

Werk

Titel: Mathematische Physik

Jahr: 1867

Kollektion: Mathematica

Digitalisiert: Niedersächsische Staats- und Universitätsbibliothek Göttingen

Werk Id: PPN236006339

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN236006339 **OPAC:** http://opac.sub.uni-goettingen.de/DB=1/PPN?PPN=236006339

LOG Id: LOG 0010

LOG Titel: Allgemeine Theorie des Erdmagnetismus. 1838

LOG Typ: chapter

Übergeordnetes Werk

Werk Id: PPN235957348

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN235957348 **OPAC:** http://opac.sub.uni-goettingen.de/DB=1/PPN?PPN=235957348

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational, research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online system to access or download a digitized document you accept the Terms and Conditions. Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the source.

Contact

Niedersächsische Staats- und Universitätsbibliothek Göttingen Georg-August-Universität Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Germany Email: gdz@sub.uni-goettingen.de

ALLGEMEINE THEORIE

DES

ERDMAGNETISMUS.

Der rastlose Eifer, womit man in neuerer Zeit in allen Theilen der Erdoberfläche die Richtung und Stärke der magnetischen Kraft der Erde zu erforschen strebt, ist eine um so erfreulichere Erscheinung, je sichtbarer dabei das rein wissenschaftliche Interesse hervortritt. Denn in der That, wie wichtig auch für die Schifffahrt die möglichst vollständige Kenntniss der Abweichungslinie ist, so erstreckt sich doch ihr Bedürfniss eben nicht weiter, und was darüber hinausliegt, bleibt für jene beinahe gleichgültig. Aber die Wissenschaft, wenn gleich gern auch dem materiellen Interesse förderlich, lässt sich nicht auf dieses beschränken, sondern fordert für Alle Elemente ihrer Forschung gleiche Anstrengung.

Die Ausbeute der magnetischen Beobachtungen pflegt man auf den Erdkarten durch drei Systeme von Linien darzustellen, die man wohl die isogonischen, isoklinischen und isodynamischen Linien genannt hat. Diese Linien ändern ihre Gestalt und Lage im Laufe der Zeit sehr bedeutend, so dass Eine Zeichnung nur den Zustand der Erscheinung für einen bestimmten Zeitpunkt angibt. Halley's Declinationskarte ist sehr verschieden von Barlow's Darstellung im Jahr 1833; und Hansteen's Inclinationskarte für 1780 weicht schon sehr stark von der jetzigen Lage der isoklinischen Linien ab: die Versuche, die Intensität darzustellen, sind noch zu neu, als dass sich bei derselben schon jetzt ähnliche Änderungen

nachweisen liessen, die ohne Zweifel im Laufe der Zeit nicht ausbleiben werden. Alle diese Karten sind jetzt noch mehr oder weniger lückenhaft, oder theilweise unzuverlässig: es steht aber zu hoffen, dass, wenn sie auch die Vollständigkeit, wegen der Unzugänglichkeit einiger Theile der Erdfläche, nicht ganz erreichen können, sie doch mit raschen Schritten sich ihr mehr nähern werden.

Vom höhern Standpunkt der Wissenschaft aus betrachtet ist aber diese möglichst vollständige Zusammenstellung der Erscheinungen auf dem Wege der Beobachtung noch nicht das eigentliche Ziel selbst: man hat damit nur ähnliches gethan, wie der Astronom, wenn er z. B. die scheinbare Bahn eines Kometen auf der Himmelskugel beobachtet hat. Man hat nur Bausteine, kein Gebäude, so lange man nicht die verwickelten Erscheinungen Einem Princip unterwürfig Und wie der Astronom, nachdem das Gestirn sich seinen Augen entzogen hat, sein Hauptgeschäft erst anfängt, gestützt auf das Gravitationsgesetz aus den Beobachtungen die Elemente der wahren Bahn berechnet, und dadurch sogar sich in den Stand setzt, den weitern Lauf mit Sicherheit anzugeben: so soll auch der Physiker sich die Aufgabe stellen, wenigstens in so weit die ungleichartigen und zum Theil weniger günstigen Umstände es verstatten, die die Erscheinungen des Erdmagnetismus hervorbringenden Grundkräfte nach ihrer Wirkungsart und nach ihren Grössenwerthen zu erforschen, die Beobachtungen, so weit sie reichen, diesen Elementen zu unterwerfen, und dadurch selbst wenigstens mit einem gewissen Grade von sicherer Annäherung die Erscheinungen für die Gegenden, wohin die Beobachtung nicht hat dringen können, zu anticipiren. Es ist jedenfalls gut, dies höchste Ziel vor Augen zu haben, und die Gangbarmachung der dazu führenden Wege zu versuchen, wenn auch gegenwärtig, bei der grossen Unvollkommenheit des Gegebenen, mehr als eine entfernte Annäherung zu dem Ziele selbst noch nicht möglich ist.

Es ist nicht meine Absicht, hier diejenigen frühern erfolglosen Versuche zu erwähnen, wobei man ohne alle physikalische Grundlage das grosse Räthsel errathen zu können meinte. Eine physikalische Grundlage kann man nur solchen Versuchen zugestehen, welche die Erde wie einen wirklichen Magnet betrachten, und die erwiesene Wirkungsart eines Magneten in die Ferne allein der Rechnung unterstellen. Aber alle bisherigen Versuche dieser Art haben das gemein, dass man, anstatt zuerst zu untersuchen, wie dieser grosse Magnet beschaffen sein müsse, um den Erscheinungen Genüge zu leisten, gleich gefasst darauf, eine

einfache oder eine sehr zusammengesetzte Beschaffenheit hervorgehen zu sehen, vielmehr von vorne her von einer bestimmten einfachen Beschaffenheit ausging, und probirte, ob die Erscheinungen sich mit solcher Hypothese vertrügen. Indessen wiederholt sich hierin nur, was die Geschichte der Astronomie und der Naturwissenschaften von den Anfängen so vieler unserer Kenntnisse berichtet.

Die einfachste Hypothese dieser Art ist die, nur einen einzigen sehr kleinen Magnet im Mittelpunkt der Erde anzunehmen, oder vielmehr (da schwerlich jemand im Ernste an das wirkliche Vorhandensein eines solchen Magnets geglaubt hat) vorauszusetzen, der Magnetismus sei in der Erde so vertheilt, dass die Gesammtwirkung nach aussen der Wirkung eines fingirten unendlich kleinen Magnets äquivalire, ungefähr eben so, wie die Gravitation gegen eine homogene Kugel der Anziehung einer gleich grossen, im Mittelpunkt concentrirten Masse gleich-In dieser Voraussetzung sind die beiden Punkte, wo die Fortsetzung der magnetischen Axe jenes Centralmagnets die Erdfläche schneidet, die magnetischen Pole der Erde, in denen die Magnetnadel vertical steht, und zugleich die Intensität am grössten ist; in dem grössten Kreise mitten zwischen beiden Polen (dem magnetischen Aequator) wird die Inclination = 0 und die Intensität halb so gross als in den Polen; zwischen dem magnetischen Aequator und einem Pole hängt sowohl Inclination als Intensität nur von dem Abstande von jenem Aequator (der magnetischen Breite) ab, und zwar so, dass die Tangente der Inclination der doppelten Tangente dieser Breite gleich ist; endlich fällt die Richtung der horizontalen Nadel überall mit der Richtung eines nach dem nordlichen magnetischen Pole gezogenen grössten Kreises zusammen. Mit allen diesen nothwendigen Folgen jener Hypothese stimmt aber die Natur nur in roher Annäherung überein; in der Wirklichkeit ist die Linie verschwindender Inclination kein grösster Kreis, sondern eine Linie von doppelter Krümmung; bei gleichen Neigungen findet man nicht gleiche Intensitäten; die Richtungen der horizontalen Nadel sind weit davon entfernt, alle nach Einem Punkte zu convergiren u.s.f. also schon die oberflächliche Betrachtung hin, die Verwerflichkeit dieser Hypothese zu zeigen: gleichwohl wendet man den Einen der obigen Sätze noch jetzt als eine Näherung an, um die Lage der Linie verschwindender Inclinationen aus solchen Beobachtungen abzuleiten, die in einiger Entfernung von ihr, bei mässigen Inclinationen, gemacht sind.

Von einer ähnlichen Hypothese war bereits vor 80 Jahren Tobias Mayer

ausgegangen, nur mit der Modification, dass er den unendlich kleinen Magnet nicht in den Mittelpunkt der Erde, sondern etwa um den siebenten Theil des Erdhalbmessers davon entfernt setzte: doch behielt er, vermuthlich um grössere Verwicklung der Rechnung zu vermeiden, die an sich ganz willkürliche Beschränkung bei, dass die gegen die Axe des Magnets senkrechte Ebene durch den Mittelpunkt der Erde gehe. Auf diese Art fand er, bei einer freilich nur sehr kleinen Anzahl von Oertern, die beobachteten Abweichungen und Neigungen mit seiner Rechnung ganz gut übereinstimmend. Eine ausgedehntere Prüfung würde aber bald gezeigt haben, dass man mit jener Hypothese das Ganze der Erscheinungen dieser beiden Elemente nicht viel besser darstellen kann, als mit der zuerst erwähnten. Intensitätsbestimmungen gab es bekanntlich damals noch gar nicht.

Hansteen ist einen Schritt weiter gegangen, indem er die Hypothese zweier unendlich kleiner Magnete von ungleicher Lage und Stärke den Erscheinungen anzupassen versucht hat. Die entscheidende Prüfung der Zulässigkeit oder Unzulässigkeit einer Hypothese bleibt immer die Vergleichung der in ihr erhaltenen Resultate mit den Erfahrungen. Hansteen hat die seinige mit den Beobachtungen an 48 verschiedenen Oertern verglichen, unter denen sich jedoch nur 12 befinden, wo die Intensität mit bestimmt ist, und überhaupt nur 6, wo alle drei Elemente vorkommen. Wir treffen hier noch Differenzen zwischen der Rechnung und Beobachtung an, die bei der Inclination fast auf 13 Grad steigen*).

Wenn man nun so grosse Abweichungen den Forderungen nicht entsprechend findet, die an eine genügende Theorie gemacht werden müssen, so kann man nicht umhin, den Schluss zu ziehen, dass die magnetische Beschaffenheit des Erdkörpers keine solche ist, für welche eine Concentrirung in Einen oder ein Paar einzelne unendlich kleine Magnete als Stellvertreterin gelten könnte. Es wird damit nicht geleugnet, dass mit einer grössern Anzahl solcher fingirten Magnete zuletzt eine genügende Uebereinstimmung erreichbar werden könnte: allein eine ganz andere Frage ist, ob eine solche Form der Auflösung der Aufgabe gerathen sein würde; es scheint in der That, dass die schon bei zwei Magneten so

^{*)} Bei der Declination kommt sogar einmal ein Unterschied von mehr als 29 Grad vor: allein es ist billig, den Fehler der Rechnung nicht nach der Zahl der Declinationsgrade, sondern nach der wirklichen Ungleichheit zwischen der berechneten und beobachteten ganzen Richtung zu schätzen, wo er bei dem in Rede stehenden Orte 11; Grad beträgt.

überaus beschwerlichen Rechnungen für eine bedeutend grössere Zahl der Ausführbarkeit unübersteigliche Schwierigkeiten entgegensetzen würden. Das Beste wird sein, diesen Weg ganz zu verlassen, der unwillkürlich an die Versuche erinnert, die Planetenbewegungen durch immer mehr gehäufte Epicykeln zu erklären.

In der gegenwärtigen Abhandlung werde ich die allgemeine Theorie des Erdmagnetismus, unabhängig von allen besondern Hypothesen über die Vertheilung der magnetischen Flüssigkeit im Erdkörper, entwickeln, und zugleich die Resultate mittheilen, welche ich aus der ersten Anwendung der Methode erhalten habe. So unvollkommen diese Resultate auch sein müssen, so werden sie doch einen Begriff davon geben können, was man hoffen darf in Zukunft zu erreichen, wenn einer feinern und wiederholten Ausfeilung derselben erst zuverlässige und vollständige Beobachtungen aus allen Gegenden der Erde werden untergelegt werden können.

1.

Die Kraft, welche einer in ihrem Schwerpunkte aufgehängten Magnetnadel an jedem Orte der Erde eine bestimmte Richtung ertheilt, indem jede fremde äussere Ursache, die auf die Nadel wirken könnte (wie die Nähe eines andern künstlichen Magnets, oder die Nähe des Leiters eines galvanischen Stroms) als beseitigt vorausgesetzt wird, nennt man die erdmagnetische Kraft, insofern man den Sitz ihrer Ursache nur in dem Erdkörper selbst suchen kann. Zweifelhaft ist allerdings, ob die regelmässigen und unregelmässigen stündlichen Aenderungen in jener Kraft nicht ihre nächsten Ursachen ausserhalb des Erdkörpers haben mögen, und es steht zu hoffen, dass die jetzt auf diese Erscheinungen allgemein gerichtete Aufmerksamkeit der Naturforscher uns darüber in Zukunft bedentende Aufschlüsse geben werde. Allein man darf nicht vergessen, dass diese Änderungen vergleichungsweise nur sehr klein sind, und dass also eine viel stärkere beharrlich wirkende Hauptkraft da sein muss, deren Sitz wir in der Erde selbst annehmen. Es knüpft sich hieran sofort die Folgerung, dass die zur Untersuchung dieser Hauptkraft dienenden thatsächlichen Grundlagen eigentlich von den erwähnten anomalischen Aenderungen befreiet sein sollten, was nur durch Mittelwerthe aus zahlreichen fortgesetzten Beobachtungen möglich ist, und dass so lange solche reine Resultate nicht von einer grossen Anzahl von Punkten auf der ganzen Erdoberfläche vorhanden sind, das Höchste, was man wird erreichen können, eine Annäherung ist, wobei Differenzen von der Ordnung solcher Anomalien zurückbleiben können.

2.

Die Grundlage unserer Untersuchungen ist die Voraussetzung, dass die erdmagnetische Kraft die Gesammtwirkung der magnetisirten Theile des Erdkörpers Das Magnetisirtsein stellen wir uns als eine Scheidung der magnetischen Flüssigkeit vor: diese Vorstellungsweise einmal angenommen, gehört die Wirkungsart dieser Flüssigkeiten (Abstossung oder Anziehung des Gleichnamigen oder Ungleichnamigen im verkehrten Verhältniss des Quadrats der Entfernung) zu den erwiesenen physikalischen Wahrheiten. Eine Vertauschung dieser Vorstellungsart mit der Ampèreschen, wonach, mit Beseitigung der magnetischen Flüssigkeiten. der Magnetismus nur in beharrlichen galvanischen Strömungen in den kleinsten Theilen der Körper besteht, würde in den Resultaten gar nichts abändern; dasselbe würde auch gelten, wenn man den Erdmagnetismus einer gemischten Ursache zuschreiben wollte, so dass derselbe theils aus Scheidung der magnetischen Flüssigkeiten in der Erde, theils aus galvanischen Strömungen in derselben herrührte, indem bekanntlich anstatt eines jeden galvanischen Stromes eine solche bestimmte Vertheilung von magnetischen Flüssigkeiten an einer von der Stromlinie begrenzten Fläche substituirt werden kann, dass dadurch in jedem Punkte des äussern Raumes genau dieselbe magnetische Wirkung ausgeübt wird, wie durch den galvanischen Strom.

3.

Zur Abmessung der magnetischen Flüssigkeiten legen wir, wie in der Schrift Intensitas vis magneticae etc., diejenige Quantität nordlichen Fluidums als positive Einheit zum Grunde, welche auf eine eben so grosse Quantität desselben Fluidums in der zur Einheit angenommenen Entfernung eine bewegende Kraft ausübt, die der zur Einheit angenommenen gleich ist. Wenn wir von der magnetischen Kraft, welche in irgend einem Punkte des Raumes, als Wirkung von anderswobefindlichem magnetischen Fluidum, schlechthin sprechen, so ist darunter immer

die bewegende Kraft verstanden, welche daselbst auf die Einheit des positiven magnetischen Fluidums ausgeübt wird. In diesem Sinne übt folglich die in Einem Punkt concentrirt gedachte magnetische Flüssigkeit μ in der Entfernung ρ die magnetische Kraft $\frac{\mu}{\rho \, \rho}$ aus, und zwar abstossend oder anziehend in der Richtung der geraden Linie ρ , je nachdem μ positiv oder negativ ist. Bezeichnet man durch a, b, c die Coordinaten von μ in Beziehung auf drei unter rechten Winkeln einander schneidende Axen; durch x, y, z die Coordinaten des Punkts, wo die Kraft ausgeübt wird, so dass $\rho = \sqrt{((x-a)^2 + (y-b)^2 + (z-c)^2)}$, und zerlegt die Kraft den Coordinatenaxen parallel, so sind die Componenten

$$\frac{\mu(x-a)}{\rho^3}$$
, $\frac{\mu(y-b)}{\rho^3}$, $\frac{\mu(z-c)}{\rho^3}$

welche, wie man leicht sieht, den partiellen Differentialquotienten von $-\frac{\mu}{\rho}$ nach x, y und z gleich sind.

Wirken ausser μ noch andere Theile magnetischen Fluidums, μ', μ'', μ''' u.s.w., concentrirt in Punkten, deren Entfernung von dem Wirkungsorte bezugweise ρ' , ρ'' , ρ''' u.s.w. ist, so sind die Componenten der ganzen daraus resultirenden magnetischen Kraft, parallel mit den Coordinatenaxen, gleich den partiellen Differentialquotienten von

$$-\left(\frac{\mu}{\rho}+\frac{\mu'}{\rho'}+\frac{\mu''}{\rho''}+\frac{\mu'''}{\rho'''}+\text{ u. s. w.}\right)$$

nach x, y und z.

4

Man übersieht hienach leicht, welche magnetische Kraft in jedem Punkte des Raumes von der Erde ausgeübt werde, wie auch die magnetischen Flüssigkeiten in derselben vertheilt sein mögen. Man denke sich das ganze Volumen der Erde, so weit es freien Magnetismus, d. i. geschiedene magnetische Flüssigkeiten enthält, in unendlich kleine Elemente zerlegt, bezeichne unbestimmt die in jedem Elemente enthaltene Menge freien magnetischen Fluidums mit d μ , wobei südliches stets als negativ betrachtet wird; ferner mit ρ die Entfernung des d μ von einem unbestimmten Punkte des Raumes, dessen rechtwinklige Coordinaten x, y, z sein mögen, endlich mit V das Aggregat der $\frac{d\mu}{\rho}$ mit verkehrtem Zeichen durch die Gesammtheit aller magnetischen Theilchen der Erde erstreckt. oder es sei

$$V = -\int \frac{\mathrm{d}\,\mu}{
ho}$$

Es hat also V in jedem Punkte des Raumes einen bestimmten Werth, oder es ist eine Function von x, y, z, oder auch von je drei andern veränderlichen Grössen, wodurch man die Punkte des Raumes unterscheidet. Die magnetische Kraft ψ in jedem Punkte des Raumes, und die Componenten ξ , η , ζ , die aus der Zerlegung von ψ parallel mit den Coordinatenaxen entstehen, finden sich dann durch die Formeln

$$\xi = \frac{\mathrm{d}V}{\mathrm{d}x}, \quad \eta = \frac{\mathrm{d}V}{\mathrm{d}y}, \quad \zeta = \frac{\mathrm{d}V}{\mathrm{d}z}, \quad \psi = \sqrt{(\xi\xi + \eta\eta + \zeta\zeta)}$$

5.

Es sollen nun zuvörderst einige allgemeine von der Form der Function V unabhängige Sätze entwickelt werden, die wegen ihrer Einfachheit und Eleganz merkwürdig sind.

Das vollständige Differential von V wird

$$dV = \frac{dV}{dx} \cdot dx + \frac{dV}{dy} \cdot dy + \frac{dV}{dz} \cdot dz$$
$$= \xi dx + \eta dy + \zeta dz$$

Bezeichnet man mit ds die Entfernung zwischen den beiden Punkten, auf welche sich V und V+dV beziehen, und mit θ den Winkel, welchen die Richtung der magnetischen Kraft ψ mit ds macht, so wird

$$dV = \psi \cos \theta . ds$$

weil $\frac{\xi}{\psi}$, $\frac{\eta}{\psi}$, $\frac{\zeta}{\psi}$ die Cosinus der Winkel sind, welche die Richtung von ψ mit den Coordinatenaxen macht, hingegen $\frac{dx}{ds}$, $\frac{dy}{ds}$, $\frac{dz}{ds}$ die Cosinus der Winkel zwischen ds und denselben Axen. Es ist also $\frac{dV}{ds}$ gleich der auf die Richtung von ds projiciten Kraft; dasselbe folgt auch schon aus der Gleichung $\frac{dV}{dx} = \xi$, wenn man sich erinnert, dass die Coordinatenaxen nach Willkür gewählt werden können.

6.

Werden zwei Punkte im Raume, P^0 , P' durch eine beliebige Linie verbunden, wovon ds ein unbestimmtes Element vorstellt, und bedeutet wie vorhin θ den Winkel zwischen ds und der Richtung der daselbst Statt findenden

magnetischen Kraft, und 4 deren Intensität, so ist

$$\int \psi \cos \theta \, ds = V' - V^0$$

wenn man die Integration durch die ganze Linie ausdehnt, und mit V^0 , V' die Werthe von V an den Endpunkten bezeichnet.

Folgende Corollarien dieses fruchtbaren Satzes verdienen hier besonders angeführt zu werden:

- I. Das Integral $\int \psi \cos \theta \, ds$ behält einerlei Werth: auf welchem Wege man auch von P^0 nach P' übergeht.
- II. Das Integral $\int \psi \cos \theta \, ds$ durch die ganze Länge irgend einer in sich zurückkehrenden Linie ausgedehnt, ist immer = 0.
- III. In einer geschlossenen Linie muss, wenn nicht durchgehends $\theta = 90^{0}$ ist, ein Theil der Werthe von θ kleiner und ein Theil grösser als 90^{0} sein.

7.

Die Fläche, in deren sämmtlichen Punkten V einerlei bestimmten Werth $=V^0$ hat, scheidet die Punkte des Raumes, in welchen V einen Werth grösser als V^0 hat, von denen, wo der Werth kleiner als V^0 ist*). Aus dem Satz des Art. 5. folgt leicht, dass die magnetische Kraft in jedem Punkte dieser Fläche eine gegen die Fläche senkrechte Richtung hat, und zwar nach der Seite zu, auf welcher die grössern Werthe von V Statt finden. Ist ds eine unendlich kleine gegen die Fläche senkrechte Linie, und V^0+dV^0 der Werth von V an dem andern Endpunkte derselben, so wird die Intensität der magnetischen Kraft $=\frac{dV^0}{ds}$. Die Gesammtheit der Punkte, wofür $V=V^0+dV^0$ ist, bildet eine zweite der ersten unendlich nahe Fläche, und an den verschiedenen Stellen des ganzen Zwischenraumes ist die Intensität der magnetischen Kraft der Entfernung beider Flächen von einander verkehrt proportional. Lässt man V durch unendlich kleine aber gleiche Stufen sich ändern, so entsteht dadurch ein System

^{*)} Konnte die Function V jede willkurlich aufgestellte Form haben, so konnte in besondern Fällen ein Maximum- oder Minimum-Werth von V einem isolirten Punkte oder einer isolirten Linie entsprechen, um welchen oder um welche ringsum bloss kleinere oder bloss grössere Werthe Statt finden würden, oder auch einer Fläche, auf deren beiden Seiten zugleich kleinere oder grössere Werthe gälten. Allein die Bedingungen, denen die Function V unterworsen ist, lassen diese Ausnahmsfalle nicht zu. Eine ausfuhrliche Entwickelung dieses Gegenstandes muss aber, da sie für unsern gegenwärtigen Zweck unnothig ist, einer andern Gelegenheit vorbehalten bleiben.

von Flächen, die den Raum in unendlich dünne Schichten abtheilen, und die verkehrte Proportionalität der Dicke der Schichten zu der Intensität der magnetischen Kraft gilt dann nicht bloss für verschiedene Stellen einer und derselben Schicht, sondern auch für verschiedene Schichten.

8.

Wir wollen nun das Verhalten der Werthe von $\,V\,$ auf der Oberfläche der Erde betrachten.

Es sei in einem Punkte P der Erdoberfläche ψ die Intensität, PM die Richtung der ganzen magnetischen Kraft; ω die Intensität, PN die Richtung der auf die horizontale Ebene projicirten Kraft, oder PN die Richtung des magnetischen Meridians, in dem Sinn vom Südpol der Magnetnadel zum Nordpol; i der Winkel zwischen PM und PN oder die Inclination; θ , t die Winkel zwischen dem Elemente ds einer auf der Erdoberfläche liegenden Linie und den Richtungen PM, PN; endlich entsprechen V und V+dV dem Anfangs- und Endpunkte von ds. Wir haben folglich

$$\cos \theta = \cos i \cos t, \quad \omega = \psi \cos i$$

und die Gleichung des Art. 5. verwandelt sich in

$$\mathrm{d}V = \omega \cos t \, \mathrm{d}s$$

Sind also zwei Punkte P^0 , P' auf der Erdoberfläche, in welchen V die Werthe V^0 , V' hat, durch eine ganz auf der Erdoberfläche liegende Linie verbunden, von welcher ds ein unbestimmtes Element bedeutet, so ist

$$\int \omega \cos t \, . \, \mathrm{d} s = V' - V^0$$

wenn die Integration durch die ganze Linie ausgedehnt wird, und offenbar gelten nun auch hier drei den im Art. 6. angeführten ganz ähnliche Corollarien, nemlich:

- I. Das Integral $\int \omega \cos t ds$ behält einerlei Werth, auf welchem Wege auf der Oberfläche der Erde man auch von P^0 nach P' übergeht.
- II. Das Integral $\int \omega \cos t \, ds$ durch die ganze Länge einer auf der Oberfläche der Erde liegenden geschlossenen Linie ist immer = 0.
 - III. In einer solchen geschlossenen Linie muss nothwendig, falls nicht

durchgehends $t=90^{\circ}$ ist. ein Theil der Werthe von t spitz und ein Theil stumpf sein.

9.

Die Sätze I. und II. des vorhergehenden Artikels (welche eigentlich nur zwei verschiedene Einkleidungen derselben Sache sind) lassen sich wenigstens näherungsweise an wirklichen Beobachtungen prüfen. Es sei $P^0P'P''....P^0$ ein Polygon auf der Erdoberfläche, dessen Seiten die kürzesten Linien zwischen ihren Endpunkten, also, wenn man die Erde hier nur als kugelförmig betrachtet, grösste Kreisbögen sind. Es seien ω^0 , ω' , ω'' u. s. w. die Intensitäten der horizontalen magnetischen Kraft in den Punkten P^0 , P'. P'' u. s. w.; ferner δ^0 , δ' , δ'' u. s. w. die Declinationen, die man nach üblicher Weise westlich vom Nordpunkte als positiv, östlich als negativ betrachten mag: endlich sei (01) das Azimuth der Linie P^0P' in P^0 , und zwar nach üblicher Weise von Süden aus nach Westen herumgezählt; eben so (10) das Azimuth derselben Linie rückwärts genommen in P' u. s. w.

Man bemerke. dass t zwar in jeder Polygonseite sich nach der Stetigkeit ändert, in den Eckpunkten hingegen sprungsweise, und also in diesen zwei verschiedene Werthe hat; z.B. in P' hat t

den Werth (10) $+\delta'$, insofern P' der Endpunkt von P^0P' ist,

den Werth $180^{0}+(12)+\delta'$, insofern P' der Anfangspunkt von P'P'' ist.

Von dem Integral $\int \omega \cos t . ds$, durch $P^0 P'$ ausgedehnt, kann man als genäherten Werth betrachten

$$\frac{1}{2}(\omega^0\cos t^0+\omega'\cos t').P^0P'$$

wenn t^0 , t' die Werthe von t in P^0 als Anfangspunkt und in P' als Endpunkt von P^0P' bedeuten; diese Annäherung ist alles, was-man erlangen kann, insofern man die Werthe von ω und t eben nur in den Endpunkten P^0 , P' hat, und sie ist um so zulässiger, je kleiner die Linie ist. Der angegebene Ausdruck ist in unsern Bezeichnungen

$$= \frac{1}{2} \{ \omega' \cos((10) + \delta') - \omega^0 \cos((01) + \delta^0) \} \cdot P^0 P'$$

Auf ähnliche Art ist der genäherte Werth des Integrals, durch P'P'' ausgedehnt,

$$= \frac{1}{2} \left\{ \omega'' \cos \left((21) + \delta'' \right) - \omega' \cos \left((12) + \delta' \right) \right\} . P' P''$$

u. s. f. durch das ganze Polygon.

Für ein Dreieck gibt also unser Satz die näherungsweise richtige Gleichung

$$\omega^{0} \{ P^{0}P'\cos((01) + \delta^{0}) - P^{0}P''\cos((02) + \delta^{0}) \}$$

$$+ \omega' \{ P'P''\cos((12) + \delta') - P^{0}P'\cos((10) + \delta') \}$$

$$+ \omega'' \{ P^{0}P''\cos((20) + \delta'') - P'P''\cos((21) + \delta'') \}$$

$$= 0$$

Offenbar sind bei dieser Gleichung die Einheiten für die Intensitäten und Distanzen willkürlich.

10.

Als ein Beispiel wollen wir die Formel auf die magnetischen Elemente von

$$\delta^0 = 18^0 \, 38' \mid i^0 = 67^0 \, 56' \mid \psi^0 = 1,357$$
Mailand $\delta' = 18 \, 33 \mid i' = 63 \, 49 \mid \psi' = 1,294$
Paris $\delta'' = 22 \, 4 \mid i'' = 67 \, 24 \mid \psi'' = 1,348$

anwenden, woraus

$$\omega^{0} = 0.50980$$

$$\omega' = 0.57094$$

$$\omega'' = 0.51804$$

folgt. Legt man die geographische Lage

zum Grunde, und führt die Rechnung nur wie auf der Kugelfläche, so findet sich

Substituirt man diese Werthe, und die obigen von δ^0 , δ' , δ'' in unsrer Gleichung indem man die Distanzen in Secunden ausdrückt, so wird sie

$$0 = 17556 \omega^{0} + 2774 \omega' - 20377 \omega''$$

oder

$$\omega'' = 0.86158 \omega^0 + 0.13613 \omega'$$

Aus den beobachteten horizontalen Intensitäten in Göttingen und Mailand folgt hienach die für Paris $\omega''=0.51696$, fast genau mit dem beobachteten Werthe 0.51804 übereinstimmend.

Uebrigens sieht man leicht, dass, wenn man sich erlauben will, anstatt der Distanzen P^0P' u. s. w. ihre Sinus zu setzen, die obige Formel unmittelbar durch die geographischen Längen und Breiten der Örter ausgedrückt werden kann.

11.

Die Linie auf der Erdoberfläche, in deren sämmtlichen Punkten V einerlei bestimmten Werth $= V^0$ hat, scheidet, allgemein zu reden, die Theile jener Fläche, in welchen V einen Werth grösser als V^0 hat, von denen, wo er kleiner ist. Die horizontale magnetische Kraft in jedem Punkte dieser Linie ist offenbar senkrecht gegen dieselbe, und zwar nach der Seite zu gerichtet, wo die grössern Werthe von V Statt finden. Ist ds eine unendlich kleine Linie in dieser Richtung, und $V^0 + dV^0$ der Werth von V an deren anderm Endpunkte, so ist $\frac{dV^{\bullet}}{ds}$ die Intensität der horizontalen magnetischen Kraft an dieser Stelle. So wie nun auch hier die Gesammtheit der Punkte, welchen der Werth $V = V^0 + dV^0$ entspricht, eine zweite der ersten unendlich nahe liegende Linie bildet, also aus der ganzen Erdfläche eine Zone aussondert, innerhalb welcher die Werthe von V zwischen V^0 und $V^0+\mathrm{d}V^0$ liegen, und wo die horizontale Intensität der Breite der Zone verkehrt proportional ist, so wird, wenn man V durch unendlich kleine aber gleiche Stufen von dem kleinsten auf der Erdoberfläche Statt habenden Werthe bis zum grössten sich ändern lässt, die ganze Erdfläche in eine unendlich grosse Anzahl unendlich schmaler Zonen abgetheilt, gegen deren Scheidungslinien die horizontale magnetische Kraft überall normal, und in ihrer Intensität der Breite der Zonen an den betreffenden Stellen verkehrt proportional ist. Den beiden äussersten Werthen von V entsprechen hiebei zwei von den Zonen eingeschlossene Punkte, in welchen die horizontale Kraft = 0 wird, und

wo also die ganze magnetische Kraft nur vertical sein kann: diese Punkte heissen die magnetischen Pole der Erde.

Die Scheidungslinien der Zonen sind nichts anderes, als die Schnitte der im 7. Art. betrachteten Flächen mit der Erdoberfläche, während in den Polen nur Berührung Statt findet.

12.

Die im vorhergehenden Artikel beschriebene Gestaltung des Liniensystems ist eigentlich nur der einfachste Typus, der mancherlei Ausnahmen erleiden könnte, wenn jede mögliche Vertheilung des Magnetismus in der Erde berücksichtigt werden sollte. Wir werden indess hier diesen Gegenstand nicht erschöpfen, sondern zur Erläuterung nur einige Bemerkungen über die Ausnahmsfälle beifügen. zumal da bei der wirklichen magnetischen Beschaffenheit der Erde das Liniensystem auf ihrer Oberfläche allerdings jene Gestaltung hat, wenigstens gewiss keine ins Grosse gehende Ausnahmsfälle darbietet, sondern höchstens vielleicht hie und da einen bloss localen.

Von einigen Physikern ist die Meinung aufgestellt, dass die Erde zwei magnetische Nordpole und zwei Südpole habe: es scheint aber nicht, dass vorher der wesentlichsten Bedingung genügt, und eine präcise Begriffsbestimmung gegeben sei, was man unter einem magnetischen Pole verstehen wolle. Wir werden mit dieser Benennung jeden Punkt der Erdoberfläche bezeichnen, wo die horizontale Intensität = 0 ist: allgemein zu reden ist also daselbst die Inclination = 90°; es ist aber auch der singuläre Fall (wenn er vorkäme) mit eingeschlossen, wo die ganze Intensität = 0 ist. Wollte man diejenigen Stellen magnetische Pole nennen, wo die ganze Intensität einen Maximumwerth hat (d. i. einen grössern, als ringsherum in der nächsten Umgebung): so darf man nicht vergessen, dass dies etwas von jener Begriffsbestimmung ganz verschiedenes ist, dass letztere Punkte mit jenen weder dem Orte noch der Anzahl nach einen nothwendigen Zusammenhang haben, und dass es zur Verwirrung führt, wenn ungleichartige Dinge mit einerlei Namen benannt werden.

Sehen wir von der wirklichen Beschaffenheit der Erde ab, und fassen die Frage allgemein auf, so können allerdings mehr als zwei magnetische Pole existiren; es scheint aber noch nicht bemerkt zu sein, dass sobald z. B. zwei Nordpole vorhanden sind, es nothwendig zwischen ihnen noch einen dritten Punkt

geben muss, der gleichfalls ein magnetischer Pol, aber eigentlich weder ein Nordpol noch ein Südpol, oder, wenn man lieber will, beides zugleich ist.

Zur Aufklärung dieses Gegenstandes ist nichts dienlicher, als die Betrachtung unsers Liniensystems.

Wenn die Function V in einem Punkte der Erdoberfläche P^* einen Maximumwerth V^* hat, also ringsum kleinere Werthe, so wird einer Reihe von stufenweise abnehmenden Werthen ein System von Ringlinien entsprechen, deren jede alle vorhergehenden und den Punkt P^* einschliesst, und die Richtung der horizontalen magnetischen Kraft oder des Nordpols der Magnetnadel wird auf jeder dieser Ringlinien nach Innen gehen *): dies ist das charakteristische Merkmal eines magnetischen Nordpols *). Man kann offenbar die Ringe so klein, oder die entsprechenden Werthe der Function V so wenig von V^* verschieden annehmen, dass jeder andere gegebene Punkt noch ausserhalb bleibt.

Wir wollen mit S den Inbegriff aller Punkte auf der Erdoberfläche bezeichnen, in welchen der Werth von V grösser ist als eine gegebene Grösse W. Offenbar wird S entweder Einen zusammenhängenden Flächenraum bilden, oder mehrere von einander getrennte, und in der Begrenzungslinie oder den Begrenzungslinien, welche dieselbe von den übrigen Theilen, wo V kleiner als W ist, scheiden, wird V=W sein. Lässt man W ab- oder zunehmen, so erweitert oder verengt sich jener Flächenraum.

Nehmen wir nun an, P^{**} sei ein zweiter Punkt von ähnlicher Beschaffenheit wie P^* , so dass auch in jenem V einen Maximumwerth $=V^{**}$ habe. Da man, nach dem was vorhin bemerkt ist, der Grösse W einen Werth kleiner als V^* und so wenig davon verschieden beilegen kann, das P^{**} ausserhalb desjenigen Stücks von S fällt, in welchem P^* liegt, so wird, wenn man voraussetzt, dass V^{**} nicht kleiner ist als V^* (was erlaubt ist), mithin auch grösser als W,

^{*)} Diese Ringlinien sind, selbst als unendlich klein angenommen, nicht nothwendig kreisrund, sondern allgemein zu reden elliptisch, und daher die gegen sie normale Richtung der Magnetnadel nicht mit der Richtung nach P^* zusammenfallend, ausser an vier Stellen jedes Ringes. Man kann daher bedeutende Fehler begehen, wenn man den Durchschnitt von zwei verlängerten Compassrichtungen, aus beträchtlichen Entfernungen, ohne Weiteres für P^* annimmt.

^{**)} Wir conformiren uns hier dem gewohnlichen Sprachgebrauche, wonach man den von Capitaine Ross festgelegten Punkt mit jenem Namen belegt, obgleich er eigentlich ein Südpol ist, insofern man die Erde selbst wie einen Magnet betrachtet.

nothwendig auch P^{**} einem Stück von S angehören: es liegen folglich P^{*} und P^{**} zwar beide in S, aber in getrennten Stücken von S.

Offenbar kann man dagegen auch W so klein annehmen, dass P^* und P^{**} in Einem zusammenhängenden Stücke von S liegen, da, wenn man nur W klein genug nimmt, S die ganze Erdfläche umfassen kann.

Lässt man nun W alle Werthe vom ersten zum zweiten stufenweise durchlaufen, so muss einer darunter V^{***} der letzte sein, für welchen P^* , P^{**} noch in getrennten Stücken von S liegen, welche, sobald W von da noch weiter abnimmt, in Ein Stück zusammenfliessen.

Geschieht dieses Zusammenfliessen in Einem Punkte P^{***} , so hat die Begrenzungslinie, in welcher $V = V^{***}$ ist, die Gestalt einer Acht, die in jenem Punkte sich selbst kreuzt, und man überzeugt sich leicht, dass daselbst die horizontale Intensität = 0 sein muss. In der That geschieht jene Kreuzung entweder unter einem messbaren Winkel, oder nicht. Im erstern Fall müsste die horizontale Kraft, wenn sie nicht = 0 wäre, gegen zwei verschiedene Tangenten normal sein, was absurd ist; im zweiten Falle, wo die beiden Hälften der Acht in P^{***} einander berühren, oder einerlei Tangente haben würden, könnte die gegen diese Tangente normale Kraft nur gegen das Innere der einen Flächenhälfte der Acht gerichtet sein, was einen Widerspruch enthält, da der Werth von V nach beiden Seiten zu wächst; es ist also P^{***} nach unserer Definition ein wahrer magnetischer Pol, aber ein Pol, welcher in Beziehung auf die zunächstliegenden Punkte innerhalb der beiden Öffnungen der Acht wie ein Südpol, in Beziehung auf die ausserhalb liegenden hingegen wie ein Nordpol betrachtet werden muss. Zur Erläuterung dieser Gestaltung des Liniensystems kann die Fig. 1. dienen.

Geschieht das Zusammenfliessen an zwei verschiedenen Stellen zugleich, so gilt von diesen dasselbe, was eben von Einem Punkte bewiesen ist, und man sieht leicht ein, dass sich dann innerhalb des P^* und P^{**} einschliessenden Raumes ein inselförmiger Raum bilden wird, der bei fortwährender Abnahme von W sich immer mehr verengen, und zuletzt nothwendig in einen wahren Südpol auflösen muss.

Ähnliches gilt, wenn das Zusammenfliessen zugleich in drei oder mehrern einzelnen Punkten Statt findet. Geschieht es aber auf einmal in einer ganzen Linie, so muss auch in allen Punkten derselben die horizontale Kaft verschwinden.

Übrigens ist von selbst klar, dass eben so die Annahme von zwei Südpolen zugleich das Dasein eines dritten Polpunkts bedingt, welcher weder Südpol noch Nordpol, oder vielmehr beides zugleich ist.

13.

Aus dem, was im vorhergehenden Artikel entwickelt ist, übersieht man nun leicht, welche Bewandtniss es mit mehrern denkbaren Ausnahmen von dem einfachsten Typus unsers Liniensystems habe. Der Inbegriff aller Punkte, denen ein bestimmter Werth von V entspricht, kann eine Linie sein, die aus mehrern Stücken besteht, wovon jedes in sich selbst zurückkehrt, die aber ganz von einander getrennt sind; es kann eine Linie sein, die sich selbst kreuzt; endlich kann es auch eine solche sein, der auf beiden Seiten Flächenräume anliegen, wo V grösser ist als in der Linie, oder auf beiden Seiten kleiner.

Wir können behaupten, dass etwas ins Grosse gehende Abweichungen solcher Art vom einfachsten Typus auf der Erde nicht Statt finden. Aber locale Abweichungen sind sehr wohl denkbar, wo nahe unter der Erdoberfläche magnetische Massen sich befinden, die zwar in etwas beträchtlicher Entfernung keine merkliche Wirkung mehr ausüben, aber in der unmittelbaren Umgebung doch eine so starke, dass die in regelmässiger Fortschreitung wirkende erdmagnetische Kraft davon ganz überboten und unkenntlich gemacht wird. In der einfachsten Form könnte dann das Liniensystem in einer solchen Gegend eine Gestaltung haben, wie die 2^{te} Figur versinnlicht.

14.

Nach dieser geometrischen Darstellung der Verhältnisse der horizontalen magnetischen Kraft schreiten wir zur Entwicklung der Art, wie sie dem Calcül unterworfen werden, fort. Auf der Oberfläche der Erde geht V in eine blosse Function zweier veränderlichen Grössen über, wofür wir die geographische Länge von einem beliebigen ersten Meridian östlich gezählt und die Distanz vom Nordpol annehmen wollen: jene soll mit λ , diese, das Complement der geographischen Breite, mit u bezeichnet werden. Betrachten wir die Erde als aus der Umdrehung einer Ellipse, deren halbe grosse Axe = R, die halbe kleine $= (1-\varepsilon)R$, um letztere entstanden, so ist die Grösse eines Elements des Meridians

$$=\frac{(1-\varepsilon)^2 R \cdot d u}{(1-(2\varepsilon-\varepsilon\varepsilon)\cos u^2)^{\frac{5}{2}}}$$

und die Grösse eines Elements des Parallelkreises

$$= \frac{R \sin u \cdot d \lambda}{\sqrt{(1-(2\varepsilon-\varepsilon\varepsilon)\cos u^2)}}$$

Zerlegt man die horizontale magnetische Kraft in zwei Theile, wovon der eine X in der Richtung des Erdmeridians, der andere Y senkrecht dagegen wirkt, und betrachtet man als positiv X, insofern diese Componente nach Norden, und Y, insofern diese nach Westen gerichtet ist, so wird

$$X = -\frac{(1-(2\varepsilon-\varepsilon\varepsilon)\cos u^2)^{\frac{3}{2}}}{(1-\varepsilon)^2} \cdot \frac{\mathrm{d}V}{R\,\mathrm{d}u}$$

$$Y = -\sqrt{(1-(2\varepsilon-\varepsilon\varepsilon)\cos u^2) \cdot \frac{\mathrm{d}V}{R\sin u \cdot \mathrm{d}\lambda}}$$

Die ganze horizontale Kraft wird sodann

$$=\sqrt{(XX+YY)}$$

und die Tangente der Declination

$$=\frac{Y}{X}$$

Vernachlässigt man das Quadrat der Abplattung z, so werden jene Ausdrücke

$$X = -\left(1 + (2 - 3\cos u^2)\varepsilon\right) \cdot \frac{\mathrm{d}V}{R\,\mathrm{d}u}$$

$$Y = -\left(1 - \varepsilon\cos u^2\right) \cdot \frac{\mathrm{d}V}{R\sin u \cdot \mathrm{d}\lambda}$$

oder wenn man die Abplattung ganz bei Seite setzt

$$X = -\frac{\mathrm{d}V}{R\,\mathrm{d}u}$$

$$Y = -\frac{\mathrm{d}V}{R\sin u \cdot \mathrm{d}\lambda}$$

Die bis jetzt zu Gebote stehenden Beobachtungsdata sind noch viel zu dürftig, und die meisten derselben viel zu roh, als dass es gegenwärtig schon rathsam sein könnte, die sphäroidische Gestalt der Erde zu berücksichtigen, was zwar an sich nicht schwer sein, aber die Einfachheit der Rechnungen ohne allen Nutzen

sehr beeinträchtigen würde. Wir werden daher hier bei den zuletzt angeführten Formeln stehen bleiben, indem wir die Erde wie eine Kugel betrachten, deren Halbmesser = R ist.

15.

Ist X durch eine gegebene Function von u und λ ausgedrückt, so lässt sich daraus Y a priori ableiten. Man setze das Integral $\int_0^u X du = T$, indem man bei der Integration λ wie constant betrachtet; offenbar wird dann, wenn man auf gleiche Weise nach u differentiirt, $\frac{d(V+RT)}{du}=0$, mithin V+RT eine von u unabhängige Grösse, oder was dasselbe ist, in allen Punkten Eines Meridians constant; sie muss daher auch absolut constant sein, weil alle Meridiane in den Polen zusammenlaufen. Setzt man den Werth von V im Nordpole $=V^*$, so wird also

 $T = \frac{V^* - V}{R}$

und daher

$$Y = \frac{\mathrm{d}T}{\sin u \cdot \mathrm{d}\lambda}$$

Man kann dieses Resultat auch so ausdrücken:

$$Y = \frac{1}{\sin u} \int_0^u \frac{\mathrm{d}X}{\mathrm{d}\lambda} \cdot \mathrm{d}u$$

16.

Dieser merkwürdige Satz, dass wenn die nach Norden gerichtete Componente der horizontalen magnetischen Kraft für die ganze Erdoberfläche gegeben ist, die nach Westen (oder Osten) gerichtete Componente von selbst daraus folgt, gilt verkehrt nur mit einer Modification. Ist nemlich Y durch eine gegebene Function von u und λ ausgedrückt, und bezeichnet man mit U das unbestimmte Integral $\int \sin u \cdot Y d\lambda$, bei der Integration u als constant angenommen, so wird $\frac{d(V+RU)}{d\lambda}=0$, oder V+RU eine von λ unabhängige Grösse, mithin allgemein zu reden eine Function von u. Es ist also auch $\frac{d(V+RU)}{Rdu}=\frac{dU}{du}-X$ eine solche Function, d. i. die Formel $\frac{dU}{du}$ gibt einen unvollständigen Ausdruck von X, indem ein bloss u enthaltender Bestandtheil unbestimmt bleibt. Dieser Mangel wird sich aber ergänzen lassen, wenn man ausser dem Ausdrucke für Y auch den für X in irgend Einem bestimmten Meridian, oder noch allgemeiner in irgend einer vom

Nordpol zum Südpol reichenden Linie besitzt. Man sieht also, dass, wenn man die Componente der horizontalen magnetischen Kraft in der Richtung nach Westen für die ganze Erdoberfläche, und die Componente in der Richtung nach Norden für alle Punkte in irgend einer vom Nordpol zum Südpol gehenden Linie kennt, die letztere Componente für die ganze Erdfläche von selbst daraus folgt.

17.

Die vorhergehenden Untersuchungen beziehen sich allein auf den horizontalen Theil der erdmagnetischen Kraft: um auch den verticalen zu umfassen, müssen wir die Aufgabe in ihrer ganzen Allgemeinheit, also V wie eine Function von dreien veränderlichen Grössen betrachten, die den Platz eines unbestimmten Punktes im Raume O ausdrücken. Wir wählen dazu die Entfernung r vom Mittelpunkte der Erde, den Winkel u, welchen r mit dem nordlichen Theile der Erdaxe macht, und den Winkel λ zwischen der durch r und die Erdaxe gelegten Ebene und einem festen Meridian, nach Osten zu als positiv gezählt.

Es sei die Function V in eine nach den Potenzen von r fallende Reihe entwickelt, der wir folgende Form geben

$$V = \frac{RRP^0}{r} + \frac{R^3P'}{rr} + \frac{R^4P''}{r^3} + \frac{R^5P'''}{r^4} + \text{ u. s. w.}$$

Die Coëfficienten P^0 , P', P'' u. s. w. sind hier Functionen von u und λ ; um zu übersehen, wie sie mit der Vertheilung des magnetischen Fluidums im Innern der Erde zusammenhängen, sei d μ ein Element desselben, ρ seine Entfernung von O, und für d μ bedeuten r^0 , u^0 , λ^0 dasselbe, was r, u, λ für O sind. Man hat also $V = -\int \frac{\mathrm{d}\mu}{\rho}$ durch alle d μ ausgedehnt; ferner

$$\rho = \sqrt{\{rr-2rr^0(\cos u\cos u^0 + \sin u\sin u^0\cos(\lambda-\lambda^0)\} + r^0r^0\}}$$

und wenn man $\frac{1}{\rho}$ in die Reihe entwickelt

$$\frac{1}{\rho} = \frac{1}{r} (T^0 + T'. \frac{r^0}{r} + T''. \frac{r^0 r^0}{rr} + \text{ u. s. w.})$$

so wird

$$RRP^{0} = -\int T^{0} d\mu$$
, $R^{3}P' = -\int T'r^{0} d\mu$, $R^{4}P'' = -\int T''r^{0}r^{0}d\mu$ u.s. w.

Da $T^0=1$ ist, so wird vermöge der Fundamentalvoraussetzung, dass die Menge des positiven und negativen Fluidums in jedem messbaren Theilchen seines Trägers, mithin auch in der ganzen Erde, gleich gross, oder dass $\int \! \mathrm{d}\mu = 0$ ist,

$$P^0 = 0$$

oder das erste Glied unsrer Reihe für V fällt aus.

Man sieht ferner, dass P' die Form hat

$$R^{3}P' = \alpha\cos u + 6\sin u\cos\lambda + \gamma\sin u\sin\lambda$$

wo $\alpha = -\int r^0 \cos u^0 \, d\mu$, $\vec{o} = -\int r^0 \sin u^0 \cos \lambda^0 \, d\mu$, $\gamma = -\int r^0 \sin u^0 \sin \lambda^0 \, d\mu$. Es sind also $-\alpha$, $-\vec{o}$, $-\gamma$ nach der in der *Intensitas vis magneticae* Art. 5 festgesetzten Erklärung die Momente des Erdmagnetismus in Beziehung auf drei rechtwinklige Axen, wovon die erste die Erdaxe, die zweite und dritte die Aequatorsradien für die Länge 0 und 90° sind.

Die allgemeinen Formeln für alle Coëfficienten der Reihe für $\frac{1}{\rho}$ können wir als bekannt voraussetzen; für unsern Zweck ist aber bloss nöthig zu bemerken, dass in Beziehung auf u und λ die Coëfficienten rationale ganze Functionen von $\cos u$, $\sin u \cos \lambda$ und $\sin u \sin \lambda$ sind, und zwar T'' von der zweiten Ordnung, T''' von der dritten u.s. w. Dasselbe gilt also auch für die Coëfficienten P'', P''' u.s. w.

Die Reihen für $\frac{1}{\rho}$ und für V convergiren, solange r nicht kleiner als R ist, oder vielmehr, nicht kleiner, als der Halbmesser einer Kugel, welche die sämmtlichen magnetischen Theile der Erde einschliesst.

18.

Die Function V thut, in Folge ihrer Zusammensetzung aus $-\int \frac{d\mu}{\rho}$, folgender partiellen Differentialgleichung Genüge:

$$0 = \frac{r \operatorname{d} \operatorname{d} rV}{\operatorname{d} r^2} + \frac{\operatorname{d} \operatorname{d} V}{\operatorname{d} u^2} + \operatorname{cotg} u \cdot \frac{\operatorname{d} V}{\operatorname{d} u} + \frac{1}{\sin u^2} \cdot \frac{\operatorname{d} \operatorname{d} V}{\operatorname{d} \lambda^2}$$

welche nichts anderes ist, als eine Umformung der bekannten

$$0 = \frac{\mathrm{d}\,\mathrm{d}V}{\mathrm{d}\,x^2} + \frac{\mathrm{d}\,\mathrm{d}V}{\mathrm{d}\,y^2} + \frac{\mathrm{d}\,\mathrm{d}\,V}{\mathrm{d}\,z^2}$$

wo x, y, z die rechtwinkligen Coordinaten von O bedeuten. Substituirt man in jener den Werth von V

$$V = \frac{R^3 P'}{rr} + \frac{R^4 P''}{r^3} + \frac{R^5 P'''}{r^4} + \text{ u. s. w.}$$

so erhellt, dass für die einzelnen Coëfficienten P', P", P" u. s. w. gleichfalls

partielle Differentialgleichungen Statt finden, deren allgemeiner Ausdruck ist

$$0 = n(n+1)P^{n} + \frac{\mathrm{d} dP^{n}}{\mathrm{d} u^{2}} + \cot u \frac{\mathrm{d} P^{n}}{\mathrm{d} u} + \frac{1}{\sin u^{2}} \cdot \frac{\mathrm{d} dP^{n}}{\mathrm{d} \lambda^{2}}$$

Aus dieser Gleichung, verbunden mit der Bemerkung im vorhergehenden Artikel, ergibt sich die allgemeine Form von P^n . Bezeichnet man nemlich mit $P^{n,m}$ folgende Function von u

$$\left\{\cos u^{n-m} - \frac{(n-m)(n-m-1)}{2(2n-1)}\cos u^{n-m-2} + \frac{(n-m)(n-m-1)(n-m-2)(n-m-3)}{2 \cdot 4(2n-1)(2n-3)}\cos u^{n-m-4} - \text{u. s. w.}\right\} \sin u^{m}$$

so hat P^n die Form eines Aggregats von 2n+1 Theilen

$$P^{n} = g^{n,0}P^{n,0} + (g^{n,1}\cos\lambda + h^{n,1}\sin\lambda)P^{n,1} + (g^{n,2}\cos2\lambda + h^{n,2}\sin2\lambda)P^{n,2} + \text{etc.} + (g^{n,n}\cos n\lambda + h^{n,n}\sin n\lambda)P^{n,n}$$

wo $g^{n,0}, g^{n,1}, h^{n,1}, g^{n,2}$ u. s. w. bestimmte Zahlcoëfficienten sind.

19.

Zerlegt man die in dem Punkte O Statt findende magnetische Kraft in drei auf einander senkrechte X, Y, Z, wovon die dritte gegen den Mittelpunkt der Erde gerichtet ist, X und Y also die durch O gelegte mit der Erde concentrische Kugelfläche berühren, und zwar X in der durch O und die Erdaxe gelegten Ebene nach Norden, Y parallel mit dem Erdäquator nach Westen, so wird

$$X = -\frac{\mathrm{d}V}{r\mathrm{d}u}, \quad Y = -\frac{\mathrm{d}V}{r\sin u\,\mathrm{d}\lambda}, \quad Z = -\frac{\mathrm{d}V}{\mathrm{d}r}$$

folglich

$$X = -\frac{R^{3}}{r^{3}} \left(\frac{dP'}{du} + \frac{R}{r} \cdot \frac{dP''}{du} + \frac{RR}{rr} \cdot \frac{dP'''}{du} + \text{ u. s. w.} \right)$$

$$Y = -\frac{R^{3}}{r^{3} \sin u} \left(\frac{dP'}{d\lambda} + \frac{R}{r} \cdot \frac{dP''}{d\lambda} + \frac{RR}{rr} \cdot \frac{dP'''}{d\lambda} + \text{ u. s. w.} \right)$$

$$Z = \frac{R^{3}}{r^{3}} \left(2P' + \frac{3RP''}{r} + \frac{4RRP'''}{rr} + \text{ u. s. w.} \right)$$

Auf der Oberfläche der Erde sind X, Y dieselben horizontalen Componenten, welche oben mit diesen Buchstaben bezeichnet sind, und Z ist die verticale, positiv, wenn nach unten gerichtet. Die Ausdrücke für diese Kräfte auf der Oberfläche der Erde sind also

$$X = -\left(\frac{dP'}{du} + \frac{dP''}{du} + \frac{dP'''}{du} + \text{ u. s. w.}\right)$$

$$Y = -\frac{1}{\sin u}\left(\frac{dP'}{d\lambda} + \frac{dP''}{d\lambda} + \frac{dP'''}{d\lambda} + \text{ u. s. w.}\right)$$

$$Z = 2P' + 3P'' + 4P''' + \text{ u. s. w.}$$

20.

Verbinden wir nun mit diesen Sätzen das bekannte Theorem, dass jede Function von λ und u, die für alle Werthe von λ von 0 bis 360° , und von u von 0 bis 180° einen bestimmten endlichen Werth hat, in eine Reihe von der Gestalt

$$P^0 + P' + P'' + P''' + \text{u.s.w.}$$

entwickelt werden kann, deren allgemeines Glied P^n der obigen partiellen Differentialgleichung Genüge leistet, dass eine solche Entwicklung nur auf Eine bestimmte Art möglich ist, und dass diese Reihe immer convergirt, so erhalten wir folgende merkwürdige Sätze:

I. Die Kenntniss des Werths von V in allen Punkten der Erdoberfläche reicht hin, um den allgemeinen Ausdruck von V für den ganzen unendlichen Raum ausserhalb der Erdfläche daraus abzuleiten, und somit auch die Bestimmung der Kräfte X, Y, Z nicht bloss auf der Erdoberfläche, sondern auch für den ganzen unendlichen Raum ausserhalb derselben. Offenbar ist dazu nur nöthig, $\frac{V}{R}$ nach dem erwähnten Theorem in eine Reihe zu entwickeln.

Es soll daher im Folgenden das Zeichen V immer in der auf die Oberfläche der Erde beschränkten Bedeutung verstanden werden, wenn das Gegentheil nicht ausdrücklich gesagt ist, oder als diejenige Function von λ und u, welche aus dem allgemeinen Ausdruck hervorgeht, wenn r=R gesetzt wird, also

$$V = R(P' + P'' + P''' + u.s.w.)$$

II. Die Kenntniss des Werthes von X in allen Punkten der Erdoberfläche reicht hin, um alles in I. angeführte zu erlangen. In der That ist nach
Art. 15 das Integral $\int_0^u X du = \frac{V^0 - V}{R}$, wenn V^0 den Werth von V im Nordpole bedeutet, und die Entwickelung von $\int_0^u X du$ in eine Reihe der erwähnten
Form muss nothwendig mit

$$V^0 - P' - P'' - P''' - \text{u. s. w.}$$

identisch sein.

III. Auf gleiche Weise und unter Bezugnahme auf Art. 16 ist klar, dass die Kenntniss des Werthes von Y auf der ganzen Erde verbunden mit der Kenntniss von X in allen Punkten einer von einem Erdpole zum andern laufenden Linie zur Begründung der vollständigen Theorie des Erdmagnetismus zureicht.

IV. Endlich ist klar, dass die vollständige Theorie auch aus der blossen Kenntniss des Werthes von Z auf der ganzen Erdfläche abzuleiten ist. In der That, wenn Z in eine Reihe entwickelt wird

$$Z = Q^{0} + Q' + Q'' + Q''' + \text{u. s. w.}$$

so dass das allgemeine Glied der mehrerwähnten partiellen Differentialgleichung Genüge leistet, so wird nothwendig $Q^0 = 0$ und $P' = \frac{1}{2}Q'$, $P'' = \frac{1}{4}Q''$, $P''' = \frac{1}{4}Q''$ u. s. w sein müssen.

21.

Wegen der einfachen Art der Abhängigkeit der einzelnen Kräfte X, Y, Z von einer einzigen Function V, und des einfachen Zusammenhanges, in welchem jene unter sich stehen, sind dieselben weit mehr geeignet, zur Grundlage der Theorie zu dienen, als der gewöhnliche Ausdruck der magnetischen Kraft durch die drei Elemente ganze Intensität, Inclination und Declination, oder vielmehr. die letztere Art. so natürlich sie an sich scheint, wo es nur darauf ankommt die Thatsachen aufzufassen, kann unmittelbar gar nicht zur Begründung der Theorie, wenigstens nicht zur ersten Begründung, dienen, ehe sie nicht in die andere Form übersetzt ist. In dieser Beziehung wäre es daher sehr wünschenswerth, dass eine allgemeine graphische Darstellung der horizontalen Intensität veranstaltet würde, theils weil diese dem für die Theorie brauchbaren näher steht als die ganze Intensität, theils weil jene bei weiten in den meisten Fällen das ursprünglich wirklich beobachtete, die letztere hingegen nur durch Rechnung vermittelst der Inclination daraus abgeleitet ist. Die Elemente des horizontalen Magnetismus für sich rein zu erhalten, bleibt um so mehr zu empfehlen, da sie durch die gegenwärtigen Hülfsmittel sich mit überwiegender Schärfe bestimmen lassen, und man sollte wenigstens niemals mit Unterdrückung der beobachteten horizontalen

Intensität die durch Rechnung daraus abgeleitete ganze Intensität bekannt machen, ohne die bei der Rechnung angewandte Inclination mit anzugeben, damit derjenige, welcher sie für die Theorie benutzen will, im Stande sei, die ursprünglichen Zahlen unverfälscht wieder herzustellen.

So interessant es übrigens auch sein würde, die ganze Theorie des Erdmagnetismus allein auf Beobachtungen der horizontalen Nadel zu gründen, und damit den verticalen Theil oder die Inclination zu anticipiren, so ist es doch dazu gegenwärtig noch viel zu früh: die Mangelhaftigkeit der jetzt zu Gebote stehenden Data verstattet nicht, auf den Mitgebrauch des verticalen Theils zu verzichten. Im Grunde empfängt auch die Theorie schon dadurch ihre Bestätigung, wenn die Vereinbarkeit sämmtlicher Elemente unter Ein Princip nachgewiesen werden kann.

22.

Wenn wir gleich a priori gewiss sind, dass die Reihen für V, X, Y, Z convergiren, so lässt sich doch im voraus nichts über den Grad der Convergenz bestimmen. Wären entweder die Sitze der magnetischen Kräfte auf einen mässigen Raum um den Mittelpunkt der Erde her beschränkt, oder fände eine solche Vertheilung der magnetischen Flüssigkeiten in der Erde Statt, die jenem Falle äquivalirte, so würden die Reihen sehr schnell convergiren müssen; je weiter hingegen jene Sitze bis gegen die Oberfläche hin sich erstrecken, und je unregelmässiger die Vertheilung ist, desto mehr wird man auf eine langsame Convergenz sich gefasst halten müssen.

Bei der praktischen Anwendung ist absolute Genauigkeit unerreichbar: man verlangt nur einen den Umständen angemessenen Grad von Annäherung. Je langsamer nun die Convergenz ist, eine desto grössere Anzahl von Gliedern wird berücksichtigt werden müssen, um einen bestimmten Grad von Genauigkeit zu erreichen.

Nun enthält P' drei Glieder, und erfordert also die Kenntniss von drei Coëfficienten $g^{1,0}$, $g^{1,1}$, $h^{1,1}$; P'' erfordert fünf Coëfficienten, P''' sieben, P'''' neun u.s.w. Indem wir also P', P'', P''' u.s.w. als Grössen erster, zweiter, dritter Ordnung u.s.w. betrachten, erhellt, dass wenn die Rechnung bis zu den Grössen der Ordnung n einschliesslich getrieben werden soll, die Werthe von nn+2n

Coëfficienten ausgemittelt werden müssen, also z.B. 24, wenn man bis zur vierten Ordnung gehen will.

Jeder gegebene Werth von X, Y oder Z, für gegebene Werthe von u und λ verschafft uns eine Gleichung zwischen den Coëfficienten, mithin geben die vollständig bekannten Elemente des Erdmagnetismus von jedem Orte drei Gleichungen. Dürfte man also annehmen, dass nur die Glieder bis zur vierten Ordnung merklich bleiben, so würden zur Bestimmung aller nöthigen Coëfficienten die vollständigen Beobachtungen von acht verschiedenen Punkten, theoretisch betrachtet, zureichen: allein jene Voraussetzung ist schwerlich zulässig, und so würden die allen Beobachtungen anhängenden zufälligen Fehler verbunden mit der Vernachlässigung der Glieder der höhern Ordnung die Eliminationsresultate sehr entstellen können*). Den schädlichen Einfluss dieser Umstände zu vermindern, müsste man eine viel grössere Anzahl von Beobachtungsstücken, als unbekannte Grössen sind, von weit auseinander liegenden Punkten aus allen Theilen der Erde, zum Grunde legen, und die unbekannten Grössen nach der Methode der kleinsten Quadrate daraus ableiten. So einförmig indessen, da alle Gleichungen nur linearisch sind, die Ausführung eines solchen Geschäfts auch sein würde, so möchte doch die ausserordentliche aus der grossen Menge der unbekannten Grössen und Gleichungen entspringende Weitläuftigkeit auch den muthigsten Rechner abschrecken, die Arbeit in dieser Form jetzt schon zu unternehmen, zumal da das Einschleichen von unzuverlässigen Beobachtungsstücken oder von Rechnungsfehlern den Erfolg ganz verderben könnte.

23

Es gibt aber ein anderes Verfahren, welches, von einem Theile dieser Schwierigkeiten frei, sich vorzugsweise für den ersten anzustellenden Versuch zu eignen scheint, und welches wir hier entwickeln wollen, ohne die Bedenklichkeiten zu verschweigen, denen die Anwendung desselben bei jetziger Lage der Sachen noch unterliegt. Dies Verfahren setzt die Kenntniss aller drei Elemente in Punkten voraus, die auf einer hinlänglichen Anzahl von Parallelkreisen so gruppirt sind,

^{*)} Am wenigsten nachtheilig wurden bei einer solchen Bestimmungsweise diese Umstande einwirken, wenn die acht Punkte ganz symmetrisch auf der Erdoberfläche vertheilt waren, d. i. wenn sie mit den Ecken eines in der Erdkugel eingeschriebenen Wurfels zusammenfielen, oder doch einer solchen Lage sehr nahe kämen.

dass jeder Parallelkreis dadurch in eine hinlängliche Anzahl gleicher Stücke getheilt wird.

Aus den in gewöhnlicher Form gegebenen Elementen hat man zuvörderst die numerischen Werthe von X, Y und Z abzuleiten.

Man bringt sodann, nach bekannter Methode, die Werthe von X, Y und Z auf jedem Parallelkreise in die Form

$$X = k + k' \cos \lambda + K' \sin \lambda + k'' \cos 2\lambda + K'' \sin 2\lambda + k''' \cos 3\lambda + K''' \sin 3\lambda + \text{u. s. w.}$$

$$Y = l + l' \cos \lambda + L' \sin \lambda + l'' \cos 2\lambda + L'' \sin 2\lambda + l''' \cos 3\lambda + L''' \sin 3\lambda + \text{u. s. w.}$$

$$Z = m + m' \cos \lambda + M' \sin \lambda + m'' \cos 2\lambda + M'' \sin 2\lambda + m''' \cos 3\lambda + M''' \sin 3\lambda + \text{u. s. w.}$$

Man erhält also für jeden der Coëfficienten k, l, m, k' u.s. w. so viele Werthe, als Parallelkreise behandelt sind.

Der Theorie zufolge sollte auf jedem Parallelkreise l=0 werden; die aus der Rechnung hervorgehenden Werthe von l geben also schon eine Art von Maassstab für den Grad von Unzuverlässigkeit, welcher die zum Grunde gelegten Zahlen noch unterliegen.

Aus den Gleichungen

$$k = -g^{1,0} \frac{dP^{1,0}}{du} - g^{2,0} \frac{dP^{2,0}}{du} - g^{3,0} \frac{dP^{3,0}}{du} - \text{u. s. w.}$$

$$m = 2g^{1,0} P^{1,0} + 3g^{2,0} P^{2,0} + 4g^{3,0} P^{3,0} + \text{u. s. w.}$$

deren Gesammtanzahl doppelt so gross ist, als die Anzahl der Parallelkreise, wird man, nachdem in $\frac{\mathrm{d}\,P^{1,0}}{\mathrm{d}\,u}$ u. s. w. und in $P^{1,0}$ u. s. w. die entsprechenden Zahlwerthe von u substituirt sind, von den Coëfficienten $g^{1,0}$, $g^{2,0}$, $g^{3,0}$ u. s. w. so viele, als berücksichtigt werden sollen, nach der Methode der kleinsten Quadrate bestimmen.

Eben so dienen die Gleichungen

$$-k' = g^{1,1} \frac{dP^{1,1}}{du} + g^{2,1} \frac{dP^{2,1}}{du} + g^{3,1} \frac{dP^{3,1}}{du} + \text{u.s.w.}$$

$$L' = g^{1,1} \frac{P^{1,1}}{\sin u} + g^{2,1} \frac{P^{2,1}}{\sin u} + g^{3,1} \frac{P^{3,1}}{\sin u} + \text{u.s.w.}$$

$$m' = 2g^{1,1}P^{1,1} + 3g^{2,1}P^{2,1} + 4g^{3,1}P^{3,1} + \text{u.s.w.}$$

deren Anzahl zusammen dreimal so gross ist, als die Anzahl der Parallelkreise, zur Bestimmung der Coëfficienten $g^{1,1}$, $g^{2,1}$, $g^{3,1}$ u. s. w.; so wie folgende

$$-K' = h^{1,1} \frac{dP^{1,1}}{du} + h^{2,1} \frac{dP^{2,1}}{du} + h^{3,1} \frac{dP^{3,1}}{du} + \text{u. s. w.}$$

$$-l' = h^{1,1} \frac{P^{1,1}}{\sin u} + h^{2,1} \frac{P^{2,1}}{\sin u} + h^{3,1} \frac{P^{3,1}}{\sin u} + \text{u. s. w.}$$

$$M' = 2 h^{1,1} P^{1,1} + 3 h^{2,1} P^{2,1} + 4 h^{3,1} P^{3,1} + \text{u. s. w.}$$

zur Bestimmung der Coëfficienten $h^{1,1}$, $h^{2,1}$, $h^{3,1}$ u. s. w.

Ferner dienen zur Bestimmung der Coëfficienten $g^{2,2}$, $g^{3,2}$, $g^{4,2}$ u. s. w. die Gleichungen

$$-k'' = g^{2,2} \frac{dP^{2,2}}{du} + g^{3,2} \frac{dP^{3,2}}{du} + g^{4,2} \frac{dP^{4,2}}{du} + \text{u. s. w.}$$

$$L'' = 2g^{2,2} \frac{P^{2,2}}{\sin u} + 2g^{3,2} \frac{P^{3,2}}{\sin u} + 2g^{4,2} \frac{P^{4,2}}{\sin u} + \text{u. s. w.}$$

$$m'' = 3g^{2,2} P^{2,2} + 4g^{3,2} P^{3,2} + 5g^{4,2} P^{4,2} + \text{u. s. w.}$$

und auf ähnliche Weise ergeben sich die Coëfficienten der folgenden höhern Ordnungen.

24.

Der Vorzug dieses Verfahrens vor dem im 22. Art. angegebenen besteht hauptsächlich darin, dass die unbekannten Grössen in Gruppen zerfallen, die jede für sich bestimmt werden, wodurch die Rechnung eine ausserordentliche Erleichterung erhält, während bei dem andern Verfahren die Vermengung sämmtlicher Unbekannten unter einander die Scheidung überaus beschwerlich macht. Dagegen hat jenes Verfahren den Nachtheil, dass es seine Grundlagen gar nicht in unmittelbaren Beobachtungen findet, sondern sie aus graphischen Darstellungen entlehnen muss, welche in den Gegenden, wo Beobachtungen vorhanden sind, diese doch nur roh darstellen können, in solchen Gegenden aber, wo es weit und breit ganz an Beobachtungen fehlt, nur vermuthungsweise, gewissermaassen willkürlich ergänzt sind, und sich daher sehr weit von der Wahrheit Indessen bleibt keine Wahl, als entweder alle Versuche so lange auszusetzen, bis viel vollständigere und zuverlässigere Data bereit sein werden, oder mit den jetzt noch so höchst precären Mitteln einen ersten Versuch zu wagen, von dem man wenig mehr als eine rohe Annäherung erwarten darf. nen sichern Maassstab für den Werth des Erfolges gibt jedenfalls hinterdrein die scharfe Vergleichung der Resultate mit wirklichen Beobachtungen aus allen Theilen der Erde; und wenn solche Prüfung dahin ausfällt, dass der erste Versuch nicht ganz misslungen ist, so wird dieser eine kräftige Hülfe darbieten, um künftige neue Versuche, auf dem einen oder auf dem andern Wege, zweckmässig vorzubereiten.

25.

Schon vor vielen Jahren hatte ich zu wiederholten malen angefangen, mich solchen Versuchen zu unterziehen, von denen ich aber immer wieder abzustehen genöthigt war, weil die zu Gebote stehenden Data sich als gar zu dürftig auswiesen. Gleichwohl würde ich schon früher einen Versuch zu Ende zu führen geneigt gewesen sein, wenn der mehrmals von mir ausgesprochene Wunsch in Erfüllung gegangen wäre, dass die reinen horizontalen Intensitäten in einer allgemeinen Karte dargestellt werden möchten, für deren Mangel die Verbindung der vorhandenen unvollkommenen Generalkarten für die Inclination und ganze Intensität keinen Ersatz geben konnte.

Die Erscheinung der Sabneschen Karte für die ganze Intensität (im siebenten Report of the British association for the advancement of science) hat mich jetzt zur Unternehmung und Vollendung eines neuen Versuchs angeregt, der übrigens nur aus dem im vorhergehenden Artikel angegebenen Gesichtspunkte angesehen werden soll.

Die der Rechnung unterzulegenden Data wurden aus der erwähnten Karte für die Intensität, der Barlowschen für die Declination (*Philosophical Transactions* 1833), und der von Horner entworfenen für die Inclination (*Physikalisches Wörterbuch Band 6.*) entnommen, und zwar für je zwölf Punkte auf sieben Parallelkreisen. Die Lücken, welche jene Karten in weiten Strecken übrig lassen, konnten meistens nur auf höchst precäre Art ergänzt werden.

Im Laufe der Rechnung ergab sich bald, dass dieselbe wenigstens bis zu den Grössen der vierten Ordnung ausgedehnt werden müsse, wonach die Anzahl der zu bestimmenden Coëfficienten auf 24 steigt. Aller Wahrscheinlichkeit nach werden auch die Glieder der fünften Ordnung noch ansehnlich genug sein; allein bei einem ersten Versuche bleiben die Werthe von k, m, k' u. s. w. noch viel zu sehr mit dem Einfluss der vielen unzuverlässigen Daten behaftet, die jener seiner Natur nach einschliessen muss, als dass es verstattet sein könnte, in das Eliminationsgeschäft eine noch grössere Anzahl von unbekannten Grössen aufzunehmen.

Es muss noch bemerkt werden, dass die Intensitäten in Sabine's Karte dieselbe willkürliche Einheit haben, in welcher sie gewöhnlich bisher angegeben zu werden pflegen, und wonach in London die ganze Intensität = 1,372 gesetzt wird. Diese Einheit ist hier bei der Berechnung der Coëfficienten, eben so wie bei der weiter unten zu erklärenden Hülfstafel, dahin abgeändert, dass alle Zahlen tausendmal grösser werden, wobei also die Intensität für London = 1372 zum Grunde liegt. Übrigens kann offenbar für die Intensität eine jede beliebige Einheit gebraucht werden, insofern man auch die Einheit für μ als willkürlich betrachten, und diese immer jener gemäss annehmen kann. Will man weitere Folgerungen daran knüpfen, für welche μ auf ein absolutes Maass gebracht sein muss, so brauchen nur sämmtliche Coëfficienten mit demselben Factor multiplicirt zu werden, welcher zur Reduction der nach jener Einheit ausgedrückten Intensitätszahlen auf absolutes Maass erforderlich ist.

26.

Die aus der ersten Rechnung, wobei die Längen λ von Greenwich östlich gezählt sind, erhaltenen Zahlwerthe der 24 Coëfficienten sind folgende:

Diese Zahlen, welche man als die Elemente der Theorie des Erdmagnetismus betrachten kann, sind hier genau so angesetzt, und als Grundlage der nachher zu beschreibenden Hülfstafel angewandt, wie die Rechnung sie gegeben hat, ohne die Decimalbrüche wegzulassen. Für jeden Rechnungskundigen ist die Be-

merkung überflüssig, dass diese Bruchtheile an sich-keinen Werth haben, da wir noch weit davon entfernt sind, nur die ganzen Einer mit Zuverlässigkeit ausmitteln zu können: allein es ist von Wichtigkeit, dass die Beobachtungen mit einem und demselben bestimmten System von Elementen scharf verglichen werden, und da war kein Grund vorhanden, an dem, was die Rechnung ergeben hatte, etwas zu verändern, weil durch Weglassung der Decimalbrüche für die Bequemlichkeit der Vergleichungsrechnungen gar nichts gewonnen worden sein würde.

27.

Der entwickelte Ausdruck für V nach obigen Zahlen ist folgender, wobei der Abkürzung wegen e für $\cos u$ und f für $\sin u$ geschrieben ist.

$$\begin{array}{l} \frac{V}{R} = & -1,977 + 937,103\,e + & 71,245\,e\,e - 18,868\,e^3 - 108,855\,e^4 \\ & + & (64,437 - & 79,518\,e + 122,936\,e\,e + 152,589\,e^3)f\cos\lambda \\ & + (-188,303 - & 33,507\,e + & 47,794\,e\,e + & 64,112\,e^3)f\sin\lambda \\ & + & (7,035 - & 73,193\,e - & 45,791\,e\,e)ff\cos2\lambda \\ & + & (-45,092 - & 22,766\,e - & 42,573\,e\,e)ff\sin2\lambda \\ & + & (1,396 + & 19,774\,e)f^3\cos3\lambda \\ & + & (-18,750 - & 0,178\,e)f^3\sin3\lambda \\ & + & & 4,127\,f^4\cos4\lambda \\ & + & & 3,175\,f^4\sin4\lambda \end{array}$$

Es mögen ferner die vollständig entwickelten Ausdrücke für die drei Componenten der magnetischen Kraft hier Platz finden.

$$X = \frac{(937,103+142,490e-56,603ee-435,420e^3)f}{+(-79,518+181,435e-298,732ee-368,808e^3+610,357e^4)\cos\lambda} \\ +(-33,507+283,892e+259,349ee-143,383e^3-256,448e^4)\sin\lambda} \\ +(-73,193-105,652e+219,579ee+183,164e^3)f\cos2\lambda} \\ +(-22,766+175,330e+68,098ee-170,292e^3)f\sin2\lambda} \\ +(19,774-4,188e-79,096ee)ff\cos3\lambda} \\ +(-0,178+56,250e+0,716ee)ff\sin3\lambda} \\ -16,508ef^3\cos4\lambda} \\ -12,701ef^3\sin4\lambda$$

$$Y = (188,303 + 33,507e - 47,794ee - 64,112e^{3})\cos\lambda + (64,437 - 79,518e + 122,936ee - 152,589e^{3})\sin\lambda + (90,184 + 45,532e - 85,146ee)f\cos2\lambda + (14,070 - 146,386e - 91,582ee)f\sin2\lambda + (56,250 + 0,534e)ff\cos3\lambda + (4,188 + 59,322e)ff\sin3\lambda - 12,701f^{3}\cos4\lambda + 16,508f^{3}\sin4\lambda$$

$$Z = -24,593 + 1896,847e + 400,343ee - 75,471e^{3} - 544,275e^{4} + (79,700 - 107,763e + 491,744ee - 762,946e^{3})f\cos\lambda + (-395,724 - 155,473e + 191,176ee + 320,560e^{3})f\sin\lambda + (34,187 - 292,772e - 228,955ee)ff\cos2\lambda + (-147,439 - 91,064e + 212,865ee)ff\sin2\lambda + (5,584 + 98,870e)f^{3}\cos3\lambda + (-75,000 - 0,890e)f^{3}\sin3\lambda + 20,635f^{4}\cos4\lambda + 15,876f^{4}\sin4\lambda$$

Nachdem diese Componenten für einen gegebenen Ort berechnet sind, erhält man die Bestimmungsstücke der magnetischen Kraft in der gewöhnlichen Form auf folgende Art. Es sei δ die Declination, i die Inclination, ψ die ganze, ω die horizontale Intensität. Man bestimmt zuerst δ und ω vermittelst der Formeln

$$X = \omega \cos \delta$$
, $Y = \omega \sin \delta$

und sodann i und ψ vermittelst der folgenden

$$\omega = \psi \cos i, \quad Z = \psi \sin i$$

28.

Da die Formeln für X, Y, Z zusammen 71 Glieder enthalten, so ist die unmittelbare Rechnung nach denselben eine ziemlich beschwerliche Arbeit, und die Wiederholung derselben für eine grosse Anzahl von Örtern würde allerdings desto mehr abschreckendes haben, da man ohne dieselbe Rechnung zweimal zu machen nicht wohl hoffen dürfte, gegen mögliche Rechnungsfehler geschützt zu

sein. Auch würde man wenig gewinnen, wenn man sämmtliche Glieder, deren Coëfficienten weniger als eine Einheit, oder selbst weniger als 10 Einheiten betragen, unterdrücken wollte, da die Anzahl der übrigen sich doch noch auf 65 belaufen würde. Da nun aber der ganze Werth der Arbeit ungewiss bleiben würde, wenn man sie nicht an einer beträchtlichen Anzahl wirklicher Beobachtungen prüfte, so habe ich die Mühe nicht gescheut, eine Hülfstafel zu berechnen*), bei deren Gebrauch die Arbeit in hohem Grade abgekürzt und erleichtert, und eben dadurch die Sicherstellung gegen Rechnungsfehler wesentlich befördert wird. Ihre Einrichtung beruhet darauf, dass die Werthe der Componenten in folgende Form gebracht sind

$$\begin{split} X &= a^0 + a'\cos(\lambda + A') + a''\cos(2\lambda + A'') + a'''\cos(3\lambda + A''') + a'''\cos(4\lambda + A'''') \\ Y &= b'\cos(\lambda + B') + b''\cos(2\lambda + B'') + b'''\cos(3\lambda + B''') + b''''\cos(4\lambda + B'''') \\ Z &= c^0 + c'\cos(\lambda + C') + c''\cos(2\lambda + C'') + c'''\cos(3\lambda + C''') + c''''\cos(4\lambda + C''''') \end{split}$$

Die erste Tafel enthält die von λ unabhängigen Theile von X und Z: in den vier folgenden findet man die Werthe der Hülfswinkel A', A'' u. s. w., und der Logarithmen von a', a'' u. s. w., alles für die einzelnen Grade der Breite $\varphi = 90^{\circ} - u$. [Die Tafel ist bei dem vorliegenden Abdruck in einer wegen der Verschiedenheit des Formats etwas abgeänderten Anordnung dem Ende dieser Abhandlung angeschlossen.]

Als Beispiel mag die Rechnung für Göttingen hier Platz finden. Mit der Breite + 51°32′ findet man aus den Tafeln

$a^0 = +500.8$		$c^0 = +1465,2$
$\log a' = 2,28980$	$\log b' = 2,18900$	$\log c' = 2,20204$
$\log a'' = 1,79403$	$\log b'' = 2,03220$	$\log c'' = 2,12777$
$\log a'''=1{,}32522$	$\log b''' = 1,46845$	$\log c''' = 1,43199$
$\log a'''' = 0.59391$	$\log b'''' = 0.70016$	$\log c^{\prime\prime\prime\prime} = 0,59091$
$A' = 249^{\circ} 30'$	$B' = 358^{\circ} 24'$	$C' = 105^{0} 44'$
A'' = 311 45	B'' = 64 50	C'' = 165 15
$A''' = 234 \ 10$	B''' = 318 13	C'''= 42 22
A'''' = 142 26	$B'''=232\ 26$	C'''' = 322 26

^{*)} Die Berechnung eines Theils dieser Hulfstafel hat Hr. Doctor Goldschundt ausgeführt.

	$oldsymbol{x}$	$oldsymbol{Y}$	$oldsymbol{Z}$
	+500,8		+1465,2
	— 35,71	+152,89	- 68,99
`	+ 54,76	+ 9,92	— 133,67
	- 2,21	+ 28,77	+ 8,27
	 3,92	+ 0,19	+ 3,90
X	$\overline{\zeta = +513,72}$	Y = +191,77	$Z = \overline{+1274,71}$

und hienach mit der Länge $\lambda = 9^{0}56\frac{1}{2}$ die Theile von

Die weitere Rechnung ergibt dann

$$\delta = +20^{\circ} 28' \quad \log \omega = 2,73907$$
 $i = +66 \quad 43$
 $\psi = 1387.6 \quad \text{oder in der gew\"{o}hnlichen Einheit}$
 $\psi = 1,3876$

29.

Die folgende Tafel enthält nun die Vergleichung unsrer Formeln mit den Beobachtungen von 91 Punkten aus allen Theilen der Erde. Da die drei Karten, aus welchen die Data für unsre Rechnung entnommen waren, den Zustand für die neueste Zeit darzustellen bestimmt sind, so wurden auch nur Beobachtungen aus dieser in die Vergleichung aufgenommen, und vorzugsweise von solchen Orten, wo alle drei Elemente des Magnetismus beobachtet sind. Die Forderung einer genauen Gleichzeitigkeit kann jetzt noch nicht gemacht werden, ohne unsern Besitz auf eine äusserst kleine Anzahl herabzusetzen.

Über die hier [am Ende dieses Artikels] zur Vergleichung gebrachten Beobachtungen gebe ich noch folgende Nachweisungen:

Die Intensitätsbestimmungen sind grösstentheils entlehnt aus Sabine's Report on the variation of magnetic intensity (in dem schon oben erwähnten Seventh Report of the British Association for the advancement of Science).

Die grosse Anzahl magnetischer Beobachtungen aus dem Russischen Reiche und dem angrenzenden Theile von China verdanken wir

Hansteen (Poggendorffs Annalen).

Erman (Reise um die Erde, und handschriftliche Mittheilungen). von Humboldt (Voyage aux regions équinoxiales T. 13).

Fuss (Mémoires de l'Académie des Sciences de St. Pétersbourg, Sixième série). Fedor (Handschriftlich mitgetheilt durch v. Struve).

Reinke (Observations météorologiques et magnétiques faites dans l'étendue de l'empire de Russie, rédigées par A. T. Kupffer, Nr. II).

Bei folgenden Örtern wurde das Mittel aus den Bestimmungen mehrerer Beobachter genommen, die zum Theil unter einander grössere Verschiedenheit darbieten. als auf Rechnung der jährlichen Änderungen gesetzt werden kann:

	(12) T	'obol	sk							
Declination.	Hansteen 18	32 8					90	58 ′		
	Erman 1828	•		•			9	47		
	Fuss 1830.						11	52		
	Fedor 1833						10	20		
Inclination.	Erman 1828					•	71	7		
	Von Humbo	ldt	182	9		•	70	56		
	Fuss 1830.			•		. '	7 1	1		
	Fedor 1833	•		•		. '	7 1	2		
(16) Catharinenburg										
Declination.	Hansteen 18	328					6^{0}	27'		
	Erman 1828	3.			•		7	23		
	Reinke 1836	3.		•			5	5		
Inclination.	Erman 1828					. (69	24		
	Von Humbo	ldt	182	9			69	6		
	Fuss 1830		•		•	. (69	19		
	Fedor 1832	•			•	. (69	15		
	(17)	Гот	sk							
Declination.	Hansteen 18	328				_	80	32'		
	Erman 1829		•				8	36		
Inclination.	Erman 1829		•			. '	70	59		
	Fuss 1830	•	•	•	•		70	51		
(18) Nishny Nowgorod										
Declination.	Erman 1828	3.	•	•			0_0	46'		
	Fuss 1830		•				0	8		
								20		

ALLGEMEINE THEORIE

•	(19)							
Declination.	Hansteen 1	829		•	•	_	- 6	0 43
	Erman 182	9.					- 6	37
	Fedor 1835						- 7 .	26
Inclination.	Erman 1829							
	Fedor 1835	•		•	•	•	71	8
	(20)	Kas	an					·
Inclination.	Erman 1828	3.					686	21
	Von Humbo	oldt	183	29			68	27
	Fuss 1830							
	. (21)	Mos	kwa	z				
Declination.	Hansteen 1	828				+	- 30	3
	Erman 4828	3.				+	- 3	1
Inclination.	Erman 1828	3.					68	5 8
	Von Humbo	ldt	182	9	•		68	57
	(30)	Irkı	uzk					
Declination.	Hansteen 1	829					- 10	37
	Erman 1829	9.	•		•		- 1	52
	Fuss 1830		•		•		- 1	25
Inclination.	Erman 1829						68	7
	Fuss 1830				•		68	15
	Fuss 1832	•	•	•	•	•	68	20
	(36)	Orei	ıbur	g				
Inclination.	Von Humbo	ldt	182	29			64^0	41'
	Fedor 1832	•	•	•	•		64	47
	(44)	Tro	izko	sar	vsk			
Declination.	Hansteen 18	329	•		•	+	0^{0}	$\mathbf{5'}$
	Erman 1829							
•	Fuss 1830	•	•				0	1
Inclination.	Erman 1829		•	•			66	14
	Fuss 1830						66	24

Die meisten Bestimmungen in der südlichen Hemisphäre rühren von den Capitaines King und Fitz Roy her, und sind aus einer kleinen Schrift von Sabine (Magnetic Observations made during the voyages of the ships Adventure and Beagle 1826—1836) entlehnt.

Die Bestimmungen für die übrigen einzelnen Punkte sind zum Theil auch aus den angeführten Quellen entlehnt; von den andern erwähne ich noch folgende:

- (1) Spitzbergen. Beobachter Sabine 1823 (Aus dessen Account of experiments to determine the figure of the earth).
- (2) Hammerfest. Declination und Inclination im Mittel nach den Bestimmungen von Sabine 1823 (aus angeführtem Werke) und von Parry 1827 (aus dessen Narrative of an attempt to reach the North Pole).
 - (3) Magnetischer Pol, nach Ross 1831 (Philosophical Transactions 1834).
 - (4) Reikiavik nach Beobachtungen von Lottin 1836 (Voyage en Islande).
 - (28) Berlin nach Encke 1836 (Astronomisches Jahrbuch 1839).
- (38) Göttingen. Die Declination gilt für 1835 Oct. 1 (Resultate für 1836 S. 59); die Inclination ist durch Interpolation zwischen von Humboldts Beobachtung 1826 und Forbes 1837 auf dieselbe Epoche reducirt.
- (39) London, nach handschriftlich mitgetheilten Beobachtungen für die Declination von Capitaine Ross; für die Inclination von Ригелев, Fox, Ross, Johnson und Sabine; die mittlere Epoche für die Declination April 1838, für die Inclination Mai 1838.
 - (48) Paris für 1835 aus dem Annuaire für 1836:
 - (54) Mailand 1837, von Kren, nach dessen handschriftlichen Mittheilungen.
- (58) Neapel, 1835 nach Beobachtungen von Sartorius und Listing. Die in absolutem Maasse bestimmte Intensität wurde mit dem unten (Art. 31) gegebenen Factor auf die gewöhnliche Einheit reducirt.
- (64) Madras 1837 nach TAYLORS Beobachtungen, entlehnt aus dem Journal of the Asiatic Society of Bengal, Mai 1837.

	•	::	1		Declination	
l		Breite	Länge]		
				Berechn.	Beobacht.	Untersch.
I 2	Spitzbergen Hammerfest	+ 79° 50′ 70 40	11° 40′ 23 46	+ 26° 31' + 12 23	+ 25° 12′ + 10 50	+ 1° 19′ + 1 33
3 4	Magn. Pol. n. Ross Reikiavik Jakutsk	70 5 64 8 62 1	263 14 338 5	- 22 23 + 40 12	+ 43 14	-3 ²
5 6	Porotowsk	62 1	129 45 131 50	+ 0 5	+ 5 50 + 4 46	-5 45 -4 42
7 8	Nochinsk Tschernoljes	61 57 61 31	134 57 136 23	— o 3	+ 2 II + 3 30	- 2 14 - 3 30
9 10	Petersburg Christiania	59 56 59 54	30 19 10 44	+ 6 47 + 19 55	+ 6 44 + 19 50	+0 3 +0 5
11 12	Ochotsk Tobolsk	59 21 58 11	143 11 68 16	0 18 7 19	+ 2 18 - 10 29	-2 36 +3 10
13	Tigil Fluss	58 1	158 15	- 7 19 - 4 20	- 10 29 - 4 6	— 0 I4
14	Sitka	57 3	224 35	- 28 45	— 28 19	- o 26
15	Tara Catharinenburg	56 54	74 4	— 7 44	— 9 <u>36</u>	+ 1 52
16 17	Tomsk	56 51 56 30	60 34 85 9	- 5 20 - 7 21	$\begin{array}{ccccc} & -6 & 18 \\ & -8 & 34 \end{array}$	+ o 58 + 1 13
18	Nishny Nowgorod	56 19	43 57	+ 1 10	- 0 34 - 0 27	+ 1 13 + 1 37
19	Krasnojarsk	56 1	92 57	- 5 49	- 6 40	+0 51
20	Kasan	55 48	49 7	— ī 7	— 2 22	+1 15
2I 22	Moskwa Königsberg	55 46	37 37 20 30	+ 4 26 + 14 15	+ 3 2	+ I 24
23	Barnaul	54 43 53 20	20 30 83 56	+ 14 15 7 0	+ 13 22 - 7 25	+ 0 53 + 0 25
24	Uststretensk	53 20	121 51	+ 1 29	+ 4 21	-2 52
25	Gorbizkoi	53 6	119 9	+ 1 5	+ 2 54	- I 49
26	Petropaulowsk	53 0	158 40	— 3 34	- 4 6	+0 32
27	Uriupina Be rl in	5 ² 47	120 4	+ 1 16	+ 4 4	-2 48
28 29	Pogromnoi	52 30 52 30	13 24	+ 18 31 - 0 38	+ 17 5 + 0 18	+ 1 26 -0 56
30	Irkuzk	52 30 52 17	111 3	— 2 27	+ o 18 - 1 38	-0 49
31	Stretensk	52 15	117 40	+ 0 54	+ 2 52	— r 58
32	Stepnoi	52 10	106 21	— I 52	- r 8	- o 44
33	Tschitanskoi	52 I	113 27	0 0	+ I I3	— 1 13
34	Nertschinsk Stadt Werchneudinsk	5x 56	116 31	+ 0 42	+ 2 53	— 2 II
35 36	Orenburg	51 50 51 45	107 46 55 6	— I 26 — 2 48	- 0 24 - 3 22	- 1 2 + 0 34
37	Argunskoi	51 43 51 33	119 56	+ I 22	+ 3 44	— 2 22
38	Göttingen	51 32	9 56	+ 20 28	+ 18 38	+ I 50
39	London	51 31	359 50	+ 25 37	+ 24 0	+ I 37
40	Nertschinsk Bergw.	51 19	119 37	+ I 20	+ 4 6	- 2 46
41	Tschindant	50 34	115 32	+ 0 34	+ 2 14	- r 40
42	Charazaiska	50 29	104 44	- 2 9	<u> </u>	+0 18
43	Zuruchaitu Troizkosawsk	50 23	119 3	+ 1 18	+ 3 11	— ī 53
44 45	Abagaitujewskoi	50 21 49 35	106 45	- 1 34 + 1 8	- 0 12 + 2 54	— I 22 — I 46
45 46	Altanskoi	49 33	111 30	— o 16	+ 2 54 + 0 48	-1 40 -1 4
47	Mendschinskoi	49 26	108 55	— o 56	+ 0 12	- r 8
48	Paris	48 52	2 21	+ 24 6	+ 22 4	+2 2
49	Chunzal	48 13	106 27	— т 30	— т 6	_ o 24
50	Urga	47 55	106 42	— I 26	— 1 16	-0 10

		Inclination		1	Intensität	
	Berechn.	Beobacht.	Untersch.	Berechn.	Beobacht.	Untersch.
1 2	+ 82° 1' 77 19 88 48	+81° 11′ 77 15 90 0	+ 0° 50′ + 0 4 - 1 12	1.599 1.545 1.717	1.562 1.506	+ 0.037 + 0.039
3 4 5 6 7 8 9	80 40 74 36 74 27 74 12 73 48 70 25 72 4	77 0 74 18 74 0 73 37 73 8 71 3 72 7	+3 40 +0 18 +0 27 +0 35 +0 40 -0 38 -0 3	1.527 1.661 1.658 1.653 1.648 1.469	1.697 1.721 1.713 1.700 1.410 1.419	0.036 0.063 0.060 0.052 +- 0.059 +- 0.037
11 12 13 14 15 16 17 18	71 36 70 13 69 55 76 30 69 46 68 24 70 33 67 9 70 24 67 13	70 41 71 1 68 28 75 51 70 28 69 16 70 55 68 41 71 0 68 25	+ o 55 - o 48 + i 27 + o 39 - o 42 - o 52 - o 22 - i 32 - o 36 - i i2	1.621 1.575 1.583 1.697 1.586 1.535 1.613 1.469 1.638	1.615 1.557 1.577 1.731 1.575 1.523 1.619 1.442 1.657	+ 0.006 + 0.018 + 0.006 - 0.034 + 0.011 + 0.012 - 0.006 + 0.027 - 0.019 + 0.044
21 22 23 24 25 26 27 28 29	66 45 67 19 67 50 68 32 68 32 65 31 68 17 66 45 68 25 68 17	68 57 69 26 68 10 68 11 68 22 63 50 67 53 68 7 68 8 68 14	-2 12 -2 7 -0 20 +0 21 +0 10 +1 41 +0 24 -1 22 +0 17 +0 3	1.446 1.410 1.591 1.609 1.611 1.521 1.612 1.391 1.616 1.616	1.404 1.365 1.605 1.656 1.660 1.489 1.667 1.367 1.640 1.647	+ 0.042 + 0.045 0.014 0.047 0.049 + 0.032 0.055 + 0.024 0.024 0.031
31 32 33 34 35 36 37 38 39	67 55 68 12 67 56 67 43 67 55 63 14 67 10 66 43 68 54 66 59	67 38 68 10 67 42 67 11 68 6 64 44 66 54 67 56 69 17 66 33	+0 17 +0 2 +0 14 +0 32 -0 11 -1 30 +0 16 -1 13 -0 23 +0 26	1.606 1.615 1.609 1.604 1.612 1.461 1.595 1.388 1.410	1.649 1.663 1.668 1.635 1.657 1.432 1.655 1.357 1.372 1.617	0.043 0.048 0.059 0.031 0.045 +- 0.029 0.060 0.031 0.038 0.024
41 42 43 44 45 46 47 48 49	66 35 66 45 66 12 66 38 65 33 65 46 65 48 66 45 64 42 64 25	66 32 66 56 66 13 66 19 64 48 65 20 65 31 67 24 64 29 64 4	+ 0 3 - 0 11 - 0 1 + 0 19 + 0 45 + 0 26 + 0 17 - 0 39 + 0 13 + 0 21	1.592 1.599 1.584 1.597 1.577 1.585 1.587 1.389 1.574	1.650 1.643 1.626 1.642 1.583 1.619 1.630 1.348 1.612 1.583	

Breite			<u> </u>		ll	Declination	
Chologur			Breite	Länge	Berechn.	_	Untersch
Chologur	51		+ 46° 20'	48° o'	+ 1° 40′	+ 10 12'	+ 0° 28′
54 Mailand 45 28 9 9 +20 56 +18 33 +2 2 55 Sendaschi 44 45 110 26 -0 20 +0 30 -0 56 56 Batchay 44 42 1112 55 +0 16 +0 39 -0 40 57 Scharabudurguna 43 13 114 6 +0 32 +0 46 -0 Lo 58 Neapel 40 49 114 58 +0 42 +1 13 -0 35 60 Pekin 39 54 116 26 +0 58 +1 48 +0 50 61 Terceira 38 39 332 47 +22 18 8 +0 50 62 San Francisco 37 49 237 35 -16 17 24	-	Chologur	!!	1	11	1 : **	— 1 9
Sendschi		Ergi Mailand	1)	1	11	1	
Seharabudurguna					11	1	
Scharabudurguna			11	}		1	,
Neapel	-		11		1 :	1 1 1	
Chalgan		Neapel	11		11		
61 Terceira		Chalgan	40 49				
62 San Francisco 37 49 237 35 — 16 22 — 14 55 — 0 1 237 35 — 16 12 — 14 55 — 0 1 22 — 14 55 — 0 1 2 — 14 55 — 0 1 2 — 14 55 — 0 1 2 — 0 1 2 — 0 1 2 — 0 1 2 — 0 1 2 — 0 1 2 — 0 1 2 — 0 23 — 8 57 — 9 30 — 0 33 — 1 — 1 2 — 0 2 — 1 0 — 0 2 2 — 1 2 — 0 2 — 1 2 — 1 2 — 1 2 — 1 2 — 1 2 — 1 2 — 1 2 — 1 2 — 1 2 — 1 2 2 — 1 2 — 1 2	60	Pekin	39 54	116 26	+ 0 58	+ 1 48	— o 50
63 Port Praya				1			
64 Madras +13 4 80 17 -4 1 -6 6 Galapagos Insel -0 50 270 23 -8 57 -9 30 +0 33 66 Ascension 7 56 345 36 +14 37 +13 30 +0 32 -10 0 +0 32 -10 0 +0 22 68 Callao 12 4 282 52 -9 32 -10 0 +0 22 69 55 +0 23 +1 12 -0 44 18 -1 20 9 57 31 +1 12 -0 44 18 -1 22 55 316 51 -1 11 -2 8 +0 57 31 +11 19 +1 11 8 -0 52 55 316 51 -1 11 -1 28 40 52					H		,
65 Galapagos Insel					11	7 10 30	—o 13
66 Ascension 7 56 345 36 + 14 37 + 13 30 + 1 66 Callao 12 4 285 52 - 9 32 - 10 0 + 0 22 69 55 + 5 58 + 5 54 + 0 22 69 55 + 0 23 + 1 12 - 0 44 - 0 42 28 52 - 9 32 - 10 0 + 0 22 69 55 + 0 23 + 1 12 - 0 44 - 0 42 24 - 0 42 24 - 0 44 18 - 1 18 - 1 18 - 1 18 - 1 18 - 1 18 - 1 18 - 1 18 - 1 18 - 1 18 - 0 - 1 12 - 1 18 - 0 - 1 11 - 2 28 - 1 18 - 0 - 1 18			11	,	!!	— 9 30	+0 33
67 Pernambuco 8 4 325 9 + 5 58 + 5 54 + 0 2 68 Callao 12 4 282 52 - 9 32 - 10 0 - 0 4 0 22 - 9 32 - 10 0 - 0 4 12 - 0 4 12 - 0 4 18 - 1 0 0 - 0 - 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 5 316 5 1	66	Ascension	7 56	1	+ 14 37	+ 13 30	
69 Reeling Insel 12 5 96 55 + 0 23 + 1 12 - 0 4 70 Bahia 12 59 321 30 + 3 12 + 4 18 - 1 0 71 St. Helena 15 55 354 17 + 19 27 + 18 0 + 1 27 72 Otaheite 17 29 210 30 - 5 45 - 7 54 + 2 6 73 Mauritius 20 9 57 31 + 11 9 + 11 18 - 0 6 74 Rio de Janeiro 22 55 316 51 - 1 11 - 2 8 + 0 57 75 Valparaïso 33 2 288 19 - 13 45 - 15 18 + 1 33 76 Sydney 33 51 151 17 - 7 51 - 10 24 + 2 3 77 Vorg. d. g. Hoffn. 34 11 18 26 + 27 24 + 28 30 - 1 6 79 K. Georgs Sund 35 2 117 56 + 5 12 + 5 36 - 0 23 80 Neu Seeland 35 1 6 174 - 11 23 - 12 0 + 0 33 81 R. Georgs Sund 35 2 117 56 + 5 12 + 5 36 - 0 2 82 Blanco Bay 38 57 298 1 1 - 12 57 - 15 0 + 2 3 <td></td> <td></td> <td>•</td> <td></td> <td>+ 5 58</td> <td>+ 5 54</td> <td>+0 4</td>			•		+ 5 58	+ 5 54	+0 4
To be compared to the compar			i' •				•
72 Otaheite	- 1	Bahia	!!	, , ,,		1	• • • • • • • • • • • • • • • • • • • •
72 Otaheite 17 29 210 30 — 5 45 — 7 54 — 2 6 7 74 Rio de Janeiro 22 55 316 51 — 1 11 — 2 8 — 0 57 75 Valparaiso 33 2 288 19 — 13 45 — 15 18 + 1 33 51 151 17 — 7 51 — 10 24 + 2 33 51 151 17 — 7 51 — 10 24 + 2 33 51 151 17 — 7 51 — 10 24 + 2 33 — 1 60	7 1	St. Helena	15 55	354 17	+ 19 27	+ 18 0	+ 1 27
74 Rio de Janeiro 22 55 316 51 — 1 11 — 2 8 + 0 5 75 Valparaiso 33 2 288 19 — 13 45 — 15 18 + 1 33 76 Sydney 33 51 151 17 — 7 51 — 10 24 + 2 30 77 Vorg. d. g. Hoffn. 34 11 18 26 + 27 24 + 28 30 — 1 6 78 Monte Video 34 53 303 47 — 11 23 — 12 0 + 0 3 79 K. Georgs Sund 35 2 117 56 + 5 12 + 5 36 — 0 2 80 Neu Seeland 35 16 174 0 — 11 10 — 14 0 + 2 56 81 Concepcion 36 42 286 50 — 14 43 — 16 48 + 2 2 6 82 Blanco Bay 38 57 298 1 — 12 57 — 15 0 + 2 3 83 Valdivia 39 53 286 31 — 16 13 — 17 30 + 1 17 84 Chiloe 41 51 286 4 — 16 56 — 18 0 + 1 17 8	72		17 29	210 30			
To Valparaiso Sydney S			11			1	,
76 Sydney 33 51 151 17 - 7 51 - 10 24 + 2 33 78 Monte Video 34 53 303 47 - 11 23 - 12 0 + 0 37 79 K. Georgs Sund 35 2 117 56 + 5 12 + 5 36 - 0 22 80 Neu Seeland 35 16 174 0 - 11 10 - 14 0 + 2 36 80 Neu Seeland 35 16 174 0 - 11 10 - 14 0 + 2 36 80 Neu Seeland 35 16 174 0 - 11 10 - 14 0 + 2 25 81 Concepcion 36 42 286 50 - 14 43 - 16 48 + 2 26 81 Chiloe 41 51 286 31			11	1 -	11		
77 Vorg. d. g. Hoffn. 34 II 18 26 + 27 24 + 28 30 - I 6 48 79 K. Georgs Sund 35 2 117 56 + 5 12 + 5 36 - 0 20 80 Neu Seeland 35 16 174 0 - II 10 - 14 0 + 2 50 81 Concepcion 36 42 286 50 - 14 43 - 16 48 + 2 2 82 Blanco Bay 38 57 298 I - 12 57 - 15 0 + 2 3 83 Valdivia 39 53 286 31 - 16 13 - 17 30 + 1 I 84 Chiloe 41 51 286 4 - 16 56 - 18 0 + 1 I 85 Hobarttown 42 53 147 24 - 5 51 - 11 6 + 5 12 86 Port Low 43 48 285 58 - 17 32 - 19 48 + 2 16 87 Port Desire 47 45 294 5 - 16 52 - 20 12 + 3 2 89 R. Santa Cruz 50 7 291 36 - 18 23 - 20 54 + 2 3<			1	1	()	,	, ,
78 Monte Video 34 53 303 47 -11 23 -12 0 +0 37 79 K. Georgs Sund 35 2 117 56 + 5 12 + 5 36 -0 22 80 Neu Seeland 35 16 174 0 -11 10 -14 0 + 2 56 81 Concepcion 36 42 286 50 -14 43 -16 48 + 2 4 82 Blanco Bay 38 57 298 1 -12 57 -15 0 + 2 3 83 Valdivia 39 53 286 31 -16 13 -17 30 + 1 17 84 Chiloe 41 51 286 4 -16 56 -18 0 + 1 17 85 Hobarttown 42 53 284 25 -17 32 -11 6 + 5 12 + 5 14 86 Port Low 43 48 285 58 -17 32 -19 48 + 2 16 87 Port Desire 47 45 294 5 -16 52 -20 12 + 3 26 89 R. Santa Cruz 50 7 291 36 -18 23 -20 54 + 2 33 90 Falkland Insel		Vorg. d. g. Hoffn.	1				
R. Georgs Sund 35 2 117 56 + 5 12 + 5 36 -0 22 23 24 286 50 -11 10 -14 0 + 2 50 23 24 286 50 -14 43 -16 48 + 2 24 25 25 25 25 25 25		Monte Video		303 47	11	1	-
81 Concepcion 36 42 286 50 — 14 43 — 16 48 + 2 28 1 — 12 57 — 15 0 + 2 28 38 57 298 1 — 12 57 — 15 0 + 2 23 28 31 — 16 13 — 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 18 11 18 18 11 18 18 11 18 18 18 18 18 18 18 1		K. Georgs Sund		117 56	+ 5 12	+ 5 36	
82 Blanco Bay 38 57 298 1 — 12 57 — 15 0 + 2 38 39 53 286 31 — 16 13 — 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 17 30 + 1 1 11 18 2 - 16 56 - 18 0 + 1 1 1 1 13 - 11 6 + 5 1	8 0	Neu Seeland	35 16	174 0	— II 10	— 14 0	+ 2 50
83 Valdivia 39 53 286 31 — 16 13 — 17 30 +1 17 4 +1 40 42 43 44 28 28 28 2 20 18 4 11 42 42 43 42 42 43 42 43 43						•	
84 Chiloe 41 51 286 4 -16 56 -18 0 +1 4 285 147 24 -5 51 -11 6 +5 13 147 24 -5 51 -11 6 +5 13 147 24 -5 51 -11 6 +5 13 14 24 -5 51 -11 6 +5 13 14 24 -5 51 -11 6 +5 13 14 24 -5 51 -19 48 +2 16 21 -19 48 +2 16 -19 -20 48 +1 44					1	1	
85 Hobarttown 42 53 147 24 - 5 51 - 11 6 + 5 18 86 Port Low 43 48 285 58 - 17 32 - 19 48 + 2 16 87 Port San Andres 46 35 284 25 - 19 4 - 20 48 + 1 44 88 Port Desire 47 45 294 5 - 16 52 - 20 12 + 3 26 89 R. Santa Cruz 50 7 291 36 - 18 23 - 20 54 + 2 31 90 Falkland Insel 51 32 301 53 - 15 16 - 19 0 + 3 44 91 Port Famine - 53 38 289 2 - 20 28 - 23 0 + 2 32 8** Port Etches + 60 21 213 19 - 28 33 - 31 38 + 3 4 8** Lerwick + 60 9 358 53 + 27 10 + 27 16 - 0 6 11* Stockholm + 59 20 18 4 + 15 22 + 14 57 + 0 25 34* Valentia + 51 56 349 43 + 30 2 + 28 43 + 1 19 40* Brüssel	84						
86 Port Low 43 48 285 58 — 17 32 — 19 48 + 2 16 87 Port San Andres 46 35 284 25 — 19 4 — 20 48 + 1 44 88 Port Desire 47 45 294 5 — 16 52 — 20 12 + 3 22 89 R. Santa Cruz 50 7 291 36 — 18 23 — 20 54 + 2 30 90 Falkland Insel 51 32 301 53 — 15 16 — 19 0 + 3 44 91 Port Famine — 53 38 289 2 — 20 28 — 23 0 + 2 33 8** Port Etches + 60 21 213 19 — 28 33 — 31 38 + 3 4 38 4 4 + 27 10 + 27 <t< td=""><td>85</td><td></td><td></td><td></td><td>1</td><td>1</td><td></td></t<>	85				1	1	
87 Port San Andres 46 35 284 25 — 19 4 — 20 48 + 1 44 88 Port Desire 47 45 294 5 — 16 52 — 20 12 + 3 20 89 R. Santa Cruz 50 7 291 36 — 18 23 — 20 54 + 2 31 90 Falkland Insel 51 32 301 53 — 15 16 — 19 0 + 3 44 91 Port Famine — 53 38 289 2 — 20 28 — 23 0 + 2 33 8** Port Etches + 60 9 358 53 + 27 10 + 27 16 — 0 6 8*** Lerwick + 60 9 358 53 + 27 10 + 27 16 — 0 6 1** Stockholm + 59 20 18	86)	
89 R. Santa Cruz 50 7 291 36 — 18 23 — 20 54 + 2 31 90 Falkland Insel 51 32 301 53 — 15 16 — 19 0 + 3 44 91 Port Famine — 53 38 289 2 — 20 28 — 23 0 + 2 32 8** Port Etches + 60 21 213 19 — 28 33 — 31 38 + 3 28 2 — 20 28 — 23 0 + 2 32 8** Lerwick + 60 9 358 53 + 27 10 + 27 16 — 0 6 11* 16 — 0 6 11* 16 — 0 6 11* 16 — 10 16 — 0 6 18 4 + 15 22 + 14 57 + 0 26 18 4 + 15 22 + 14 57 + 0 22 23 4 24 44 4 4				, , ,	1	1 - 1	+ 1 44
90 Falkland Insel 51 32 301 53 — 15 16 — 19 0 + 3 44 91 Port Famine — 53 38 289 2 — 20 28 — 23 0 + 2 32 8* Lerwick			1	1 - 1		i I	
91 Port Famine	, 1			1 - 1	, ,		+ 2 31 + 3 44
8** Lerwick +60 9 358 53 +27 10 +27 16 -0 6 11* Stockholm +59 20 18 4 +15 22 +14 57 +0 25 34* Valentia +51 56 349 43 +30 2 +28 43 +1 19 40* Brüssel +50 52 4 50 +23 23 +22 19 +1 45 54* Montreal +45 27 286 30 +5 23 +7 30 -2 7		Port Famine					+ 2 32
8** Lerwick +60 9 358 53 +27 10 +27 16 -0 6 11* Stockholm +59 20 18 4 +15 22 +14 57 +0 25 34* Valentia +51 56 349 43 +30 2 +28 43 +1 19 40* Brüssel +50 52 4 50 +23 23 +22 19 +1 45 54* Montreal +45 27 286 30 +5 23 +7 30 -2 7			•				+3 5
34* Valentia	- 1				+ 27 10		o 6
40* Brüssel +50 52 4 50 +23 23 +22 19 +1 45 27 286 30 +5 23 +7 30 -2 7							+0 25
54* Montreal +45 27 286 30 + 5 23 + 7 30 -2							+ I 19
0-1-	40						
62^* Uahu $+21$ 17 202 0 -12 19 -10 40 -1 20	54 62*	Oahu	+ 45 27	202 0		— 10 40	- 2 7 - 1 39

		Inclination		 	Intensităt	
	Berechn.	Beobacht.	Untersch.	Berechn.	Beobacht.	Untersch.
51 52 53 54 55 56 57 58 59 60	+ 56° 59′ 62 31 61 58 62 13 61 15 60 46 59 32 56 26 56 51 55 43	+ 59° 58′ 61 54 61 22 63 48 60 42 60 18 59 3 58 53 56 17 54 49	- 2° 59′ + ° 37 + ° 36 - 1 35 + ° 33 + ° 28 + ° 29 - 2 27 + ° 34 + ° 54	1.358 1.545 1.539 1.331 1.529 1.520 1.502 1.271 1.465 1.448	1.334 1.580 1.559 1.294 1.530 1.553 1.538 1.271 1.459	+ 0.024 - 0.035 - 0.020 + 0.037 - 0.001 - 0.033 - 0.036 0. + 0.006 - 0.005
61 62 63 64 65 66 67 68 69	68 34 64 14 45 51 4 14 13 24 5 32 + 13 2 - 4 39 - 39 19 + 3 59	68 6 62 38 46 3 6 52 9 29 1 39 + 13 13 - 6 14 - 38 33 + 5 24	+ o 28 + i 36 - o i2 - 2 38 + 3 55 + 3 53 - o ii + i 35 - o 46 - i 25	1.469 1.592 1.168 1.038 1.085 0.813 0.909 1.003 1.161 0.883	1.457 1.591 1.156 1.031 1.069 0.873 0.914 0.97	+ 0.012 + 0.001 + 0.002 + 0.006 - 0.060 - 0.005 + 0.033 + 0.012
71 72 73 74 75 76 77 78 79 80	- 14 52 - 27 26 - 54 8 - 14 49 - 37 56 - 58 11 - 51 4 - 35 34 - 62 39 - 54 46	- 18 I - 30 26 - 54 I - 13 30 - 39 7 - 62 49 - 52 35 - 35 40 - 64 41 - 59 32	+3 9 +3 0 -0 7 -1 19 +1 11 +4 38 +1 31 +0 6 +2 2 +4 46	0.811 1.113 1.060 0.879 1.094 1.667 0.981 1.022 1.658 1.616	0.836 1.094 1.144 0.878 1.176 1.685 1.014 1.060 1.709 1.591	0.025 +- 0.019 0.084 +- 0.001 0.082 0.018 0.033 0.038 0.051 +- 0.025
81 82 83 84 85 86 87 88 89 90	- 42 49 - 42 1 - 46 13 - 48 14 - 66 57 - 50 4 - 53 0 - 51 22 - 53 49 - 52 46		+ I 24 - O 7 + O 34 + I 12 + 3 38 + I 16 + I 14 + I 21 + I 27 + O 39	1.147 1.103 1.145 1.227 1.894 1.257 1.310 1.263 1.321 1.276	1.218 1.113 1.238 1.313 1.817 1.326 1.359 1.425 1.367	0.071 0.010 0.093 0.086 +- 0.077 0.069 0.096 0.104 0.091
91	57 38	— 59 53	+2 15	1.424	1.532	0.108
8* 8** 11* 34* 40* 54* 62* 64*	+76 25 +73 46 +70 52 +71 25 +67 29 +77 24 +37 36 +34 40	+ 76 3 + 73 45 + 71 40 + 70 52 + 68 49 + 76 19 + 41 35 + 31 55	+ 0 22 + 0 1 + 0 48 + 0 33 - 1 20 + 1 5 - 3 59 + 2 45	1.678 1.469 1.451 1.448 1.393 1.713 1.125 1.238	1.75 1.421 1.382 1.409 1.369 1.805 1.14	- 0.072 + 0.048 + 0.069 + 0.039 + 0.024 - 0.015 + 0.048

30.

Wenn man bei der Beurtheilung der Unterschiede zwischen Rechnung und Beobachtung, welche die vorstehende tabellarische Vergleichung ergibt, in Erwägung zieht, dass einerseits fast sämmtliche Beobachtungen mit den Fehlern der Operation und den zufälligen Anomalien in der magnetischen Kraft selbst behaftet sind, und nicht für ein und dasselbe Jahr gelten*); andererseits, dass in unsern Formeln nur die Glieder bis zur vierten Ordnung enthalten sind, während die folgenden noch sehr merklich sein mögen: so scheint die Übereinstimmung zwischen Rechnung und Beobachtung allen billigen Erwartungen zu genügen, die man von einem ersten Versuche haben durfte. Unser Ausdruck für $\frac{V}{R}$ darf also wohl als der Wahrheit nahe kommend betrachtet werden, wenigstens in seinen beträchtlichern Gliedern, und es hat daher der Mühe werth geschienen, von dem Gange der numerischen Werthe von $\frac{V}{R}$ durch eine graphische Darstellung eine Versinnlichung zu geben. Es ist diess durch eine von Hrn. Dr. Goldschmidt gezeichnete Karte in drei Abtheilungen geschehen, deren erste nach Mercator's Projection den ganzen Erdgürtel zwischen 70° nordlicher und 70° südlicher Breite, die beiden andern nach stereographischer Projection die Polargegenden bis zu 650 Breite vorstellen. Die Correctionen und Vervollständigungen, welche in Zukunft eine wiederholte und auf vollkommnere Data gegründete Berechnung an dem Ausdruck für $\frac{V}{R}$ nöthig machen wird, werden zwar ohne Zweifel noch bedeutende Verschiebungen in diesem Liniensystem hervorbringen, besonders in den hohen südlichen Breiten: aber eine wesentliche Änderung in der ganzen Gestaltung selbst ist nicht denkbar ohne so grosse Änderungen in dem Ausdrucke für $\frac{V}{R}$, dass die Übereinstimmung mit den vorhandenen Beobachtungen verloren gehen müsste. Wir sind also hiedurch zu dem wichtigen Resultate geführt, dass das System der

^{*)} Von der bedeutenden Discordanz zwischen verschiedenen Beobachtern bei einem und demselben Orte gibt schon das im vorhergehenden Artikel Mitgetheilte einige Proben; einige andere mögen hier noch angeführt werden, wo die Unterschiede viel grösser sind, als mit irgend einiger Wahrscheinlichkeit auf Rechnung regelmässiger jährlicher Änderung gesetzt werden kann. Die Inclination in Valparaiso war 1829 nach King — 40° 11′, 1835 nach Fitz Rov — 38° 3′. Auf der Insel Mauritius war die Intensität im Jahre 1818 nach Frederinet 1,096, im Jahr 1836 nach Fitz Rov 1,192. Noch grösser ist der Unterschied bei Otaheite, wo die Intensität 1830 von Erman = 1,172 gefunden ist, hingegen 1835 von Fitz Rov = 1,017. Diese letztere Verschiedenheit an einem für künftige Verbesserung der Elemente höchst wichtigen Platze ist bedeutend grösser, als die grösste, die unter allen unsern 86 Vergleichungen berechneter Intensitäten mit beobachteten vorkommt.

Linien gleicher Werthe von V auf der Oberfläche der Erde wirklich unter dem einfachsten oben Art. 11 beschriebenen Typus begriffen ist, und dass also nur zwei magnetische Pole auf der Erde vorhanden sind, wenn man von dem im 13. Artikel erwähnten Falle einer localen Ausnahme absieht, dessen Vorkommen oder Nichtvorkommen zur Zeit noch dahin gestellt bleiben muss. Die genaue Berechnung nach unsern Elementen gibt die Plätze dieser beiden Pole

- 1) in 73°35' nordlicher Breite, 264°21' Länge östlich von Greenwich, mit dem Werthe der ganzen Intensität = 1,701 (nach gewöhnlicher Einheit).
- 2) in 72°35' südlicher Breite, 152°30' Länge mit der ganzen Intensität = 2,253.

Im erstern Punkte hat $\frac{V}{R}$ seinen grössten Werth = +895,86, im zweiten den kleinsten = -1030,24.

Nach Ross's Beobachtung fällt der nordliche magnetische Pol um 3°30' südlicher als nach unserer Rechnung, und letztere gibt, wie aus unsrer Vergleichungstafel ersichtlich ist, eine um 1°12' fehlerhafte Richtung der magnetischen Kraft an jenem Platze. Beim südlichen magnetischen Pole wird man eine bedeutend grössere Verschiebung zu erwarten haben. Da in Hobarttown, als dem demselben am nächsten liegenden Beobachtungsorte, die berechnete Inclination ohne Rücksicht auf das Zeichen, von der Rechnung um 3°38' zu klein angegeben wird, insofern man sich auf die Beobachtung verlassen kann, so wird der wirkliche südliche magnetische Pol wahrscheinlich bedeutend nordlicher liegen als ihn unsere Rechnung angibt, und möchte derselbe etwa in der Gegend von 66° Breite und 146° Länge zu suchen sein.

31.

Wenngleich man den beiden Punkten auf der Erdoberfläche, wo die horizontale Kraft verschwindet, und die man die magnetischen Pole nennt, wegen ihrer Beziehung auf die Gestaltung der Erscheinungen der horizontalen Kraft auf der ganzen Erdfläche eine gewisse Bedeutsamkeit wohl beilegen mag, so muss man sich doch hüten, dieser Bedeutsamkeit eine weitere Ausdehnung zu geben: namentlich ist die Chorde, welche jene beiden Punkte verbindet, ohne alle Bedeutung, und es würde ein unpassender Missgriff sein, wenn man diese gerade Linie durch die Benennung magnetische Axe der Erde auszeichnen wollte. Die einzige Art, wie man dem Begriffe der magnetischen Axe eines Körpers eine all-

gemein gültige Haltung geben kann, ist die im 5. Artikel der Intensitas vis magneticae festgesetzte, wonach darunter eine gerade Linie verstanden wird, in Beziehung auf welche das Moment des in dem Körper enthaltenen freien Magnetismus ein Maximum ist. Zur Bestimmung der Lage der magnetischen Axe der Erde in diesem Sinn, und zugleich des Moments des Erdmagnetismus in Beziehung auf dieselbe, ist nun nach dem, was oben im 17. Art. bereits bemerkt ist, bloss die Kenntniss der Glieder erster Ordnung von V erforderlich. Nach unsern Elementen Art. 26 ist

$$P' = +925,782\cos u + 89,024\sin u\cos \lambda - 178,744\sin u\sin \lambda$$

mithin sind $-925,782 R^3$, $-89,024 R^3$, $+178,744 R^3$ die Momente des Erdmagnetismus in Beziehung auf die Erdaxe, und die beiden Erdradien für die Länge 0 und 90°. Bei der Erdaxe ist die Richtung nach dem Nordpole zu verstanden, und das negative Zeichen des entsprechenden Moments zeigt an, dass die magnetische Axe einen stumpfen Winkel mit jener macht, d.i. dass ihr magnetischer Nordpol nach Süden gekehrt ist. Die Richtung der magnetischen Axe findet sich hieraus parallel dem Erddiameter von 77°50'N. Breite 296°29' Länge nach 77° 50' S. Breite 116° 29' Länge, und das magnetische Moment in Beziehung auf dieselbe $= 947,08 R^3$. Bei letzterm muss man sich erinnern, dass unsern Elementen eine Einheit für die Intensität zum Grunde liegt, die ein Tausendtheil der gewöhnlich gebrauchten ist. Um die Reduction auf die in der Intensitas vis magneticae festgesetzte absolute Einheit zu erhalten, bemerken wir, dass in letzterer die horizontale Intensität in Göttingen, 1834 am 19. Julius = 1,7748 gefunden war, woraus mit der Inclination 68°1' die ganze Intensität = 4.7414 folgt, während sie nach obiger Einheit = 1357 angenommen wird. Der Reductionsfactor ist also = 0.0034941, und sonach das magnetische Moment der Erde nach der absoluten Einheit

$$= 3,3092 R^3$$

Da bei dieser absoluten Einheit für die erdmagnetische Kraft das Millimeter als Längeneinheit angenommen ist, so muss auch R in Millimetern angesetzt werden, wobei es, da ohnehin die Ellipticität der Erde hier nicht berücksichtigt wird, hinreichend ist, R als Radius eines Kreises zu betrachten, dessen Umfang 40000 Millionen Millimeter beträgt. Hienach wird obiges magnetische Moment durch

eine Zahl ausgedrückt, deren Logarithme = 29,93136 oder durch 853800 Qua-Nach derselben absoluten Einheit wurde das magnetische Moment eines einpfündigen Magnetstabes nach den im Jahre 1832 angestellten Versuchen = 100877000 gefunden (Intensitas Art. 21); das magnetische Moment der Erde ist also \$464 Trillionen mal grösser. Es wären daher \$464 Trillionen solcher Magnetstäbe, mit parallelen magnetischen Axen, erforderlich, um die magnetische Wirkung der Erde im äussern Raume zu ersetzen, was bei einer gleichförmigen Vertheilung durch den ganzen körperlichen Raum der Erde beinahe acht Stäbe (genauer 7,831) auf jedes Kubikmeter beträgt. So ausgesprochen, behält dies Resultat seine Bedeutung, auch wenn man die Erde nicht als einen wirklichen Magnet betrachten, sondern den Erdmagnetismus blossen beharrlichen galvanischen Strömen in der Erde zuschreiben wollte. Betrachten wir aber die Erde als einen wirklichen Magnet, so sind wir genöthigt, durchschnittlich wenigstens*) jedem Theile derselben, der ein Achtel Kubikmeter gross ist, eine eben so starke Magnetisirung beizulegen, als jener Magnetstab enthält, ein Resultat, welches wohl den Physikern unerwartet sein wird.

32.

Die Art der wirklichen Vertheilung der magnetischen Flüssigkeiten in der Erde bleibt nothwendigerweise unbestimmt. In der That kann nach einem allgemeinen Theorem, welches bereits in der Intensitas Art. 2 erwähnt ist, und bei einer andern Gelegenheit ausführlich behandelt werden soll, anstatt jeder beliebigen Vertheilung der magnetischen Flüssigkeiten innerhalb eines körperlichen Raumes allemal substituirt werden eine Vertheilung auf der Oberfläche dieses Raumes, so dass die Wirkung in jedem Punkte des äussern Raumes genau dieselbe bleibt, woraus man leicht schliesst, dass einerlei Wirkung im ganzen äussern Raume aus unendlich vielen verschiedenen Vertheilungen der magnetischen Flüssigkeiten im Innern abzuleiten ist.

Dagegen können wir diejenige fingirte Vertheilung auf der Oberfläche der Erde, welche der wirklichen im Innern, in Beziehung auf die daraus nach Aussen entstehenden Kräfte, vollkommen äquivalirt, angeben, und sogar, wegen der Ku-

^{*)} Insofern wir nemlich nicht befugt sind, bei allen magnetisirten Theilen der Erde durchaus parallele magnetische Axen vorauszusetzen. Je mehr an solchem Parallelismus fehlt, desto stärker muss die durchschnittliche Magnetisirung der Theile sein, um dasselbe magnetische Totalmoment hervorzubringen.

gelgestalt der Erde, auf eine höchst einfache Art. Es wird nemlich die Dichtigkeit des magnetischen Fluidums in jedem Punkte der Erdoberfläche. d. i. das Quantum des Fluidums, welches der Flächeneinheit entspricht, durch die Formel

$$\frac{1}{4\pi}(\frac{V}{R}-2Z)$$

ausgedrückt, oder durch

$$-\frac{1}{4\pi}(3P'+5P''+7P'''+9P''''+\text{u.s.w.})$$

Der Werth dieser Formel wird demnächst durch eine graphische Darstellung versinnlicht werden; hier mag nur bemerkt werden, dass er negativ an der nordlichen, positiv an der südlichen Hälfte der Erde ist, so jedoch, dass die Scheidungslinie den Äquator zweimal schneidet (in 6° und 186° Länge) und sich auf beiden Seiten bis zu etwa 15° nordlicher und südlicher Breite von demselben entfernt; ferner dass auf der nordlichen Hälfte zwei Minima Statt finden, auf der südlichen hingegen nur ein Maximum. Nach einer flüchtigen Rechnung finden sich diese Minima und das Maximum

$$-209,1$$
 in 55° N. Breite 263° Länge $-200,0$ in 71° N. Breite 116° Länge $+277,7$ in 70° S. Breite 154° Länge

Bei den Werthen selbst liegt die Einheit unsrer Elemente zum Grunde, und sie müssen daher noch mit 0,0034941 multiplicirt werden, wenn sie in absolutem Maass ausgedrückt werden sollen.

33.

Unsere Elemente sollen, wie schon oben bevorwortet ist, für nichts weiter gelten, als für eine erste Annäherung, und als solche stimmen sie nach Art. 29 mit den Beobachtungen befriedigend genug überein. Es leidet keinen Zweifel, dass eine Verbesserungsrechnung nach diesen Beobachtungen eine viel grössere Übereinstimmung verschaffen würde, und eine solche Rechnung würde an sich weiter keine Schwierigkeit haben als ihre Länge, die immer noch abschreckend gross bleibt, auch wenn man zur Abkürzung ähnliche Kunstgriffe anwenden wollte, wie von den Astronomen bei Verbesserung der Elemente der Planetenund Kometenbahnen benutzt werden. Obgleich indessen diese Schwierigkeit leicht

überwindlich sein würde, wenn die Arbeit unter eine Anzahl von Rechnern vertheilt werden könnte, so möchte es doch nicht gerathen sein, eine solche Verbesserung schon jetzt vorzunehmen, wo die Data von so vielen Plätzen, deren Mitbenutzung wesentlich sein würde, noch so geringe Zuverlässigkeit haben. Es wird am besten sein, vorerst die Vergleichung der Elemente mit Beobachtungen weiter fortzusetzen, wodurch man das Mittel finden wird, den allgemeinen Karten eine viel grössere Zuverlässigkeit zu geben, als bei dem bisher ausschliesslich empirischen Verfahren möglich war. Es sei uns aber erlaubt, einige Blicke auf die künftigen Fortschritte der Theorie zu werfen, deren völlige Realisirung freilich noch sehr entfernt sein mag.

34.

Zu einer befriedigenden Ausfeilung und Vervollständigung der Elemente müssen an die Beobachtungsdata viel höhere Forderungen gemacht werden, als bisher erfüllt sind. Jene sollten an allen zu benutzenden Punkten eine Schärfe haben, die bisjetzt nur an äusserst wenigen erreicht ist; sie sollten von den unregelmässigen Bewegungen gereinigt sein; sie sollten für Einerlei Zeitpunkt gelten. Es wird noch lange dauern, bis solchen Forderungen genügt werden kann: was aber zunächst am meisten Noth thut, ist die Herbeischaffung von vollständigen (d. i. alle drei Elemente umfassenden) Beobachtungen an einem oder dem andern Punkte innerhalb derjenigen grossen Flächenräume, wo dergleichen bisher noch ganz fehlen; denn in der That hat ein neu hinzukommender Punkt allemal für die allgemeine Theorie desto grössere Wichtigkeit, je weiter er von den andern schon zu unserm Besitz gehörenden entfernt liegt.

Nach einer hinlänglichen Zwischenzeit wird man für einen zweiten Zeitpunkt die Elemente von neuem bestimmen, und so ihre Säcularänderungen erhalten. Aber offenbar wird dazu unumgänglich nöthig sein, das bisherige Maass der Intensitäten ganz fahren zu lassen, und ein absolutes an dessen Stelle zu setzen.

Im Laufe künftiger Jahrhunderte werden auch diese Änderungen nicht mehr als gleichförmig erscheinen, und die Erforschung des Ganges, in dem die Elemente fortschreiten, wird den Naturforschern unerschöpflichen Stoff zu Untersuchungen darbieten.

35.

Aber auch Aufschlüsse über interessante Punkte der Theorie wird die Folgezeit bringen.

In unsrer Theorie ist angenommen, dass in jedem messbaren magnetisirten Theile des Erdkörpers genau eben so viel positives wie negatives Fluidum enthal-Hätten die magnetischen Flüssigkeiten gar keine Realität, sondern wären sie nur ein fingirtes Substitut für galvanische Ströme in den kleinsten Theilen der Erde, so ist jene Gleichheit schon von selbst an die Befugniss zu dieser Substitution geknüpft: legt man hingegen den magnetischen Flüssigkeiten wirkliche Realität bei, so könnte man ohne Ungereimtheit die vollkommene Gleichkeit der Quantitäten beider Flüssigkeiten in Zweifel ziehen. In Beziehung auf einzelne magnetische Körper (natürliche oder künstliche Magnete) liesse sich die Frage, ob in ihnen ein merklicher Überschuss der einen oder der andern Flüssigkeit enthalten sei, oder nicht, leicht durch sehr scharfe Versuche entscheiden, da im erstern Falle ein mit einem solchen Körper belasteter Lothfaden eine Abweichung von der verticalen Lage zeigen müsste (und zwar in der Richtung des magnetischen Meridians). Wenn dergleichen Versuche, mit vielen künstlichen Magneten in einem von Eisen hinlänglich entfernten Locale angestellt, niemals die geringste Abweichung zeigen sollten (wie wohl zu vermuthen steht), so würde allerdings jene Gleichheit auch für die ganze Erde mit grösster Wahrscheinlichkeit anzunehmen sein, immer aber doch die Möglichkeit einiger Ungleichheit noch nicht ganz ausgeschlossen.

In unsrer Theorie würde durch das Vorhandensein einer solchen Ungleichheit weiter kein Unterschied entstehen, als dass P^0 (Art. 17) nicht mehr = 0 sein würde Die Folge davon würde sein, dass im ganzen unendlichen äussern Raume dem Ausdrucke für Z noch das Glied $\frac{RRP^0}{rr}$, und also auf der Oberfläche der Erde das (constante) Glied P^0 beigefügt werden müsste, während X und Y gar nicht dadurch geändert werden. Wenn die Zukunft einen viel umfassendern Reichthum an scharfen Beobachtungen geliefert haben wird, als jetzt zu Gebote steht, wird sich allerdings ausmitteln lassen, ob ihre genaue Darstellung einen nicht verschwindenden Werth für P^0 erfordert oder nicht. Bei gegenwärtiger Beschaffenheit der Daten würde aber ein solches Unternehmen noch gar keinen Erfolg haben können.

36.

Ein anderer Theil unserer Theorie, über welchen ein Zweifel Statt finden kann, ist die Voraussetzung, dass die Agentien der erdmagnetischen Kraft ihren Sitz ausschliesslich im Innern der Erde haben.

Sollten die unmittelbaren Ursachen ganz oder zum Theil ausserhalb gesucht werden, so können wir. insofern wir bodenlose Phantasien ausschliessen und uns nur an wissenschaftlich bekanntes halten wollen, nur an galvanische Ströme denken. Die atmosphärische Luft ist kein Leiter solcher Ströme, der leere Raum auch nicht: unsre Kenntnisse verlassen uns also, wenn wir einen Träger für galvanische Ströme in den obern Regionen suchen. Allein die räthselhaften Erscheinungen des Nordlichts, bei welchem allem Anscheine nach Elektricität in Bewegung eine Hauptrolle spielt, verbieten uns, die Möglichkeit solcher Ströme bloss jener Unwissenheit wegen geradezu zu läugnen, und es bleibt jedenfalls interessant, zu untersuchen, wie die aus denselben hervorgehende magnetische Wirkung auf der Erdoberfläche sich gestalten würde.

37.

Nehmen wir also an, dass in einem die Erde gewölbartig oder schalenförmig einschliessenden Raume S beharrliche galvanische Ströme Statt finden, und bezeichnen den ganzen von S eingeschlossenen Raum mit S', den ganzen äussern S und S' einschliessenden Raum mit S". Wie nun auch jene galvanische Ströme configurirt sein mögen, so lässt sich allemal anstatt derselben eine fingirte Vertheilung von magnetischen Flüssigkeiten und zwar innerhalb des Raumes S substituiren, durch welche in dem ganzen übrigen Raume S' und S" genau dieselbe magnetische Wirkung ausgeübt wird, wie durch jene Ströme. Dieser wichtige schon im 3. Artikel erwähnte Satz gründet sich darauf, dass erstlich jene Ströme sich in eine unendliche Anzahl elementarer Ströme (d. i. solcher, die als linear betrachtet werden dürfen) zerlegen lassen; zweitens auf das bekannte, meines Wissens zuerst von Ampère nachgewiesene Theorem, dass an die Stelle eines jeden linearen eine beliebige Fläche begrenzenden Stromes eine Vertheilung der magnetischen Flüssigkeiten an beiden Seiten dieser Fläche in unmessbar kleinen Distanzen von derselben mit vorgedachter Wirkung substituirt werden kann; drittens auf die evidente Möglichkeit, für jede innerhalb S liegende geschlossene Linie eine von ihr begrenzte Fläche anzugeben, die gleichfalls ganz innerhalb S liegt.

Bezeichnet man nun mit -v das Aggregat aller Quotienten, die entstehen, wenn sämmtliche Elemente jenes fingirten magnetischen Fluidums mit der Entfernung von einem unbestimmten Punkte O in S' oder S'' dividirt werden, wobei, wie sich von selbst versteht, die Elemente des südlichen Fluidums als negativ betrachtet werden müssen, so drücken die partiellen Differentialquotienten von v (ganz eben so wie in unsrer obigen Theorie die von V) die Componenten der in O durch die galvanischen Ströme hervorgebrachten magnetischen Kraft aus.

38.

Obgleich die ausführliche Entwickelung der Theorie, aus welcher der im vorhergehenden Artikel gebrauchte Satz entlehnt ist, einer andern Gelegenheit vorbehalten bleiben muss, so verdient doch ein wichtiger dieselbe betreffender Punkt hier noch erwähnt zu werden. Wenn zwei verschiedene Flächen F, F' construirt werden, deren jede denselben linearischen Strom G zur Begrenzung hat, und hier der Kürze wegen nur der einfachste Fall in Betrachtung gezogen wird, wo jene Flächen ausser der gemeinschaftlichen Begrenzungslinie keinen Punkt weiter gemein haben, so schliessen dieselben einen körperlichen Raum ein. Liegt nun O ausserhalb dieses Raumes, so erhält man für denjenigen Bestandtheil von v, welcher sich auf G bezieht, einerlei Werth, man möge die magnetischen Fluida an F oder an F' vertheilen, und zwar ist derselbe äqual dem Producte aus der Intensität des galvanischen Stromes G (mit schicklicher Einheit gemessen) in den körperlichen Winkel, dessen Spitze in O, und der von den aus O nach den Punkten von G gezogenen geraden Linien eingeschlossen ist, oder was dasselbe ist, in denjenigen Theil der mit dem Halbmesser 1 um O beschriebenen Kugelfläche, der die gemeinschaftliche Projection sowohl von F als von F' ist. Liegt hingegen O innerhalb des von F und F' eingeschlossenen Raumes, so sind zwar die beiden Werthe des in Rede stehenden Theils von v, je nachdem man die magnetischen Flüssigkeiten an F oder an F' austheilt, ungleich, weil ihnen verschiedene Theile der erwähnten Kugelfläche entsprechen, und zwar solche, die einander zur ganzen Kugelfläche ergänzen. Allein es müssen dann, weil die Richtung des galvanischen Stroms gegen F und gegen F' entgegengesetzte Lage hat, der Intensität des Stromes, bei der Multiplication in die Kugelflächenstücke, in den beiden Fällen entgegengesetzte Zeichen beigelegt werden. Die Folge davon ist, dass die algebraische Differenz zwischen beiden Werthen des fraglichen Theils von v äqual wird dem Producte aus der Intensität des Stromes in die ganze Kugelfläche, oder in 4π .

Man schliesst hieraus leicht, dass, wenn O in S'' liegt, der Werth von v von der Wahl der Verbindungsflächen ganz unabhängig bleibt, dass hingegen, wenn O in S' sich befindet, zwar der absolute Werth von v von dieser Wahl abhängt, nicht aber die Differentiale von v.

Übrigens bedarf das hier berührte höchst fruchtbare Theorem, wonach in Beziehung auf die magnetische Wirkung eines linearen galvanischen Stromes das Product der Intensität desselben in das Stück der Kugelfläche, welches durch die Projection der Stromlinie, von O aus, begrenzt wird, dieselbe Bedeutung hat, wie in Beziehung auf Anziehungs- oder Abstossungskräfte die durch den Abstand von O dividirten Massentheile, in seiner Allgemeinheit noch mehrerer nähern Erläuterungen, die auf eine ausführliche Behandlung des Gegenstandes verspart werden müssen.

39.

Der Werth von v, welcher im Allgemeinen eine Function von r, u und λ ist, geht auf der Oberfläche der Erde in eine Function von u und λ allein über, und

$$-\frac{\mathrm{d}v}{R\mathrm{d}u}, \quad -\frac{\mathrm{d}v}{R\sin u\,\mathrm{d}\lambda}$$

sind die horizontalen Componenten der aus den galvanischen Strömen daselbst hervorgehenden magnetischen Kraft, beziehungsweise nach Norden und Westen gerichtet. Es ist also offenbar, dass die merkwürdigen oben Art. 15 und 16 angeführten Sätze hier gleichfalls gelten. Allein mit der dritten Componente, der verticalen magnetischen Kraft, wird es, wenn die Agentien ihren Sitz oberhalb haben, eine etwas andere Bewandtniss haben, als wenn sie im Innern sich befinden. Um die aus jenen entspringende verticale Kraft zu ermitteln, muss zuerst v als Function von r, u und λ zugleich betrachtet, nach r differentiirt, und sodann r = R substituirt werden. Allein für den innern Raum S', welchem die Erdoberfläche angehört, kann v nur in eine Reihe nach steigenden Potenzen von r entwickelt werden. Setzen wir

$$\frac{v}{R} = p^0 + \frac{r}{R} \cdot p' + \frac{rr}{RR} \cdot p'' + \frac{r^*}{R^*} \cdot p''' + \text{ u. s. w.}$$

so ist p^0 eine constante Grösse, nemlich der Werth von $\frac{v}{R}$ im Mittelpunkte der

Erde; p', p'', p''' u s.w. hingegen sind Functionen von u und λ , die denselben partiellen Differentialgleichungen wie oben P', P'', P''' u.s.w. Genüge leisten. Hieraus folgt, auf ähnliche Art wie oben Art. 20, dass die Kenntniss des Werths von v in jedem Punkt der Erdoberfläche hinreicht, um den allgemeinen für den ganzen Raum S' gültigen Ausdruck daraus abzuleiten; dass man zur Kenntniss jenes Werths mit Ausnahme eines constanten Theils, oder was dasselbe ist, zur Kenntniss der Coëfficienten p', p'', p''' u.s.w. schon durch die Kenntniss der horizontalen Kräfte auf der Erdoberfläche gelangen kann; dass aber der Werth der verticalen Kraft auf derselben nicht

$$= 2p' + 3p'' + 4p''' + u.s. w.$$

ist (wie er sein würde, wenn die Kräfte vom Innern der Erde aus bewirkt werden), sondern

$$= -p' - 2p'' - 3p''' - u.s.w.$$

Da nun unsere numerischen Elemente (Art. 26), unter Voraussetzung der erstern Formel bestimmt, eine schon sehr befriedigende Darstellung der Gesammtheit der Erscheinungen geben, während diese mit der zweiten Formel ganz und gar unverträglich sein würden, so ist die Unstatthaftigkeit der Hypothese, die die Ursachen des Erdmagnetismus in den Raum ausserhalb der Erde stellt, als erwiesen anzusehen.

40.

Indess darf hiemit die Möglichkeit, dass ein Theil der erdmagnetischen Kraft, wenn auch nur ein vergleichungsweise sehr geringer, von oben her erzeugt werde, noch nicht als entschieden widerlegt betrachtet werden. Eine viel vollständigere und viel schärfere Kenntniss der Erscheinungen wird in Zukunft über diesen wichtigen Punkt der Theorie Belehrung geben. Wenn in der Voraussetzung gemischter Ursachen die Zeichen V, P^0, P', P'' u. s. w., v, p^0, p', p'' in derselben Bedeutung wie oben verstanden werden, so dass die erstern sich auf die aus dem Innern her, die letztern auf die von dem äussern Raume aus wirkenden Ursachen beziehen; wenn ferner

$$V+v=W, P^0+p^0=\Pi^0, P'+p'=\Pi', P''+p''=\Pi'' \text{ u. s. w.}$$

gesetzt wird, so wird auf der Oberfläche der Erde

$$\frac{W}{R} = \Pi^0 + \Pi' + \Pi'' \text{ u.s.w.}$$

sein, wo Π^n derselben partiellen Differentialgleichung Genüge leistet, wie P^n (Art. 18), und die beiden Componenten der daselbst Statt findenden horizontalen magnetischen Kraft werden durch

$$-\frac{\mathrm{d}W}{R\,\mathrm{d}u}, -\frac{\mathrm{d}W}{R\sin u\,\mathrm{d}\lambda}$$

ausgedrückt werden. Es behalten also auch hier die Art. 15 und 16 angeführten Sätze ihre Gültigkeit, und man kann aus der blossen Kenntniss der horizontalen Kräfte die Grössen Π' , Π'' , Π''' u.s. w. bestimmen, aber daraus allein über das Vorhandensein gemischter Ursachen gar nichts schliessen. Wird aber die verticale Kraft für sich betrachtet, und in die Form

$$Q^0 + Q' + Q'' + Q''' + u.s.w.$$

gebracht, so dass Q^n der vorerwähnten partiellen Differentialgleichung Genüge leistet. so wird

$$Q^0 = P^0$$
, $Q' = 2P' - p'$, $Q'' = 3P'' - 2p''$, $Q''' = 4P''' - 3p'''$

u.s.w. sein, und folglich

$$3P' = \Pi' + Q', \quad 3p' = 2\Pi' - Q'$$

 $5P'' = 2\Pi'' + Q'', \quad 5p'' = 3\Pi'' - Q''$
 $7P''' = 3\Pi''' + Q''', \quad 7p''' = 4\Pi''' - Q''' \text{ u. s. w.}$

Man erhält also durch die Combination der horizontalen Kräfte mit der verticalen das Mittel, W in seine Bestandtheile V und v zu scheiden, und also zu erkennen, ob letzterm ein merklicher Werth beigelegt werden muss. Bloss den constanten Theil von v, nemlich p^0 , lassen die Beobachtungen völlig unbestimmt, wovon der Grund aus dem 38. Art. von selbst klar ist.

Es erscheint daher, auch von diesem interessanten Gesichtspunkte aus, als wichtig, dass die horizontale magnetische Kraft für sich betrachtet werde, und wir sehen darin einen Grund mehr für die oben (Art. 21) empfohlenen Rücksichten.

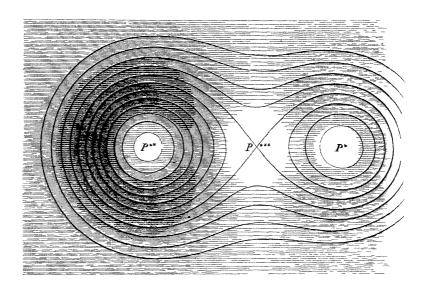
41.

Zu der im vorhergehenden Artikel angedeuteten Untersuchung wird es wahrscheinlich noch lange an zureichenden Daten fehlen. Es verdient aber bemerkt zu werden, dass die Variationen der magnetischen Kraft, wie sie sich gleichzeitig in den verschiedenen Punkten der Erdoberfläche manifestiren, eine ganz ähnliche Behandlung vertragen, wozu vielleicht schon weit früher nothdürftige Data zusammengebracht werden können: dies gilt sowohl von den regelmässigen nach Tages- und Jahreszeit wechselnden Änderungen, als von den unregelmässigen. Einigen allgemeinen Andeutungen, diese künftigen Untersuchungen betreffend, darf hier wohl noch ein Platz vergönnt sein.

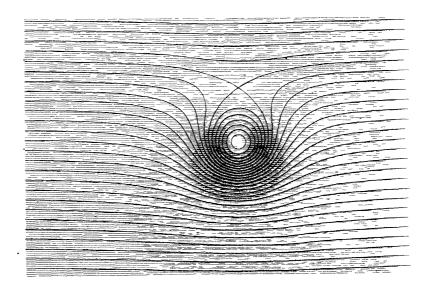
Nachdem man die beobachteten gleichzeitigen Änderungen für jeden Ort in die Form von Änderungen der Componenten der magnetischen Kraft, ΔX , ΔY , ΔZ , gebracht hat, wird man zuvörderst zu untersuchen haben, ob die Änderungen der beiden horizontalen Componenten sich unserer Theorie gemäss verhalten, wonach $-\Delta X$ und $-\sin u \cdot \Delta Y$ die Werthe der partiellen Differentialquotienten einer Function von u und \(\) nach diesen Ver\(\) derlichen sein m\(\) issen. Im bejahenden Fall wird man schliessen, dass die Ursachen entweder wirkliche galvanische Ströme sind, oder doch wenigstens auf gleiche Art wie diese, oder wie geschiedene magnetische Flüssigkeiten wirken. Im entgegengesetzten Falle würde erwiesen sein, dass die Ursachen keine galvanischen Ströme sein können. Man sieht, dass schon die Kenntniss solcher Veränderungen der horizontalen Kraft allein (in hinlänglicher Schärfe, Menge und Verbreitung) höchst wichtige Aufschlüsse geben kann. Ist man aber ausserdem noch im Besitz der gleichzeitigen Änderungen der verticalen Kraft, so wird, unter Voraussetzung jenes erstern Falles, die Methode des vorhergehenden Artikels Auskunft darüber geben, ob die Ursachen oberhalb oder unterhalb der Erdoberfläche ihre Sitze haben; ja es wird dann, in sofern diese Sitze doch wahrscheinlich in einer vergleichungsweise gegen den ganzen Erdkörper wenig dicken Schicht enthalten sind, auch die Art ihrer Verbreitung wenigstens näherungsweise bestimmbar sein.

Was dagegen den zweiten, oben als möglich erwähnten Fall betrifft, so glaube ich zwar, denselben in Beziehung auf die regelmässigen von Tages- und Jahreszeit abhängenden Änderungen der erdmagnetischen Kraft für wenig wahrscheinlich halten zu dürfen, allein in Beziehung auf die unregelmässigen in kurzen Zeitfristen wechselnden Änderungen würde ich zur Zeit kaum wagen, in die-

ser Hinsicht eine Vermuthung auszusprechen. Sollten dieselben ihre Quelle in grossen Electricitätsbewegungen oberhalb der Atmosphäre haben, so würden diese schwerlich in die Kategorie galvanischer Ströme zu setzen sein. Denn wenn gleich alles dafür spricht, galvanischen Strom für Elektricität in Bewegung zu halten, so ist doch nicht jede Bewegung der Elektricität galvanischer Strom, sondern nur dann, wenn die Bewegung einen in sich selbst zurückkehrenden Kreislauf bildet. Da nun bloss unter dieser Bedingung die mehrmals erwähnte Substitution geschiedener magnetischer Flüssigkeiten anstatt des galvanischen Stromes verstattet ist, so würden in der erwähnten Hypothese unsre Relationen zwischen den Componenten nicht mehr zutreffen, d. i., der zweite Fall würde wirklich eintreten. Allein theils würde schon eine zur Gewissheit gebrachte Constatirung dieses wichtigen Umstandes an sich von grossem Interesse sein, theils würde es auch dann bei hinlänglich ausgebreiteten und zuverlässigen Beobachtungen nicht ausser unserm Bereich liegen, den Sitzen und dem Verhalten solcher Bewegungen auf die Spur zu kommen.


NACHTRAG.

In der Vergleichungstafel ist, nach dem Abdruck, bei zwei Örtern eine kleine Unrichtigkeit bemerkt, die bei Callao aus einer fehlerhaften Längenangabe in der angeführten Schrift, bei St. Helena durch einen Rechnungsfehler entstanden ist. Ich benutze diese Gelegenheit, um mit der Angabe der Resultate einer verbesserten Rechnung hier noch die Vergleichung der Theorie mit den Beobachtungen an acht andern Örtern zu verbinden, die seitdem zu meiner Kenntniss gekommen sind. [Die Berichtigungen sind bei dem Wiederabdruck berücksichtigt, auch ist zur leichtern Übersicht die Vergleichung der Beobachtungen an jenen acht Orten mit denen an den ursprünglich 91 Orten schon oben zusammengestellt.]


Die Beobachtungen in Stockholm sind von Rudberg; Intensität und Inclination 1832, Declination 1833 (Poggendorff's Annalen Band 37). In Brüssel sind die Beobachtungen vom Jahr 1832; für Declination und Inclination von Quetelet (Bulletins de l'Académie de Bruxelles T. VI), für Intensität von Rudberg (Sabine's oben [S. 154] angeführte Schrift). Der gefälligen Mittheilung Sabine's verdanke ich die Bestimmungen für die übrigen neuen Örter, so wie für Callao die Bestimmung der Intensität, und eine neuere Beobachtung der Inclination. Die Beobachtungen in Lerwick und Valentia sind 1838 vom Capitaine James Ross angestellt; die in Port Etches, Panama, und Oahu 1837 vom Capitaine Belcher, die in Callao 1838 von demselben; endlich in Montreal ist Inclination und Intensität 1838 vom Major Estcourt beobachtet, die Declination hingegen ist von 1834, und der Beobachter nicht genannt.

In Beziehung auf die Figurentafel, welche zur Versinnlichung der im 12. Artikel entwickelten Untersuchungen dient, ist hier noch zu bemerken, dass der geschickte Lithograph, Hr. Rittmüller daran einen Versuch gemacht hat, zugleich die ungleiche Intensität auszudrücken, und zwar auf eine doppelte Art, nemlich sowohl durch die verschiedene Stärke der Linien, als durch die ungleiche Schattirung der Zwischenräume.

Bei der verzögerten Vollendung des Drucks des gegenwärtigen Bandes ist es möglich geworden, demselben ausser der Karte für die Werthe von V [s. Art. 30] noch zwei andere beizufügen. Die erste, welche die nach den Elementen oder aus den Tafeln, berechneten Werthe der Declinationen darstellt, verdanken die Leser meinem verehrten Freunde, dem Mitherausgeber der Resultate. Um die verwickelte Gestaltung des Systems der Linien gleicher Declinationen recht deutlich übersehen zu können, sind die Punkte, wo die Declination einen Maximumwerth hat, so wie diejenigen, wo zwei Linien gleicher Declination einander kreuzen (oder wo eine sich selbst kreuzt), mit besonderer Sorgfalt berechnet; Punkte der ersten Art finden sich zwei, Punkte der zweiten vier: der gemeinschaftliche Charakter solcher Punkte besteht darin, dass daselbst das erste Differential der Declination nach jeder Richtung verschwindet. Übrigens ist überflüssig zu bemerken, dass in solchen Gegenden, wo die Declinationen nach allen Seiten zu sich langsam ändern, wie im südlichen und südöstlichen Asien, geringe Abänderungen in den Werthen der Declinationen schon sehr grosse in der Gestaltung des Liniensystems hervorbringen können.

Teg 2.

Ähnliches gilt in Beziehung auf die von Herrn Doctor Goldschmdt nach den Tafeln construirte Karte für die ganze Intensität, wobei sich zwei Maximumpunkte und ein Kreuzungspunkt in der nordlichen, und ein Maximumpunkt in der südlichen Hemisphäre, imgleichen zwei Minimumpunkte und zwei Kreuzungspunkte in der mittlern Zone ergeben haben.

An ähnlichen, auf die Theorie gegründeten, Karten für die Inclination, die horizontale Intensität, die drei Componenten der erdmagnetischen Kraft, und für diejenige Vertheilung der magnetischen Flüssigkeiten auf der Erdoberfläche, die als Stellvertreterin der wirklichen im Innern gelten kann [s. Art. 32], wird bereits egarbeitet, und wir hoffen, sie dem nächsten Bande der Resultate beifügen zu können.

[Alle die hier genannten Karten so wie Tafeln für die von 5 zu 5° Breite und von 10 zu 10° Länge berechneten Werthe sowol der in Art. 27 mit $\frac{V}{R}$, X, Y, Z bezeichneten Grössen, als auch der Declination, Inclination, der ganzen und der horizontalen Intensität sind unter dem Titel 'Atlas des Erdmagnetismus nach den Elementen der Theorie entworfen' als Supplement zu den Resultaten aus den Beobachtungen des magnetischen Vereins, unter Mitwirkung von C. W. B. Goldschungt, von Carl Friedrich Gauss und Wilhelm Weber in Leipzig 1840 herausgegeben. Da von diesem Atlas zur Zeit noch Exemplare in genügender Anzahl vorhanden sind, so ist dem gegenwärtigen Abdruck der allgemeinen Theorie des Erdmagnetismus nur die Karte für die Werthe von $\frac{V}{R}$ beigefügt.]

[Ausser den in der Abhandlung angegebenen Vergleichungen der Formeln mit den Beobachtungen an 99 Orten sind in den Resultaten und in dem genannten Atlas noch die hier zusammengestellten Vergleichungen für 44 andere Orte mitgetheilt.

Die Angaben für die Insel Zafarine, für Toulon und für den Ort unter 70° 53′ N. Breite und 170° Länge finden sich in dem Atlas.

Die übrigen Vergleichungen sind von B. Goldschmidt berechnet und von ihm in Bezug auf die Beobachtungen die weiter unten folgenden Nachweisungen in den Resultaten für 1840 und 1841 angegeben:]

		Breite	Länge		Declinatio	n
	\	Diette	Lange	Berechn.	Beobacht.	Untersch.
1	Auf dem Eise	+ 70° 53'	170° o'	— 16° 47	— 18° 49'	+ 2° 2'
2	Turuchansk	65 55	87 33	- 9 19	— 15 O	+ 5 41
3	Drontheim	63 26	10 24	+ 20 17	+ 20 0	+ 0 17
4	Viluisk	62 49	119 27	+ 0 37	+ 1 52	— 1 15
5	Bogoslowskoie	59 45	60 7	— 5 38	- 9 9	+ 3 31
6	Fredriksvarn	59 0	10 4	+ 20 18		
7	J eniseisk	58 27	92 11	— 6 33	6 57	+ 0 24
8	Kodiack	57 20	207 9	— 24 38	26 43	+ 2 5
9	Copenhagen	55 4I	12 34	+ 18 37	+ 17 40	+ 0 57
10	Altona	53 33	9 56	+ 20 28	+ 18 43	+ 1 45
ıı	Semipalatinsk	50 24	80 21	- 6 50	— 6 43	-07
12	Kremsmünster	48 3	14 8	+ 18 26	+ 15 46	+ 2 40
13	Baker's Bay	46 17	235 58	- 20 46	19 11	— I 35
14	Fort Vancouver	45 37	237 24	— 20 8	19 22	— o 46
15	Toulon	43 6	5 55	+ 22 26	+ 19 6	+ 3 20
16	Barcelona	41 25	2 15	+ 23 45		
17	Lissabon	38 43	350 58	+ 26 I	1 -	1
18	Angra (Terceira) Port Bodega	38 39 38 18	332 47	+ 25 17 - 16 41	+ 24 2	+ I I5 - I 2I
19 20	Messina	38 11	236 58 15 34	- 16 41 + 19 16	- 15 20	- 1 21
20	Messina	11	15 34	1 19 10		
21	Palermo	38 7	13 21	+ 19 29	+ 16 3	+ 3 26
22	Algier	36 47	3 4	+ 23 18	+ 19 25	+ 3 53
23	Monterey	36 36	238 7	<u> </u>	- 14 13	— I 34
24	Gibraltar	36 7	354 4I	+ 24 54	+ 21 40	+ 3 14
25	Zafarine (Ins.)	35 11	357 34	+ 24 35	+ 21 7	+ 3.28
26	Sta Barbara	34 24	240 19	- 14 40	— 13 28	— I 12
27	San Pedro	33 43	241 45	— 14 13	— 13 8	— I 5
28	San Diego	32 4T	242 47	— I3 42	- 12 21	— I 2I
29	San Quentin	30 22	244 2	— 12 53	— 12 6	- 0 47
30	San Bartolomeo	27 40	245 7	— 12 I	- 10 46	— I 15
31	Magdalena Bay	24 38	247 53	— II 5	- 9 15	— 1 50
32	Mazatlan	23 11	253 36	— 10 15	 9 24	— o 51
33	San Lucas Bay	22 52	250 7	- 10 31	- 8 37	— I 54
34	San Blas	21 32	254 44	— 9 55	— 9 0	- o 55
35	Socorro Insel	18 43	249 6	— 9 55		
36	Clarion Insel	18 21	245 19	10 0	1	
37	Acapulco	16 50	260 5	— 9 3	- 8 23	— o 40
38	Trevandrum	8 31	77 0	— 3 I4	- 0 44	_ 2 30
39 40	Cocos Insel Puna Insel	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	272 58 280 5	- 8 II - 8 23	- 8 24 - 8 56	+ o 13 + o 33
•	Martins Insel	_ 8 56	220 20	_ 5 07		
41 42	Bow Insel	- 8 50 - 18 5	219 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	i
•	Rio Grande	-32 2	307 40	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
43	Toto Grando	$\frac{-32}{1} - 67 + 4$	147 30	+ 6 20	— 12 35	+ 18 55
44		11				1 20 33
14	Sitka	+ 57 3	224 35	— 28 45	— 29 32	+ 0 47
62	San Francisco	+ 37 49	237 35	— 16 22	— 15 20	— I 2
62*	Oahu Otaheite	+ 21 17	202 0	— 12 19	- 10 40	— I 39
72	Otanette	- 17 29	210 30	— 5 4 5	- 6 30	十 ° 45

1		Inclination		I	Intensität	;
	Berechn.	Beobacht.	Untersch.	Berechn.	Beobacht.	Untersch
ı	+ 79° 27′	+81° 9'	- 1° 42′	1.675		
2	77 20	77 46	-0 26	1.662	1.678	- 0.016
3	74 7	74 12	_o 5	1.483	1.415	+ 0.068 0.090
4	75 44	76 46	— I 2	1.675	1.765	+ 0.032
5 6	70 45	71 36 72 1	-0 51 -0 24	1.556	1.524	+ 0.014
6	7º 37	1 '	-0 51	1.647	1.674	- 0.027
7 8	72 33 73 22	73 ²⁴ 72 43	+0 39	1.638	1.603	+ 0.035
	73 22 68 52	70 0	-I 8	1.419	1.372	+ 0.047
9	68 9	69 2	− ∘ 53	1.405	1.357	+ 0.048
	£	65 18	0 34	1.551	1.560	0.009
II	64 44		— I 26	1.348	1.339	+ 0.009
12	63 8	64 34 69 27	+ I 45	1.675	1.643	+ 0.032
13	71 12 70 56	69 22	+1 34	1.676	1.657	+0.019
14	61 15	62 58	- I 43	1.320		,
15	61 12	62 15	— I 3	1.324	1.288	+0.036
16 17	63 0	61 58	+ 1 2	1.352	1.299	+0.053
18	68 34	66 50	+1 44	1.469	1.449	+0.020
19	64 28	62 53	+ I 35	1.588	1.563	+ 0.025
20	54 12	56 10	— r 58	1.219	1.232	- 0.013
21	53 54	57 16	—3 22	1.242	1.274	0.032
22	56 52	57 43	-0 5I	1.267	1.272	0.005
23	63 10	61 4	+2 6	1.579	1.531	+ 0.048
24	59 35	59 40	—o 5	1.307	1.297	+ 0.010
25	57 32	58 34	— I 2	1.283		
26	61 23	58 54	+ 2 29	1.559	1.501	+ 0.058
27	60 56	58 21	+2 35	1.556	1.480	+0.076
28	60 7	57 6	+3 1	1.547	1.482	+ 0.065 + 0.053
29	57 42	54 30	+ 3 12	1.514	1.461	+ 0.033
30	54 43	51 41	+3 2	1.475	1.432	
31	51 24	46 34	+4 50	1.434	1.362	+ 0.072
32	50 35	46 38	+ 3 57	1.429	1.370	+ 0.059 + 0.052
33	49 26	45 39	+ 3 47	1.411	1.359	+ 0.032
34	48 35	44 33	+4 2	1.405	1.302	+ 0.024
35	43 11	40 44	+ 2 27 + 4 47	1.331	1.222	+0.088
36	41 50	37 3 + 37 57	+ 4 47	1.335	1.316	+0.019
37	+ 42 50	+ 37 57	T 4 33 -4 25	1.014	1.012	+ 0.002
38	— 7 I5 1- 27 46	+ 22 56	+4 50	1.172	1.125	+ 0.047
39 40	+ 27 46 + 13 23	+ 9 8	+4 15	1.062	1.024	+ 0.038
•		14 6	+ 1 22	1.026	1.024	+ 0.002
41	— 12 44 — 28 46	— 30 16	+1 30	1.125	1.123	+0.002
42	11	- 30 A	-3 10	0.997	0.967	+ 0.030
43 44	- 33 14 - 85 59	- 87 3º	+ 1 31	2.248		
		L 75 40	+0 41	1.697	1.704	- 0.007
14	+ 76 30 + 64 14	+ 75 49 + 62 6	+2 8	1.592	1.540	+ 0.052
62	+ 37 36	+41 17	-3 4I	1.125	1.134	0.009
62*	11 11 11	1 1/	+ 2 52	1,113	1.133	- 0.020

{Die Beobachtungen in Palermo sind von Dr. Sartorius von Waltershausen und Prof. Listing zu Ende des Jahres 1835 angestellt.

Die Bestimmungen in Gibraltar wie die Inclination und Intensität in Algier sind 1840 auf einer Expedition der Norwegischen Corvette Ornen von den Capitains Konow und Valeur ausgeführt und uns von Herrn Professor Hansteen mitgetheilt. Die Declination in Algier ist im Jahre 1832 bestimmt und der Description nautique des côtes de l'Algérie par Bérard (Paris 1839) entlehnt.

Die Beobachtung in 67° 4′ südlicher Breite ist 1840 vom amerikanischen Flottencapitain Wilkes angestellt und in den Blättern für literarische Unterhaltung 1841 Nr. 6 mitgetheilt.

Die Beobachtungen in Kodiack, Baker's Bay, Fort Vancouver, Bodega, Monterey, Sta Barbara, San Pedro, San Diego, San Quentin, San Bartolomeo, Magdalena Bay, Mazatlan, San Lucas Bay, San Blas, Acapulco, Cocos Insel, Puna Insel, sind vom Capitaine Belcher in den Jahren 1837—1840 ausgeführt, und von Sabine in einer der königlichen Societät zu London vorgelegten Abhandlung Contributions to terrestical Magnetism veröffentlicht. Auf Socorro, Clarion, Martins und Bow Island sind die Declinationen ebenfalls bestimmt, aber in der Sabine'schen Abhandlung noch nicht mitgetheilt. Um die Unsicherheit zu heben, welche noch rücksichtlich der Intensität auf Otaheite Statt fand, richtete Belcher seine Rückreise über Otaheite und bestimmte durch vielfache Beobachtungen die Elemente auf Point Venus. Ausser diesem Orte sind auch Sitka, San Francisco, Oahu, wo Belcher neue Beobachtungen angestellt, schon nach andern Beobachtungen in der ersten Vergleichungstafel aufgenommen.

Die Elemente von Kremsmünster sind von Herrn Professor Koller bestimmt. Die Beobachtungen in Trevandrum, vom Director des dortigen magnetischen Observatoriums Herrn Caldecott angestellt, sind in einer kleinen Brochüre von Sabine Observations made at the magnetic observatories of Toronto, Trevandrum and St. Helena during a remarkable magnetic disturbance on the 25th and 26th Sept. 1841 angeführt.

Die Mittheilung der Beobachtungen in Turuchansk, Drontheim, Viluisk. Bogoslowskoie, Fredriksvarn, Jeniseisk, Copenhagen, Altona, Semipalatinsk, Barcelona, Lissabon, Angra, Messina, Rio Grande verdanke ich der Güte des Herrn Professor Hansteen.}

HÜLFSTAFELN

ZUR BERECHNUNG

DER RICHTUNG UND STÄRKE

DER MAGNETISCHEN KRÄFTE

AUF DER OBERFLÄCHE DER ERDE

AUS DEN ELEMENTEN DER THEORIE.

		TAPEN 20	, 101010100	HNUNG DE				1
ø.	a°	. A'	$\log a'$	A "	$\log a''$	A'''	$\log a^{\prime\prime\prime}$	$A'''' = 142^{\circ}$ $\log a''''$
+ 90°	+ 0.0	292° 9′	2.07430	347° 16′	∞	221° 48′	$-\infty$	-∞
89	10.3	292 4	2.07444	347 15	0.60246	221 48	8.41399	6.04417
88	20.5	291 50	2.07488	347 13	0.90273	221 50	9.01555	6.94686
87	30.8	291 26	2.07563	347 8	1.07753	221 52	9.36689	7 • 47447
86	41.2	290 52	2.07669	347 2	1.20066	221 54	9.61559	7.84836
85	51.6	290 10	2.07811	346 54	1.29525	221 58	9.80790	8.13790
84	62.1	289 19	2.07990	346 44	1.37159	222 2	9.96441	8.37399
83	72.8	288 20	2.08211	346 32	1.43517	222 8	0.09612	8.57310
82	83.5	287 14	2.08477	346 19	1.48927	222 14	0.20957	8.74509
81	94.3	286 0	2.08791	346 3	1.53601	222 21	0.30901	8.89629
80	105.3	284 41	2.09156	345 45	1.57682	222 29	0.39732	9.03103
79	116.5	283 16	2.09573	345 25	1.61273	222 37	0.47655	9.15241
78	127.8	281 46	2.10046	345 3	1.64451	222 47	0.54824	9.26271
77	139.3	280 13	2.10574	344 39	1.67272	222 57	0.61353	9.36366
76	151.0	278 37	2.11157	344 13	1.69780	223 9	0.67331	9.45660
75	162.9	276 59	2.11794	343 43	1.72012	223 21	0.72831	9.54260
74	175.0	275 20	2.12481	343 12	1.73995	223 34	0.77908	9.62252
73	187.4	273 41	2.13215	342 38	1.75753	223 49	0.82611	9.69707
72	199.9	272 3	2.13991	342 I	1.77302	224 4	0.86977	9.76682
71	212.6	270 25	2.14803	341 20	1.78662	224 20	0.91040	9.83226
70	225.6	268 50	2.15646	340 37	1.79844	224 38	0.94825	9.89381
69	238.9	267 17	2.16512	339 51	1.80860	224 56	0.98357	9.95181
68	252.3	265 46	2.17394	339 1	1.81720	225 16	1.01656	0.00656
67	266.0	264 19	2.18288	338 7	1.82433	225 37	1.04739	0.05833
66	279.9	262 56	2.19183	337 9	1.83005	225 59	1.07620	0.10734
65	294.0	261 36	2.20074	336 6	1.83444	226 22	1.10314	0.15379
64	308.3	260 19	2.20954	334 59	1.83756	226 47	1.12831	0.19786
63		,	2.21816	333 48	1.83947	227 13	1.15183	0.23969
62	322.8	259 7 257 58	2.22656	332 30	1.84022	227 40	1.17377	0.27943
61	337.6 352.5	257 58 256 53	2.23468	331 7	1.83986	228 9	1.19422	0.31720
6 0	367.6	255 52	2.24246	329 38	1.83845	228 39	1.21325	0.35311
		255 52	2.24986	329 30	1.83604	229 11	1.23093	0.38725
59	382.9	254 55	2.25686	326 20	1.83270	229 45	1.24732	0.41972
58	398.3	254 I		324 29	1.82850	230 21	1.26246	0.45059
57 56	413.9	253 II 252 24	2.26339	324 29	1.82350	230 58	1.27641	0.47993
 نو نو		251 40	2.27497	320 23	1.81779	231 37	1.28922	0.50781
55	445.4	1 -	2.27996	318 6	1.81148	232 19	1.30091	0.53428
54	461.3	250 59	2.28439	315 39	1.80465	233 2	1.31152	0.55941
53	477-2	250 21	1 00			233 48	1.32110	0.58323
52 51	493-3	249 46	2.28822	313 2 310 14	1.79747	234 36	1.32967	0.60579
			2 20406	207 14	1.78257	235 26	1.33726	0.62713
50	525.4	248 43	1 -	307 14	1	236 19		0.64728
49	541.4	248 15	1	304 4	1	237 15	1.34960	0.66628
48	557-4	247 49		300 42 297 8	1.76168	237 15		0.68415
47	573.4	247 25	2.29799	1 -71	1 '	239 16	1.35835	0.70092
46	589.2 605.0	247 3	2.29796	293 25	1.75593		1.36143	0.71661

φ	a°	A'	$\log a'$	A"	$\log a''$	A'''	$\log a'''$	$A''''=142^{\circ}$ $\log a''''$
+ 45°	+ 605.0	246° 43′	2.29724	289° 31′	1.75115	240° 21′	1.36143	0.71661
44	620.7	246 24	2.29581	285 30	1.74752	241 30	1.36369	0.73124
43	636.2	246 6	2.29367	281 22	1.74521	242 43	1.36514	0.74483
42	651.5	245 49	2.29080	277 9	1.74436	243 59	1.36581	0.75740
41	666.6	245 34	2.28719	272 54	1.74504	245 19	1.36574	0.76895
40	681.5	245 19	2.28282	268 38	1.74726	246 44	1.36494	0.77950
39	696.2	24 5 5	2.27770	264 24	1.75098	248 13	1.36344	0.78905
38	710.6	244 52	2.27179	260 15	1.75611	249 47	1.36129	0.7976x
37	724-7	244 39	2.26510	256 10	1.76251	251 26	1.35850	0.80518
36	738.5	244 25	2.25760	252 13	1.77000	253 11	1.35513	0.81176
35	752.0	244 12	2.24928	248 23	1.77838	255 I	1.35122	0.81735
34	765.2	243 58	2.24012	244 43	1.78746	256 57	1.34681	0.82195
33	777-9	243 44	2.23010	241 11	1.79704	258 59	1.34196	0.82555
32	790.3	243 28	2.21920	237 49	1.80692	261 8	1.33672	0.82814
31	802.3	243 10	2.20742	234 36	1.81694	263 23	1.33116	0.82970
30	813.9	242 51	2.19471	231 32	1.82693	265 45	1-32535	0.83023
29	825.0	242 30	2.18107	228 35	1.83676	268 13	1.31937	0.82970
28	835.7	242 5	2.16647	225 47	1.84632	270 49	1.31330	0.82808
27	845.9	241 37	2.15089	223 6	1.85551	273 31	1.30722	0.82536
26	855.7	241 4	2.13431	220 31	1.86425	276 21	1.30123	0.82149
25	864.9	240 26	2.11671	218 2	1.87248	279 17	1.29542	0.81644
24	873.7	239 41	2.09807	215 38	1.88014	282 19	1.28988	0.81017
23	882.0	238 49	2.07839	213 18	1.88721	285 28	1.28470	0.80263
22	889.8	237 49	2.05768	211 3	1.89364	288 42	1.27997	0.79374
21	897.0	236 37	2.03595	208 51	1.89942	292 I	1.27576	0.78345
20	903.8	235 13	2.01326	206 42	1.90455	295 24	1.27214	0.77168
19	910.0	233 35	1.98970	204 35	1.90900	298 50	1.26916	0.75832
18	915.8	231 39	1.96540	202 30	1.91277	302 19	1.26686	0.74327
17	921.0	229 23	1.94057	200 26	1.91588	305 50	1.26524	0.72639
16	925.7	226 45	1.91553	198 23	1.91832	309 21	1.26430	0.70753
15	929.8	223 41		196 21	1.92011	312 52	1.26403	0.68650
14	933.5	220 9		194 18	1.92126	316 22	1.26438	0.66306
13	936.7	216 7		192 15	1.92179	319 51	1.26530	0.63693
12	939-4	211 35	1.82457	190 12	1.92170	323 17	1.26672	0.60776
11	941.6	206 34	1.80835	188 7	1.92104	326 41	1.26859	0.57511
10	943.3	201 12	1	186 г	1.91982	330 I	1.27080	0.53839
9	944.6	195 33		183 53	1.91806	333 19	1.27328	0.49686
8	945.4	189 50		181 43	1.91581	336 32	1.27595	0.44948
7	945.7	184 15			1.91309	339 43	1.27873	0.39482
6	945.7	178 56	1.80737	177 16	1.90995	342 49	1.28156	0.33075
5	945.2	174 3		174 59	1.90641	345 53	1.28435	0.25400
4	944-3	169 39	1 00	172 38		348 54	1.28706	0.15908
3	943.0	165 47		170 15		351 51	1.28963	0.03568
2	941.4	162 26		167 48		354 47	1,29201	9.86069
1	939-4	159 34		165 17		357 40	1.29418	9.56033 — ∞
0	937.1	157 9	1.93596	102 43	1.88452	1 0 31	1.29611	,

	·	TAFEL Z	UR BEREC	HNUNG 1	DER WERT	HE VON Z	ζ. 	
9-	a°.	A'	$\log a'$	A"	$\log a''$	A'''	log a'''	$A'''' = 322^{\circ}$ $\log a''''$
00	+ 937.1	157° 9′	1.93596	162° 4	3, 1.88452	0° 31′	1.29611	$-\infty$
- ı	934-5	155 7	1.96018	160	5 1.87966	3 21	1.29778	9.56033
2	931.5	153 26	1.98393	157 2		6 10		9.86069
3	928.3	152 3	2.00702		1.86989	8 58	1.30030	0.03568
4	924.8	150 55	2.02930	151 5	1	11 46	1.30115	0.15908
5	921.0	150 0	2.05070	149	1.86042	14 34	1.30175	0.254∞
5	917,0	149 16	2.07116	146 1	1.85592	17 22	1.30211	0.33075
7	912.8	148 41	2.09068	143 1	7 1.85164	20 11	1.30226	0.39482
8.	908.4	148 14	2.10923	140 20		23 0	1.30223	0.44948
9	903.8	147 54	2.12683	137 2	1	25 51	1.30205	0.49686
10	899.1	147 39	2.14348	134 23	1.84045	28 43	1.30176	0.53839
11	894.1	1 147 28		1	1.83733	31 36	1.30140	0.57511
12	889.1	147 22	2.17398	128 2		34 30	1.30103	0.60776
13	883.9	147 18		125 25		37 26	1.30068	0.63693
14	878.6	147 16	2.20083	122 2		40 23	-	0.66306
15	873.2	147 16	2.21292	119 3	1.82790	43 21	1.30025	0.68650
16	867.7	147 18	2.22413	116 30		46 20		0.70753
17	862.1	147 19	2.23446	, 113 44	•	49 19	1.30047	0.72639
18	856.4	147 22	2.24391	110 5		52 19	1.30091	0.74327
19	850.7	147 24	2.25250	, ,	7 1.82211	55 18		0.75832
,		1		1		,	1	
20	844.9	147 25	2.26022	105 2		58 16	1.30258	0.77168
21	839.1	147 26	2.26706	102 43		61 14	1.30384	0.78345
22	833.2	147 25	2.27302	100		1 64 9	1.30539	0.79374
23	827.3	147 23	2.27809	97 39		67 3	1.30722	0.80263
24	821.4	147 19	2.28227	94 59	1.81560	69 54	1.30931	0.81017
25	815.4	147 13	2.28554	92 31		72 42	1.31164	0.81644
26	809.3	147 4	2.28790	90 5		75 27	1.31417	0.82149
27	803.2	146 52	2.28932	87 43	; ' 1.80968	78 8		0.82536
28	797.1	146 37	2.28978	85 23		80 45	1.31964	0.82808
29	790.9	146 18	2, 28928	83 4	1.80419	83 17	1.32249	0.82970
30	784.7	145 55	2.28780	80 50		85 45	1.32535	0.83023
31	778.5	145 27	2.28530	78 36	1.79714	88 7	1.32816	0.82970
32	772.1	144 54	2.28177	76 25		90 25	1.33087	0.82814
33	765.7	144 15	2.27720	74 14	1.78834	92 38	1.33340	0.82555
34	759-3	143 30	2.27156	72 5	1.78323	94 46	1.33572	0.82195
35	752.7	142 37	2.26483	69 57	1.77765	96 49	1.33776	0.81735
36	746.1	141 36	2.25701	67 49	1	98 46	1.33947	0.81176
37	739•3	140 25	2.24809		1.76499	100 39		0.80518
38	732.5	139 4	2.23808		1.75791	102 27	1.34172	0.79761
39	725.5	137 30	2.22701		1.75034	104 10	1.34215	0.78905
40	718.4	135 43	2.21492	59 19	1.74228	105 49	1.34208	0.77950
41	711.1	133 40	2.20190		1.73373	107 24	1.34145	0.76895
42	703.7		2.18809		1.72472	108 54	1.34022	0.75740
43	696.0	128 39	2.17367	1	1.71526	110 20	1.33836	0.74483
44	688.2	125 37	2 15891	1	1.70537	111 42	1.33584	0.73124
45 1	680.2	122 10			1.69506	-	1.33262	0.71661

	<u> </u>						R WERTH		_ _		A""= 32
ဗု	a°	A'	lo	og a'	A	"	$\log a''$	A"	"	$\log a^{\prime\prime\prime}$	$\log a''$
- 45°	+ 680.2	1220 1	0 2.1	4420	48°	23	1.69506	1130	0	1.33262	0.71661
46	672.0	118 1	6 2.1	3005	46	7	1.68438	114	15	1.32867	0.70092
47	663.5	113 5	6 2.1	1708	43	49	1.67335	115	26	1.32395	0.68415
48	654.8			0605	41	29	1.66199	116	34	1.31844	0.66626
49	645.9	•	• 1	9781	39	7	1.65036	117	39	1.31210	0.64728
50	636.7	98 1	6 2.0	9320	36	42	1.63848	118	40	1.30491	0.62713
51	627.2	92 2	4 2.0	9289	34	16	1.62640	119	39	1.29681	0.60579
52	617.3			9739	31	47	1.61415	120	35	1.28780	0.58323
53	607.2	_		0679	29	17	1.60177	121	28	1.27783	0.55941
54	596.8		, ,	2081	26	45	1.58929	122	19	1.26686	0.53428
-	ł i			00-			1.57675	123	-	1.25486	0.50781
55	586.0			3887	24	11	1.57075	123	7	1.25480	0.47993
56	574.9	64		6018	21	37		_	53	1.22759	0.45059
57	563.5			8391	19	2	1.55158	124	37		
58	551.7	55		20923	16	26	1.53898	125	19	1.21223	0.41972
59	539.6	51 2	2.2	3544	13	51	1.52638	125	59	1.19566	0.38725
60	527.0	48	• •	6198	11	17	1.51376	126	36	1.17782	0.3531
6 1	514.1	45	4 2.2	8840	8	44	1.50111	127	12	1.15865	0.31720
62	500.9		6 2.3	31436	6	13	1.48839	127	46	1.13808	0.2794
63	487.2	40	5 2.3	3963	3	45	1.47556	128	19	1.11603	0.2396
64	473-2	38		6405	I	20	1.46254	128	49	1.09244	0.1978
65	458.8	36	10 2.3	38751	358	58	1.44928	129	18	1.06719	0.1537
66	444.0		,	10996	356	40	1.43567	129	46	1.04019	0.1073
67	428.9	33		3134	354	27	1.42163	130	12	1.01132	0.0583
68	413.3		- 1	15165	352	19	1.40704	130	36	0.98045	0.0065
69	397.4			₁₇ 088	350	15	1.39176	130	59	0.94743	9.9518
7 0	381.2	29	35 2.4	1 8904	348	18	1.37567	131	21	0.91208	9.8938
70	364.6	1 -		50615	346	25	1.35860	131	42	0.87421	9.8322
71		1		52223	344	39	1.34039	132	Ţ	0.83357	9.7668
72	347.6	1		53729	342	59	1.32084	132	19	0.78990	9.6970
73 74	330.3	27	-	55136	341		1.29975	132	3 6	0.74286	9.6225
•			-		1 220	56	1.27687	132	52	0.69208	9.5426
75	294.8	, -		56447	339		1.25192	133	7	0.63709	9.4566
₇ 6	276.6			57662	338	34 18	1	133	20	0.57730	9.3636
77	258.1			58784	337	8		133	32	0.51202	9.2627
78	239.3	1		59816	336		1.19443	133	32 44	0.44034	9.1524
79	220.3	24	0 , 2.	60758	335	4	1.10100	133	44	0.44034	
80	201.0	!	•	61613	334		1.12370	133	54		9.0310 8.8962
81	181.6	1		62382	333	13	1.08172	134			8.7450
82	161.9	23		63067	332		1.03401	134		0.17337	8 7 7 7
83	142.1		53 2.			45	0.97911	134		1	8.5731
84	122.1	22	42 2.	64187	33 r	10	0.91487	134	25	9.92822	8.3739
85	101.9	, 22	32 2.	64624	330		0.83802	134	_		8.1379
86	81.7	22	25 2.	64981	330	16	0.74302		34		7.8483
87	61.3	Į.		65258	329		0.61958		38		7.4744
88	40.9	1		65456	329	44	0.44456	1 -	40		6.9468
89	20.5			65574	329		0.14417	134	41		6.0441
90	0	22	,	65614	220	33	−∞	1 134	42	− ∞	∞

	TAF	el zur bi	CRECHNUN	G DER WE	ERTHE VON	<i>Y</i> ,	
φ	B'	log b'	B"	log b"	В'''	log b'''	B""= 232° 26
+ 90°	220 9'	2.07430	77° 16′		311° 48′		$-\infty$
 89	22 7	2.07437	77 16	0.60263	311 48	8.41408	6.04423
88	22 2	2.07458	77 15	0.90333	311 49	9.01591	6.94713
87	21 54	2.07493	77 12	1.07889	311 50	9.36770	7-47507
86	21 43	2.07543	77 9	1.20311	311 52	9.61702	7.84942
85	21 29	2.07607	77 5	1.29903	311 54	9.81013	8.13956
84	21 11	2.07686	77 0	1.37704	311 57	9.96763	8.37637
83	20 51	2.07781	76 55	1.44260	312 0	0.10050	8.57635
82	1	2.07891	76 48	1.49899			
	f				312 3	0.21530	8.74933
81	20 2	2,08017	76 40	1.54833	312 8	0.31627	8.90167
80	19 33	2.08160	76 32	1.59206	312 12	0.40629	9.03768
79	19 2	2.08320	76 22	1.63121	312 17	0.48742	9.16047
78	18 28	2.08498	76 12	1.66655	312 23	0.56119	9.27231
77	17 52	2.08693	76 o	1.69865	312 29	0.62875	9-37493
76	17 14	2.08906	75 48	1.72795	312 36	0.69100	9.46969
75	16 34	2,09138	75 35	1.75483	312 43	0.74864	9.55766
74	15 52	2.09388	75 20	1.77955	312 50	0.80226	9.63968
73	15 9	2.09658	75 5	1.80237	312 59	0.85232	9.71647
		1		1.82347		0.89922	9.78862
72	14 24	2.09945	74 49		313 7		
71	13 37	2,10252	74 31	1.84301	313 17	0.94327	9.85659
70	12 50	2.10577	74 13	1.86114	313 26	0.98476	9.92082
69	12 2	2,10920	73 53	1.87798	313 37	1.02392	9.98166
68	11 13	2.11280	73 32	1.89362	313 48	1.06095	0.03940
67	10 24	2,11658	73 11	1.90815	313 59	1.09603	0.09430
66	9 34	2.12052	72 48	1.92165	314 11	1.12930	0.14661
65	8 44	2.12461	72 24	1.93420	314 23	1.16091	0.19651
64	7 55	2,12885	71 58	1.94584	314 37	1.19098	0.24419
63		2.13322	71 32	1.95663		1.21961	0.28981
62				1.96663	(-		1
	1 -	2.13772	71 4		315 5	1.24689	0.33350
61	5 26	2.14232	70 35	1.97587	315 20	1.27290	0.37538
60	4 38	2.14703	70 4	1.98440	315 35	1.29773	0.41558
59	3 50	2.15183	69 33	1.99224	315 51	1.32144	0.45419
58	3 3	2.15669	69 0	1.99944	316 8	1.34409	0.49130
57	2 17	2.16162	68 25	2.00602	316 26	1.36574	0.52700
56	1 32	2.16659	67 49	2.01200	316 44	1.38644	0.56135
55	0 48	2.17159	67 12	2.01743	317 3	1.40624	0.59444
54	0 5	2.17661	66 33	2.02232	317 22	1.42517	0.62633
53	359 23	2.18164	65 52	2.02669	317 42	1.44329	0.65706
	358 43	2.18666	65 10	2.03056		1	0.68669
52 51	358 43	2.19166	64 26	2.03396	318 3 318 25	1.46062	0.71528
-	1		60	0.00600	479		0.545%=
50	357 25	2.19662	63 41	2.03690	318. 47	1.49306	0.74287
49	356 49	2.20155	62 54	2.03941	319 10	1.50823	0.76950
48	356 13	2.20641	62 5	2.04151	319 34	1.52274	0.79520
4 7	355 39	2,21121	61 14	2.04320	319 58	1.53661	0.82002
46	355 6	2.21593	60 22	2.04451	320 24	1.54987	0.84398
45	354 34	2.22057	59 27	2.04545	320 50		0.86712

	TAFE	L ZUR BE	RECHNUNC	DER WE	ERTHE VON	· Y.	
ę	B'	log b'	В"	$\log b''$	B'"	$\log b'''$	$B'''' = 232^{\circ} 26'$ $\log b''''$
+ 45°	354° 34′	2.22057	59° 27′	2.04545	320° 50′	I 56254	0.86712
44	354 4	2.22512	58 31	2.04605	321 17	1 57464	0.88947
43	353 35	2.22956	57 33	2.04632	321 44	1.58619	0.91105
42	353 7	2.23389	56 33	2.04627	322 13	1 59721	
41	352 40	2.23811	55 30	2.04592	322 42	1 60771	0.93189
T-	33- 40	2.23011	33 30	2104392	322 42	100//1	0-95201
40	352 14	2.24221	54 26	2.04530	323 13	1.61772	0.97143
39	351 50	2.24618	53 20	2+0444I	323 44	1 62725	0.99018
38	351 26	2.25002	52 12	2.04328	324 16	1.63631	1.00827
37	351 4	2.25372	51 1	2.04191	324 49	1.64493	1.02571
36	350 43	2.25728	49 49	2.04034	325 23	1.65311	1.04254
35	350 22	2.26071	48 34	2.03857	325 57	1 66087	1.05876
34	350 3	2.26398	47 17	2.03662	326 33	1.66822	1.07439
33	349 44	2.26711	45 28	2.03452	327 9	1.67518	1.08944
32	349 27	2.27009	44 37	2.03228	327 47	1.68175	1.10393
31	349 10	2.27292	43 14	2.02991	328 25	1.68796	1.11786
20	0.48	0.07560	4.7 40	0.00544		- 60080	
30	348 54	2.27560	41 49	2.02744	329 5	1.69380	1.13126
29 28	348 38	2.27813	40 22	2.02488	329 45	1.69930	1.14413
4	348 23	2.28052	38 53	2.02226	330 27	1.70446	1.15647
27	348 9	2.28275	37 22	2 01958	33I 9	1.70930	1.16831
26	347 55	2.28483	35 50	2.01686	331 52	1.71382	1.17965
25	347 41	2.28677	34 15	2.01413	332 37	1.71804	1.19050
24	347 28	2.28856	32 39	2.01139	333 22	1.72197	1.20086
23	347 15	2.29021	31 1	2.00866	334 8	1.72561	1.21075
2.2	347 3	2.29171	29 22	2.00595	334 56	1.72898	1.22017
21	346 50	2.29309	27 41	2 00328	335 44	1.73208	1.22912
20	346 38	2.29433	26 0	2 00065	336 33	1.73493	1.23763
19	346 26	2.29544	24 17	1.99808	337 23	1.73754	1.24568
18	346 14	2.29642	22 33	I 99557	338 14	1.73991	1.25329
17	346 2	2.29728	20 48	1 99313	339 6	1.74206	1.26046
16	345 49	2.29802	19 3	1.99077	339 59	1.74399	1.26719
15	345 36	2.29865	17 17	1.98848	240 50	T 714550	1 25250
14	345 23	2.29917	15 31	1 98626	340 53 341 48	1.74570	1.27370
13	345 10	2.29958	13 44	1 98413		1.74855	1.28484
12	344 56	2.29990	13 44 11 57	1.98207	342 43 343 40	1.74969	I 28988
11	344 4 ²	2.30014	10 11	1.98007	344 37	1.75065	1.29451
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
10	344 27	2.30028	8 24	1 97815	345 35	1.75145	1.29872
9 8	344 II	2.30035	6 38	I 97629	346 33	1.75208	1.30253
1	343 55	2.30035	4 52	1 97446	347 32	1.75255	1.30593
7 6	343 37	2.30029	3 7	1 97268	348 32	1.75287	1.30892
D	343 19	2.30018	I 22	1 97092	349 33	1.75305	1.31151
5	343 0	2.30002	359 37	1 96919	350 34	1.75309	1.31370
4	342 40	2.29983	357 54	1.96746	351 35	1.75299	1.31549
3	342 18	2.29961	356 11	1.96573	352 37	1 75276	1.31688
2	341 56	2.29938	354 29	1.96397	353 39	1.75241	1.31788
I	34 1 32	2.29914	352 48	1.96218	354 42	1.75193	1.31847
0	341 7	2-29890	351 8	1.96035	355 45	1.75132	1.31867

	TAFE	L ZUR BE	RECHNUNG	DER WE	RTHE VON	Y.	
φ	B'	$\log b'$	B"	$\log b''$	B'''	log b'''	B''''= 232° 26′ log b''''
o°	341° 7′	2.29890	351° 8′	1.96035	355° 45′	1.75132	1.31867
— I	340 40	2.29869	349 29	1.95846	356 47	1.75060	1.31847
2	340 12	2.29850	347 50	1.95649	357 51	1.74976	1.31788
3	339 42	2.29836	346 13	1.95444	358 54	1.74880	1.31688
4	339 11	2.29827	344 36	1.95228	359 57	1.74772	1.31549
	337		344 3	,5===	337 37	7.07	3.317
5	338 38	2.29824	343 I	1.95002	1 0	1.74652	1.31370
6	338 3	2.29830	341 26	1.94764	2 3	1.74520	1.31151
7	337 27	2.29846	339 53	1.94512	3 6	1.74376	1.30892
8	336 49	2.29873	338 20	1.94246	4 9	1.74219	1.30593
9	336 10	2.29912	336 47	1.93964	5 11	1.74049	1.30253
		_					
10	335 29	2.29965	335 16	1.93667	6 13	1.73867	1.29872
11	334 46	2.30033	333 45	1.93352	7 14	1.73670	1.29451
12	334 I	2.30118	332 14	1.93020	8 15	1.73460	1.28988
13	333 15	2.30222	330 45	1.92669	9 16	1.73234	1.28484
14	332 27	2.30345	329 15	1.92299	10 16	1.72994	1.27938
15 16	331 37	2.30489	327 47	1.91910	11 15	1.72737	1.27350
E!	330 47	2.30655	326 18	1.91501	12 14	1.72464	1.26719
17 18	329 54	2.30845	324 50	1.91071	13 12	1.72174	1,26046
1 (329 I 328 6	2.31059	323 22	1.90621	14 9 15 6	1.71865	1.25329
19	328 6	2.31298	321 54	1.90150	15 6	1.71537	1.24568
20	327 11	2.31564	320 26	1.89658	16 I	1.71189	1.23763
21	326 14	2.31856	318 58	1.89145	16 56	1.70820	1.22912
22	325 16	2.32176	317 30	1.88612	17 50	1.70430	1.22017
23	324 18	2.32523	316 2	1.88057	18 43	1.70017	1.21075
24	323 20	2.32899	314 34	1.87483	19 35	1.69580	1,20086
		, ,,	; 3.3.	/	, ,	/3	
25	322 21	2.33302	, 313 5	1.86887	20 27	1.69118	1.19050
26	321 22	2.33733	311 37	1.86272	21 17	1.68630	1.17965
27	320 22	2.34191	310 8	1.85637	22 6	1.68115	1.16831
28	319 23	2.34675	308 38	1.84983	22 54	1.67572	1.15647
29	318 24	2.35186	307 8	1.84311	23 42	1.67000	1.14413
				0.6			
30	317 25	2.35722	305 38	1.83621	24 28	1.66398	1.13126
31	316 27	2.36281	304 7	1.82913	25 13	1.65763	1.11787
32	315 30	2.36863	302 35	1.82188	25 58	1.65096	1.10393
33	314 33	2.37467	301 3	1.81447	26 41	1.64395	1.08944
34	313 37	2.38091	299 31	1.80690	27 23	1.63658	1.07439
35	312 42	2.38733	297 58	1.79919	28 4	1.62884	1.05876
36	311 48	2.39392	296 25	1.79134	28 45	1.62072	1.04254
37	310 56	2 40066	294 51	1.78335	29 24	1.61220	1.02571
38	310 4	2.40754	293 16	1.77524	30 2	1.60327	1.00827
39	309 14	2.41454	291 41	1.76701	30 40	1.59391	0.99018
I		,					"
40	308 25	2.42163	290 6	1.75866	31 16	1.58411	0.97143
41	307 37	2.42882	288 31	1.75020	31 51	1.57385	0.95201
42	306 51	2.43606	286 55	1.74163	32 26	1.56312	0.93189
43	306 6	2.44336	285 19	1.73297	32 59	1.55188	0.91105
44	305 23	2.45069	283 43	1.72420	33 31	1.54014	0.88947
45	304 41	2.45804	282 7	1.71533	34 3	1.52785	0.86712

TAFEL ZUR BERECHNUNG DER WERTHE VON Y.									
							B'i'' = 232° 26'		
ဖှ	B '	$\log b'$	<i>B"</i>	$\log b^{\prime\prime}$	В'''	$\log b'''$	$\log b^{\prime\prime\prime\prime}$		
- 45°	304° 41′	2.45804	282° 7	1.71533	34° 3′	1.52785	0.86712		
46	304 I	2.46539	280 31	1.70636	34 34	1.51502	0.84398		
47	303 22	2.47272	278 56	1.69729	35 3	1.50161	0.82002		
48	302 44	2.48003	277 21	1.68810	35 32	1.48759	0.79520		
49	302 8	2.48730	275 47	1.67880	36 0	1.47296	0.76950		
	301 33	2.49451	274 13	1.66937	36 27	1.45767	0.74287		
50		2.50166	272 40	1.65981	36 54	1.44170	0.71528		
51	301 0	2.50873	' '	1.65009	37 19	1.42502	0.68669		
52	300 28		1			1.40761	0.65706		
53	299 57	2.51571	269 37	1.64021	37 44	1.38942	0.62633		
54	299 28	2.52260	268 7	1.63013	38 7	1.30942	0.02033		
55	299 0	2.52937	266 39	1.61985	38 30	1.37041	0.59444		
56	298 33	2.53603	265 12	1.60933	38 53	1.35055	0.56135		
57	298 7	2.54256	263 47	1.59855	39 14	1.32980	0.52700		
58	297 43	2.54895	262 23	1.58747	39 35	1.30810	0.49130		
59	297 20	2.55521	261 2	1.57607	39 54	1.28541	0.45419		
60	296 57	2.56131	259 42	1.56430	40 14	1.26166	0.41558		
61	296 36	2.56727	258 25	1.55212	40 32	1.23680	0.37538		
62	296 16	2.57306	257 9	1.53949	40 50	1.21076	0.33350		
63	295 57	2.57868	255 56	1.52635	41 6	1.18346	0.28981		
64	295 39	2.58413	254 46	1.51265	41 23	1.15481	0.24419		
		0		- 10801	47.00	T 70400	0.19651		
65	295 22	2.58941	253 37	1.49834	41 38	1.12473	0.14661		
66	295 5	2.59451	252 31	1.48335	41 53	1.09311	0.09430		
67	294 50	2.59942	251 28	1.46760	42 7	1.05982	1		
68	294 35	2.60415	250 27	1.45101	42 21	1.02473	0.03940		
69	294 22	2.60868	249 29	1.43351	42 34	0.98770	9.98166		
70	294 9	2.61302	248 34	1.41498	42 46	0.94854	9.92082		
7 1	293 57	2.61716	247 41	1.39531	42 57	0.90705	9.85659		
72	293 45	2.62111	246 51	1.37437	43 8	0.86299	9.78862		
73	293 35	2.62485	246 3	1.35202	43 19	a. 81610	9.71647		
74	293 25	2.62839	245 18	1.32808	43 28	0.76604	9.63968		
75	293 16	2.63172	244 36	1.30235	43 37	0.71242	9.55766		
76	293 7	2.63484	243 57	1.27458	43 46	0.65478	9.46969		
		2.63776	243 21	1.24448	43 53	0.59254	9-37493		
77 78	292 59	2.64046	242 47	1.21167	44 I	0.52498	9.27231		
7 0 79	292 52 292 45	2.64296	242 16	1.17572	44 7	0.45122	9.16047		
	,	. 6	047 4-	T 72600	44 75	0.2700	9.03768		
80	292 39	2.64524	241 47	1.13602	44 13	0.37009	8.90167		
8r	292 34	2.64730	241 22	1.09181	44 19	, ,	8.74933		
82	292 29	2.64915	240 59	1.04207	44 24	0.17911	8.57635		
83	292 25	2.65079	240 39	0.98533	44 28	0 06431	8.37637		
84	292 21	2.65220	240 21	0.91948	44 32	9.93144	0.3/03/		
85	292 18	2.65340	240 6	0.84123	44 35	9-77395	8.13956		
86	292 16	2.65439	239 54	0.74509	44 37	9.58084	7.84942		
87	292 14	2.65515	239 45	0.62075	44 39	9.33151	7-47507		
88	292 13	2.65570	239 38	0.44509	44 41	8.94136	6.94713		
	292 12	2.65603	239 34	0.14432	44 42	8.33933	6.04423		
89							_∞ ·		

		TAFEL Z	R BEREC	HNUNG DI	ER WERTH	${f E}$ von ${f Z}$	•	
စ္	c°	C'	$\log c'$	C"	log c"	C'''	$\log c'''$	$C'''' = 322^{\circ}$ $\log c''''$
+ 90°	+ 1652.9	172° 29′	1 - ∞	176° 59′	—∞	36° o'	$-\infty$	
89	1652.8		0.72139		1	30 0		$-\infty$
88			,	1	9.17222	36 0	6.83649	4.38300
87	1652.7	172 20	1.02153	176 58	9.77385	36 I	7.73926	5.58686
86	1652.4		1.19615	176 56	0.12532	36 2	8.26700	6.29078
80	1652.1	171 51	1.31904	176 53	0.37419	36 4	8.64106	6.78992
85	1651.7	171 30	1.41333	176 49	0.56672	36 6	8.93082	7.17676
84	1651.1	171 3	1.48952	176 45	0.72351	36 8	9.16719	7.49252
83	1650.5	170 31	1,55192	176 40	0.83554	36 11	9.36663	7.75916
82	1649.7	169 54	1.60623	176 34	0.96937	36 15	9.53899	7.98980
81	1648.8	169 11	1.65259	176 27	1.06923	36 19	9.69062	8.19291
8 0	1647.7	168 22	1.69305	776 70		26 22	0000	0
	1646-4	167 28	1.72868	176 19	1.15802	36 23	9.82585	8.37426
79 78				176 10	1.23779	36 28	9.94777	8.53797
	1645.0	166 27	1.76027	176 1	1,31006	36 34	0.05867	8.68709
77 76	1643.3	165 20	1.78844	175 50	1.37599	36 40	0.16026	8.82393
70	1641.4	164 6	1.81369	175 39	1.43647	36 46	0.25391	8.95028
75	1639.3	162 45	1.83641	175 27	1.49222	36 53	0.34068	9.06756
74	1637.0	161 16	1.85697	175 14	1.54381	37 I	0.42143	9.17693
73	1634.3	159 41	1.87567	175 0	1.59171	37 9	0.49686	9.27932
72	1631.3	157 57	1.89278	174 45	1.63630	37 17	0.56756	9.37551
71	1628.0	156 6	1.90856	174 29	1.67772	37 26	0.63402	9.46615
70	1624.4	154 6	1.92325	174 12	1.71684	37 36	0.69664	0.55550
69	1620.3	151 59	1.93709	1	1 '			9.55179
68	1615.9		1.95028	173 54	1.75329	37 46	0.75579	9.63290
67	1611.0			173 35	1.78747	37 57	0.81266	9.70988
66	1605.7	147 21 144 51	1.96304	173 14	1.81956	38 8 38 20	0.86482	9.78309 9.85283
				-,- ,3	1		2-3-3-0	7.03.03
65	1600.0	142 15	1.98809	172 31	1.87806	38 32	0.96309	9.91937
64	1593.7	139 33	2.00074	172 7	1.90472	38 45	1.00868	9.98295
63	1586.9	136 46	2.01369	171 42	1.92979	38 59	1.05213	0.04377
62	1579.6	133 55	2.02708	171 16	1.95338	39 13	1.09356	0.10202
61	1571.7	131 2	2.04101	170 48	1.97557	39 28	1.13312	0.15786
60	1563.2	128 8	2.05556	170 20	1.99642	20 42	T 77000	0.07746
59	1554.1	125 15	2.07077	169 50	2.01601	39 43	1.17090	0.21146
58	1544-4	122 22	2.08665	169 18	2.03440	39 59 40 16		1
57	1534.0	119 33	2.10318	1 .1			1.24157	0.31242
57 56	1523.0	116 48	2.10318	168 45	2.05165	40 34 40 52	1.27462	0.36001 0.40583
_		_						
55	1511,2	114 8	2.13799	167 34	2.08291	41 11	1.33655	0.44994
54	1498.9	111 35	2.15610	166 56	2.09694	41 30	1.36556	0.49245
53	1485.8	109 7	2.17456	166 17	2.11015	41 51	1.39345	0.53343
52	1471.9	106 47	2.19326	165 35	2.12237	42 12	1.41996	0.57295
51.	1457.4	104 34	2.21210	164 52	2.13370	42 34	1.44546	0.61107
50	1442.1	102 29	2.23098	164 7	2.14417	4 2 57	1.46990	0.64787
49	1426.0	100 32	2.24979	163 20				1
48	1409.2	^ •	2.26848		2.15372	43 20	1.49327	0.68335
• 1	1391.6			162 31	2.16267	43 45	1.51567	0.71762
47	1373.2	96 59	2,28692	161 40	2.17076	44 10	1.53711	0.75071
46		95 24	2.30508	160 47	2.17810	44 36	1.55764	0.78266
45	1354.1	93 56	2.32288	159 51	2.18474	45 3	1.57728	0.81352

		TAFEL Z	UR BEREC	HNUNG D	ER WERTE	e von 2	Z.	
φ	e^{α}	<i>C'</i>	$\log c'$	C"	log e"	C'''	log c'"	C''''= 322° :
+ 45°	+ 1354.1	93° 56′	2.32288	159° 51'	2.18474	45° 3′	1.57728	0.81352
44	1334.2	92 34	2.34027	158 53	2.19069	45 31	1.59606	0.84332
43	1313.6	91 18	2.35721	157 53	2.19598	46 0	1.61401	0.87209
42	1292.1	90 9	2.37367	156 50	2.20064	46 30	1.63116	0.89987
41	1270.0	89 5	2.38961	155 44	2.20468	47 I	1.64754	0.92670
40	1247.1	88 6	2.40502	774 06	2.20815	/=	1.66317	0.0446
39	1223.5	87 12	2.41988	154 36	2.21106	47 33	1.67807	0.95260
38	1199.2	86 23		153 25	2.21343			0.97759
- 1	1174.1	,	2.43417	152 11			1.69226	1.00171
37 36		85 39	2.44789	150 55	2.21531	49 15	1.70578	1.02497
30	1148.4	84 58	2.46103	149 35	2.21671	49 51	1.71862	1.04741
35	1122.0	84 22	2.47360	148 12	2.21766	50 29	1.73083	1.06904
34	1094.9	83 48	2.48558	146 46	2.21819	51 7	1.74241	1.08988
33	1067.2	83 19	2.49699	145 16	2.21834	51 47	1.75338	1.10994
32	1038.9	82 52	2.50782	143 44	2.21813	52 28	1.76376	1.12926
31	1009.9	82 28	2.51808	142 8	2.21759	53 10	1.77356	1.14784
30	980.5	82 7	2.52779	140 29	2.21677	53 54	1.78283	1.16570
29	950.4	81 48	2.53693	138 47	2.21568	54 39	1.79154	1.18286
28	919.9	81 32	2-54554	137 1	2.21438	55 25	1.79974	1.19932
27	888.9	81 18	2.55360	135 12	2.21287	56 12	1.80742	1.21510
26	857-4	81 6	2.56113	133 20	2.21123	57 I	1.81462	1.23022
25	825.5	8o 55	2.56815	131 25	2.20947	57 51	1.82134	1.24468
24	793-2	80 47	2.57465	129 26	2.20762	58 43	1.82759	1.25850
23	760.5	80 39	2.58066	127 25	2.20572		1.83341	1.27168
22	727.5	80 33	2.58618	125 21	2.20380		1.03341	1.28424
21	694.1	80 29	2.59121	123 15	2.20189	60 30 61 26	1.83879 1.84375	1.29619
20	660.5	80 25	2.59578	121 6				
j	626.7				2.20002	62 23	1.84832	1.30752
19	•		2.59991		2.19821	63 21	1.85250	1.31826
1	592.6	80 20	2.60356	116 43	2.19649	64 21	1.85630	1.52840
17	558.4	80 19	2.60679	114 29	2.19487	65 23	1.85975	1.33796
16	523.9	80 18	2.60959	112 14	2.19337	66 25	1.86286	1.34695
15	489.4	80 17	2.61198	109 58	2.19199	67 30	1.86563	1.35535
14	454.8	80 16	2.61397	107 41	2.19075	68 35	1.86809	1.36320
13	420.1	80 15	2.61556	105 23	2.18963	69 42	1.87025	1.37047
12	385.4	80 15	2.61677	103 6	2.18864	70 50	1.87212	1.37720
11	350.7	80 13	2.61761	100 49	2.18776	71 59	1.87372	1.38337
10	316.0	80 II	2.61809	98 33	2.18699	73 9	1.87505	1.38898
9	28r.3	80 9	2.61822	96 17	2.18630	74 21	1.87613	1.39406
8	246.7	80 Ś	2.61802	94 2	2.18568	75 34	1.87698	1.39859
7	212.3	80 a	2.61750	91 48	2.18510	76 47	1.87759	1.40258
6	177.9	79 54	2.61667	89 36	2.18454	78 2	1.87799	1.40604
5	143.7	79 46	2.61554	87 25	2.18397	79 17	1.87818	1.40896
4	109.6	79 37	2.61414	85 16	2.18336	80 34	1.87816	1.41134
3	75.8	79 25	2.61246	83 8	2.18269	81 51	1.87796	
2	42.I	79 12	2.61054	8r 3	2.18191	83 8	1.87757	1.41320
+ 1	+ 8.6	78 56	2.60839		2.18191			1.41452
)	- 24.6	/~ 50	00039	78 59		84 26	1.87700 1.87626	1.41531

		TAFEL !	ZUR BERE	CHNUNG I	ER WERT	THE VON	Z.	
φ	c°	C'	log e'	C"	log c"	C'''	$\log c^{\prime\prime\prime}$	C''''= 322° 26' log c''''
o°	- 24.6	78° 37	2.60603	76° 57'	2.17998	85° 45′	1.87626	1.41558
— I	57.6	78 15	2.60347	74 56	2.17876	87 3	1.87535	1.41531
2	90.3	77 50	2.60075	72 58	2.17733	88 22	1.87426	1.41452
3	122.8	77 22	2.59789	71 I	2.17566	89 41	1.87301	1.41320
4	154.9	76 50	2.59491	69 6	2.17374	91 0	1.87159	1.41134
4	+34.9	/ 30	2037472	09 0	201/3/4	, , ,	1.0/139	-1434
5	186.9	76 14	2.59185	67 12	2.17154	92 19	1.87000	1.40896
. 6	218.5	75 34	2.58874	65 20	2.16905	93 38	1.86824	1.40604
7	249.8	74 50	2.58562	63 29	2.16623	94 56	1.86630	1.40258
8	280.8	74 I	2.58252	61 39	2.16309	96 14	1.86418	1.39859
9	311.6	73 8	2.57949	59 50	2.15959	97 31	1.86187	1.39406
					-,,,,			
10	342.0	72 11	2.57658	58 2	2.15573	98 48	1.85936	1.38898
11	372.1	71 8	2.57383	56 15	2.15150	100 4	1.85665	1.38337
12	402.0	70 I	2.57129	54 29	2.14689	101 19	1.85373	1.37720
13	431.6	68 49	2.56902	52 43	2.14188	102 33	1.85058	1.37047
14	460.8	67 32	2.56707	50 57	2.13648	103 47	1.84720	1.36320
							_	
15	489.8	66 11	2.56549	49 12	2.13067	104 59	1.84357	1.35535
16	518.6	64 45	2.56435	47 26	2.12446	106 10	1.83968	1.34695
17	547.0	63 15	2.56368	45 41	2.11785	107 20	1.83552	1.33796
18	575.3	61 42	2.56354	43 55	2.11083	108 29	1.83107	1.32840
19	603.2	60 5	2.56397	42 9	2.10341	109 36	1.82632	1.31826
20	631.0	58 26	2.56499	40 22	2.09559	110 42	1.82125	1.30752
21	658.5	56 44	2.56664	38 34	2.08737	111 47	1.81585	1.29619
22	685.7	55 I	2.56893	36 45	2.07878	112 51	1.81010	1.28424
23	712.8	53 17	2.57187	34 56	2.06981	113 53	1.80398	1.27168
24	739.7	51 32	2.57546	33 5	2.06047	114 53	1.79749	1.25850
		- •		""	.,			
25	766.4	49 47	2.57966	31 13	2.05078	115 53	1.78960	1.24468
26	792.9	48 3	2.58447	29 20	2.04076	116 51	1.78329	1.23022
27	819.3	46 20	2.58984	27 26	2.03041	117 47	1.77555	1.21510
28	845.5	44 39	2.59572	25 29	2.01975	118 42	1.76737	1.19932
29	871.6	43 0	2.60207	23 32	2.∞88r	119 36	1.75872	1.18286
	807.5	4I 24	2.60883	21 33	1.99760	120 28	1.74958	1.16570
30	897.5	41 24 39 51	2.61593		1.98614	120 20		1.14784
31 32	923.3 949.0	39 31	2.62331	19 32 17 30	1.97445	121 19	1.73995 1.72979	1.14/04
32	974.6	36 55	2.63090	17 30	1.96255	122 56	1.71909	1.10994
33	1000.1	35 32	2.63864	13 20	1.95047	123 43	1.70784	1.08988
34		33 32		-5 20	·-/J- - -7/	73		,
35	1025.5	34 13	2.64646	11 14	1.93821	124 28	1.69601	1.06904
36	1050.9	32 58	2.65430	96	1.92581	125 12	1.68358	1.04741
37	1076.1	31 46	2.66210	6 57	1.91327	125 54	1.67053	1.02497
38	1101.2	30 38	2.66980	4 47	1.90061	126 36	1.65684	1.00171
39	1126.3	29 34	2.67736	2 37	1.88785	127 16	1.64249	0.97759
	•	.0	. 60,		. 00		- 6	
40	1151.3	28 33	2.68471	0 26	1.87498	127 55	1.62745	0.95260
41	1176.2	27 36	2.69181	358 14	1.86202	128 32	1.61171	0.92670
42	1201.0	26 42	2.69862	356 3	1.84896	129 9	1.59523	0.89987
43	1225.8	25 52	2.70510	353 52	1.83580	129 44	1.57800	0.87209
44	1250.5	25 4	2.71121	351 42	1.82252	130 18	1.55998	0.84332
45	1275.1	24 19	2.71691	349 33	1.80912	130 52	1.54115	0.81352

	TAFEL ZUR BERECHNUNG DER WERTHE VON Z .							
φ	c°	C'	$\log c$	C"	$\log c''$	C'''	log c'''	C''''= 322° 26'
— 45°	1275.1	24° 19′	2.71691	349° 33	1.80912	130° 52′	1.54115	0.81352
46	1299.5	23 37	2.72218	347 25	1.79558	131 23	1.52147	0.78266
47	1323.9	22 58	2.72698	345 18	1.78186	131 54	1.50092	0.75071
48	1348.1	22 21	2.73129	343 I3	1.76793	132 24	1.47945	0.71762
49	1372.3	21 47	2.73508	341 10	1.75376	132 53	1.45705	0.68335
50	1396.2	21 14	2.73833	339 10	1.73931	133 21	1.43365	0.64785
51	1420.0	20 44	2.74100	337 12	1.72452	133 48	1.40924	0.61107
52	1443.7	20 16	2.74307	335 17	1.70935	134 14	1.38376	0.57295
53	1467.1	19 49	2.74453	333 25	1.69375	134 39	1.35716	0-53343
54	1490.3	19 25	2.74534	331 35	1.67764	135 3	1.32940	0.49245
55	1513.2	19 1	2.74550	329 50	1.66098	135 26	1.30043	0.44994
56	1536.1	18 40	2-74495	328 7	1.64368	135 48	1.27017	0.40583
57	1558.6	18 20	2.74370	326 28	1.62568	136 10	1.23857	0.36001
58	1580.8	18 I	2.74169	324 52	1.60691	136 31	1.20556	0.31242
59	1602.7	17 43	2.73892	323 21	1.58728	136 50	1.17106	0.26294
60	1624.2	17 26	2.73535	321 52	1.56672	137 9	1.13498	0.21146
61	1645.4	17 11	2.73094	320 27	1.54513	137 28	1.09724	0.15786
62	1666.1	16 57	2.72566	319 6	1.52242	137 45	1.05774	0.10202
.63	1686.5	16 43	2.71948	317 48	1.49850	138 2	1.01635	0.04377
64	1706.4	16 31	2.71235	316 34	1.47326	138 18	0.97296	9.98295
65	1725.9	16 19	2.70421	315 24	1.44658	138 33	0.92742	9.91937
66	1744-9	16 8	2.69503	314 17	1.41834	138 48	0.87957	9.85283
67	1763.3	15 58	2.68474	313 13	1.38840	139 2	0.82925	9.78309
68	1781.2	15 49	2.67328	312 12	1.35661	139 15	0.77624	9.70988
69	1798.6	15 40	2.66056	311 15	1.32281	139 28	0.72031	9.63290
70	1815.3	15 32	2.64650	310 21	1.28680	139 40	0.66122	9.55179
7 1	1831.4	15 24	2.63100	309 30	1.24837	139 51	0.59864	9.46615
72	1846.9	15 17	2.61395	308 42	1.20727	140 1	0.53223	9.37551
73	1861.6	15 11	2.59520	307 57	1.16322	140 11	0.46157	9.27932
74	1875.7	15 5	2.57459	307 16	1.11588	140 21	0.38618	9.17693
75	1889.1	14 59	2.55193	306 37	1.06485	140 30	0.30547	9.06756
76	1901.7	14 54	2.52699	306 0	1.00966	140 38	0.21874	8.95028
77	1913.5	14 50	2.49948	305 27	0.94972	140 45	0.12512	8.82393
78	1924.6	14 45	2.46904	304 56	0.88472	140 52	0.02356	8.68709
79	1934.8	14 42	2.43523	304 28	0.81256	140 59	9.91270	8.53797
80	1944.2	14 38	2.39746	304 3	0.73327	141 5	9.79081	8.37426
81	1952.8	14 35	2.35498	303 40	0.64493	141 10	9.65560	8.19291
82	1960.5	14 32	2.30676	303 19	0.54547	141 15	9.50400	7.98980
83	1967.3	14 30	2.25136		0.43201	141 19	9.33165	7.75910
84	1973-3	14 28	2.18665	302 46	0.30031	141 22	9.13223	7.49252
85	1978.3	14 26	2.10937	302 33	0.04380	141 25	8.89588	7.17676
86	1982.5	14 25	2.01401		9.95118	141 28	8.60613	6.78992
87	1985.7	14 24	1.89028	302 14		141 30	8.23208	6.29078
88	1988.0	14 23	1.71505	1 - 1	9.35148	141 31	7-70435	5.58686
89	1989.5	14 23	1.41453		8.74992	141 32	6.80158	4.38300
90	1989.9	14 23		302 3		[41 32	$-\infty$	$-\infty$

ALLGEMEINE LEHRSÄTZE

IN BEZIEHUNG AUF DIE IM VERKEHRTEN VERHÄLTNISSE

DES QUADRATS DER ENTFERNUNG

WIRKENDEN ANZIEHUNGS- UND ABSTOSSUNGS-KRÄFTE

VON

CARL FRIEDRICH GAUSS.

Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1839. Herausg. v. Gauss u. Weber. Leipzig 1840.