ganze rationale
Zahlen sind, da man sonst @ nur mit einer passenden natiirlichen
Zahl zu multiplizieren braucht. Wegen der iiber @ und b getroffenen
Voraussetzungen kann man also setzen
y=ar, y,=0bs, y,=0bt z,=ap
mit ganzen rationalen 7, s, ¢, p. Es folgt
h

J— 2 2 __ .8 2 — 2 2 3k
— =qar?—2> =z —bs* = O —ap*®)

ab

*) [Die Bedingung ist auch hinreichend; vgl. die Erliuterung.]



Erlduterungen zur vorstehenden Abhandlung.

Die Arbeit findet sich im NachlaB in nicht ganz druckfertiger Gestalt. In
der wohl ziemlich gleichzeitigen Arbeit ,Uber Gruppen, deren simtliche Teiler
Normalteiler sind“ (XXVII) ist das Hauptergebnis vorweggenommen, da der
dortige Ausdruck

w2 = r(24+12)(34V6) (r = O beliebig rational)
sich nur durch einen in R(VE, V3) quadratischen Faktor von der Normalform (2)
unterscheidet. (Vgl. die Rechnung auf S.379. Durch einen solchen Faktor unter-
scheidet sich auch das obige » von dem dortigen m.)

Das Ergebnis, daB jeder Quaternionkorper iiber R (Vﬁ, V_3) durch die
Quadratwurzel eines Ausdrucks (2) erzeugt wird, scheint erst aus spiterer Zeit zu
stammen. Aber daB die Quadratwurzeln aus den Zahlen (2) Beispiele von Quaternion-
korpern ergeben, findet sich schon auf einem von Dedekind mit dem Datum des
15. Februar 1886 versehenen Blatt bewiesen *) (vgl. XXVII, S.91). Jene Tatsache
ergibt sich als Sonderfall einer von Dedekind am vorhergehenden Tage gefundenen,
zunichst als notwendig erkannten Bedingung, die sich auf die Unterkirper vierten
Grades beliebiger Quaternionkorper bezieht und in einigen diophantischen Glei-
chungen besteht. Diese Bemerkungen tragen das Datum des 14. Februar 1886 und
sind hier am Schlul unter Hinzufiigung iiberleitender Worte wiedergegeben. Die
diophantischen Gleichungen sind iibrigens auch hinreichend; das ergibt sich unschwer,
indem man in den Bezeichnungen von S. 383
wuvwW

h
setzt und die Isomorphismen des durch w erzeugten Oberkorpers untersucht.

Die in der Erlduterung zu XXVII erwihnte Arbeit von Mertens iiber den-
selben Gegenstand geht von der Gleichung und nicht vom Kérper aus und be-
schrinkt sich auf die Aufstellung einer notwendigen Bedingung.

W. Weber.

w2_—_

*) Die dortige Herleitung ist fast wortlich, nur mit den erforderlichen Verall-
gemeinerungen, in diese Arbeit aufgenommen worden, da der betreffende Teil im
spiateren Manuskript nur angedeutet war.




XIL.

Zur Theorie der Ideale (GoOttingen 1894).
Anwendung auf die Kreiskorper.

Lemma 1. Ist m eine natiirliche Zabl, und « eine primitive

Wurzel der Gleichung

om =1,
s0 1ist

a—1 =0,
wenn m = 1,

(06— 1)(p(m) = &p,

wenn m durch eine und nur eine Primzahl p teilbar ist, und ¢ eine
Einheit bedeutet; « — 1 =— &, wenn m durch mindestens zwei ver-
schiedene Primzahlen teilbar ist.

Beweis. Der erste Fall ist evident. Durchlduft ¢ = o im
zweiten Falle alle ¢ (m) primitiven m-ten Einheitswurzeln, und nimmt

man 77 = 1 (mod. m), so sind
o —1 oar—1 nd o—1 a"—1
«—1 oa—1 " o —1 o —1

ganz, also Einheiten, und da

H(x_a') — m:—— 1, also H(l—a') =D,

xP —1

so folgt das zweite Resultat. Ist endlich m =— pgn durch zwei ver-
schiedene Primzahlen p,q teilbar, so ist « — 1 gemeinsamer Teiler
von 04" — 1 und P — 1, also (nach dem zweiten Fall) gemeinsamer
Teiler von p und ¢, also eine Einheit, w. z. b. w.

Lemma 2. Es sei p ein Primideal eines endlichen Korpers £,
und p die durch p teilbare natiirliche Primzahl, N (p) = p’, wo f der
Grad von p. Ist nun « eine in £ enthaltene primitive m-te Einheits-
wurzel, und setzt man m = m'p’, wo p' die hochste in m aufgehende

Potenz von p ist, so gehort ¢ zum Exponent m' (mod. p).
Dedekind, Gesammelte Werke, II. 25
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Beweis. Ist w relative Primzahl zu p in &, so ist
oV®-1 =1 (mod. p),

und der Exponent, zu welchem @ gehért (mod. p), ist die kleinste
natiirliche Zahl e, welche der Bedingung w® = 1 (mod. p) geniigt;
dann ist e ein Divisor von N(p) — 1, also gewil unteilbar durch p.
Wendet man dies auf den Fall @ = « an, so folgt aus a™ — a™'#'
= 1 =1 (mod. p), dall e Divisor von m’p', also auch von m’ ist.
Setzt man nun m' = eé’, so ist a® eine primitive (¢’ p’)-te Einheits-
wurzel, und da «®— 1 = 0 (mod. p), also keine Einheit ist, so sind
(nach Lemma 1) nur zwei Fille moglich: Entweder ist ¢’ p’ = 1,
also € = 1, e == m' = m. Oder ¢ p’ ist durch eine und nur eine
Primzahl ¢ teilbar; dann ist «¢— 1 (nach Lemma 1) Divisor von ¢,
und da ef— 1, also auch ¢ durch p teilbar ist, so mull ¢ — p sein;
also ist €' p' Potenz von p, und da e’ als Divisor von m’ nicht durch p
teilbar ist, so mufl auch in diesem Falle ¢ = 1, ¢ = m' sein. Also
ist in beiden Fillen e — m/, w. z. b. w.

Zusatz. Da e Divisor von N(p) —1 = p/— 1 ist, so folgt
P/ =1 (mod. m'). ,

Lemma 3. Es sei wieder « eine primitive m-te Einheitswurzel,
und & — R(x) = K, der durch « erzeugte Korper. Als bekannt
wird nur Folgendes vorausgesetzt. Die sidmtlichen @ (m) primitiven
m-ten Einbeitswurzeln «' — o, wo 7 alle nach m inkongruenten rela-
tiven Primzahlen zu m durchliuft, sind die simtlichen Wurzeln einer
Gleichung vom Grade ¢ (m) mit rationalen Koeffizienten (ihre Irredu-
zibilitit soll erst bewiesen, nicht vorausgesetzt werden). Jedenfalls
folgt hieraus, dal alle » mit « konjugierten Zahlen unter diesen
Zahlen o' zu suchen sind; durch jede der n entsprechenden Permu-
tationen ¢’ geht o in eine dieser » Zahlen wg' = o = o iiber,
und da & = Q¢ = R(«') = R(«") offenbar ein Divisor von £
und folglich (I) auch = & ist, so ist & ein Normalkorper. Sind¢’,¢"
zwei solche Permutationen von £, und zwawr e’ = o', a@” = o',
so folgt () ¢”" = («) ¢" = (2¢")’ = (") = o™, ebenso
(¢9") @ = o', mithin ¢'¢"” = ¢" ¢, d. h. Q ist ein Abelscher
Korper, und die Gruppe @ aller n Permutationen ¢ ist eine Abel-
sche Gruppe. Man kann eine Permutation ¢, durch welche & in ag
— o iibergeht, kurz als Permutation » bezeichnen, wo r ein beliebiger
Reprisentant der ganzen Zahlenklasse  (mod. m) ist, und die Zu-
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sammensetzung der Permutationen ¢ in der Gruppe @ entspricht der
Multiplikation dieser Zahlenklassen; die identische Permutation
entspricht der Zahlenklasse 1 (mod.m). Diese Gruppe @ ist dann
ein Teiler der aus allen ¢ (m) Klassen bestehenden Gruppe, also ihr
Grad » ein Divisor von ¢(m).

Satz: Es ist » = ¢ (m); d. h. die Gleichung, deren Wurzeln
die ¢ (m) primitiven m-ten Einheitswurzeln sind, ist irreduzibel; @ ist
die Gruppe aller ¢ (m) Zahlenklassen » (mod. m), deren Elemente
relative Primzablen zu m sind.

Beweis. Ist p eine natiirliche Primzahl, die nicht in m auf-
geht, und p irgendein in p aufgehendes Primideal des Korpers £,
so gibt es [zur Theorie der Ideale] in der Gruppe @ mindestens eine
Permutation ¢, von der Art, dall jede ganze Zahl @ in & der Kon-
gruenz

w? = oy, (mod. p)
geniigt. Wendet man dies auf @ — o« an und setzt

o 1[) — al’o,

wo p, relative Primzahl zu m, durch welche , vollstindig definiert
ist, so folgt

o? = oPo (mod. ).
Wendet man hierauf das obige Lemma 2 an, so ist p' = 1, m' = m
zu setzen, also gehort « (mod. p) zum Exponent m, mithin ist p, = p
(mod. m), und folglich & 9, = aPo = «?. Es ist daher «? konjugiert
mit «. Ist nun 7 eine beliebige relative Primzahl zu m, so kann man
immer 7 = p, P, P; +-- (mod. m) setzen, wo p,, Py, P, - - - natiirliche
Primzahlen bedeuten; nun gibt es, wie eben gezeigt, immer Permu-
tationen @,, @y, @5, - +- in der Gruppe @, fiir welche @, = ar1,
0, == 0P2, @ Py = aP3 - -+, also auch AP, Py Py + o+ == @P1P2P3 " = T
wird; mithin ist jede Potenz @7, d. h. jede primitive m-te Einheits-
wurzel o konjugiert mit o, w. z b. w. (Ahnlichkeit mit meinem Beweise
in Crelles Journal Bd. 54).

25*
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Erlduterungen zur vorstehenden Abhandlung.

Der hier gegebene Irreduzibilititsbeweis der Kreisteilungsgleichung beruht auf
den beiden Tatsachen:

1. Eine primitive m-te Einheitswurzel bleibt primitiv modulo jedem nicht in
m aufgehenden Primideal p des Korpers K dieser Einheitswurzeln.

2. Es gibt eine Substitution v, der Zerlegungsgruppe vonp, fiir die @ wy == w? (p)
fiir jedes ganze w aus K.

Die vermoge 2. gegebene Zuordnung zwischen Galoisgruppe und Klassen-
gruppe — aus der die Irreduzibilitit unmittelbar folgt — ist die Zuordnung im
Sinn des allgemeinen Artinschen Reziprozititsgesetzes, aber in stark ab-
geschwiichter und daber elementarer Form. Denn die Zuordnung geschieht nur
zu allen Primzahlen enthaltenden Klassen, also zu einem Erzeugendensystem der
Klassengruppe, was zur Festlegung des ganzen Isomorphismus hier ausreicht. Die
Frage, ob dieses Erzeugendensystem die Klassengruppe erschipft, also der Satz
von der arithmetischen Progression, bleibt unberiihrt.

DaB auch die Irreduzibilitit der Valenzgleichung in der Theorie der komplexen
Multiplikation sich entsprechend beweisen liBt, hat Dedekind an anderer Stelle
ohne Beweis- Ausfilhrung bemerkt. Es handelt sich wohl wesentlich um den in
Weber, Algebra, Bd. 3, § 122 (2. Auflage) iibergegangenen Beweis fiir die Irredu-

zibilitdt der Klassengleichung.
Noether.
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Gruppencharaktere
von Zahlklassen in endlichen Korpern.

Ist 0 das System aller ganzen Zahlen @ des endlichen Korpers £,
und m ein Ideal in o, so bestehen alle diejenigen Zahlen w in o,
welche relative Primzahlen zu m sind, aus ¢ (m) Klassen m + y,
welche eine Abelsche Gruppe bilden: multipliziert man jede Zahl
einer solchen Klasse m 4 u, mit jeder Zahl einer solchen Klasse m
+ wg, 80 gehoren alle diese Produkte wieder einer einzigen solchen
Klasse m + g, g, an (was man durch m 4 g, g, = (M + p,) (m + p,)
bezeichnen koénnte). Zunichst einige Hiilfssdtze *).

Satz 1. Ist » relative Primzahl zum Ideal n, so gibt es Zahlen y,
welche relative Primzablen zum Ideal m sind und zugleich die
Kongruenz
(1) g = v (mod. n)
erfiillen, d. h. in der Klasse n + v enthalten sind; das System aller
dieser Zahlen u besteht aus ¢ (p) Klassen np + u, wo p das Produkt
aller derjenigen in m aufgehenden verschiedenen Primideale bedeutet,
welche nicht in n aufgehen (falls gar kein solches Primideal vor-
handen ist, ist p = o zu setzen).

Beweis. Alle Zahlen =, die relative Primzahlen zu p sind,
bestehen aus ¢ (p) Klassen' p 4+ = Soll eine Zahl u, die der Kon-
gruenz (1) geniigt, relative Primzahl zu m werden, so ist erforderlich,
dal sie auch einer dieser Klassen p -+ = angehort, also einer der
@ (p) entsprechenden Kongruenzen
(2) g = = (mod. p)
geniigt; und dies ist auch hinreichend, weil u zufolge (1) durch kein
Primideal teilbar ist, welches sowohl in m als in n aufgeht. Da

*) Besser gleich von Anfang an: Sind m, n Ideale, @ eine Zahl in o,
so soll mit (m; n -+ ) das System aller derjenigen in der Klasse t + @ enthaltenen
Zahlen bezeichnet werden, welche relative Primzahlen zu m sind. — Bedingung
der Existenz: m+4n-4 0w = 0, d.h. o relative Primzahl zu m 4 n.
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ferner n, p relative Primideale sind, so liefert die Kongruenz (1) in
Verbindung mit je einer der ¢ (p) Kongruenzen (2) je eine Zahl-
klasse np + u, und diese @ (p) Klassen sind verschieden voneinander;
w. z. b. w.

Zusatz 1. Bedeutet m' das kleinste gemeinsame Vielfache der
Ideale m, n, so ist m’ auch teilbar durch n p, also auch das kleinste
gemeinsame Vielfache von m, nyp; jede Klasse np + u besteht aus
(np, m’) Klassen m’ + g, und folglich ist

: _Nm)e®) _ Nm) ()
®3) @p o) ="Fuy — N@ N
die Anzahl der simtlichen verschiedenen Klassen m' 4 w, aus welchen
das System der Zahlen u besteht.

Zusatz 2. Ist n ein Teiler von m, also m" = m, und be-
deutet q das Produkt aller verschiedenen in n aufgehenden, also ¥ q
das Produkt aller verschiedenen in m aufgehenden Primideale, so ist

o (m) = N(m)"’(”“) Nw)2®) 20

N(rq) Np N@
_ 9 (9)
‘ q)(n) =N (n)N_(q)’
und folglich ist
® N o) _ pm
Nm NOp) oM

die Anzahl aller Klassen m + p, aus denen das System der Zahlen p
besteht. [Laflt man v in (1) die ¢ (n) verschiedenen Zahlklassen n + »
durchlaufen, welche aus relativen Primzahlen zu n bestehen, so er-

halt man die simtlichen ¢ (m) — 4 (( )) @ (1) Zahlklassen m 4 w, welche
aus relativen Primzahlen zu m bestehen] _
Definition 1. Ist das Ideal n ein Divisor des Ideals m, so soll

mit (‘:) das System aller derjenigen Zahlen v bezeichnet werden,

welche der Kongruenz

(5) v = 1 (mod. n)

geniigen und zugleich relative Primzahlen zu m sind; dasselbe be-
o (n)

@ ()
(6) m+tv,m4v ... m+4 v,

steht aus Klassen m 4 », die mit
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bezeichnet werden moégen, wenn zur Abkiirzung

p(m)
M om "

gesetzt wird. — Das System <T> besteht aus allen relativen Prim-
zahlen g zu m, ndmlich aus ¢ (m) Klassen m 4 u; das System (z)
besteht aus der einzigen Klasse m 4 1.

Satz 2. Die » Klassen m + » des Systems (?:) bilden eine
Abelsche Gruppe; sind u, p' zwei nach n kongruente relative Prim-
zahlen zu m, d. h. also Zahlen in (t:), 8o ist
8) g = pv (mod.m)
und umgekehrt.

Beweis. Denn sind v, v’ Zahlen in C:), also v =" =1 (mod. n),
so ist auch »+' = 1 (mod. n), und da », »' relative Primzahlen zu m,

d. h. in <T> enthalten sind, so ist auch v’ in (T), also auch in (t:)
enthalten. Sind ferner u, u’ Zahlen in <T>, so gibt es stets eine und

nur eine Klasse m 4 v in <T>, welche der Kongruenz (8) und folglich
auch der Kongruenz u' = u v (mod. n) geniigt; ist nun g’ = g (mod. n),

so folgt, weil u', u auch in (:) enthalten sind, 1 = » (mod. n), d. h.
v ist in (l::) enthalten. Umgekehrt: geniigen drei Zahlen v, g, ' in

(:‘) der Kongruenz (8), und ist » in (::1) enthalten, geniigt also der
Kongruenz (5), so folgt ' = u (mod.n). W. z b. w.
Satz 3. Sind a, b Faktoren des Ideals m, so ist die Gruppe

( . 111 b) der grofite gem. Divisor

m m
( a i b) das kleinste gem. Multiplum der Gruppen <a) ' (b)
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Beweis. Das Erstere leicht; denn wenn m + u eine beiden
Gruppen (t:), (:‘) gemeinsame Klasse ist, so ist ¢ = 1 (mod. a) und
p = 1 (mod.b), also auch g = 1 (mod.a —b), d.h. die Klasse m + u
ist in (a f b) enthalten; und umgekehrt, wenn letzteres der Fall, so
ist w =1 (mod. a — b), also auch p =1 (mod.a) und p = 1 (mod. b),
d. h. die Klasse m + p ist beiden Gruppen c:), <‘§
w. z. b. w. — Das Letztere liegt etwas tiefer. Ist M das kl gem.

Multiplum von (T:), (:‘), so sind alle Klassen m 4+ &« von (T) und

> gemeinsam,

alle Klassen m 4+ 8 von (T), also auch alle Klassen m 4« in M

enthalten, und das System dieser Klassen m 4 «f, welches eine
Gruppe bildet (o, B, - ¢ty B, = (%, %) (B, By)), ist identisch mit M.

Da nun o« =1 (mod.a) und B = 1 (mod. b), so ist auch « = g
=u«f =1 (mod. a 4 b), und folglich sind alle Klassen m + &« von M

in <a$b) enthalten. Umgekehrt, wenn m + u eine Klasse in

(a i b)’ also w = 1 (mod.a 4+ b) und relative Primzahl zu m ist,

s0 kann man zundchst eine Zahl «, bestimmen, welche gleichzeitig
den Kongruenzen «, = 1 (mod. a), oty = p (mod. b) geniigt [D. §171, III,
alle diese Zahlen o, bilden eine Klasse (¢ — b) + o], und zwar wird
o, relative Primzahl zu o und 0, also auch zu a —b; nach Satz1
gibt es daher auch Zahlen «, welche relative Primzahlen zu m sind
und der Kongruenz o = «, (mod.a — b), also auch den Kongruenzen

« = 1 (mod. a), & = u (mod. b) geniigen (nach Zusatz 2 gibt es ﬁa—(t%)'b—)

verschiedene solche Klassen m 4 «). Da « relative Primzahl zu m
(oc enthalten in <t:>>, so kann man B so bestimmen, dall ¢ = u

(mod. m) wird; weil w rel_ative Primzahl zu m, so gilt dasselbe auch
von f; da ferner « = u (mod.b), so ist wf = u (mod.b), und da p
relative Primzahl zu m, also auch zu b, so folgt # = 1 (mod.b), d.h.

B ist enthalten in <‘“) Also ist jede in (

b ) enthaltene Klasse

m
a-t+b
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m + w von der Form m+4 e« B, wo m + « in <l:), m+ B in G:)

enthalten, d.h. jede Klasse m + u von (a _I: b> ist in M enthalten.
m

Also M = (a—l—-b)’ w. 7. b. w.

Bemerkung. Der zweite Teil des zweiten Satzes kann auch
go bewiesen werden. Nach einem allgemeinen Satze iiber Abelsche
Gruppen 4, B, deren gr. gem. Div. D, kl. gem. Multiplum M, ist
ab = dm, wo a, b, 0, m die Grade (Anzahlen der Elemente) von 4,

B, D, M bedeuten (D. § 149, S.396 — 397). Setzt man 4 = (‘:)

B = (‘E), so ist nach dem ersten Teile
D= < " ) also o — 20 b——q)—(m—) 0= - P (m).
a—5b)

, T e@’ T () @(a—0)’
also
S pme@—b) _ om
@ (@) @ (b) @(a+0b)

[weil allgemein @ (a) @ (b)) = @ (a — b) @ (a + D) ist, leicht zu zeigen™)].
Da nun im ersten Teile des Beweises des zweiten Satzes schon gezeigt

ist, dab M in< I—T—b) enthalten, so muf, weil M denselben Grad
_ e < m > . _/ om .
m = 7 ( @t b besitzt wie o) notwendig M — (a n b) sein,
w. 7. b. W.
Definition 2. Ist die Klassengruppe H ein Divisor von (‘:),

so betrachte man alle diejenigen Faktoren a, b, ¢ ... von m, deren

zugehorige Klassengruppen (Z‘), (:‘), <nct> Divisoren von H sind

*) p das Produkt aller verschiedenen Primideale, die in @, nicht in B,

G » » ” " " , micht in q, aber in b,
T ., ” » » , inagund in b
aufgehen; so ist ¢ (a) = N (a) %’% = N(a )Z;gg g}gg
— pay) _ p(q) @)
() = NE) N(qr) N(b)N(q) N(r)’

Cpy — _ gy 2(pqr) o2 e@ @)
p(@—B) = N@—5 yre) = YOOy ¥y ¥’

p+8 = Na+5 5,

und da ab = (a — b) (a + B), also auch N (a) N (b) = N(a—Db) N(a-+}b), so
folgt auch ¢ (a) ¢ (6) = @(a—Db) p(a +b), w. z. b. w.
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(jedenfalls ist (z) = m+4 1 in der Gruppe H enthalten). Nach dem
eben bewiesenen Satze befindet sich unter diesen Idealen a, b, c ...
auch deren grofiter gemeinsamer Divisor n = a4 b4 ¢ ..., und
offenbar sind a, b, ¢ ... die simtlichen Ideale, welche Multipla von n
und zugleich Divisoren von m sind. Dieses Ideal n soll der Exponent
der Gruppe H heiflen. Die charakteristische Eigenschaft desselben
besteht hierin:

1. Ist v relative Primzahl zu m und = 1 (mod. n), so ist die

Klasse m 4+ » in H enthalten (d. h. <l:> Divisor von H).

2. Ist n’ Faktor von m, aber nicht teilbar durch n, so gibt es
eine Zahl v, welche der Kongruenz »" = 1 (mod. n') geniigt und
relative Primzahl zu m ist und der Art, dall die Klasse m 4+ o' nicht

in H enthalten ist (d. h. (2&) nicht Divisor von H).

Oder: <$> ist Divisor von H oder nicht, je nachdem n' teilbar

ist durch n oder nicht.

Definition 3. Eine Funktion v, welche fiir jede in o enthaltene
Zahl ® einen bestimmten endlichen Wert ¢ (@) besitzt, soll eine
Klassenfunktion fiir das Ideal m oder auch periodisch nach
m heillen, wenn je zwei nach m kongruente Zahlen «, 8 einen und
denselben Wert ¢ («) = v (f) erzeugen, d.h. wenn fiir jede in o ent-
haltene Zahl @ und jede in m enthaltene Zahl u stets

V(o) = ¢(0+pu) [Bezeichnung: y(m + o) = ¥ ()]
ist; das Ideal m heifit eine Periode von 1.

Offenbar ist jedes Vielfache einer Periode von i ebenfalls eine
Periode von .

.Bemerkung. Man konnte bei dem Begriffe einer Periode m
von 1 groferer Allgemeinheit wegen davon absehen, dal m ein Ideal in o
sein soll, und lediglich annehmen, daB m irgend ein Modul sein soll,
mit der einzigen Beschrinkung, dal (o, m) > 0, also 3 nur eine
endliche Anzahl verschiedener Werte haben soll. Dies wiirde aber
keine wirkliche Erweiterung des obigen Begriffs geben; denn zufolge
der letzten Bemerkung wiirde auch der Modul o — m als Multiplum
von m, und ebenso das kleinste durch den Modul m oder o —m
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teilbare Ideal, welches immer — ° _1; i ist, ebenfalls eine Periode

von ¥ sein. Dagegen wiirde eine Erweiterung des Begriffs dadurch
eintreten (?) *), dafl die Funktion ¢ nicht auf alle Zahlen von o, sondern
nur auf alle Zahlen irgend einer Ordnung wirkt. —

Satz 4. Sind die Ideale a, b Perioden der Funktion v, so ist
auch ihr grofiter gemeinsamer Teiler a + b eine Periode von w.

Beweis. Denn wenn @, o, § beliebige Zahlen in o, a, b be-
deuten, so ist nach der Annahme v (w) = ¥ (0 + ) und ¥ (0) =
v (w + B); ersetzt man in der letzten Gleichung @ durch @ + «, so
folgt v (@) = v (@ + o) = ¥ (0 + « + ), also ¥ (w) = ¢ (@ + 9),
wo 0 — oo+ f8 jede Zahl des Ideals a 4+ b bedeutet, w. z. b. w. —

Hieraus geht hervor, dal der gr. gem. Teiler m aller Perioden
von 9 ebenfalls eine Periode von ¥ ist, und daf} folglich alle Perioden
von 3 die sdmtlichen Vielfachen von m sind, welches Ideal die
kleinste Periode von ¢ heilen soll, weil sie von allen Perioden
die kleinste Norm besitzt. (Besser Hauptperiode!)

Definition 4. Eine (nach m periodische) Funktion ¢ aller in o
enthaltenen Zahlen soll ein Charakter heifen, wenn fiir je zwei
golche Zahlen @, @' das Gesetz

V(o) = ¢ (o) ¥ (o)
gilt, und v nicht fiir alle @ verschwindet. —

Satz 5. Ist der Charakter ¢ periodisch, und ist m seine
kleinste Periode, so ist ¢ (@) dann und nur dann von Null verschieden,
und zwar ¥ (@)™ = 1,

wenn o relative Primzahl zu m ist.
Beweis. Da o -1 = w, also ¢ (@) ¢ (1) = ¢ (w) ist und ¢ (o)
nicht fiir alle & verschwindet, so ist
1p(1) = 1.
Ist @ relative Primzahl zu m, also @%™ = 1(mod.m), so folgt
Y {or® ) = ¢ (@)™ = ¢(1) = 1.

Ist aber @ nicht relative Primzahl zu m, so ist das kleinste
gemeinsame Vielfache 0o —m von o®@ und m von der Form o'
wo das Ideal m" ein echter Teiler von m (m = m' (0@ + m)) und
folglich keine Periode von o ist; es gibt daher zwei nach m’' kon-

*) [Das Fragezeichen ist spiter zugefiigt.]
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gruente Zahlen «, B, welche verschiedene Werte ¥ (a), ¥ (B) er-
zeugen; da nun @ (« — f) teilbar durch em’, also auch durch m ist,
so folgt

we = of(modm); Y@e)=P@p), ¥ = ¥(®)P(B)
mithin
w. Z. b. w.

Definition 5. Die Anzahl der verschiedenen Charaktere 3 von
kleinster Periode m soll mit ¢’ (m)bezeichnet werden. [Besser ¢, (m)!]

Zu ihrer Bestimmung dient folgende Betrachtung. Ist ¢ ein
solcher Charakter, so kann er zugleich aufgefalt werden als einer
der @ (m) Charaktere der Abelschen Gruppe, welche von den ¢ (m)
Klassen m 4 ¢ gebildet wird, die den simtlichen nach m inkongruenten
relativen Primzahlen ¢ zu m entsprechen; in dem Sinne y (m + g)
=v(+e) = v(e), v(m+o)y(m+e)=¢(m+ g¢’) Umgekehrt,
ist p ein Charakter dieser Abelschen Gruppe von Klassen m + g,
und setzt man ¥ (w) = ¥ (M + @) oder — 0, je nachdem o relative
Primzahl zu m ist oder nicht, so ist ¥ (w) offenbar eine Funktion
von der Periode m, weil immer ¢ (w) = ¥ (® + p), und zwar ein
Charakter, weil offenbar ¢ (w ©) = v (@) ¥ (®'). Die kleinste
Periode n dieses Charakters ¢ ist notwendig ein Divisor von m; da
nun ein Charakter ¢ (w) von der kleinsten Periode n stets und nur
dann verschwindet (nach Satz 5), wenn w relative Primzahl zu n ist,
und da andererseits ¢ (w) nach Definition stets und nur dann
verschwindet, wenn @ relative Primzahl zu m ist, so deckt sich das

System (:) aller relativen Primzablen zu n mit dem System (T)

aller relativen Primzahlen zu m; setzt man daher m — pu', wo P
das Produkt aller verschiedenen in m aufgehenden Primideale
bedeutet (oder o, falls m = o ist), so mub n = pn’ sein, wo n’ ein
Divisor von m'. Umgekehrt: ist ¢ ein Charakter von kleinster
Periode n — pn’, wo n’' irgend ein Divisor von m', so ist v (w) auch
ein Charakter von der Periode m, welcher stets und nur dann
von Null verschieden ist, wenn ® relative Primzall zu m ist, und
ihm entspricht ein vollstindig bestimmter A belscher Klassen-
charakter ¥ (m 4 g). Mithin verteilen sich die simtlichen ¢ (m)
Charaktere 3 (m + ¢) in ebenso viele Systeme, als es Divisoren n’
von m’ gibt, und da dasjenige System, welches zu n' gehort, aus ¢’ (pn’)
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Individuen besteht, so ergibt sich, dal die iiber alle n’ ausgedehnte
Summe

Sy o) = pm) = N F0) = N)p (),

also

o) N
2 o
ist. Da dieser Satz fiir jedes Ideal m' gilt, welches nur durch solche
Primideale teilbar ist, die in p aufgehen, so folgt, wenn man m’ durch
jeden Divisor von m' ersetzt, nach bekannten Satzen

, , u
g =9®gm)=9dg(;) Satzé
Satz 7. Sind m,, m, relative Primideale, so ist
@' (m,my) = @' (m,) @’ (my).

Beweis. Denn bedeuten y,, p, die Produkte aller verschiedenen,
bzw. in m,, m, aufgehenden Primideale, so ist y, §; das Produkt aller
verschiedenen in m,m, aufgehenden Primideale, also

, m,m m m , ,
@' (my115) = (v, by) @ (—‘m’): 9>(%)¢(—‘>-q>(vg)¢<—’>: @' () @' (my),
P Pg R Py
w. z. b. W.
Definition 6. Es bedeute @' (m) die Anzahl aller verschiedenen

Charaktere von der Periode m, also

' (m) = ¢’ (n),

wo 1 alle Faktoren von m durchliuft (weil jeder Charakter von der
Periode m einen der Faktoren n zur kleinsten Periode hat, und um-
gekehrt).

Satz 8. Sind m,, m, relative Primideale, so ist

@' (m, my) = @' (m,) D' (m,).

Beweis. Denn jeder Divisor von m,m, lifit sich stets und nur
auf eine Weise in die Form n, n, setzen, wo n,, n, Faktoren von m,, m,,
und umgekehrt, also

D' (m, my) = 2 o' (n,my) = 2 @' () @' (ny)
b - 2 93' (nl) 2 ‘P' (nﬂ) = (m1) @' (ms)a
W. Z. D. W.

Satz 9. Ist m teilbar durch das Primideal p und kein anderes,
also — p», wo n == 1, so ist

O'(m) =1+ =1+ ¢(m)
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Beweis. Denn es ist (nach Satz 6)
D(m)=9' @O+ M+ () + -+ (")
l+p®+e@Moe®+e®e@)+ - +o® @)
LM {p@ +e®+ -+ ) =1+o@NE"Y
=1l+o(y")
Satz 10. Ist m = abc...,wo a, b, ¢... (wirkliche) Potenzen von
lauter verschiedenen Primidealen (nicht = o), so ist

Pm)=(1+9@)(+e®(1+eO)...

Beweis unmittelbar aus (8) und (9).

Il

Gehen wir ndher ein auf die Verteilung der ¢ (m) Charaktere v
der aus den Klassen m 4 ¢ bestehenden Abelschen Gruppe auf die
Faktoren n = pn’ von m = pm’, wo p, m’, n’ die obige Bedeutung
haben. Es sei ¢ ein solcher Charakter, und (¢) die Gruppe aller
derjenigen Klassen m 4 g, welche der Bedingung

v(m+e) =v(e) =1
geniigen (aus ¥ (¢) = 1, ¢ (¢") = 1 folgt auch ¢ (¢ o) = 1). Sind

nun m 4o, m-+ B irgend zwei Klassen der Gruppe (T), welche

denselben Charakter ¢ (m + «) = ¥ (m 4 ) besitzen, so kann man
stets eine und nur eine Klasse m 4 ¢ so bestimmen, dal o = f
(mod.m), also (m+ a)(m+ g) = m -+ B, also ¢ (m + «) ¢ (m+ )
=y m+ ) = ¢ (m+ «), also ¥ (m+ @) = 1 wird; mithin ist
p = ag, wo m 4 ¢ der Gruppe (¢) angehdrt; und umgekehrt, durch-
lauft m 4 ¢ alle Klassen der Gruppe (v), wihrend « eine feste Klasse,

o ist y(m + og) = ¢ (m + «). Die Gruppe (1:> besteht aus einer

Anzahl von Komplexen von der Form (y)(m + o); alle und nur die
Klassen, welche einem und demselben solchen Komplex angehoren,
erzeugen einen und denselben Wert des Charakters ¢; die Anzahl
der verschiedenen Komplexe (y)(m + «), aus denen <t:> besteht, ist
auch die Anzahl der verschiedenen Werte des Charakters ¢. (Dies
ist eine allgemeine Eigenschaft der Charaktere Abelscher
Gruppen.) (v) heile die Gruppe des Charakters .

Nun sei a der Exponent der Gruppe (¢) (Definition 2), so soll
a auch der Exponent des Charakters ¢ heiflen. Wir betrachten
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das System (:) aller relativen Primzahlen ¢ zu a, welches aus ¢ (a)
Klassen a + ¢ besteht. Das System aller der Zahlen, welche eine
bestimmte solche Klasse a 4+ ¢ mit dem System (:1 ) gemein hat,

besteht [nach (4) in Zusatz 2] aus Z—)-((t:—)) Klassen m 4 u. Ein solches
System, welches der Klasse a -+ 1 entspricht, ist die Gruppe <‘:),

welche ein Divisor der Gruppe (¢) ist. Und wenn m 4 p eine der

?;—E%) Klassen von (‘: ) ist, welche in a 4+ ¢ enthalten sind, so ist der

Komplex (l:) (m + u) das System aller dieser Klassen, welche folglich

auch in dem Komplex (¢) (m + u) enthalten sind; mithin hat der
Charakter v fiir alle diese, der Klasse a 4 ¢ entsprechenden Klassen
m -+ u einen und denselben Wert. Definiert man nun eine Klassen-
funktion ¢'(a 4 6) so, daB ¢'(a + 6) = ¢ (m + u) wird, so ist ¢’
fir jede Klasse a 4+ ¢ eindeutig bestimmt, und zwar ist ¢’ ein
Charakter der Abelschen Gruppe <:), welche aus diesen ¢ (a)
Klassen a 4 ¢ besteht. Denn wenn a + 6,, a 4 6, irgend zwei Klassen

in (z) bedeuten, und wenn m + u,, m 4+ p, irgend zwei bzw. in ihnen
enthaltene Klassen von (‘: ) bedeuten, so ist das Produkt der letzteren

(m+p)(m + y)) =m + p,pu, in dem Produkte (a + 6,)(a + 6,)
= a + ¢, 6, enthalten; da nun ¢’ (a 4 6,) = ¢ (m + y,), und ¥’ (a +6,)
= P (m+p,) ist, so folgt ¢'(a+0d) v (a+0,)=1vm+yu)v
(m+ ) = v(m -+ p,p,) = ¥' (6 + 6,6,), w.z b. w. Und zwar ist a
selbst der Exponent dieses Charakters ¢’ oder der Gruppe (¢).
I:) nicht in der
Gruppe (v) enthalten (Definition 2), es gibt folglich eine in b4 1
enthaltene Klasse m 4 4, welche nicht in (¢) enthalten ist, woraus
folgt, daB ¢’ (a + 1) = ¢y (m+ 4) nicht = 1 ist; mithin ist die

m b+ 1=>+4 4, also auch in <a> enthaltene Klasse ¢ 4~ 1 nicht

b

in der Gruppe (¢') enthalten, w. z b. w. [wihrend (Z) —a+1in
(v") enthalten ist]. ‘

Denn wenn b ein echter Faktor von a ist, so ist(
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Also: jeder Charakter ¢ der Abelschen Gruppe (‘:), dessen

Exponent der Faktor a von m ist, erzeugt in der angegebenen Weise
(v (m 4+ ) = ¢'(a + u)) einen bestimmten Charakter ' der Abel-

schen Gruppe (2), dessen Exponent a ist.

Umgekehrt: Ist a Faktor des Ideals m und ¢’ ein Charakter
der Abelschen Gruppe <E>, dessen Exponent a, so wird ' in der an-
gegebenen Weise (v (m + u) = ¢’ (a 4 w)) durch einen und nur einen
Charakter ¢ der Abelschen Gruppe <T> erzeugt; und dann ist ge-

wil a auch der Exponent von ¢ (allgemeiner: ¢ und ¢’ haben
einen und denselben Exponenten).

Erlduterungen zur vorstehenden Abhandlung.

Es handelt sich um die ,Sparsamkeit“, von der Dedekind in dem im
Nachlafl publizierten Brief an Frobenius vom 8. Juli 1896 spricht. Und zwar
werden die ,natiirlichen* Charaktere — jetzt gewohnlich als eigentliche be-
zeichnet — allgemeiner als im Brief fiir einen (endlichen) algebraischen Zahl-
korper erkliart. Zugleich gelangt Dedekind zum Begriff des Fiihrers, insbesondere
des Fiihrers eines Charakters — in Anlehnung an den Fall des Kreiskérpers als
Exponent bezeichnet —; zwar bei Zugrundelegung einer Zahlklasseneinteilung,
aber mit Uberlegungen, die genau so im allgemeinen Fall der Klassenkorper-
theorie gelten.

Die Anwendung dieser Begriffe auf die Zerlegung der Zetafunktion eines
beliebigen Kreiskorpers in eigertliche I-Reihen — unter Benutzung der bekannten
Primidealzerlegung — ist in dem erwdhnten Brief auseinandergesetzt; der Fiihrer-
Diskriminantensatz fiir den Kreiskorper wird in XLII gebracht.

Uber seine Publikationsabsichten, anliflich eines Beitrags fiir die Festschrift
zur Braunschweiger Naturforscherversammlung, schreibt Dedekind an Frobenius
(18. April 1897): . . . ich beschlo,, meine langjahrigen Arbeiten iiber die all-
gemeinsten Kreiskorper (lediglich auf Grund des ,Skelettes vom 8. Juni 1882
behandelt, dazu gehéren die ,natiirlichen“ Charaktere und die ,Sparsamkeit“, wo-
von ich Thnen im vorigen Jahre geschrieben habe) zum Gegenstande zu wihlen;
allein diese Sache ist so umfassend, und meine Krankheit machte mir einen solchen
Querstrich, dafi ich daran verzweifle, es rechtzeitig fertiz zu machen. . . .
(18. April 1897): ... Ihren Rat, fiir meinen Beitrag zur Festschrift doch mein zweites
Thema (allgemeinste Kreiskorper-Ideale) zu wihlen, werde ich schwerlich befolgen
kinnen; eine Trennung in zwei Teile, deren zweiter dann an einem ganz andern
Orte (etwa in Crelle?) erscheinen miifite, wire doch sehr unangenehm. . . .

Inwieweit diese nicht publizierten Arbeiten — zu demen auch XL, XLII
und die Ausarbeitung von XVI aus Bd. I gehoren — auf die Entwicklung der
Klassenkorpertheorie von Einflufl gewesen sind, 1d8t sich nicht mehr feststellen,
da der Briefwechsel Dedekind-Weber aus diesen Jahren anscheinend nicht
mehr existiert. Noether.




XLII.
Grundideale von Kreiskorpern.

Es sei m eine natiirliche Zahl, die im folgenden stets beibehalten
wird. Ist @ ein Divisor von m, so soll mit
ca
der Inbegriff aller ganzen rationalen Zahlen bezeichnet werden, welche
relative Primzahlen zu m (also auch zu @) und = 1 (mod.a) sind.
Dieser Inbegriff besteht aus o (m)

9 (@)
Klassen (mod.m), und diese Klassen bilden eine Gruppe, welche
selbst mit ea bezeichnet werden soll.
Hiernach ist £1 der Inbegriff aller relativen Primzahlen zu m,
welcher aus ¢ (m) Klassen besteht. Ebenso ist ¢ m die Hauptklasse.

(em, ca) = %—((%%); (¢a, 1) = @(a)

Sind @, b Divisoren von m, ¢ ihr kleinstes gemeinsames Vielfaches,
d ihr grofter gemeinsamer Teiler, also ab — cd, so ist
ed das kleinste gemeinsame Vielfache der G b
&c der grofite gemeinsame Teiler } or Lruppen &4, £0,
ed = za-&b,
ec = ealeb,
wo | das Zeichen fiir den grofiten gemeinsamen Teiler von Gruppen
ist. Ist H irgendeine in &1 als Teiler enthaltene Gruppe, so ist
das kleinste gemeinsame Vielfache aller in H enthaltenen Gruppen
von der Form ¢a selbst eine solche Gruppe e¢d, wo d der grofite
gemeinsame Teiler aller a. Diese Zahl d hLeiit der Exponent der
Gruppe H. Also: Ist a teilbar durch d, so ist éa in H enthalten;
ist @ nicht teilbar durch d, so ist ea nicht in H enthalten.

Es sei ) eine primitive Wurzel der Gleichung 6™ — 1; K (m)
= R(0) sei der durch 6 erzeugte vollstindige Kreiskorper vom

Grade @ (m); dieser gehort zur Gruppe ¢ m = 1 (mod. m).
Dedekind, Gesammelte Werke, II. 26
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Es sei & ein Divisor von K (m), zur Gruppe H gehorig und
vom Grade n — (H, ¢1). Durchlduft & alle in H enthaltenen ¢( )

Klassen, so ist f(2) = Mz — )

die in & irreduzibele Funktion von z, welche fiir z —  verschwindet,
und das Grundideal von K(m) in bezug auf & ist (~ bedeutet:
agsozilert mit)

~f@) =IO —06"~ IT(1— 61, mit Ausschlub von
h=1 (mod. m).

Jeder Faktor (1 — 0*—1) ist nur dann keine Einheit, sondern Faktor
einer in m aufgehenden natiirlichen Primzahl p, wenn der kleinste

Nenner des Bruches h—

1 . . . .
eine Potenz von p ist; und zwar ist gleich-

zeitig (Modul-Bezeichnung)

1
h—1 17 . B —
[1, —,’-n—:' == [ﬁ] mit 1— Hr—1 ~ p([)(p‘) ;S > 0.

Nun sei m' der grofite durch p nicht teilbare Divisor von
m = m'p*¥; k>0.
Damit eine Zahl 4 der vorstehenden Bedingung geniige, ist erforderlich
h = 1(m0d.g =mp—9), h— 1 =wu-m p*—¢
wo, wenn § > 0 ist, u nicht teilbar durch p; d.h. » muf} eine

Zahl der Gruppe s% gein, algo ein Element des grofiten gemeinsamen

Teilers
m
3:H -
Q lsp,
der Gruppen H und er—n~; es sel
qs:(£m7Qs)
der Grad ,. Es darf aber & nicht = 1 (mod. = = =.p),
er Grad von @ s darf aber & nic <m0 1 pr p)

also nicht in & z;;-’i—i enthalten, also keine der g,_; Zahlen in @, ;

sein. Mithin ist ¢, —q,—1 die Anzahl der obigen A, und folglich
ist der betreffende Faktor von f (f), welcher nur Faktoren von p
enthilt,

©1—9o, 92=01 B2, .., %~ %k—1
~p 9 (p) ¢ (p2) 9 (p®) (%)
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Offenbar ist
Q =¢etm, g, =1
Der Grad der Gruppe e;—ri ist
om) _ om)e®) _ o) _ 1o — i1
"qj<m>-q)(m')¢(pk—') @9 T 9(P)=p—p,
P

je nachdem s < k oder s = k.

Also ist g, Divisor von 2, wenn s < &, und ¢, Divisor von o (Ph).
Aufierdem ist @, Divisor von ., also auch g, Divisor von ¢, ;.

Ferner ist .
m\ m m
s € — ) = H7 - :<H1H _)a
(Q Eps) ( 8P8> 81’8
m m P (P
s HwH '_>: m, s o E—) = (€M, E—) = ————,
o (M Hepg) = em @)@ o) = (em ) = 20055
A S 1 Te—1 __ 1
P — m ) pg m~ ) pk_l m 9
<H,e——> (H,ez—)—2> (H,s - J>
x 1 Qo 1 _
% v ) - -
(") <H£?_n_k> L (Hem)
P

Ist & der Korper B = K (1) der rationalen Zahlen, so ist
H = &1 die Gesamtgruppe, mithin Q, — & %, und

g — 2@)
@(pE—9)’
—2
G— Q-1 = @P*) — PP = (p—2)pt—1 = p——w('p"),

p—1
Ge—1—qe—2 =PI —p 2 = 9 (P*), Qe — qr—s = @ (P*~2);
i — ¢ =p— 1= ¢(p),
und folglich wird

k_1+p—2 1

p P—lzp_l_;?l

der betreffende Faktor des absoluten (d. h. nach R genommenen)
Grundideals von K (m).

26*
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Wenn & und H wieder die allgemeine Bedeutung haben, so ist
daher

Ll _ni—%_ga—a_ . _ Te” k=1
k_&_fl_z__..._'i";l_ kL
=p P P k=1 ¢ (p%)

_ e )

der betreffende Faktor des Grundideals des Korpers £ nach R.

Da alle & ;—g Teiler der Gruppe & ;% = ¢ m’ sind, so ist @, auch der
gr. g. T. von H, ¢ ;_n; und em’, also auch @, der gr. g. T. von @,

m
und & —.
P

Ist ¢ ein Charakter der Abelschen Gruppe ¢1, so soll v, die
Gruppe aller derjenigen Elemente r von &1 bedeuten, fiir welche
¥ (r) = 1 ist, und unter dem Exponenten von ¢ soll der Exponent
der Gruppe v, verstanden sein.

Ist H irgendein Teiler von &1 und (wie oben) & der zugehorige
Korper vom Grade n = (H, ¢1), so ist » die Anzahl aller derjenigen
Charaktere 1, deren Gruppen v, Vielfache von H sind.

Es soll das Produkt der Exponenten dieser n Charaktere v
oder vielmehr die hiochste in demselben aufgehende Potenz von »
ermittelt werden.

Es sei ¢ einer dieser » Charaktere und sein Exponent = m" p*—=,
wo m” nicht teilbar durch p, also Divisor von m/, und 0 << s < k.

. . 7
Dann ist em” p*—# Teiler von ¢, also auch em' p*—* = ¢—

P
Teiler von ,; also ist auch H e% Teiler von v,

Umgekehrt aber, wenn H s%]'s Teiler von o, so ist der Exponent

von %, ein Divisor von %, und die héchste in ihm aufgehende Potenz

von p ist Divisor von pt—s.
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Nun ist (H e%, el> die Anzahl aller dieser 4, also ebenso

(H &=y & 1> die Anzahl aller 3, deren Exponent hochstens durch

pk—s—1 teilbar ist, also (H e, ¢1 Hs — ,el die Anzahl
P ps s+1

derjenigen v, deren Exponent die Potenz p"—8 genau enthilt.

Nun ist
m m
H, e1) = (H,He—)(Hs—, £1> = n;
q ( ) y 28 2
un
m 9 (P*)
s H7 He—)= )
folalich ? < 'ps) e (PF—*)
olglic
9 (P) (H m ) m @ (P)
E—,¢l)=mngq, <H£-—- el) = n
p@PH\ P 1 P’ ) Yo
ngs nqk
= oder — —2—
P* P (p*)
je nachdem
s <k oder s==kF
Also ist
1 1;%’: _11 — ;(Zq;) Anzahl der ¢, in deren Exponent der Faktor p,
nq_ nQr_ A
2 quk_ 22 - kanl_l ” n N N ” ” ” ” psﬁ
n n
k—l .—p?—l - _?%-2 ” » n N ” ” » ” pk-lt
n
k n — '—1% ”» ”n N » ” ” ” ” pk
Also
km_ MOL_ M9 T—1_ "%k ( _u_n_ . %—1 % \
P »p =1l g =\p » P =1 ook

Mithin ist dies Produkt aller Exponenten der » Charakterey
des Korpers  zugleich die n* Potenz des Grundideals von £,
d.h. = 4- Grundzahl von , w.z. b. w. (Norm des Grundideals.)

Erliuterungen. 1. Ist die Gruppe H von Elementen A irgend-

ein Teiler der Gruppe &1, so ist
(H, &1)
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die Anzahl aller derjenigen Charaktere ¥ der Gruppe &1, welche
Multipla des identischen (oder Haupt-) Charakters der Gruppe H sind,
welche also fiir alle Elemente / der Gruppe H der Bedingung

Y(h) =1

geniigen; oder mit anderen Worten: (H, e1) ist die Anzahl aller der-

jenigen Charaktere v, deren Gruppen 3, Vielfache von H sind, also
der Bedingung

@ H) =1
geniigen. ’

2. Ist @ (wie auf S.401) irgendein Divisor von m, und & @ wieder

die Gruppe von (M) Klassen (mod.m), deren Zahlen relative Prim-

(@)
zahlen zu m und zugleich = 1(mod.a) sind, so ist die Aussage
(H,ea) = 1 (also ¢a Teiler von H)

gleichbedeutend damit, dal der Exponent d der Gruppe H ein
Divisor von a ist.

3. Speziell bedeutet also die Aussage
(W, €0) = 1,

dafB der Exponent des Charakters ¢ (d. h. der Exponent der Gruppe ,)
Divisor von a ist.

4. Das System der beiden gleichzeitigen Aussagen
(d’o’ H) =1, (d)o, 8(1;) =1

ist gleichbedeutend mit der einen Aussage

¥y, Hea) = 1;
diese letztere bedeutet also, dab erstens ¥ ein Multiplum des Haupt-
charakters der Gruppe H [also ¢ (k) = 1 fiir alle A], und dab
zweitens der Exponent von ¢ ein Divisor von a ist; zufolge 1. (wenn
dort H durch H sa ersetzt wird) ist

(Hea, e1) die Anzahl = f(a)

aller dieser Charaktere.

5. Bedeutet daher, wenn ¢ irgendein Divisor von m, und H
eine feste Gruppe ist,
(@)

die Anzahl aller derjenigen Charaktere ¢ der Gruppe &1, welche



— 407 —

Multipla des Hauptcharakters von H sind, und deren Exponent
= a ist, so ist die iiber alle Divisoren d von @ erstreckte Summe

2f(@d) = (Hea, 1) = f(a)
und folglich umgekehrt

f (@) = 211( )(Hsd el) = 211( > (d), d alle Divisoren von a,

wo n die Funktion von Mertens-Cantor bedeutet.

6. Das Produkt der Exponenten aller Charaktere w, welche
Multipla des Hauptcharakters der Gruppe sind, und deren Anzahl
zufolge 1. — (H, ¢ 1) ist, ist daher das iiber alle Divisoren a von m
ausgedehnte Produkt

Ial @,
7. Setzt man
n — (H, & 1),
so 1ist
n=(H, Hea)(Hea,el); (Hea,el) = H Zea);
ferner ist ’

(H,Hea) = (H, ea) = (H|¢a, ca),

wo A| B allgemein den gréfiten gemeinsamen Teiler der Gruppen 4, B
bedeutet; immer ist (4, B) = (4, 4 B) = (4| B, B). Ferner ist

(em, ca) = q)—((——)—(sm,H|ea)(H|ea,sa);

bezeichnet man daher
(em, H|ea) = t(a),

welches der Grad des grofSten gemeinsamen Teilers H |ea der beiden
Gruppen H und &a ist, so wird

(H|sa, ca) = ‘Z)((’:))%) (Hea, e1) = (;%n—)-cp(a)t(a) = {(a).

Auflerdem ist
@(m)=(sm,e1) = (em, H)(H, 1) = (¢em, H)n; ?ign—) = (s m, H).

8. Es werden nur noch solche Charaktere ¢ der Gruppe &1
betrachtet, welche Multipla des Hauptcharakters der Gruppe H sind,
also der Bedingung (¢, H) = 1 geniigen und deren Anzahl — =
= (H,¢1) ist.
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Ist nun p eine in m aufgehende natiirliche Primzahl und

m = m'p¥, k> 0, m nicht teilbar durch p,
so ist

(Hs%?,al), wo 0 < s <k,

die Anzahl derjenigen Charaktere v, deren Exponenten Divisoren von
m

po P
sind. Also

(Hem', ¢1) Anzahl der o, deren Ex-

ponenten Divisoren von m/ = f(m')
(Hem'p, e1) Anzahl der v, deren Ex-

ponenten Divisoren von m'p = f(m'p)
(H em'p* &1) Anzahl der , deren Ex-

ponenten Divisoren von m' p? = f(m' p?

(Hem' p*—1, & 1) Anzahl der v, deren Ex-

ponenten Divisoren von m' pF—1 = f(m' p*—?)
n = (Hem'p* & 1) Anzahl der v, deren Ex-
ponenten Divisoren von m'p* = m | = f(m' p¥) = f(m)
= (Hem, 1)
= (H, el).

Also ist

(Hem'p, e1) —(Hem/, ¢ 1) Anzahl der o, deren Exponenten den
Faktor p, nicht den Faktor p® enthalten,

(Hem'p®, e1) — (Hem'p, £ 1) Anzahl der ¢, deren Exponenten den
Faktor p?, nicht den Faktor p*® enthalten,

(Hem'p*, e1) — (Hem' p*—1, ¢1) Anzahl der ¢, deren Exponenten
den Faktor p*, nicht den Faktor p*+! enthalten.
Mithin ist der Exponent der héchsten im Produkte der Exponenten
aller n Charaktere ¢ aufgehenden Potenz von p
= (Hem' p,el)—(Hem', el)} + 2 {(Hem' p* 1) — (Hem' p,e1))
+ oo FE{(Hem' pt, el) — (Hem pr—Le1)}
=k(H,e1)—((Hem', el)+Hem' p,el)+ - + (Hem' pt—1 el)}

g=k—1

== Icn-——agof (m' p).
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Es ist aber
(H,s1) = (H Hem' p)(Hem'p, s 1) = (H, smp)f (m' ),
also wird der Potenzexponent von p

k 8=k—1 1 1
= Mk — I [
{ sgo (H, Em pg)}
Es ist aber

(H, em'p*) = (H|em' p*, em’ p),
also

. o b @m)  e(ph)
(5”L’H|£mp)(H,emp)_—(Em,Em ps)_q)(m'p”)_(p(p")’

also
1 (em, H|em' p*)
(H, e ) = pE -%, wenn § > 0,
und
1 __(em, H|em)
(H, em’) p(@)

Also wird der obige Potenzexponent von p

, H|lem') (em, H|em' p%)
— e Em Hlem) em, H|em'p?))
n{ o (P s=1 pE—s }

s=k—1

Erlduterungen zur vorstehenden Abhandlung.

Es handelt sich um eine Anwendung der in XLI entwickelten allgemeincn
Begriffe.
Der hier fiir den Kreiskirper gegebene Fiihrer-Diskriminantensatz — Dar-
stellung der Diskriminante als Produkt der Fiihrer (Exponenten bei Dedekind)
der Charaktere der zugehorigen Klassengruppe — ist im allgemeinen Fall der
relativ-A belschen Korper auf zwei verschiedene Arten erbracht: mit transzendenten
Methoden (Heckesche L-Reihen mit Grofencharakteren) und arithmetisch unter
Benutzung des Umkehrsatzes der Klassenkorpertheorie (vgl. den Bericht von Hasse,
I, II; Jahresber. d. d. Math.-Ver. 35 und Erginzungsbd. VI).
Das Analogon fiir Galoissche, nicht Abelsche Kérper hat neuerdings

E. Artin aufgestellt (Journ. f. Math. 164 (1931)).
Noether.




XLIIIL
Untersuchung der Gruppe X.

(Einige Sitze aus der Untersuchung der Beziehungen zwischen den Idealen in
verschiedenen Korpern. Schreiben an G. Frobenius vom 8. Juni 1882.)

Es sei g eine nicht identische Permutation der Gruppe X (also
g > 1), und y" die hiochste in allen Differenzen wy — o aufgehende
Potenz von p, also
oy = o (mod. p),
aber nicht identisch
wy = (mod. pr*+1), r =1

Dann sei o, das System aller derjenigen Zahlen @, in o, welche die
Kongruenz
©, 7 = o, (mod. yr+1)

erfiillen. Zun#chst leuchtet ein, dal o, ein Modul ist, weil aus
oy =@, By = B (mod. pr*+1) auch (¢ —B)y —ay—pPr=oc—p
(mod. pr+1) folgt, und zwar ist o, ein echtes Vielfaches von o,
weil o nicht teilbar durch o, ist. Da ferner py — p, also auch
pr+ily = pr+1 ist, so geniigt jede in pr+! enthaltene Zahl =, 4,
weil m, 4,94 — @, 4, ebenfalls in p~+1! enthalten ist, der Kongruenz
Tryr1) = Mryq1 (mod. p7+1), weil =7 = =1, = 0 (mod. y7+7)
ist; mithin ist pr+1 teilbar durch o, und folglich enthilt o, auch
n voneinander unabhingige Zahlen; o, ist ein endlicher n-gliedriger
Modul, dessen Basis zugleich eine Basis des Korpers &£ ist. Da
0 <o, < prti, so ist

(0, p7+1) = Pr+D = (o, 0,) (05, y" 1),
@o) =, 0<I=Z(+D)]

Sodann leuchtet ein, daf o, eine Ordnung ist; denn fiir jede ganze
rationale, d. h. in j enthaltene Zahl z ist zy = 2, also ist 3 > o,

also
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und da aus ey = o, By = B (mod. pr+!) auch («f)y = ay- By
= «ff (mod. y"+1) folgt, so ist auch 02> o, w.z b.w. (D, 8.505).
Da pr+1 > o, so ist der Fiithrer

% = 0<k=r+1, (0,0)(0 ) = (o, p¥) = p/,
0<<h<kf
oder vielmehr 0 < A < kf, weil o, notwendig ein echter Teiler
von Pk ist.

Nun sei ¢ eine bestimmte durch p, aber nicht durch p* teil-
bare Zahl, so ist 0g 4+ p2 = p, also 0g" + P27 = po" 4 Pt =y,
da nun alle @y — @ in P enthalten sind, so kann man setzen

oy = o+ o"do (mod. p27),
wo de eine zu @ gehorige Zahl ist, die mod. p~ bestimmt ist. Fir
alle in o, enthaltenen Zahlen w,, und nur fiir diese, ist
dw, = 0 (mod. p).
Nun folgen aus (¢4 )y = ay + By und («B)y = (ay) (By), und aus
oy =oa+ o'de, By = p+ e df (mod. p2r)
die Gesetze (Differentialrechnung)
detpf) =datdp, d(apf)= pde+ adp (mod. )
und hieraus weiter
d(o™) = meo™1de (mod. y7).
Da hieraus d(9*) = 29deg (mod. y7), also d(p?) = 0 (mod. p) folgt,
80 ist * in o, enthalten; da ferner > = o0o® + p*+1, also jede in
p? enthaltene Zahl
Tty = 0* + Ty 41
gesetzt werden kann, wo @ in o, m,, in p*+1 enthalten ist, so folgt
dn, = wd(e®) + ¢*dw + dx,, (mod. p7), also dm, = 0 (mod. ),
folglich p* > o, also £ =1 oder = 2.

[Dieser S:itz iiber die Substitutionen der hiheren Verzweigungsgruppen —

der, nach der Uberschrift zu schliefien, vor der Publikation in den Gottinger

Nachrichten zu liegen scheint — wurde in der Literatur nie in dieser Fassung
ausgesprochen. E. N.]
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Ideale in NormalkoOrpern.

Ist g irgend eine Permutation des Normalkorpers £, o irgend
eine Zahl in L, so setze man

oy = o+ do, caxs:m—‘r d +8(s l)d“* + o =1 +dya,

o = co(x—— 1) symbollscn;

aus (et B)y = eyt By und (2f)y = (xy)(By) folgt

dewtp) =datdp, d(p)= fda+ adp+ dadp.
Alle Zabhlen @, welche der Bedingung de = 0 geniigen, bilden den
zu der Gruppe 1, g, ¢% 2 --- gehorigen Korper, welcher — £ ist,
talls y die identische Permutation von £ ist.

Von jetzt ab bedeute o jede ganze Zahl des Korpers £, also
jede Zahl in o, so ist de ebenfalls in o enthalten, und zufolge
d(e — B) = da — df bilden alle diese Zahlen dw einen durch o teil-
baren Modul, der mit do bezeichnet werden kann. Ist y die identische
Permutation, so ist do — 0. Ist A der kleinste positive Exponent,
fir welchen ¢* =1, so ist » = hk der Grad von & (Bezeichnung
wie im Schreiben an G. Frobenius von 1882. 6. 8.), & der Grad
des Korpers aller derjenigen Zahlen o, deren dow — 0. Ist

e = [&, &, =+, &)
das System aller ganzen Zahlen dieses Korpers, und

0 = [mn @gy ***, mn]a
so folgt, weil gleichzeitig

0= T,0, + L0, + - + X0,
und
. do = z,dw, + z,deog + -+ + 2,dw,
ist,
do = [dw,, dag, -+, don]
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Da nun

& = @y, @1 + Gy, r 03 + o+ Gy, g OO,
also

0 = a, Ao, 1+ a’ﬂ,rdm2 F e+ a’n,rdwn
und die aus den ganzen rationalen Zahlen a, , gebildeten Determinanten
kter Grades nicht alle verschwinden, so sind von den n Zahlen de,,
day, -, dw, hochstens » —k = (b — 1)k voneinander unab-
héingig. Umgekehrt: findet zwischen diesen Zahlen dew, eine Relation
Yz do, = 0 statt, mit ganzen rationalen Koeffizienten z,, so ist
dY 2,0, = 0, also ¥ 2, @, in e enthalten, also

Exlml - Eytet, Lpr = Zyta'r,l‘

Als Basis des Korpers £ kann man

81, 82, ey &y @p 41,y Wy
wiahlen, wo &,, &, ---, & eine Basis des zu der Gruppe y gehérigen
Korpers &' bilden,
©=he + hyeg+ - e+ bppiop 4o by,
do = hk+1dmk+1+ oo+ hydon,
doyyq,-,do, DBasis der Schar dQ.
Denn wére
. hk+1dwk+1+"'+hudmn =0,
s0 1st
hk+lcok+1 + et + hnwn
in £ enthalten, also
= hy& + - 4 Iy,
woraus folgt, dafi alle A = 0 sind.
[Diese formale Differentiation war offenbar zur Untersuchung der Differente

gedacht, wie weitere angefangene Rechnungen zeigen, wo dieselben Betrachtungen
modulo p auftreten; darauf weist auch die Uberschrift hin. E. N.]



XLV.
Aus Briefen an Frobenius#).

8. Juni 1882*),

... Die Ihnen bekannte Existenz einer Substitution F' (bei mir
Permutation v,), fir welche @? = Fw (mod. p), bildet auch bei mir
die eigentliche Basis; Sie schreiben zwar: ,Ich irre wohl nicht, wenn
.dch annehme, dass der durch diesen Satz angedeutete Weg einer von
denen ist, die auch Sie frither einmal eingeschlagen, dann aber
wohl schliesslich verlassen und durch einen bessern ersetzt haben.“
Aber ich glaube kaum, dass es einen besseren Weg giebt. Mit Hiilfe
der Theorie der hoheren Congruenzen und mit viel Geduld und
Zeit ist es mir nach und nach gelungen, die Schwierigkeiten zu
iiberwinden und die Gesetze moglichst einfach zu gestalten. In diesen
ist auch, wie Sie vermuthen, der Satz enthalten, fiir den Sie einen
Beweis wiinschen, und den Sie so aussprechen:

Ist eine rationale Primzahl o'p = pip; .-+ per, wo Py, 95 -+ P
verschiedene Primideale in o' von den Graden fi, f5, --- for
sind, so giebt es in der Gruppe @ des Korpers &' eine Sub-
stitution v,, die aus e Cyklen von fi,f;, --- fo Elementen
besteht.

In der That, wenn alle @, = 1, mithin alle g, = ¢ sind, so ist X
gemeinschaftlicher Theiler aller ¢,®' ;' und iiberhaupt aller mit @’
conjugirten Gruppen ¢ @@~ '; da diese aber, wenn wirklich @ die

*) [Diese Briefe wurden durch Herrn Landau freundlichst zur Verfiigung
gestellt. Die Briefe von Frobenius an Dedekind waren im NachlaB nicht zu
finden; es fehlten im Nachla§ die Briefe aus den Jahren 1880—1900. E. N.]

*%) [Im wesentlichen wiedergegeben bei Frobenius: Uber Beziehungen
zwischen den Primidealen eines algebraischen Korpers und den Substitutionen
seiner Gruppe. Sitzungsber. d. Preuf. Akademie d. Wissensch. 1896. E. N.]
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Gruppe von &', d. h. & die Norm von £’ ist, keinen gemeinsamen
Theiler haben, so muf X =— 1, g =1 sein, d. h. p ist durch kein
Primidealquadrat in & theilbar. Dann ist

Ty = L gl b b g0,
WO ¥ = @7 Yo @y,
o;'P =D + Do Yo+ P Yy + -0 + D ”WT"
ersetzt man in der Zerlegung
=D ' T+ -+ Do T

jeden einzelnen Complex @' ;' ¥ durch das vorstehende System der
f» Complexe, so wird @ iiberhaupt in

W= fit fot ot fy
Complexe @'¢ zerlegt, deren jedem bekanntlich eine Permutation
von &' (eine Wurzel der irreductibeln Gleichung vom Grade n') ent-
gpricht; die Permutation o, verwandelt dieselben in die Complexe
D' @,, bringt also eine Permutation dieser »’' Complexe (Elemente)

@@ hervor, bei welcher die in @ ¢;'¥ enthaltenen f, Complexe
(Elemente, Wurzeln) cyklisch in einander iibergehen.

14. Juni 1882%),

. Auf den hiermit wieder zuriickerfolgenden Bléattern (18—15)
haben Sie die Existenz einer Permutation ¢, (oder Substitution F)
sehr kurz bewiesen. Bei mir ergiebt sich dieselbe z B. aus der
leicht zu beweisenden Existenz einer ganzen Zahl @, welche (mod. p)
einer irreductibelen Congruenz fte» Grades mit rationalen Coefficienten
geniigt, und welche man zugleich (fiir unseren Zweck) so wihlen
kann, dass sie nicht durch p, wohl aber durch jedes andere in p
aufgehende Primideal theilbar ist; wenn nun f(t) = II(t — @|¢@), so
ist f(®) =0, mithin (@) =0 (mod. p), folglich @ = @|y, (mod. p);
wiire ferner p|y; ! verschieden von p, so wire ® = 0 (mod. p|¢;?),
also @y, =0 (mod. p), also @» = 0 (mod. p), also auch @ = 0 (mod. p),
contra hyp. Also p|¥;* = p; p|¢, = p. Nun ist (zufolge Def. von @)

*) [Im wesentlichen wiedergegeben bei Frobenius: Uber Beziehungen
zwischen den Primidealen eines algebraischen Kiorpers und den Substitutionen
seiner Gruppe. E. N.]
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jede ganze Zahl @ = F (®) (mod. p), wo F (f) eine ganze Function
mit ganzen rationalen Coefficienten; mithin @ |y, =F(0)| ¢, =F (@|v,)
= F(0r) = F(0)?» = w? (mod. p|y, = p).

5. Februar 1883 %)

... Ihr thétiges Interesse an der Zahlentheorie ist mir sehr er-
freulich, und die grosse Abkiirzung der Untersuchung iiber die Dis-
criminante, die Sie und Hr. Stickelberger aufgefunden haben, gefillt
mir besonders deshalb, weil die mir immer unliebsame Zuziehung der
Theorie der hoheren Congruenzen (mit Variabeln) wieder aufgehoben
wird. Ihr rationales R (w) ist mir freilich lange bekannt gewesen,
aber ich habe nie daran gedacht, es auf so gliickliche Weise zu
verwenden. Immerhin lege ich aus besonderen, personlichen Griinden
einigen Werth auf den Satz, dass es immer eine regulire Ordnung
giebt, deren Fiihrer durch ein gegebenes Primideal nicht theilbar ist;
hierin besteht fiir mich der letzte Rest und wirkliche Kern ehemaliger
Vermuthungen, die zu klidren ich lange Zeit gebraucht habe. Zwar
weiss ich nicht mehr, ob ich jemals geglaubt habe, jedes System o
aller in einem Korper £ enthaltenen ganzen Zahlen sei eine regulire
Ordnung (welcher Fall fiir die ersten Kummer’schen Untersuchungen
so sehr glinstig gewesen ist), aber lange Zeit habe ich es fiir dusserst
wahrscheinlich gehalten und kaum bezweifelt, dass es immer regulére
Ordnungen n gebe, fiir welche (o, n) durch eine gegebene rationale
Primzahl nicht theilbar ist; meine alten Papiere enthalten viele
Beweisversuche, die natiirlich immer im Sande verlaufen, bis endiich
die bessere Erkenntniss kam; und dann hat es wieder lange gedauert,
bis ich (etwa vor zwei Jahren, wie ich glaube) das oben genannte
Residuum sicher stellen konnte.

Thr Kriterium dariiber, ob ein Ideal ¥ Fiihrer einer Ordnung
sein kann, scheint mir mit dem meinigen auch Husserlich fast
identisch zu werden, sobald man die Elementartheiler IThrer Deter-
minante als invariante Theiler der Classenanzahl (b, a) fiir beliebige
Moduln a, b auffasst, die ganz unabhéngig von Determinanten definirt
werden konnen und von denen der erste der kleinste Multiplicator

*) [Einige Einzelheiten aus diesem Briefe sind in § 170 der vierten Auflage
der Zahlentheorie iibernommen; der in dem Briefe gegebene volle Uberblick iiber
die Fragen der Modultheorie ist nirgends publiziert. Fiir den Schluf des Briefes
vgl. XXIX. E. N.]
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ist, der b in ein Multiplum von a verwandelt. Sie haben, wie Sie
schreiben, aus Ihrer Form noch keinen Nutzen ziehen konnen fiir
die Beantwortung der Frage nach den Ordnungen, die ein solches
Ideal zum Fiithrer haben; dasselbe gilt auch fiir meine Form. Diese
Aufgabe will besonders angegriffen sein. Es leuchtet ein, dass das
kleinste gemeinschaftliche Vielfache beliebig vieler Ordnungen n,, n, «--
immer wieder eine Ordnung n ist, deren Fiihrer ¥ zugleich das
kleinste gemeinschaftliche Vielfache von den Fiihrern ¥, f,.-- jener
Ordnungen ist; und dieser Satz ldsst sich wenigstens dahin umkehren,
dass jede Ordnung n das kleinste gemeinschaftliche Vielfache solcher
Ordnungen n,, n, --- ist, fiir welche (o, n,), (o, n,)--- die verschiedenen
in (o, n) aufgehenden hochsten Primzahlpotenzen sind; dadurch wird
die Untersuchung auf die Betrachtung solcher Ordnungsfiihrer f
zuriickgefiihrt, deren Normen Primzablpotenzen sind. Die nihere
Untersuchung, die mehr ldstig, als principiell schwierig ist, ergiebt
eine grofle Reichhaltigkeit; die Grundlage bildet der einfachste Fall,
wo ! ein Primideal » vom Grade f ist: die Anzahl der verschiedenen
Ordnungen n, welche p zum Fiihrer haben, ist um eins kleiner, als
die Anzahl der Divisoren m von f; jedem echten Divisor m entspricht
eine Ordnung n, welche aus den simmtlichen Wurzeln » der Congruenz

7" = » (mod. p)

besteht; (n, p) = p™; N (p) = p".

Diese Untersuchung bildet ein Capitel der allgemeinen Theorie
der n-gliedrigen Moduln in einem Korper mtem Grades, welche in
meiner Gauss-Festschrift (1877), wie ich dort ausdriicklich bemerkt
habe, keineswegs vollstiindig behandelt ist; aber ihre wichtigsten
Grundlagen sind doch in dieser Schrift enthalten. Es kommt hierbei
auf den Unterschied zwischen umkehrbaren und nicht umkehrbaren
Moduln an; ich nenne einen Modul a umkehrbar (auch im allgemeinsten
Sinn des Worts Modul), wenn ein Modul b existirt, fiir welchen
ab = a°% d. h. gleich der Ordnung von a wird; alle solche Moduln b
liefern ein und dasselbe Product ba® das ich mit a—! bezeichne, und
dessen Ordnung immer = o ist; jedes Product von umkehrbaren
Moduln ist wieder ein umkehrbarer Modul, und seine Ordnung ist
das Product aus den Ordnungen der Factoren. Unter den n-gliedrigen
Moduln eines Korpers & vom Grade m sind die einfachsten die

Moduln, deren Ordnung = o; sie sind alle umkehrbar und identisch
Dedekind, Gesammelte Werke, II. 27
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mit den Ideal-Quotienten; die Regeln ihrer Multiplication und Division
stimmen genau mit denjenigen fiir rationale Briiche iiberein; die
Definition der Norm ist selbstverstindlich. Ahnliches (mit Modi-
fication) gilt fiir die Moduln einer jeden reguliren, allgemeiner jeder
solchen Ordnung n, deren Complement n' umkehrbar ist (weil fiir
jeden solchen Modul a immer aa’ = n’ ist). Aber sobald n > 2 ist,
haben durchaus nicht mehr alle Ordnungen diese Eigenschaft. Ist
nun m ein beliebiger Modul, n seine Ordnung, so ist mo immer ein
Modul der Ordnung o, also ein Ideal-Quotient, und der Fiihrer von m,

d. h. der Quotient ? ist = tm, wo f der Fithrer von n; N (m) wird

definirt als N (mo). Umgekehrt, ist a ein Modul der Ordnung o, so
folgt aus der Festschrift (1877) die wichtige Existenz mindestens
eines umkehrbaren Moduls m jeder Ordnung n, fiir welchen mo — a
wird; und die simmtlichen Moduln m, derselben Ordnung n, welche
derselben Forderung m,o — a geniigen, sind die simmtlichen Pro-
ducte me, wo ¢ alle diejenigen Moduln der Ordnung n durchliuft,
fiir welche eo = o wird. Der Reichthum an solchen Moduln e ist
sehr gross; sie sind natiirlich lauter ganze Moduln, d. h. Vielfache von o,

und zugleich Theiler des Fiihrers f, da % = ?n = f ist.

Hierin bestehen, wenn ich mich recht erinnere, die haupt-
sachlichsten Gedanken der genannten Theorie, die ich iibrigens noch
niemals vollstindig ausgearbeitet habe; doch hoffe ich, Thnen nichts
Unrichtiges geschrieben zu haben. Wichtig ist diese Theorie, und
namentlich scheint sie unerlésslich fiir die Aufstellung der allgemeinsten
Gesetze, welche die bisher bekannten, sogenannten Reciprocititssitze
in sich schliessen. Bei cubischen Korpern & z B. kommt die Prim-
ideal-Zerlegung derjenigen rationalen Primzahlen p, von denen die
Grundzahl D = 4 (&) quadratischer Rest ist (die iibrigen p machen
keine Schwierigkeit), auf die Betrachtung der urspriinglichen quadra-
tischen Formen (@, 3 b, ¢) zariick, deren Discriminante * — 4a¢ = D
ist; die Anzahl der Classen dieser Formen oder der entsprechenden
Modul-Classen ist immer durch 8 theilbar, und ein gewisses Drittel
dieser Classen bildet eine Gruppe; je nachdem p durch eine Form
dieser Gruppe darstellbar ist oder nicht, ist 0p in & ein Product
von drei Primidealen ersten Grades oder ein Primideal dritten Grades.
Fiir negative D hdngt dies mit der complexen Multiplication der
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elliptischen Functionen zusammen, was auch Kronecker vollstindig
erkannt zu haben scheint. Ich habe diesen Satz, der ohne jeden
Zweifel ganz allgemein, auch fiir positive D gilt, vor 11 Jahren durch
Induction gefunden (Schlomileh’s Zeitschrift, Jahrgang 18; 1873.
Literaturzeitung S. 22 und 8. 43, wo der durch die Schuld des Herrn
Schlémileh ausgelassene Zusatz steht), gestehe aber gern, dass ich
ihn noch nicht fiir alle Fille bewiesen habe; doch hoffe ich dies
noch zu erreichen. Er gilt sogar, wenn D eine positive Quadrat-
zahl, mithin & ein Normalkorper ist, der aus der Kreistheilung ent-
springt. Ich glaube gewiss, man wird dereinst ganz allgemeine Ge-
setze finden, welche gestatten, die Primideale eines Korpers unmittelbar
abzuleiten aus seiner Discriminante und seinen iibrigen Invarianten
(die auch Ideale verwandter Korper sein konnen); doch mogen wir
wohl noch recht weit von diesem Ziele entfernt sein! In den letaten
Jahren habe ich mich sehr wenig mit diesen Fragen beschiftigt, zu
denen ich aber grosse Lust habe zuriickzukehren, weil sie mir von
allen die interessantesten zu sein scheinen. ...

8. Februar 1895%*).

... Auf Thre Arbeit iiber die Gruppen bin ich sehr gespannt,
da die Einfachheit Ihrer Methoden, unter Anderem Ihr Beweis, dass
in einer Gruppe, deren Grad durch die Primzahl p theilbar ist, es
immer ein Element pter Ordnung giebt, mich sehr erfreut hat; ich
war in den ersten Jahren meiner Gruppen-Studien (1855-—1858) auf
einem viel umstindlicheren Wege dahin gekommen. Auch spiter
habe ich gewisse Gruppen-Fragen immer nur so weit verfolgt, wie
es Veranlassungen von anderer Seite her mit sich brachten; sollte
es also der Zufall wollen, dass ich mich mit dem Gegenstande Ihrer
Arbeit schon jemals beschéftigt hétte, so wiirde ich doch gewiss
weit hinter Ihnen zuriickgeblieben sein. Um auf gut Gliick zu
rathen, frage ich: dringen sich in Ihre Untersuchung auch iiber-
complexe Grossen ein mit nicht commutativer Multiplication? Doch
will ich Sie keineswegs mit der Bitte um eine Antwort bemiihen, die

*) [Die jetzt folgenden Briefstellen geben einen wesentlichen Beitrag zur
Geschichte der Theorie der hyperkomplexen Griéfen und der Gruppendeterminante.
Auf die Rolle, die Dedekind in dieser Theorie gespielt hat, weist Frobenius
an verschiedenen Stellen hin, in den Einleitungen zu den Arbeiten iiber Gruppen-
charaktere, iiber die Primfaktoren der Gruppendeterminante und iiber die Dar-
stellung der endlichen Gruppen. E. N.}

27 *
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ich am besten durch Ihre Abhandlung erhalten werde. Ihre dusserst
scharfsinnige Untersuchung iiber die Elementartheiler der Determi-
nanten habe ich mit grossem Interesse studirt; ich leugne nicht, dass
ich bei dem Beweise in §.1 die unbestimmte Empfindung habe, als
konnte er auch wohl ohne die Gleichung (6) auf S.4 gelingen, aber ich
bin ganz ausser Stande, etwas Anderes an die Stelle zu setzen.. ..

12. Februar 1895.

... Keine Entschuldigung habe ich fiir meine gewagte Bemerkung
beziiglich Threr Abhandlung iiber die Elementartheiler — die un-
bestimmte Empfindung entspringt aus einer in diesem Falle wohl
sehr thorichten Abneigung gegen Potenzen-Folgen — um so mehr
muss ich um Nachsicht wegen deren Ausserung bitten. Auch meine
Frage wegen der Benutzung iibercomplexer Grossen in der Gruppen-
Theorie war sehr dreist; sie ging hervor aus einer Beobachtung, die
ich im Februar 1886 gemacht, dann aber nicht weiter verfolgt habe,
obwohl sie mir merkwiirdig genug erschien; vielleicht darf ich mir
einmal erlauben, sie Ihnen vorzulegen, auf die Gefahr hin, dass sie
vor Ihrer Kritik génzlich dahin schwindet, moglicherweise auch gar
nicht einmal neu ist. ...

25. Médrz 1896.

... Da ich einmal von Gruppen spreche, so mochte ich noch
eine andere Betrachtung erwahnen, auf die ich im Februar 1886
gekommen bin. Zu jeder Gruppe nmte Grades G bilde ich eine
Form mnte Grades H mit » Variabelen, die ich die Determinante
von G nenne: sind 1,2-.-n die in irgend einer Ordnung aufgeschrie-
benen Elemente von @, so lasse ich jedem Elemente » der Gruppe G
eine Variabele z, entsprechen, und bilde die Determinante

T111y Toyr *c Tpy

H— L1ty Logr ++* Tpg!
_— b

Lin'y Xon' *** Tpp!

wo 7' das zu r reciproke Element von G bedeutet. Ist G eine Abel’sche
Gruppe, und sind ¢, ¢ --- 9™ die ihr entsprechenden Charaktere
(Einheitswurzeln), so ist die Determinante H eine zerlegbare Form,
namlich das Product der n linearen Factoren

2 PO (1), = PO (1) 2, + -+ + ¥ (n) 25,
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die den » Werthen von s entsprechen (ein Satz, welcher in dieser
Allgemeinheit, wie ich glaube, noch nicht ausgesprochen ist). Wenn
aber G keine Abel’sche Gruppe ist, so besitzt ihre Determinante H,
soweit ich es untersucht habe, ausser linearen Factoren (wie z B.
immer x, + 2, -+ --- + x,) auch Factoren hoheren Grades, die im ge-
wohnlichen Sinne unzerlegbar sind; aber diese werden wieder zerlegbar
in lineare Factoren, wenn man ausser den gewdhnlichen Zahlen als
Coefficienten auch iibercomplexe Zahlen (mit nicht commutativer
Multiplication) gestattet, die den Gesetzen der Gruppe G entsprechen.
Bei der obigen Quaternion-Gruppe @ z. B. treten auf diese Weise
bei der erzwungenen Zerlegung ihrer Determinante in lineare Factoren
(deren vier gewohnliche Coefficienten haben) in der That Hamilton’s
Quaternion-Zahlen auf. Man darf iiberhaupt wohl vermuthen, dass
die Eigenschaften einer Gruppe G hinsichtlich ihrer Theiler sich in
der Zerlegung ihrer Determinante H wiederspiegeln werden; ausser
einer Spur, die auf einen Zusammenhang zwischen der Anzahl der
gewohnlichen linearen Factoren von H und denjenigen Normal-
theilern 4 von @ hindeutet, welche die Eigenschaft Ars — Asr
besitzen, habe ich aber noch gar Nichts gefunden, und es ist iiber-
haupt wohl moglich, dass bei der ganzen Sache vorldufig wenig
herauskommen wird. ...

3. April 1896.

... Erwihnen mochte ich noch Folgendes*). Man sieht leicht,
dass @ durch 24 Transformationen, bei welchen sich nur die sechs
Buchstaben o, «—1, 8, B~ 9, y~! mit einander vertauschen, iso-
morph in sich selbst iibergeht; die Gruppe 7' dieser Transformationen
ist also eine Untergruppe von der Gruppe V, aller 720 Versetzungen
von 6 Elementen, und zwar habe ich gefunden, dass diese Gruppe 7'
isomorph ist mit der Gruppe V, aller 24 Versetzungen von 4 Elementen
@, b, ¢, d. Bezeichnet man nimlich allgemein mit (a, d) die Ver-
tauschung (Transposition) von nur zwei verschiedenen Elementen q, d,
so wird die Gruppe 7' erzeugt durch die drei Elemente zweiten Grades

(% =) (B, 7) (B~ ¥~ Y) = (a, 9),
BB D)yt t) = (b, d),
e @y ) (@) @ ) = (o d),

*) [Es war hier und im vorangehenden Brief ein Uberblick iiber die Arbeit
XXVII iiber Gruppen, deren simtliche Teiler normal sind, vorangegangen; ¢ be-
deutet die Quaternionenmgruppe. E. N.]
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wo das Zeichen = das isomorphische Entsprechen bedeuten soll.
Dass die Gruppe V, eine solche transitive Untergruppe 7' =V,
(vom Index 30) besitzt, wird wohl schon lange bekannt sein; jedenfalls
soll dies von meinem Aufsatz iiber die Hamilton’schen Gruppen
ausgeschlossen werden.

Ebenso wenig werde ich dort von der allgemeinen Bedeutung
der Commutatoren ¢—1¢— !¢ ¢ sprechen, auf welche ich vor vielen
Jahren bei der Aufgabe gekommen bin, aus irgend einem Normal-
Korper alle darin enthaltenen Abel’schen Korper auszuscheiden.
Man findet leicht (— was, wie ich aus Ihrem Briefe schliesse, auch Ihnen
gewiss bekannt ist —) den Satz: ,Die erforderliche und hinreichende
Bedingung dafiir, dass A ein invarianter Theiler der Gruppe @, und
zugleich G/A eine Abel’sche Gruppe ist (Ars = Asr), besteht
darin, dass alle Commutatoren von je zwei Elementen 7, s der Gruppe @
in der Gruppe A enthalten sind; die kleinste solche Gruppe A
(diejenige némlich, welche durch alle Commutatoren erzeugt wird)
ist der gemeinsame Theiler von allen A.% Ich erwidhne dies auch
nur, um nochmals auf die von Ihnen giinstig aufgenommene Deter-
minante H irgend einer Gruppe G zuriickzukommen, welche ich
vor 10 Jahren an einigen sehr speciellen Beispielen (V, vom Grade 6,
@ vom Grade 8) und einigen allgemeineren (complexe Multiplication)
untersucht habe. Auf Ihre Anfrage wegen des einen Punctes gestehe
ich, dass ich nichts Bestimmtes weiss, aber ich vermuthe allerdings,
dass die Anzahl der linearen Factoren der Determinante I der Index
der eben genannten kleinsten Gruppe A4, also der Grad der Abel’-
schen Gruppe G/4 ist, und dass diese Factoren in gewisser Weise
den Charakteren dieser letzteren Gruppe entsprechen. Es wiirde
mich sehr freuen, wenn Sie sich in diese Dinge versenken wollten,
weil ich deutlich fiihle, dass ich hier Nichts zu Stande bringen werde.
Dass Ihre Determinante der Charakteristiken-Gruppe in den Theta-
functionen wesentlich mit meinem H iibereinstimmt (besser umgekehrt),
scheint mir nach Einblick in Ihre Abhandlung (Crelle 96, S.100)
ganz unzweifelhaft, und Ihnen gebiihrt daber auch die volle Prioritit
fiir diese Gruppen-Determinanten*). Was den Fall der Abel’schen

*¥) [Frobenius erwihnt in der Arbeit iiber die Primfaktoren der Gruppen-
determinante, dafi er vom Additionstheorem aus, und nicht durch die Gruppe der
Relationen, auf die Determinante der Charakteristiken gekommen sei. E. N.]
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Gruppen betrifft, so habe ich wohl in den Wiener Sitzungs-Berichten
einige darauf beziigliche Aufsiitze (von Gegenbauer?) gesehen; doch
glaube ich nicht, dass der Satz in seiner Allgemeinheit dort aus-
gesprochen ist. . ..

6. April 1896.

... Fiir den Fall, dass Sie sich noch niher mit den Gruppen-
Determinanten beschéftigen wollen, erlaube ich mir hiermit, Ihnen
wenigstens zwei von den Beispielen zu senden, die ich im Februar 1886
ausgerechnet habe; doch ibergehe ich die iibercomplexe Zerlegung der
nicht linearen Factoren.

Beispiel 1.
Gruppe V, der sechs Versetzungen von drei Buchstaben a, b, c.
Bezeichnung und Composition der Substitutionen:

RN s B
1 l a b 70 1 1 3 2 4 f:) ' 6 .
2 bm c o _ 2 2 ” 17 " 3 777:57 - 6 747
3 v—(; a * b Wém I % '| 7 2 | 1 i "(; ) 4 N 5

" 4 a a c | vb | 4 4 b) | f; 1 Wliﬁ 3 2
D ¢ bika 57 5 6 4 | 2 1 3
6ol alc 6 l6 a5 52 0

Setzt man l14+o0+0*=0

und u = x, + x, + 4, v =z, + x, + %,

u1:x1+0x2+92x3v 01:x4+9x5+92x67
Uy =2, + "%+ e vy =2, + "% + 0%,
80 wird die Gruppen-Determinante

SR T T = (i ) (— ) (g g — v, 0g)
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am kiirzesten wohl durch Multiplication mit der Determinante

I 1 1] 1t 1 1
1 o 0 1 o ¢

2 2
L e e ! °.° = 6% = 216.
1 11 —1 —1 —1
1 ¢ ¢*|—1 —o —¢?
1 oo |—1 —e*—op

Die Gruppe 1 4 2 4+ 3 der Commutatoren hat den Index zwei,
gleich der Anzahl der linearen Factoren.
Beispiel 2.
Bezeichnet man die Elemente 1, & o, «=1, 8, =1, p, y~ ! der
Quaternion-Gruppe @ mit 1, 2, 3, 4, 5, 6, 7, 8, so ist die ent-
sprechende Gruppen-Determinante

Ty 4 Ty g Tg g Ty &g
x, X, z, X, X, X, x; g
Ty Xy Ty Xy Ty Xq Ty X
T, 23 Ty T, Ty g Tg Ty
Ty g L7 Xg T, g Ty Xy
Ly T Ly Ty Ty oy T3 X,
x, X Xy X z, x, z, x,
g X, | X X | X, T, | X, @,
U, Uy U Uy Uy — U — Uy —
Uy Uy Uy U % Uy v, —Y, Vg
- Us Uy U Uy ) CA U — Y
Uy Uy Uy Uy Vy — Y Uy U

(uy + ug + ug + u,) (U + Uy — ug — %) (u, — %, +
e + uy — u,) (u, — g — Uy + u,)
X (v} + vi + vi + 0},

WO
% u % )
le,l} = ntay {v:; = @, {v:} =zt o, {v:} = Tt 2

Die Anzahl vier der linearen Factoren ist zugleich der Index
der Commutator-Gruppe [2] = 1 + 2. Die Quadratsumme o} 4 3
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+ v2 + v} hat mich damals sehr erfreut und dazu veranlasst, auch
andere Gruppen-Determinanten in lineare Factoren mit iibercomplexen
Coefficienten zu zerlegen; dies gelingt zwar, aber herausgekommen
ist dabei Nichts!

Mit dem Wunsche, dass diese immerhin merkwiirdigen K-
scheinungen Sie zu einer tieferen Ergriindung reizen mégen, ver-

bleibe ich ...

27. April 1896.

... Aber so viel sehe ich zu meiner unaussprechlichen Freude
auch jetzt schon, dass Sie in raschem Siegeslaufe wahrhaft be-
wunderungswiirdige Erfolge errungen haben, und wenn ich heute auch
ausser Stande bin, iiber die Sache selbst zu schreiben, so will ich
doch nicht ldnger zdogern, Ihnen meine herzlichsten Gliickwiinsche
zu diesen Erfolgen zu senden, denen ich eine sehr hohe Bedeutung
fiir die Gruppen-Theorie zuschreibe. Meine Bewunderung ist um so
grosser, je aufrichtiger ich mir eingestehen muss, dass ich nimmer-
mehr zu solchen Erfolgen hitte gelangen konnen, weil meiner gar
zu einseitigen Bildung das erforderliche Riistzeug fehlt, das Sie wie
kein Anderer beherrschen. Ich wiirde daher auch Bedenken tragen,
die beiliegenden Bogen Ihrer Einsicht zu unterbreiten, aber da Sie
mich in einem Threr Briefe zur Mittheilung fernerer Beispiele von
Gruppen-Determinanten aufgefordert haben, so sende ich Ihnen hierbei
ein altes Beispiel 3. und ein daraus durch Verallgemeinerung kiirzlich
entstandenes Beispiel 4. auf die Gefahr hin, dass Sie iiber meine
ungeiibte Handhabung der Technik ldcheln werden. Von der schon
mehrmals erwihnten Zerlegung in hypercomplexe lineare Factoren,
die, wie schwach sie mir augenblicklich auch erscheint, doch vielleicht
den Keim von etwas Brauchbarem enthalten kann, werde ich mir
ein anderes Mal zu schreiben erlauben, wenn mein Denken sich
gebessert hat. . ..

Gruppen-Determinanten.

Beispiel 3 (vom 17. Februar 1886).

Verallgemeinerung von Beispiel 1. — Es sei % eine Abel’sche
Gruppe von m Elementen
=1 2,3 ---m,

Y = 1”17 1"'27 11’3"'1pm

und es seien
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die Charaktere von % (Dirichlet, Aufl. 3, S. 581; Aufl. 4, 8. 612);
dieselben bilden eine (mit A isomorphe) Gruppe in der Weise, dass
je zwei solche o', ¥" einen Charakter ¢'4" erzeugen, welcher durch
PP (0) = ¢ ()¢ () fiir alle o definirt ist; ¢—(a) = p(o—?);
Yy~ = ¢° ist der Haupt-Charakter, ¢°(ax) = 1 fiir alle « und
alle 9. Die aus den m? Einheits-Wurzeln () gebildete Determinante

9 (1) ()] ‘wr‘(l)-'-w:‘(m)
qr:.......:ia_p":i—_..
wm(l)d’m(m) "‘pm (1) d’;l(m)

ist von Null verschieden; ¥ — mm. —

Nun bilde ich aus ¥ durch Hinzufiigung eines Elementes zweiter
Ordnung B, welches sich mit den « nach dem Gesetze

o =a1p .
® = A+ AR,

welches, wie man leicht sieht (vergl. das folgende Beispiel 4), eine
Gruppe ist (im Beispiel 1. war m — 3). Es soll die Determinante D
dieser Gruppe & gebildet werden, also eine Function von 2m
Variabelen 2., y., die resp. den Elementen e, « § entsprechen, ndmlich

verbindet, das System

Typ-1 Tm1-1|Yn Ymq

Tym-1 e Tmm=1 Y1m ot Ymm
D=|"" L mm e

Yn T Ymq | L1 T Tm1-1

Yim Ymm | L1m—1 Tmm—1

Um sie umzuformen, multiplicire ich sie zeilenweise mit

—wl (1) wl (m) 0 0
— Ym(1) oo wm(m) 0 _m 0
0 0 w;l(l) . ¢;1(m)
0 0| v’ (1) © Ym (m)

und zwar (wie immer im Folgenden) in der Weise, dass die Spalte
des Productes durch die Zeile des Multiplicands D, die Zeile des
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Productes durch die Zeile des Multiplicators ¥ ¥ bestimmt wird;
fiihrt man noch die Bezeichnungen

- 2 Ty Py (0‘)7 Vy = 2 Yo Vu (‘x)~

= Xzt (@ = 2 Ye i (@)

ein, so wird das Product

Uy '4’1 (1) e U 1P1 (m/) Uy "pl (1) © Uy wll(m)

um 'wm(l) Tt um wm(m) :U wm (1) Um 11%1 (m)

Doy — .
7 ‘Ih (1) ooy 11’1 (m) uy Y7t (1) ul ¥1t (m)

'U-m 1]),,,(1) e Up ¢n¢(m) U wm (1) 'mem ('m)

Diese Determinante ist aber zugleich das Product aus Multiplicand

Py (L) -- oy (1) |O 0
— by (m) ( 7
0 0 yr (1) %‘(1)
0 0 WII(’m) c P (m)
und Multiplicator '
Uy 0w, Ol
ﬁ( , ,) 0 e Uy, 0o ... ,Um¥
Uy Uy — Vy V) == —— .
“oe C vy -o- Ofuy 0|
0 v | 0 U

Mithin ist unsere Gruppen-Determinante
u u

D = H(’M,,%IL——'U,"U,") = H

zundchst ein Product von m Factoren zweiten Grades. Bedeutet
nun @ die Anzahl der zweiseitigen (ambigen) Elemente o = a1
der Gruppe %, so ist m — aa', wo @’ die Anzahl aller verschiedenen

Uuy Vu
U 14
Vyuy Uy
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Quadrate o’ bedeutet. Zugleich ist ¢ die Anzahl aller zweiseitigen
Charaktere ¢ — ¢—*; dies folgt unmittelbar aus der oben erwihnten
Isomorphie der Gruppe ¥ mit der ihrer Charaktere, oder auch aus
der Betrachtung der Gruppe ¥’ der o' Quadrate o2, weil ihr
Index (A, A) = a nach einem allgemeinen Satz zugleich die Anzahl
derjenigen Charaktere ¢ von ¥ sein mufl, welche den Haupt- (oder
jeden anderen bestimmten) Charakter der Untergruppe ' in sich
schliessen, also die Eigenschaft ¢ («?) = 1, d. h. ¢ = ¢—! haben.
Fiir jeden zweiseitigen Charakter ¢, wird w, = u,, v, = v,, also
Uy Uy — VU = (W, + v,) (W, — v,), woraus 2a verschiedene lineare
Factoren von D entspringen. Die iibrigen m — a Charaktere zerfallen
in !/3(m — a) Paare ¢, und ¢ = 9%, und da uy = up, v = v,
Uyt = Uy, Y == Dy, S0 entspricht jedem Paar das Quadrat (v, uy, — v, v),)?
einer quadratischen Function, welche (im gewdhnlichen Sinne) un-
zerlegbar ist. Die Commutatoren von je zwei Elementen der
Gruppe ® sind, wie man leicht findet, die ¢’ Quadrate o?; die von ihnen
gebildete Gruppe %’ hat in ® den Index (¥, @) = ', A) (¥, ) = 2a,
welcher mit der Anzahl der linearen Factoren von D iibereinstimmt. —

Gruppen-Determinanten.

Beispiel 4 (vom 18. April 1896).
Verallgemeinerung von Beispiel 3. — Zu der Abel’schen Gruppe %
von m Elementen « (und m Charakteren ) lasse ich eine beliebige
Gruppe B von n Elementen B hinzutreten, welche sich mit jemen
nach dem Gesetze

ey Ba = o B
verbinden, unter der Annahme, dass die den n Elementen § ent-

sprechenden n Exponenten B’ relative Primzahlen zu m sind und
dem Gesetze

(2) (.8, = BB (mod. m)

geniigen. Ich nehme ferner an, dass ¥ und B nur das Haupt-
Element ¢ = f° gemeinsam haben; dann bildet der aus mn ver-
schiedenen Elementen «f bestehende Complex

3) & =AB

eine Gruppe. Dies ergiebt sich am deutlichsten, wenn man die
Gruppen %, B zunichst ganz getrennt betrachtet und jeder Combination
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eines Elementes « von U mit einem Elemente g von B ein etwa mit
(e, B) zu bezeichnendes Element eines neuen Systems & entsprechen 146t,
mit der Bedingung, da diese mn Elemente («, 8) alle von einander
verschieden sein sollen (der Einfachheit wegen); die Composition
dieser Elemente definire man durch

4) (er15 B1) (eray Ba) = (oy “gla B1 Ba)
so ist @ wirklich eine Gruppe. Denn erstens gehorcht diese
Composition (4) zufolge (2) dem associativen Gesetz; zweitens ist

(®) (@ %) (e B) = (o B) (s f°) = (e B),

weil (%) = 1 (mod. m); definirt man ferner die n Zahlen g durch
(6) BB = 1 (mod. m),

woraus auch

(M (B1By)" = i Bz (mod. m)

folgt, so ist drittens
(®) (@ B) (=", 1) = (@, =) (s B) = (", B°).

Hiermit ist die Gruppen-Eigenschaft von & bekanntlich erwiesen,
und man kann

©) (a0 B)° = (", B, (o B = (&=, B77)
setzen. Zufolge (4) ist nun

(10) (o B) = (o ) (", B),

(11 (0, B°) (@ay B°) = (e, 5, B°),

(12) (o B) (& By) = (°, BB

Es giebt also in © eine mit A isomorphe Abel’sche Gruppe von
m Elementen («, 8°), und eine mit ¥ isomorphe Gruppe von 7 Elementen
(e, B), und zufolge (10) ist & das Product aus diesen beiden Gruppen,
welche nur das Haupt-Element («° f°) gemeinsam haben; hieraus
folgt die Berechtigung, in & jedes Element («, °) kurz durch e,
jedes Element («°, ) kurz durch 8 zu bezeichnen, woraus dann & =— 3°
und (¢, ) = aff, & = UADB folgt. Die Composition (4) lautet

o B0y = «, o’ B1 By
worin (1) enthalten ist. (In diesem Winter habe ich mich mit viel

allgemeineren Zusammensetzungen von zwei Gruppen A, B zu einer
Product-Gruppe A3 beschéftigt). —
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Bezeichnet man nun der Einfachheit halber die dem Elemente af
entsprechende Variabele der Gruppen-Determinante D selbst mit o f
(statt mit ,4), und ordnet die letztere in »? Felder von je m? Elementen,

so wird

D=1

"(“ﬂl)(“l 61)_1 tee

(o ﬂl) (“m ﬂ )-—

(“ﬁn) (“1 ﬂl)_ te

(0‘ ﬁn) (O‘m ﬁl)— e

(“ B 1) (“1 ﬁn)“

"(“ﬁl)(“mﬁrz)— el

(u ﬁn) (“1 ﬁn)— =

(a ﬁ») (am ﬁn)— ax

wo o in jeder Zeile jedes Feldes alle m Elemente «,, o - - &,, von %
in derselben Ordnung durchlduft. Nun bilde ich aus jedem Charakter
von A und jedem Element 8 von B die lineare Function von m Variabelen

B ») = @B v(@);
die Charakter-Potenzen f"' sind ebenfalls Charaktere 1, und man erhilt
> (@B) (o ) 0P () = = (@B Byt o) v (o)

= S e "7 867 0 (0) = S (BB v (el P)
= (BB, vF") ¥FY (a).

Multiplicirt man daher (wie im Beispiel 3) den Multiplicand D mit
dem Multiplicator

fl"l’(u)... 0 -.-010 ... 0

Pl(e)---|0 - 00
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so erhidlt man

(ﬂ ﬁl Logft )wﬁl(t/)... l(ﬁ Ijn ’wﬁl)wﬁn(,).,_i
|

E'”(ﬁ‘ﬁ:l’ ?;1_)“’&‘(“),"' 't':"'(ﬁ1ﬂvt ’¢ )wm"(a)m
(ﬁ,,ﬁl : w) W @ ---|---(/3nﬁ w’*" )w"n (@) -

(ﬁnﬂ“‘, m")wﬁﬁ(a)-"f"'?“'(ﬁnﬂﬁ mn)wfn."w)---

Dies ist wieder das Product aus dem Multiplicand

+ D

W () - B (ay) f 0 - 010 0

. . . . . . . -} . . . . .

U () - Ul ()| O - 0[O 0
b — 0 0! . I() 0

- (7 7“””/‘7 Y o

0 010 - 0 () - ¥hn(e)

( ) B B

0 0* 0 0 |9y (O‘m) s Ym (“m)

und dem Multiplicator

(ﬁlﬁl ;¥ ) () (ﬁ]ﬂn ,d, ) 0

0 (ﬂlﬂl R )1; ;o "-(ﬂlép , wf"')

i ) T

0 (673‘;1—- 11 d’ﬁtn)} o (ﬂnﬁ; I-, d’ﬁl';l) :
welcher folglich = D ist. Mithin erg1ebt sich, wenn

(8, i wﬁl) (gt ¥

1>¢._1 Ce

(ﬁnﬁf . ap”") o (Bupa s W)
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gesetzt wird, unsere Gruppen-Determinante

7
D =T Dy

als Product von m Factoren nter Grades. —

Jeder Commutator der Gruppe 3B, d. h. jedes Element von der Form

y = B B2 B, By
ist permutabel mit jedem Element « von A, weil
y = BB BB =1 (mod.m),
also yo = oy = «y. Die von allen diesen Commutatoren p
erzeugte Gruppe sei €. Unter den Commutatoren der Product-
Gruppe & =—= AP sind zunichst die folgenden
e o = ot —F"
zu bemerken; bedeutet e den grossten gemeinsamen Theiler aller
n Zahlen 1 — " oder 1 — f’ mit m (oder mit dem hochsten Element-
Grade in %), so bilden diese Commutatoren die Gruppe U’ aller a’
verschiedenen Potenzen of, und es ist m — aa/, wo @ = (W, ¥A) die
Anzahl aller e-seitigen, d. h. derjenigen Elemente o bedeutet, welche
der Bedingung «®* = «° geniigen; da jedem Charakter y der Gruppe %',
z. B. ihrem Hauptcharakter genau @ Charaktere ¢ der Gruppe U
entsprechen, welche Multipla von 4 sind oder g einschliessen, d. h.
fiir alle Elemente von A' mit y i{ibereinstimmen, so ist ¢ auch die
Anzahl aller e-seitigen Charaktere ¢ — ¢f = " von ¥, was auch
aus der Isomorphie von % mit der Charakter-Gruppe folgen wiirde.
Da ferner jeder beliebige Commutator der Gruppe ® von der Form
. (2‘1 B~ l"(o‘s ﬂz{?_l (o, 1) (o2 Ba)
— afl(ﬂ2~l) agz(l——ﬁl)_ﬂl—l ﬁz—l B, B, = oty

ist, so erzeugen alle diese Commutatoren die Gruppe UA'E, deren
Index (W'E, AB) = (W' E, AC) (AC, AB) = a(C, B) ist. Wenn nun o
ein e-seitiger Charakter ist, so gebt der ihm entsprechende Factor

(ﬂl ﬁflv d’) (ﬂn ﬁ;lv w)
Dy=| o
(ﬁl ﬁﬁla 1IJ) (ﬁn ;17 11’)
von D aus der Determinante

yﬂl ﬂT] cee yﬁnﬁi-l

Yot Ypasi?t
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der Gruppe B offenbar durch die lineare Transformation yz = (8, ¥)
hervor und enthdlt folglich dieselbe Anzahl linearer Factoren. Aber
mehr kann man auf diese Weise woll nicht schliessen.

8. Juli 1896 %).

. Nochmals bitte ich sehr um Entschuldigung fiir meine Saum-
seligkeit, fiir die ich nur wenige gute, aber viele schlechte Griinde
angeben konnte; zu den letzteren gehort meine tadelnswerthe Schwiche,
mich oft von Nebenfragen, die fiir die Hauptsache einer Untersuchung
ganz werthlos sind, so gefangen nehmen zu lassen, dass ich dariiber
das eigentliche Ziel aus den Augen verliere. Zu den guten Griinden
darf ich woll den rechnen, dass ich in Folge Threr Anregung meine
Papiere vom Iebruar 1886 iiber Gruppen-Determinanten und deren
hypercomplexe lineare Factoren wieder durchstobert habe.

Auf Ihre Frage, Wann ich den allgemeinen Satz iber die Zer-
legung der Abel’schen Gruppen-Determinanten in lineare Charakter-
Factoren gefunden habe, geben diese Papiere (12 Folioseiten vom
2. bis 17. Februar datirt, mit Formeln und nur wenigen Worten) **)
nur den Aufscliluss, dass dies schon in friitherer Zeit geschehen sein
muss. Sie behandeln nimlich (mit einer einzigen Ausnahme) nur
noch Beispiele von nicht Abel’schen Gruppen, unter denen das vom
17. Februar 1886, welches ich Ihnen im April d. J. mitgetheilt habe,
eine Gruppe ® betritft, in der die allgemeinste Abel’sche Gruppe U
als Theiler enthulten ist; hierin steckt natiirlich auch der obige
Satz A iiber die Abel’schen Gruppen 2, und die ganze Behandlung
der Determinante von ® ist offenbar derjenigen nachgebildet, welche
zur Zerlegung der Determinante von U, also zu dem Satze A fiihrt;
aber dieser Satz A wird nirgends mehr erwidhnt. Auf den Begrift
der allgemeinen Gruppen-Determinante bin ich zuerst bei dem Studium
der Discriminante eines beliebigen Normalkorpers £ gefiihrt, indem
ich solche (sehr niitzliche) Basen von £ betrachtete, die aus den
Conjugirten einer einzigen Zahl @ bestehen (bisweilen besitzt auch
das System o aller ganzen Zihlen in & eine solche Basis, z. B.
wenn o eine mt Einleits-Wurzel, und m durch kein Quadrat theil-

*) [Ein Auszug aus diesem Brief findet sich in der Einleitung der Arbeit
tiber Gruppencharaktere von Frobenius. E. N.]

*+) [Dem lnhalt nach vollstindig in den hier vertffentlichten Briefen ent-
halten. E. N.]

Dedekind, Gesammelte Werke, II. 28
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bar ist, und dasselbe gilt dann auch von allen Divisoren von £, z. B.
allen quadratischen Korpern von ungerader Grundzahl); dieses Studium
fallt wahrscheinlich in die Zeit um 1880 oder mnoch friiher, und da-
mals werde ich wohl den Satz A gefunden haben; was mich aber ver-
anlasst hat, im Februar 1886 auf die Gruppen-Determinanten zuriick-
zukommen, weiss ich nicht mehr.

Ich fiige einige Bemerkungen iiber die Charaktere der Abel’-
schen Gruppen 2 hinzu. Das dlteste Beispiel ihrer Anwendung ist
wohl in den Resolventen von Lagrange (fiir cyklische ) zu erkennen.
Sodann ist das (von Jacobi verallgemeinerte) Symbol von Legendre
zu nennen. Die von Gauss (Art. 131) benutzten Zeichen R, N sind
weniger gliicklich, als die bestimmte Einfithrung der Einlieits-Wurzeln
41 durch Legendre, und so kommt es (Art. 230), dass er auch
unter dem Charakter einer Formen-Classe oder eines Geschlechtes
eine Relation, nicht eine Zahl versteht; die der Zusammensetzung
der Geschlechter entsprechende Zusammensetzung der Charaktere tritt
zwar deutlich hervor (Art. 246—248), aber nicht als Multiplication
von Zahlen. Die Umwandlung der Gauss’schen Geschlechts-Cha-
raktere in Zahlen hat Dirichlet (Recherches sur diverses applica-
tions ete. § 3) durch Benutzung des Symbols von Legendre
bewirkt. Ferner hat Dirichlet in der Abhandlung iiber die arith-
metische Progression alle Charaktere ¢ (— ohne diesen Namen zu
gebrauchen —) der Abel’schen Gruppe G™ benutzt, welche von den
@ (m) Classen relativer Primzahlen zu m gebildet wird, und ebenso
alle Charaktere der Gruppe der Formen-Classen (in der Skizze iiber
die Darstellung unendlich vieler Primzahlen durch eine quadratische
Form). Nach allem diesen lag es nahe, den Begriff und Namen der
Charaktere fiir jede Abel’sche Gruppe U einzufiihren, wie ich es in
der dritten Auflage von Dirichlet’s Zahlentheorie gethan habe. Ich
habe dort (in der vierten Auflage S. 612) zur Begriindung der
Existenz der Charaktere auf §. 149, also auf die Darstellung der
Elemente von A als Producte von Potenzen von Fundamental-Ele-
menten hingedeutet; doch ziehe ich principiell den folgenden Weg
vor, der Nichts von dieser Darstellung voraussetzt. Ist U ein Theiler
von B, so ist in jedem Charakter y von B ein Charakter ¢ von A
enthalten (der fiir alle Elemente von ¥ mit y iibereinstimmt); ich
nenne ¥ den auf A beziiglichen Divisor von g, umgekehrt y ein
Multiplum von ¢. Dann ergiebt sich ganz leicht durch Induction
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der Satz: Ist ¢ ein Charakter von A, so ist der Index (U, ¥B)
[— mit (A, B) bezeichne ich auch in der allgemeinen Gruppen-
Theorie die Anzahl der verschiedenen Complexe UAB, aus denen der
Complex AYB besteht —] zugleich die genaue Anzahl der verschie-
denen Charaktere y von B, welche Multipla von ¢ sind. Dies leuchtet
ein fiir (U, B) =1, also A =B, und wenn es fiir alle Fille (A, B) <m
bewiesen ist, so gilt es auch fiir (A, B) = m; denn entweder giebt
es eine von A und B verschiedene Gruppe €, die Theiler von B
und Vielfaches von % ist, oder nicht; in beiden Fillen ergiebt sich
der Schluss leicht, weil im ersten Fall m = (%, B) = (¥, €)(E, B),
also (¥, €) und (€, B) < m ist, und weil im zweiten Falle B — A
+ AB + AB® + --- ist. Hierin ist aber Alles iiber Existenz und
Anzahl der Charaktere enthalten, und der Satz ist ausserdem sehr
niitzlich.

Die Art, wie Dirichlet (bei der arithmetischen Progression)
darthut, dass seine Reihen L, der zweiten Art von Null verschiedene
Grenzwerthe haben, weil diese als Factoren der Classen-Anzahl der
quadratischen Formen auftreten, fiihrte mich, da ich die quadratischen
Korper als Kreiskorper kannte, zu der Bemerkung (Aufl. 3, S. 596
und Aufl. 4, S. 625), dass eine &hnliche Schlussart auch fiir die
Reihen L, der dritten Art gilt; denn wenn man den aus den mter
Einheits-Wurzeln gebildeten Kreiskérper K,, betrachtet, und Kum-
mer’s Satz iiber dessen Primideale anwendet, so ist das Product
aller @(m) Dirichlet’schen Reihen L identisch mit der Summe
>IN (a)~"% wo a alle relativen Primideale zu m durchliuft. Ich
weiss nicht, ob Kummer selbst diese Anwendung ausgesprochen hat,
glaube es aber kaum.

Da Sie bei Ihrer Frage nach der Auffindungs-Zeit des obigen
Satzes A die Classen-Anzahl der Ideale in einem beliebigen Kreis-
korper erwdhnen, so mochte ich Ihnen (wie neulich auch Weber)
noch von einer schonen Sparsamkeit schreiben *), auf die Gefahr hin,
dass dieselbe Thnen, wie mir, schon lange bekannt ist. Die Identitdt

a Y on
1) SNE - =[[Zvmn
gilt ndamlich auch dann, wenn a alle Ideale in K,,, und n alle
natiirlichen Zahlen durchlduft, falls jeder der ¢(m) Charaktere ¢ der

*) [Vergl. XLIL.]
28*
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Gruppe G™ eine erweiterte Bedeutung erhilt, so dass ¢ fiir jede
ganze rationale Zahl = einen bestimmten Werth ¢ (x) annimmt, der
mit dem urspriinglichen ¢ () iibereinstimmt, wenn z relative Primzahl
zu m ist, und ausserdem die Gesetze ¥ (x + m) = ¢ (x) und ¥ (zy)
= (%) ¢¥(y) erfiillt. Eine solche Erweiterung eines gegebenen Cha-
rakters ¢ von G@ lisst sich im Allgemeinen auf mehrere Arten
herstellen (deren Anzahl eine Potenz von 2 ist); von diesen geniigt
aber nur eine einzige der obigen Ideal-Identitdt (1), und zwar ist
sie dadurch vollkommen bestimmt, dafl ¢(x) fiir méglichst wenige
Zahlen z verschwinden soll. Einen so erweiterten Charakter v
nenne ich einen natiirlichen Charakter von G“. Die oben ge-
rithmte Sparsamkeit besteht nun zundchst darin, dass, wenn @ ein
Divisor von m, alle @ (@) natiirlichen Charaktere von G® auch natiir-
liche Charaktere von G™ sind; bezeichnet man daher mit ¢’ (m) die
Anzahl aller primitiven, ndmlich derjenigen natiirlichen Charaktere
von G  welche zu keiner Gruppe G@ mit kleinerem a gehdren,
0 ist

(2) S 9'(a) = ¢ (m);

mithin ist ¢'(ab) = ¢'(a)¢'(b), wenn @, b relative Primzahlen sind,
und fiir eine Primzahl p ist ¢’'(p)=p—2 und ¢'(p") =(p— 1)*p*—2,
falls » > 1; ferner ist ¢'(2m) = 0, wenn m ungerade (es ist ja
auch K,, — K,). Am schonsten offenbart sich aber die Spar-
samkeit dadurch, dass die Identitit (1) im folgenden Sinne fiir
jeden Kreiskorper £ gilt. Hat man m so gewidhlt, dass
Divisor von K, wird, und ist H die Gruppe der Zahlclassen A (mod. m),
zu welcher & gehort, also H Theiler von G™, so gilt die Identitat (1),
wenn a alle Ideale in &, und ¢ alle diejenigen natiirlichen Cha-
raktere von G durchlduft, welche der Bedingung ¢ (k) =1 ge-
niigen (alle Multipla des Haupt-Charakters von H); dies ist gewisser-
massen der analytische Ausdruck fiir meinen allgemeinen Satz iiber die
Primideale von & (C. R. der Pariser Akademie vom 24. Mai 1880). —

Zu einem griindlichen Studium Ihrer Abhandlung ,Uber ver-
tauschbare Matrizen® bin ich aus den oben erwéhnten schlechten Griinden
noch nicht gekommen; doch glaube ich versichern zu konnen, dass ich
auch bei meinen nach 1887 gelegentlich wieder aufgenommenen
Versuchen, die Zerlegung in lineare Factoren auf einfachere Weise
abzuleiten, durchaus nicht auf Ihre Wege gekommen bin. Doch
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muthet mich Manches darin #hnlich an, wie meine iibercomplexen
Factoren der Gruppen-Determinanten, auf die ich aber heute nicht
mehr eingehen kann. Vielleicht komme ich morgen dazu, die Armada
dieser seltsamen Schiffe in See stechen zu lassen; doch wird es wohl
heissen: Frobenius afflavit et dissipavit! ..

13. Juli 1896.

. Zuerst erwihne ich, dass mein Beispiel vom 17. Februar 1886
vollstindiger und hiibscher in der Gestalt A B — BC dargestellt
wird, wo 4, B, C nicht Determinanten, sondern folgende Systeme,
Matrizen, Formen bedeuten:

Xqi1-1 Tm1-1| Yy ot Yma
) ®F1m-1 Zmm=1| Yim U Ymm — 4.
Y  Yma L1 Tm1-1
Yim Ymm Lim-1 Lonm—1
w,(l), 0 wm(l), 0
0, «m (1) 0, wm (1) ’
0, ¥i' (m) 0, Ym (m)
U, v [0 .- 0]0, 0
vy, |0 - 010, 0
0, o|- -« - - |0, 0
0, o« -+ -0, 0
0, 00 0| Uny m
0, 0 0 e 0 ,Uma u;n

Hieraus folgt dann der Satz iiber die Zerlegung der Gruppen-
Determinante D in die Factoren w,u, — v,v,. Doch das miissen
Sie lingst durchschaut haben. Im Folgenden beschiftige ich mich
ausschliesslich mit dem ersten Beispiel (Fall m = 3) vom 2. und
3. Februar 1886; an diesem Beispiel habe ich damals auch zuerst
die Zerlegung in hypercomplexe lineare Factoren ausgefiihrt, und
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erst dieser Erfolg hat mich etwas spiter (jedenfalls vor dem
15. Februar) zu der Beschiftigung mit der Quaternion-Gruppe ver-
anlasst; ich habe Ihnen, wie ich glaube, geschrieben, dass die Reihen-
folge die umgekehrte gewesen ist; das war aber ein Irrthum. Nun
also! Es war 1+ ¢ + 0> = 0 und

X, Xy Xy T, Ty T

= (u + ) (u — v) (8, %3 — v, 0,)"

U=+ T+ Ty, U= X+ 0%+ 00T Uy = 2+ 0Tt 0Ty,
V=0, 4+ 22, v = B 0x 0%, Uy = %+ 07T + 0%,
also

UyUg = T} + T3 + TF — X, By — X, Xy — Ty Xy,

00 = o} + 3 + X — T T — T, T T T
Nun sei

Uy Uy — V0, = of,

= o, &, + oy g + 003 %5 + &, 7, + 05 x5 + 05 7,
B = B1%; + By®y + By + By + B ¥ + Bo -
Bei der Addition, Subtraction, Multiplication rechne ich mit den
12 Coefficienten «,, B, wie mit gewohnlichen Zahlen und verzichte
nur bei ihrer Multiplication mit einander auf das commutative
Gesetz, wihrend dasselbe bei ihrer Multiplication mit gewohnlichen
Zahlen und den Variabelen xz, bestehen bleiben soll. Ebenso wird
durchweg das associative und distributive Gesetz angenommen. Die
Forderung der Identitit der Coefficienten (rs) von z,z, in w, uy — v, v,
und in «f ergiebt dann 21 Bedingungen; um mit ihnen etwas an-
fangen zu konnen, setze ich (wenn dadurch auch die Allgemeinheit
beeintriichtigt wird)
(A) o =1 g =1
wodurch die Forderung (11) = «, 8, =1 erfiillt ist. Dann folgt:

(12):“2+ﬁ2:""1, ﬁsz_‘l_‘“za
(13)=a8+ﬂ3:“1’ ﬁ:}:"‘l_“av
(B) (14) =ea,+8,=0, By = — oy,
(15) = o + B, = 0, Bs = — o,
(16) = o5 + B, = 0, Bs = — o,
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sodann
[(22)=“9ﬂ2: 1 o7 = — 1 —ay,
©) (83) = By = 1, o] = — 1 —a,
l (28) = 0Byt ey = — 1, oozt gy = + 1 — o0y — ey,
ferner
(44) = e, = — 1, af =1,
(55) = a; B, = — 1, o =1,
(D) (66) - aeﬁe = —1, ar =1,
(45) = o, f; + 0‘554 =1, eotoo = —1,
(46) = o, B+ o, = 1, o0+ g, = — 1,
(56) = o B+ By = 1, eyos+azo, = — 1,
endlich |
(24) = oy, + o, B3 = 0, a0, + o0, = —a,
(34) =B, +o,B;s =0, oz, +oe—= —o,
(E) (25) = agfs + By = 0, ogo, + gy = — oz,
(35) = gy + 08 = 0, g5 + o005 = — oz,
(26) — “ﬂﬁﬂ Fo; 8, =0, o0 oz, = — o,
(36) =B+t =0, a5t oz0; = —

Zunichst folgt aus (A) und (B) ein Hoffnungsstrahl! Es wird
namlich

) o+ pf = 2%, —x,— x;, mithin Ba = af,

d. h. die linearen Factoren der Gruppen-Determinante sind alle per-
mutabel mit einander, wodurch ihre Brauchbarkeit erheblich gewinnt.

Bedenkt man nun, dass aus (C) auch

o =af =1,
ferner aus (D) z B.

(@0 = — 1 — o 00, = ager,, (o005 = (ot506,)° = 1,
und aus (C) und (E) z B.
oy, = a0, w0y = ole,, (e0,) = (o) =1

folgt, so wird man fast mit Gewalt zu der Bemerkung getrieben, dass
die 15 Bedingungen (C), (D), (E) widerspruchsfrei erfiillt werden,
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wenn man zum Beispiel annimmt, dass die sechs Zahlen o, bei
ihrer Multiplication die Gesetze unserer Gruppe

1 o oy o, o g
oty oy 1 o o o,
oy 1 oy o o, oty

(&) ] | o
o, o o 1 o 0y
o 0 o 0y 1 o
Ol ol o, oy 0 1

befriedigen, und dass ausserdem die beiden Summen

(H) =14ea,+oa;, ©=a +o0y-+ o
verschwinden; zugleich bilden dann die Zahlen $;' eine isomorphe
Gruppe.

Mit diesem Ergebniss habe ich mich damals (am 3. Februar 1886)
durchaus begniigt, und ich bin, weil es mir sehr merkwiirdig schien,
gleich zu anderen Beispielen iibergegangen, erst zu einer Gruppe
zehnten Grades, dann aber zu der Quaternion-Gruppe (deren Existenz
pahe lag, mir aber bis dahin wahrscheinlich unbekannt geblieben
war), und hier wurde ich durch das Auftreten der Summe von vier
Quadraten begliickt. Damals habe ich auch zuerst Beispiele von
Normalkorpern mit Quaternion-Gruppe construirt, was mir erst nach
mehreren vergeblichen Versuchen gelang, als ich erkannte, dass der
darin enthaltene biquadratische Abel’sche Korper (Product von drei
quadratischen Korpern) durchaus reell sein muss. Dass aber diese
Quaternion-Gruppe eine so grosse Rolle in den nicht Abel’schen
(Hamilton’schen) Gruppen spielt, die nur Normaltheiler besitzen,
habe ich erst im vorigen Jahre gefunden (zu der Vollendung der
Abhandlung bin ich aber noch immer nicht gekommen).

Ich kehre zu dem obigen Beispiele der Versetzungen von drei
Buchstaben zuriick. Offenbar ist die durch (G) in Verbindung mit
n = 0, ® = 0 bestimmte Losung der Bedingungen (C), (D), (E) nur
eine particuldre, wie man schon daraus erkennt, dass die letzteren
symmetrisch sowohl in Bezug auf «,, «;, als auch in Bezug auf «,,
o, o6, sind. Aber wahrscheinlich giebt es ausser diesen zwei Losungen
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noch unendlich viele andere Arten, die simmtlichen Producte der
Zahlen «, linear durch die letzteren so darzustellen, dass die Be-
dingungen (C), (D), (E) erfiillt werden unter Wahrung des asso-
ciativen und distributiven Gesetzes. Man kann nidmlich zwar leicht

beweisen, dass

=0, @®=0, qot+on=20

sein muss; dass aber 7 und o selbst = 0 sein miissen, habe ich nicht
herstellen konnen. Freilich diirfte man ja sagen: da w,, u, nur von
den Differenzen x, — x,, x; — x,, und ebenso v, v, nur von den
Differenzen x, — «,, x; — ¥, abhiingen, so kann man von vornherein
verlangen, dass auch «, 8 nur von diesen vier Differenzen abhingen,
worin ja die Bedeutung der Bedingungen # — 0, @ = 0 liegt. Da
ferner diese Differenzen umgekehrt durch die vier unabhingigen
Variabelen u,, u,, v, v, sich ausdriicken lassen, so kommt das Ganze
schliesslich auf eine Zerlegung der bilinearen Form oder Determinante

1. N W, Uy — D, Vy = @
in lineare IFactoren 172 172 p

o == Uy + AUy + A0 F A0y, B = pu; + pay + 0,0 1,0,
hinaus, wo die Coefficienten %, A, u, v zufolge der obigen Losung
sehr niedliche Theiler der Null werden!

Ich habe mich in der letzten Woche ziemlich viel mit den Be-
dingungen (C), (D), (E) beschiftigt, und wenn Sie es wiinschen, so
will ich Thnen gern noch Alles aufschreiben, was ich dabei gefunden
habe. Aber ich halte es fiir sehr wohl moglich, dass Sie nach der
heutigen Probe auf die ganze Zerlegung in hypercomplexe Factoren
gar keinen Werth legen; meine eigene Meinung daritber schwankt
hin und her. ...

5. Dezember 1896 *).

... Die Correctur**) habe ich sogleich mit dem besten Willen
angegriffen, die Sache selbst dabei griindlich durchzunehmen, aber ich
habe bald eingesehen, dass ich dazu viel mehr Zeit gebrauchen wiirde,
als Ihnen erwiinscht wére; mein Anlauf hat daher nur bis etwa zur
zehnten Seite ausgereicht, und dann habe ich mich begniigt, das

¥) [In die Zwischenzeit fillt ein Besuch von Frobenius, auf den sich die
Bemerkung iiber Anregung zur Darstellungstheorie (Einleitung zu der Arbeit iiber
Darstellung endlicher Gruppen) zu beziehen scheint, da die Briefe nichts iiber
Darstellung enthalten. E. N.]

**) [Es handelt sich um die Frobeniussche Arbeit iiber die Primfaktoren
der Gruppendeterminante. E. N.]
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Ubrige nur durchzulesen, um den hauptsichlichen Inhalt in mich
aufzunehmen. Derselbe erfiillt mich mit aufrichtiger Bewunderung;
so schwierig die grosse Aufgabe war, so belohnend ist auch die
Frucht Ihrer gewaltigen Arbeit geworden, die Threm Ruhmeskranze
ein neues Blatt hinzufiigt. Mir gefillt noch ganz besonders, dass
nun auch Ihre Vorarbeiten in neuem Lichte erscheinen.

Alles Dies wiirde ich, wie ich Thnen schon einmal gesagt habe,
niemals zu Stande gebracht haben, aber desto mehr freue ich mich,
Ihnen die erste Veranlassung zu dieser schonen Arbeit gegeben zu
haben. ..

13. April 1897.

... Ich bin daher auch noch nicht im Stande, Ihre Mittheilungen
iiber die Gruppen mit der erforderlichen vollstindigen Klarheit in
mich aufzunehmen; aber eine grofe Freude haben Sie mir doch
durch dieselben bereitet; denn soweit ich sie verstehe, bleibt mir
kein Zweifel, dass Sie einen neuen grossen Schritt auf Ihrer Sieges-
bahn gethan haben, und wenn dabei mein Luftschloss der Schein-
zahlen vernichtet wird, so bin ich gar nicht betriibt dariiber, sondern
erfreut, dass Sie den wirklichen Kern der Sache aufdecken; auch
zweifle ich gar nicht, dass Sie die letzten Schwierigkeiten ebenso
iiberwinden werden wie im vorigen Jahr*). ...

*) [Gemeint ist die mehrfach erwihnte Zerlegung in hyperkomplexe Faktoren.
Diese spielt eine wesentliche Rolle in der Theorie der nichtkommutativen Kirper
und deren Zerfillungskorper (vgl. Wedderburn, Transactions of the Am. Math.
Soc., Bd. XXII, 8.129—135, 1921; die Wiedergabe bei Dickson: Algebras and their
Arithmetics, S. 230 und weitergehende Untersuchungen von E. Noether und
R. Brauer; zusammenfassende Darstellung bei v. d. Waerden, Moderne Algebra,
Bd. IT). Bei dem Dedekindschen Beispiel (Brief vom 13. Juli 1896) handelt es
sich um den durch das ,allgemeine Element* o« (der entsprechenden zweiseitigen
Komponente des Gruppenrings) erzeugten Zerféllungskorper, und um die Zerlegung
der Norm von a in diesem (kommutativen) Korper; daher die Vertauschbarkeit
aB = B« (Formel (F)).

DaB die Zerlegung bei Frobenius nicht auftritt, erklirt sich daraus, da8
Frobenius von vornherein den Kirper aller komplexen Zahlen, also einen algebraisch
abgeschlossenen Kirper, als Koeffizientenbereich nimmt; hier gibt es keine end-
lichen nichtkommutativen Erweiterungskorper. Die durch das allgemeine Element
erzeugten Zerfillungskorper existieren zwar, aber ihre Heranziehung wird unnétig.
Das gilt iibrigens auch von dem Dedekindschen Beispiel (nicht von dem Bei-
spiel des Quaternionenkirpers), wo es sich schon um einen vollen Matrizenring
iiber dem Korper der rationalen Zahlen handelt; wie Dedekind bemerkt, treten
ja Teiler der Null bei der hyperkomplexen Zerlegung der Gruppendeterminante
auf. E. N.]
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