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Remarks on
nilpotent Lie algebras of vector fields

By Janusz Grabowski*) at Warsaw

1. Preliminaries and the statement of the theorem

In [1] a local description of analytic vector fields finitely generating a transitive
nilpotent Lie algebra L on a manifold is given. Our aim is to generalize this result by

(i) omitting the analyticity assumption, i.e. we will admit the vector fields which
are smooth only,

(i) omitting the assumption that L is finitely generated,
(iii) giving more information about the coefficients of vector fields from LY.
. Moreover, our proof seems to be much simpler than the proof in [1].

We will refer to [1] for the definitions and some partial results. Before stating the
main theorem let us introduce the notation.

Suppose that L is a nilpotent Lie algebra of smooth vector fields on an
n-dimensional manifold M and p € M. The central descending series of L is defined by
LM =L and, recurrently, L**V =[L, L®]. For i=1, ..., n, define

ri=max{jeZ*:dimLP(p)zn+1—i},
a,=min{je Z"* :r;=r,} and, recurrently, a;,, =min{je Z* :r;=r,_;}. Thus

1

lIA
IA

< Sr,a,>a,>-+, and rj=r,, if a_;>j=a,.
Denote r:=r(L, p):=(ry,...,r,) and let J; be the dilation of R" given by r, ie.
OF(Xqy ey X)) =(t" X1, ...y tX,).

The main result is the following.

Theorem 1. Suppose that L is a nilpotent Lie algebra of smooth vector ﬁelds_ on an
n-dimensional smooth manifold M such that dim L(p)=n for some pe M. Let Y'e L,
where i=1,...,n and r=r(L, p)=(ry,..., F,) is defined as above, be chosen such that

*) The author was supported by the Alexander von Humboldt-Stiftung.
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2 Grabowski, Nilpotent Lie algebras of vector fields

Y!(p),..., Y"(p) are linearly independent. Then r, =1 and in the local coordinates in q
neighbourhood of p given by (xq, ..., X,) > (€expx, Y") o---o (expx, Y1) (p), each Y € LV js

of the form Y= Z yi(x)0;, where 0;=0/0x; and y; are polynomials of degree (r;— j) with
respect to the dtlatzon o, i=1,...,n

In particular, vector fields from L are of degree (— 1) with respect to 6] and L has
locally finite dimension.

2. Side results and the proof of theorem 1
We assume that Y! ..., Y" and local coordinates in a neighbourhood of p are
chosen as in theorem 1.

In the sequel, deg(f)=k will mean that f is a polynomial of degree k with
respect to the dilation J;.

Lemma 1. We have r; =1, i.e. dim L' (p)<n.

Proof. Suppose Z!,...,Z"e 'Y and ZY(p),..., Z"™(p) are linearly independent.
Let L,={Ye L:Y(p)=0} be the isotropy subalgebra of L at p. For each i=1,...,n

S . . . k@ L
there are X3, Y{,..., X, Y € L such that Z'= )" [X}, Y/] and thus
j=1

(1) Zi= Y ay[ZK Z'1+ Y bi[ZY Vil (modL,), i=1,...,n,
k=1 k=1

for some a;, by € R and Ve L,.

Similarly as in [1], substituting for each Z* and Z' on the right side of (1) the k-th
and the [-th equation of (1), we get Z'e L®(modL,), i=1,...,n, and inductively
e [P(modL,),i=1,...,n,5=23,....

Hence dim [¥(p)=n for all s=1, 2, 3, ...; a contradiction.  []

Lemma2. i) If r,2j>r_,, then L9(q)=span{Y'(g),..., Y"(q)} for q from a
neighbourhood of p.

n
i) Yi=0,+ Y «¢;(x)0;, where c;; are smooth functions of the form
j=i+1

n
Cij(Xps s X)) = Y, Xpcl(xy, ..., X,)  for ck-smooth, i=1,..., n.
k=i+1

Proof. The above facts are proved in [1] without use of the analyticity
assumption. []
Lemma 3. Let f be a smooth function in a neighbourhood of 0 in R" such that

f(xg5 .o ) =f(0)+ Z x,8/(xy, ..., X,) for some smooth g,, and let deg(d,(f))=k —r, for
n=12=i. Then deg(f) k
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Proof. We have f(xy,..., X,) =X, 0,(f) (X1, ..., X,) + fu(x1, ..., Xu_ 1), Where
deg(x,0,(f)) =k and f, is smooth and depends on x, ..., x,_, only. Inductively,
J ) =X, wp (%) + -+ + %, W, (x) + fi - (%),
where deg (x, w,(x)+ --- +x;w;(x))=k and f;_, depends on x,, ..., x;_, only. But
fio1 (X1 ooy Xim)=f(Xg5-oes X2y, 0, ..., 0)=1(0),
sodeg(f)=k. O

To prove theorem 1 we will use the induction with respect to n. For n=1, by
lemma 1 and lemma 2, we have L®={0} and y'=0,. Since L is commutative,
0=[Y' Y]=0,(y)0, for each Y=y(x,)0, € L, so y(x,)=const and L is one-dimensio-
nal generated by 0,.

Let now n> 1. By lemma 2, we know that Y**=9,,..., Y"=0,.
Those vector fields belong to the center of L, so [0;, Y]=0 for all YeL and
i=a,,...,n This implies that the coefficients of vector fields from L do not depend on
Xaps s Xy
Passing to the quotient manifold with respect to the foliation generated by
Caps -+ 0ny We get a Lie algebra homomorphism

01"1

":L— L, where <Z yi(x)ai) =) %i(x)0;.
i=1 i=1

L can be considered as a nilpotent Lie algebra of vector fields on a manifold of
dimension (a; —1) and it is easy to see that f:=r(L, 0)=(ry, ..., rs,—;)- By the inductive
assumption, if Ye LY, then y,, i=1,..., a,—1, are polynomials of degree (r;—j) with
respect to the dilation 8¢ and hence with respect to the dilation J], since they do not
depend on x,, ..., x,. This way we get that

for each Ye LY, Y=Y y,(x);, the coefficients y; depend on x,, ..., X, _;

@ I
only and deg(y,)=r;—jfori=1,...,a,—1.

We will get theorem 1 immediately by proving inductively the following.
Theorem 2. For each k=1,2, ...,

A if n2iza, then deg(c;)=(ry—r;) for s=n,...,i+1,

B,) if n2ixa, then deg(d;(c;))=(r,—rj—r) for j=n,...,1and s=n,...,j+1,

C) if j>r,, ., then for each Y € L we have
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(3) Y= 3 ()3, where deg(y) =r;—J.

i=ay

Recall that c;, are coefficients of Y’ as in lemma 2.
Proof of theorem?2. A|) Y'=0,for n=i>a,.
B,) di(cn))=0forn=ziza,.

Now we will show that A,) and B,) imply C,).

Let j>r, , and let Ye LY. Since [Y™ Y]e L™ "7, we can assume inductively
that [ Y™, Y] satisfies (3). The coefficient by o, in [Y™, Y] equals Y™(y,) — Y(c,,,) and it is
a polynomial of degree (r;, —r,, —j). Since

a1—1

Yen)= 3 yidilcm)= 3 ¥:0i(Cms)

i=ay i=ay

deg(0;(cpms)) = (rs—rm—r;) by By) and deg(y;)=(r;—j) for i=1,...,a;—1 by (2), we get
that deg(Y™(y,))=(r;—j—r,) for m=n,..., 1. Now, using (2), one can prove inductively
that this implies that deg(d,,(y,)=(rs—j—r,) for m=n,..., 1, and we conclude by
lemma 3 that deg(y,) = (r;—j).

It remains to prove that C,) implies A, ,,) and B, , ;).

Assume C,) and let n=i=a,,,. The coefficient by d, in [Y/, Y] equals
Y/(c;) — Yi(cj,) and, since [Y” Y] € L*™ and r;+r;>r, 271, ,, it is a polynomial of
degree (ry—r;—r;) by C,).

To prove A,,,), assume inductively that deg(c;)=(r;—r;) for j>i. Hence
deg(Y'(c;,) = deg (0,-(ch) + alz_l i1 0, (cj,)> =(ry—r;—r;) by (2) and we conclude that
deg(Y/(c;,)) =(ry—r;—1;) aI::litJrhlen, inductively, that deg(0;(c;,))=(r;—r;—r;) for n= j>i.

Now, deg(c;,)=(r,—r;) by lemma 2. ii) and lemma 3.

Finally, we will prove B,.,). As above, Yi(c;,) — Yi(c;,) is a polynomial of degree
(ry—r;—r;). We get by A, ) that deg(Y/(c;,))=(r,—r;—r;), so deg(Y'(c;)) =(r,—r;—r))
and, inductively, deg(0;(c;,)) =(r,—r;—r;) for n2i>a,.y. O

Bibliography

[1] M. Kawski, Nilpotent Lie algebras of vector fields, J. reine angew. Math. 388 (1988), 1 —17.

Institute of Mathematics, Warsaw University, PKiN IXp., 00;901 Warsaw, Poland
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Der Zentralisator einer Liealgebra in einer
einhiillenden Algebra

Von Friedrich Knop in Basel

1. Einleitung

Sei g eine halbeinfache Liealgebra und b eine reduktive Unteralgebra. Der Zentra-
lisator U(g)® von b in der universell einhiillenden Algebra von g enthilt dann sowohl
das Zentrum von U(g) als auch das von U(h). In [5] hat K. Johnson bewiesen, dall im
Falle g=su(n, 1) und h=u(n) der Zentralisator von den beiden Zentren erzeugt wird.
Wir zeigen in dieser Arbeit, dal dies auch fiir g=so(n, 1) und b = so(n) zutrifft und daB
dies im Prinzip die einzigen nichttrivialen Félle sind, fiir die dies gilt (Satz 2. 3). Weiter-
hin zeigen wir, dall der Zentralisator immer ein flacher Modul iiber dem Erzeugnis der
beiden Zentren ist (Satz 2. 2). Die Beweisidee besteht darin, zum zugehdrigen graduier-
ten Fall iiberzugehen. Die in Rede stehenden Algebren sind dann durch eine gewisse
Momentabbildung miteinander verkniipft, die ich schon in [6] untersucht habe.

2. Ergebnisse

Alles sei im folgenden iiber einem Korper k der Charakteristik null definiert. Fiir
eine Liealgebra g sei U(g) ihre universell einhiillende Algebra. Sie besitzt eine kanonische
Filtrierung U, (g) und die zugehorige graduierte Algebra ist die symmetrische Algebra
S(g). Fir x e U,(g) —U,_,(g) sei x das Bild von x in S(g). Der Kommutator auf l(g)
induziert auf S(g) ein Poissonprodukt: Fiir x € $™(g) und y € $"(g) ist

{x, 7}:=xy—yx e S"*" (g).

Das Zentrum (g)® der einhiillenden Algebra bezeichnen wir mit 3(g). Entsprechend sei
Z(g):=S(g)®. Wenn g halbeinfach ist, sind beide Algebren Polynomringe mit rgg Er-
zeugenden.

Sei ab jetzt g halbeinfach und b < g eine reduktive Unteralgebra. Wir interessieren
uns fiir den Zentralisator 2 (g)® von b in U(g). Es gibt einen kanonischen Homomor-
phismus

1 3(9) @ 3(b) — U(g)".

I3 Journal fiir Mathematik. Band 406



6 Knop, Der Zentralisator einer Liealgebra

Sein Bild sei 3,. Entsprechend haben wir einen Homomorphismus von Poissonalgebren

1 :Z(@) @ Z(h) — S(g)°
mit Bild Z,.

Satz 2. 1. Sei t das grifite 1deal von g, das in by enthalten ist. Dann ist

Jo=3(a) ®3q) 30), Zy=Z(g) ®zaw Z ().

Insbesondere ist u (bzw. u') genau dann injektiv, wenn by kein echtes Ideal von g enthiilt.
Weiterhin sind 3, und Z, Polynomringe.

Satz 2.2. U(g)" (bzw. S(g)°) ist ein flacher 3o- (bzw. Zy-)Modul.
Satz 2. 3. Es sind dquivalent:

1. ist surjektiv.

1.y’ ist surjektiv.

2. b ist algebraisch, und U(g)" ist kommutativ.

2'. b ist algebraisch, und das Poissonprodukt auf S(g)® verschwindet.

3. Uber dem algebraischen Abschluf von k gilt g:é} gi» b:é b, mit h;<g;
wobei fiir jedes i einer der folgenden Fdlle zutrifft. = =

— b, =g; ist eine einfache Liealgebra,

— gi=sl,, h=gl,_, mitn=2,

— §;=¢%0,, );=s90,_, mit n=4.

Wenn diese Bedingungen erfiillt sind, ist U(g) (bzw. S(g)) ein freier U(g)"- (bzw. S(g)>)
Modul. ‘

3. Beweise

Zunichst sei bemerkt, daB alle Behauptungen genau dann richtig sind, wenn sie
iiber dem algebraischen AbschluB von k stimmen. Wir nehmen daher ab jetzt an, daB k
algebraisch abgeschlossen ist.

Sei G die einfach zusammenhédngende algebraische Gruppe mit Liealgebra g.
Wenn es eine abgeschlossene Untergruppe H< G mit b= Lie H gibt, so heiit b alge-
braisch. In jedem Fall gibt es eine kleinste algebraische Unteralgebra h2b, die
algebraische Hiille. Sie ist _ebenfalls reduktiv, b ist ein Ideal, und der Quotient ist
abelsch. Es gilt U(g)® = U(g)".
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Wenn b algebraisch ist, setzen wir X:=(G x H)/H, wobei H diagonal eingebettet
ist. Mit anderen Worten ist X =G und G x H operiert durch s+ gsh™!. Weiter sei
n: Ty — X das Kotangentialbiindel. Es gilt T = G x g*, 7 ist die Projektion auf den
ersten Faktor, G operiert durch Linksmultiplikation duf dem ersten Faktor, und H
operiert durch Rechtsmultiplikation auf dem ersten und durch Konjugation auf dem
zweiten Faktor. Auf Ty ist die Momentabbildung definiert:

(p:T;_’(g@b)*:aH(éeg(_BbHa(én(a)))’

Fiir die Funktionenalgebren liefert das

S@@®H) — k[TY1=k[Gxg*]=k[G] R S(g).

Der Ubergang zu g @ h-Invarianten liefert genau

W :Z(9) @ Z(h)=5(3 ®H)*®® — (k[G] @, 5(9))*®" = S(9)".

Diesen Homomorphismus habe ich in [6] eingehend untersucht.

Beweis von Satz 2. 1. Sei g=1® g, und h=f® },. Dann ist

3(9) ®3m 3®H) =30 & 3(30) R 3(Bo)s

sowie U(g)’ = J(f) ®; U(g,)™. Entsprechendes gilt fir den graduierten Fall. Damit
geniigt es zu zeigen: =0 = pu, u' sind injektiv. Da p’ aus u durch Ubergang zur
assoziierten graduierten Algebra entsteht, geniigt es zu zeigen, daBl p' injektiv ist. Weiter-
hin konnen wir annehmen, dal} §y algebraisch ist.

Sei T< G ein maximaler Torus. Da G lokal effektiv auf G/H operiert, ist die gene-
rische Standgruppe von T auf G/H endlich. Anders ausgedriickt gibt es einen maximalen
Torus Ty, so dall T, » H endlich ist. Wihle ein £ € g* mit G;=T,. Dann ist H,; und
damit die generische Standgruppe von G x H auf Ty* endlich. Aus [6], Korollar 8.2 und
Satz 5.4 folgt, dall die Momentabbildung dominant ist. Insbesondere ist g’ injektiv. [

Beweis von Satz 2.2. Sei h=a @b die algebraische Hiille von b. Dann ist
3(8) ®30 3(h) = 30 ®; Ula) flach tiber 3,. Entsprechendes gilt fiir den graduierten Fall.
Es geniigt also, den Satz fiir algebraisches ) zu beweisen. Ebenfalls geniigt es, die
Behauptung fiir den graduierten Fall zu beweisen.

Wir haben dann folgendes kommutatives Diagramm:

Y 3 Spec S(g)°
\ 17
);
Spec Z,.

Nach [6], Satz 6. 6c¢ ist B dquidimensional. Da « surjektiv ist, ist auch y dquidimen-
sional. Nach [4] oder [1] ist S(g)? ein Cohen-Macaulay-Ring. Mit [3], § 15.4. 2 folgt die
Flachheit von S(g)" iber Z,. [
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Beweis von Satz 2.3. 1’ = 1: trivial.

1 =2: U(g)° =3, ist kommutativ. Sei h=a @b die algebraische Hiille von b.
Wegen 3, = U(g)’ =U(g)" 2 3o ®, U(a) ist a =0, und b ist algebraisch.

2 = 2': trivial.

2" = 3: Sei BS G x H eine Boreluntergruppe. Der Transzendenzgrad des Invarian-
tenkorpers k(X)® heiBt Kompliziertheit von X. Varietiten der Kompliziertheit null
heiBen sphirisch. Wenn X nicht sphirisch ist, folgt aus [6], Satz 7.1, daB es eine
G x H-invariante rationale Funktion f auf Ty gibt, die algebraisch unabhingig von
S(g @ b) ist. Nach [6], Satz 7.6 folgt, daB f nicht mit allen G x H-invarianten rationalen
Funktionen auf Ty Poisson-kommutieren kann. Die Einschrinkungsabbildung von
k(TS H auf g* = {e} x g* = G x g* = Ty liefert einen Poisson-Isomorphismus mit k(g*)".
Nach [7], Corollaire 7 ist die generische Bahn von H auf g* abgeschlossen. Insbe-
sondere gilt k(g*)? = Quot k[g*]® = Quot S(g)’, d.h. S(g) ist nicht Poisson-kommutativ.
Also ist X sphdrisch. In [2] sind alle affinen, homogenen, sphérischen Varietdten
klassifiziert. Aus dieser Tabelle liest man ab, dal (G x H)/H genau dann spharisch ist,
wenn (g, ) wie in Punkt 3 des Satzes ist.

3 = 1': Wir konnen annehmen, daB} (g, h) eines der drei Paare ist. Der erste Fall
ist trivial.

g=sl,, h=gl,_,: Dieser Fall wurde in [5] behandelt. Ich mdchte hier einen
kiirzeren Beweis vorstellen: Wir identifizieren g* und g mit Hilfe der Killingform. b ist
die Menge aller Matrizen in sl,, deren letzte Zeile und letzte Spalte bis auf das Diagonal-
element aus Nullen besteht. Sei nun S die Menge aller Matrizen in g von folgender
Form:

0 x %
I '

. 0 % o

1% x

1 =

Wir haben einen Morphismus
@ :g— g//G xb//H :=Spec S(g)® x Spec S(h)".

Die Nullfaser ist genau die Menge der nilpotenten Matrizen, die nilpotent bleiben, wenn
man die letzte Zeile und Spalte fortldaBt. Es gibt nur eine Matrix in S, die diese
Bedingung erfiillt, nimlich die, bei der alle Sternchen gleich Null sind.

Fiir t € k* sei A(t):=diag(t"" %, t"3,...,t7"*3 ¢*"*!)e H. Wir lassen nun k* fol-
gendermaBen auf g operieren: Fiir t € k* und Aesl, sei t- A:=t>A(t) AA(t)"". Diese
Operation 148t S invariant. Genauer operiert k* linear auf S mit den Gewichten
2,4,...,2n—2,4,6,...,2n. Dies sind aber genau die Gewichte, mit denen k* auf
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g//G xb//H operiert. Mit [9], 8.1, Lemma 3 erhalten wir, da S — g//Gxb//H ein
Isomorphismus ist. Dies liefert ein Inverses zum kanonischen Morphismus

g//H — g//G xbh//H,

und damit ist die Behauptung gezeigt.

g=s0,, h=sp0,_;: Diesen Fall konnte man im Prinzip genauso behandeln wie
den vorherigen. Wir schlagen hier eine Variante ein: Es gibt einen kanonischen Mor-
phismus @:g//H — g//G xl//H. Da X sphdrisch ist, ist @ endlich ([6], Satz 7. 1). Beide
Rdume sind glatt und tragen eine natiirliche k*-Operation, so dall ¢ dquivalent ist. Die
Gewichte dieser Operationen sind dieselben ([8], Table 3a, Zeile 2 und 5). Mit [9], 8. 1,
Lemma 3 erhalten wir wieder, daB es sich bei @ um einen Isomorphismus handelt, was
zu beweisen war.

Zum Beweis der letzten Aussage: Nach [6], Satz 6.6 ist S(g) flach {tiber
Zy=S(9)" Sei S(g)=EP M, die Zerlegung des H-Moduls S(g) in isotypische Kompo-

X
nenten. Diese sind endlich erzeugte Z,-Moduln und als direkte Summanden eines
flachen Moduls flach, also projektiv, also frei. Der ungraduierte Fall folgt hieraus. []

Nachtrag bei der Korrektur. Mit denselben Methoden kann man folgendes be-
weisen: Sei ) < g algebraisch. Dann ist 3, das Zentrum von U (g)°.
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Quasilinear hyperbolic 2 x 2 systems
with a free, damping boundary condition

By Hans-Dieter Alber at Darmstadt and Jeffery Cooper at College Park

1. Introduction

We consider the quasilinear system of equations for two functions u(x, t), v(x, t)
and a “boundary function” s(t)

1. 1) U — =0,

(1.2) v,—o(u),=0 in O<x<L, t=0,

1.3) o(L, £)=0,

(1. 4) v(0, £) =5'(1),

(1.5 ms” +rs'+ks=0a(0,1t), m=0,r, k>0,

with initial conditions

(1. 6) u(x, 0)=u(x), v(x,0)=1v%x), O<x=<L,
5(0) = s°.

In this paper we assume that u— o(u) is a smooth function on an open interval |
with 0 € I. Furthermore

(1.7 o' (u)>0 Afor uel and o¢(0)=0.

With this condition the system (1. 1), (1.2) is hyperbolic. When I =[R, this system may
be thought of as modelling a nonlinear string with vertical displacement function ¢(x, t)
such that (4, v) =(¢,, ¢,). The boundary condition (1. 3) means that the right end of the
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string is fixed, while (1.4), (1. 5) mean that the left end is attached to a sort of spring
mass system with damping which controls the vertical displacement. (1.5) is the
equation of motion of this system, m is the mass, r a damping constant, and k the spring
constant. In section 4 of this paper we make the additional hypothesis

1.8) Ifu°(x)dx+s°=0
0

on the initial data. This amounts to assuming that the right end of the string is fixed at
¢(L,t)=0 and the left end at ¢(0, t)=s(t) for all t. (1.8) determines the choice of s° in
(1. 6) uniquely.

It is well known that if ¢ is a nonlinear function, then smooth solutions of (1. 1),
(1. 2) develop singularities after some time. One might expect, however, that the intro-
duction of damping in (1.5) prevents the formation of singularities and assures the
existence of a global smooth solution. In fact, this has been proved by Greenberg and
Li Ta-tsien [2] and by Slemrod [8] for the system (1. 1)—(1. 5) with m=k =0 and r>0.
In this case s’ can be eliminated from (1.4) and (1. 5). They proved the existence of C!
solutions global in time provided the initial data (u°, v°) is sufficiently small in the
C'-norm. The basic idea in their proof is that the C'-norm of disturbances propagating
along characteristics decays upon reflection at the left boundary by a factor strictly less
than one.

In the present paper we study the boundary condition (1.5) in the general case.
Our result is that in the case m=0 and r, k>0 a global smooth solution still exists.
However, in the case m, r, k>0, that is for nonvanishing mass of the spring, the
situation changes and a smooth solution develops singularities after a finite time, in
general.

Though in the case m=0, r, k>0 a global solution still exists, the situation is
different from the Greenberg-Li Ta-tsien case, since the decay result for the C'-norm
mentioned above no longer holds. Instead, decay occurs in the energy norms. In sec-
tion 2 we therefore derive the estimate

(1.9) % E@)SC[EQ)"+E@]E@)—Corls' +1s"1 +s"1%],

and in section 3 the estimate
t t t
(1. 10) j E(t)=C, j (s +1s"1> + Is”|?)dt + Cy4 j E(t)*dr,
0 0 0

which holds for all > T* with a suitable constant T*>0, and with the energy E(t)
defined in (2. 3)—(2. 5). Combination of (1.9) and (1. 10) yields the global existence and
the exponential decay results from section 4 for C*-solutions.
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The derivation of (1.9) is standard, but we present it in detail, since some care is
necessary to estimate the boundary terms. This can be seen from the fact that (1. 9) is no
longer valid for m>0. We note that the right hand side of (1. 10) does not contain the

t

terms | s(r)*dt, and some care is needed to show that this term can be avoided in this
0

inequality.

As already mentioned, an essentially new situation occurs in the case m, r, k>0,
which is considered in sections 5, 6, and 7 of this paper. For a C? solution (u, v) of
(1. 1)—(1.7) set

u(x,t)

Li1 1
Eo(t)zg[ivz(x, t)+ g o(r])dn]dx+5(mls’|2+klsl2).

d
We note that zl—tEO(t)=—r(s’)2§0 so that the initial boundary value problem is

dissipative. Nevertheless, we show that for m >0 the global existence result of section 4
no longer holds and that for sufficiently small initial data u° v° singularities develop.
More precisely, let u be the diameter of support of (u2,v?), and assume that
u°(0)=v°(0) =s° = 0. We prove that C? solutions of (1. 1)—(1.7) with ¢”(0)# 0 develop
singularities in a finite time provided (u° v°) is small in C([0, L]) and D=pu/m is
sufficiently small. Moreover, it is shown that asymptotically for © — 0 and

sup (ju°(x)l, [v°(x))) — 0
0=sx=<L

the time of existence is equal to the time of existence of the solution to the Cauchy
problem for (1. 1), (1.2). The method of proof is similar to that of Lax [3], but more
complicated techniques are needed to estimate the solution as it interacts with the free
boundary. The core of the proof is the equation (7.6), which states that disturbances
propagating along characteristics are reflected at the boundary unchanged up to integral
terms, which can be made small by choosing the initial conditions as described above.

With a different choice of o, the system (1. 1)—(1. 7) describes an initial-boundary
value problem for one dimensional isentropic flow in Lagrangian coordinates, and in
the remainder of this introduction we discuss this interpretation of (1. 1)—(1.7). In
Eulerian coordinates, the gas is contained in a tube along the y axis with a fixed wall
at y=>b. The left end of the tube is bounded by a piston of mass m on a damped spring
mechanism. When the gas is at rest with a constant density g,>0 we take the
equilibrium position of the piston to be y=a and s(t) denotes the displacement of the
piston from equilibrium. The system of differential equations and boundary conditions
in Eulerian coordinates for the density g, velocity v and pressure P is

(1. 11) o, +(ev), =0,

(1. 12) e[v, +vv,]+ P,=0,
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(1.13) v(a+s(), t)=5'(t),
(1. 14) o(b, 1) =0,
(1. 15) ms” +rs' +ks=P,— P(a+s(t), t).

Here P,=P(g,) is the pressure needed to balance the spring of the piston at
equilibrium. The Lagrangian coordinate is

y(x,1)
x= [ edn,
a+s(t)
the mass of gas between the piston and y, and
b
L= | ody
a+ts(t)
is the total mass of gas in the tube. The system (1.11)—(1.15) transforms into
(1. H)—(1. 5) with
1
U=——— —
e(y(x, 1), t)

Up

being the difference between the specific volume 1/¢ and u, = 1/g,. We shall assume that

1
o(uy=P,—P [u+u0:|

satisfies (1. 7). This would be true when the gas is polytropic in which case P(g)= A4¢’
and o(u)=P,— A(u+uy)~". The condition (1. 8) becomes

b

| ey 0)dy=gob—a).

sO+a

Note that p has the units of mass so that D =pu/m is a dimensionless parameter.
Our condition for the breakdown of solutions requires that the mass of gas in the
non-constant part of the initial data must be small relative to the mass m of the piston.
In this case, the free piston is in effect acting like a rigid wall, and the formation of
singularities is to be expected.

Finally we note that in this paper we assume local existence of C* solutions of the
system (1.1)—(1.7) to be known. This local existence result can be proved using
classical methods due to Friedrichs [1]. Li Ta-tsien and Yu Wen-ci [5] have obtained
such local existence results, and a modification of their method could be used to derive
the local existence theorem needed here. We remark that Li Ta-tsien [4] has also
studied some free boundary value problems with a view to proving global existence of
discontinuous shock wave solutions.

Acknowledgement. We wish to acknowledge the support of two institutions
which provided visiting opportunities: Alber at the University of Maryland, and Cooper
at the University of Bonn under Sonderforschungsbereich 256.
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2. Energy estimates

We shall derive energy estimates for solutions (u, v) € C3([0, L] x [0, T]; R?) of
the system (1. 1)—(1. 6) when m=0, r>0, and k>0. We recall that the system we are
considering is

Q. 1) U, =v,,
v,=0(u,
2.2) v(L, t) =0,

v(0, t)=s'(t), rs'(t)+ks(t)=0a(u(0,1), t=0.
We introduce the following notation. Let w=(u, v) and for t =0 set
(2.3) Eo(t)=Eo(t, w)
L1 u(x,1) 1
= |:— vix, )+ | a(n)dn:l dx +—= kls(t)]?.
ol2 0 2
For a multi index o= (g, ,), 0<|a| =a; +a, <2, let
(2.9 E,(t)=E,(t, w)
1L
=3 [ [ID%v(x, t)|* + o’ (u(x, t))] D*u(x, t)|*]dx
0

b3 Ko/ (w0, 0] s

Finally, let

2.5 E()= Y, E,).

lal=2

For functions f, g: (0, L) — R?, we set

g =§f(x) gdx, [f]=( N

and

Iflle=sup [f(X)I.
0<x<L
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If w=(u,v) is a C* solution on [0, L]x[0, T], there are positive constants
0., 0y, 6,5, and G5 such that

(2. 6)

lo" (ulx, D) =£6,, o (u(x, )£ 3,

0,0 (u(x, 1)) <oy,

for (x, t) € [0, L] x [0, T]. Hence for a C? solution w, we have

E(t)g% min{g,, 1} ¥ |D*w|>

la] <2

A

Theorem 2. 1. Let (u, v) be a C? solution of (2. 1)—(2.2) on [0, L] x [0, T]. Then

there are constants C, and C, independent of r and k (but depending on sup |u(x, t)]
0<t<T
0<x<L

through o, 6, 6,, and G5) such that
d 1/2 rz +1 "2 "2 "2
2.7 a7 E(t)SC,|E()"*+ — | EO|E@ = Cor s +1s"1" +1s"17].
Proof. From (2. 1)—(2. 3), we find

d dLl1 , o 1
@.8) —J;Eo(t)=a~t[£ |:—2~vz+(5)a(r)dr]dx+§ksz]

=[(vo,+o@u)dx+kss' = —r(s').

l‘*

[=]

Next let

guw O B 0 o'
A"(“):[ 0 1]’ A‘(“)_[a'(u) 0 ]

By assumption, w=(u, v) € C3. Hence (2. 1) can be written as a symmetric hyper-
bolic system:

2.9 Ao()w, = A, (W)w,
and from (2. 4) we see that

i 14 1 d o
(2.10) ar Ea=5 I (Ao(uw) D*w, D*w )+’2‘ i kLo’ (0, )]~ |0} s(2)]>.
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If we differentiate in (2. 9), the result is
(2.11) Aow)D*w, = A;(u) D*w, + B,(w)

where

(2.12) B.w=D(A,(u)w,— Ag(u)w,) — A, (u) D*w, + Ay () D*w,

=2 (;) [D*"# Ay (w) DPw, — (D*F Ao () D w,].

p<a

The boundary condition at x = L implies that
[D*wA,(u)D*w] (L, t)=0.
Hence if we multiply (2. 11) by D*w and integrate, we deduce

1

d 1
(2.13) oo (Ao (u) D*w, D*w) = 3 ([Ao(u),— A, (w),]D*w + B,(w), D*w)

—[o’(w) D*uD*v] (0, t).
Now

L
([Ao(w),— A, (u),]1D*w, D*w)=( ¢" (u,|D*u|* — 2u, D*uD*v)dx.
0

Hence Sobolev’s inequality and the definition of E(¢) then yield
(2.14) I([4o (W), — A1 ()] D*w, D*W)| < C3, | Dul, ID*w|?

1
< Cé, max [1, 0_] E32(1),

21

where || Dull, = max {|u,(x, 1) |u.(x, 1)|}.
0=<x=<L
To estimate the commutator B,(w) we use the Moser type inequalities [6]:

1D*(fg)—fD*gll SC>ID"™'f | gl + DS Nl 1D~ gll).

Here [[D’f|*>= ) [ID*f||*>. Now when f=A;(u), j=0, 1,

la]=s

IDf o = ID(4;@)ll < Cy 6, | Dull,,
and
IDf1=ID(4;W)l < C, 6, [|Dul
while

ID2f || = ID*(4;)ll < C365 | Dully, |Dull + Cs6, | D?ul.
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Hence with g =Dw, we obtain from (2. 12)

IB,(w)| =C6, | Dul, |[Dw|  for Jaj=1 and
(2.15) IB,w)l| < C{(G5 | Dull, |Dull + &, [D*uf)) [ Dwl.,
+6, | Dul, |D*wl|} for |o=2.

Now using Sobolev’s inequality and the definition of E(t), we have (for o = 0):

[(B,(w), D*w)| < C max {1, ;1“}2 (6, E**(t) + 65 E2(1)).

=1

Combining (2. 13), (2. 14) and this last estimate we obtain

1

(2.16) 5 ;;—It» (Ao (w) D*w, D*w) < C max {1, !

‘”}2 (6, EV*(t)+ a5 E(t) E(t)
g1

—[o'(w)D*uD*v] (0, t).

It remains to estimate the boundary terms in this inequality. For a=(0, 1), we
use (2.2) to obtain

(2.17) —a'D*uD*v=—0¢"u,v,= —o(u),v,

— kd n2 ”2
= =3 26—

For o =(1, 0), we use (2. 1) and (2. 17) to deduce

—o'D*uD*v=—o'u,v,=—uu,

1 kd |, "o
=?[—5a—t‘(s)2—r(s )]

_ kdf@) o kd na
——E”I: ,:I‘—U,(S) 2(0,)214;(3)-

1
Then we use Sobolev’s inequality to estimate u,, and the fact that E(t)gi k|s’)? to
obtain

n2 m2
(2.18) —o'u v, < _E 416 —r(i,)—+CE3/2(t).
2 dt o

O_l
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Next we turn to the case a = (0, 2). We find that

(2.19) —a'D*uD*v = — ¢ U, v,, = — o (u),, v, + 6" (W)ulv,

_ ”y2 my2 " 2 m
= 2dt(s) r(s”)* +o"(Wufs

I!/\

" " C 2
&= 6+ < B,

Here we have used Sobolev again to estimate u, in terms of E(t). The case
a=(1, 1) is a bit more complicated. By virtue of (2. 1),

—~a'ux,vx, = = Uy Uy + o-”(“) U Up Uy
Using (2. 19) we find
1 k d C
_ < ) 2 172__ . my2 - 2
220 oS-, [ 3 P =r(1=0) (" 4 F (t)]

s-3 % [(s")z] 29 (2 4 €, B0 + Cleryt 200
2 o o

From the boundary condition (2. 2),

1
U= [rs” +ks"—a"u?].

" k ”2
S —(ST)— u,. This yields
o

v
We note that u, =—=— so that ks"u, u,=
¢ o

(2. 21) a”(u)uxu,u,,=[%,— [rs” +ks" —a"u]u.u,

< [L] {s (6" 4 (o2 uf]
g &

O' ”)2 _( //)2

Ty

8(SIII)Z

ut

sr

+CE¥ (1) +C, [; + 1] E2(1).
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Hence combining (2. 20) and (2. 21) we find

g

2.22) U, S — 2 = [(s”)Z] (1—28)( 2

1
+C,E*?* )+ C, [5 + % + 1] E*(1).

Finally, we tackle the case a =(2, 0). Again by virtue of (2. 1) we have

”,2

-'O-qux Uyx = — Uy Uy + 0 U UL,
From (2. 22) we see that
k d[s"] r(1-2¢
2. — S—=—|— ")+ C3 E¥(t
( 23) uxtvxt = 2 dt [61] ( ) ( ) 3 ( )

1
+C, [—+1+ 1] E*(t)
er &

"

_o
0" uiuy, =— ui[v,—o"uu,]
T

" "2

o (6")

=—u2s" ———u,u}
o o

’

r 1 a")?
(s")* +— (") uz 4! g
er ag

< &
=0

er

1
< ()4 CE O+ CoER(0).

(o

Combining (2. 23) and this last inequality we have

k d[s" ] r(1-3¢ )
_ ! < - N ”nr
(2 24) O UsxUxx= T I:o,/] ( ) ( )

1
+ Cy E¥2(t) + Cg [E—r + % + 1] E2(t).
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To conclude we substitute (2. 17), (2. 18), (2.19), (2. 22) and (2. 24) into (2. 16) and
sum over o +0:

(Ao(u) D*w, D*w) +
2

N =

(o)~ [l 5]
2

i d
dt dt <l

N[ =
1A
IA

el

A

1
<C,E**1t)+C, [; +%+ l] E%(t)

—r { [l +i,] ()2 + [(1 _y+ 0229, 0 _,328)] (s'")Z}.
o 7 @)

The statement of Theorem 2.1 follows from this estimate and (2. 8) and (2. 10) if
we fix the value of ¢, at say e =1/6.

3. Dependence of the solution on the boundary values

If the negative terms on the right hand side of the inequality (2. 7) dominate the
other terms, then the energy of the solution decreases and blow up does not occur.
Therefore we prove in this section an estimate for these negative terms. In section 5 we
combine this estimate and (2. 7) to obtain a differential inequality for E(¢).

As in the last section, we assume that (u, v) € C*([0, L] x [0, T]) is a solution of
(2.1) and (2.2). We set E= sup E(t). In this section we shall prove the following

0StsT
theorem. ==

Theorem 3. 1. Let T*=2L(g,)” '? and assume the initial data satisfies (1. 8):
L
ful(x)dx+s°=0.
0

If T>2T*, then there are constants C and a, independent of r and k, but which depend
on sup |u(x,t)|, such that for 2T*<t<T,

0<x=sL
0st=<T

3. 1) j E(r)dt < C exp(a, EV?) j [(2 + k2 +1) ()2 +|s"[?)
0 (4]
+(1+72) |s"2 + E()*]dr.

The proof is based on several lemmas. For (x, t) € [0, L] x [0, T] we let t(&; x, )
be the solution of

3.2 j—;=/1({, 1), t(x;x, t)=t,

where A(x, t)=[o"(u(x, t))]"Y?- & (& t(&; x, t)) is the positive characteristic through
(x, t). Let 7, =(0,7) (§; x, t) and 1,=(0,7) (&; x, t).
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Lemma 3.2. We have

@ (3.3) (&5 x, 1) = —A(x, ) 1, (& x, 0).

(ii) There exist constants C and a such that for O SC <xZL,0Zt<T,
(3.4) exp(—aE"?) <t (¢; x, t)| Sexp(aEY?),

(3.5) Clexp(—aE"?) <t (¢; x, )| S Cexp(aE'?),
and

(3.6) ltex(&; x, )| < C exp(3aE'?)

x [El/z(t)+i E(t(n; x, t))dn +f lue (n; T(n; x, £))ldn].
& 4

Proof. Note that t, and 1, satisfy the same linear differential equation, but with
different initial conditions:

d

(3 7) . E ‘cx'_’lt(&a T)Tx, Tx(X; X, t)= —A(X, t)’
3.8 d = A ; =1
( . ) Ett - t( H T)Tt’ T:(x’ X, l)— .

Equation (3. 3) follows from (3. 7) and (3. 8). Furthermore

4
3.9 7,(&; x, t)y=exp | 4,(n, T(n; x, 1)) dn.

1
But A,=0,[0' (u(x, )] = -5 [6' ()] **c"u,, so

G |u (X, 1)

(3. 10 S

<aEY(t,w)

where we have used the Sobolev embedding Theorem and the definition (2. 5) of E(t).
Inequality (3. 4) is an immediate consequence of (3.9) and (3. 10), and (3. 5) follows from
(3.3) and (3. 4).

To derive (3. 6) we observe that 7, solves the initial value problem

4
d¢

Txx = A’t Text ln(Tx)a
3. 11)

Tox (X5 X, 1) = — A,(x, £) + (A4,) (x, ©).

21 Journal fiir Mathematik. Band 406
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Indeed, the initial condition follows from differentiating the initial condition
7.(x; x, t) = — A(x, t) with respect to x:

Tex (X5 X, 1) = — T, (x5 X, 1) — A, (x, 1)
=—2,(x, t) .(x; x, t) — A, (x, t)

= —A.(x, t)+ 4,(x, t) A(x, t).

Now we integrate (3. 11) from & to x and use (3. 5) and (3. 10) to obtain
4

(3.12) 172x(&5 X, D] =7.x(x; X, 1) exp [I l.dn]

4 4

+[ exp [f /ltdﬂ:l Ay () d(]
x 4
Z|A + A4 exp(@EY?)+ C?exp(3aEY?) [ |4, dC.
g

In the same manner as we obtained (3. 10), we may deduce that

1
[Ag+A4] =1Ax+ 5 (A?) S CLEV(t, w),
and
[ (x, 0)] £ Couf (x, £) + Cy luy, (x, 1)

é C4 E(t’ W) + C3 Iutt(xa t)l

We insert these estimates into (3.12) to arrive at (3.6). This completes the proof of
Lemma 3. 2.

Lemma 3.3. There exist constants C and a, independent of r, k and T such that

(3.13) y
|a|

0=

O ey

ff‘ (ID*v|® +|D*u|?) dxd<
0

A

2

t 2
<Cexp(a, E'?) | ¥ (ID;v(0, 1)I> +|Dju(0, 1)*)dt
0 i=0

for 2T*<t<T.

Proof. We show how to estimate the integral of v2,. The estimates for the other
terms are similar or simpler. Fix x € [0, L] and t € [T*, T]. To simplify the notation, we¢

shall denote the mapping # +— t(0; x, n) for T*<n <t by n+> t(y). The Riemann in-
variants are

1=z 0=[V/Ttdn). p=30+{ YT tdn.
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These functions satisfy o, +]/¢'(w)a, =0, ﬂ,——|/ o'(u)B,=0. Thus « is constant on
positive characteristics, and § is constant on negative characteristics. Note that v=a+ .

and

t t t
(3.14) [ 02.Cemdn=2§ a2 (x, mdn+2 [ B2.(x, n)dn.
Tt T* T#

Because a is constant on positive characteristics we have

t

t t
(3.15) [ i, mdn<2 [ of(0, t(m)tedn+2 [ aZ (0, t(n) Irl*dn
T* T* T*

=2(I,+1,).

To estimate I, we use the inverse 7+ () of the mapping #n+> t() to transform the
integral to an integral over T and observe that

g _ 1 __ 1
dt d_t__ 7,0; x, 1)
dn

Since () <t we obtain by (3. 3)—(3.5)
t
(3.16) I, <£C*(g,) ' exp(3aEY?) | (0, 7)d7.
0

To estimate I, we first assume t—T*>1, choose N as the greatest integer in
(t—T*) and set I =(t—T*)/(N +1). Then 1/2<1<1 and

N+1 nl+T*

(3 17) IZ = Z I atzlrxxlzdr’

n=1 (n—1)I+T*

N+1 [ nl+T*
-5-2[ [ leeaddn sup 0‘?(0,1('1))]

n=1 |_(n—1)1+T* (m—1)I=n—T*=nl

nl+T* N+1 nl+T* 1
s [T a5 "7 (Gae)an)

1snsN+1 [ n—-1)1+T* n=1 (n—-1)I+T*

nl+T* dt\?
< sup [ lfxxlzdﬂ] [j' <3a, +a? <d ) >dn]
1=n é (n- 1)l+T' T n

< sup {C2 exp(6aE'?)

1snsN+1

nl+T* x 2
T [E"2+LE + [ (G 7Gx, n))ldi} dn}
0 B

(n—1)1+T*

t
| (o +af 7,(0; x, )?)dn.

T*
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In the last step we used (3.6). If 0<¢— T* <1, then obviously the same estimate holds.
Let

I,={(1:0<¢{<x and t({;x,(n—D)I+T*)<t<t({; x, nl+T*)}

be the region bounded by the positive characteristics through (x, (n—1)/+ T*) and
(x, nl+ T*). We have by (3. 4) and Cauchy-Schwarz inequality

nl+T* x 2 d(c, 'L')
te\ss 5 X, d d é tt\5s 22
. [(j) €, 7(C5 . ) c} B R

SLexp@E") | Ju, (01 d( 1)
f

<Lexp@E™) | | lua(C, dC dr

t 0

SLexp(aE'?) (t,—t1)201'E

<Lexp(@E"?) (14+La;"?)207'E,
with t, =7(0; x, (n—1)/+ T*) and ¢, =nl+ T* We also used that /<1 and
led =A< a7 "2

We combine this last inequality with (3. 17) to deduce that
_ t
I, < Cexp(7aE"?) | (30} + 07 7,(0; x, n)*)dn.
T#

The second factor in this inequality involving the integrals «? and a2 can be estimated
in the same way as the term I, in (3. 16). Putting together the last estimate and (3. 15),
(3. 16), we finally arrive at

t t
(3.18) | a2.(x, m)ydn < Cexp(TaEY?) | [a?(0, 1)+ a2 (0, 1) dx.
T 0

B is constant on negative characteristics, and the boundary condition v(L, t) =0 implies
B(L, t)= —a(L, t). Thus we have

BX, 1)x = B(L, T (M)xx = — (L, 7-(1)xx
= —(Z(O, ‘C(O; L’ T- (L; X, n)))xx
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~

The mapping n — 1(0; L, t_(L; x, n)) has the same properties as the mapping
n—1(0; x, 1)

and by the choice of T*=2L(g,)” "% we have t(0; L, 7_(L; x, #))=0 for n= T*. Thus
we may derive an estimate for the integral of B2, which is analogous to (3.18). From
(3. 14) we thus obtain

L t t
(3.19) | [ v2(x,mdndx<LCexp(a, E'?) | [a?(0, 1) +0a7(0, )] d=.
0 0

T*

If we add together the estimates of the form (3. 19) over all the terms in (3. 13), and use
the fact that « and its derivatives can be estimated by u, v and their derivatives, we
obtain

t L
(3. 20) {7 X (D*u*+|D*v|*)dx dy
T* 0 |a]s2

t 2
<Cexp(a, E"?) | ) [D{u(0, 1)|* +|D{v(0, 7)|*dr.

0 i=0

Finally, using the forward characteristics instead of the backward characteristics,
we can derive an estimate identical to (3. 20) with the limits of integration being [0, T*]
on the left, and [0, 2 T*] on the right. This completes the proof of Lemma 3. 3.

L
Lemma 3.4. Suppose that | u®(x)dx + s, =0. Then there is a constant C such that
0
Jor 2T*<t<T,

(3.21) j [u(0, 7)|> + (1 + k) s*(z)] dt
0
=C i [P+ k) s (@ + (1 +r?) |s"|*] d.
0

C is independent of r, k, and T.

Proof. Let t(&; x,t) denote the positive characteristic through (x,t), and
1_(&; x, t) the negative characteristic, o« and f the Riemann invariants. Since
&— a(& 1(¢) and & — (& t-(&)) are constant, and (a+ B) (L, t) =0, it follows that for
x, x' € [0, L],

u(x,t) u(x’,1)
(3.22) [ Veo@di— [ Jo'@dt=IB(x, ) —alx, t)—(B(X, ) —a(x, t))]
0 0
= |ﬁ(L’ T—(L’ X, t))_ﬂ(La T-(L’ xla t))
—(®(0, (0; x, t)) — (0, =(0; x', t)))|
<1o(0, ) — (0, )| + (0, 7) — (0, )|
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where 1=1(0; x, t), T'=1(0; x',¢), T=1(0; L, 7_(L, x, t)), and ¥ =1(0; L, 7_(L, x', t)).
From the definition of «,

623 200, 9~ 2(0, ©)| £ 5 600, 1)~ 0(0, )
26 0, 900, 7).

Hence from (3. 22) and (3. 23), we have

(3-24) ()" Julx, ) —u(x', t)|

1

=5 [0, )= v(0, ) +10(0, 1) —v(0, )]

+(G)" [u(0, 9) —u(0, T) +u(0, 1) —u(0, 7')[1.

Since v(0, t) =s'(t), we find that

t 1/2
Iv(O,r)—v(O,r’)lé(T*)”z[f lS"lZdT} .

t—T*
and from the boundary condition ¢ (u(0, t))=rs’ + ks, we see that

[u(0, ) —u(0, t')| = o~ (rs'(r) + ks(r)) — o7 (rs'(z') + ks(z))|

¢ 1/2 ‘ 12
S(g)™H(THY2 {T[ _IT* |S"|2df] + k[ _IT* IS'|2de] }

If we substitute these estimates into (3. 24), we obtain
t t
(3. 25) lu(x, t) —u(x’, t)|2§C{(1+r)2 | Is"Pde+k* § ls’lzdr}.
t—T* t—T*

In (3.25) we intend to take x=0 and x'=x, where x — u(x, t) takes on its
average value. From the differential equations (2. 1) and the boundary conditions (2. 2)
we have

dftL L
- I:_f u(x, t)dx+s(t):|=j' v (x, t)dt+5'(t)=0.

dt| o °

Hence the condition (1. 8) implies that

L
fu(x, t)dx+s()=0 forall¢.

0
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For each ¢, let x, = x,(t) be the point where

(3. 26) Lu(x,, t)=f u(x, t)ydx = —s(t).

0

Then by virtue of (2. 2),

o (0, t))=rs'(t)—kLu(x,, t)
or
o(u(0, 1))+ kLu(0, t)=rs"(t)+ k L(u(0, t) —u(x,, ).
Hence

(@i + kL) [u(0, )| =rls’(0)| + Kk L|u(0, 1) —u(xo, t)]

so that using (3. 25) we have
1 1
3.27) lu(0, 1:)|2§C{rzls’(t)lzi—(1+r)2 [ Is"PPdc+k* | Is’lzdr},
t—T* t—T*

where C is independent of k and r.

From the boundary condition (2. 2) and from (3. 26) we deduce
(I+K) [s@) = (6, + L) [u(0, 1) +r|s"(t)] + L]u(0, t) — u(xo, 1)

so that |u(0, £)]* + (1+ k)? |s(t)|? is also bounded by the right side of (3. 27), with a larger
constant C, independent of r, k, and T. We integrate the resulting inequality to obtain

(3.28) [ (u(0, D +(1+ K7 |s()2)de

§C{r2 [ Is@Pdr+(1+m? | | Is"m)Pdyde
T* *

T* «—T

RN R dr}

T 1—T*

SCIIE*+KY) s 1>+ (1 +r)?|s")*]dn.

O ey

Finally, if we use the forward characteristics in (3. 22) instead of the backward charac-
teristics, we obtain in the same way the inequality

T (lu©, D>+ (1 +k)? |s()|*)dt £ C Z_fT* L2+ k2 ISP+ (1+1)? |s"1*]dn.
0 0

Addition of this inequality to (3. 28) yields (3. 21).



28 Alber and Cooper, Quasilinear hyperbolic 2 x 2 systems

Proof of Theorem 3. 1. From the definition of E(t) and Lemma 3. 3, we have

(3.29) j E(r)dt<C {exp(a1 EV?) Y
: .

2
i=0

[ (ID;u(0, D)I* +1D;v(0, 7)|*)d<
0

t
+k [ (sP+Is1>+ ls”|2)dr}.

0

We wish to estimate the boundary values of |Dju|? and |Div|? in terms of |s'|%, [s”|?,
and [s”|%. The boundary condition a(u(0, t))=rs'(t) + ks(t) implies that

(3.30) lu, (0, ) = (g) ! (rls" ()] + kls' (1))
Differentiating this boundary condition twice, we have
(0, £) = (0 (w(0, 1) [rs"(6) + ks" (€)= &" (u(0, £)) u2(0, £)].
We use Sobolev’s inequality to estimate u,(0, t) and deduce that
(3.31) [0, )| = CLr|s™ (O] + k|s" () + E(1)].

Now use the fact that v(0, t)=s'(t) and insert (3. 30) and (3. 31) into (3. 29). The latter
becomes

(3. 32) j E(x)dt < Cexp(a, EV?) {j (u(0, ) + k|s(x)]?)dt

t

+I[A+k+Ek>) |1+ +r2+k+k?) |s")?
0

+(1+7r?) |s"|? + E*(1)]dz}.

Finally we use the estimate of Lemma 3.4 to take care of the first integral of the right
side of (3. 32). The proof of Theorem 3. 1 is complete.

4. Global existence

The “energy” is related to the supnorms as follows: There is a constant E° such
that if w=(u, v) is a C? solution of (2. 1)—(2. 2) with E(t, w) < E°, then

4. 1) sup [D*u(x, 1), [D*v(x,t)l, sV(t)<CoElt, w)'2,

0<xsL

for |« <1 and j=0, 1, 2, where C, depends on r and k.

The inequality for D*v and s* follows directly from the definition of E(t, w) and
from the Sobolev inequality. Since u,=v,, (4.1) is also valid for u,. Integrating the
second differential equation of (2. 1) and using (2. 2) we see that

o(u(x, t))=rs’-i~ks+]f v, t)d¢E.
0
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Hence |o(u(x, t))] < C, E(t, w)'?* where C, depends on r and k. Since ¢’ >0 on I, there is
a value E® such that E(t, w)< E® implies that sup |u(x, t)| satisfies (4.1). Then a

0<x=<L

second appeal to the definition of E(t, w) and the Sobolev inequality show that u, also
satisfies (4. 1).

To simplify the statement of the next theorem we shall assume E° =1.

Theorem 4. 1. Assume that the initial data u°, v° € C"([0, L]) with n=3 satisfy the
compatibility conditions

rs;rq+ks;=09au 0), 9/v°(L)=0

for j=0,...,n. Here sy=s° and s;,,=20]v°(0), 09 a(u®) (0), 6’ v°(L) are determined
from u® and v° via the differential equations (1. 1) and (1. 2). In addition, assume that (1. 8)
is satisfied:

L
[ul(x)dx +s°=0.
0

Then for E(0) sufficiently small, the solution (u, v) of (2. 1), (2.2) exists in C" for all t=0.
Moreover, there are constants C and a such that

E(t)< Ce " E(0).

Proof. By the local existence theorem the local C"-solution w can be continued
as long as Y |D*w(-, t)|l,, remains bounded, and therefore, by (4.1), as long as E(t)

lal=1

remains bounded. Suppose that E(0)<1/4. Then the local C" solution must satisfy
E(t)<1 for some interval [0, 8]. In this interval the differential inequality (2. 7) implies

4.2) % E(t)S2CE(t)*?

hence

.3 B s— 200 <opoesi

1—tCXE(0)V

rr+1

for 0<t < T, where C¥ =% <1 + > C, with the constant C, from (2. 7), and where

T=(2C¥E(0)"?)!

is a lower bound for the time of existence of the solution. This estimate shows that by
taking E(0)Y? smaller if necessary, we can assume T >2T*, where T*=2L(g;"?) is the
constant from Theorem 3.1. Integration of the differential inequality (2.7) and sub-
stitution of (3. 1) into the resulting inequality yields
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4. 4) E@t)+(K,—K, sup E(®)"?) f E(t)dt < E(0),
0 0

Sttt
where

C,r
K= K,=(Ct
P TR Dexplay) 2=@CEIHG),

C, C,, and a, being the constants of (2.7) and (3.1). We used that E= sup E(t)<1.
Now 0<t<T

1

0=st=Zt

for E(0) < K%(16 K2)™! by virtue of (4. 3), whence, from (4. 4),
1 t
@. 5) E()+ K, | EQdrSE(©)
0

for 2T* <t < T This inequality implies E(T)< E(0). We may then repeat the estimates
starting at T, and continue the solution for all ¢ =0. ’

Finally we address the question of exponential decay. The mean value theorem
and (4. 5) yield the existence of a point t, € [0, T] such that

1 1 r
_2‘ Kl TE(to) =E Kl 5 E(T)dT é E(O).
0
1
By taking E(0) smaller if necessary we can assume 5 K, T = 8 so that

E(0)S  EO).

We integrate the inequality (4.2) from t, to T and deduce that E(T)<4E(t,) if
T—1t,<(2C¥EY?(ty))"'. However, this condition is satisfied because E(ty)<E(0)

1
whence T—1t,<T=((2C¥EY*(0)) ' <(2C¥E"?(to))". Hence E(T)§§ E(0). If we repeat
this procedure we deduce that E(nT)<27"E(0) for n=1, 2, 3,.... Furthermore, by the
choice of T, E(t) <4E(nT), so that E(t) <2> "E(0) for nT<t<(n+1)T. Thus
E(t) -S- e(3—t/T)ln2E(0)

where we have taken n=[t/T], the greatest integer in t/T. The proof of Theorem 4.1
is complete.
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5. Breakdown of solutions satisfying the second order boundary condition

In this section we prove that if the constant m in the boundary condition (1. 5) is
positive, then for initial data which is small in an appropriate sense, a global smooth
solution does not exist, contrary to the results of the last section. Instead, after finite
time, the first derivatives of the solution become infinite. Our method of proof requires
that the system (1. 1)—(1.5) be truly nonlinear. We therefore must assume that ¢”(0)
differs from zero which occurs in the gas dynamics case, and for definiteness we assume
in this section that

(5.1) " (0)<0.

Our main result is stated in Theorem 5.1 below in terms of the Riemann
invariants

u ] u
v—{)/a'(n) dn), p=5+[ /o' ndn).
0 0
First we introduce some definitions and notations. In the remainder of this paper we set

If1= sup |f(x)I.

._x._

Let (u, v) € C*([0, L] x [0, T)) be a solution of the system (1. 1)—(1. 5), with m, r, k>0.

Definition. The number T,,, = T, (4, v)>0 is called maximal time of existence of
(u,v), if (u,v) is a CZ?-solution of (1.1)—(1.5) in [0, L] x [0, T,,,,), but cannot be
extended to a C2-solution in [0, L] x [0, T) for any T > T,,,.

Let y + di(y) be the inverse of the function

VHQVWWMm

and let

52 d=ot), co)=/o@R). )= 2[“,’,(2‘(%3,2-

Note that (5. 1) implies q(0)<0. Let
(5.3) a(x, 0)=0a%(x), B(x, 0)=p"(x)
be the initial data for « and B, and let
5.4 A=A, t)=c(f—a)"?a,, B=B(x,t)=c(f—a)"*p,.

Moreover, let u(u, v) be the diameter of supp(A(-, 0), B(-, 0)), let D =D(u, v)= pu/m, and
let

(5.5) Ay, v) =or<ni1<1L {A(x, 0), B(x, 0)}.
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Theorem 5. 1. To every my>0 there exists a constant C=C(my)>0. and to every
0>0 there exist constants Dy= Dy(mg, 6), M = M (m,, Dy)>0 with the following property:
Let (u, v) be a C?-solution of (1. 1)—(1. 6) with m = m,, satisfying

(5.6)  u°(0)=0v°(0)=5°=0,

.7 0=—A(, v)=— min {A(x,0), B(x,0)}=[A(.0), B(, O,

where the minimum is attained at some point x, € (0, L),

(5. 8) D(u, v) < Do,

(5.9) o, Bl S exp[=C 1+ (1 + T2,
Here

(5. 10) T,=T,0)=2T,, To=T,©)=—(0q(0)"

Then there exists a maximal time of existence T, (u, v) < T, of (u, v) with
Toax (1, v) = T5(9)
for ||a®, B°|| — O and D(u, v) — 0. Moreover, the solution satisfies
(. 11) le(-, 8), B, OIS N1, Bl exp(C(1+12)),
forall 0=t<T,,,, but

lim o, (-, 2), B (-, )] = c0.

t 7 Tmax

To prove this theorem we need two lemmas, which we formulate first.

Lemma 5. 2. To every my,>0 there exist constants C =C(my)>0 and M = M (m,),
0<MZ1, such that for all T=1, and all solutions (u, v) of (1.1)—(1.5) with m=m,
satisfying (5. 6) and

(5.1 1o, §°l S 3 exp(~C(1+T2)
we have
613 sup {las 0 10k 0} S o, 671 exp(C(1+T?)
ngéT

for all T, 0= T <min(T, T, (u, v)).
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The proof of Lemma 5.2 is given in section 6. To state the second lemma, we
need some definitions. Note that « and f satisfy

o +c(p—a)a, =0,
Bi—c(B—a)B.=0.
From these equations it easily follows that 4 and B defined in (5. 4) satisfy

At c(B—0)A,=q(B—x) 42,

(5. 14) ,
B,—c(p—o)B,=q(f—x) B~
Let the functions t — x. (t; x, t) be defined by

dx,
dt

(5. 15) =xc(f—a) (x, 1), xi(t;x,8)=x.

Thus, 7+ (x4 (7; X, t), T) are the characteristic curves through the point (x, t). We wish
to follow A and B along reflected characteristics. For 0 <x <L define the reflected
characteristics 7 +— I', (t, x) as follows:

I (t,x)=x,(1;x,00 for 07571
where 7} =1/ ;(x) is the first positive time that x, (t}; x, 0)=L;
r,(t, x)=x_(t; L,t}) for 17511,
where 7, =1, ,(x) 27} is the first time that x_(z,; L, t}) = 0. In general, we will set

(5. 16) Iy (t, x)=x,(t; 0, 7)) for r;st<71j,,
Iy(t,x)=x_(t; L,tj) for 1;<t=1,

for j=1, 2,.... Also let 1, =15 =0. Finally we set

A(T4(t, x), 1) for 1;=1=1)4y,
(5.17) Z.( )_{ (I ) : i1

B(Iy(z, x),7) for 1j<t<71;.

The definition is consistent because the boundary condition (1. 3) implies (x+ f) (L, t) =0,
hence A(L, t)=B(L, t). Analogously, for all x with 0<x <L we define the reflected
characteristic I'_(t, x) and the function Z_(z, x), where I'_(r, x) starts as a negative
characteristic at (x, 0). If no confusion is possible we shall suppress the variable x and
the + or — sign and write I'(t), Z(z). From (5. 14)—(5. 17) we see that as long as I'(z)
is not a boundary point, we have

(5. 18) 4 20=ar@. 927
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where we abbreviated g((f —a) (x, t)) by g(x, t). Z() is continuous at times 7;, but has
jumps at the 7;. Now we can state the second lemma:

Lemma 5. 3. There exist constants
K=K(mg)21, Do=Dy(mg)>0, M=M(m,, Dy)>0,

such that for all §>0, all solutions (u, v) of (1. 1)—(1.S) satisfying (5. 6)—(5.9), and for
all t <min (T} (9), Tpax(u, v)) we have

) (1+K™Do)" | A(-, 0), B(-, 0)|
1+(1+K"Do)" | A(-, 0), B(-, O)l| | a('(m, x), n)dn
0

if xesupp(A(-,0), B(:,0)
(5.19) 1Z(t, x)| =
i (1+ K™ Do)" K™Dy | A(-, 0), B(:, 0)|

1+(1+ K" Do)" | A(-, 0), B(:, 0)] iq(T(ﬂ, x), n)dn

if X ¢ Sllpp(A(', O)a B(s 0))

Here n is the largest integer with t1,(x)<t. Moreover, if D, is chosen so small that
K™Dy <1, then

(1— K™ Dy)"6

(5. 20) 1Z (2, xo0)I 2 : .
1+(1—=K"Do)"9 (I) a(I"(n, xo), n)dn

Here x,€(0, L) is the point where the minimum in (5.7) is attained, and Z=2Z, if
0=—A4(xq,0), Z=Z_ if 6=—B(x,, 0).

This lemma is proved in section 7.

Proof of Theorem 5.1. The local existence theorem implies that the solution u, v
of (1. 1)—(1. 5) can be continued as a C? solution as long as the first derivatives of u, v
remain bounded. The differential equations (1.1), (1.2) show that u, and v, remain
bounded as long as u, and v,, hence a, and f,, and therefore 4, B remain bounded.
From (5. 17) we thus conclude that

(5.21) limsup |[Z, (-, t)|=00 or limsup|Z_(-,¢t)|=c0
t=tg t—to

is equivalent to t,= T,,,. Choose the constants D, and M small enough such that the
assertions of Lemma 5.2 and 5.3 hold, and choose C as required in Lemma 5.2.
Lemma 5.2 then implies that (5.11) is satisfied for all t<min(1+ T;(5), Tpax (U, V).
(5.1), (5.2), and (5. 10) imply
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lg((B—2) (x, 1)) —q(O) = C, [l Bl exp(C(1+¢%) < C, M(mo),
le((B—a) (x, ) —c(O) = C, [la® BOll exp(C(1+12)) < C, M (my),

for all these ¢ and for suitable constants C,, C, >0, hence

q((B—o) (x, 1)) £ q(0) + C5 o, %) <O,

(5. 22)
c(0)— Cy |’ Bl S c((B—a) (x, 1)) £ c(0) + Cs ||, B

with C3=C;(mg, )=(C,+ C;) exp(C(2+2 T, () + TZ(9))).

Let K be the constant of Lemma 5.3, and let d(t) be the denominator of the
fraction in (5. 20). Note that the number n in this fraction satisfies

)= Cs ", 1
2L ’

n=N()= [
where [r] denotes the largest integer in r. Since K > 1, we thus obtain from (5. 22) that
dO=QM)=1+(1— K"’ D)"51(q(0) + Cs 2, ).
Now for [|a® B°|| <(2C5)~* |q(0)| and for T, = —2(59(0))"! we have
0T (q(0)+ Csla® BOl)< —1,

and therefore also Q(T;)<0 if D, is chosen sufficiently small, hence Q(T,)=0 for a
suitable number T, < T,. We conclude that d(t) cannot be bounded away from 0 in the
interval 0<t<T,. (5.21) thus yields that T,,, < T,. Note that

-1

T 2 *
= (1= K¥YTDONTI §(q(0) + Cy [|0°, BOI)

IIA

To obtain the lower bound for T, we now let d,(¢) denote the denominator of the
fractions in (5. 19). Instead of (5. 22) we now use the fact that

lg((B— ) (x, )| <1q(0) + C5 12, B°].
For fixed x € [0, L], let n be largest integer such that 7,(x) < T, and let
T =(14K"Do)™"6~(Ig(0)| + C5 [l BOlI)™*.
Then for 1, <t < T_ we have
d,(t)>1—(1+ K" Dy)" 8 T_(Iq(0)] + C5 [|a®, B°[)=0.

Hence T_<T,

m

. Clearly T, — T, (8) = —1/(6q(0)) as D, and |a°, | — O.
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6. Proof of Lemma 5. 2

We first derive the boundary condition linking a and f on x=0. To this end we
solve (1. 5) for s(t) and use the hypotheses s® =0 and s’(0) = v°(0) = 0 to obtain

6.1 s(t)=j' R(t—1)o(u (0, 7))dr,
0

where R(T) satisfies
1

6.2) mR'+rR'+kR=0, R(O)=0, R(0)=—

Differentiating (6. 1) and using s’ =v =a + 8 we conclude together with (5. 2) that
t
(6. 3) (B+2)(0,t)=f R, (t—1) 6(B—0) (0, 7)dr.
0

Let R, =sup|R,(t)] < .

t20

Lemma 6. 1. There is a constant M <1 such that for all T>1 and all T,
0< T<min(T,,,, T), if

M _
(6. 4) sup |(0, t)| <= exp(—2c(O)R, T),
0StsT T
then
(6. 5) sup |a(0, )| <5Sexp(c(O)R, T) sup |B(0,t)|.
0<t<T 0St<T

M is independent of (a, B) and of the constant m in (1.5) for all m=m,, but depends
on my>0.

Proof. We set f(t)=(B—a) (0, t) and rewrite the integral equation (6. 3) as
(6. 6) 10=260.0~] Rfe=7) 6(/ () dr.

To take advantage of the theory of linear Volterra equations, we expand é(y) about

d
y=0. Recall from (5. 2) that ¢(0)=0 and . é(y)=c(y). Hence

(6.7) ¢()=cO)y+w@)y
where w(y)=0(y) as y — 0,

(6. 8) W) —w@)l S wly, —7,l
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where w >0 is a constant. Now substitute (6. 7) into (6. 6) and rearrange terms to arrive
at

(6.9) (I+V)f =250, 1)~ ] Ry(t—0) w(f(2)) f(e)d
0

where

(6. 10) V1) (/) =¢(0) j R,(t—7) f(r)dz.
0

Let C,[0, T] be the space of continuous functions f in [0, T] such that f(0)=0 with
the norm

Iflr= sup |f@®)I.
0SI=T

<ig

It is well known from the theory of linear Volterra integral equations that I+V is
invertible in C,[0, T] with

(6. 11) II+V) gy S e@RT g,

for all ge C,[0, T]. Hence if fe C,[0, T] solves (6.6), then f is a fixed point of the
operator G defined by 4

(6. 12) Gg=2(I+V)'BO,t)—(I+V)! i R, (t—1)w(g)gdr.
0

Using (6. 10) it is easy to show that for each (0, t) € Cy[0, T], the fixed point is unique
in Cy[0, T].

Next we set
6.13 M =min<1 :
(6. 13) =min=<1, SR,
where @ was introduced in (6. 8) and we set
4M _
Vu={g e Col0, T1: gy S - exp(~c(O R, T}

We shall show that the fixed point f lies in ¥},. By virtue of the estimates (6. 4), (6. 8),
and (6. 11), we see that if g € ¥, then

_ 4M =
(6.14) [ Gglly <exp(cO)R, T) [21B(0, )z + @R, T lglt] =~ exp(~c(OR, T).
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To show that G is a contraction on ¥,,, we again use (6. 8) and (6. 11) to deduce that if
81> 82 € ¥y, then

IGg,—Ggsllr SwR, Texp(c(OR, T) (lgollr+1Igallr) llgs — g2llr
<0lg.—g:lr,

where 0 <1 because T <T. Hence if B satisfies (6. 4), the unique fixed point f lies in ¥;,
and from (6. 14) we have the estimate

1flz=1Gflr=2exp(c(O)R, T) | B(O, ')Hr+% (WAL

whence

Ifllr<4exp(cO)R, T) [B(O, )l
This means that when o and f solve (6. 3) and B satisfies (6. 4) we have
(6. 15) (O, )iz = 1/ + 1B, )l =5exp(c(O)R, T) || (O, )z

Lemma 6. 2. There exists a constant C >0 with the following property. Let T =1
and suppose for some T with 0ST<T, that sup {la(x, )|, |B(x, t)|]} =1. Moreover,

O0=sx=sL
suppose that 0st=T
o poy <M 2

(6. 16) lo®, Bl = % exp(—C(1+T?)).
Then

6.17)  sup {lax, Ol 1BCx, 01} o, Bl exp(C(1+T2)

02;‘§=T
g%i exp (C(T*—-T?)).

Here C is independent of (x, B) and of the constant m in (1.5) for all m=m,, but
depends on my>0. M is defined in (6. 13).

Proof. Consider the negative characteristic x_(t; 0, T) for 1< T. Continue this
characteristic backward in time, reflecting into a positive characteristic at x =L, and
again into a negative characteristic at x=0. There are only a finite number of re-
flections with the boundary x =0 before this backwards characteristics runs into the
initial segment {0<x <L, t=0}. Let 0<t,<t,<... <t,=T denote the reflection times
with the boundary x =0. We have the estimates n < ¢T/(2L) and t, <t; _, +2L/c where

(6 18) c= sup C(B—(x), c= ]nf c(ﬂ_a).
lal, 18121 lal, 181 =1
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Hence there is a constant C, independent of T, such that

(6. 19) 5"exp(2c(0) Ry (t, + ... +t,))<exp(C(1+T?)).

M ~
Now suppose that ||a®, BOH§? exp(—C(1+T?2). On 0<t<t,, B(0,¢t) is deter-

mined by the negative characteristics emanating from the initial segment

and by negative characteristics which are reflections at x =L of positive characteristics
emanating from the initial segment. Since f is constant on negative characteristics, « is
constant on positive characteristics, and o = — f§ at x = L, we conclude that

M _
sup |BO, 1)l < o B Sz exp(=2c(O)R1y).

0=tz
Since (0, t);o,.,; satisfies (6. 4), we may apply Lemma 6. 1 to deduce

sup a(0, )| < Sexp(c(O)R,ty) [la®, .

0=st=sty

We claim that for 1<k <n,

(6. 20) sup |B(0, 1) £5* "exp(c(0) Ry (¢, + ... +t,—y) 2% B
0ty
and
(6.21) sup |a(0, £)] < S*exp(c(0) Ry (t; + ... +1,)) |l O
0st=st

These inequalities follow easily by induction when we note that for 2<k <n,

sup |B(0,)|= sup [a(0, t)|.

[tic, trc+1] -1, ti]

Assuming (6. 20) and (6. 21) hold, we see that

sup |0, 1)l =max{ sup |B(O, 1), sup |B(0, 1)}

O=St=Ste+1 0stst teStStet
<max{ sup |B(0,1)], sup |x(0,t)|}
05t 0Stsh

<5%exp(c(0) Ry(t;+ ... + 1)) lla®, BO|l

< 5kexp(c(0) Ry(t, + ... +1)) % exp(—C(1+T?)

<= exp(—2cO)R, t;4,)

~N =
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where we have used (6. 19) in the last step. This means that (0, t)|,,,, , satisfies (6. 4).
We apply Lemma 6.1 again to deduce (6.21) with index k+ 1. It follows by virtue of
(6. 19) that

sup {Id(O, 1l 180, 1)} < %, %] exp(C(1+T?)).

0<I=ty

The assertion of the Lemma follows immediately because o is constant on positive
characteristics and f is constant on negative characteristics.

Proof of Lemma 5.2. Now if |a° B°| satisfies (5.12), then |a°, B°||<1. Since
(o, f) is continuous, there is some #>0 such that |af, ||<1 on [0, L]x[O0, n]. Let
T,=sup{T:l|al, |f|<1 on [0, L] x [0, T]} =#. We apply Lemma 6.2 on [0, L] x [0, T, ]

M ~
and deduce that |a|, |f] §? exp(C(T7—T?)) on [0, L] x [0, T,]. Now M <1, T21, so
if T, <min (T, T), then |a|, |8| <1 on [0, L]x [0, T,].

Since o and B are continuous, this implies that there is a larger time interval
[0, T, + €] on which |al, |f] <1 which contradicts the maximality of T,. Hence we must
have T, = min {T,,,, T}. This completes the proof of Lemma 5. 2.

7. Proof of Lemma 5.3

Note that from (5. 12), (5.13) and from A4(L, 1)=B(L, 1) it follows for x € [0, L]
and for 0 <t <7,(x) that
Z(0, x)

Z(t, x)= .
1—2Z(0, x) g q(I'(n, x), n)dn

b

which immediately yields (5. 19) for these (x, t), since ¢ <0, cf. (5. 1). We now prove that
if (5.19) is satisfied for all (x, t) with t<1,,,(x) then also for ¢ with 7,,,(x)<t<71,,,(x).
This proves (5. 19) by induction.

Note first that Z(t,(x)—, x)=B(0, 7,(x)) for all k and all x € [0, L]. From the
induction hypothesis it thus follows that
(14 K*¥ Do) | A(:, 0), B(:, 0)|

7.1 [B(O, )| =0 :
L+(1+K* Do) | A(-, 0), B(-, 0)] £‘1(F('1, x), n)dn

for all 0=k<n and all t with 7, ,(0)<t=<1, ;+,(0). Here 0=1 for t € G and 0=K* D,
otherwise, where G=G, UG_, and G, is the set of all 1>0 such that there exists
x € supp(A(-, 0), B(-, 0)) with I'.(t)=0. Below we derive the boundary condition
linking 4 and B on x =0, and show that
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(7.2 A(0, t)= B(0, t)+j k(t—1) B(0, 1)dr,
0

where the kernel x is bounded by

(1.3) k(=1 <2 ™ exp (—1! (t—t)) :
m m

The constant N can be chosen independent of m for m=m,>0.

From Lemma 5.2 and from (5. 2) it follows that if (5.9) is satisfied then we have
le(B(x, t)—alx, t))—c(0)| S ¢ for t <min(Ty, T, (u, v)) with e=CoM, where C,>0 is a
suitable constant. Equation (5. 15) thus implies

2

meas (G 0(¢: 1 0) T uO) S g5 106 0 +2Cik
2L
Tekl0) = Z5 K| SCok

for suitable constants C, and C,. From these relations and from (7. 1)-—(7. 3) we obtain
for 7, ,(0)<t<t, ,:1(0)

140, )| <IBO, )l + | |x(t =) IB(O, 7)ldt

[0,\G
+ [ Ik(—1)||BO,1)dt
[0,1]n G
N N ) 2 1
<|B(0, t)|+2a exp(;t) |:tK" D, +Ez65(n+1)u+£C1 §(n+1) (n+2)]

. (1+K™Dy)" | A(-, 0), B(-, 0)]
L+(1+ K" Do)" || A(-, 0), B(-, 0)] (I)Q(F(ﬂ, x), n)dn

(1+K"Do)" ||A(-, 0), B(:, 0)|
1+ (14 K" Do)" I14(-, 0), B(:, 0)| !)61(1"('1, x), n)dn

<|B(0, )| + C5*' K™D,

if M=M(m,, D,) is chosen such that e=CoM <D,. C;=C;(my)>0 is a suitable
constant. Now we choose K (m,) =1+ C5(m,), which implies

(1 + Cg+l)Kn2§ K(n+1)2’
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and obtain after a second application of (7. 1)
(7.4) |4(0, )| < (0 + C53* K™ Dy)

_ (1+K"™Dyo)" [|A(, 0), B(, )|
I+ (1+ K Do) A(+, 0), B(-, O)l| | q(I'(n, x), n)dn
0

(L+ K"V Do)* | A(:, 0), B(:, 0)]
I+ (1+ K™D Do)"* | A(-, 0), B(-, 0)] }t'q(r(n, x), m)dn
0

=0,

b

where 0, =1 for t € G, and 0, = K®*Y* D, otherwise. Note that

T n0)<ty pi1(x), - 0 (X)S74 ,41(0)

for all x e [0, L]. From (5.17), (5.18), from A(L,t)=B(L,t), and from (7.4) we thus
obtain for all (x, t) with 7, (x)<t<min (T}, Ty, Tps2(X))

IZ(t, x)|= A(O’ Tnt+1(x))
1-=A0, tp1(x) [ (I, %), n)dn
Tn+1(x)
< 0,(1+ K" " Do)+ I4C, 0), B¢, O)l
= Tn+1(X t
L+ (1+ K™D’ Dy* 1 [[A(-, 0), B(, O)| | gqdn+6,]A(,0),B(-, 0l [ qdn]
0 Tn+1(X)
(n+1)2 n+1 . .
<0, (1+K Do)""" ||A(+, 0), B(-, 0)]

t b
1+ (1+ K@ D'DoY+t | A(+, 0), B(, 0)] | gdn

(V]
provided D, is so small that K"*Y’D,<1.

To complete the proof of (5.19) it thus remains to prove (7.2) and (7. 3). To this
end we integrate by parts in (6. 3) and obtain

(B+) 0, )= R(t—1) 6(f—) O, r)dr=j) R(t—1) c(B—a) (B, —a)dx,

where we used the fact that R(0)= (0, 0)=«(0, 0)=0. Differentiating with respect to ¢
and using the equations «, + ca, =0, f,—cf, =0, we find that

(B =) (B=x) 0= Rt=7) *(B—2) (B +a)dx,
In terms of 4 and B, this becomes

(B—A) (0, 1)=V1(B+A4) (1),
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where V is the linear Volterra operator

(7.9) N @)=c2(@) i R/(t—1) > (1) f(t)d.
0

Here c(t) =c(f —a) (0, t). Hence considering these as functions of C,[0, T] we have

(71.6) A, )=[I+V})"* (I—V;) B] (t)=[ A (I—VI)B] (t)=[(+V2) B] (1),
k=0
where

Vz =2 Z (— Vx)k
k=1

is again a Volterra integral operator. We denote the kernel by k and obtain (7. 2). From

(6.2) and (7.5) we see by some calculations that the kernel of V; is bounded by

&32¢™ 12 sup |R,| £ N/m, where ¢, ¢ are defined as in (6. 18), and where the constant N

can be chosen independent of m for m=m,>0. It follows (see [7]) that the kernel x of

V, is bounded by
2—]! exp(ﬁ(t—r)>,
m m

The proof of (5.19) is complete. The estimate (5.20) is proved by analogous
considerations, which we leave to the reader.

which proves (7. 3).
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The number of subspaces
occurring in the p-adic subspace theorem in
diophantine approximation

By Hans Peter Schlickewei at Ulm

1. Introduction

Let a be a real or complex algebraic number of degree d = 2. Roth’s Theorem [10]

. . . . . X
says that given 4 >0 there are only a finite number of rational approximations — of «
with Y

(1. 1)

R S E R

This was extended by Ridout [9] to include p-adic valuations.

Unfortunately the underlying method of Thue-Siegel-Roth is ineffective in the
sense that it does not provide bounds for the sizes of x and y. However it does give
explicit upper bounds for the number of such approximations. In fact in a paper by
Davenport and Roth [3] it was shown that this number is under some bound which
depends only upon d, d and the height Hy= H,(x), the maximum modulus of the co-
efficients of the minimal defining polynomial of « over Z. Bombieri and van der Poorten
[1] and independently Luckhardt [6] using the modified proof of Roth’s Theorem as
presented by Esnault and Viehweg [4] obtained much better bounds.

Put x=(x, y), L;(x)=y, L,(x)=ay —x. Then (1. 1) is equivalent to
IL;(x) Ly(x)| <y~°

and this is essentially the same as |L,(x) L,(x)| <|x|~? where |x|=(x?+ y?)"/2. The Sub-
space Theorem treats the more general situation where we are given linearly inde-
pendent linear forms L,,..., L, in n variables with algebraic coefficients. But we will
include p-adic valuations as well.
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Let S={0, py,..., p;} where py,..., p, are s different rational primes. Write | |, for
the ordinary absolute value of @ and for j=1,...,s, | |; for the p;-adic absolute value
of @, normalized such that |p;|;=p; . For j=0,...,s, we denote by @; the completion
of @ with respect to | |; and by Q; the algebraic closure of @; (so that in particular
Q, =R, Q,=C). Each absolute value | |; has a unique extension to €; which we denote
again by | |;. Let K be an algebraic number field of degree d. For each j let ¢; be an
embedding of K over @ into ;. Suppose that for each j (0<j<s) we are given linearly
independent linear forms LY, ..., L in n variables with coefficients in ¢;(K). Then the
Subspace Theorem says that there is a finite number of proper subspaces of Q"
containing all rational integral solutions x = (x4, ..., x,) = 0 of the inequality

(1.2) H ILP (x) - L (x)|; <%
j=0

where x =(x? 4 --- + x2)V2.

The pioneering work of proving this result in the archimedean case is due to
W. M. Schmidt [13], [14]. The general case including nonarchimedean valuations was
treated by Schlickewei [11], [12]. Recently W. M. Schmidt [15] proved a more precise
version of his Subspace Theorem. He gave an explicit upper bound for the number of
subspaces needed in the Subspace Theorem. It is the purpose of this paper to generalize
this result to include nonarchimedean valuations.

Theorem. Let S={0, p,..., p;}. Let K be an algebraic number field of degree d.
For each j (0<j<s) let Q; and @; be as above. Suppose that LY, ..., LY are linearly
independent linear forms in n variables with coefficients in @;(K). Consider the inequality

S

(1.3 [T 190 - L), < ( [T 1det @, ... u,m,-) X2
ji=0

i=0

where 0< 8 <1 and det(LY, ..., LY) denotes the determinant of the coefficient matrix of
LY, ..., LY.

Then there are proper subspaces Ty, ..., T, of @" with
(1.4) t=[(8(s+1)dl)>*mere]

such that every rational integral solution x of (1. 3) either lies in one of these subspaces,
or has norm

(1.5) x| < max {(n)®?, H(LD), ..., H(LY), ..., H(LY), ..., H(LY)}

where the H (L) are heights which are defined below.

Schmidt’s result [15] deals with the archimedean case, i.¢. the case when s=0. He
obtains the bound [(24)?*"% *]. The reason why in (1. 4) we have d! instead of d or
some fixed power of d is based on the fact that C/R is an extension of degree 2 with

31 Journal fiir Mathematik. Band 406
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basis 1, i, whereas in the nonarchimedean case the extensions ,/@Q; are far from being
so well behaved. In section 2 we will see why this makes trouble in our context. On the
other hand it will be shown there that in (1. 4) d! may be replaced by the degree of the
smallest normal extension of ¢ containing K.

We shall use the same definitions of heights as Schmidt [15]. In fact for a number
field K let M(K) be an indexing set for the absolute values of K. For w e M(K), the
absolute value |4|, where A€ K will be an extension of either the ordinary absolute
value or a p-adic absolute value of @. Let d,, be the local degree of K, over @,,, where
K, is the w-adic completion of K and @, the w-adic completion of @. Then we have
the product formula

[T 1A=t

we M(K)

for any A+0 in K. Let M'(K) be a set of symbols v, such that to each w e M(K) there
correspond d,, symbols v e M'(K), and for such v we put |4],=]4|,,. Then the product
formula for K reads as

1 1=t

ve M'(K)

Given a = (a4, ..., ®,) € K" and v e M'(K), we put

loel,

{(Iallﬁ + o+ +]a,|2)? for v archimedean,

max {|a,|,, ..., |o,l,} for v nonarchimedean.

For a0 we put

(1. 6) Hy@= [] [al,.

ve M'(K)

In view of the product formula we have for 1€ K, A+0 the relation Hg(ia)= Hg(a).
Moreover we define the absolute height by

(1.7) H(a) = Hg ()",

where d is the degree of K. It is clear that H(a) does not depend on the particular
field K. When L=o, X, + --- +a, X, is a nonzero linear form with algebraic coefficients,
we put

H(L)=H(a).
Now let H be any quantity with

(1. 8) Hzmax {H(LY), ..., HLD), ..., HLY), ..., HLY)}.
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Then (1. 5) may be replaced by
(1.9) |x| < max {(n!)%°, H}.

It is possible to estimate the number of subspaces containing all the solutions of
(1. 3) and (1.9). But here in contrariety to (1. 4) the bound depends also upon H. For
details on this question the reader is referred to section 4.

Notice that our Theorem does not give a bound for the number of solutions of
(1. 3). In fact, since in view of (1.5) or (1.9) our bound for the number of subspaces
depends on H, there is a difficulty in principle to derive a bound for the number of
solutions. For a more thorough discussion of this topic see Schmidt [15], section 1.
However our Theorem may be applied to derive upper bounds for the number of
solutions of norm form equations of the type N(a;x, + -+ +a,X,)=pi' - pZ* in integers
Xiseers Xps Zys-.., 25, 1.6 the n-dimensional analogue of the Thue-Mahler equation.
Moreover it allows us to give an explicit upper bound for the number of solutions of
the S-unit equation. These questions are treated in forthcoming work by the author.

The method of proof of our Theorem is that of Schmidt [15] combined with

results of [11]. However we will try to make the paper rather selfcontained and
therefore we have sometimes to repeat arguments from [15] or [11].

2. Reduction to forms with coefficients in @Q;

Let K be as above. Let p be a rational prime and define @, and Q, in the obvious
way. Suppose K is embedded into Q,. Denote by K, the completion of K with respect
to | |, and write d,=[K,: @Q,].

Lemma 2. 1. There exists a basis a,,..., o, of K, over @, with the following
properties.

@ oy, a,, € K.

(ii) For any c € K, we have, writing
C=Cy0y+ - +Cq 0%,
withc,e @, (i=1,...,d,),

2.1 lc],= max |c;a;,.

15igd,

Proof. For any subfield F of K, let V(F) be the group of values assumed by the
mapping | |,: F* — R, where F*=F\{0}. Let e=[V(K,):V(@Q,)] be the ramification
index. It is well known that we have V(K)=V(K,). Hence we can choose elements
by,..., b, in K such that byl,, ..., Ibel, represent the cosets mod V(@Q,) in V(K,).
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For any subfield F of K, write ((F) for the ring of integers of F, i.e.
OF)={xeF||x|,<1},
and m(F) for the unique maximal ideal in O(F), i.e. m(F)={x € F | |x|,<1}. Let

[=L0(K,)/m(K,): 0(@,)/m(@Q,)]

be the residue class degree. Since (¢(K)/m(K) is isomorphic to O(K,)/m(K,) we can
choose elements a;, ..., a, in O(K) whose images under the canonical homomorphism
O(K,) — 0(K,)/m(K,) are a basis of O(K,)/m(K,) over O(@Q,)/m(@Q,). Now it is well-
known that the elements a;b; (i=1,..., f; j=1,..., e) form a basis of K, over @, and
our construction implies that this basis satisfies assertion (i) of the Lemma (cf. Weiss
[16], Theorem 2-3-2).

We claim that our basis satisfies (ii) as well. Notice that the definition of the a;
implies

laj]l,=1 for i=1,...,f.
We prove first that given ¢y, ..., ¢, € @, we have

2.2 - I
(2.2 leyay + - +cpayl, lrgfléxf|cllp

In fact suppose that

‘cl‘p = m?lx icilp 4: 0
1Zisf

Then we have to show that |a; +cha,+ - +crap,=1 where c;=c;/c; (i=2,..., f)
and c;e 0(Q,). Clearly |a; +cha,+ -+ +cpaf,<1. But if |a;+cra,+ - +crapf, <1
then writing a for the image of an element ae (¢(K,) under the residue class
homomorphism we would have 1a, +¢5a, + --- +¢;a, =0, which contradicts the choice
of the a;.

Now consider any c € K,,. It may be written uniquely as

¢= Ze; <;i "ij“i)

j=1 \i=1

b

J

with suitable elements c;; € @Q,. We infer from (2. 2) that for each j

S
(5o
i=1 P

On the other hand since |a;|,=1 and ¢;; € @,

= max |¢;;b;|, = max |c;;a;b;,.
15.5f|u le 1§i§f|”'1|p
represents the same coset

!
<Z cija,-) b;
i=1 p

mod V(@,) in V(K,) as |b;|,. In particular this implies that for any pair j, j’ with j =]’
we have
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(& ool #|( )

p

Thus
e [ f I
lelp=] 2 Z j| = max || 3 c;a;) b
=1 \i=1 p 1sjze |\[T} »
= max l¢;;a;bjl,,
1<jse
15iss

and this is the assertion in (2. 1).

Lemma 2.2. Let L be a linear form with coefficients in K. Let ay,..., o, be a
basis of K, over @, as in Lemma 2.1. If we write L=oa L+ - +a, L, with linear
forms L; (i=1,..., d,) with coefficients in @Q,, then the L; have the following properties.

(i) The coefficients of the L; lie in the smallest normal extension of @ containing
K, hence in a number field of degree say d<d..

(ii) For eachi(1=i<d,) we have
(2.3) H(L)<dH(L).

Proof. As [K,:@Q,]=d, there are d, isomorphic embeddings a,=1id, 05, ..., 0 ,
of K, over @, into Q,. From

ooy Ly + - +oy, Ld,,) =0;() Ly + - + O'i(ad,,)La,, =0;(L)
we get the system of equations

o)Ly + - + 01(“ap)Ldp = oy(L)
2. 4) : : :
04, () Ly + -+ + 0y, (ag,) Ly, = 0,4, (L).

Since a4, ..., o, lie in K and since the restrictions of the o; to K are embeddings of K
over @ 1nto Qp we infer from (2. 4) that the coefficients of L; lie in the compositum
0,(K) - g, (K) and (i) follows.

As for (ii), let K be the smallest normal extension of @ containing K, let
K'=0¢,(K)-0, (K) and K, be the completion of K’ with respect to | |,, ie.
K,=0,(K,)--- 0, (K,). Then [K @]=d<d' and K'c K. Moreover putting [K,:@Q,]=!
then we have 1555 d!.

Extend the basis a,,...,a,, of K, to a basis oy, ..., %4, % +15---5 % Of K with
elements o; € K'. Let G be the Galois group of K, over @ Denote its elements by
Ots s Og,y G4 4+1,..., 0 Where the embeddings oy, ..., g,, of K, into Q, are extended
to K,,. Then in analogy with (2. 4) we have
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@.5)
o)Ly + -+ oy(og,)Ly, + 01(2g,+)La+1 + -+ o)L, = oy(L)

04, )Ly + -+ ad,,(“a,)Ld,, + 0'a,,(°‘a,,+1)Ld,,+1 + - adp(al)Ll = O'd,,(L)
gy, +1(°‘1)L1 + et Ud,,+1(°‘d,,)Ld,, + Ud,+1(°‘d,,+1)Ld,,+1 + ot 0'4,,+1(°‘1)Lt =0y, +1(L)
Ut(“l)Lz + Ut(“ap)Ldp + ‘71(“4,,+1)La,,+1 +oe O't(al)Lt = O"t(L)
where L, = =L,;=0.
By symmetry it suffices to show (2. 3) for L. Let 4 =det(0;(x));<; j<; and denote

by A;; the cofactor of g;(x;) in the matrix (o;(«;));<; j<;- Since a(G\{al})—G\{a} we
see that A;; = 0;(4,,) and therefore (2. 5) implies

1
(2. 6) L1=Z(i'0’1(AuL).+."‘if’z(AuL))-

As Hg.(AL)=Hy.(L) for any 4% 0 in K’ we may suppose that A;; L has some coefficient
equal to 1. Now by (2. 6)

1
Hy (L)=Hg (Z (o,(A L)+ - £oy(Ay, L)))

Hyg (to,(Ay L)+ -+ £ 0,(44, L))
= y l+0'1(A11L)+ +01(A11 )I

Since A;; L has some coefficient equal to 1, we have |g;(4,, L)|,=1 for each i (1<iZ])
and for each v € M'(K’). Therefore

|£0,(A L)% - £ 0(Ay L)], £ max lo:(Ay L), = loy (Agy L), -+ |0, (Ay; L),

-l__

if v is nonarchimedean, and

|£o0,(A L) £ - £ 0y(Ay, L)|, =1 ln<1?§l|0i(Au L), =y (A L), - |oy(Ayy L),

if v is archimedean. So we get putting d' =[K': @]

Hyg (Ly) = 1 l—[ (!01 (A D)y -+ loy(Agy L))

ve M’ (K')
=1"Hg (0,(Ayy L)) -+ Hg(0,(A4;; L))
=1"Hy.(0,(L)) - Hg(a(L)) = 1" Hx.(L)"

Thus H(L,)<IH(L)" and since | £d we obtain (2. 3).
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Proposition A.  For each j (0<j<s) let L'],..., L' be linearly independent linear
forms with coefficients in ¢;(K) N @;. Let [K : @] =d. Then the solutions of (1. 3) with

1
(2.6) |x| = max {(n!)‘”", 5 H”"} ,

where H satisfies (1. 8), lie in at most t, subspaces with
to=(4(s+1)d)¥* oo,

We proceed to show that Proposition A implies the Theorem. For this purpose we
have to make a transition to forms with coefficients in @; (j=0, ..., s).

The forms L, ..., I!? are treated as in Schmidt [15], section 2. It is shown there
that with a suitable choice of the real or imaginary parts of the forms L say
L, ..., L (1. 3) implies

@.7) ILO ) O [T IL9)- L9,

i=1

<2"|det (L, ..., Lo ] Idet(LY, ..., L)), x|,

j=1

Here L{”, being the real or imaginary part of L', has coefficients in the auxiliary field
@o(K) (po(K) (i), where @, (K) is obtained from <p0(K ) by complex conjugation.

To treat the nonarchimedean absolute values in a similar way, we have to pay a
much higher price. In fact the degree of the auxiliary field in this case may be bounded
only by d!. Suppose now that j with 1 <j<s is fixed. Let K; be the completion of ¢;(K)
and let ay,..., 2, be a basis of K; over @; with a;,..., a; € ¢;(K) as in Lemma 2. 1.
(Here for 51mp11c1ty we have put K ,=K;.) There are d; isomorphic embeddings of K;
into Q; say o{"(K),..., ¢/ (K). Write L‘“—oc,L“’ + - +oc,,jL,,d , with linear forms L‘”
havmg coefficients in @ Moreover by Lemma 2. 2 the coefficients of L) lie in K, the
smallest normal extension of @ containing K. In fact they lie in ¢{"(K)--- ¢{¥(K), as
was shown in the proof of Lemma 2. 2. In view of Lemma 2. 1 we have

max |o; L9 (x)]; = |LY ()]

15i<d;
On the other hand we notice that

[det (LY, ..., LY)|; < max ldet(L‘ s Ly o L)

1<isd;

Assume without loss of generality that i=1 is a subscript where this maximum is
attained. Then replacing, the term |L{(x)--- L(x)|; on the left hand side of (1.3) by
ILP () -+ L9 (x) oy LYy (x)|; and [det(LY, ..., LY)]; on the right hand side of (1.3) by

Idet (LY, ..., LY, o, L})|; and cancelling «, on both sides, we see that (1. 3) implies
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( [T 19~ L<;‘><x>|i) 960 LD, ) LA,
i=0
i+

< ( [1 Idet (LY, ..., L‘,';’)I,) \det (LY, ..., L, L), 1x]7°.
i=0
i%j

In a similar manner we may replace for each i (1<i<n) and for each j (0<j<s) the
forms LY’ by forms L with coefficients in @);. Taking into consideration the results of
[15], section 2, for the archimedean absolute value we finally obtain (cancelling the
factor 2" in (2. 7) with |x|™%?)

[1 IIJY’(X)--~IJ.‘.”(X)I;<<]—I |det (L1, ..., L’F’)I,-) Ix| %2,

j=0 j=0

Let us study again the location of the coefficients of our new forms L. We know
already that L'V has coefficients in @;. We claim that moreover its coefficients lie in
K(i). In fact the embeddings ¢; of K into Q; admit a prolongation to K(i) which we
denote again by ¢; (j=0, ..., s). But ¢,(K(i)) contains ¢,(K) ¢ (K) (i) and for 1<j<s

»;(K(i)) contains ¢{"(K)--- @@ (K). Thus our new forms L{ have coefficients in

@ (K@) n@; (j=0, ..., s). Put [K(i): @] =d*. Then we have d* <2d < 2(d)).

We apply Proposition A with LY, ..., [, K, d, § replaced by L{%, ..., L, K(j),
d*, 0/2 respectively. Let

H' =max {(H(LQ), ..., HL®),..., HL), ..., HL®)}.

Combining (2. 3) with the estimate for the quantities H(L{®)<2H?*(L?) from [15] we
obtain

H' <d*H?".
The points x violating (1. 9) satisfy

1 .
|x| = max {(n!)®”°, H} = max {(n!)‘*""’z’, 5 H'Y }

Now Proposition A says that the integer points x with (1. 3) but not (1. 9) lie in not
more than

[(4(s+ 1)@*)?* D@D < [(4(s +1) 2(d))>* e +D ] =1

subspaces.
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3. The gap principle

Lemma 3. 1. For each j with 0<j<s let L), ..., LY be linearly independent linear
forms in n=2 variables with coefficients in ;. Suppose that

3.1 (nY*<P<B
and put Q =(log B)/(log P). Then the points x € Z" in the ball
(3.2 Ix|<B

satisfying
(3.3 I1 IIJ{)(x)---L‘,{’(x)|j<( [T Idet (L, . ’L(r{))b) p-!
j=0 =0
lie in the union of not more than

(3 n3(s+ I)Q)n(s+l)—1

proper rational subspaces.

Proof. 1t is shown in section 3 of [15] that it will be enough to prove that for
forms LD, ..., 'Y whose coefficient vectors are an orthonormal system, the points in the
ball (3. 2) with

3. 4) I IU{’(x)---L‘,{)(x)Ij<<]—[ det (LY, ..., L<,{>)|j> nl P!

ji=0 j=0

lie in not more than (n!)™'Z subspaces with Z=3n*(s+1)Q)"**V~1. Notice that if
LY, ..., ! is an orthonormal system, then we have

3.5) Idet (LY, ..., L?)], =1 and in view of (3. 2)
(3.6) ILY (x)lo < B.

Our next goal is to reduce the problem to a situation where for each j (1Sj<5s)
the forms LY, ..., LY are of the shape

L({):)(1
L9 =) X, + X,

(3.7 o

L(,{)=O(:,j1)X1+OCU)X2+ +0(,,,, 1 X1 + X,
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with coefficients o) € Z;={x e @;||x|;<1}. So fix any j with 1<j<s. (3.4) is in-
variant under replacing LY by A,LY (i=1, ..., n) with nonzero 4; in @;. Therefore we
may suppose that L‘”(X)—oc(” 1+ e X, =a’X has coefficient vector af in Z;"
and that moreover for any i (1 <l<n) there exists k with a{) =1. By symmetry it w1ll
suffice to consider solutions of (3. 2), (3. 4) with

(3.8) L ()] =min {ILY X)]j, ..., ILF (x)];}

and to prove that they are contained in the union of not more than n~'(n!)"'Z
subspaces.

Suppose for simplicity of notation that we have «!) = 1. Define forms
LY X) = LP(X) = LX), .o, LD (X) = L, (0 — o, LX),
Here det (LY, ..., LY, [9)=det(LY, ..., [’ ,, L{").
Moreover for i=1,..., n—1 we have

ILP (x)]; =L (x) — o) LY (x)]; < max {IL (x)], | - IL (%)}
< max {|LY (x)];, ILP )3} = [P (x)];

by (3. 8) and since « € Z;. Notice that the forms
L0 =00 X, + -+l X+ X,

have «}¥’=0. Thus we see that it will suff ice to show that when LY,..., LY have
coefficients in Z; such that «$)=1 and for i=1,...,n—1 off) =0, then the points x with
(3.2, (3.4 lie in at most n"*(n!) 12 subspaces. Starting with the new forms
LY, ..., [, LY we repeat the procedure. Again we may multiply LY, ..., [Y | with
suitable nonzero factors in @); to ensure that they have coefficients in Z; and such that
moreover for each i (1<1<n—1) there exists k (1<k=<n-—1) with ocﬁ{(’=1 whereas
) =0 (i=1,..., n—1). It will suffice to show that the solutions of (3. 2), (3. 4), (3. 8) and

Ly ()] = min {ILY X)]j, ..., LT, (%)]}

lie in at most (n—1)"' n"!(n!)"*Z subspaces. Suppose for simplicity that a2, , ;=1
and put LOX)=LYX)—af),_, LY (X) (i=1, ..., n—2). Then again |[L{(x)|; < |LY (x)|;

i,n—1
(i=1,...,n—2). Denoting the new forms again by LY, ..., [’ we see: It will suffice to
show that when LD, ..., L. ,, LS ,, L' have coefficients in Z;, when

L) =o X+ + a2 X,
fori=1,...,n—2, whereas L =o)X+ - +0o; ,,X,-,+X,-, and

D= Xy 4 ol Xooy + X,



Schlickewei, Number of subspaces in the p-adic subspace theorem 55

then the solutions of (3. 2), (3. 4) lie in at most (n—1)"* n*(n!)"' Z subspaces. Continuing
in this way and applying our procedure for each j (1 £j <s) we finally see that it will be
enough to show that for an orthonormal system LD, ..., [ and for forms LY, ..., L of
the shape (3. 7) and with coefficients in Z; (j=1, ..., s) the rational integral solutions of

(3.9) Ix|<B and ILP(x) -+ L9 (x)];<n! P!
1. J

i=0
lie in not more than (n!)™“*PZ subspaces.

Now points x with (3. 2) satisfy (3. 6) and moreover (since for 1<j<s L} has
coefficients in Z;) for x € Z" we have

(3. 10) ILPx);=1  (i=1,....,n;j=1,..,59).

Put C = (P/(n!)?)"/"*D~D_ Then (3. 9) may be rewritten as

s , 1
(3. 11) ,Do L) - L (01 < a1 -

Write R = (log(n!B"))/log C. Given i with 1<i<n—1 let M(i, 0) be the set of solutions
of (3. 9) satisfying

1
(3.12) !L‘,»‘”(x)|0<BC‘R=F B'™".
Given a pair (i, j) with 1<i<n, 1<j<s let M(i, j) be the set of solutions with
y k1 __,
(3.13) ILY(x)|;<C =7 B™".

If x is a solution of (3. 9) which does not lie in the union of
M(1,0),...,M(n—1,0), M(1, 1),..., M(n, 1),..., M(L, 5),..., M(n, s)

then by (3. 6) and (3. 10) there exist int€gers qio,---» dn-1,00 d11s-++> dnt>+-+» A1s> -+ 5 dns
with 0<g;; < R such that )

(3. 14) C % 1B<|[Px),£C *%B (i=1,...,n—1)
and

(3. 15) C <P, SC ™%  (i=1,...,m;j=1,....9)
hold true. For an (n(s +1)—1)-tuple =(q10>---> dn-1.0> 911> -+ q,s) let M(q) be the set
of solutions of (3. 9) satisfying (3. 14) and (3. 15). We are going to show that for each of

the sets M (i, 0), M (i, j), M(q) there exists a proper rational subspace S;o, S;;, Sq respec-
tively such that M (i, 0) <= S;,, M (i, j)< Sij, M(Q)=S,.
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In fact let x,,..., x, be a family of n points in M (i, 0) whose rank r is maximal
among all families with elements in M (i, 0). Then, since

det (L, ..., L)),=1  (j=0,...,s)

and by (3. 6), (3. 10), (3. 12) we have

s s ) 1
(.19 [T Idet(xy, ..., x,)l;= ] Idet (LY (x),nl;<n! B! nl B "=1.
j=0 I

j=0

But ﬂ |det(x;, ..., x,)|; is an integer. Hence det(xy, ..., x,) =0 and x,, ..., X, have rank

r<n—1 Therefore there exists a subfamily say x,,..., x,_; whose rank is r as well.
Now if x is any point in M (i, 0) then by the maximality of r we infer

rank {X,..., X,_1, X} =T

So x lies in the subspace S;, generated by x,, ..., X, _;.

If instead of M (i, 0) we study M (i, j) for some j >0 we get again (3. 16) using (3. 6),
(3.10), (3.13) and thus we find a proper subspace §;; with M(i, j)= S;;. Now suppose
that for some q we have solutions x € M(q). Then we infer from (3. 11), (3. 14), (3. 15)
that

IL(O)(X)lo 1 Bl nC‘ho“‘ c+tan-1,0+4q11t +¢1ns

Therefore if x4, ..., X, are any n solutions in M (q) we have

s s . n—1 1
[T Idet(xy, ..., x)l; =[] Idet (LY (x)).i0l; <n! < Il BC“""’) 7 Bi—"
i=1 :

j=0 Jj=0
o+ +dn-1,0+q11+ - +4 —qy— - —4q,
x(' n ns( ns 1’

and again there exists a proper subspace S, containing M(q).
The total number of our subspaces Sy, S;;, Sq is
Sn(s+1)—1+ R+ 16D
Now by (3. 1) we have C = PY2(6+D=1 apd p! B" < B4r+ /4 5o that

@n+1) (n(s+1)—1)
2

R < (log (B™*V4))/(log (P2+0=1) — 0.
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Thus the number of subspaces is

s+1)—1

n 1 n(s+1)—1 5 n
§n(s+1)—1+<<2nz(s+1)—2n+§(s+1)+§>'Q) g( 2(s+1)Q>

Since
5, nis+1)-1 e i .
y e S (n) " TIZ= () D (Bnd s+ 1) Q)T

the assertion follows.

Lemma 3. 2. Suppose that 0<d<1 and n=2. Let (n')*° < A< B. Then the integral
points X in A<|x| < B with

(3.17) 11 |L‘{’(x)-~-L‘,{’(x)|j<<]_[ det (LY, . ,1,<"f")|j)|x|—<5
j=0 =
lie in
e log B
<(Bn¥(s+1)es1yery 1<1+1 O’L>
og
proper subspaces.

Proof. Let us first consider the case when B= A°. The solutions of (3.17) then
have

(3.18) [T I9(%) - L‘,{"(x)|j<<ﬂ |det (LY, ..., L‘,{’)|j> P!
j=0 Jj=0

with P = 4° > (n!)*. By Lemma 3. 1 the integral points x with (3. 18) and |x| < B lie in

B n(s+1)—1 ns+1)—1
<3n3(s+1)1 gP> (3n3(s+1)—5e—

subspaces. On the other hand the interval A<¢ < B is contained in the union of the

intervals 4°" <& < 4°""" with 0<v<log log B . The number of these intervals is

log A

_1+log1

and the Lemma follows.
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4. A further reduction

Let LX)=0a,X;+ - +a,X, be a linear form with coefficients in a number
field K. For any v € M'(K) we put |L|,=|al,, where a is the coefficient vector of L and
|at], is defined in section 1.

Proposition B. Let K be a number field of degree d. For each j (0<j<s) let
LY, ..., LY be linearly independent linear forms with coefficients in ¢;(K) @;. Then the
integral points x with

@ 1) IT 1909 - L9 (), < ( T 191, m,m,) x|
j=0 j=0
having
4.2) |x]>(2 H)e”,

where 0<d <1, H is a quantity satisfying (1. 8), and where
4. 3) t=(2(s+1)d)?*e+ee

lie in the union of at most t, proper subspaces.

We claim that Proposition B implies Proposition A. Notice that (1.3) implies
(4. 1). We still have to study solutions of (1. 3) with 4 <|x|< B, where

1
A =max {(n!)“/", 5 Hl/"}
and B=(2H)". Notice that

1/2
Az ((n!)“/" : % H‘/") >(2H)",

logB . 3 . .
:zzﬁ <2de' <Pt and 1+10gk0): <145 1,<21,. So if B>A, we infer

from Lemma 3. 2 that the solutions under consideration are contained in the union of

whence

<2t;(Bend(s+1)57 1+ < 8m 027y

subspaces. Combining this with Proposition B we see, that the integer points with (1. 3)
and (2. 6) lie in the union of not more than

t, + 28»2(.~H-1)26‘1 t, < to

subspaces and Proposition A follows.
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The remainder of the paper deals with the proof of Proposition B. At several
places in the proof it will be useful to take forms into consideration whose coefficients
do not necessarily lie in K but which are proportional to forms with coefficients in K
(with an algebraic factor). Such forms will be said to be defined over K. Similarly if B is
a vector with p=21a for some vector & € K" and an algebraic number 140 we will say
that B is defined over K. Notice that this definition implies that H(B)= H(a). Thus in
particular if M is a linear form which is defined over K and if M =AL, where L has
coefficients in K and where 4+ 0 is algebraic, we have H(M)= H(L). Moreover if L has
coefficients in K we denote its image in ¢;(K) by L"), where ¢; is the embedding of K
into Q; described in section 1. Then M@ =|LD|g'L® is defined over K and is
normalized in the sense that |M‘©|,=1. Moreover it is clear that for j with 1<j<s
MO =|L9; L9 is defined over K and has [MY|;=1. We will then say that MY is
normalized with respect to | |; or simply that it is normalized.

With this notation (4. 1) becomes
(4.4) [T IMP(x)-- MP(x)]; < |x|7°.
j=0

We will write M (X) =B’ X =B X, + - + B X,, where |B|;=1 and
HPBN=HMP) (i=1,...,n;j=0,...,5).
So (1. 8) is the same as
(4.5) Hzmax {HB), ..., HB), ..., HBY), ..., HB)}

and (4. 4) becomes

4. 6) f[ B x) - (B x)];<Ix]7°.

5. Lemmata on heights

In the sequel we shall use several times exterior products. For details the reader is
referred to [14], p. 102ff,, or to [S]. In fact the material of this section is very similar to
section 5 in [15]. For the convenience of the reader we shall however present in some
cases the proofs.

When a, ..., &, lie in K" with 1 £k <n, then the exterior product a; A - Aoy lies
M n . . . .
in K' with = (k) In particular a; A --- @, lies in K" and it is orthogonal to each of
ay, ..., o,_, with respect to the standard inner product.

Lemma 5.1. Let ay, ..., o be linearly independent vectors defined over K. Then

Y=a1/\“'/\ak
has

5.1 H(y)<H (o) H(o)
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This is Lemma 5. 1 of [15].

If a is defined over a number field K then in particular & has components in a
finite extension say F of K. Given v e M'(K) we fix any extension of v to F and we
denote it again by v.

Lemma 5. 2. Suppose K has degree d. Again let Y=o, A--- Ao, where o, ..., o
are linearly independent and defined over K. Then for v e M’'(K)

(5.2) Il HY) ™ Z oty - loely (H (@) -+ H (o)) ™%
In particular in the case k = n we have
(5 3) |det (ala ceey an)lv g Iallu Ianlv (H(al) H(an))_d‘

This is mutatis mutandis Lemma 5. 2 of [15].

Lemma 5.3. Let K be a number field of degree d and ve M'(K). Suppose o is
defined over K. Let g be a point with rational integral components and with ag+ 0. Then
we have

(5.4 logl, = ||, H(@) ¢ |g|*~¢ if v is archimedean
and

(5.5) logl, =], H(®) % |gl™® if v is nonarchimedean.

Proof. Since our inequalities are invariant if we multiply a by some nonzero
algebraic factor, we may suppose that & has components in K. Since g is integral we
have for any w € M'(K)

(5. 6) legl,, <lal, |gl, if wis archimedean
and

5.7 legl, <l|a|,, if wis nonarchimedean.

Now by the product formula for K we get for v e M'(K)

(5.8) 1= [] logl=lagl, [ logl.-
w*v

we M’(K)

As there are precisely d archimedean elements w e M'(K), we obtain combining (5. 6),
(5.7), (5. 8) for archimedean v

1<agl, lg  lal,* T low=logl, lal;* H(@)? |gl*~*

weM’'(K)
whereas for nonarchimedean v we get

1= |ogl, Igl’ lals* [T ledy=logl, ol H (@) [g]".

weM'(K)



Schlickewei, Number of subspaces in the p-adic subspace theorem 61

For j=0,..., s let | |; be the absolute value as defined in section 1. Remember that
for 1<j<s | |;is the p;-adic valuation.

Lemma 5.4. Let K be as above. For j=0,...,s let a{,...,al), be linearly in-
dependent vectors in Q] and defined over K. Put Y =a{) A ---ra), (j=0,...,s). Let g

be a point with rational components whose denominators are only composed by p,, ..., p;.
Assume that we have

I | I'Y(j)glj +0.
j=0
Then

(5.6 TT gl [T () ], H@d) - Hia ) lgl; e+ D).
j=0 j=0

Proof. If af is multiplied by a factor AV+0 (i=1,...,n—1), then y¥ is
multiplied by A9 --- 1) ,. Thus we may suppose that a{ has components in K (more
precisely in ¢;(K)). We have yV'g =det(a{, ..., &} ,, g), hence for each w e M'(K)

ygl, < lai],, - 21, I8l

The hypothesis about g implies that |g|,,<1 for any nonarchimedean w € M’(K) which is
not an extension of one of the absolute values | [; of @ for 1<j<s.

For any j, with 0 <j, <s we have by the product formula

1= ] W%gl, =g, [T gl

weM'(K) w*jo

= ly(jO)gljo 1_[ (la(m)l laﬁnjg)llw |g|w)

w#* jo

Now any absolute value of @ has precisely d extensions in M’'(K). Applying this for
| los---» | | we obtain

1= y%'gl;, lgls, (H lgl") (oo, -l )™ [T (ol -l )

we M'(K)
i*Jjo

=ly"g|;, M,{,‘(H Ig|,> oo, -+l ;) ™t (H (@) -+ H (a2, ))".

Taking the product over j, =0, ..., s we get the assertion.
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Lemma 5.5. Let K be a number field of degree d. Suppose ve M'(K) and let
L,,..., L, be linearly independent forms in n variables defined over K. Then the variables
X; may be uniquely expressed as linear combinations

X;=ya L+ - +y.L, (@(=1,...,n),
and here

This is Lemma 5. 6 of [15].

Lemma 5.6. Let y,,..., v, be vectors in K". Suppose that there is an h=+0 in Q"
with

(5. 11) yvh=0 (i=1,...,k).
Then there is an h=0 in Z" with (5. 11) and with
lh|<H} ™

where H, =max {H(y,), ..., H(y\)}.
This is Lemma 5. 9 of [15].

6. Lattices

Let C=(c;;) be an (n x n)-matrix with integral entries. Moreover let m be a natural
number. We shall study the congruence

Cx=0modm

that is
6. 1) Xy 4 CiyXyt e FCpX,=0modm  (i=1,..., n).

A classical result in linear algebra says that there are unimodular integral (n X n)-
matrices S; and S, such that

6.2) S,CS,=
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Lemma 6. 1. The set of integral solutions x of the system of congruences (6. 1) is a

sublattice A,, of Z" of determinant

m
(ma Ci)

6.3) det A, =]
i=1

Proof. Only (6. 3) has to be shown. The system (6. 1) may be written as
6.4 Cx=mz
where z is in Z". Let S, S, be unimodular matrices as in (6. 2). Put
(6. 5) y=S;x, S,z=1z7".
Then (6. 4) is equivalent to S; CS,y =mz’ that is (using (6. 2))
(6. 6) cyi=mz; (i=1,...,n).
The integral solutions y;, z; of (6. 6) are of the shape

m C;
=g =g,
(m, ci)

Vi (m, c;)

where ¢; is an integral parameter. But this implies that the points y in (6. 6) form a

sublattice of Z" of determinant [] . Since S, is unimodular, we infer from (6. 5)

i=1 (m, c;
that the same holds true for the solutions x of (6. 1).

u .
Let p be a prime and let Z(p) be the set of rational numbers r =3 with v a power
of p.

Lemma 6.2. Let By, ..., B, be linearly independent vectors in @,. Then the set of
solutions x with components in Z (p) of the simultaneous inequalities

(6.7) B:xl, <1 (=L..,n
is a lattice A, in Z (p)" having

det A, =|det (By, ... B,
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Proof. Write B;=(B;;, ..., B;,)- Let B be the matrix with rows ;. Define 3 by

(6.8) max (B, =p*
and y by
(6.9) |det B|,=p’.

Moreover put

(6. 10) Bi=p°B; (1Sisn).
Then the matrix B’ with rows B; has

(6. 11) |det B’|,=p~"**7

and by (6. 8), (6. 10) the entries of B’ are p-adic integers.

Now any solution x € @, of (6. 7) satisfies Bx =z, where the components of z are
suitable p-adic integers. Thus x =B~ 'z, and using Cramer’s rule as well as (6. 8) and
(6. 9) we obtain for any solution x of (6. 7)

(6.12) x|, <ptn 8.
Since we ask for solutions in Z (p)", (6.12) implies that
(6. 13) p" VS 'x=ye 7"
Now by (6. 7), (6. 10), (6. 13) we have to look for the integral solutions y of
(6. 14) By, <p™™*" (i=1,...,n).
Let B/ be a vector with rational integral components satisfying
/=B modp™ "t (i=1,...,n).

Denote by B” the corresponding matrix. Then we have det B” =det B’ mod p"®*~**! and
thus by (6. 11)

(6. 15) |det B"|,=p~"**".
Moreover (6. 14) is equivalent to

(6. 16) ry=0modp™~" (i=1,...,n).
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We may apply Lemma 6. 1 to (6. 16). Let c,, ..., ¢, be the invariants of B". According to
Lemma 6. 1 the integral solutions y of (6. 16) form a sublattice A’ of Z" with

n(nd-7y)

p

6. 17 det A’ = .
( ) (an—vq Cl)”'(pns‘ys cn)

But (6.15) implies ¢, ---c,=p"* ¢ with an integer ¢ which is not divisible by p.
Therefore (6. 17) yields

(6. 18) det A’ =pn—H@s=n
By (6. 13) the lattice 4, consisting of the solutions x of (6. 7) satisfies
det Ap___pn(y—(n—l)b\) detA’,

and the assertion of Lemma 6. 2 follows from (6. 18) and (6. 9).
We now assume that p,, ..., p, are s different primes and that for each j (1<j<5s)

we are given n linearly independent vectors By, ..., B¢’ in @;. We want to study the
simultaneous inequalities

(6. 19) BOX, <1 (i=1,...,n;j=1,.... ).

For each j (1<j<s) put B;=|det(B{", ..., B)|;. Define 9; and y; in analogy with (6. 8),
(6.9) by max |B;”|;=pj” and

(6. 20) B=pp (1Sj<5).
Let Z(p,, ..., p) be the ring of rational numbers r =% with v being a product of powers
of the p;. Moreover define R as the subring of Z(py, ..., p;) with

(6.21) R={reZ(py,...,p) | Irl;Sp" "> " (15j<9)}
We infer from (6.12) that the solutions x of (6.19) with components in Z(py,..., p;)

lie in R".

Lemma 6. 3. The solutions x with components in Z(py, ..., ps) of the system of
inequalities (6. 19) form a lattice A with

(6.22) det A= ] B;.

j=1
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Proof. Let j with 1<j<s be fixed. Using Lemma 6. 2 and (6. 21) we see that the
set of x solving (6.19) for this particular j form a sublattice 4; of R" of index
p{" V@5 Now A=A, - N4, and since R"/A, @ --- ® R"/A, is isomorphic to

R"/Ay - 0 Ag we conclude that 4 has index [] pf"~Y®% 7" in R". On the other hand
j=1

(6.21) implies that detR"=[] pf®~ @Y%) Since detA=ind A detR", the assertion
o
follows from (6. 21).

In the remainder of the paper, when we speak about the lattice defined by in-
equalities (6. 19), we shall always mean the sublattice 4 of R" defined by (6. 19). So let A
be defined by (6.19). Let h,,..., h, be a basis of 4. Let 1<k <n and ¢ € C(n, k), where
Z) and for o= {i; < - <iy}
define H, e ' by H,=h; A--- Ah, . Write A% for the lattice generated by the points
H, with ¢ € C(n, k). We call A® the k-th compound of A. For the determinant of the
k-th compound we know that det A% = (det 4)**/* hence by (6. 22)

C(n, k) is the set of k-tuples {1<i, <i, < --- <i, <n}. Put l=<

(6. 23) det A% = [ B,

j=1
On the other hand we define for j with 1<j<s and for 6 € C(n, k) B’ by
IR TN TN )

The inequalities
(6. 24) BOXV, <1, ceCmk), j=1,..,s,

where x® stands for a vector in @' define a lattice in /R". Since

det ((Bt(rj))c € C(n,k)) = det (ﬂ(lj)a sy ﬂ}lj))lk/n,

and in view of Lemma 6. 3 the determinant of the lattice (6. 24) equals

(6. 25) [T B*".
j=1

Lemma 6.4. The lattice defined by (6. 24) is the k-th compound of the lattice A
defined in (6. 19).

Proof. By (6.23) and (6. 25) the lattice (6. 24) and A% have the same determinant.
Thus it suffices to show that the basis vectors H, (6 € C(n, k)) of A® satisfy (6.24).
Let o={i;< - <i} and 1= {j; < -+ <ji} be in C(n, k). Then
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IBU)Hrlj — '(Bf{) A - B(J)) (hj1 A A hjk)']‘

B(})h (J)h

i1 Yy iy ik

= < max H 1B h;
B(])h l;mh 1 ¥ ‘MK)
[ 1Y e i lJ Q =

where ¢ runs through the permutations of {1, 2,..., k}. Since the vectors h; lie in 4,
they satisfy (6. 19) and therefore the last expression is <1. The Lemma follows.

The (n—1)-st compound A"~V of A is closely related to the polar lattice A* of A.
A* may be defined as A*={x|Vae A xaeZ}. Let hi,...,h} be dual to the basis
hy,....,h, of 4, i.e. h;h*=4,; (= Kronecker’s symbol). Then hf,..., h¥ is a basis of A*
and consequently we have

(6. 26) det A* =(det A)~ 1.
Let BV, ..., BY”" be dual to B, ..., BY, i.e. B BY" = 6,;. The inequalities
(6.27) B x;<1 (i=1...,n;j=1,...,5)

define a lattice 4.

Lemma 6.5. The lattice A, defined by (6. 27) is the polar lattice A* of A. More-
over we have
(det A)- A*=A""D.

Proof. We first show the last assertion. Put

hy=h,A--Ah_;Ah A A,
Then
hiﬁk= iéik det(hl, ceny h”)= iéik detA.

Therefore

(6. 28) h, = + (det A)h¥.

Since h,,..., h, is a basis of 4®™V and h%,..., h¥ is a basis of A*, the last assertion
follows.

Define B¢, ..., B in analogy with h,, ..., h,. Then we obtain in a similar way as
above

(6. 29) BY = +det (BY, ..., BY) BV
We infer from Lemma 6. 4 that

(6. 30) BOR, St (1Sign; 1Sksn; 1SjS5).
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On the other hand (6. 22) implies that
(6. 31) |det 4|;=B;*.

Combining (6.28)—(6.31) we conclude that |B"h,|;<1 (1<i<n; 1<k<n; 1<j<y).
Therefore A*<A4,.

S

But detA, =[] B;' by (6.27) and Lemma 6.3. However by (6.26) and by

=1
Lemma 6. 3 the lastj expression equals det A*. Thus 4, = A*.

Again let for each j (1=<j<s) B¢, ..., B} be linearly independent vectors in @;.
Suppose that we are given real numbers ¢;; (1Si<n; 1<j=<s). Let Q>1. Define the
lattice 4(Q) by the inequalities

(6. 32) BOx; 0%  (i=1,...,nj=1,..,5).
Let f;; be integers with
(6. 33) pilisQ<p ottt (i=1,...,n;j=1,...,59).

Lemma 6. 6. The determinant of the lattice A(Q) defined in (6. 32) satisfies

s n

s X X
(6. 34) detA(Q)g(ﬂ B,.> o 'Tti!
j=1

Proof. Since the absolute value | |; maps @¥ onto the integral powers of p;, the
inequalities (6. 32) are in view of (6. 33) equivalent to

|ng)xlj§pj-fij (l=1,,n,]=1,,5),
hence they are equivalent to
(6. 35) lp7ipPx); <1 (i=1,...,n;j=1,...,9).

But |det (p} /B, ... py "~ BP)); = pf* I |det (B, .., BP);=pfr* By,

Therefore we get combining Lemma 6. 3 and (6. 33)
det A(Q)= n (pjflj*’“""fnij)g I‘[ (BjQ-—clj—-.,._cnj)
j=1 i

as asserted.
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Lemma 6. 7. Suppose that the vectors B’ are normalized, i.e. that
BOL=1 (i=1...n;j=1,...,9).
Let Cyyy..es Cpysvns Cigynns Cug be real numbers and let A(Q) be the lattice defined by
(6. 32). Let A*(Q) be the lattice which is polar to A(Q). Given he Z", h+0, define for
j=1,...,s &=¢h) by ¢&;= max {c;;|B’""h+0}. Then there exists a rational number r
with 1zizn
0<r<T] (Bj*lQE"')
j=1

such that rh e A*(Q).

Proof. Let the integers f;; be defined by (6. 33). Then 4(Q) may be defined by
(6. 35). In view of Lemma 6.5 A*(Q) is given by

(6. 36) Ipfip x|, <1 (i=1,...,n;j=1,...,59).
Remember that B;=|det (Y, ..., B{”)|;. Since the B are normalized, we have

W.<B7Y (i=1,...,n;j=1,...,59).
i J J

Put

J

f;=1rgiign{ﬁj|ﬂ§j)*h*0} and r= _leAlpj_fj-

Then the point rh satisfies

|pf B rhl; < |pfu B Irhl; < p 7o By Bypfr <1
for each pair (i, j) (1<i<n; 1<j<s) such that B h=+0. But if "h=0 then we have
naturally |p/p¢*rh|;<1. Thus rh satisfies (6.36) and therefore rhe 4*(Q). Our

definition of f; and ¢ in conjunction with (6.33) yields pj’fng‘?f and the Lemma
follows.

Let f,, >0, ..., f,, = 0 be integers. Define the lattice A(f) = A(fis, ..., fus) by
(6.37) BOx;<p; v (i=1...,mj=1..,53).

Lemma 6.8. Suppose that for j=1,..., s the vectors BY;..., B> are normalized.
Then any point x € A(f), x + 0 has

Ix|=]] B;
i=1
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Proof. The solutions x of (6. 37) certainly satisfy
(6. 38) BOx|; =1 (i=1..,nj=1.,5).

It was shown in the proof of Lemma 6.2 in (6. 12) that any x with (6. 38) and with
x € Z(py ..., ps)" has

(6. 39) [x|;= (1“51?5"" IB%”I;)M Bj-l = Bj~1 (J=1,...,9.

But for x € Z(py, ..., p,)", x+0 (6. 39) implies |x| > [ ] B;.
j=1

7. Geometry of numbers
Let B2, ..., BV be linearly independent vectors in /R". Suppose that we have
|det (B, ..., By = Bo,.
The inequalities
(7. 1) BOx|, <1  (i=1,...,n)

define a parallelepiped IT of volume 2"Bg! in R". Let A be a lattice in R" of deter-
minant det 4. Moreover let 4,,..., 4, be the successive minima of IT with respect to A,
that is 4; is the least number A such that there are j linearly independent points of A
in AII. We have according to Minkowski (cf. Cassels [2], Theorem V on p. 218)

1
(7.2) — Bodet A4 7, < By det 4.

Fix linearly independent lattice points g,, ..., g, with
(7. 3) gJEJ.JH (j=1,..., n).

Then |det(g,, ..., g,)| =1 det A, where I is the index of the lattice generated by gy, ..., 8,
in A, and we have

(7. 4) 1<I<n!.

(See Cassels [2], Corollary on p. 219).
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Lemma 7. 1 (Davenport’s Lemma). Let ¢, ..., g, be reals with

(7.5) 01202 20,>0,
(7 6) QIA’léQZ}’Zé"éQnin’
(7.7) 01 g=1

Then there is a permutation of B°, ..., B2, say B?, ..., B such that the parallelepiped
IT' defined by

le:B” xlo<1  (i=1,...,n)
has successive minima 1\, ..., A, with respect to A satisfying
(7.9) 2o S KA A (=1 ).

Moreover, every point X in A not in the subspace S;_, spanned by g, ..., g;—,, where
g:,--., 8y are as in (7. 3), has

(7.9) max {|¢; B Xlo, .-, lea B Xlo} 227" 4
Proof (cf. Schmidt [14], section IV, Theorem 3 A). For x € [R" put
N (x) = max {|B”xlo, ..., By X|o}.
The points g;, ..., g, satisfy N(g;)=4; (j=1,...,n) and any point xe 4, X ¢ §;_, has
(7. 10) N(x)Z 4;.

If x lies in S;, the point (BVx, ..., B”’x) satisfies n —i independent linear equations. In
particular we have for x € S, _;

(7.11) a, pOx+ - +a,p0x=0

with certain fixed coefficients a;, ..., a, not all equal to zero. After a suitable permu-
tation we may suppose that

(7. 12) |a,lo =max {|a;lo, .- |aulo}-

But then (7. 11) implies

a1 an—l (4]
pjio)x=_a—ﬂ(1°’x—---— B2, x for xeS§,_,,

n an

and using (7. 12) we obtain
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B xlo < 1B xlo + - + B2 xlo

which in turn yields
1
(7. 13) B xlo + - + B2, X'oiz (1BVxlo+ - +IBOxly) for xe8,_;.

If x lies in S, _, it satisfies (7. 11) and moreover a second relation which is independent
of (7. 11). In particular this relation may be written as

(7. 14) b BPOx+ - +b,_ B2, x=0.
Again after a permutation we may suppose that
(7. 15) by—1lo =max {|bylo, ..., [bu-1lo}
which yields similarly as above
B 1 xlo S B xlo + - + B2, x|p for x€8,_,
and thus by (7. 13)
(7:16)  IBOXlo+ -+ B2 xlo 2 3 (BExlo + -+ B2, xl)
Z272(BOxlo + - +IBOxlo) for x€S, ;.

Continuing in this way we obtain for any j with 1 <j<n inequalities like (7. 13), (7. 16).
Conditions (7. 12), (7. 15) etc. finally lead to a permutation B, ..., B of B, ..., .
We get

(7.17) B xlo+ -+ + IB2xlo 2 277 (B xlo + -+ + B x1o)

for any j (1<j=n) and for any x€ §,_;.

Now suppose that x € A\S;_,. Then there exists j with 1<j<n such that x € §,,
x ¢ §;_,. Since x € §;, we infer from (7.17) and (7. 5)

max {[Ql B(10)’x|0’ LR |Qn BLO)IX|0} g max {IQI '3(10)'x|0, sty IQ} }nylo}

, ’ Q 4 /
2 ¢; max {IB‘1°’ Xgs-ees |ﬂ§0) x|o} g—jj‘ (|B(10) X|o+ - + "3;'0) x|o)

j—n

2 4 ’ -n
g—j“‘ Q,-(ll“1°’ X|p+ - + IB:;O) x|o) =2 QjN(x)-
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The definition of j implies that we have x e A\S;_,. Thus by (7.10) we see that
N (x) = 4;. Therefore we obtain for any x € A\S;_,

(7.18) max {lo, B Xlo, .- leu By Xlo} 227" 0, N(x) 227", 4,2 27" 0; s

the last inequality since j=i and by (7. 6). Notice that (7.18) is exactly the assertion
in (7. 9). Moreover it implies

(7.19) Aiz27 "0 4y,

which is the left hand side of (7. 8).

As for the right hand side of (7. 8), we get using (7. 7)

|det (o, BY, ..., 0. By )lo = Idet (BY, ..., Bi”)lo = Bo.

According to (7. 2) we have

L' Bo detAéll "‘An_S_BO detA
n:
and

1
’n_' BO detAéi’l "‘llnéBo detA.

Thus (7. 19) yields

. detA - B
i< det 4 - B, PR e 0
T A Ay fvrAe o 27T Q1A Qi-14i-1Qi+14it1" Cuhn
—nn=1) . det1- By Szn(n*l)gi_d_e_}é;fo_ i
) SRS N PRIy M (n")"' B, det 4

="yl g ;<4 0 4y,

and (7. 8) follows.

Let B, ..., B be the reciprocal basis with respect to B{”, ..., Bi”, which means
that B is the vector with BB =5, the Kronecker symbol (1=i, k<n). The
parallelepiped IT*

(7. 20) x|, <1 (i=1,...,n)
is the reciprocal parallelepiped to the one defined in (7. 1). Denote the successive minima

of IT* with respect to A*, the lattice which is polar to A4, by if, ..., 4.
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Again let g, ..., g, be the points in (7. 3), and let g¥, ..., g* be the reciprocal basis.
We put

R 1
(7.21) gk“m(gﬂ\‘”/\gk—l/\gkﬂ/\‘”/\gn) k=1,...,n).

Then we have g;8,= det(g,,...,g,)=190; -1 €Z, where I is as in (7. 4).

lk d A
Therefore g, lies in A* and we obtain

(7.22) B=tlgr (lsk=n).
Lemma 7. 2 (Mahler [7]). We have

(7.23) N S A== (1<i<n)
and
(7. 24) BOglo=(n—1IA71 (=i j<n).
Proof. Using linearity we get the identity i Bx) (B{”"y) =xy. In particular

i=1

this implies Y (B{”'g,) (B{°"gF) =g, gF =6;; (1=k, j<n). It follows that

i=1

A..
orgx = Sl (1< <),
Bl g] dCtA =1 .’—-n)

where A is the matrix with entries B{”g,, (1<1, m<n), and where A, is the cofactor of
B(®g; in this matrix. It is clear that

|det 4|, =|det (B, ..., B)lo |det(gy, ..., 8)lo = Bo I det A.

To estimate A4;; we observe that g; € 4,11 n A implies that |B{”g |, < 4;, whence

[Aiflo S =141 Aoy Ajg e Ay
Thus we obtain

B gflo<(n—1)! 4, 4,47 ' B ' I ™" (det A)™"

and using (7. 2), (7. 22) we infer that

B (Tgh)lo =B 8jlo < (n— DI A7
and (7. 24) is shown. But (7. 24) yields

e S(— DU
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Therefore the right hand inequality in (7. 23) follows.
Put

F(x)=max [B{”xlo, F*(x)=max|B*"x|o, F(x)=7 1B xl,.

i=1

Then F and F are distance functions which are polar to each other (Cassels [2], VIIL 5).
Thus if 4,,..., 4, are the successive minima of the set of x with F(x)<1 with respect to
the lattice A* we have 1;4,,,_;=1 (i=1,..., n). But F(x)<nF*(x) and since 1%, ..., A*

are the successive minima of the set of x with F*(x) <1 with respect to A*, we have
A, Sni¥.

This implies the first inequality in (7. 23).

n
k
of k-tuples o={i;<---<i} of integers i in 1<i<n. C(n, k) has cardinality I If
B, ..., B are a basis of R" with |det (B, ..., B, = B,, put

Now suppose that 1 <k=<n and put / =< > As in section 6 let C(n, k) be the set

(7. 25) O =BO A ABO (o€ Cln, k).

The vectors B with o € C(n, k) are a basis of R' and the determinant of this basis is of
modulus B{/". The inequalities

(7. 26) BOXY, <1 (o€ Cln k)

where x® stands for a vector in ' define a parallelepiped IT™® in ' of volume 2'Bg '*™
called the k-th pseudocompound of II. Let 44, ..., 4, be the successive minima of IT with
respect to the lattice A, and for ¢ € C(n, k) put

A’Q=1—1 lli.

iep

There is an ordering g, ..., ¢, of the elements of C(n, k) such that 4, <---</,. Let
g:,-.., 8, be independent points with g;e 4,1 4 i.e. g;€ A and

(7.27) Iﬂ,“”g,-lo =4 (=i, j=Sn).

Let v,,..., v, be the successive minima of the k-th pseudocompound IT® of IT with
respect to the k-th compound A® of the lattice 4.

Lemma 7. 3 (Mahler [8]). The successive minima of I1® with respect to A® have

(7. 28) ) KRY VA, vk, (=10,
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Proof. For ¢={j; < <ji} € C(n, k) put G,=g; A---rg,. Then G, lies in A%.
Using Laplace’s identity and (7. 27) we see that

(7.29) BOGlo<k!i, (0,0€C(n, k)
and the right hand side of (7. 28) follows. On the other hand (7. 2) implies
(n)™'BodetA)¥"< 4, -4, < (B, det A)'*".
The analogue of (7. 2) for IT% and A™® is
(I BY"(det A)*" < vy --- v < BRI (det A)k",

Thus we obtain
1
(I TT ni/dg) S (nh)*m,
i=1

and the upper bound in (7. 28) implies the lower bound.

Lemma 7.4. Define the points G, and ¢,,..., 0, as above. Once the span of

G, ..., G, _, in [R'is determined, the span of g, ..., 8, in R" is determined.

Q 4]

This is Lemma 6. 4 of Schmidt [15].

8. Geometry of numbers continued
Again B9, ..., B will be linearly independent vectors in R" with determinant of
modulus B,. Moreover for the s primes p,,..., p, we consider linearly independent

vectors B, ..., B in @] with |det(BY, ..., B);=B; (1=<j<s). We will make the
additional assumption that for all j (0<j<s) BY, ..., BY’ are normalized, i.e. that

lﬁ‘f’l,~= = "ﬁnj)'j= 1.

Throughout ¢,j,..., c,; (j=0,...,s) will be reals with |c;;]<1 (1£i<n; 0=<j=<s) and
with

8. 1) Y 3 ¢, =0.
j=0 i=1
Given Q>0 let IT = I1(Q) be the parallelepiped
(8.2 BOx|, Q% (i=1,,...,n)
and 4= A(Q) be the lattice

8.3) BOX; SO (=1 m =1, 9).
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The inequalities (8. 2) are equivalent with |B{® x|, <1, where B{* = Q “°p(®. Therefore
and in view of the last part of section 6 the theory developed in section 7 applies.

We define minima A=A4(Q) of I1(Q) with respect to A(Q). Again we have points
g, =¢g,(0),..., 8,=g,(Q) with (7. 3). The reciprocal parallelepiped IT* = IT*(Q) is given
by

B xlo < Q.
We have seen in (7. 22) that the point
g,=(det )" (g, A Ag,-y)
lies in A* and that we have g,= +Ig} where [ is the index of the lattice generated by

g,..-, g, in A. Since by definition (cf. section 6) A is a subset of Z(py, ..., p,)" it is clear
that the point Gg, with

(8.4) G=TT I8l
i=1
lies in Z".

Lemma 8. 1. The point G, with G defined by (8. 4) has

(8.5) IGE,lo<n! (H B;l) Ay Ay QOF,
ji=0

Proof. For each j (0<j<s) write B =BP A - ABL, ABY), A -« ABY so that we
obtain in analogy with (7. 21) and (7. 22)

B = +det@Y, ..., BB (i=1,...,n;j=0,...,9).
By Laplace’s identity we have
(8:6)  [BOfo Sdet Ay (n 1)1 3, e d, g QFI0T T O F ot o
and therefore

(8.7)
B 8alo < By (det 4) ! (n— 1Ay oAy Q0 FE0 et (=1, ).

If we write g, as 8, =u”p? + -+ + ulPBL?, this says that
[u@]o < B (det A)™! (n—1)! Ay =+ A, Q0T om0 T ot F 0

and since the B{¥ are normalized we get

max (€10t -+ +¢i-y,0+Ci+1,0t - +Cno)
(8.8) 18alo <n!Bg'(detA) 1Ay Ay-1Q

43 Journal fiir Mathematik. Band 406
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Similarly we obtain for j with 1<j<s

8.9 B8, < |det A|j 1 Qout ettty (1<i<n)
hence

(8. 10) B 8,0, < By Hldet A|; T Qi Fimnat sty (1< i<n).

Finally writing 8, as u{?B{’ + --- + u’BY’ we infer from (8. 10) that
mgx(clj+-u+c,--1,j+c,-“,j+«~~+c,.j)

(8. 11) 18,1, < B det A1 Q

Notice that [] |det A|;=1. Moreover (8. 1) implies

j=o0

S
Y max(cyj+ - +¢g jFCuyg it H ) SSs+1
; i

Jj=0

Combining this with (8. 8) and (8. 11) we get

|G8ulo =n! (H Bj—1> Ay Aoy QSH-
j=0

We now apply Lemma 5. 2 to (8. 5). If B, ..., B’ are independent and normalized
and if they are defined over K, we have

(8.12) 1z B;=|det(8Y, ..., B"),Z(HBY) - HBP)™*  (j=0,...,5).
Therefore if H is a quantity satisfying (4. 5), then
(8.13) IGBulo SntAy - Ay HMETDIQHE,

Lemma 8.2. Let B2, ..., B%;...; B, ..., B be s+1 sets of linearly independent
vectors such that BY, ..., B are normalized with respect to | |; (0<j<s) and defined
over K. Let I1(Q) and A(Q) be given by (8. 2), (8.3) and let g,,..., g, as well as 8, be as
above. Suppose G is defined as in (8.4). Then for each (s+ 1)-tuple of subscripts
(ios iy ..., is) With

(8. 14) [T 18" 8,l;+0
j=0

we have

1

(B-15)  GBo>(n) ™ H T (2o dymy) ! QP00 IO,
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Proof. Let (iy, ..., i;) be an (s+ 1)-tuple for which (8. 14) holds true. We apply
Lemma 5.4 with y‘“—ﬂ“’—ﬁ“)/\ AR ABL A ABY. Since the B are normal-
ized, (5. 9) says that

.16 TT BP81,2 [T (G- HBL) HBo) - HOP) 07

j=0

On the other hand we have (8. 6) and (8. 9). Together with (8. 1) they imply

(8.17) [T B2 S (1= 1)1 Ay 2,y @ W0 Cwi™ s,
j=0

Combination of (8. 16) and (8. 17) yields

®.18) [T gl "= [T lgale"™
j=0

Jj=0
;(n!)H—_nd(s+l) ('11 /1"_1)—1 Qc‘00+c‘11+"‘+cis’.

Remember the definition of G in (8. 4). Thus (8. 15) follows from (8. 18).

There is a linear form V=V(X)=v,X,+ --- +v,X, with coprime integral co-
efficients vanishing on g, ..., g,. This form is unique up to a factor + 1. Write

[V]=max (jvslo ..., ltalo) = V1.
We also write
(8. 19) g=n—1
and we denote by S the set of (s + 1)-tuples of subscripts (i, iy, ..., is) wWith
Cigo T Ciyj1+ o +¢>0.
Lemma 8. 3. Suppose 6 >0,

(8. 20) A=A, =Q7°

and

8.21) 098 > (n1)646+1 f2nds+1),

Suppose there is an (iy, iy, ..., i) € S with [] |BY"8,l;%0, i.e. with (8. 14). Then

j=0

q0
(8.22) Q26+D < [V] < Qs+1,
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Proof. Clearly g, is a multiple of the coefficient vector v of V. Now Gg, with G

as in (8. 4) is an integral vector. Thus there is an integer m such that Gg,=mv.

It follows moreover from (8.4) that the greatest common divisor of the com-
ponents of Gg, is not divisible by any of p,,..., p,. On the other hand by (7.22) we
have |g,8,|=I, the index of the lattice generated by g,,..., g, in A. Therefore, in view of
(7. 4) we may infer that the g.c.d. of the components of Gg, is <n!, so that 1<m=<n!.

Now (8. 13), (8. 20) yield

[V]=[V1=|Gg,loSn! H"e*ViQ-at s+t

and the right hand side of (8. 22) follows from (8. 21).

As for an estimate in the opposite direction, Lemma 8. 2 with

CipoFCiy1+ - +¢,s>0
implies

q0 qo

1 _49 19
V1=TV12—Vlo Z(a)* |GR,lo > (n}) > H™" QU6+ > 246+D

by (8. 21) and this is the left hand side of (8. 22).

Lemma 8. 4. Again let I1=1I1(Q) be the parallelepiped (8.2), where B, ...

b

(0)
n

in " are normalized and have |det (B2, ..., B?)|, = B,. Moreover let A= A(Q) be the

lattice (8. 3), where for each j (1=j<s) BY, ..., B in @] are normalized and have

ldet (B(lj)a seey Bftj))lj = Bj'

Suppose that
(8. 23) n! (H Bj'1> A<l
j=0

and that there is an integral point h+ 0 with

(8. 24) [T IBY"h|;=0 for every (io,..-,is) with

j=0
n ( H Bj‘1 Q“ff> [hjo A, 2 1.
j=0
Then

(8. 25) gh=0 for i=1,2,...,q.
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Proof. For j=1,..., s we define sets C;c {1, ..., n} as
C,={ilBY"h=+0}.
Since By, ..., BY" are linearly independent, we have C,= 0. Let

ieCj

and suppose i(j) € C; is a subscript with ¢
number r + 0 having

ij,j=¢;- By Lemma 6. 7 there exists a rational

(8. 26) 0<r=]] (B10%)
i=1

such that rh=h, say, lies in A4*.

Now the inequality (7. 23) holds true for the pair II, A and the reciprocal pair
IT*, A*. In particular for i with

n<l’] Bj~1> |h|0 ;{q Qc,«o+c~,+-~~+c~s<1
j=0

we infer
AMzntA0 =n"1A7 2 hy ( []0 B,.‘1> Qeiot it tEs
=
Since B, ..., B{® are normalized, we have |B{®”|, < B;' and thus we obtain by (8. 26)
(8.27) B hlo < Bs ' Irlo Ihlo < By'* < l_s-[o B! Q?") lhjp <A3Q ™%
=

for such i.

S

If however i is a subscript with n(]_[ Bj”) [h|, Qo *Fi+*% > 1, then by (8. 24)
we get i=o

1B hlo T IB{{5hl;=0.
ji=1
However the definition of the sets C; says that
[T I1Bi{5hl;+0.
j=1

Thus (8. 24) even implies |B{>*h|, =0 and therefore also

(8. 28) 1B Blo = 0.
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Combining (8. 27) and (8. 28) we see that the point h+0 lies in A* as well as in the
interior of A% IT*.

On the other hand using 1<ni%¥1,_, and (8. 7), we obtain for the point g, e A*
in (7. 21)

1B 8alo <! Bg ' (det A) ™1 Ay - Ay AZ_ AR QEr0T i toF im0t no,

We infer from Lemma 6. 6 and (8. 1) that

s
=1 ot +Ci—10+Civ1,0F -+ - ¢ -1
(detA) Qm i-1,0+Ci+1,0 oéQ oUBj .

ji=1

Thus by (8. 23) we get
1B 24lo < n! (H Bfl) 7A3QTe<AEQT (=1, m).
j=0

Hence g, also lies in the interior of A% IT*. Since any two nonzero points of the lattice
A* lying in the interior of A% IT* are proportional, it follows that h and g, and therefore
also h and 8, are proportional. As 8, is orthogonal to g,,..., g,_;, the same holds true
for h and (8. 25) follows.

Lemma 8.5. Let B, ..., B, ..., BY,..., B be as in the preceding Lemma. In

addition suppose that they are defined over K. Assume that there is an integral point h=+0
with

(8.29) [TIBY"hl;=0 for every (ig,iy,..., i) € .
j=0

In fact, let h be a point with this property having smallest possible norm |h|,. Suppose that
(8. 20) holds, i.e. that 1,< Q™ with 6>0 and that

(8.30) Q%> n! Hr@G+0+n=1

Then (8. 25) holds true, i.e. g;h=--- =g, h=0.

Proof. 1t suffices to check the conditions (8.23), (8.24) of Lemma 8. 4. As for
(8. 23) we obtain with (8. 12)

n! <'=0 B;l) A<l Hre+D Qe

J

and by (8. 30) this is <1.
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Now if there is an integral point h=0 with (8. 29), we may apply Lemma 5. 6 to a
maximal linearly independent subset of the set of vectors Bﬁj’ where i; runs through the
projection of & onto the j-th coordinate and where j runs through {0,...,s}. By
Lemma 5. 6 we find an h with

|hlo < max H (B~ = max H@{)y~,

where the maximum is over j with 0<j<s and over all possible values of i;. This
maximum is <max H(@B)" !. Finally, using Lemma 5.1 we see that a minimal h
iJ

satisfies

|hjo < H™ ",

Therefore, if (iy, iy, ..., i) is such that

j=0
then

nH"(d(S"'l)‘*’"—l)Q“fsQci00+"‘i11+"'+“iss >1
= 9

s0 that Qoe*‘ui**s>1 by (8.30). We may conclude that (iy, i,..., i) e S and
hence that we have (8. 29).

Thus (8. 24) is satisfied as well.

Lemma 8. 6. Again let for j=0,...,s the vectors B¢, ..., B’ be normalized, in-
dependent, and defined over K. Let II(Q) and A(Q) be given by (8.2) and (8.3)
respectively, and let S(Q) be the subspace spanned by g,, ..., g,. Suppose that

0<do<1.
Then the values of Q with A,=1,(Q)< Q7% and lying in an interval
(8.31) Qo <Q =08,
where E>1 and
(8.32) Qné/2 > p! Hrd6+H
give rise to not more than
1+4(s+1)6"logE

distinct subspaces S(Q).
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Proof. The argument is similar to the one used in section 3. Consider an interval
of the type

(8.33) Q0 <Q =0, e

with (8. 32). Let Q,, ..., Q, be any values of Q in (8. 33) with 4,(Q)<Q7°. For 1<k<n
let hy be one of the points g,(Q,), ..., 8,(Qx). Then

IBOhylo < 4,(Q) QRS Qre™? (i<, k=n)

and
BPh ;S0 (150 k<n; 1Zj<s).
We have
[1 1det(hy, ... b)), = [T (B det (B"h,))
J= j=

§n!(n B,.—l) max (Qfe~?- ge~Y) H max Q5 Q)
j=0 k

where the maximum is over permutations kq, ..., k, of 1,..., n. Now for ¢ <0 we have
00, (Isksn),

whereas for ¢ 20 we have

[
0 =0T ) (1ksn),

k=

We thus obtain using (8. 1)

f[ det (hy, ..., ")]J<nl<ﬁ ) 2(s+n(zo+>:1)

where Z is the sum of ¢,y — & over i with ¢;,—6=0 and ) is the sum of ¢;; over i
and j (1 <]<s) with ¢;;20, so that 3 +3 <n(s+1). Thus

S

[T Idet(h,, ..., h,);<n! ([] B;l) Q5 ™2 <p) Hr6+D Qa2 <
ji=0

by (8. 32). Since the h, have components in Z (p,, ..., Ps), wWe see that

H |det(hy, ..., h,,)lj
j=0

is an integer.
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We may conclude that det(hy, ..., h,)=0, so that hy, ..., h, are linearly dependent.
In fact, any vectors hy,...,h, with h;e S(Q;) are linearly dependent. Therefore
S(Q,)=--=5(Q,), and for Q in (8. 33) with (8. 20), the subspace S(Q) is always the
same.

The given interval (8. 31) is contained in the union of not more than

log E
[+ 82 C144(s+1)5 ' logE

log (1 +~—~2(s+ 1)>

intervals of the type (8. 33).

9. The index
We denote the ring of polynomials
P=P(X 1, s Xinseoos Xt oo s Xpuw)
in nm variables and with rational integral coefficients by #. Given an m-tuple

r=(Fy,..., 'y)

of natural numbers, #Z' will denote the set of polynomials in # which are homogeneous
of degree r, in the block of variables X,,, ..., X}, (1=h=<m). The symbol .# will denote
nm-tuples of nonnegative integers

fz(ill""’ iln;"'; lml’ ey imn),

and we will use the notation

We put
1 pit e+ imn

P’ = - -
i) ! OXiY - O Xn

If P lies in # then also P’ lies in #. With [7]; denoting the maximum modulus with
respect to | |; of the coefficients of a polynomial (0 <j <s), we have for Pe &'

(9.1 [P"],<2'[P], and [P’],<[P], (1<j<s)
where

.2 r=ri+ -+,
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Let L,,..., L, be nonzero linear forms, where L, is a form in the variables
Xy1s .- » Xy, With coefficients in a complete field F containing @, so that

Lh=<x“Xh1+'“+0£h,,Xh,, (h=1,..., m)

Let T be the subspace of F"™ defined by L, = --- =L, =0. In view of Schmidt [14], VI,
Lemmata 4B, 4C, the index of a polynomial P € # with respect to (L, ..., L,,; r) may
be defined as follows. When P=0, set Ind P=c0. When P £ 0, the index is the least value
of ¢ such that there is an S with (#/r)=c, such that P’ is not identically zero on T.
Furthermore, if a,, +0 for h=1,..., m, then there is an

9. 3) F=(iy,0,...,0:...50,,0, ..., 0)

with (#/r)=1Ind P and P’ not identically zero on T.

We now quote a version of Roth’s Lemma from Schmidt [14], VI, Theorem 10B.

Lemma 9. 1 (Roth’s Lemma). Suppose that 0< 3 <1/12, that m is a positive integer,
and let

m IV
.4 w=24-2 (E) .
Let ry, ..., 1, be natural numbers with
9.5) w2ty (IShsm-1).

Let Vy,...,V,, be nonzero linear forms in n variables with coprime rational integral
coefficients, where V, is a polynomial in X, ..., X;,. Suppose that 0<I' <q=n-1, and
that

(9. 6) A A 2=h=m),

©.7 Vlotz2’"  (1=hsm).
Let P € &' be nonzero, and with

©. 8) PlE <V |ent.

Then the index of P with respect to (Vy,..., V1) is <9.

Given a linear form L =a, X, + --- + a,X,,, we make m forms out of it by setting
L[h]=oc1X,,1+---+Ot,,Xh,, (h=1,...,m).

The index with respect to (L;r) is then defined as the index with respect to
(L[l]’ ceey L[m]; l').



Schlickewei, Number of subspaces in the p-adic subspace theorem 87

Lemma 9. 2 (Index Theorem). Suppose L,,..., L,, are nonzero linear forms with
coefficients in a number field of degree d. Suppose

9.9 H(LY)<H (i=1,...,w).
Suppose that ¢>0 and
(9. 10) m>4e %2 log(2wd).
Then given r = (ry, ..., I',), there exists a nonzero polynomial P € &' with
. 1 . .
(i) IndPz= (;—s) m with respect to (L;;x) (i=1,..., w),

(i) [Plo<2™@n'2H) and [P],<1(j=1,...,s).

This is the Index Theorem of section 9 in Schmidt [15]. The additional require-
ment [P |;<1 (j=1,...,s) is automatically satisfied, since P has rational integral co-
efficients.

Let K be a number field of degree d. For each j (0<j<s) let ¢; be an em-
bedding of K over @ into Q;, the algebraic closure of @;. Let LY, ..., L be linearly
independent linear forms with coefficients in ¢;(K)n @); and let M{", ..., M be their
normalizations, i.e.

MO =ILOR LY (i=1,..., )
MO =|LPLLY (=1, j=1,..,5).

(Notice that here the second part of our definition makes sense, since for j=1
ILY|; is a rational number.) For each j (0<j<s) we may write X,,..., X, as linear
combinations of M{), ..., MY, and X,, ..., X, as linear combinations of

M{J[}l],..., M’iﬂl] (h——"],...,m).

Now, if (9.10) holds with w=n(s+1), let P be the polynomial of the Index
Theorem. Given an nm-tuple .#, we may write P” as

. . Gy’ Gy’ (j)y'm1 (jy/mn
9. 11) P’ = Z d}'}(]ll""’]mn)Ml[l] s My o Mipmy - Myim

for each j with 0 <j<s. Here the summation may be restricted to

Jrit ot im ST (h=1,..., m).
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Lemma 9. 3 (Polynomial Theorem). (i) When (#/r) <2em, then we have for each
j (0 é.] é S) df(jll’ LK) jmn) =0 unless

(i !ﬂ-)—f:—‘dnms (1<k<n).

=1 Th
(i) As for the modulus of the coefficients of P* we have

1dE Gis s Jmn)lo <2™mM (6032 HM 1Y
and

|df(j119"'9jmn)|j§Hndr (1 é}és)‘

Proof. (i) and the first part of (ii) are identical with the Polynomial Theorem in
Schmidt [15], section 9. So let us study the second assertion in (ii). If we write

Xo=nf M+ 4 nff MY
then we have by Lemma 5. 5
InPl; < H™.

The monomial XJ4 --- X/=» may be written as

n Ji1 n Jmn
Jj jmn — ) ag() ) agD)
X Xom —< Z N1k Mku]) ( Z Nnk Mk[m])
k=1 1

k=
and this is a polynomial in the forms M,f{,’,] with coefficients of | |;-modulus
éH"d(.fn"’“'*‘fmn)éHndr (1 é]és)
Since | P* |j§1 (1£j <), we obtain
ld7 Grgs oos ) SH™ (1Sj <)

and this is the second part of (ii).

10. The index of P with respect to certain rational linear forms

For each j (j=0,...,s) let [PX)=a’X (i=1,...,n) be linearly independent
linear forms with coefficients in ¢;(K) n @Q; and with

(10. 1) H(IL)<H (i=1,...,n;j=0,...,5)
i.e. with (9. 9). Let

MIX)=p"X (i=1,...,n;j=0,...,5)
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be their respective normalizations with respect to | |;. We suppose that ¢>0 and that
m>4e 2 log(2n(s+1)d) i.e. that (9. 10) holds with w=n(s+1). Let P be the polynomial
of the Index Theorem 9. 2 and of the Polynomial Theorem 9. 3.

As in section 8, Cig, ..y Cugs--+s Ciss---» Cps Will be real numbers of modulus <1
satisfying (8. 1). Given 0>0, IT1(Q) and A(Q) will be the parallelepiped (8. 2) and the
lattice (8. 3) respectively. We have minima A, =41,(Q),..., 1,=4,(Q), and we have
certain points g, =g,(Q),..., g,=g,(Q) as in (7. 3). Again, V' =V(Q) will be the linear
form with coprime integral coefficients vanishing on g,,...,g, where g=n—1. If
V=v, X+ +v,X, write

V[;.]=U1Xh1+"'+vnxhn (h=1,...,m).

)
Lemma 10. 1. Suppose that 0<d<1 and 0<s§—-~—i(~-—-~. Let Qq, ..., Q,, satisfy
15n°(s+1)
(10.2) rilogQy=rlogQ,<(1+¢)r logQ, (h=1,...,m),
(10.3) 2,00, (h=1,...,m),
and
(10. 4) Q) >218ng 3 gSmdsH  (h=1, ..., m).

Then P has index = me with respect to (Vi;;(Qy), ..., Vi (@n); 7).

Proof. Let T be the subspace of @™ where V;;(Q,), ..., V;y(Qn) vanish. It
suffices to show that P =0 on T whenever (#/r)<me. For h=1,...,m let I, be the
grid consisting of points

u=1u;8,(Q4)+ - +u,8,(Q,),

where uy, ..., u, run through the integers in [ Su; < [e71]+1. In view of Lemma 8A of
Schmidt [14], it suffices to show that

(10.5) P’ (uy,...,u,)=0

whenever (£/r)<2em and u, eI, (h=1,...,m). In accordance with (9. 11) we write for
J=0,....s

(10.6) PP nt)= Y & (uosooos o) MP @) MP ().

Notice that the points g;(Q,) (i=1,...,q; h=1,...,m) lie in Z(py, ..., py)". Thus there
exists a natural number R which is only divisible by p,, ..., p; such that for i (1£i=<q)
and for each h (1<h<m) the point Rg;(Q,) lies in Z". Therefore the points Ru, with
u, €[, lie in Z" and
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[T IP7(Ruy, ..., Ru,)|;
j=0

will be an integer. On the other hand H |IR|;=1 and since P as well as P’ are
i=0
homogeneous we may infer that

(10.7) 1P’ @y, ..., u,);€Z
j=0

We first estimate |P* (uy, ..., u,)|,. Here

IMO @l Snle™t +1) 4, (Qn) Qo< 22 000 (1sk<n; 1Shsm)
4 e

by (10. 3) and the definition of I,. Therefore

, . 2
(10.8) (MO, MO (,)mo < (—'1

Jikt e+ imi
T gt g

Combining (10. 2) and assertion (i) of Lemma 9. 3 we get for each j

d}"(jlla“'sjmn)':o (0<]§S)

unless

h=1

m m 5 1
Z JulogQp=2r log 0, Z i:i%rl 10gQ1(‘n‘—3"3>m
h=1 k

and

m m 1
Y JulogQu=<(1+e)rilogQ, 3 Zrb£§rl logQ;(1+¢) <;+3”3)m-
h=1 n=1 Tk

1 1 o
Since (1+¢) <—+ 3n£) <;+% ne, this implies, that for k=1,...,n we have only to
n
consider monomials satisfying

mo m 7 m 0
(10.9) (h; Jnk logQ,,> —r, logQ, P <r,logQ, 5 nme<r, logQ, P 4_(?'_*‘-1—)
For such monomials we obtain using (10. 8)
|M,£°)(lll)j“‘ cee Méo)(um).imklo < <3_'£>’”‘+ i ;1%(Cuo~6)+n% —“—4(;1 ) |Ck0_6|.
&
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In view of assertion (ii) of Lemma 9. 3 and since |c,o, — | <2, we see that for j=0 every
summand in (10. 6) has | |,-modulus

r m o
2n> "17(010+~~+'—'n0"‘n(§)+rlmm

<2mn(6n3/2Hnd+1)r <T .

The number of summands in (10. 6) is <2""" "™ =2" o that

2n r,-','.-'(c,()+--A+r,,o—n6)

(10. 10) [PZ(uy, ..., )|, <2"" " (6032 H"F Ly <w> |
&
R I
le'ml(s+l)'
We now estimate [P (u,, ..., u,)|; for j = 1. Here
IMP () ;<0 (1=k<n; 1Sh<m)

by the definition of u,. Again, by assertion (i) of Lemma 9. 3 we have only to consider
monomials with (10. 9), and for these we obtain

7 sl

, ; . , . . Mo gm0
M (g - M () S Q- Qs < Q1T 60

Using assertion (ii) of Lemma 9.3 and the ultrametric triangle inequality and since
leg il 1 we get

m J
Fig(CrjteFCpp)trymo—rs

(10.11) [P’ (uy,..., u,)|;<H"" Q) 650 (j=1,..., ).

Combination of (8. 1), (10. 10), (10. 11) yields

S 2n\ _-rmd
n |PJ(“1’.“’um)|j<2n(m+r)(6n3/2Hnd(s+1)+1)r (_) Ql 172
i=o €
)

<@ HMCTT) Qe Q)R
by (10. 2). Now, since r=r, + --- +r,, and by (10. 4) this implies

S m
[T 1Py, ..., u,);< Y (20ne PHMCTD T Qronyn <.
j=0 h=1

The assertion follows from (10. 7).
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11. The penultimate minimum
Lemma 11. 1. Suppose that 0<d<1 and
(11. 1) m>900n*(s+1)26"2 log(2n(s + 1)d).
Put

1
11. E=—2"(180)*""",
(11.2) 122 (180)

Let TT1(Q) and A(Q) be defined by (8. 2) and (8. 3) respectively, where for each j (0<j<ys)
BY, ..., BY are independent and normalized vectors in @, defined over a field of degree d,
and with heights HBP)<H (i=1,...,n; j=0, ..., s). Suppose that for any integral point
h+ 0 there exist (iy, -.., i) € S for which (8. 29) does not hold. Then the numbers Q with

(11.3) Aq(Q)<Q_‘5
and with
(1 1. 4) Q&Z > (24nH)4d2(s+ 1)3mE

lie in at most m — 1 intervals of the type

(11.5) 0,<0=<0f (h=1,...,m—1).
Proof. Put
(11.6) 0

ST+ 1)

This fits well into the hypotheses of Lemma 10. 1. With this value of ¢, (11. 1) implies
that (9. 10) is satisfied with w =n(s + 1), which was required in Lemma 10. 1 as well.

Notice that m>(log2) ! log(2n(s+1)d)+1 by (11.1), so that 2""!>2n(s+1)d
and

(11.7) E>2-2""'>4n(s+1)d
by (11. 2). Combining (11. 1), (11.4), (11.7) we get
Q6 > Qéz > (24nH)1000n‘6*2(s+ 1)24d24nd(s+1)
o ptbn gy Snets+ (15n2§s + 1))3 _ Q18ng=3 pSndts+ 1)

thus (10.4) with ¢ defined in (11.6). So apart from (10.2) all the hypotheses of
Lemma 10. 1 are satisfied.
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Now suppose the Lemma were false. Let Q, be the infimum of the values of Q
with (11.3), (11.4). Then Q with (11.3), (11.4) will have Q> Q,. If all the values of Q
with (11.3), (11.4) were in the interval Q,<Q < Q%, the assertion would be correct.
Hence there are Q> Q% with (11.3); let Q, be their infimum. Continuing the procedure

we find Qy, ..., Q,, with 1,(0,)<Q,° (h=1,..., m) and

(11.8) 0,:120F (h=1,...,m—1).
Now let r; be so large that

ri>¢ 'logQ,,/log Q.
For h=2,..., m put
r,=[r;logQ,/logQ,]+1.

Then we have for h=1,..., m

(11.9) rilogQ,=r,logQ,<r logQ,+logQ,<(1+¢)r, logQ,,

and (10. 2) holds.

Let P be the polynomial of the Index Theorem and of the Polynomial Theorem.
Then Lemma 10. 1 says that P has index = me with respect to

(Vy(@1)s -5 Vi (@25 1)

1 . .
Our next goal is to apply Roth’s Lemma. With S:TS and with w given by (9. 4),
2
we have E=—. Hence by (11.8), (11.9)
w

"h+1IOth+1= 2ry4q loth+12r
(1+¢logQ, (1+¢E logg, = "

wrZo

and (9. 5) is satisfied.

Since for any integral point h+0 there exists (ig, ..., i;) € € with [] [BY"h|;%0,

j=0
the same holds true for any rational point g=0. In particular there is for each h an
(io, .., i) € & with [ IBY"8,(Qu)I;+0 (h=1,..., m), so that by Lemma 8.3 (notice that

=0
(11. 4) implies (8. 21)) we have

. q‘j
(11. 10) Q2+ D <[V ]< Qs (h=1,..., m),

where V, =V(Q,). Put

qo

51 Journal fiir Mathematik. Band 406
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Then (11. 10) in conjunction with (11.9) yields

Vil > Qe+l z e > [V (h=2,...,m),

which is (9. 6). Moreover by (11. 11), and since E =3
w

2 252
ol w(s+1)I? = SH) 2d2:1s-‘:1)3E 3mg?
th I >Qy =0, =0Qj >2 s

where we have used (11.4). So (9. 7) is satisfied.

We still have to check (9. 8). Now, by the Index Theorem we have
[Pl,<2™(3nY2H) <(2*"H)"™,
and therefore

P gl < (24,,H)r,mq2 <(24,,H)r,mq2Ew — (24nH)r1meF24dz(s+1)“6‘2
< Qilw(s+1)1‘2 <|V1 Igwl‘

in view of (11.4) and (11. 10). Thus (9. 8) is satisfied as well. By Roth’s Lemma, the
index of P with respect to (Vj), ..., Vy; 1) is = 39. But

1 0

= <" Bnisr1)

me

by (11. 1), (11. 6). This contradicts the lower bound given above.

Lemma 11. 2. Let 6, m, E be as in Lemma 11. 1. Let I1(Q) and A(Q) be defined by
(8. 2) and (8. 3) respectively, where for each j (0<j<s) BY,..., BY are independent and
normalized vectors in Q}, defined over a field of degree d and with heights < H. Given Q,
let S=S(Q) be the subspace spanned by g, =g,(Q), ..., 8, = 8,(Q).

Then, as Q ranges over values with (11. 3) and (11. 4), S(Q) ranges over less than
m(1+4(s+1)6"*logE)

distinct subspaces.

Proof. Suppose at first that there exists an integral point h+0 which satisfies
(8. 29) for all (ig, ..., i) € S. Let h be a point with this property having smallest possible
norm. Notice that in view of (11.4) condition (8. 30) is satisfied. Thus we may apply
Lemma 8. 5 and S(Q) consists of x with hx =0.

If there is no such integral point, we may apply Lemma 11. 1. Now (11.4) implies
(8. 32) and Lemma 8. 6 shows that for Q in a particular interval (11.5), S(Q) will run
through not more than 1+4(s+1)6 ' logE distinct subspaces. Summation over h in
1 < h<m gives the result.
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Let A,,..., A, be positive real numbers. Suppose that for each j (1<j<5s)
fijs --+» Ja; are nonnegative integers with

(11.12) A A, H pj—(fl,-+“.+f,,,-)____1'
j=1

Let B, ..., 8% ..., B, ...,BY be as in Lemma 11.2. Define the parallelepiped
M=1(A,,..., A,)=II(A) by

(11.13) BOx|o<A4; (i=1,...,n),
and the lattice A =A(f11,---» fu1r--+s f1sr --» fns) = A(f) by
(11.14) BOx|;<p; /v (i=1,...,n;j=1,..,59).
Let A, =A4;(A1, s Aps fits o5 Sats ooos S1ss -5 Jus) = Ai(A, f) be the successive minima

of I1(A) with respect to A(f) (i=1,..., n), and let g,=g;(A, f) be corresponding points in
A(f). Denote by S(A, f) the subspace generated by g, (A, f), ..., g,(A, f).

Lemma 11. 3. Suppose that 0<d< 1,
(11.15) m>3600n*(s+1)26" % log(2n(s + 1)d)

and that E is given by (11. 2).
Then for values of Ay, ..., Ay fi1s-oos futscoes f1so oovs Juss Q With

(11. 16) Q% > (24n H )16 46+ mE,
(11. 17) Q1/2gmax {Al’ te A", Azl’ ey An_l, p{“, ceey p{"', ey psfls, ceey psfm'}

and

(11.18) A, (A, £)<Q 7,

S(A, f) is among not more than

n(s+1)
m (9(3; 1)> (1+8(s+1)0~! log E)

fixed subspaces.

Proof. Define real numbers n;; (i=1,...,n;j=0,...,s) by A;=Q" and pj v =Q"M.
Then (11.17) implies —%gnm§—;— (i=1,...,n) and —%§m,’§_0 for j=1. Moreover
by (11. 12) we have

Mra

(nyj+ - + ;) =0.
j=0

1]
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2 1
Let v be the least even integer g~(s—+—)

5 For 1<i<n and 1<j<s, define real numbers

1 1
&y, = ——§+ li; ot where [;; is the least integer such that n;;<¢,, . Then

(11.19) 0lyS3  (=Lenij=l...9)
and
1
(11.20) é,”—;<mj§é,” (j=1,....s;i=1,...,n).
Let
lio
é"°=_1+7 (lio=0,1,...,2v).
We claim that it is possible to pick integers l,g, ..., l,o in 0 <1< 2v with
s+1 .
(11.21) lmo—ﬁziol<—v- (i=1..,n
and
(11.22)
1
I’110+"'+rlls—§llo_"'—‘fl,s)+"'+('7i0+'”+’7is_él,-0_"'_€lis)‘<";
(i=1,...,n).
Choose [, with
1
|’710+"‘+'71s—€1m'“51,1—"'—étls|§2—v,
then

1 s+1
M10—Crol Sy =&l + -+ s — &, +E<

v

by (11.20). Thus (11. 21), (11. 22) are satisfied for i=1. If [y, ..., [,_; o have been chosen
with (11. 21), (11. 22) valid for i=1, ..., k—1, and if

Mo+ +ns—Ce— =& )+ F Mot F 15— S0 — &l )>0
(or =0 respectively) pick I, with

1
[Mxo + M1+ + s — Cpo— Epy — —“fzk5|<;

and

Mo+ M1+ - + s — o= Spy— - — &3, , =0

(or =0 respectively).



Schlickewei, Number of subspaces in the p-adic subspace theorem 97
Then (11.21), (11.22) are satisfied for i=k as well. Now, (11.12) together with
(11.22) for i =n implies

S 1 s
(él,j‘l— +fl,.,~) <—, thus Z (fllj'l' +él,.j)=0~
::O v j:O

J

Let us first restrict ourselves to values of Ay, ..., 4,, fi1,-... fns With fixed

110, ey lno, lll’ ey Ins.

Put ¢;;=¢,,,. Then |¢;;l <1 (j=0,...,s;i=1,..., n) and (8. 1) holds true. We have

s+

L s
(A4,,..., A)=1(@Q"™,..., Q™)< Q " I(Q™,..., Q") = Q*I1(Q),

where I1(Q) is the parallelepiped defined in (8. 2). Moreover, by (11. 20)

Afi1s o5 fud =A@Q™, ..., Q™) S 4(Q™, ..., ™) = 4(Q),

where A(Q) is the lattice defined in (8. 3). Therefore (11.18) implies that the g-th
minimum 2,(Q) of I1(Q) with respect to 4(Q) satisfies

(11.23) 2,(0)<Q %2,

Notice that (11.15), (11.16), (11.23) are the same as (11.1), (11.4), (11.3) in Lemma
11.1 but with §/2 in place of 6. Thus by Lemma 11.2 the number of possibilities for

S(Q) is
(11.24) <m(1+8(s+1)67 ' logE).

The vectors g, =g;(A, f) (i=1,..., q) lie in Q~¥*11(Q) N A(Q). But by (7.2), (6. 34),
(8.12) and (11. 16) we have

s _é é‘: Cij s
24(Q) -+ A(Q) Z (n!) (n Bj)Q =(n!)“< OB,.>
j=0 j=

J

g(n!)_lH_"‘“””> Q—&~

In view of (11.23) this implies that A,(Q)>Q~%?. Therefore S(Q) is spanned by
(A, f),...,g,(A ) and we have S(Q)=S(A,f). So the number of possibilities for
S(A, f) is bounded by (11.24).

We still have to take into account the number of possible values of
Los-o.s Lo, Ly, ..., 1,,. This introduces a factor

ns n ns n(s+1)
Q2v+1) <-;—+1> §<4(S;1)+5> (%u) §(9_(s§:2> .
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12. The last two minima

Lemma 12. 1. Suppose that 0< <8n(s + 1) and that

(12. 1) m>4802n®(s+1)*6~% log(2n(s + 1)d).

Let E be given by (11.2), and let 0, ..., B, ..., 89, ..., BY, H, A, ...
II(A), A(f) be as in the last section. Then for values of A 1seees Aps fi1s -

(12.2) Ql6nf(25+l)>(24nH)1642(s+1)3mE’

(12' 3) Q gmax {Al’ ceey An, Al_l, ooy A"-l, p]f‘ Yoy p{ns}
and

(12.4) LA, 1) <Q7%A, (A, 1),

S(A, f) is among not more than

(12.5)

(72n(s +1)?
" 5

n(s+1) .
) (L+64n(s+1)*67 ' logE)

subspaces.

) An, flla-"’
s fus> Q with

fns’

Proof. Remember that with B;=|det (B, ..., B")I; (j=0, ..., s) we have by (8. 12)

12 B;2H ™"

By Lemma 6. 7 any point x 0 in A(f) has |x|o = H .= H ™", Writing

X 7! 0)('3(0) X) (0)(5(0)X)
we infer from Lemma 5. 6 that |#{?|, < H" so that
xlo <n H" max {|B{ xlo, ..., B xlo}.
Therefore we have for x40 in A(f)

max{A7* B xlo, ..., 4, 1B %o} Z Q7" max {|Bxlo, ..., |

(0)x|0}

Z(mH"Q)™" Xl Z (nH™CTD Q).

Thus

(12. 6) A=A, (A, £)=(nHMED Q)1
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On the other hand (7. 2) together with Lemma 6. 3 implies in conjunction with (11. 12)

(n)~* n Bjéj'l A S H
j=0 j=0
and therefore

(12.7) (M H™E+D)"1 <) q <1,

Let ey, ..., e, be the canonical basis vectors. For j=1,..., s define f;=max{f,;, ..., f,;}-
Since BY’, ..., B’ are normalized, (11. 14) shows that the points

()

say (i=1,..., n) lie in A(f). Now |B{9d,|, < Q° < 0°4;0Q, so that

(12. 8) L =4 (A, £) <0
Put
Qo =(ll An—Zlﬁ—l)U"a

01=00/A1s -+ » @n1=00/4n_1 and @, =0,y =0Qo/As,—,. Then the hypotheses of Lemma
7.1 are satisfied. Hence there is a permutation v,,...,v, of 1,..., n such that the suc-
cessive minima A, ..., A, of the parallelepiped IT" defined by

(12.9) BOxloS Aior (=Aisay)  (i=1,...,n)
with respect to A(f) satisfy
27" iS4 §4aniii (i=1,...,n).

In view of (12. 4) and (12. 7) we have
}. 1/n y 1/n s
Qo=</11"'/1n(z:‘>> §<f> <Qm,

(12.10) NS4 A 0y =4 0 <4 QTN < QT

Thus

by (12. 2) and (11. 7). Again by (12. 2), (11.7) and by (12. 6)

0 =_§'_°<}'I1 Q—B/né and(s+1)QQ—a/n<Q;
1

moreover by (12. 8), (12.7) and (12. 4) we get
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A

=5
Q=00 dnty = (ks ) iy (7—) >(nHMC ) Qg
n—1

(1-3)

and by (12. 2) this is >Q~¢*Y_ Therefore

Q<o s 20:1<Q
and

(12.11) QTN <QTE <A, = A< QTP < QY.

Now (12.1), (12.2), (12.10) and (12. 11) are the conditions (11. 15), (11.16), (11. 18) and
(11.17) respectively of Lemma 11. 3, but with 4, ..., 4,, Q, d replaced by

0

Ay AL, Q¥
! w Q 8n(s+1)

Let S(AL, ..., Ay, fit> - fus) =S(A’, f) be the subspace corresponding to the parallel-
epiped I1I'=1I1'(A}, ..., 4;) defined in (12.9) and to the lattice A(f). Then Lemma 11. 3

o
with ———— in place of ¢ gives for the number of such subspaces the bound in (12. 5).

8n(s+1)

To finish the proof of the Lemma we show that S(A’, f)=S(A,f). The last
assertion of Lemma 7. 1 says that any point g € A(f), g ¢ S(A, f) has

max {|B;” glo ¢, A; '} = max {|B;” glo 4; ™"}
2270, Ay > AT A Z AT

> 4—2n2(an(s+1))—1 > Q—6/2n

by (7.8), the analogue of (12.7) for 1},..., 4, and by (12.2). On the other hand
An_1<Q7%2" by (12. 10). Therefore such g cannot lie in S(A’, f). Hence S(A’, f)=S(A, f)
and the bound (12. 5) holds for the number of possibilities for S(A, f) as well.

13. Two adjacent minima
Lemma 13. 1. Let B2, ..., B, ..., B, ..., BY, H, Ay, ..., Apy fits---s Jusy T =T1(A),

A=A{), ,;=4(A, f) and g, =g;(A, f) be as before. Let 1<h<n and S,(A,f) be the
subspace spanned by g, ..., g,. Put

suppose that 0< 6 <8I(s+1),
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(13. 1) m>960%n21°(s + 1)*52 log(2I(s+1)d)
and put
1 m-1
(13.2) E:TE 2™(180)2™ .

Then for values Ay, ..., An, fi1s s fus» Q With

(13.3) 07 > (¥ H)2 P Dimn2E

(13 4) Q gmax {Al’ M4 An’ Al_l’ e An_la p{“, ey psf"s}
and

(13.5) An<Q %A,

Su(A, f) is among not more than

2
(13. 6) m<144ln(s+1)

I(s+1)
5 ) (141281n(s+1)*6™" log E)

h-dimensional subspaces.

Proof. Put k=n—h and recall from section 7 that C(n, k) is the set of k-tuples
o={i;<--<i} of integers in 1<i<n. Define p” by (7.25) and similarly By’ for
j=1,..., 5. Moreover write

A, =] A and f;=]]f; G(=L..,9.

We apply Lemma 7. 3 with p{® A; ! in place of B{°). The parallelepiped IT® given by
IBxWlo<A, (o€ Cn k)
is the k-th pseudocompound of IT(A). The lattice A® defined by
BYxW;<pi /1 (ceCm k) j=1,...,5)

is the k-th compound of A(f). Denote the successive minima of IT® with respect to A%
by vy, ..., v,. It is clear that in Lemma 7. 3 we may take

o ={n—k+Ln—k+2,...,nj={h+1,h+2,...,n},
o_1={n—kn—k+2,...,n} ={hh+2,..,n}

53 Journal fiir Mathematik. Band 406
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Thus Lemma 7. 3 combined with (13. 5) and (13. 3) gives

(13.7) v <) 1193y, <0 .
By (5. 2) we have
(13. 8) H M M<|B9<1  (ceC(n k) j=0,..., ).
We define the normalized vectors y(? = |B{0|5 1 B?’ and the parallelepiped N*®
WO'x¥o<4, (0eCn k).

Moreover, for j with 1 <j<s we introduce the normalized vectors y¥’ = |BY|; B¢ and the
lattice AY by

Y xW,<pi /= (ceCn k) j=1,...,5).

Denote the successive minima of N® with respect to A% by v, ..., v;. Now we have

<H max (|[s§,f>|;1)) A0 < AB < A®),
j=1 ¢

Thus by (13. 8) there exists a natural number b < H*** with
bA® AP = AD,
and also by (13. 8) we get

H*® < N(k)cn(k)_

Therefore

Vi

lIA

S HMGHD Y (=1, ).

Together with (13. 7) and (13. 3) this yields

[N1E9

_3 _
(13.9) Vi_ < H<6+00 30 o072y
By Lemma 5.1, H(BY)<H* and therefore also H(yY”)<H* (6 € C(n, k); j=0,..., s).
Moreover we have

(13.10) Q*zmax {4,, 47", p{"',..., p}.

We may apply Lemma 12.1 to N® A® with n, 6, B¥, H, Q replaced by [, J/2k,
vY9, H*, Q respectively. The hypotheses (12.1), (12.2), (12.3), (12.4) are replaced by
(13.1), (13.3), (13.10), (13.9) respectively. The conclusion is that the subspaces S®
spanned by the first /—1 minimal points of N® in A{ are among a set of not more
than (13. 6) subspaces of R".
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Let again g,,..., g, be independent points in A4 with g;e 4,IT (i=1,..., n). By
(7. 29) the points G, , ..., G,,_, lie in

Q-

kld, [T%ckld, HMN®,

On the other hand the definition of the compound lattice in section 6 implies that
G, ---» G,,_, liein A®. S0 bG,, ..., bG, | lie in AY and in bk!i,  H*N®, and here
b < H*¥s. Now by (13.5), (7. 28) and (13. 3)

Kl Ay,  H*GTD < I HRCTDQ=0) < (k) [ HRGHD 070y <y <],

Thus bG,,, ..., bG, | lie in AY as well as in the interior of v, N®. This implies that
G, .-, G, _, span S% and hence there are not more than (13. 6) possibilities for the
span of G, , ..., G,_, in R'. By Lemma 7. 4 there are not more than (13. 6) possibilities
for the span of g, ..., g, in R", i.e. for S,.

4

14. Proof of Proposition B, and hence the Theorem

We introduce a parameter u>0. Initially we will study solutions of (4. 6) with

(14. 1) IBOx|o>H *x|§7*  (i=1,...,n)
and

(14.2) BYx[;>H "Ix[g" (=1,....,n;j=1,..,59).
Write

s . % .
A;i=A4;,x)= IBEO’XIO/ H (lp(lnxlj"' m}:”xb) (i=1,....,n),
j=0
and define nonnegative integers f;; = f;;(x) by
B x|;=p; /v (i=1,....,nj=1,..,59)

Then

Ay Ay T py i =1

j=1
holds true. From |B{®x|, < x|, and |B{”x|;<1 (j=1,..., 5) we obtain
(HIxlo) S A SHIxlp) ™ (i=1...,n)
and

1Splv<HIxlp)* (i=1...,nj=1..,9)
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Thus with Q = (H|x|o)*“*" we have
Qzmax{A,,..., A,, AT ..., AL pls . piy L, plis L ples)
If we assume moreover that |x|, > H, then we get
Q= (HIx|o)"*"" <Ixig=e*V

and (4. 6) yields

s @
l‘[ B(J)le (J)xlj)<Q 2u(s+1),

whence

1

S ___ 6
(143 BOxlo= A, T (Bxl, 1Bx1) <4, Q7.

Thus if I=1II(A,,..., A,) is the parallelepiped (11.13) and A=A(f14,.-., f,s) 1S the
d

lattice (11.14), then x lies in Q 2"6*D [T~ A and the first minimum A, of IT with
respect to A has A, <Q ~%@nuis+1),

On the other hand we have A,>(nH*"Y)"! from (7.2), (6.22), (8.12). So if we
suppose that

(14.4) |x]$ > (n HAC+)on
then
-0
(14.5) An>|X|65/6n.Z_Q 6nu(s+1)

Therefore x lies in the subspace S(A, f) spanned by g,,..., g,, where again g;=g;(A, f).
Let k be minimal such that x lies in the k-dimensional subspace S, spanned by

-6
g:,..., 8 then 1=Sk=<gq, and (14.3) implies 1, <Q ?2"*D By (14.5) there is an h
with k < h < g such that

6
(14. 6) Ay<Q 3PHCFD )

We want to apply Lemma 13. 1 with §/(3n?u(s +1)) in place of d. Since l=<:>§2"‘1

and log(2/(s+1)d)<log(2"(s+1)d)<nlog(2(s + 1)d), condition (13. 1) will be certainly
true if

(14.7) m>2"*18p72572(s +1)° log (2(s + 1) d).

With E given by (13. 2), condition (13. 3) (with & replaced by §/(3n*u(s + 1))) will hold if

QJZ > (241H)2‘4d2(s+ l)ﬁmnslzsz.
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Since Q =|x|[4¢* D this will certainly be true if
(14 8) lxlgz >(22"*‘H)ledz(s+l)5mn522"Eu'

When 0<d<8l(s+1)?3n*yu, so that §/(3n*u(s+1))<8l(s+1) and w/é>(24In*(s+1)*)"*
we may apply Lemma 13. 1 and conclude that S, (A, f) is among not more than

I(s+1)
(14.9) m (4321n3(s +1)3 %) <1 +3841n3 (s + 1)° gﬂ log E)

subspaces, so that such x themselves are contained in a collection of not more than this
many subspaces. Summing over h in 1<h<n, we see that x with (4.6), (14. 1), (14. 2),
(14. 8) lie in a collection of not more than

2n(s+1)
(1. 10) t2=nm<216-22”(s+1)3 %) log E

subspaces.

Points x with ¥’ x =0 for some pair (i, j) (1<i<n; 0<j<s) lie in a collection of
=n(s+1) subspaces. For other integer points x conditions (14. 1) and (14. 2) are satisfied
with p=d by Lemma 5. 3. However, if we substitute u=d into (14.10), we obtain a
rather bad dependency on d. To improve upon this dependency the following device is
useful.

There is a collection of <n(s+ 2) subspaces containing the integer points lying in
a coordinate plane x; =0 or satisfying B{’x =0 for some pair (i, j). All other points have
by Lemma 5. 3

BOxlo 2 XI5 H ™ (i=1,...,m),
and
BOx|; 2 [x|g?H™®  (i=1,...,n;j=1,...,9).

Suppose that

(14.11) 10n<p<d.

First let B© be one of the vectors B{® and assume that we have

R
e e

(14.12) XIS H ™ < [BOxlo <|xly © H

Suppose that B® and e,,...,e, are linearly independent, where e,,...,e, are the
canonical basis vectors. Then we have

. ,,_fi ~ . U
1B xlo lezxlo - leyxlo <Ixlo © =[x|g® with 6="—n.
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We want to apply the first part of this section to B®, e,,...,e, i.e. for s=0. Since
0 <813n?p, this is possible. Therefore points x with (14. 8) (for s =0) and (14. 12) lie in a

. 6 1 n 1 .
collection of not more than ¢, subspaces. But ——=Z——;>— so that & <4 and we obtain
u

less than 4 0

ty=nm(864 - 2>")?*"log E
subspaces. With our present values of u, J, s the relations (14. 7), (14. 8) will hold if
(14.13) m>2%"*22pn7log(2d),
(14.14) [X|o > (227" H)?'C4?mno22"E

Next let B9 be one of the vectors ) (i=1,...,n; j=1,..., s). Assume that with u
as in (14. 11) we have

B
e

_K
(14.15) Ixlo“H "< |BVx|;<Ix|o * H

Suppose again without loss of generality that BY, e,,..., e, are linearly independent.
Then we have

n
. n bt _
lex|o -+ le,xlo Iﬂ‘“XIj le;x]; - e, x|; <|x]o *=Ix5°,

[t
o
time with s=1 and we obtain less than

where again 5=%~—n and hence — <4. Again, we apply the first part of this section, this

ty,=nm(6912-22")?"" log E
subspaces. With our present values of y, , s the relations (14. 7), (14. 8) will hold if
(14.16) m> 25"+ 2837 [og (4d),
(14.17) x|o > (227" H)?P4*mno2nE,

Now if 10n<d we carry this out with u=u,..., u, where p;=de'”" and
w =[log(d/10n)]. Then we see that points x with

m(o)xl0 < 'xl(l)_(”w/e)H_(“w/e)
and with (14. 14) lie in not more than wt, subspaces, whereas points x with
";(j) xlj < |X|6(uw/e)H—(uw/e)

for some j (1 <j<s) and with (14. 17) lie in not more than wt, subspaces.
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We now return to (4. 6). For each pair (i, j) (1Zi<n; 0<j<s), we treat ) in the
way just described. Thus if we exclude not more than

n(s+2)+nwty +nwst,

subspaces, then (14.1), (14.2) will hold with u=pu,/e <10en. Hence it holds with
u=10en. This was when 10n<d; but when d<10n, then (14.1), (14.2) hold with
u=10en anyhow.

We may apply the first part of this section with u=10en, and we obtain
t, <nm(6000n22"(s +1)*671)*"c*V]og E

subspaces. With our present value of u, the conditions (14. 7), (14. 8) will hold if
(14.18) m>800 - 2'8n°26"(s + 15672 log (2(s + 1)d),
(14.19) [X]o > (22" H)2 ¢+ 1) mn7 22m572E

Collecting everything together, we have not more than

n(s+2)+nwty;+nwt, +t,
subspaces. For s > 1 this expression is

<n(s+2)+n*wm(864 - 22" " log E + n>wms(6912 - 22")>""" log E
(14.20) +nm(6000n22"(s+1)3571)>"¢*V]og E

<n’*m(log3d) (23n22"(s +1)*671)*"¢*V]ogE.
We now choose m minimal with (14. 18) and get
2M<(2(s 4+ 1)d)Fm 2072
In conjunction with (11. 2) this yields
log E <(2(s + 1)d)¥** n° 2o+ 10872,
Combining the last relation with (14. 20), we see that the number of subspaces is

<(2(s+1)d)PPr 2TV < (9 (s 4 1)d)PC O =y
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As for the norm of X, we observe that
21842(s+1)°mn’ 236 2E <e".

Therefore condition (14. 19) (and a fortiori also the weaker conditions (14. 14), (14.17))
hold true if

Ix|o = |x|>QH)".

This finishes the proof of Proposition B and therefore also of the Theorem.
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An explicit upper bound for the number
of solutions of the S-unit equation

By Hans Peter Schlickewei at Ulm

1. Introduction
In 1933 Mabhler [5] proved the following result.

Let My, M,, M5 be disjoint nonempty finite sets of rational primes. Then the
equation

x1+xZ+X3=O

where the x; are integers only divisible by primes in M; (i=1, 2, 3) has only finitely many
solutions.

This was extended to equations
(1. 1) Xi+ .o+ x,+x,,,=0

independently of each other by Dubois and Rhin [1] and by Schlickewei [7]. They
assumed that given a finite set of primes M, the x; are only divisible by primes in M
and that for each pair (i, j) with i#j, (x;, x;)=1, and showed that under these
hypotheses (1. 1) has only finitely many solutions.

It turned out that asking for pairwise coprimality of the components of the
solutions was too severe. In fact independently of each other van der Poorten and
Schlickewei [6] and Evertse [2] proved that (1.1) has only finitely many integral
solutions x =(x, ..., x,, X,+,) Where each x; is only composed by primes in M, where
g.c.d. (xy,..., x,+;)=1 and where no proper subsum x; + ... +x; vanishes. It is well
known that these conditions are necessary and sufficient. Let us mention that under
similar assumptions also the number ficld case and the case where the x; lie in a finitely
generated multiplicative subgroup contained in € have been settled. All these results
depend essentially upon the p-adic generalization of W. Schmidt’s Subspace Theorem
proved by Schlickewei [8].
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Recently W. Schmidt in his pioneering paper [10] gave a quantitative version of his
Subspace Theorem. This in turn was generalized by Schlickewei [9] to include p-adic
valuations. In this paper we will apply the main result of [9] to derive an explicit upper
bound for the number of solutions of the equation

(1. 2) ayx;+a;x;+ ... +a,41%,+1=0.
Here the a; are supposed to be fixed rational integers and the x; are integers which are
only composed by primes lying in a fixed finite set.

Let S={0, p,, ..., ps}, where p,, ..., p, are s rational primes. For v e S we denote
by | |, the v-adic absolute value on @, where v=0 stands for the standard absolute
value. An element x € @ is called an S-unit if [] |x|,=1.

veS

Theorem. Let S be as above. Then for n=1 the number of integral solutions
X=(Xy,..., X,11) of (1.2) where the x; are S-units (i=1, ..., n+1) with

gcd (xq,...,x,41)=1
such that no proper subsum a; x; + ... +a; x; vanishes is bounded by
(8 (S + 1))226n+4(s+1)6.

Notice that our bound does not depend upon the coefficients a, ..., a,,, in (1.2)
and that the dependence upon the set S is only via the parameter s, but not via the
particular primes p,, ..., p, involved.

The special case n=2 of the Theorem has been proved by Evertse [3]. He gets a
better bound than we do. In fact he shows that for n=2 (1.2) has not more than
3.7%*1 primitive solutions. Silverman [11] showed that for n=2 and a, =a,=a;=1
the number of solutions is bounded by C-22°%, where C is an absolute constant. For
n=2, Evertse and GyoOry [4] showed, that the number of solutions of (1.2) is below
some constant which does not depend upon the coefficients a;. But their method of
proof does not allow one to determine how this constant depends upon § and n.

In forthcoming work we will extend the Theorem to include the number field case
and even more general situations.
2. A gap principle

Lemma 2. 1. Let g=(n—1)(s+1). Define the set M by
2n+1 )
M={(C1,..., Cq)lcl+...+Cq=m‘—2‘, CigO (l=1,,q)}

There exists a subset M’ of M with the following properties.

(i) M’ has cardinality at most (2e(n+1))*"1.
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(i) For any set of real tuples (A, By), ..., (4,, B)) with 0<A;<B; (1Si<q) and
q q

any real number E such that [] A,<E [] B; there exists a tuple (cy,...,c)e M’
satisfying i=1 i=1

@.1) A, <E“B, (i=1,...,q).

This is a special case of Lemma 4 of [3]. With the notation of [3] we have to take

2n+1
= EZAI Bl .=1,-.., .
B 2n+2 /B i 9)

When we study equation (1. 2) we may suppose without loss of generality that the
coefficient vector a=(ay,..., a,,,) has

2.2 g.cd (a;,...,a,,1)=1.

In fact as for the primes p,,..., p, we may even suppose that for each i (1<i<n+1)
and each v e S, v+ 0 we have

(2' 3) Iailv = 1.
After renumbering the variables if necessary we may assume moreover that
(2.4 lalo2laslo= - 2an11l0>0

holds true.

Let M(@Q) be the set of prime divisors of @. For a vector y=(yy, ..., J,+1) € @"*!
and for v e M(@Q) put

(»?+ ... + y2,)Y? if v is archimedean,
lyl,= o .
max {|y;ly» -+ [Vu+1lo} if v is nonarchimedean

and

hiy)= 1 Iyl

ve M(Q)

Then for a with (2. 2), (2. 4) we get
(2.5) lajlo <h@=(al+ ...+ a2 )2 (m+1) laglo.

Lemma 2. 2. Suppose a satisfies (2.2), (2.3), (2.4). Put H=|a, --- a,,,lo. Let C be
a quantity with

2. 6) C=n20+3),
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Then the solutions X =(Xy,..., X, Xy+1) of (1.2), where for each i (1<i<n+1) x; is an
S-unit and which satisfy

2.7) CSh((@yX1s oes Gy Xgry)) S CHO2P)
are contained in the union of not more than
(2.8) (2e(n+1))n*rbe*+b=d
subspaces each of which is defined by an equation of the type
bix,+...+b,x,=0.
Proof. Let x be a solution of (1. 2). Given v € S let k(v) be a subscript with
1@y Xewlo = la; x|, foreach i (1<is<n+1).
Moreover let I(v) be a subscript with
|@10) X1mylo 2 la; x|, for each i with i k(v).
Define J,={1,..., n+1}\{l(v), k(v)}. Divide the set of solutions of (1.2) into classes

K=K(J,...,J;), where x belongs to K(Jy, ..., J;) if it gives rise to Jy, ..., J; in the way
described above. Notice that there are

classes K. In view of (1. 2) we obtain

n+1
lak(v)xk(v)lvz Z aixi .
i=1 v
i+k(v)
Thus we get
nlal(v)xl(v)lv if U=O,
(2 10) Iak(v) xk(v)lu é{ .
[y X1l If DES, v£0.

Write Ax=(a; Xy, ..., 4,41 X,+1)- Then clearly we have
(2.11) 0<la;x;|,<|A4x|, for each ve S and for each i.

Moreover for n =2 (which we may assume throughout) we get

(2.12) a0y Xk(0)lo 2 [Ax]o
and

(2. 13) | @ 0y Xk wylo =14x|, for each ve S, v+0.
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Notice that in view of (2. 2) and since the x; are S-units we have

IT 14x], = h(4x).

veS

Combining this with (2. 3) we obtain

(2.14) [1 (layxily 1@y sy Xpsalo) = H=Hh(Ax)"" " [T |Ax[;*".

v
veS vesS

Cancelling on both sides of (2. 14)

1_[ (Iak(v)xk(v)lv lal(u)xl(v)lv)

veS

and using (2. 10), (2. 12), (2. 13) we get

2. 15) 1 (IT laixil,) S n* Hh(Ax) "t [T |Ax]" "

veS iel, veS

We now apply Lemma 2. 1. The quantities |a;x;|, with v € S, i € J, play the rdle of
the A;, the quantities |4x|, with veS play the rble of the B; and we put
E=n’Hh(Ax)™""'. Relabelling the numbers c,, ..., ¢, as ¢;, (€ S, i € J,) we may infer
that there exists a tuple (c;,),cs,ics, in M’ such that

(2. 16) la; x|, < E“]Ax],

holds true for each ve S and each i e J,. We subdivide each class K =K(J,, ..., J) of
solutions into subclasses K (J,, ..., J;, (¢;,)) where (c;,) runs through M’. Two solutions x
and x’' belong to the same subclass if they satisfy (2. 16) with the same tuple (c;,). In
view of (2.9) and of Lemma 2. 1 the total number of subclasses is

s+1
<(n(n2+ 1)) (Ze(n+1))(n*l)(s+l)—l<(2e(n+1))(n+1)(s+l)—1.

We will show that each subclass of solutions is contained in an (n— 1)-dimensional
subspace of @"*!, and naturally this implies the assertion of the Lemma. In fact let
Xy, ..., X, be n solutions in the same subclass. Assume without loss of generality that
h(Ax,)=min {h(AX,), ..., h(Ax,)}. Write X, =(Xxq,..., X n+1) (k=1,...,n). Then by
(2. 16) we get

la;xiil, S (P HR(AX) ") 1A%, (veS, iel)
and thus putting E, =n*Hh(Ax,)™" !

(2.17) la; xil, S EFe|AXl, (veS, ield,).
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Consider the matrix

ayX11 o ay Xy

Any1Xtn+1 " 7 Qi1 Xpn+1

Let iy <i,< ... <i, be elements of {1,...,n+1} and denote by D(i, ..., i,) the (nxn)-
subdeterminant corresponding to the rows with subscripts iy, ..., i,. Since the x, satisfy
(1. 2) we see that for any choice of iy, ..., i, and for each v € M (@Q) we have

2. 18) ID(iy, ..., i), =|D(1, ..., n),.

Given v € S choose iy, ..., i, in such a way that J,c{i;, ..., i,}. Now for v=0 (2.17) in
conjunction with (2. 11) yields

Y <o n
(2. 19) ID(ig, ey ilo SRUES™ T 14X0.
j=1
On the other hand for v € S with v30 we get again by (2. 17)

Z civ n
(2. 20) DGy ooy LS EC" [T 14X,

Jj=1

Remember that in Lemma 2. 1 we required that

2n+1
.?e:s i;I., civ_2n+2 .
Therefore (2. 18), (2. 19), (2. 20) imply
(2.21) [TID(L,2,..., 0|, <nl EGn0/e2 TT 17 14x/],.
veS j=1 veS

Next we treat v ¢ S. From (2. 2) we infer that there exists an i(v) with 1 <i(v)<n+1 and
la;ls=1. Choose {iy, ..., i,} ={1,..., n+1}\{i(v)}. Moreover since we are asking for
solutions in S-units for such v we have |x;,;|,=1 for each i (1<i<n+1) and for each
k (1=k <n). So we obtain

ID(il’ vees ln)lvé Iah ai,.'u= |a1 rQpiqly
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and finally using (2. 3), (2. 18)

(2.22) [TpA,..,m, =[] lay - apsyl,=H™"

v¢S ve¢S

Combination of (2. 21) and (2. 22) yields

T IDQ,..., n)l, <n E@rO@+ 2 =1 [T h(Ax,)

ve M(Q) j=1

3@2n+1) 2n+1_l _2n+ n
=nlp20+) g2n+2 “p(A4x,) > Hh(Ax

But (2. 7) implies that
h(Ax;) < HY2" h(Ax,)

and we obtain using (2. 6), (2.7)

—n—%+n

__1 ., n-1
[T 1D, ..., 0, <n"*3H 27¥2 727 p(4x,) <1.

veM(Q)

We may conclude that D(l,..., n)=0. Therefore x,,..., x,, are linearly dependent and
Lemma 2. 2 follows.

3. The Subspace Theorem

We shall quote here a special version of the quantitative p-adic Subspace Theorem
of Schlickewei [9]. Let x'=(xy, ..., x,) and |x'|=(x?+ ... + x2)"2. Given a linear form
Lx)=A;x;+ ... +4,x, put A=(44,..., 4,) and H(L)=h(4).

Lemma 3.1. Let S={0, p,,..., ps} be as above. Suppose that for each v e S we are
given linearly independent linear forms LY, ..., L' in n variables with rational coefficients.
Let 0< 6 < 1. Consider the inequality

G.1) [T ILP) - LY, < TT Idet (LS, ..., LD, 1X17°

veS veS

where det(LY, ..., L) denotes the determinant of the coefficient matrix of LY, ..., LY.
Then there are proper subspaces Ty, ..., T, of Q" with

3. 2) §(8(S+1))226"(s+1)66 2

such that every rational integral solution x' of (3.1) either lies in one of these subspaces,
or has norm

3.3) x'| < max {n!®%, H(LY), ..., H(LY) (ve S)}.
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This is a rather special instance of the main result of [9] which is suitable in our
context. As an application of Lemma 3. 1 we derive

Lemma 3.2. There are
(-4 t,=(8(s+ 1)) G+ aps+1
subspaces Ty, ..., T, of Q" each of the type
b,x,+...+b,x,=0

such that for every solution X =(Xy, ..., Xp, Xp41)=(X', X,41) of (1.2) either x' lies in one
of these subspaces or satisfies

(3.5) [x'| <max {n!*®, nla,lo}.
Proof. Consider the linear forms

Li(x') =a;x,,

3.6
( ) Ln (X’) =Qp Xy,

L,y (xX)=a;x;+ ... +a,x,.

Notice that here for any choice of i, <i,<... <i, in {1,...,n+1} the forms L;, ..., L;,
are linearly independent and have determinant +a, --- a,. Notice moreover that in view
of (1. 2) we have for any solution x =(x’, x,,.{)

(3.7 Ly (X')=—ap11Xy44-

Since we are only interested in solutions x with g.c.d. (xy, ..., X,, X,+1)=1 and since
the x; are supposed to be S-units, we infer from (2. 3) that

(3.8) ged. (xgy ..., x,)=1.

We now divide the solutions x into classes as follows. Given a solution x and
v € S define i(v) with 1<i(v)<n by

(3 9) |xi(v)|v=max {lxllw AR} Ixn|v}'

Put J(i(w))={1,..., n+1}\{i(v)}. For v=p;e S it will be convenient to use sometimes
instead of v simply the subscript j. Now given a tuple (i(0), ..., i(s)) let

K(J(i(0)), ..., I (i(s)))
be the class of solutions x satisfying (3. 9) for this tuple. There are
(3. 10) nstl

such classes.
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Fix one such class and denote it for simplicity by K(J(0), ..., J(s)). We shall now
study the solutions x in this class. (3. 8) and (3. 9) imply that for j with 1 <j<s we have

(3. 11) Ix;l; =1.
By our assumptions about ay, ..., a,,; and x we get with (3. 4)

s s
n (la1x1|j“‘|an+1xn+1|j)= H lLl(x,)"'Ln+1(X,)|j=|al “Ayitlo-
j=0 j=0

Cancelling on both sides |a;;, x;3l; (j=0, ..., s) and using (2. 3), (3. 11) we obtain

S a eee an _
(3. 12) 11 ( I |Li(x')|,)="—i‘—'2|xi(o>|o‘.
j=0 \ieJ(j) |ai(0)|0

But x| =(x + ... + x2)Y? <n|x;)lo, moreover by (2. 4)

lay -+ apiilo |ai(0)|5] Slay - aglo

On the other hand we have for 1<j<s |a, - a,|;=1. Thus we infer from (3. 12) that

f[ ( [1 ILi(xl)|j>§<I§I Ial--'a,.l,)nl’(’l‘l.
j=0 \ieJ(j)

i=0

In view of (3. 5) we may suppose that |x’|>n?, and finally we get

(.13) Il ( Il |Li(x')|,-><(ﬁ |a1---a,.|j> x| 2,
Jj=0 \ieJ(j) ji=0

The expression in (3. 13) is of the same shape as (3. 1) in the Subspace Theorem. Here
we have § =1/2. As for the heights of the forms L; in (3. 6) we see that

H(L,)=...=H(L,)=1,

whereas H(L,,,)=(a?+ ... +a2)?> <n|a,|, by (2.2). Therefore the Subspace Theorem
says that for our solutions x = (x/, x, ) the points x" are contained in the union of not
more than

(8(8 + 1))225"~(s+1)5~4
subspaces or satisfy

|x'| <max {n!*®, nla,|o}.

s+1

We still have to sum up over the different classes. This introduces the extra factor n
from (3. 10).
61
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Lemma 3.3. There are
(3. 14) t,<4n?(2e(n+ 1)tV o p)len?
subspaces Uy, ..., U,, of Q" each of the type
byx;+...+b,x,=0
such that for every solution x = (X', x,,,) of (1.2) with
(3. 15) |x'| <max {n!*®, nla,|o}

x' lies in one of these subspaces.

Proof. 1If nla,|o<n!'®, then clearly (2n)'°"* subspaces will suffice. Thus we may
suppose that

(3. 16) nlalo>n!te.
From (2. 2), (2. 3), (2. 4) we infer that

h((@1X1, - Auey Xner)) = (@i xT + ... +ag x; +ay, x}q)"?
(3.17) =(aix}+...+a2x2+(aix}i+ ... +a2x2)?

S+ lagle (x3+ ... +x2) 2 =(m+1) |ayo |X'|.
Moreover we have by (3. 16)
(3.18) h((@g X1y s Qg Xpr)) 2 laglo >ntt.
Combination of (3. 16), (3. 17), (3. 18), (3. 15) yields
(3.19) lailo<h((@y X1 .-y Qg Xns1))<laild-

We apply Lemma 2. 2. It is clear that Lemma 2. 2 remains true if we replace H by
a quantity B with 1 < B< H. Take B=|a,|,. Then for any C = n?®*3 solutions x with

(3. 20) C=h((@1Xy, s Quiy Xp4g)) S Cla,|§"*™
are contained in the union of not more than
(3.21) (2e(n+1)ntve+n-t

subspaces of the type b, x, + ... + b, x,=0.
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Now by (3.16) |a,lo>n?"*3. Thus 4n? intervals of the type (3.20) suffice to
cover the interval (3. 19), and in view of (3. 21) we get no more than

4n*(2e(n+1))ntHe+b-1
subspaces.
Lemma 3.4. There are
(3.22) to < (8(s+ 1))2n26+0e
subspaces of Q" of the type b;x;+ ... + b,x, =0, such that every solution
X=(X1,.00s Xps Xps1)
of (1. 2) lies in one of these subspaces.

Proof. By Lemmata 3.2 and 3.3 ¢, +t, subspaces will suffice. Now

tl_'_tzé(g(s_{_1))226"~(s+1)5~4ns+1+4n2(2e(n+1))(n+1)(s+1)—1+(2n)16n2

< (8(5 + 1))226n+3(s+1,6.

4. Proof of the Theorem

We shall proceed by induction on n. Denote by Z(n, s+1) the supremum over
ai, ..., a,,+, of the number of solutions of (1. 2). For n=1 it is clear that Z(1,s+1)=1.
Now let n>1 and assume the assertion of the Theorem to be true for all n’ <n.

Let T be one of the subspaces of Lemma 3. 4. Suppose T is given by
4.1 byx;+...+b,x,=0.

We first consider only solutions X = (x, ..., X,, X,+1) Of (1. 2) satisfying (4.1). We fix a
nonempty subset J of {1, ..., n} and we restrict ourselves moreover to solutions x with

4.2) Y bix;=0

ielJ

but such that no proper subsum of (4. 2) vanishes. By the induction hypothesis (4. 2) has
not more than Z(|J|—1, s + 1) primitive solutions.
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Now the components x; with i€ J satisfy (x;);c; =(x¢;);c;, Where (c;);c, is one of
the primitive solutions of (4. 2) and where x is an S-unit. With this expression for (x;);.,
we get in (1. 2)

ied i=1
i¢J

4.3) <Z a,~c,~> x+n§+:1 a;x;=0.

Again by the induction hypothesis, (4. 3) has not more than Z (n+1—|J|, s+ 1) primitive
solutions with components say d, d; (i ¢ J). Therefore the primitive solutions

X =(x19 cees X xn+1)

arising from the subset J are of the shape x;=dc; forie J, x;=d; forieJ (1<i<n+1).
And here we have 2 <|J| <n. Summing up we see that J gives rise to not more than

Z(J -1 s+1) Zn+1—J|,s+1)Z(Z(n—1,s+1))?
primitive s;)lutions. As there are less than 2" possibilities for J our subspace T contains
<2M(Z(m—1,s+1)>?
primitive solutions. Using the bound (3. 22) for the number of subspaces we finally get

Z(n,s+1)S(Z(n—1, s+ 1)%-2"- (8(s+ 1))2*n3e+ve
<(8(s+ 1))2m VT HDC L (85 4 1))2Pn A6 H DA

< (8 (S + 1))226n+4(s+1)6.

References

[1] E. Dubois and G. Rhin, Sur la majoration de formes linéaires a coefficients algébriques réels et p-adiques,
Démonstration d’une conjecture de K. Mahler, C. R. Acad. Sc. Paris, série A, 282 (1976), 1211.
[2] J.-H. Evertse, On sums of S-units and linear recurrences, Comp. Math. 53 (1984), 225—244.
[3] J.-H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math. 75 (1984), 561—584.
[4] J.-H. Evertse and K. Gydry, On the numbers of solutions of weighted unit equations, Comp. Math. 66
(1988), 329-—354.
[5] K. Mahler, Zur Approximation algebraischer Zahlen I, Uber den groBten Primteiler bindrer Formen,
Math. Ann. 107 (1933), 691—730.
[6] A. J. van der Poorten and H. P. Schlickewei, The growth condition for recurrence sequences, Macquarie
Univ. Math. Rep. 82-0041, North Ryde, Australia 1982.
[7] H. P. Schlickewei, Uber die diophantische Gleichung x;+x,+ ... +x,=0, Acta. Arith. 33 (1977),
183—185.
[8] H. P. Schlickewei, The p-adic Thue-Siegel-Roth-Schmidt Theorem, Arch. d. Math. 29 (1977), 267—270.
[9] H. P. Schlickewei, An upper bound for the number of subspaces occurring in the p-adic subspace theorem
in diophantine approximation, J. reine angew. Math. 406 (1990), 44—108.
[10] W. M. Schmidt, The subspace theorem in diophantine approximations, Comp. Math. 69 (1989), 121—173.
[11] J. H. Silverman, Quantitative results in diophantine geometry, Preprint, M.I. T., Cambridge Mass. (1983).

Abteilung Mathematik II, Universitdt Ulm, Oberer Eselsberg, D-7900 Ulm
Eingegangen 4. Juli 1988



J. reine angew. Math. 406 (1990), 121—166 Journal fir die reine und
angewandte Mathematik

© Walter de Gruyter
Berlin - New York 1990

The L-Theory of Laurent extensions and
genus 0 function fields

By R. J. Milgram*) at Stanford and A. A. Ranicki**) at Edinburgh

Introduction

The stable classification of quadratic forms over a field is given by the Witt group.
Topology, via surgery theory, has embedded the Witt groups in a general theory of
forms over any ring with involution. In this paper we use geometrically inspired
methods to make computations. General results on the L-theory of a Laurent
polynomial extension are used to study the Witt groups of genus 0 function fields.

Given a ring A with involution 7:a — a and a central unit u € 4 such that i=u
let A[t, t7!], denote the Laurent extension ring A[t, t~ '] with the involution f=ut"1,
abbreviated to A[t, t'] for u=1. In Theorem 4. 1 we establish the exact sequence

o —— Ly (A) 5 L(A) —> Ly(A[t, t71],)
—B>L';,“‘(A)-11‘—»L';,“‘(A)—>---

expressing the free symmetric L-groups of A[t, t~'], in terms of the free and projective
symmetric L-groups of A. For u=1 the exact sequence of 4. 1 becomes a splitting

Ly(A[t, t71]) = Ly(A) @ L' (A).

Although the exact sequence is stated and proved only for the symmetric L-groups L*
there is an entirely analogous treatment for the quadratic L-groups L,,.

In the case where } € A the symmetric and quadratic L-groups are equal, L, = L*.
If 4 is a field [ of characteristic different from 2 then L,(A4)= L°(A)=W(F), the Witt
group of non-singular quadratic forms over F modulo hyperbolics. W(F) is a Hermitian
Witt group if the involution on F is non-trivial.

*) Partially supported by the National Science Foundation and S.F.B. 170, Géttingen.
**) Partially supported by S.F.B. 170, Gottingen.
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In § 5—§ 7 we apply the exact sequence of 4.1 to determine the Witt groups of
genus 0 function fields. These are the fields of the form

F Ay =F () [yl/(y* — px*+44p)
for non-zero A, u in the ground field F. Perhaps the most interesting of these fields is
F =R (x) [y]/(x* + y* +1). Here, our methods recover the following result of Knebusch
[9] as a special case:

Theorem 5. 3. (i) There is an exact sequence

0— 72— Lo(F)— Z20 D Z/2— 0
54

where the index set .# is the points p € #,, and M, is the open Mdobius band
{C—{0}/z~ —1/2)}.

The first Z/2 in the right hand sum carries the element {1).
(ii) The sequence above does not split. In particular the Stufe of F is 2.

The Stufe of a field & is the least integer n (necessarily a power of 2) such that
—1is a sum of n squares in #. As a consequence the exponent of W(%) is 2n.

In §6 and §7 we give a more detailed analysis of these Witt groups, using a
commutative square of injections of rings

FIx](») F <Ay

K[t 1]

K ()

for any elements A, u in [F with A non-zero and p non-square, /= [F (]//7) a degree two
Galois extension of F, FF[x] (y) = F [x, y]/(y* —ux*+4ip), and

x=t+At7Y y=)/u—ArY), t=0x+y/)u)2.

The genus 0 function field F (A, u) is the fixed field of the involution on the rational
function field /< (t) defined by the extension of the Galois automorphism on / with

P=(x—y/)/w)2=At"".

The basic result 7. 14 defines a group V and proves the existence of an exact sequence

0— Lo(ts[t, t713) — Lo(FIx1 (y) — V —> Ly (b [t, t7'])) — Ly(F[x] () — 0.
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The Witt group L(F[x](y)) is the kernel of the “second boundary map” from
Lo (F {4, u)) to the Witt groups of its various completions, while the group L,(F[x] ()
is the cokernel. Hence this latter group serves as an explicit reciprocity law for these
fields.

The exact sequence above is a special case of one of the sequences in the
“Twisting Diagram (0. 1)” appearing in Hambleton, Taylor and Williams [6]. The key
new observation here is that ([t t'] is an integral quadratic extension of F[x] (y)
(Lemma 6. 4).

The reciprocity law arises as follows. There is the well known exact sequence of
Jacobson

0 — Lo (kK (1)) — Lo(F <A, ) — Lo (K (1)).

(The referee points out that D. W. Lewis [11] has generalized this sequence.) Local-
ization gives an exact sequence

0— Lo (K[, t71],) — Lo (£ (t),) — P Lo(K [, t717,/?) -5 Ly [t, t71],) — O.

Thus the Hermitian Witt group L,(/(t),) is determined by the L-groups of the
quotient fields K [, t'],/2 and the groups L, (/K [z, t'],). Moreover, j above can be
regarded as a reciprocity law for Ly (K (2),).

It should be noted that our main exact sequence for a Laurent extension com-
pletely determines the groups L, (K[, t7'];) in terms of the Witt group of /. The
possibility of applying the techniques of L-theory to the study of the Witt groups of
genus 0 function fields first came up in conversations with W. Jacob and A. Wadsworth.
T. Y. Lam asked us about the special case # above. We thank the referee for drawing
our attention to the recent work of Parimala [14], which contains (§§ 4—6) a thorough
study of the Witt rings of conics by methods very different from ours. It seems to
require some work to exhibit the precise relationship between her main results, in
particular Theorem 6. 2 of [14] and our Theorem 7. 14.

In § 8 we briefly consider the situation where the involution acts trivially on the
field F. Here, we obtain explicit reciprocity laws and by way of an example show:

Corollary 8.6. If R[t,t™'] is given the involution which is the identity on R and

t=t"! then the associated Hermitian Witt group is (naturally) isomorphic to the un-
countable direct sum

Li(RW)=PZ
St
where S denotes the points of the unit circle.

We do not entirely understand the interplay between the L-groups and the real
algebraic varieties in the statements of 5.3 and 8. 6.
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The quadratic L-groups L,(A4) are the Wall [25] surgery obstruction groups.
Shaneson [22] obtained a geometric splitting of the simple quadratic L-groups

L,(Alt, ') =L(4A) ® L, -, (4)

for A=Z[n], t=t"" using the realization theorem of [25] to express elements of
L (Z[x] [t,t7'])=L,(Z[rxZ]) as the surgery obstructions of normal maps with
fundamental group n xZ which are simple homotopy equivalences on the boundary,
and applying the codimension 1 splitting theorem of Farrell and Hsiang [4]. The
algebraic splitting theorem of Novikov [13] and Ranicki [15] for the quadratic
L-groups L% (A[t,t™']) (t=t"", q=s, h) was proved by an analysis of quadratic forms
and formations over A[t, t™!'], working by analogy with the analysis of invertible
matrices over A[t, t~'] used by Bass, Heller and Swan [2] and Bass [1] to prove the
algebraic splitting theorem for K, (A[t, t7']). Certain discrepancies between the alge-
braic and geometric methods of proof were clarified in Ranicki [19]. The L-theory
splitting theorem is proved here by algebra, using the expression in Ranicki [16], [17]
of the L-groups as the cobordism groups of chain complexes with Poincaré duality. The
codimension 1 transversality of the geometric proof is replaced by an L-theoretic
version of the method of Mayer-Vietoris presentations used by Waldhausen [23], [24]
in algebraic K-theory, which is an extension of the linearization trick of Higman [8].
The geometric approach of Wall [25], Thm. 12. 6, applies to the quadratic L-groups of
the Laurent polynomial extension A[t, t !]=Z[rnxZ] of A=Z[rn], with t=ut"! both
for u=+1 and u= —1. See Ranicki [17], §7. 6, for an account of the geometric back-
ground to quadratic L-theory splitting theorems for A[t, t™!] with f=+¢"!, and also of
the case tf=t. The splitting theorem proved here for the symmetric L-groups
L¥(A[t, t71]) (f=¢"") was conjectured in Ranicki [16], § 10. The symmetric L-groups
L*(Z[n]) are not geometrically realizable, so that the geometric methods of proof do
not apply. See Ranicki [21] for a further development of the L-theory of Laurent
extensions.

We thank M. Knebusch for some very helpful comments. In particular he pointed
out that the genus O function fields were first studied in depth by E. Witt [26].
§ 1. The K-theory of Laurent extensions

Let A be an associative ring with 1. We shall be working with left 4-modules and
positive A-module chain complexes C.

An A-module chain complex C is finite if it is a finite-dimensional complex of
based f.g. (finitely generated) free A-modules. We assume that the reader is already

familiar with the torsion t(E) € K,(A4) of a contractible finite complex E. The (reduced)
torsion of a chain equivalence f: C — D of finite complexes is defined as usual by

1(f) =1(C(f)) € K, (A) = coker (K, (Z) — K, (A))

with C(f) the algebraic mapping cone.
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An A-module chain complex C is finitely dominated if there exists a domination
D, f:C—D,g:D—C,h:gf~1:C— C) by a finite complex D, or equivalently if it is
chain equivalent to a finite-dimensional complex P of f.g. projective 4-modules. The
projective class of C is defined by

[C1=TP1= 3 (=) [P1 e Ko(4)

for any such P. An A-module chain complex C is homotopy finite if it is chain
equivalent to a finite complex. The reduced projective class of a finitely dominated chain
complex C is the finiteness obstruction

[C]=[P] € Ky(A)=coker (Ky(Z) — K,(A)),

with [C]=0 if and only if C is homotopy finite. See Ranicki [18] for the algebraic
theory of finiteness obstruction of finitely dominated chain complexes.

Let A[t,t™'] be the Laurent polynomial extension ring, consisting of the

o0

polynomials Y a;t/ in a central invertible indeterminate ¢ over A with the coefficients
j=—

a; € A such that {j e Z| a;+ 0} is finite. The inclusion of rings
itA— A[t,t71]
determines functors

i, : (A-modules) — (A [t, t~*]-modules);
F— i F=A[t,t7'"1®,F=F[t,t7'],
i': (A[t, t~']-modules) —> (A-modules); E — i'E=E,

with A4 acting on i'E by the restriction of the A[t, t~*]-action to A= A[t, t™1].

Given an A-module F let F*, F~ denote the A-modules

0 -1
F*=Y tF, F = Y UF,
i=o j=—

so that
i'yF=F*®F".

If Fis a f.g. A-module and G is any A-module it is possible to express every
A[t, t*]-module morphism o : F[t, t™!'] — G[t, t7!] as a polynomial

a= Y tlo:F[t,t7']— G[t,t7']

j=-o

with the coefficient 4-module morphisms a; € Hom,(F, G) such that {je Z|a;#0} is
finite.
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Given an isomorphism of based f.g. free A[t, t~!]-modules

M
a= Y tha:F[t,t7']— G[1,t71]

](;j—eNHomA (F,G), M,Nz0)
there are defined f.g. projective 4-modules
By (F,G)=G*/a(t"F*), By(F,G)=G [a(t™F")
such that up to isomorphism

Bi(F,G)=a(t"\F')nG*, By(F,G)=a(t™MF*)nG,

N-1
By (F, G)® By(F, G)= } t'F,

ji=-M
and such that there are defined nilpotent endomorphisms
t:By (F, G)— By (F, G), t™"':By(F, G)— By(F, G).

Bass, Heller and Swan [2] and Bass [1] showed that the torsion group
K (A[t,t7']) of the Laurent polynomial extension A[t, ¢t”'] fits into a split exact
sequence

0 —— K () —— K, (A[1, t1])

_EB'ED, Ko(A) @ Nil, (4) ® Nil, ()

0,

with Nily(4) the reduced nilpotent class group. The injection i, is induced by the
inclusion of rings i: A — A[t, t']. The projections B, B*, B~ are defined by

B:K,(A[t, t71]) — K, (A);

-1

t(®) — [By (F, G)]— [Z th] ['_S:M th]—[B;,(F, G)l,

BY: K (A[t,t71]) — NilO(A); t(2) — [By (F, G), t],
B™ : K (A[t, t7]) — Nil, (4); (@) — [By(F, G), t™*].

Define the doubly reduced torsion group

R, (A[t, 1) = coker (K, (Z[t, t*]) — K (A[t, t™'])).
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Proposition 1. 1. The doubly reduced torsion group fits into a split exact sequence

0 —— R, (4) —— R, (A[t,t™1])

(BB*B")
—_—

K, (4) ® Nily (A4) @ Nily (4) ——— 0.
Proof. This is just the quotient of the split exact sequence for K, (A[t, t~']) by
the split exact sequence for K, (Z[t, t"']), using Nil,(Z)=0. [

A Mayer-Vietoris presentation of an A[t, t”*]-module chain complex E is a short
exact sequence

&:0 ic-I, ip—" E » 0,

with C, D A-module chain complexes and f, g: C — D A-module chain maps. & is finite
if E is a finite A[t, t"!]-module chain complex and C, D are finite A-module chain
complexes.

Let E be a finite n-dimensional A[t, t~']-module chain complex, and let F, be the
based f.g. free A-module generated by the A[t, t~!]-module base of E, (0<r=n), so
that

E,=i,F.=F,[t,t'].
The fundamental lattice of E N (E) is the lattice of ordered (2n + 2)-tuples
N=(Ng,N{,...,N}; No,Ni,....,N,)

of elements N,", N, € {0, 1, 2,..., oo} such that

dE< 5 th,>g 5 R, (srsn),

j=-N} j=-Ni,

with
NN if NSSN;*, N <N,- (0=r=n),
(NN =min(N,5, N/*), (NnN'); =min(N,, N,7),
(NUN')} =max(N;, N;*), (NUN'), =max(N,, N;7).

The lattice NV (E) is non-empty, with maximal element

00 =(00, ..., 00; 00, ..., ) € N (E).

Every element N € NV (E) determines a Mayer-Vietoris presentation of E

&(N):0 —— i, C(N) L2=¢™, p(N) 225 E —— 0,
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with C(N), D(N)<i'E the A-module subcomplexes defined by

N, ©

D(N),= Y tFci'E,= Y UF,
j=-N} j=-w
NS .
C(N),=D(N),ntD(N),= Z t'F,,
j=—-N}+1

and f(N), g(N), h(N) the chain maps defined by
f(N):C(N) — D(N); x—x,
g(N):C(N) — D(N); x—t 'x,
h(N):iy,D(N) — E; a®x — ax.
An element N € N (E) is finite if all of the N,*, N, are finite, in which case &(N) is
a finite Mayer-Vietoris presentation of E. Let NV/(E)c NV (E) be the sublattice of the

finite elements. NV/(E) is non-empty, since the unique minimal element N € N (E) is
finite, with N, =0, N,” =0. Thus:

Proposition 1. 2 (Waldhausen [23]). Every finite A[t, t™']-module chain complex E
admits a finite Mayer-Vietoris presentation. []

Let N*(E)= N (E) be the sublattice of the elements
N*=(Ng, Nf,...,N;\; 00, 0, ..., 00) € N(E)
with N," (0 <r < n) finite. Similarly, let &~ (E) = N (E) be the subset of the elements
N~ =(c0, ©,...,0; No, Ni,..., N, ) e N(E)
with N, (0 <r =< n) finite. There are evident forgetful maps

NY(E) — N7 (E);
N=(NJ’ N1+’-~-3 Nn+; NO—, Nl_s-”, Nn—)_—) N+=(NJ, N1+’-'-9Nn+; 0, O, ..., CD),

NI (E) — N7 (E);
N=(N¢,N{,...,NJ; No,N{,..., N)— N~ =(c0, 0, ...; Ng, N{', ..., N).

Given N*e N*(E) and N™ e N (E) there is defined a short exact sequence of
A-module chain complexes

00—t VF*'nt"F —tVFtet"N FF —i'E— 0.

If E is a contractible A[t,t"']-module chain complex then i'E is a contractible
A-module chain complex, and the A-module chain complexes t™ " F*, N F~ are
finitely dominated, with t ™" F* @ t¥ F~ chain equivalent to the finite chain complex
tNF* AtV F.
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Proposition 1. 3 (Ranicki [21]). The projection B: 1?1 (A[t, t71]) — Ky (A) is such
that
B(t(E)=[t"""F*]=—[t" F ]eK,(A)

for any contractible finite A[t, t~']-module chain complex E and any

N*eN*(E), N eN (E). O

§ 2. The L-theory of finite complexes
We recall the L-theory of f.g. projective chain complexes with Poincaré duality.

Readers familiar with Ranicki [16] may skip this section. In §3 we develop L-theory
using chain complexes of infinitely generated based free A-modules.

Let 4 be an associative ring with 1, together with an involution

1T:A— A; a— a.

Given A-modules M, N define the Z-module

MN=M®,N/{ax®y—x®ay|lace A, xeM,ye N}.

Given an A-module chain complex C let the generator Te Z, act on C®,C by the
transposition involution

T:C®,C—C®C; x®y— (=)"y®x (xeC, yeC),
and define the Z-module chain complex
W% C =Homg, (W, C ®,C)
with W the free Z[Z,]-module resolution of Z

W:...—— 7[Z,] -5 7[2,] 5 7[72,] —— 0.

An n-dimensional symmetric complex over A (C, ¢) is an n-dimensional 4-module
chain complex C together with a cycle ¢ € (W”*C),. A morphism of n-dimensional
symmetric complexes over 4

(L 0:(C ) — (C, ¢)
is a chain map f: C — C’ together with a chain y € (W% C’),, such that

¢’ —f*(d)=dye(W*C),.

The morphism is a homotopy equivalence if f: C — D is a chain equivalence.
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Given a f.g. projective A-module M let M* denote the dual A-module of
A-module morphisms f: M — A, with A4 acting by

AXM* — M*; (a, f) — (x — f(x)a).

The natural 4-module isomorphism
M — M**; x — (f — f(x)

is used to identify
M** =M.

For any f.g. projective A-modules M, N use the natural isomorphism

M®,N— Hom,(M* N); x®y— (f—*fGS‘Y)
to identify
M ®,N =Hom,(M*, N).

Thus for a f.g. projective A-module chain complex C a cycle ¢ € W*C, is defined by a
collection of chains

{¢, € (C®1C)yss =) Hom,(C"™""*, C,)|s 20}

such that

ded+ (=) ydE + (=) 7 ($eoy + (=)' Thy-1)=0:C""""1 — C,
(rs Sgo, ¢—1 =0)

A f.g. projective n-dimensional symmetric complex over A4 (C, ¢) is Poincaré if the
A-module chain map ¢,:C" * — C is a chain equivalence, with C"™* the n-dual f.g.
projective A-module chain complex defined by

dens= (=) (@dc)*:(C"%),= """ —> (C"™%),_, = C"~"*!
(C"=(C).

A f.g. projective n-dimensional symmetric pair over A (f:C — D, (3¢, ¢)) is defined by a
chain map f:C — D from a f.g. projective (n— 1)-dimensional A-module chain complex
C to a f.g. projective n-dimensional 4-module chain complex D, together with a cycle
(6, ) e C(f%:W*»C — W*D),. The symmetric pair is Poincaré if a certain A-module
chain map (8¢, ¢)o: C(f)""* — D is a chain equivalence, in which case the boundary
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(C, ¢) is an (n—1)-dimensional symmetric Poincaré complex over A. A cobordism of
n-dimensional symmetric (Poincaré) complexes (C, ¢), (C’, ¢’) is an (n+ 1)-dimensional
symmetric (Poincaré) pair

(f f):CeC" —D, (64,0 —¢)
with boundary (C, ¢) ® (C’, —¢'). Homotopy equivalent complexes are cobordant.
The projective (resp. free) symmetric L-group L, (A) (resp. L}(A4)) was defined in
Ranicki [16] for n=0 to be the cobordism group of f.g. projective (resp. finite)

n-dimensional symmetric Poincaré complexes over 4. See [16], § 6, for the extension of
the definition to the range n<O0.

The union of adjoining cobordisms of n-dimensional symmetric complexes

C=((fcfc):C®C' — D, (0¢, ¢ ® —¢')),
€ =((fefe):C@®C"— D', (6¢",¢'D —9¢"))

is the cobordism
C"=F U, C =(fEfe):COC"— D", (69", 0D — "))
defined by

dy (=Y 'fe O
dp.=| 0 de 0|:D/=D,®C,_,®D,—> D_,

0 (=) 'fe dp
= ,_1@C;—2®D;—1’
f=f®0®0:C,— D/=D,®C,_,®D,,

7, =0@ 0D fi:Cl — D! =D, ®C,_, ® D],

5, 0 0
S¢i=|(=yTTgifE (=) TG, 0 D
0 (-Ffed 39,

=Dn—r+s+1 @ Ccmorts @D/n“'+s+1 SN D;':Dr® C;—l &) D,{

D'=Duc D

C D Cr Dr C//
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An n-dimensional symmetric (Poincare) triad over A

C—F— 3 3.D p— 0,50
ST
Cc ———— > D 6 — 5 §¢

is a relative (Poincaré) cobordism to 0 of the (n—1)-dimensional symmetric (Poincaré)
pair over 4

0X =(0C —> 0,D, (2, 66, 39)),

as defined by a commutative square I of chain complexes and cycle ® e W*T,. See
Ranicki [17], § 1. 3, for further details.

§ 3. The L-theory of locally finite complexes

The algebraic K- and L-theory of a ring A are defined using f.g. projective and
f.g. free A-modules. The Laurent polynomial extension ring A[t,t™!] of a ring A4 is a
countably infinitely generated free A-module. The splitting theorem of §4 expresses the
L-groups for A[t,t™'] in terms of the L-groups of 4 by passing from chain complexes
of f.g. free A[t, t”']-modules to locally finite chain complexes of countably infinitely
generated free A-modules, and hence to chain complexes of f.g. projective A-modules. In
each case only finite-dimensional chain complexes are considered. In § 3 we develop the
L-theory of the locally finite chain complexes of countably infinitely generated free
A-modules.

A morphism matrix is a collection of A-module morphisms
{fije Homy(M(j), N@) |iel, jeJ}
which we also write as
f=(fi):M={M(j)|jel} — N={N@)|iel}.
Morphism matrices
fM={M(j)} — N={N@)}, g: N={N(@)} — P={P(k)}
can be composed if and only if for each x(j) € M(j) and k the set
{iel|guf(x(j))+0¢€ Pk}
is finite, in which case the composite morphism matrix gf: M — N is defined by

gf)k] Z gkl.f;} ]) — N(k)

iel
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The morphisms of direct sums of A-modules

M=} M(j)— N=} N()

jed iel

are in one-one correspondence with the morphism matrices f= {f;;} such that for each
x(j) e M(j) the set {iel|f;;(x(j))*0e N(i)} is finite, with the morphism corresponding
to f given by

f=Ufi): M=} M(j)— N=} N(i);

jed iel
x=) x()—fX)=) Y fi;x().
jelJ iel jed
If each M (j) is a f.g. projective A-module this condition is equivalent to f being column
finite, i.e. the set {i e I'| f;;# 0} being finite for each j e J.
An A-module M is countably free (resp. projective) if it is expressed as a direct sum

M=% M(j)

jeldJ

of f.g. free (resp. projective) A-modules M(j), with J countable. An A-module morphism
f:M — N between countably free (resp. projective) A-modules is a column finite
morphism matrix (f;;). The morphism is locally finite if the morphism matrix is also row
finite, i.e. the set {j e J | f;;+ 0} is finite for each i e I.

Given countably projective 4-modules M, N let Hom’/ (M, N) be the subgroup of
Hom, (M, N) consisting of the locally finite morphisms. If N is f.g. projective then
Hom!/ (M, N)=Hom, (M, N).

Remark 3. 1. A locally finite 4-module morphism f: M — N of countably pro-
jective A-modules can be an isomorphism without being a locally finite isomorphism,
i.e. the inverse f™':N — M need not be locally finite. For example, let A=2,

M=N=) Z and consider the automorphism

i=0
1 -1 0
0 1 —1 -
f= | 27207 —ZDZDZD -,

such that the inverse

[EE Gy —

f = ZIDZDZD - —ZDZDZD -,

o O

is not locally finite. [J
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An A-module chain complex C is locally finite if it is a finite-dimensional complex
of countably projective A-modules with the differentials d.: C, — C,_; (r=1) locally
finite. A chain map f:C — D of locally finite complexes is locally finite if each
f:C,— D, (r=0) is locally finite. A locally finite equivalence is a chain equivalence in
the locally finite category. A locally finite chain complex C is locally finitely dominated if
there exists a finite domination (D, f, g, h) with f, g, h locally finite. A locally finite chain
complex C is locally homotopy finite if it is locally finite equivalent to a finite
complex D.

Locally finite duality is defined with respect to an involution 4 — A; a — a on the
ground ring A, as in the f.g. projective case.

The locally finite dual of a countably free (resp. projective) A-module M is the
countably free (resp. projective) A-module defined by

M* =HomY (M, A)
with A acting on M* as in the f.g. projective case and M*(j)=M(j)* (jeJ). (If M is

f.g. then M* is the dual defined above.) If M is countably free then choosing a base

(bj15 bjz, ---» by,) for each M (j) determines a locally finite isomorphism

Lif (k=0 k),
M — M¥; bjk_+<bj,k,_.{ U b =0 )>,

0 otherwise

For any countably projective M there is defined a natural locally finite isomorphism
M — M** as in the f.g. projective case, which is used to identify M** = M.

The dual of a morphism matrix f: M — N is the morphism matrix f*: N* —» M*
with
(f*)i=(fij)* : N*(@) = NG)* — M*(j)=M()*

The locally finite dual of a locally finite morphism f: M — N is the locally finite
morphism f*: N* — M* defined by

[HiN*— M*; g — (x — g(f (X)),
which has the dual morphism matrix. Locally finite duality defines an isomorphism

T:Hom!/ (M, N) — Hom¥ (N*, M*); f — f*,

with inverse
T:HomY (N*, M*) — Hom}/ (M**, N**)=Hom{/ (M, N); f —f*.

The dual f*: N* — M* of an isomorphism of f.g. projective A-modules f:M — N
is also an isomorphism, with inverse

(f*) =(f ) M — N*

the dual of the inverse f ~!: N — M.
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Remark 3.2, Let f: M — N be a locally finite morphism which is an A-module
isomorphism. By 3. 3 (below) the inverse f ~': N — M is locally finite if and only if the
locally finite dual f*: N* — M* is an A-module isomorphism. In particular, if ™! is

not locally finite then f* is not an isomorphism. For example, let A=Z, M=N=) Z
i=0
as in 3.1 and consider the Z-module automorphism

0 1 ..
f= |zezeze - — 707070 -

0 -
f*= | lizezeze- —z0z0z0 .

In this case f* is not an isomorphism, and the inverse of f

. zezeze - —Zz00ZOZ® -

|
1
-1 _
4 1

o O
v O =

is not locally finite. In fact, f* is a split monomorphism with cokernel Z which fits into
a non locally finite direct sum system of Z-modules

A i 1.)

with
0o —1 -1
0 0 —1 -
g= IZDZDIZ®D - —ZDZDZD .

This is the canonical example of the Eilenburg swindle in algebraic K-theory. [
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The following result is a special case of the proper Whitehead theorem of Farrell,
Taylor and Wagoner [5], 4. 2, proved here in a more chain homotopy theoretic way.

Proposition 3. 3. A locally finite A-module chain map f:C — D of n-dimensional
locally finite A-module chain complexes is a locally finite equivalence if and only if both f
and the locally finite n-dual f*~*:D"™* — C"™* are chain equivalences.

Proof. The algebraic mapping cone of f is a locally finite chain complex
E=C(f:C — D) with locally finite n-dual
Er*=S"I1C(fr *:D" * —s C" %)

with $7! the desuspension by a dimension shift of 1, so that (E"™*), = C(f" *),.,. (The
suspension of an A-module chain complex C is the A-module chain complex SC with

dSC=dC:SCr=Cr-1 - SCr—IZCr—Z‘)

We have to prove that E is locally finite chain contractible if and only if both E and
E"™* are chain contractible. One way is easy: the locally finite n-dual of a locally finite
chain contraction I':0=1: E — E is a (locally finite) chain contraction

" *:0x1:E""* — E"™*
Conversely, assume that there exist 4-module chain contractions

Ir:0=zt:E—E, TI,:0x1:E"*— E" %
so that
dr,+rid=1:E,—E,, d*I[,+I,d*=1:E"""— E""",

The morphism matrices of I', and I', are column finite. The dual morphism matrices '}
are row finite, satisfying

dry+Irfd=1:E,—E,.
The morphism matrices defined by

A= =TI E,—E, .,
are such that
r¥—r,=dA—Ad:E,—E,.,.
Every morphism matrix @ can be expressed as a sum @; + &, with @, column finite and
@, row finite (e.g. by writing it as a sum of an upper triangular and a lower triangular

morphism matrix). Express 4 in this way as 4, + 4,. Since the differentials d: E, — E,_,
are locally finite the morphism matrices defined by

are both row finite and column finite, and so define locally finite A-module morphisms.
Thus I' is a locally finite chain contraction of E. [J
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Example 3.4. Let f:C— D, f':C— D' be the locally finite A-module chain
maps defined by

f=f":Co=A—Dy=Dy=) A; x —(x,0,0,...),
0
d:Dl =Z A —_ DO:Z A; (xO, xl, x2, .‘.)""“‘) (xl, x2, X3, ...),
0 0

d': D =i:: A —> Dy =§; A; (Xg, X15 Xa,.0.) = (Xgy X1 — Xgy X3 — X1y ..0)s
C.,=0 for r+0, D,=D,;=0 for r=0, 1.
Both f and f’ are chain equivalences, inducing isomorphisms
fe H (CO)=A— H, (D), fy:H(C)=A— H, (D)

in homology. Also, f is a locally finite equivalence, with locally finite homotopy inverse
f71:D — C defined by

fThiDy=Y A— Co=4; (xg, Xy, X3, ...) — Xy,
0

and D is locally homotopy finite. However, 3.3 shows that [’ is not a locally finite
equivalence, since the locally finite 1-dual f''"*:D''"* — C'™* induces A4-module
morphisms in homology
f*=0:Hy(D''"*)=A4 — Hy,(C'"*)=0,
f*=0:H,(D''"*)=0— H,(C'"*)=4
which are not isomorphisms, and D’ is not locally finitely dominated. D’ is essentially

the example of 3.1, 3.2 all over again. For 4=Z it shows that the real line R is not
proper homotopy equivalent to a point. []

Remark 3.5. For any f.g. projective A-module P =im(p=p?*: A™ — A™) there is
defined a locally finite resolution

0—C, 5 C-P—0

with
d:C =Y A" — Co=3 A™;
0 0

(X0s X15 X3, ...) — (xm —p(xo) + x4, —P(x1) +X2,...),

e:Co=) A" — P;
0

(Xgs X1» X3, -+) — P(Xo + X4+ X5+ ).
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C is not locally finitely dominated, by the argument of 3.4 (the special case P= 4,
m=1, p=1.) Every finitely dominated A-module chain complex is chain equivalent to a
finite f.g. projective A-module chain complex, and hence to a locally finite n-dimensional
complex (for some n=0), although not necessarily to one which is locally finitely
dominated. []

For any countably projective A-modules M, N define the abelian group
M ®Y N =HomY (M*, N).
There is defined a natural inclusion
M@N—>M®/N;, x®y— (f— f(x) ),

and every element of M ®4 N can be expressed as a locally finite infinite sum of
elements x ® y € M ®, N. The duality isomorphism

T:HomY (M* N) — HomY (N* M)
can be identified with the transposition isomorphism
T-MQYN-—->NRYM, xy— y®x.
For any locally finite A-module chain complex C define the Z[Z,]-module chain
complex
C ®Y C=HomY (C*, (),
with T € Z, acting by the involution
T:CRIC—CRIC;, x@y—(—)"y®x (xeC,, yeC),
which can also be written as
T:Hom!/ (C*, C) — Hom¥ (C*, C); f— (—)"f*
(f € HomY (C?, C))).
Let W% C denote the Z-module chain complex
W} C = Homgz,y (W, C ®Y C).

A locally finite n-dimensional symmetric complex over A (C, ¢) is a locally finite
A-module chain complex C together with a cycle ¢ € (W7 C),, as defined by a collection
of locally finite A-module isomorphisms

{¢, € (C®Y C)yry=Y Hom{ (C"™"™*, C,) | s 20}

such that
dey+ (=) bsdE+ (=" oy + (=) Ths-y)

=0:C""T 5 C, (1,520, ¢_,=0).
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A locally finite n-dimensional symmetric complex (C, ¢) is Poincaré if the locally finite
chain map ¢,:C" *— C is a locally finite equivalence. Locally finite symmetric
Poincaré pairs, cobordisms and triads are defined by analogy with the f.g. projective
cases.

Proposition 3. 6. The cobordism group of locally finitely dominated (resp. locally
homotopy finite) n-dimensional symmetric Poincaré complexes over A is the projective
(resp. free) symmetric L-group L,(A) (resp. L(A)).

Proof. An n-dimensional locally finitely dominated 4-module chain complex C is
locally finite equivalent to an n-dimensional f.g. projective A-module chain complex D,
by the algebraic theory of finiteness obstruction of Ranicki [18]. The n-dual of a locally
finite equivalence f:C — D is a locally finite equivalence f" *:D""* — C"™*, and
there is induced a Z [Z,]-module chain equivalence

f®f:CRIC—DR®/D=D®,D.

Thus there is a natural one-one correspondence between the locally finite equivalence
classes of locally finitely dominated n-dimensional symmetric (Poincaré) complexes over
A and finitely dominated n-dimensional symmetric (Poincaré) complexes over A.
Similarly for pairs. []

Proposition 3. 7. There is a natural one-one correspondence between the locally
finite equivalence classes of locally finite n-dimensional symmetric complexes over A and
locally finite n-dimensional symmetric Poincaré pairs over A.

Proof. This is just the locally finite version of the one-one correspondence of
Ranicki [16], 3. 4, for the f.g. projective case, and proceeds as follows.

The boundary of a locally finite n-dimensional symmetric complex (C, ¢) is the
locally finite (n — 1)-dimensional symmetric Poincaré complex

0(C, §)=(0C, 0¢)

<dc (—)’¢o>,
dac = rax |’
0 (—)d¢
3C,=C,s; ®C""—0C,_, =C,®C""",
sgn (VT (—)"""“”).
0 1 0 )
acn-r—l = Cn—r@ Cr+1 - 0Cr= Cr+1 @ C"-',
_ n—r+s-lT s 0
0¢s =<( ) ¢ ! >:
0 0
acn—r+s—1 =TS @ Cr—s+1 —_— 6C,= Cr+1 &) crr (S; 1)

with

(We are assuming here that d,c: 0C, — 9C_, is a locally finite split surjection.)
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The locally finite n-dimensional symmetric Poincaré pair
00(C, ¢)=(pc = projection: dC — C"™*, (0, 0¢))

is a null-cobordism of d(C, ¢). The locally finite symmetric complex (C, ¢) is Poincaré if
and only if the boundary 9(C, ¢) is locally finite contractible.

Conversely, a locally finite n-dimensional symmetric Poincaré pair
X=(f: C— D, (54)’ ¢))

determines the locally finite n-dimensional symmetric complex

X/6X =(D, 6¢)/C=(C()), 6¢/¢)

(5¢’¢)—( o0, 0 )
PRIy (=i )

C(f)n~r+s+1 ____Dn—r+s+1 (‘B Cn—r+s _ C(f)rzDr® Cr—l

with

which is locally finite equivalent to 0(X/0X). [
We shall also need the relative version of Proposition 3. 7:

Proposition 3. 8. There is a natural one-one correspondence between the locally
finite equivalence classes of locally finite n-dimensional symmetric pairs over A and locally
finite n-dimensional symmetric Poincaré triads over A.

Proof. Define the boundary of a locally finite n-dimensional symmetric pair
(f:C— D, (6¢, ¢)) to be the locally finite (n — 1)-dimensional symmetric Poincaré pair

o(f. (09, $)=(0f:0C—>0,D, (0,09, 0¢))
with
dp (=)d¢o (=) Sy
do,p={0 (=)d} 0
0 f* (=) d¢
0.D,=D,,,®D" "®C" " '—0,D,_=D,®D" "' C",

f 0
aof=|0 0}
0 1

0C,=C 1 ® crrl— 0,D,=D,,, ® D"TecCtTTL
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The locally finite n-dimensional symmetric Poincaré triad

oc ——% _, 4,D 0p ———————— 0, 0¢
00(f. (¢, 00)) = re Po , 1 J
crlttr L CcfF 00— 0

is a null-cobordism of d(f, (6, ¢)), with pc, p, the projections. As in the absolute case
(f, (09, ¢)) is a Poincaré pair if and only if the boundary 8(f, (3¢, @) is a contractible
pair.

Conversely, a locally finite n-dimensional symmetric Poincaré triad

cC
X: [
C

determines an n-dimensional symmetric pair

0,D 0p —————— 0, 0¢
e
b ¢

N Y

_—
r
ey

X/0X =(C/0C — D/0. D, (3¢/0,5¢, $/0¢))
such that X is locally finite equivalent to the triad 60, (X/0X). [J

Remark 3. 9. It follows from the theory developed in §4 below that every
n-dimensional f.g. projective symmetric Poincaré complex (C, ¢) over A4 is locally finite
equivalent to the boundary (C’, ¢’) of a locally finite countably free (n + 1)-dimensional
symmetric Poincaré pair (f':C'— D', (0¢’, ¢')) over A, with f' a chain equivalence.
This does not contradict 3. 6 since in general f” is not a locally finite equivalence and D’
is not locally finite dominated, so that it is not implied that (C, ¢) is null-cobordant in
the f.g. projective category. In particular, consider the 0-dimensional case and suppose
given a nonsingular symmetric form (P, ¢ = ¢*: P — P*) over A with P f.g. projective
(e.g. P=A, ¢=1). Let P=im(p=p*: A" — A™) and let (4", 0) be the (singular)
symmetric form defined by

0: 4™ — (A™)*; x — (y — ¢(px) (pY)).

Identifying (4™)* = A™ by means of the 4-module isomorphism
Am — (Am)*, (al, az, ceey am) i ((bl’ bz, cvey bm) — Z bkdk)
k=1
regard 6 as an endomorphism of A™. Use the dual of the locally finite resolution of 3. 5

0—+iA'"——‘-’—+iA'”—e>P—-+O
0 0
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to define a locally finite countably free 1-dimensional symmetric complex (B, 1) over 4
by

0 0

(xO’ Xis X2, "‘) — (x0 _p*(x1)7 X1 _p*(XZ)v X — p*(X3), ...),

0 0

)&0:30:2 Am—’B1=ZAm;

0 [0

(Xos X1, X3, ...) = (0(x0), 0(xy), 0(x3), ...),
lo Bl=i Am’—’Bo—_—-i Am,

0 0

(x0a X1, Xa, )—) (o(xl)’ o(xl)’ 0(x3)’ )’
j’l B1=iAm—PBl=§Am,

0 0

(X0> X15 Xz, ...) = (= 0(x0), —0(x,), —0(x;), )

Use the construction of 3.7 to define the locally finite countably free 1-dimensional
symmetric Poincaré pair

(fl . C, — Dla (6¢,, ¢,))=56(Ba /1),
with
f'=projection: C'=S"'C(ly) — D'=B'"*,
B is contractible but not locally finite so (cf. 3. 1), with the locally finite 1-dual B!~ * a
resolution of P, and C’ is a locally finitely dominated countably free complex. [’ is a
chain equivalence, but not a locally finite equivalence (cf. 3. 3). The composite

ef:C' L Btox 2, p
is chain homotopic to the locally finite equivalence e': C' — P defined by
€:Co=B'®@B =) A"@®) A" — P;
0 0
((x0> X15 X2, +-)s (Yo» Y15 Y25 -+-)) = P(Xo = Yo)-

The composite ¢e':C'— P* defines a locally finite equivalence of 0-dimensional
symmetric Poincaré complexes

pe’:(C', ¢')=0(B, 1) — (P*, ¢).

This is an algebraic L-theoretic version of the Eilenberg swindle, corresponding to the
expression of any compact closed n-manifold M as the boundary of the non-compact
open (n+ 1)-manifold M x [0, 0). [J
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§ 4. The L-theory of Laurent extensions

Given a central unit u € A such that i=ue A let A[t, t™'], denote the Laurent
polynomial extension ring A[t, t”'] with the involution f=ut"'. The inclusion of rings
with involution i: 4 — A[t, t™'], determines a functor preserving duality involutions

i, : (A-modules) — (A[t, t"']-modules);
M—iM=A[t,t ' ]®M=M[t,t '],

both for f.g. projective and countably based free modules. There are induced morphisms
in the L-groups

iy 0 Lo(A) — Li(A[t, t71],);
(C, ) — A[L, 711 ®4(C, ¢)  (g=h, p).
Define also morphisms

1—u:L(4) — Ly(4); (C, ¢)— (C, )@ (C, —ud)® 9(C, 0).

Theorem 4. 1. The free symmetric L-groups of A[t,t™'], fit into a long exact
sequence

. —— L (A) == L (A) —— Ly(A[t, t71],)

— SN S L) —— . O

The proof of 4. 1 occupies all of § 4.

The restriction of an A[t, t~!]-module M is an A-module i'M, as already defined
in §1. If M is a based f.g. free A[t, t”']-module with base B then i'M is a countably
based free A-module with base t/b (je Z, be B). The restriction of a morphism
f:M — N of based f.g. free A[t, t"*]-modules is a locally finite morphism

i'f:i'M —i'N.

The morphism of abelian groups defined by restriction
i': Homy, ,-y(M, N) — Homy/ (i'M, i'N)

is an injection. If F, G are the based f.g. free A-modules generated by the A[r, t™1]-
module bases of M, N and

j=—o© j=—o j=—©
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then

’fo f—1 f~2

if=1- fi fo f-1 |

o i o

i'M=- ®t'FOFPF® - —i'N=--Dt'GAGCDIGDP ---.

We identify
(i, F)*=1i,(F*)

using the natural A[t, t~!]-module isomorphism

i(F*) — (i, F)*; t/f — (t"x — f(x)u/t*7)
(j,keZ, feF* xeF).

We identify
i'(M*) = (i' M)*

using the natural 4-module isomorphism

i'(M*) — (i'M)*;
(f+M— Al 7)) — ([f1o:i'M — A; x — [f(%)]o),

where [alo=ao€ A for a= ) a;t/ € A[t,t™"]. The restriction of an A[t, t~*]-module
morphism ”
a= Y ot/:M= Y HF-—N*= 3 G*

j=—x j=-—o j=—o

x—(y— Y 4x)) (eF yeG)

j=-—o
is the locally finite 4-module morphism
itz i'M — (i'N)*;

tix — (t"y — [a(t/x) (t*y)]o = o (%) () u’)
(xeF, yeg, j, ke Z).
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The dual A[t, t']-module morphism is given by

a¥= Y ofutV:N= ) t/G— M*= i t"F*

j=—® j=—© k= —o

0

y—x—ax) = Y %) (wt’) (xeF, yeG)

j=—
For any finite A[t, t~']-module chain complex E there is defined a restriction map
i! . E ®A[I.I_1]u E = HOl’l’lA[mq] (E*, E) i i!E ®‘ifi’E = Homj‘f(i'E*, i'E).

The restriction of a finite n-dimensional symmetric complex (E, ®) over A[t,t" '], is the
locally finite n-dimensional symmetric complex over 4

i'(E, @) =(i'E, i'0).

Given a locally finite n-dimensional symmetric complex (C, ¢) over 4 and a based
free subcomplex B < C define the locally finite n-dimensional symmetric complex over 4

(C, ¢)/B=(C/B, p*(¢)),
with p: C — C/B the locally finite morphism defined by projection.

The torsion of a finite n-dimensional symmetric Poincaré complex (E, ©) over 4 is
defined by

1(E, 0)=1(0y: E"* —> E) € K, (A).

The K-theory map B: I?l(A [t,t7']) — K,(A) sends the torsion t(E) of a
contractible finite A[t, ¢t~ ']-module chain complex E with E, =i, F, to

B(z(E)= [t F*] e Ro(A)

for any N* e N* (E) (1. 3). The proof of 4.1 identifies the image under B of the torsion
of a finite n-dimensional symmetric Poincaré complex (E, ®) over A[t, t~1], with the
finiteness obstruction of an explicitly constructed finitely dominated (n — 1)-dimensional
symmetric Poincaré complex B(E, @) over A4,

B(z(E, ©)) =[B(E, ©)] € Ko(4),

as follows:

Proposition 4. 2. i) For any finite n-dimensional symmetric Poincaré complex
(E, ©) over A[t, t™'], with E,=i,F, and any N* € N* (E) there is defined a locally finite
n-dimensional symmetric complex i‘(E, ©)/t™" F* over A, such that the boundary
0(i'(E, @)/t ™ V' F*) is a locally finitely dominated (n—1)-dimensional symmetric Poincaré
complex over A with

B(t(E, ©)=[8('E/t ™" F*)] € Ko(4).
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ii) The map B: L} (A[t, t7'],) — L, *(A) is such that
B(E, @)=a(i’(E, @)/t—N+F+)€L';,‘1(A). ]

Remark 4. 3. A finite (resp. finitely dominated) n-dimensional symmetric Poincaré
complex (C, ¢) over A is highly-connected if H,(C)=0 for 2r<n—1. See Ranicki [16],
§2, for the details of the one-one correspondence between such highly-connected
complexes and f.g. free (resp. f.g. projective) nonsingular (—)*-symmetric forms (n=2k)
and formations (n=2k+1) over A. If (E, ©) is a highly-connected finite n-dimensional
symmetric Poincaré complex over A[t, t™!], then the finitely dominated (n— 1)-dimen-
sional symmetric Poincaré complex B(E, @) constructed in 4. 2 is also highly-connected.
The corresponding passage from forms and formations over A[t, t™!], to formations
and forms over A is the exact analogue for the symmetric case of the formulae of
Ranicki [15] in the quadratic case. However, whereas the quadratic L-groups are
4-periodic L, =L, ,, and are represented by highly-connected complexes (correspond-
ing to Witt groups of forms and formations) this is not in general the case for the
symmetric L-groups L* with x>2. ]

4.1 and 4.2 are proved by first defining the relative L-groups for
1—u:L}(A4) — L} (A4)

as the cobordism groups of “finitely balanced” symmetric Poincaré pairs over A4, and
then proving that these relative L-groups Lj ,(1—u) are isomorphic to the absolute
L-groups L¥(A[t, t~'],) of finite symmetric Poincaré complexes over A[t, t~'],.

An n-dimensional symmetric pair over A

X=(fg):C®C' —D,0¢, ¢ ® —¢")

is u-fundamental if

(C, ¢)=(C, ug),
in which case it is the (algebraic) fundamental domain of a symmetric complex over
A[t, t™1],, defined as follows.

The Laurent union of a (locally finite) u-fundamental n-dimensional symmetric pair
X=(fg):C®C—D,(0¢, d» ® —¢)) over A4 is the (locally finite) n-dimensional sym-
metric complex over A[t, t™1],

U(X)=(E, ©)
with

. _(d,, (—)"‘(f—gt)).
E\o dc '

Er= Dr[t, t_l] @ Cr-l [t’ t—l] - Er—l =l [ta t_l] @ Cr—z[t’ t‘l]ﬁ

@=< 5¢s (_)sg¢st l)
TN S ()T T )

En—r+s=D""'+5[t’ t‘l] ® C"""+3_1[t, t'—l] — Er‘-——'D,[l', t_l] ®C, [, t—l]'
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The restriction of U(X) is the locally finite n-dimensional symmetric complex over A
defined by the countable union

UX)= () vx

j==w

of the copies of X

HX =((fg): 'C® U C— ti™1D, o, i ® —u*'¢) (je2)

tic DL _C | 25D tC  t*D | t*C

The boundary dU (X) is (locally finite) homotopy equivalent to the Laurent union
U(@X) of the boundary (locally finite) u-fundamental (n—1)-dimensional symmetric
Poincaré cobordism 0 X =((0f 0g):0C ® dC — 0, D, (0,0¢, 0¢p ® —udd))

oU(X)=U(0X)

(as defined in the proof of 3.8). Thus if X is a Poincaré pair over A then U(X) is a
Poincaré complex over A[t, t™1],.

The Laurent union U(X)=(E, ©) is the L-theory analogue of a Mayer-Vietoris
presentation. Indeed, E is the algebraic mapping cone

E=C(f—gt:C[t,t"']— D[t t7']).

Replacing D by the algebraic mapping cylinder D’ of (fg):C@® C — D there is ob-
tained an A[t, t ']-module chain complex E’ chain equivalent to E, with a Mayer-
Vietoris presentation

0 N AN )Y E 0.

A u-fundamental n-dimensional (locally finite) symmetric pair over 4
X=(fg):C®C—D,(0¢,0 D —ud))
is (locally) finitely balanced if it is (locally) finitely dominated and
[CI1=[D]€ K,(A),

in which case the Laurent union U(X) is a homotopy (locally) finite symmetric complex
over A[t, t™1],. In particular, this is the case if C, D are finite.
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Proposition 4. 4. The cobordism group of finitely balanced u-fundamental n-dimen-
sional symmetric Poincaré pairs over A is the relative group Lj ,(1—u) in the exact
sequence

W DY) S (A s L (1 —w) s DN () —

with
J:Ly(A) — L, ,(1—u); (D, 6¢) — (0@ 0—> D, (3¢, 0 0)),
0:L, ,(1—u)— L, '(A);
(f8):C®C—D, (04, ¢ ® —ud)) — (C, ¢).

Ly, ,(1—u) is also the cobordism group of locally finitely balanced Poincaré pairs.
Proof. L, ,(1—u) is the cobordism group of homotopy finite n-dimensional
symmetric Poincaré cobordisms over A4 of the type

(COCPDIC—D, (60,9 ® —ud @ 00)).

Given such a cobordism define a finitely balanced u-fundamental n-dimensional
symmetric Poincaré pair
(COC—D,(6¢", ¢ ® —ug))
= (C ('B C @ aC —_—> D, (5¢, ¢ (“B ""u¢ (‘B 60)) Ua(c’o) (pC . 6C -_—> Cn+1_*, (O, 60)),
with p.:9C — C"*'™* the projection. Conversely, given a finitely balanced u-funda-
mental n-dimensional symmetric Poincaré pair (C@® C — D, (0¢, ¢ ® —u¢)) define a
homotopy finite n-dimensional symmetric Poincaré cobordism
(CeC®IC— D", (60", ¢ D —ud @ 00))
=(C®C—D,(0¢,d D —ud)® (pc:0C — C"*17* (0, 00)).

Similarly for the locally finite case. []
We show that U defines an isomorphism
U: L, ,(1-u)— Ly(A[t, t7'],); X — U(X),
using the following L-theory analogue of the existence of finite Mayer-Vietoris presen-

tations of finite A[t, t~!]-module chain complexes (1. 2):

Proposition 4. 5. Every finite n-dimensional symmetric Poincaré complex (E, ©)
over A[t, t™'], is homotopy equivalent to the Laurent union U(X) of a locally finitely
balanced u-fundamental n-dimensional symmetric Poincaré pair over A

X=(fg:COC—D,(0¢, ¢ ® —up))
with
B(x(E, @)=[CleKo(4). O
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The isomorphism inverse to U is then defined by
U™ LAl 1)) — L ,(1-u); (E,0)=U(X) — X,
and B is given by

B:Ly(A[t, t71],) — L, (4); (E, ) — (C, $)

with X =((fg):C® C — D, (¢, ¢ ® —u¢)) the locally finitely balanced Poincaré pair
given by 4. 5. In order to actually verify that U ™! and B are well-defined we need the
relative version of 4. 5 stated in 4. 6 below.

The algebraic mapping torus of a morphism of (locally finite) n-dimensional sym-
metric complexes over A

(f; X) : (Ca u¢) - (C’ ¢)
is the (locally finite) (n + 1)-dimensional symmetric complex over A[t, 1™ '],
T(f, 0=U(Y)

defined by the Laurent union of the (locally finite) u-fundamental symmetric cobordism

Y=(1/):C®C—C, (1, ® —ug)).

The underlying A[t, t~']-module chain complex is the algebraic mapping torus of
f:C—-C

The boundary 8T(f, y) is (locally finite) homotopy equivalent to the Laurent union
U(X) of the (locally finite) u-fundamental n-dimensional symmetric pair over A

X=0Y=(010f):0C®IC—0,C, (0%, 0¢p ® —udp))
defined as in the proof of 3. 8.
For any countably based free A[t, t”']-module M define a Mayer-Vietoris pre-
sentation

.. M)-t .. p(M)
0 SiitM T i M - M » 0

with
(M):i'M —i'M; x —tx,
p(M):ii'M — M; a® x — ax (a€ A[t,t7'], x € M).
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Define also a Mayer-Vietoris presentation of the dual countably based free A[z, t7']-
module M*

0 ——— ' (M) 002 () — 240, 0
with
{*(M)={(M)* ' (M*) = (i M)* — ' (M*);
f— (x— f(tx)),
p*(M)=p(M*):i,i'(M*) — M*;
a® f—saf (aeA[t,t™ 1], fe M¥).

Proof of 4.5. Given a finite n-dimensional symmetric complex (E, ®) over
A[t, t71], fix an element

N*=(Ng,N{,...,N}; 00, ©,..., 0)e N*(E).

Define a morphism of locally finite n-dimensional symmetric complexes over A

(,0):(C, u¢) — (C, )
by
(C, ¢)=i'(E,0)/t V" F* n:C— C; x —> tXx.

The algebraic mapping torus of (5, 0) is the locally finite (n + 1)-dimensional symmetric
complex over A[t, t71],

T(n,0)=U(Y)

defined by the Laurent union of the locally finite u-fundamental (n+ 1)-dimensional
symmetric pair over 4

Y=(1n):C®C—C, (0, ¢ ® —ud)).

We shall show that (E, ®) is locally finite homotopy equivalent to the boundary
0T(n,0), and hence to the Laurent union U(X) of the locally finitely balanced
u-fundamental n-dimensional symmetric Poincaré cobordism X =0Y over A4, with
B(E, ©)=0(C, ¢).

The dual of the locally finite A-module morphism defined by projection
i'E,=i'i,F,— C,=t"™ F
is the locally finite A-module morphism defined by injection

C =t (F)” — {'"E"=i"i,F".
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The A[t, t~']-module morphisms n—t:i,C, — i,C, are automorphisms (such that the
inverses are not locally finite, cf. Remark 3.1). Also, there are defined Mayer-Vietoris
presentations

0 Crreel et —f L 50

with g the (non locally finite) A[t, t~!]-module morphisms
g: i! Cr inclusion l.’ igEr p*(E,) Er - i! Fr.

Define a (non locally finite) chain equivalence of locally finite A[t, t”!]-module chain
complexes

e:0T(n)— E
by
e=(0000,g):0T(n),=i,C,,, ®i,C,®i,C" "' @i C"™"

— E,=i,F,.
The (non locally finite) A[t, t~!]-module morphisms
h:iC, nclusion,  jip  PE) L p o F,
are such that the A[t, t~!]-module morphisms
e =e+dy(h000)+(h000)d,r,: 0T (), — E,
are locally finite. The locally finite 4[t, t~*]-module chain map
e 0T(n)— E

is chain homotopic to e, defining a locally finite equivalence of homotopy finite
n-dimensional symmetric Poincaré complexes over A[t, t™'],

(€,0):0T(n, 0)— (E, O).

Define N~ =(c0, 00, ..., 00; Ny, N;,..., N, )e N"(E""*) by N, =N,., 0<r=n).
LetN"=(oo,oo,...,.oo;N0’, N{,...,N,)e N (E) be so large that

O, (tN (F"*)" )<tV F,
so that '@, : i' E"* — i'E restricts to a locally finite A-module chain map
A=i'0, | 1Y (F* %) — N F~
and there is defined an exact sequence of locally finite 4-module chain complexes

00— tN F At VFt—Dt"F —C—0
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with N F~ n¢ " F* finite. By 1.3 and 3.3 the algebraic mapping cone C(4) is locally
finitely dominated with finiteness obstruction

[C()]=—B(t(®y: E" * — E)) e K (A).
It now follows from the exact sequences

0—tN F nt™MF"—C(A)— C(dy:C" *—C)—0
that
[0C1=—[C(¢o: C"* — C)]=B(:(E, 0)) e Ko(4). O

An n-dimensional symmetric triad over 4

cc@oc —9 . 5.D  p@® —0¢ 0,8¢
|
i

cec —Y2 ., p ¢D —¢’ 5¢

is u-fundamental if 6C @ C’'— C @ C’ is the sum of chain maps 6C — C, dC’' — C’
and

(0C"— C',(¢",09")=(0C — C, u(¢, 0¢)).
The Laurent union n-dimensional symmetric pair over A[t, t™1],
U(X)=(0E — E, (0, 00))
is defined by analogy with the absolute case (0C @ 0C — 0, D)=0, with

OE=C(0f—0gt:0C[t,t™*]— 0, D[t,t1]),
E=C(f—gt:C[t,t™*]—> D[t,t71]).

As in the absolute case X is a fundamental domain of U(X), and the restriction is
obtained by glueing together all the copies t/X (je Z) of X

U= ) ¢x.

j=-w

t"'oC o,D oC té. D toC  t*o,D t20C

t71C D C tD tC t’D t2C
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A u-fundamental (locally finite) symmetric triad over 4

ICO®IC——— 5 0.D  p® —udd

-

D PO —ud

coecC

o
is (locally) finitely balanced if it is (locally) finitely dominated and

[C1=[D], [0C]=[d,D] € Ry(4),

in which case the Laurent union U(X) is a homotopy (locally) finite symmetric pair
over A[t,t71],.

The torsion of a finite n-dimensional symmetric Poincaré pair (f: 0E — E, (O, 00))
over A is defined by

t(f:0E — E, (0, 00))=1((0,, 06,): C(f)" * — E) e K, (A).

4.5 is the special case (OF, 00)=0, X =0 of the following relative version:
Proposition 4. 6. Every finite n-dimensional symmetric Poincaré pair over A[t,t™'],
(f:0E — E, (O, 00)) is homotopy equivalent to the Laurent union U(X) of a locally

finitely balanced u-fundamental n-dimensional symmetric Poincaré triad X over A such
that

B(t(f:0E—E, (0,00))=[Cle Ko(4). O
Proof of 4. 1. The Laurent union morphism
U: L ,(1—u) — Ly(A[t, t71].); X — U(X),
is onto by 4.5, and one-one by 4. 6.

§ 5. An example

Let # =R (x) [y]/(x*+y*+]1), the quotient field of (R [x, y1/(x*+y*+1)), then
we have

Lemma 5.1. % (i)=C(t), the rational function field, where i is, as usual, a
primitive 4"*-root of 1.
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Proof. Define a map ¢ : Z (i) — C(t) by setting

¢(x)=—V—%(t—rl),
¢(y)=~l/%(t+f1).

1
Now, ¢ <ﬁ (x—i y)) =t, so ¢ is onto. Since both range and domain are fields ¢ is an

isomorphism, and the lemma follows. []

Lemma 5. 2. Define an involution 4 on C(t) by setting A(t)=—t"1, A(i)=—i,
A=1id on R < C, then the fixed field of A, C(t)* is Z.

Proof. Directly we have that A(¢(x)) = ¢ (x), (¢ (y)) = ¢(y). Hence, ¢(F)<=C (t)%
and the result follows by a dimension count.  []

The L-groups of a ring 4 with respect to the trivial involution are denoted simply
by L,(A). When the involution is non-trivial, say 7, we write the corresponding
L-groups as L, (A4, 7).

We now wish to study the Witt group W(% )= L,(¥) with respect to the trivial
(identity) involution on %. From now on we shall only be dealing with the L*-groups,
and so omit A from the terminology.

Theorem 5. 3 (Knebusch [9], § 11). (i) There is an exact sequence
0—2Z2—Ly(F)—Z2& (?Z/Z—»O
where the index set .9 is the points p € #, and M, is the open Mobius band
{C—{0}/z~—1/2)}.

The first Z/2 carries the element (1.
(ii) The sequence above does not split. In particular the Stufe of F is 2.

Proof. There is an exact sequence due to N. Jacobson, (see [12], Appendix B)
5.4 0— Lo(C (1), ) — Lo(F) — Lo(C (1))

Again, quoting a result of Milnor ([12], Theorem 3.1, p.265) for any field " of
characteristic different from 2 there is an exact sequence

(5.9) 0— Lo(H) — Lo(A (1) — (-;3 Lo(A'[t]/?)— 0

where 2 runs over all the primes of A [t]. In our case

Lo(C 1) =(D Lo(0)) ® Lo(C) where Lo(C)=2Z/2.

zeC
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Moreover, the involution 4 on primes (¢t —z) becomes A(t —z)= —Zt !(t+1/Z), and we
see that A is geometrically the map z < —1/z. In particular the extra Z/2 can be
identified with the Z/2 over oo in S? and, clearly, this Z/2 and the Z/2 corresponding to
the prime (t) are interchanged by A4 as well. (There is room for possible confusion here.
The inclusion Ly(C)< Ly (#) includes the Z/2 as the sum of the two terms above.) [J

Next, note that
Lemma 5.6. (i) imLy(%)o Lo(C(t)) is contained in Ly(C (t))*.
(i) If 0 € Ly(C(t)) has the form p+ A(u) then 0 € im Lo([F).

Proof. (i) is clear. To see (ii), suppose u=)_ {(a;), so that

pA A =3 <a;> L<{A(ay)).

In our case there are only two invariants determining an element in L, (C(t)), the rank
mod (2) and the discriminant. But {al(a)) L<{1) and <{a) 1 {i(a)) both have even rank
and equal discriminant. Hence they are equivalent in the Witt group, and (i) fol-
lows. [

This identifies the image of Ly(#) in Ly(C(t)). We now must analyze the kernel
in the map (5.4). It is precisely at this point we require our results on Laurent
extensions.

Consider first the localization exact sequence

L (C[t,t7 '], )= L (Ct),A)— P L (C[t,t7')P, 1) — Ly (C[t, 1)

2 fixed

(See e.g. [17], § 3.) We have already seen that there are no fixed primes. Hence
5.7 L (C[t,t7'], A= L, (C(), 4).
Our main result 4. 1 applies to give an exact sequence
= L (C, =) 2= L (C, —) — L (C[6, 7', ) — Ly 1 (C, =) — ...

where by L,(, —) we mean the L-group with respect to complex conjugation. It is well
known that

Z *even,

L —)z{o « odd

and the generators are (1) for =0, (i) for *=2. Then o({1) L{1}) is just multi-
plication by 2 and we have

Z/2 = even,

L.(CL "] 1):{0 * odd.

The existence of the exact sequence follows.



156 Milgram and Ranicki, L-Theory of Laurent extensions

It remains to show that it does not split. To this end consider the inclusion
Lo(C (1), 4) — Lo(F),

which is obtained by taking real forms. A basis for C(t) over & is given by 1, i, so that
the image of the Hermitian form (1) is (1) L <1). The proof is complete. ]

Remark 5.8. We shall see in the next section that & is an example of a genus 0
function field. Indeed, the original motivation for presenting the exact sequence for
Laurent extensions in the generality used here was to apply it to study these Witt
groups. T. Y. Lam pointed out to one of us somewhat later that the field # above was
a genus 0 function field, and asked us to determine its Stufe. [

Remark 5.9. The quotient field
(5. 10) Fus1 =R (xy, ..., %) () [Z1/(Y* +22+). x7 +1)
also satisfies %, ,(i)= C(xy, ..., X, t) and %, is the fixed field of
AiAG)=—i, Ax)=x;, A@t)=—(1+Y xF)t™ "

Hence, it appears possible to apply the techniques above to obtain information about
Ly (Fniv)-
For example, when n=1 it is not hard to show that we have the diagram

(5. 11)
@ ()2

reR

Lo(C (1), 4) —— L&) ——  L(CX®)

D Lo(C () [1]/2, 4) @ Lo(#/2) @D Lo(C (%) [t1/2).

PcFy PcF 2

Thus the Stufe is <4 in this case. [

§ 6. Genus 0 functions fields

We assume from now on that [ is a field and char(F)+2. For non-zero 4, pe [F
let

</;>= FL A =2, )= ij=—]i}

be a quaternion algebra over F, and let

(6.1) F<A, py=F(x) [y)(y* — u(x*—42)
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be the associated transcendence degree 1 extension field of F. [F {4, u)> is a degree 2
extension of the rational function field /F(x). It is a standard result of algebraic number

theory (Hasse [7], p. 480) that a genus O function field over [F is isomorphic to one of
the type [F {4, p).

Note that y is integral over the polynomial subring F[x]<F(x) so that
F[x](y)=F[x, yI/(y* — u(x* —44)) injects into F {4, u).

Lemma 6. 2. [F[x] (y)cF {4, uy is the integral closure of [F[x] in {4, u.
Consequently it is a Dedekind domain.

(The proof is the usual one: first check traces, and then norms.)
The quotient fields F[x] (y)/? runs over the prime ideals of [F[x](y) have a
special relationship with the quaternion algebra originally used to define [F {4, u).

Specifically, we have

Lemma 6.3. Let & be a prime of [F[x] (y), then
A
(FIx1(y)/2) ®F< /F> =M, (F[x] (y)/2).

Proof. (xj+2ij)*=ux*—4iu=y* in [F[x] (y)/?, so

(xj+2ij—y)(xj+2ij+y)=0

in F[x] (y)/? ®,F</;> and the result follows. [J

It is not hard to see that the converse is also true, namely, if /€ is a finite
. U . . .
extension of F and /K ®,F<F>= M, (<), then [ is the quotient of F[x] (y) by a prime

ideal.

Clearly, every genus 0 function field is a degree two extension of a pure trans-
cendental extension F(x). But it is also true that either {4, u) is itself pure trans-

cendental, or a degree two extension of it is so. Indeed, if we set =/ ([//_L), then we
have

Lemma 6. 4. [¢[x] (y) =0 [t, t] where 2)/ut=y+}/n - x.
Proof. Set 2]/;-z=(y—1//7-x), then
dp-t-z=y*—pux*=—4ip

and t™! € i [x] (y). On the other hand, x and y are obtained in terms of t, z, over K,
so the lemma follows. []
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From this it follows that the field /AC(t) is a degree 2 extension of [F(x)(y)
provided that p is a non-square in F. Indeed, if an automorphism

6. 5) I (t) — IS (2)

is defined by the identity on [ and

e)=At7, ’L')'(l/;_t) = —l/;t,

then the assignations x — t+At™1, y — W(t — At™1) define an isomorphism of [F {/, u)>
to the fixed field AC(t)** of t*. In the terminology of §4 the ring A [t, t~'] with the
involution t* is denoted by K [t, t™'],, and

L (K[t t '], =L, (kK[ t7'],).

As in § 5 we only consider the I*-groups, and so omit the superscript h. Since the
characteristic of the ground field F is =2 there is no difference between the quadratic
L-groups L, and the symmetric L-groups L*.

We summarize the discussion so far with the diagram of fields and rings of
integers

FIx] F(x)
(6. 6) F FIx](y) F(x)(y)

K —— K[t t'] —— K@)
where the labels on the vertical arrows denote the Galois automorphisms.

Finally, we need

Lemma 6.7. If A is not a norm from [ the ring [F[x](y) is a principal ideal
domain.

Proof. Let 2 be a prime ideal of F[x] (y). Then K[t t 1P <[t t™'] either
remains prime or splits as a product 27(2) since the extension is unramified. If it splits
as a product, since £ is principal, we can write 2=(p(t)), and thus

K[t 7112 =(p(t) t(p (),

so p(t) t(p(t)) € F[x] () generates #. If it remains prime we have K [t, t ]2 = (h(t)),
and t(h(t))=uh(t) for some unit u € /K [t, ¢t~ *]. The units in K[t t™'] are all of the
form kt' with k + 0 in /€. Thus, applying t again we obtain

h(t)= ke (k) 2 h(t),
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so kt(k)A'=1, and i must be even since 4 is not a norm. Let h (t)=t"?h(t), then
7(h,(t))=kA"*h(t), and, since the norm of kA"? is 1, we must have ki’ =%)Q for some

0 € €. If we set h,(t)=1(0) hy(t) then h,(¢) is invariant under t and must generate 2.
The proof is complete. [

Corollary 6. 8. If 1€ [F is not a norm from [K then the map

Lo(F[x]1(y) — Lo(F (4, 1)
is an injection.
Proof. If O€ Ly(F[x](y) is in the kernel, then 0 is represented by a form
(F[x](y), A) which becomes hyperbolic over [F<{A, u). In particular there is a
projective kernel in (F[x] (y), A). But since 4 € F, and projectives are free, it follows

that the form is already hyperbolic over F[x] (y). [

Remark. This is a special case of Corollary 3.3, p. 93 of [12]. [

§ 7. The Witt groups of genus 0 function fields

Our study of the Witt groups W([F (A, u))=Lo(F <A, p)) for the fields F <4, u>
discussed in § 6 is based on the following diagram

0 0 0
(7.1) Lot 71,7 ——  Lo(FIx1(») ——  Lo(k[t, ™))

| |

00— Lo (K (1), 7) —  Lo(Fhwy) — Lo (€ (2))

| l |

- -1
0 @LO(K[; 1],11) , @L0<IF[>;I(y)> R @M(K[t’; ])

Pel PeV 2eW

| | |

Ly(K[t, 71,7 —— Ly(FIx10) — 0

| |

0 0
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where
1. J is the set of primes 2 < [F[x] (y) which do not split in /[t ¢t~ ],
2.V is the set of primes 2 < [F[x] (y),
3. W is the set of primes 2< [ [t, t~1],
4. the columns are the localization exact sequences,

5. the two middle rows are exact, since the upper one is just the Jacobson exact
sequence, and the lower one is a sum of Jacobson sequences.

Remark 7.2. The top row in (7.1) is also exact and L, (/S [t, t 1], t*) embeds in
Lo(F[x](y)) since all the groups include into the corresponding L-groups for the
quotient fields.

The fact that the bottom row is exact is more difficult. This was originally shown
in Hambleton, Taylor and Williams [6] and Ranicki [20]. The reader familiar with
L-theory can skip much of what follows in § 7, but the proof given here is essentially self
contained.

From our main results on the L-groups of Laurent polynomial extensions we
have, following the notation established in (6. 6),

Lemma 7.3. L (K[t t™ '], ") =L,(f [t t 1], 7%
=Ker (K1) L —<{AD): L, (K, 1) — L, (I, 1)).
Likewise
Lo(BS [, t71], ©%) = Lo (£, 7)/im (<1> L —<AD).

Example 7.4. Suppose i=—1, F=@Q, IK=Q (i), then Ly(iK,1)=Z® P Z/2,
p=3(4)
and the ring structure gives that the action of (—1) is multiplication by —1 on the Z

and the identity on the Z/2’s. Consequently,

Ker(K1y L —<(—1))is @ Z/2, coker=Z2®( P Z/2).

r=34) p=3(4)

Lemma 7.5. Ly(K[t, t7'])= Lo (/) @ Lo(I) (t =t). Moreover t* (thought of now
as a Galois automorphism) acts on Lo (I [t, t™']) in terms of this representation by the
formula

t*(a, b) = (z(a), <A) - ©(b)).

Proof. This is direct from Milnor’s theorem (5.5) and the localization exact
sequence. (See Ranicki [17], §5, for another approach). The generators are from
Lo(K) o Lo(K [t, t1]) induced by inclusion, for the first summand, and elements of the
form <0t) for the second, where 0 € [. In particular {6> — {(ft) gives the inclusion for
the second summand. Finally, the effect of t* on {0t) is (t(0)At™*) ~ {(z(0)At) and the
lemma follows. []
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Corollary 7. 6. Lo( [t, t 1])" = Lo (F)" @ Lo (k)™

Lemma 7.7. Assume A is not a norm from [€. Let 0 € Ly(I[t, t"1]/2) be the
image of we Lo(F [x](y)/2), then there is an element o € Ly([F {4, i) with

p)=p+z where zeim(Ly(K[t, ('], ).

Proof. We have seen that #=(p) is principal, and suppose that 0= {f> with
fe F[x](»/(p) is a generator in this image. Then we can represent a lifting of () as
{q(x, y)p) (at least up to lower degree) since g(x, y) can always be choosen to represent
f with its degree less than that of p. This reduces us to the consideration of the situation
at primes of strictly smaller degree than p.

To complete the induction we need to consider also the case where # splits in
IS [t, t71]. For such a prime let 2, t(2) represent the primes over #. Then

KLt 1)/ 2= 0 [t '] /2(2) = F[x] (3)/2,
and

Lo(F[x] (9)/?) — Lo(b§ [, t711/2) @ Lo (S [t, t~'1/2(2))

is the diagonal map. But, if <0) € Lo (/S [t, t"']/2) is represented by ) <0;> € Lo(k (1)),
then (0) € Lo(K[t, t™*]/t(2)) is represented by Y (t0;>. On the other hand, consider
the term <0) L {(t0) € Lo(/ (t)). By an obvious change of variables we have

(7. 8) 0y L0y =<0 + <0y LLOT0(0 +0))
and hence comes from L (F <A, u)). The lemma follows.  []

Corollary 7.9. Let fe [F, then the class {f) L{Af) € Lo(k)*" is in the image
Jrom Lo(F <4, 1))

Proof. From 7.8, we have that
Sty LSy~ fx) LLASfx)

in Ly (/K (t)) and this is in the asserted group. [

More generally we may use the Scharlau transfer to obtain precise information
about Lo (F [x] (). By Theorem 3.3 of Lam [10], p. 201, there is an exact sequence

(7. 10) Lo(F <A, p) —— Lo( (1)) —=— Lo(F (4, 1)

where tr, is the Scharlau transfer associated with the (A, py-linear homomorphism

$: 0 (1) — F <, $la+b)/m)=b.
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Note that ¢ restricts to ¢|: i — [F, so we have

Lemma 7. 11. tr, restricts to give a homomorphism
Lo(B§ 1, t71]) == Lo(F [x] (5),

the following diagram commutes,

Lo (k) o Lo (F)

1 1

Lo(f[t, t7']) Lo(F[x] ()
and tr, (CkY) =tr, (f+g /1) =<g> (1> L(—N(K)>), while
tr, (Ckt))=<xg [/ +yf> (K1) L= AN (k))
after including Lo(F [x] () in Lo(F {4, u)).
Proof. For the form (k) we have

d(A+B)/u) (f+g)/1) (C+D)/u)=(AD+BC)f+(AC+BDp)g

Alz(g f).
f neg

Since Det 4, = — N (k), the first formula follows. To obtain the second formula, note

which associates to the matrix

from 6. 4 that t=% (x -}-Kulz y), so tr, (Ckt)) is given by the matrix of

%[(ACWBD) (’;y +xg> +(AD +BC) (xf+ yg)]

which is
f—y+xg xf+yg
I
2
xf+yg fy+uxg
Also

Det 4, = (fz—_uﬁﬁ> (? — px?) = — AN (k)

is a unit in F[x] (y), and 7. 11 follows. []
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Remark 7. 12.  The image of Ly(F) in Ly(F [x] (y)) in 7. 11 is exactly the quotient

Lo(F){Lo(F)- (K> L) (K1) L = (M)}

This is a direct consequence of the commutativity of the diagram obtained by
amalgamating the exact sequence for a Laurent extension with the Jacobson sequence

Lo,y —BX2 L) ——— 0
Y Y
(7.13) y
Lok, 7y  —2X2 ,  LoF) Lo(kK)

Lo(fc[t, t71], ) ———— Lo(F[x](y) Lo(ft, t71])

where the map y is multiplication by (1> L —{A).
Let V< Ly(f<[t, t™']) be the kernel of tr, . Putting all this together we have

Theorem 7. 14. There is an exact sequence
0— Lo(B[t, t71], ©) = Lo(F[x]1 () = V — Ly (B [, t '], t*) — Ly (F [x] () — 0.
(This is basically the snake lemma, which is applicable because of 7.7.) [J

7. 14 provides, in general, an effective means of studying the Witt group of a genus
0 function field. The group L;(F[x] (y)) plays the role of a reciprocity law, measuring
the extent to which the “second boundary map” is surjective.

§ 8. The case [F acted on trivially by t

Consider the case of the ring A=/F[t,t '] where [F is a field of cl_laracteristic
different from 2, with the involution 7:a— a given by a=a for ae [F, t=t"'. The
L-groups of A4 are given by

Lo(F) *=0, 1(4),
L(4)= {o «=2,3(4)

by our main theorem 4.1 and L, (F)=0 for x=1,2,3(4). We wish to use this result to
study the (Hermitian) Witt group of the function field [F(t) under the associated
involution 7: F (t)— F(1).
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Set x=t+t"'so F(t)"=F(x), and (t —t™!)* = x> — 4. It follows that we can write

Ft)=F ) ()/x*—4)=FX) (/(x—-2) (x +2)).

[F[t,t™'] is Dedekind, so it is the integral closure of F[x] in F(t), and the extension
ramifies at exactly the two primes (x —1), (x +1).

We apply the L-theory localization sequences of Carlsson and Mllgram [3] and
Ranicki [17], § 3, to obtain the two exact sequences

8. 1) 0 —— Ly(F)— Lo(F(2), 7) L, G—_) LS (F[t, t71]/2, 1) — 0,
PeS
and
8.2 0— Ly(F (), 1) 2> @ LY (F[t,t7'1/2,7) Lo(F) 0.
PeS

Here .# is the set of primes in [F[x] which either ramify or remain prime in F[t, t™1].
Away from the ramified primes we have that LT (F[t, t71]/2, 1) = LS (F[t, t']/2, 1) is
the ordinary L-theory of the quotient under the induced involution. Here, the
isomorphism from L to L' is given by <0) — ({t —t~'} 0) on generators.

Likewise, for the Hermitian Witt groups of the function fields we have:

Lemma 8. 3. Let 0 € [F(x) then

(1) the forms <0) generate L([F(t), 1),

(2) Lo(F(t), ©)= L,([F(t), 1), the isomorphism being given explicitly by
Oy = Lt—=1710>,

Lo(F) *=2(4),

0 «=0, 1,3(4),

LY(F Lt /e +1), 1),

and similarly for

(3) LY(F[t, ™'/t —1),7)= {

@ 0, (KE—tH0d)=<{t—=t71}> 0,(<03) +<O(N)>¢-1)+ <O(—= DD+

Proof. 8.3.(1) and 8. 3.(2) are well known. 8. 3.(3) is true because, while (¢t +-1) are
both prime, and both invariant — as ideals — under 7, they do not have invariant
generators. In fact t(t+1)=F ¢ !(t+1). In tracing the definition of the torsion form,
the coefficient F¢~! evaluated in the quotient determines the type of the corresponding
L-group. In these cases Ft !=—1 at both primes, so parities reverse, and 8.3.(3)
follows.

To prove 8.3.(4) it suffices to evaluate 0,({t—t"'>). At the prime t —1 we write
this as —(t+1)/(t—1), after dividing by (¢—1) (¢"*—1). Similarly, at t+1 it can be
written (¢ —1)/(¢t + 1), and the result follows directly. [
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Corollary 8. 4. The Hermitian Witt group

W(F (1), 1)~ @ W(F[t 11/, 1) D W(F).

PeS

Here, # is the set of non-ramified, non-split primes in [F [x]. Moreover, the isomorphism
above is natural.

(The point is that the map in (8. 1) Ly(F) — Ly (F (t), 7) is split by the composite
0y t=t71) 1 Lo(F(t), 1) = Lo(F)e—1) ® Lo(Fe+1)
using 8. 3.(4). The subscripts are labels, not localizations. Also, W =L,.)

Example 8.5. Let F=[, the field of real numbers. The primes of R[x] are
(x—7r) or (x*—ax +b) with a> —4b<0. All primes of the second type have R[x]/?=C,
the complex numbers, so they split in /R [t, t™!]. But primes of the first type split only if
r? <4. Hence the non-split primes are the (x —r) with |r| <2, where the two endpoints
(x +2) are both ramified. It follows that using the reciprocity law above we have

Corollary 8. 6. The Hermitian Witt group of [R[t,t™'] is naturally isomorphic

to (—BZ.
st

Proof. From 8.3, 8.4 we obtain Ly(R(t), )= @ Z, with an identification of
[~2,2]
the two Z’s at the endpoints. But that is the result. []

References

[1] H. Bass, Algebraic K-Theory, New York 1968.

[2] H. Bass, A. Heller and R. Swan, The Whitehead group of a polynomial extension, Publ. Math. . H.E.S.
22 (1964), 61—380.

[3] G. Carlsson, R. J. Milgram, Some exact sequences in the theory of hermitian forms, J. Pure and Appl.
Alg. 18 (1988), 233—252.

[4] F. T. Farrell, W. C. Hsiang, Manifolds with =, = G x, T, Amer. J. Math. 95 (1973), 813-—845.

[5] F. T. Farrell, L. R. Taylor and J. B. Wagoner, The Whitehead theorem in the proper category, Compositio
Math. 27 (1973), 1—23.

[6] I. Hambleton, L. R. Taylor and B. Williams, An introduction to maps between surgery obstruction groups,
Proc. 1982 Aarhus Conference on Algebraic Topology, Lect. Notes in Math. 1051 (1984), 49-—127.

[7] H. Hasse, Number Theory, Berlin-Heidelberg-New York 1980.

[8] G. Higman, The units of group rings, Proc. London Math. Soc. (2) 46 (1940), 231—248.

[9] M. Knebusch, On algebraic curves over real closed fields II, Math. Z. 151 (1976), 189—205.

[10] T. Y. Lam, The Algebraic Theory of Quadratic Forms, New York 1973.

[11] D. W. Lewis, New improved exact sequences of Witt groups, J. of Algebra 74 (1982), 206—210.

[12] J. Milnor, D. Husemoller, Symmetric Bilinear Forms, Berlin-Heidelberg-New York 1973.

[13] S. P. Novikov, The algebraic construction and properties of hermitian analogues of K-theory for rings
with involution, from the point of view of the hamiltonian formalism. Some applications to differential
topology and the theory of characteristic classes, Izv. Akad. Nauk SSSR, ser. mat. 34 (1970), 253—288,
478—500.

[14] R. Parimala, Witt groups of conics, elliptic and hyperelliptic curves, J. Number Theory 28 (1988), 69—93.

[15] A. A. Ranicki, Algebraic L-theory II, Laurent extensions, Proc. London Math. Soc. (3) 27 (1973),
126—158.

[16] A. A. Ranicki, The algebraic theory of surgery I, Foundations, Proc. London Math. Soc. (3) 40 (1980),
87—192.

81 Journal fiir Mathematik. Band 406



166 Milgram and Ranicki, L-Theory of Laurent extensions

[17] A. A. Ranicki, Exact sequences in the algebraic theory of surgery, Mathematical Notes 26, Princeton
1981.

[18] A. A. Ranicki, The algebraic theory of finiteness obstruction, Math. Scand. 57 (1985), 105—126.

[19] A. A. Ranicki, Algebraic and geometric splittings of the K- and L-groups of polynomial extensions, Proc.
Symp. Transformation Groups, Poznan 1985, Lect. Notes in Math. 1217 (1986), 321—364.

[20] A. A. Ranicki, The L-theory of twisted quadratic extensions, Can. J. Math. XXXIX (1987), 345—364.

[21] A. A. Ranicki, Lower K- and L-theory, to appear.

[22] J. Shaneson, Wall’s surgery obstruction groups for G x Z, Annals of Math. 90 (1969), 296—334.

[23] F. Waldhausen, The Whitehead group of a generalized free product, mimeo (1969).

[24] F. Waldhausen, Algebraic K-theory of generalized free products, Annals of Math. 108 (1978), 135—-256.

[25] C. T. C. Wall, Surgery on compact manifolds, London-New York 1970.

[26] E. Witt, Zerlegung reeller algebraischer Funktionen in Quadrate, SchiefkGrper iiber reellem Funktionen-
korper, J. reine angew. Math. 171 (1934), 4—11.

Department of Mathematics, Stanford University, Stanford, Calif. 94305, U.S.A.
Department of Mathematics, Edinburgh University, Edinburgh EH9 3JZ, Scotland, UK

Eingegangen 22. August 1988, in revidierter Fassung 24. Juni 1989



J. reine angew. Math. 406 (1990), 167—178 Journal fiir die reine und
angewandte Mathematik

© Walter de Gruyter
Berlin - New York 1990

Binary forms and unramified A4,-extensions
of quadratic fields

By Jin Nakagawa*) at Joetsu

§ 0. Introduction

Let n be a natural number with n=3 and let V be the vector space of binary
forms of degree n with coefficients in [R:

V={/te 0= 3 ax Y @) e @,

j=

We denote by V, the set of integral binary forms of degree n. Further, we denote by V;™
the set of integral irreducible binary forms of degree n. If r,, r, are non-negative integers
with r; +2r, =n, we denote by V, , the subset of V' —{0} of all binary forms which are
decomposed into r, linear forms and r, positive definite quadratic forms over [R. Let
I'=GL,(Z). The action of I' on V is defined by

() (<. 9) =S @x+cy, bx-+dy) (v=(‘c’ Z)er, e y)eV).

We say that y - f is I'-equivalent to f and write y - f ~ f. We note that the subset V, , of

V is stable under the action of I'. For f eV, we denote by D(f) the discriminant of f.
We note that D(y- f)=D(f) for any ye I', fe V. For a given integer D,, we denote by
h, .., (Dy) the number of I'-equivalence classes of integral irreducible binary forms
feV, with D(f)=D,. By the finiteness theorem of Birch and Merriman [1],

r1,7y

h,.... (Do) is finite. For X >0, put
Sn.rz(X) = Z hrl,rz(DO)'
Dol =X

*) This research was partially supported by Grant-in-Aid for Scientific Research (No. 01740026),
Ministry of Education, Science and Culture of Japan.
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In 1951, Davenport obtained asymptotic formulae for S; ,(X) and S, {(X) (see [2], [3]).
In our previous paper [7], we have obtained a lower estimate of S, ((X) for n=4. There
we used a mapping of V to the space of quadratic forms of n—1 variables, which is an
analogue of “Hessian” of binary cubic forms. In this paper, we shall obtain a lower
estimate of S, , (X) for r,>0. Our method is a weak generalization of the reduction
theory of Mathew and Berwick for binary cubic forms with negative discriminants (see

(31, [6]).

Applying our estimate of S, , (X), we shall study unramified Galois extensions of
quadratic fields. Let K be an algebraic number field. For any finite group G, we say that
L/K is a G-extension if L/K is a Galois extension with Galois group G. We say that an
algebraic extension L/K is strictly (resp. weakly) unramified if L/K is unramified at any
primes (resp. at any finite primes). In 1970, Y. Yamamoto and K. Uchida proved inde-
pendently that there exist infinitely many real (resp. imaginary) quadratic fields which
have weakly unramified A4,-extensions (see [8], [9]). In [10], K. Yamamura proved the
corresponding theorem for strictly unramified As-extensions. Their arguments were
based on the fact that the discriminants of certain special monic polynomials of degree n
have an extremely simple form. On the contrary, we shall study the generic binary forms
of degree n and we shall prove that there exist infinitely many algebraic number fields of
degree n over @ with r; real primes and r, imaginary primes whose normal closures
over @@ are weakly unramified A,-extensions over their quadratic subfields.

Finally, we shall study the volume of a “fundamental domain” in the case r, = 1.

Statement of the results

Theorem 1. Let n,r,, r, be integers with n=4, r, 20, r, =0, r,+2r,=n. Put

n+1 . .
K =T—B. Then there exists a positive constant C, , such that
n —
li;lling""S,l,,z(X) zC, .,

Theorem 2. Let n,r,,r, be as in Theorem 1. Then there exist infinitely many
algebraic number fields of degree n with ry real primes and r, imaginary primes whose
normal closures over @ are weakly unramified A,-extensions over their quadratic sub-

fields.

Theorem 3. Let n=4, ry=n—2, r,=1. Then there exists an open cone ¥ of
V, 5.1 with the following properties:

(i) If feV,_, has no linear factors over @, then there exists an element y € I
such that y- fe . Here ¥ is the closure of & inV;

(i) yFnNnF=0 forany yel —{+1};

(iii) The Euclidean volume of #,={fe F; |D(f)|S1} (cV=R"*") is finite.
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§ 1. Proof of Theorem 1
Let n, ry, r, be integers with n=4, r; =0, r, =0, r;+2r,=n. In our previous
paper, we have proved Theorem 1 for r, =0 (see [7], Theorem 1). So we assume r, >0.

Let H< C be the upper half plane and put Q={ze H; |z|21, 0<Rez<1/2}. We
denote by Q' and Q° the complex conjugate of Q and the interior of , respectively.
The action of I' on C— R is defined by

y-z=(az+b)/(cz+d) <y=<j Z)EF, zeC—lR’).

Lemmal.l. (i) C-R=I-QuTI- Q.
(i) (y-Quy-Q)nQ°=0 forany ye I —{+1}.

-1 0
Proof. Put y0=< 0 1) and I'* =SL,(Z). Then we have '=I'" uT'*y, and

Quy, - Q={zeH;|z|=1, —1/2<Rez=1/2}. The lemma follows from the fact that
QU 7y, Q is a fundamental domain for I'* in H. q.e.d.

Put

g+={(a05 Gla“"erl, a1a~-~sar2)eer+GCr2;
a4,>0, 0, <...<0,, 0, € Q° (1Zk=ry), |yl <... <o, [}

Further, put &~ ={(ao, 0;, %) € R"*' X C"; (—ay, 0;, ) e 67 }. Let E=ET LV E™ or &
according as n is even or odd. We define a mapping @ of & to V, ,, by

q)(aO, 01> (XN} erly Ogyeees ar2)= ao H (X— Bjy) ];[ (x”aky) (X—'a—ky)
J
It is obvious that & is a bijective C*-mapping of & to #(&) and #(&) is an open

cone in V.

Lemma 1.2. If f}, f> € ®(&) and f, +f,, then f; »Ffz.

Proof. Let f,, f, € ®(&). Suppose f,=7-f; for some yeI. Let a be a complex
root of f,(x,1) with Ima>0. Then f=""'-a is a complex root of f,(x,1). Since
Ji, LeED(E), aeQ° and Be QU Q. Hence y must be +1 by Lemma 1.1 (ii). If n is
even, then the action of —1 on V is trivial. If n is odd, then y must be 1, since the
coefficients of x" in f; and f, are both positive. Hence we have f,=f;. q.e.d.

Put ag=1, 0 =j (1<j<r), ¢ =(1/4)+k]/—1 (1=k<r,). Then
fo=®(ad, 07, of) € B(&).

Since @(&) is open, we can take a positive number r such that the compact ball %, with
center at f, and radius r is contained in @(&). Put

Fo=1{tgeV; ge B, teR, t>0}.

82 Journal fiir Mathematik. Band 406



170 Nakagawa, Binary forms and unramified A,-extensions of quadratic fields

Then %, is a cone and %, < #(£). For X >0, put
Fox=1{f€Fo; ID(f) =X}
By Lemma 1. 2, we have
Srir,(X)Z # (Fo x O VZ).
Since m=Min {|D(g)|; g € %,} >0, we have
22 <m D () " 2 =m  ID(f) SmX for f=tge Fy .

Hence %, x is bounded. Since %, y=XY2""Y%, |, we have vol(% x)=X"vol(% ,),
1
where K=-2?T+-—l—). By a well-known fact on lattice points and [7], Proposition 4.1,
we have
lim X "4 (F x 0 V3") = vol(%,1)-

X—-o©

This completes the proof of Theorem 1.

§ 2. Lattice points with congruence conditions

In this section, we study the number of lattice points with congruence conditions.
Our argument is a generalization of that in Davenport and Heilbronn [4], § 5.

Let 2 <[R" be a bounded open subset. We denote by 02 the boundary of 2.
Assume that the boundary 09 is (N —1)-Lipschitz parametrizable, i.e. there are finitely
many mappings of [0, 1]V~ to R¥ satisfying Lipschitz’s condition such that the images
cover 09. Put Lo=2Z"</[R". Let m be a natural number and let a e L, be a lattice
point. Put L={ml+ae Ly; l € Ly}. For a positive real number ¢, put

t2={txe R"; x € 2}.
We use the order notation O of Landau. The following lemma is a modified version of
Lang [5], Chap. 6, Theorem 2, and is proved by the same argument.

Lemma 2.1. #(t2n L)=vol(2) (t/m)* +O((t/m)""*) as t — oo, where the con-
stant in O depends only on N and Lipschitz’s constants of the mappings for 09.

Let 2, L, and N be as above. For a prime number p, we denote by [, the finite
field of p elements. Suppose that for each prime number p, we are given a subset
W, < F‘f’ satisfying the following conditions (L.1) and (L.2):

(L.1) #W,<Cp¥ 170,
L2  t2aW,=0 if t<p®
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where W, ={le L,; Imodp e W,} and C, d, ¢’ are positive constants with 6 +’'>1. Put
U,=F)—-W,, Uy={leLy; Imodpe U,}. Further we put U= () U, Then we have

p:prime

Lemma 2.2. lim: V4(t2nU)=vol(2) [] (#U,)p "

= p:prime

Proof. First we note that the infinite product converges by (L.1). For a fixed
Y >0, we put m= ]_[ p. By Lemma 2. 1, we have

p<Y

#12(() Uy} = (vol (@) (/m™ +O((t/m )} { [] #U,}.

p<Y p<Y

Hence

limt {2 () Uy} =vol(2) [] (#¥U,)p".

t— p<Y p<Y

Since U< () U,, we have

p<Y

limsupt N #(t2nU)<vol(2) [] (#U,)p".

t—>© p<Y

As this is true for all Y >0, we have

limsupt ™V #(2nU)<vol(2) [ (#U,)p™".

t— p
To obtain a lower bound for ¢t ™ # (2 n U), we observe that

N U,cUu( W)

p<Y p2Y

Hence

#{D((\ U S#02nU)+ Y #(D2nW,).

p<Y r2Y

If p? >1t, then t2 " W, =0 by (L.2). By Lemma 2. 1 and (L.1), we have

tN (D W) {vol(2)p N+ Cyt T p TN W,
SC-vol(@)p ' P+ CCp 7Y <Cop7? i PPt

where ¢ =Min (1448, +6')>1 and C,, C, are positive constants which do not depend
on p. Hence we have

vol(2) [ (#U,) p " <liminft ¥ #(2nU)+C, ), p~°
t—>©

p<Y p2Y
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Letting Y — oo, we have

vol(2) [] (#U,)p~™ <liminft % (t2 N U).
P t—©

This completes the proof of the lemma. q.e.d.

§ 3. Proof of Theorem 2

Let n, r;, r, be integers with n=4, r; =20, r,20, r;+2r,=n. In our previous
paper, we have proved Theorem 2 for r, =0 (see [7], Theorem 4). So we assume r, >0.
Let

fl, y)=apx"+a, x"'y+ .. +a,y" (a€2)

be an integral irreducible binary form of degree n. Let 6 be a root of the equation
f(x,1)=0 and put K,=Q(0). Hence K, is an algebraic number field of degree n. For
each odd prime number p, let V, denote the set of all binary forms f(x, y) of degree n
with coefficients in F,. We denote by U, the set of all binary forms f e V, satisfying the
following condition (U):

(U) f(x, y) has at most one multiple factor, which is of multiplicity two.

Further, for p=2, let U, be the set of all binary forms f(x, y) of degree n with
coefficients in [, such that D(f)+0. Put W,=V,—U,. By [7], Proposition 2. 3,

n—3¢,2 2 H
p T (pt =17 if p+2,
3-2" if p=2.
Let U,={feV,; fmodpeU,}, Wy=V,—U,. Further we put U= () U, If

p:prime
f €W, then p|D(f), and hence |D(f)| = p. By [7], Proposition 2. 2, if f(x, y)e Z[x, y] is
an integral irreducible binary form and f(x, y) € U, then the normal closure of K is a
weakly unramified A,-extension of the quadratic field @ (]/D(f)). Let %, % x and k be
as in the proof of Theorem 1. Since #W,<2p" ! and % xnW,=0 if X<p, the
conditions (L.1) and (L.2) in §2 are satisfied with @2=%,,, d=1, 6'=1/2(n—1).
Applying Lemma 2. 2, we have

lim X 4 (F xnUnVy")=vol(%,) [ p " '#U,

X © p:prime

=247"* vol (% ,)>0.

In particular, there exist infinitely many integral irreducible binary forms f(x, y) such
that K, has just r, imaginary primes and the normal closure of K, is a weakly un-
ramified A,-extension of the quadratic field @(}/D(f)). Suppose that K, ..., K, are
algebraic number fields of degree n with just r, imaginary primes whose normal closures
are unramified A4,-extensions over their quadratic subfields. To prove Theorem 2, it
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suffices to show that there exists an algebraic number field K, ; which is different from
K; (1<i=<r) and has the same property. Let D; be the discriminant of K; and put

U={feU;(D(f), D)=1for (1=i<r)}.

Replacing U by U, we see that %, n U NV is an infinite set. Take a binary form
feFnUnVy and put K,,,=K,. Then K,,, has the desired property. This
completes the proof of Theorem 2.

§ 4. Proof of Theorem 3

Let n=4, r,=n-—2, r,=1. We use the same notation as in § 1. Put # =&(&£). In
§1, we have seen that @ is a bijective C®-mapping of & to #. Take a binary form
feV,_,, which has no linear factors over @. Let « be the unique complex root of

. . . b
f(x, 1) with Ima>0. By Lemma 1.1 (i), there exists an element y=<‘z d)ef such

that "' - 0e QU Q. Put g=y-f and f=""'-a Then B, B are the complex roots of
g(x, 1). Let b, be the coefficient of x" in g. Since f has no linear factors over @,
bo=g(1,0)=f(a, b)=+0. If n is odd and b, <0, then we replace y by —y. Then we have
g € #. This proves the assertion (i). The assertion (ii) follows immediately from Lemma
1.1 (ii). We need some lemmas to show the assertion (iii).

Lemmad.1. Put f=) a;x"7y/=d(ay, 0;, ®), oc=§+n|/—14. Let
j=0

d(ag, ays ..., a,)

J=-
a(aOo 0]5 é, ’7)

be the Jacobian of the mapping ®. Then
1 =2laol ID(f)I".

Proof. We use induction on n. For n=2, the assertion is checked by a direct

n—1 X
computation. For n>2, write f=(x—0y)g, g= Y, b;x"~'7/y/ (0 =0,). Then we have
j=0

ao=by, aj=b;—b;_,0 (1gjsn-1), a,=—-b,_0.

Hence

1 0
-0 1 —b,
d(a,) -0 1 —by
a(b;, 0) :
-0 1 —=b,,
-0 —b,_,

=—g(0, 1.
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By induction assumption,

8(bos-..s by_y)

= +2b,[D(g)|"2.
3o, Oy, 0, 5, &) 22PolD(&)

Hence |J| =g (0, 1)| x 2|bol [D(g)|"* =2lao| ID(/)I'*.  q.e.d.
Lemma 4. 2. The following inequalities hold for any real numbers y,,...,y, with
yi>02=sj=n):

O T ¥ SIER

25isjgn k=i

@ 1 {1+<z n)}z [T+,

Proof. We note that a+b=ia' {b/(i—1)}“" " for any a>0, b>0, i>1. For
2<i<j<n-—2, we have

1A

J ) . . J (i—-1)/i
5 ykgi(i—n—“*“ﬁy:ﬁ( 5 yk)

k=i k=i+1

‘ J (i—1yi
.2)’.'”'( Z ,Vk> .

Hence we have

n ( on j (i-1)fi
I1 Z'yk;y.f‘“{ I % yk} :

j=i+1l k=i+1

Using the above estimate, we see that the left hand side of (i) is greater than or equal to

W%
o
N
=
o
N

2

(5]

~.

L
==
=

i M -
\—V-_./
l__._.J
I“_‘_l
wn
IA
A
~.
1A
B
=

1=
L;<_l

2 (v ¥ ya)"2

This proves the first inequality. Let i be an integer with 2<i<n—1. Assume

i i—1
—Yi+1/2— Z WEN<-—y/2— Z Yi-

k=2 k=2

If1<j<i-2, then
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I+(y + ... +)’j)2§ L+ (/24 yie + .. +J"j+1)2
g 1 +yj2+l,
since yy+ ... + ;< —=Yjs1— .. — Viog — 1i/2<0. If j=i—1, then
T+ (4 - ) 2L+ (/4 2 Z (1) (14 7).

If j=i, then 1+ (y; + ... + y)*2 1. If j=i+1, then

L+(y+ ... +yj)2.2_1+(1/4)y1+1—(1/4) (1 +yl+l)

Ifi+2<j<n, then

L+ + ... +J’j)2§1+(yz'+1/2+yu'+2+ +Yj)2
>1+yh

Hence the left hand side of (ii) is greater than or equal to (1/16) [] (1+y?). By a
j=2
similar argument, we see that the left hand side of (ii) is greater Jthan or equal to

n n—1
(1/4) [T A+yP)if yy = —y,/2 or yy < —y,/2— Z Yoo qed.

i=2

Let F " =@(8"), #,={fe Z; |D(f)| <1}. Further, put
cg; f\/l, éal+=lp_l(¢9’-’l+).

Then vol(#,) is equal to 2vol(#;*) or vol(#;") according as n is even or odd. Put

A=2n JI (6,-6) I__]l2 {0;—&)* +n?}.

15i<jsn—2

By Lemma 4.1, |D(f)|V>*=ag™'4, |J|=2a34 on &, where f=®(ao, 0;, E+n]/—1).
Hence we have

vol(#*)= [ day---da,
Fi
= [ ||dagd0; - d6,_,dEdn

&f

A/ -n)
=§[ | 2a3da0]Ad01--~d9,,_2dédn
0

n+1 [ 42040, ...d6, ,dEdn.

Here the integral in the right hand side is taken over the region

0,<0,<..<0,_,, 0SE<1/2, n>0, 4721,



176 Nakagawa, Binary forms and unramified A,-extensions of quadratic fields

We make the change of variables §,=¢ +nt; (1<i<n—2). Then we have

d0,---d6,_,dEdn=y""2dt, - dt,_,dEdy,

n—2
A=2¢"""02  TT  (—1) [] A+122).
i=1

1gi<j<n-2

Hence
2(n=3)(n—1)
VOl(F ) =————— [ 2d&dn x [ L7207 Vdt, - dt, _,,
n+1

where

n—2

L= J] (4=t J] A+2).
1<i<jsn—2 i=1

The first integral is taken over the region 0<¢<1/2, >0, 241?21 and the second
integral is taken over the region ¢, <t, < ... <t,_,.

Let I,, I, be the first and the second integral, respectively. Then we have

1/2
I=| (1—&¥)Y2d¢=nf6.

0

In the integral I,, we make the change of variables

Put A=(n—2)/(n—1), p=1/(n—1). Then we have

I, =j (LiLy) ™ dy; - dyy—s,

where

J n—2 i 2
Li- zy,fxn{u-(zyk) }
i i i=1 k=1

The integral is taken over the region —oo <y, <0, y;>0 (2<j<n—2). By Lemma 4. 2,
we have

n—2
L 227* [T vy~ 21 +y}).

k=2
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Since the geometric mean is bounded by the arithmetic mean, we have

n—2 i 2)4
s ()]

i=1

Hence we have

n—2
I, L2 (n—-2)! Z 1PN

i=1

where

L= [kljz y;‘(1+yf)“‘] [1+<;1 yk> iI— dy, - dy,_».

If we make the change of variables y,=s— )y, then we have
k=2

n—2
Il,i"_’j [H yi_l(1+yi2)—”] [1+s*] *dsdy, - dy,_,
i=2

o]

0 n—3
=|:j y“(1+y2)"‘dy] x | (1+s)*ds.

— 0

Since n=>4, we have 0<A<1, A+2u>1 and 21>1. Hence the last two integral
converge. This completes the proof of the finiteness of vol (#,).

It is an open problem to obtain an asymptotic formula for §, , (X). In view of
Theorem 3, it is probably true that

lim X 7°S,_, (X)=vol(#).

X—+

The difficulty comes from the fact that the region &, is not bounded (see the delicate
argument in Davenport [2], [3]).
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1. Introduction

Let Q be an open subset of the complex plane and let ¢ be a positive measure
on 2. We will usually assume that u is a Radon measure, i.e. that u(K)<oo for every
compact subset K of Q.

We define the (weighted) Bergman space A(Q, p)={fe #(Q):[|fI?du< 0}, i.e.
2

the space of all square integrable analytic functions on €, and let [ f(,= 112, (We
will, whenever convenient, drop Q and/or u from A(L2, p) and similar notations.) We will
always assume the following.

.y For any compact F = there is a constant C <oo such that,
if feA and zeF, |f@ISC|fl,.

This condition says that the point evaluations are continuous on A, and uniformly
so on compact subsets, i.e. that the inclusion A< #(Q) is continuous. It follows easily
that A is a closed subspace of L*(u), and thus a Hilbert space.

The condition (1.1) is clearly satisfied if p equals the restriction to € of the
Lebesgue measure, which we will denote by m. More generally, it holds e.g. if du/dm is
a continuous, strictly positive function on Q. It is also possible to have u vanishing on a
part of Q, as long as this “hole” does not extend to the boundary.

The Hilbert space 4 is equipped with a reproducing kernel depending on Q
and u, which we denote by K(z, w). We collect the definition and basic properties of K
in Section 2. Our main result is the following.

Theorem 1. 1. Suppose that one of the following holds.
() [lzI"du(z)< oo for every n. (Q arbitrary.)
2
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(ii) The complement of Q contains a continuum and p is finite.

(iii) The complement of Q contains a continuum and u is the Lebesgue measure
on Q.

Then, for every f € # (Q),

(1.2) [ T1f@—fW)I1* IK(z, w)I? du(2) du(W)=l [ 1@ dm(2).

Q0 T

(In particular, if one side of (1. 2) is infinite then so is the other.)

For convenience, we let in the sequel I(f, 2, p) and D(f, Q) denote the left and
right sides of (1. 2) respectively, and can thus state the result as

(1. 3) I(f, @, W=D(f, 2), for any f analytic in Q.

Note that the right side of (1.2) (and (1.3)) is the Dirichlet integral of f, and is
independent of u. Hence a surprising corollary is that the integral I(f, Q, u), although
superficially depending on u both directly and indirectly through K, in fact does not
depend on p at all (subject to our conditions).

We have tried to give the conditions on Q2 and u is a simple form which includes
most cases of interest, but they are not the best possible. They can be somewhat
extended using Lemma 2.1 below, and presumably they can be weakened further. On
the other hand, some condition is needed as the following example shows.

Example 1. 1. Suppose that the complement of Q is countable (e.g. Q= C) and
that u is the Lebesgue measure. If fe A(Q, u), then f cannot have any isolated sin-
gularities, as is seen by using Plancherel’s theorem on the Laurent series expansion.
Consequently, f has to be a square integrable entire function, whence f=0. Thus
A={0}, K(z,w)=0 and I(f,Q, u)=0 for any f. On the other hand, by the same
argument applied to f’, D(f, Q)= oo for any non-constant analytic f in Q.

The motivation for studying I(f, €, u) comes from the theory of Hankel operators
in general domains, which we now briefly describe. Let Q, u and 4 be as above, and let
P denote the orthogonal projection of L?(u) onto A. Given a measurable function f
in @, which we first, for simplicity, assume is bounded, we define the Hankel operator
with symbol f to be

(1. 4) Hig)=(—P)(Jg. geA.

In other words, H; = (I — P) M}, where Mj denotes the multiplication operator g — fg.
(This is known as the big Hankel operator, as opposed to the small Hankel operator
P(fg) which will not be studied here.) H, is obviously a bounded operator of A
into A*. It follows from (2. 6) below that it can be expressed as an integral operator

(1.5) Hy(8) @ =] (f(D)—f(W) Kz, w) g(w) du(w).
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We will here only consider analytic symbols f and it is then easy to show that the right
side of (1.5) vanishes when g e 4*; thus it defines the extension H P of H; to L?(p).
Consequently the Hilbert-Schmidt norm of the Hankel operator is given by

(1.6)  [|H/llus=1H Pllus=I(f(2) —f W) Kz W)l| L2y = I (f; 2, )"2.

We assumed above that the symbol was bounded, but the definition of the Hankel
operator may be extended to unbounded symbols by using (1. 5) as a definition. We can
now reformulate our results as follows.

Theorem 1.2. Let Q and p be as in Theorem 1.1. The Hankel operator H; with
analytic symbol f is a Hilbert-Schmidt operator if and only if f belongs to the Dirichlet
class; furthermore

1 1/2
(1.7 "Hf”HS=<; ,{ If @)? dm(2)> :

There is a third way to describe the results. Let again f be bounded and analytic,
and define the Toeplitz operator T,g=fg. (Thus T;=M,. This holds because we
assume f to be analytic; in general T, = PM,.) T; is a bounded operator on 4, and it is
easily seen that T*T, — T, T;* = H* H,. Hence

(1.8) Tr(TF T, — T, T#) = Te (H} Hp) = | Hy| s =1 (f; Q. ).

Thus Theorem 1.2 can be reformulated as a trace formula. For simplicity we consider
only bounded f.

Theorem 1.3. Let Q and u be as in Theorem 1.1. If f is a bounded analytic
function on Q, then

(1.9) Te(I7 Ty = T, 1) = 1 O d),

Theorem 1.3 in the case when u is the Lebesgue measure is due to Berger and
Shaw [BS1], Theorem 7, see also [BS2] and [HH, § 1]. They have also some partial
results for other measures.

The Hankel operator (1. 4) has been studied e.g. by Axler [Ax] (Lebesgue measure
in the unit disc) and Arazy, Fisher and Peetre [AFP1] (du=(1—|z|*)*dm in the unit
disc), [AFP2] (Lebesgue measure in finitely connected domains). The latter two papers
contain characterizations of the (analytic) symbols that give Hankel operators in the
Schatten class S,, including Theorem 1.2 (for these Q and p) as the special case p=2
(S, =HS).

Remark 1. 1. The Hardy space H? in the unit disc or upper half space is not
included in our formulation, but it can be regarded as a limiting case with Q = unit disc
or upper half space and u = one-dimensional Lebesgue measure on the boundary
(normalized on 7). K(z, w)=(1—zw)™! and (2mi(Ww—z))~", respectively.
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Theorem 1.1 holds formally also in these cases, and (1.2) reduces to the well-
known formulas

_ 2
(1. 10) 4i2§ | L/ |(1Z) S |dz| |dw|=l I 1f @)1 dm(2),
T T

—2
—zW| T |zi<1

® © _ 2
(1. 11) 4175 j VOSSO jeay =L § 1@ ame)

—0 — IX—J’P T 3:>0

Hankel (and Toeplitz) operators on Hardy spaces (the classical case) are studied in
many papers; S,-results, including Theorem 1.2 for this case, can be found e.g. in

[P], [R].

Note that if e.g. @ is bounded, Theorem 1.2 implies that there are plenty of
Hilbert-Schmidt Hankel operators. On the other hand, if Q= C, or, more generally, if
the complement of @Q is countable, D(f, Q)=oco for any non-constant analytic f (see
Example 1. 1), and there are no non-trivial Hilbert-Schmidt Hankel operators (provided
u satisfied our conditions).

Unfortunately, the proof of the theorems is much more complicated and less
attractive than the statements. It occupies the rest of the paper and is organized as
follows.

Section 2 contains a list of properties of the reproducing kernel, together with
some elementary invariance properties.

Section 3 exhibits some technical difficulties, and may partly explain why we have
not found any simpler proof.

Section 4 contains a formal argument, which may partly explain why the theorems
are true. A special case where p is the Lebesgue measure and Q and f have some
technical restrictions, is rigorously proved by this argument, and is the starting point of
the proof. (Another special case, viz. 2 a disc or an annulus and u a rotation invariant
measure, is proved by a completely different method (Taylor expansions and explicit
calculations for monomials) in [AFP1]. This could be used as the starting point for the
proof when Q is simply or doubly connected, but we have not been able to derive the
result for more complicated domains this way.)

Section 5 contains a proof of the second main step, viz. that the measure y may be
arbitrarily altered on a compact subset of Q without affecting I(f, Q, p).

Section 6 contains continuity results which enable us to pass from the Lebesgue
measure (treated in Section 4), through measures differing from the Lebesgue measure
on larger and larger compact sets, to any measure satisfying (1. 1). The details are,
however, a little complicated and we will e.g. also vary the domain in the process.

Section 7, finally, contains some open problems.
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2. Preliminaries

It is well-known that (1. 1) implies the existence of a reproducing kernel K(z, w),
defined on @2, with the following properties,

2n K (z, w) is continuous, analytic in z and anti-analytic in w,
2.2) K(w, z2)=K(z, w),
(2. 3) K, (z2)=K(z, w) € A for every w € 2, and

2.4 1K lla=K(w, w2,

2.5 f@=fK>=[f(w) KW, 2) du(z) =] f(w) K(z, w) du(w),

for every fe A and z € Q, and, more generally,

(2. 6) Pf(z)={ K(z, w) f(w) du(w), for fe L*(u) and z € Q.

In fact, (2.3) and (2. 5) serve as a definition of K. For proofs and further properties,
see e.g. Aronszajn [A] and Bergman [B].

Before proceeding further, we note that I(f, Q, u) possesses some simple invariance
properties.

If we perform a “change of gauge”, i.e. let ¢ be an analytic function different from
0 in Q and transform pu— || 2u, then the reproducing kernel transforms as

K — ¢(2) ¢(w) K(z, w), and I(f, Q, p) is invariant. (The simplest example is multipli-
cation by a constant.)

A “change of variable” by a conformal map y: Q, — Q, transforms u — poy and
K — K(p(z), w(w)). If the symbol f transforms as f — f oy, it follows that I(f, Q, p) is
invariant. Note that D(f, Q) also is invariant, which shows that the relation

I(f, 2, m=D(f Q)

is conformally invariant.

If p is the Lebesgue measure m in €, then the conformal map v transforms dm
into d(moy)=|yp'(z)]>*dm. A combination of the two invariances above show that
I(f, @, p) is conformally invariant.

We summarize these results as a lemma.

Lemma 2.1. (i) If du,=|¢|"*du, where ¢ € #(Q) with ¢(2)*0, z € Q, then

(i) If v is a conformal map of Q, onto Q, and p induces the measure poy
in Q,, then

I(f, @ pow)=I(foyp™", 2 p).
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(iii) If vy is a conformal map of Q, onto Q, then
I(f,Q,m=I(fop™", Q m).
Remark 2. 1. The invariances discussed here reflect the fact that
IK (z, w)|* du(z) dpu(w)

is an invariant measure on Q2. Its marginals equal (by (2.4)) the well-known invariant
measure K(z, z) du(z) on Q. (The measure is infinite unless dim 4 < o0.)

Remark 2. 2. It is sometimes possible to allow a change of gauge by a function ¢
which has zeroes, e.g. always when p=m. This will not be further discussed here.

Remark 2. 3. In some highly symmetric cases, the main result follows easily from
these invariances. Consider the unit disc with Lebesgue measure. Lemma 2.1 then
shows that I(f) is Mobius invariant. Since the only non-trivial Mobius invariant Hilbert
space is the Dirichlet space [AF], it follows that I(f)=cD(f) for some constant ¢ < oo
(independent of f); explicit calculations for e.g. f=z show that c=1.

We also note that we may always treat the components of Q2 separately.

Lemma 2. 2. Suppose that Q=) Q, disjoint, and let p, be the restriction of p
to Q,. Then,

2.7 (2 m=1(f Q1) [feH Q).
~ Proof. If K, is the reproducing kernel for u, and Q,, then

K,(z,w) z,weQ,,
K(z,w)=

zeQ,,weQ,,m+n [

3. Two unsuccessful attempts

Let us try to compute I(f) by expanding | f(z) — f (w)|? in the integral.

G.1) 12 w=[]1f@ Kz w)?du(z) duw)—[[ £(2) fw) IK(z w)I* du(z) du(w)
—[f fw) @) IK(z, w)I* du(z) duw) + [f 1S W)I* IK @z, w)I* dp(z) du(w)
=L, —L—I+1,.

Using (2. 4) we see thét

L=1=[1f@ K(zz) dp().
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Further, Iy = I, and, if we use the reproducing property (2. 5) on the inner integral,

I, =T{f f(2) K(z, w) K(w, 2) dpu(2) f(w) d(w)

=[ f(w) K(w,w) f(w) du(w)=1,.
Hence I, =1,=1;=1, and it looks as if we have proved that I(f)=0, which obviously
is impossible except in trivial cases. The solution to this paradox is that I, =00 (for

any f that does not vanish identically, provided Q and u are as in Theorem 1. 1), so the
right side of (3. 1) is of the type oo — oo (when I, and I; are well-defined at all).

Let us therefore be more careful, and let us try an expansion of | f(z) — f(w)|? into
two terms.

Suppose that (f(z) —f(w)) K(z, w) € A4 for every w (this holds e.g. if H, is bounded,
see the proof of Lemma 5. 3). Then by the reproducing property (2. 5),

(.2 [ (f(@)—fW)) K(z, w) K(w, 2) du(z) =0.

Thus, performing the z-integral first,

(3.3) §§ 7w (f(2) = f W) IK (2, w))* dp(2) d u(w) =O.
Consequently,
(3.4 I(f) =[] f@) (f&)—f W) K (2 w)I* du(z) du(w).

If we here interchange the order of integration, we obtain, just as in (3. 3), 0! Again, this
is not the right answer. We will, however, in Section 5 use this argument to show that
I(f, u)—I(f, u) =0, for two suitable measures y, and p,.

4. A promising attempt

We will present in this section a formal calculation which yields the desired
equality I(f, u)=D(f, Q), for any Q and p. There are, however, several technical
problems with it. With the lesson of Section 3 in mind, we therefore do not claim that
this calculation proves the theorem, although we this time at least get the correct
answer. It may, nevertheless, give some intuitive explanation of the result. (The technical
proof given in the remaining sections is less intuitive.) Furthermore, the calculation can
be made rigorous in some situations, which proves our theorem in a special case which
will be needed later.

We begin by introducing a second kernel.

Define for z € Q and w € C such that the integral converges,

[— K 0 dp).

nz—w) pnl—w

@. 1) J(z, w)=J,(w) =

Obviously J is a measurable function defined on a measurable subset of Q x C.
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We collect the most important properties of this kernel in a lemma. Note in
particular that (4.2) is a natural extension of the reproducing property (2. 5) for analytic
functions to arbitrary smooth functions, where the extra term depends only on d¢
which measures the non-analyticity.

Lemma 4. 1. Suppose that Q is bounded and u finite.

(i) For any fixed z € Q, the integral in (4. 1) converges for a.e. w and defines J,
as a function in L'(dm).

(i) For a.e. fixed we Q, J,(w) is defined for all ze Q\{w} and is an analytic
function of z with a simple pole with residue 1/m at w.

i) J,(w)=0 if we¢ Q.

(iv) If e C®(Q), i.e. ¢ can be extended to a C* function in a neighbourhood
of Q, then, for every z € Q,

4.2 ¢(2)={ K(z, w) p(w) du(w)+ [ J(z, w) I (w) dm(w).
0 7]

Proof. We begin with (iii). If w¢ Q, then 1/n({—w) is a bounded analytic
function of { on Q and thus belongs to 4%(, p) (by our assumption on u). Hence
J,(w)=0 by (2.5).

In order to prove (i), we rewrite the definition (4. 1) as

+i * K(z, w) du(w).

@3 JZ(W)zn(z~w) w

Here 1/nw e L}, (dm) and, since K, e L*(u)=L'(u), K(z, w)du(w) is a finite measure
with compact support. Consequently the convolution is defined a.e. and J, € L}, (dm).
J, € L'(dm) follows by (iii).

Furthermore, if G is a relatively compact open subset of Q, let F be a compact
subset of Q such that G < F°. By the mean value theorem,

SUng(Z)Iéc ; |f ()] dm(2)
for any f e #(Q2); in particular
sup [K(z, w)| = C | |K(z, w)| dm(2)
zeG F

and

IsuglK(Z, OlduQ)=C [ [ IK(z {) du(C) dm(z)
F Q

0 ze

SC [ K ]y p(@)Y? dm(z) < co.
F
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We obtain as above that, for a.e. w,

“.4) ) —sup [K(z, {)] du(() < 0.

o2 Tl{—w| zec

For every such w, | K(z, {) du(Q) is defined for all z € G; furthermore, it is a

1
n({—w)
continuous function of ze G by dominated convergence and analytic by Morera’s
theorem. (ii) follows by exhausting Q by a sequence {G,} of relatively compact open

subsets.

Finally we apply 0 (in distribution sense) to (4. 3). Since 0 P dy, We obtain

4.5) 0J,=—0,+ K(z, w) du(w).

By the definition of distribution derivatives (and (iii)), this is the same as (4.2) for all
@ € CZ(C). Since any function in C*(Q) may be extended to a function in CZ(C), it
follows that (4. 2) holds for every ¢ € C*(Q). [

Remark 4. 1. (4.2) can easily be extended to all Lipschitz functions on @ by
standard extension and smoothing arguments, but this will not be used here.

Remark 4. 2. The proof shows that we could alternatively have defined J, to be
the solution of (4. 5) that vanishes on Q°.

Remark 4.3. Suppose that Q is a finitely connected domain with analytic
boundary (this can be relaxed) and that u is the Lebesgue measure. Then, for z+w € Q,

4.6) Jew=—22 6w,
T 0z
2 2
(4 7) K(Za W)= _; azaw G(Z, W)a

where G is the Green’s function of Q. (4.7) is due to Bergman [B], Chapter V, §4, and
(4. 6) follows by Remark 4.2. (Bergman proves (in principle) (4. 2) directly for this case,
by Green’s theorem, and then concludes (4. 7).)

1—zw
In particular, for the unit disc G(z, w)=log W and we get

; 1 1—|w)?
P [
(4.8)
1

1
K(Z, W)-—_-; m
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Remark 4. 4. It is easily seen that J transforms to ¢(z) ¢(w) ! J(z, w) under the
change of gauge p— || ?pu and to y'(w) J(w(2), w(w)) under the change of variable

B po.

Our formal argument for (1.2) now runs as follows. We fix fe #(Q) and apply
Lemma 4. 1 (iv) (pretending that this is allowed) to the function

4.9 @.(W) =KW, 2) |f(W)—f(2)?

for each fixed z € Q. Since
=K(w, 2) (fW) =1 (@) 3((w) —f(2) = K(w, 2) (f (W) — f (2))f W),
this yields (if m(3€2)=0)
(4. 10) 0=0.(2) ={I) IK (z, W) | f (W)= f(2)I* d p(w)
+;[ J(z, w) K(w, 2) (f (W) = f(2)) [ (w) dm(w).

We integrate (4. 10) over du(z) and obtain, interchanging the order of integration,

(4. 11) I, W=—[ [ J@w) KW, 2) (f(W)—f(2) f'(w) dm(w) du(z)

Q

Q
!) !{J(Z, w) (f(2)—f W)K W, 2) du(z) f'(w) dm(w).

By Lemma 4. 1 (i), J(z, w) (f(z2)—f(w)) is for a.e. we Q an analytic function of z
which at w equals — f (w). If this function belongs to A (for a.e. w), the reproducmg

property of K shows that the inner integral on the right side above equals — f (w),
and thus

(4. 12) I(f, M)=£f’(W)fW dm(w)=D(f, Q)

as we wanted to prove.

We will justify this argument only in the simple case when dQ is smooth and p is
the Lebesgue measure, see also [Ar].

Lemmad4.2. If Q is a finitely connected domain with analytic boundary, u is the
Lebesgue measure and f is analytic in a neighbourhood of Q, then 1(f, Q, u)= D(f, Q).

Proof. We use the equations in Remark 4. 3. Since G(z, w) may, be the reflection
principle, be continued across the boundary of Q, for every fixed w, we obtain easily
(e.g. by comparison with the case of the unit disc, (4. 8)) the estimates
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d(w)

(4. 13) W= o w4 d@ + dw)

(4.14) IK(z, W) = C(lz—wl|+d(z) +d(w)) 2,

where d(-) is the distance to the boundary 0Q. See [AFP2], Proposition 3.7 and its
proof for further details. It is clear that ¢, € C*(Q), whence (4. 10) follows, and

1@ wWIHE W, 2] | f W)= f @) 1f (W) dm(z) dm(w)
ZC ([ dw) (lz—w|+dw))"> dm(z) dm(w) < o0,

so the use of Fubini’s theorem in (4.11) is justified. Finally, J(z, w)(f(z) —f(w)) is
bounded, and (4. 12) follows. [

We will not deal with the problem of extending this result to arbitrary f e #(Q),
since this will be a consequence of our general results in Section 6.

5. Compact perturbations

We will in this section show that we may alter the measure p on compact subsets
of Q without changing I(f, x). We will use the following notation. F is a compact subset
of Q, and u, and u, are two positive measures on  which are finite on F and coincide
on O\F. Hence Au=u,—u, is a finite signed measure with compact support in Q. We
write A; = A(u,), A,=A(u,) and similarly K,, K,, P,, P, etc.

The basic idea in this section is that an argument in Section 3, which seemed to
vield I(f, )=0, can be rigorously applied to the difference I(f, p,)—I(f, u,). We
begin with some preliminaries.

Lemma 5. 1. Let Q, py, u, be as above, and suppose that either p, or u, satisfies
(1. 1). Then both measures satisfy (1.1). Furthermore, A, = A, as sets and the norms | |,
and || |, are equivalent.

Proof. That A, =A, as sets is immediate. If we knew that both u, and pu,
satisfied (1.1), then the equivalence of the norms would follow by the closed graph
theorem. We will instead prove directly that if u, satisfies (1. 1), then || [; £C]| |, for
some C<oo. This implies that also p, satisfies (1. 1) and, by symmetry, that the norms
are equivalent.

Hence, assume that p, satisfies (1. 1). It suffices to show that

6.1 IfIZSC | If1Pdpy, fe A,

Q\F
91 Journal fiir Mathematik. Band 406
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Suppose that this is false. Then there exist functions f, € A, with [ |f,|*dp, =1
2

and [ |f,I*dpu,<1/n. By (1.1), {,} is a normal family and we can find a subsequence
O\F
which converges to some f € # (Q) with

_“flzdﬁh: lim j‘lfn|2d,u1=l
F n>© g

and, by Fatou’s lemma, [ [f|*du,=0. This, however, is impossible, e.g. by the
\F

following argument. Let R=sup{|z|:ze F and f(z)%0}. Then |z"f|; <R" and thus,

by (1. 1), |z"f(2)] < C,R" for every z € Q. This implies f(z)=0 when |z| > R, which leads

to a contradiction. [J

Lemma 5.2. Let Q, u,, u, be as in Lemma 5.1, and let fe #(Q). If 1(f, n)< o0
then 1(f, p,)<oo.

Proof. The conclusion can be rephrased as: if H;=(I—P;)Mj; is a Hilbert-
Schmidt operator from A into L?(y,), then H,=(I—P,)M; is a Hilbert-Schmidt
operator from A4 into L?(u,). (We here use the definition (1. 4) of the Hankel operators;
we omit the verification of the fact that the definitions (1. 4) and (1. 5) agree in this case.)
Note that it does not matter which norm we use on A since the two norms are
equivalent here, but that the situation is less simple for the ranges.

Define

(5. 2) ho(2)=(f(2) = f W) K, (z, w).

Since h,, is analytic, ||h, |, < C|h,l, for all w, and thus

(5.3 1H, ”}Z{S(Ax,Lz(uz)) =H I(ﬁz—) —ﬁ—w_)) K, (z, W)lz dpy(z) dpy(w)

=5 ”hw”§ duyw)=C j Ih, 13 dpy(w)=C ”HIH}ZlS(Aj.LZ(uz))< 00.
Hence H, is a Hilbert-Schmidt operator from 4 into L?(u,), and thus so is
(I"Pz)H1=(I“P2) (I“P1)Mf=(1"Pz)Mf’=H2

(because P,P,=P,). [

Remark 5. 1. It may more generally be shown that H, € S, iff H, € S, for any p,
O<p=Zoo.
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Lemma5.3. Let Q pu,pu, be as in Lemma S.1, and let fe #(Q). Then
I(f; u) = I(f, o).

Proof. We may, by Lemma S. 2, assume that I(f, ;) and I(f, u,) both are finite.
Let h, be as in (5. 2). It is easily seen that

(5. 4) H,(K,,,) (2)=(f(2) =f(W)) K, (z, w).
Hence

(5.5) lhwlla, = 1H (K o)llp2gy < [ Hy ) Ky (w, )2
and

(5. 6) If(2) Ky(z, Wlla, < (H [ 4+ 1f (W)]) Ky (w, )2

Since A, = A, with equivalent norms, also
(5.7) Ihylla, < CKy (w, w)'2,
(5.8) 1/ (2) Ky (z, Wy, S C(L+1f W) Ky (w, w)V2.
(C here denotes finite constants depending on f) Define
(5.9 P*={{1f@)~fW)I* K (z, w) Ky(w, 2) dpy(2) d g (w).

(The integral converges absolutely by (5. 3), symmetry, and Cauchy-Schwarz’s inequality.)
Since, by (5.5), h, € 4 for every w € Q, we obtain as in (3. 3),

TW) [ (f@—f W) Ky (2, w) K;(w, 2) dp(2) =f(w) b (w)=0, j=1,2
and thus, since [ | f(2) h,,(z) K; (W, z)| dp,(z) < oo for every w by (5.7) and (5. 8),

I*—1I(u) =f (j fTZ) h,(2) K,(w, 2) d,uz(z)——jf(z) h,(z) Ki(W, 2) dp;(2)) dpy (w)
(5.10)  =[(J [ h(d) (K (w, 2) = K1 (W, 2)) d 2 (2)
—[ /@) hy(2) Ky (W, 2) dAp(2)) dpty (W)

We claim that the right side of (5.10) actually is the difference of two absolutely
convergent double integrals. In fact, by the reproducing properties of K; and K,

(5.11)  Ky(w, 2)— K, (w, 2) = K, ((, w) Ky (2, O) dps () — § Ki(C, 2) Ko(w, §) dp (0)
=—[ K 2) Ky (W, O) dAu(9).
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Thus, by (5. 3) and (5. 8),

(. 12) §§17(@) hyo(2) (Ko (w, 2) = Ky (W, 2))| dpy (2) dpty (w)
< I 1h(2) f(2) K1 (G, 2) Ko (w, O)] d iy (2) dpg (w) d1Ap ()
<[ (Jf 1h@)1? dpy(2) dpg (W)
< ([J 1) K1z, ) Ky (w, O)I? dpy(2) dpy (W)'2 d1Ap ()
=] Clf(@) Ki(z Oll, 1 Kaella, d1Ap ()
SCII+I/QN) K (& O Ky (€ OV dIApl () < o,

and, using |h,,(z)| = |h,, (W)|,
(5:13) [ 1/ hol@) Ky w, D] dIAp] () dpy W [ 1@ el 1K ol dIAK] )< 0.

Consequently, by (5. 10) and Fubini’s theorem

(5:14)  I*—I(p) =[[ [@) h(2) (Ko(w, 2)— Ky (w, 2)) dpay (W) d i, (2)
— 1§ £ @) hy(2) K1 (w, 2) dpy (w) dAp().

Since (f(z) —f(w)) (K,(w, z) — K (w, z)) as a function of w is analytic, is 0 at w=z, and
belongs to 4 by (5. 5) and symmetry,

[ hu(@) (Ka(w, 2) — Ky (W, 2)) dpy ()
=[(f@—f W) (Ky(W, 2) — K; (W, 2)) Ky (z, w) dpa; (W) =0

by the reproducing property of K,. Similarly | h,(z) Ky(w, z) du,(w)=0, and (5.14)
yields I* = I(u,). By symmetry also I* = I(u,), which completes the proof. []

6. Passing to the limit

We will in this section complete the proof of the main theorem. The idea is to
show that I(f, u)=1(f, u,) for two different measures by changing u, to u, on a
compact subset of Q, which does not affect I(f, u;) by Lemma 5.3, and then let the
compact subset increase to €, so that the measure converges to u, in some (weak) sense.
A minor complication is that we do not know any useful result on continuity of I(f, )
in u (until the theorem is proved and we know that I(f, u) is constant). We will instead
use Fatou’s lemma and obtain an inequality, and then interchange the measures to
obtain the reverse inequality. The main problem then turns out to be to show that the
reproducing kernel K (z, w) converges pointwise as the measure u converges. We do not
know the most general conditions under which this holds, but we are able to give some
sufficient conditions. (We will use the equivalent condition (6. 3) below on convergence
of norms of point evaluations.)
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We begin with a basic lemma which will be used several times. (We assume that

(1. 1) holds for all involved measures.)

Lemma 6. 1. Suppose that Q, p and {(Q,, p,)} are such that

6.1) if ze Q, then z € Q, for all sufficiently large n,
6.2) Jim %> 1.
n-o AU

If zzwe Q and t € C, and L,,, is the linear functional f — f(z)+tf(w), then

(6.3) Iz wellag = N Lzl ge-
Then, for every f analytic in QU | ) Q,,
1

(6.4) I(f, Q w = lim I(f, p,, 2,)-

n— o

Proof. L, (f)=<f, K,+tK,). Hence

L welde=IK, +tK,|5=K(z 2) +|t|* K(w, w) + 2R (tK (z, w)).

Taking ¢t =0, we see that (6. 3) implies that K,(z, z) — K(z, z) as n — oo and then t=1
and t=i yield K,(z, w) — K(z, w) as n— oo, for all z, we Q. Fatou’s inequality now

yields, since du,/du =0 outside Q,,

lim I(f, pn, )

n-—o©

> lim [ [ /@)~ S0P [Kyle Wi 22 din e )‘fiﬂ(w) (@) du(w)
n->®© Q0 H

2| | lim Kz, ) e ()d”" W) dp(z) dpa(w)
N On

zI(fin Q). O

Lemma 6. 2. Suppose that (2, p) and {(Q2,, u,)}T are such that

6.5 R,50Q,05...00,

(6. 6) P Z U2 2R,
du du

6.7 ——— on Q,

€7 dpy  dpy '

(6.8) U 4, is dense in A.
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Then, for any f e #(Q,),

(6.9) I(f, u, Q) = Lim I(f, pny 2,).

n—x

Proof. We use Lemma 6. 1. Since (6. 1) and (6. 2) obviously hold, it remains to
verify (6. 3).

If Le A*, then L] <|/L|l~ because | |4=<| 4, On the other hand, if fe A4,
for some m and |f[,<1, then fe A, for n2m and |f|,,— I fll,=1 by (6.7) and
dominated convergence. Consequently

IL(OIS im (L[4 1S 4n) = lim [[L]L;.

n— o n—©

By (6. 8) this implies that |L|l«< lim ||L| 4. Hence |L|»+ — [IL|, for any L e A*; in
particular (6. 3) holds. [J

We can now prove half of the main result under condition (i) in Theorem 1. 1.

Lemma 6.3. Suppose that every polynomial belongs to A(y). Then, for any
feH(Q),

(6.10) I(f, n, Q) 2 D(f, Q).
Proof. Let Q' be a finite union of open discs with closures that are disjoint and

contained in Q. (Remember that we never have assumed our sets to be connected.) Let
1 =mon Q" and define

1
#n=ﬂ'+;li on Qn=Q

Lemma 6.2 applies to (', u’) and {(2,, u,)}; we verify (6.8) by observing that the
polynomials belong to A(u;) and are dense in A(u’) (as a consequence of Runge’s
theorem). By Lemma 4.2, I(f, u/, Q)=D(f, Q'). Furthermore, nyu,—u=ny’ has com-
pact support in 2, whence Lemmas 2. 1 (i) and 5. 3 yield

I1(f, w) =1(f, npa) =1(f; ).

Consequently,

© LU Pdm =16, @) S lim 0 e @)= 1/ 1. )

n— o

Finally we take a suitable increasing sequence of such sets €', and obtain (6. 10) by
monotone convergence. [
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We next prove the opposite inequality for measures that satisfy a slightly stronger
version of (1. 1).

Lemma 6. 4. Suppose that u is a Radon measure on Q and satisfies the following
strengthening of (1.1): for every compact F<Q there is a compact set F,oF and a
constant C < oo such that

(6.11) suplf@I < C(] If12dw)'?

zeF

for every f analytic in a neighbourhood of F;.

Then, for any f e #(R2),

(6.12) I(f, n, Q) = D(/, Q).

Proof. Define an increasing sequence of open subsets of Q by
Q,={zeQ:d(z, 2)>1/n and |z|<n}.

Note that the complement of @, has a finite number of components and that none of
them consists of one point only (there is exactly one unbounded component, and every
bounded component is a union of closed discs of radius 1/n and has therefore area
>n/n?).

Hence every component of Q, is conformally equivalent to a finitely connected
domain with analytic boundary, and Lemmas 4. 2, 2. 1 and 2. 2 yield

(6.14) I(f, 2,, m)=D(f, 2,).
By (1. 1), there exists constants C, such that
(6. 15) sup{|f(z):2€Q,} <C,lIfl, forall feA.

We choose positive numbers ¢, such that

1
(6. 16) &, m(Q,)C}? =
and define
on 0,4,
(6.17) =" :
g,m on Q,/Q._,.

By Lemmas 5.3 and 2. 1, and (6. 14),

(6.18) 1(f, p,, 2,)=1(f, e,m, Q,)=1(f, m, Q,)=D(f, 2,).
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The result thus follows by Lemma 6. 1, provided (6. 3) holds. We verify it as follows. If
f € A, then, by (6. 15) and (6. 16),

(6.19) IF1Z.= | 1fPdu+e,m(@Q,/Q,-1) CZI S5
Qn‘l
1 2
{1+ ) IS1%-
n
Consequently,
(6. 20) ILzwellar = (1+1/n) Lyl gy

Conversely, let f,e€ A, be such that L, (f,)=L,yle and [fl4 =1 If F is any
compact subset of , then, by assumption, for some C, N <oo and all n> N,

sup Ifa(2) = C(Qf Iful?dm)'? = Cll fulla,=C.

Thus {f,} is a normal family in a generalized sense (each f, is defined only on a subset
of Q), and it is easily seen, using the diagonal method, that there exists a subsequence
{fu.} of {f,} which converges uniformly on compact subsets of 2 to some f e H#(22). We
may furthermore assume that |L,,,| 4, 1_1500 L, yll4x. Since [ 1fil?du<1 when

Qm
m<n, [ |fI*dp=<1 for all m and thus fe A(Q) with || f|,=1.
Oom
It follows that

ILzwilla Z Lo (NI =lim L, (fp,) =lim || L[l

= lim |[L,,[l4-
n—

Together with (6. 20) this proves (6. 3), and Lemma 6. 1 now yields, for any f € # (),

I(f, p, Q) < lim I(f, py, Q,) = lim D(f, Q,)=D(£, Q). 0O

n— o

Remark 6. 1. We do not know whether every measure that satisfies (1.1) also
satisfies (6. 11). We evade this problem by taking an additional limit.

Lemma 6.5. If p is a Radon measure on Q that satisfies (1.1), then, for any
feH#(Q),

I(f, b, Q) = D(f, Q).

Proof. 1Tt is easy to construct a strictly positive continuous function ¢ on Q such
that | |fI*>edm< | |f|*dp for all fe A (e.g. let ¢ be such that sup || m(2,)C7 <27",
2 (2} Qn/Qn—l
with Q, and C, as in the proof of Lemma 6. 4).
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. 1 :
Define u, = u+; @dm on Q. Then Lemma 6. 4 applies to (2, u,), and Lemma 6. 2

yields, because 4,= A as sets,

I(f, p, Q) = lim I(f p,, QSD(£ Q). O

n-— oo

We are now able to complete the proof of Theorem 1.1, and thus also Theorems
1.2 and 1. 3. If condition (i) holds, i.e. {z"}¥ = A(w), then I(f, Q, )= D(f, Q) by Lemmas
6.3 and 6.5. In particular, the conclusion holds if Q is bounded and p is finite. The
cases (ii) and (iii) now follow by Lemma 2.1 (ii) and (iii), since every such Q is
conformally equivalent to a bounded domain.

7. Some open problems

The conditions on @ and y in the theorems are not very restrictive but somewhat
annoying, and it would be nice to relax them further.

Problem 7.1. Do Theorems 1. 1—1. 3 hold for every planar domain Q and measure
u with A(p)+{0}?

Of greater importance is the possibility to let 2 be a general Riemann surface with
a measure p satisfying (1. 1). We may then define A as the space of square integrable
analytic functions as before, but it is just as natural to let A consist of analytic func-
tions with values in a given Hermitean line bundle over Q, e.g. 4 could be the space of
square integrable differential forms. (Of course, we may consider non-trivial line bundles
also for planar domains.) We still let f be an analytic function, and observe that the
Dirichlet integral D(f) has an invariant meaning.

Problem 7. 2. Prove an extension of Theorems 1.1—1.3 for Riemann surfaces!

Note that there is no obvious generalization of the results to higher dimensions. In
fact, even in simple cases such as the unit ball or the polydisc in C¥ (N2=2) with
Lebesgue measure, there are no non-trivial Hilbert-Schmidt Hankel operators with
analytic symbols, and the integral I(f) diverges for every non-constant analytic f, see

e.g [Z].

We have so far assumed that p is a measure on Q. What if it is supported on the
boundary 9Q? (Formally, this case arises as a limit.)

In Remark 1.1 we mentioned the Hardy space H?(7). The main result then
reduces to (1. 10), which we rewrite as follows using polarization. Define (for reasonable
Sfand g)

f(2)—fW) (g2 —8W) |dz| |dw]|

|z —w|?

00 1= [ [
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and (A denotes the unit disc),
1 -
(7.2) Dt &)= {f’(Z) g'(2) dm(z).

Then I(f, g)=D(f, g)-

If f is analytic in a neighbourhood of A and g is rational with simple poles

outside A, then, for z € T, g(z)=h(z), where h is rational with simple poles in A. Also,
it is easy to show, using residue calculus and Green’s theorem, that (with the sum-
mation extended over all poles of h)

(7.3) I1(f, g)=§cl Res(h; {) /') =D(f, g

The argument applies mutatis mutandis to the case of a “regular” multiply
connected domain Q with arc-length measure on the boundary (thus K is the Szegd
kernel): we have only to invoke the Schottky double R of Q. (Recall that R is a compact
Riemann surface obtained by glueing together two copies of Q in the obvious way,
R=Qu Q* v 0Q; for details see e.g. [GP].) In particular, formula (7. 3) is valid if we
interpret the word “rational” as “rational on R” and the poles of g are imagined as
sitting in the mirror image Q* of Q. (If Q=A then R can be identified with the Riemann
sphere, assigning to a point a* € A* the point a=1/ae C\A.)

Problem 7.3. Is there an extension of Theorem 1.1 that admits also other
measures supported on 0L, or measures with mass on both Q and 9Q?
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On the Galois Theory of function fields
of one variable over number fields

By Florian Pop at Heidelberg

Introduction and main results

For an arbitrary field K we denote by K the algebraic closure of K and by
Gy = Aut(K|K) the absolute Galois group of K endowed with the Krull topology.

The main result we prove in this paper is:

Theorem. Let F|Q, E|@Q be two function fields of one variable (@ not necessarily
the exact constant field of F or E). If Gy and Gy are isomorphic, then F and E are
isomorphic.

More precisely, for each group isomorphism @ :Gp— Gy there exists a field
isomorphism ¢ : E — F with the property:

D(g)=¢ 'gd, geGy

and ¢ is unique with the property above. As a consequence ¢ maps E isomorphically
onto F.

As corollaries one obtains:

Theorem. Let F|@Q and E|@Q be as above. Denote by Homloc (Gg, Gg) the space of
all group homomorphisms from Gy to Gg which are local homeomorphisms, and by
Inn (Gg) the group of all inner automorphisms of Gg. Then Inn(Gg) acts in a canonical
way on Homloc (Gg, Gg) and the canonical mapping

Hom (E|F) — Homloc (Gg, Gg)/Inn (Gg)

is a bijection.

Theorem. Let Q, be the algebraically closed field of characteristic 0 and absolute
transcendence degree 1. Let Aut(Q,) denote the automorphism group of Q, endowed with
the weak topology. Then any continuous automorphism of Aut(Q,) is inner.
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Questions of this kind were first posed by Neukirch (see [25], [26]) who proved
the remarkable fact that any (closed) normal subgroup of the absolute Galois group Gg
of @ is characteristic, i.e.,, it remains invariant under any continuous group auto-
morphism of Gg. Complete answers were obtained for the global fields by Iwasawa
(unpublished) and Uchida, [38], [39]. See also Ikeda [12] and Komatsu [17]. We want
to remark that our result here is a step in proving the conjecture that any finitely
generated field is determined by its absolute Galois group, in this connection see also
Grothendieck [9]. Further we remark that as in the case of the global fields one in fact
does not need the isomorphism of the absolute Galois groups, but an isomorphism of
the Galois groups of solvably closed extensions of the ground function fields. The proofs
of these apparently more general assertions are essentially the same as those in the case
of the isomorphism of the absolute Galois groups. One should work in this case with
relative henselisations, as Neukirch proposed in [27].

The main new result we use in the proof is a Galois characterisation of the
constant reductions of the function fields of one variable over number fields (see § 2).

§ 1. Definitions. Notations. Basic facts

A. Excursion into valuation theory. In this section we recall facts from valuation
theory and cohomology theory of profinite groups.

Let (K, v) be a valued field. We denote the value group of v by vK and the residue
field of v by Kv. Let L|IK be an algebraic normal extension of K and let v, be a
prolongation of v to L. We denote the decomposition group, the inertia group and the
ramification group of v |v by Z(v.|v), T(v.|v) and V(v.|v) respectively and correspon-
dingly by I7, LT, IV the decomposition field, the inertia field and the ramification field of
v |v. It is well known that T(v,|v) and V(v,|v) are normal subgroups of Z(v,|v) and that
there exists a canonical exact sequence

(.1 1 — T(vp|v) — Z (v |v) = Gal(Lv.|Kv) — 1.

Furthermore one has: V(v.|v) is a pro-p-group and T(v |[v)/V(v.|v) is an abelian
(profinite) group of order prime to p=charKv.

(1.2) Therefore one has:
1) If char Kv=0 then V(v,|v) is trivial and T(v_|v) is an abelian (profinite) group.

2) If Gal(Lv.|KY) is solvable then Z(v,|v) is solvable. In particular: suppose that
v is a maximal valuation of K, i.e., Kv has positive characteristic and is algebraic over
its prime field. Then Z(v,|v) is solvable.

Let now L be separably closed, so Gal(L|K) is isomorphic to the absolute Galois
group of K. For this situation we denote v, by ¥. Then:

3) The canonical projection m, has continuous sections, so Z(¥|v) is isomorphic
to a semi-direct product T(¥|v) X G, of T(¥]v) by G, (see [19]).
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4) For g=+char Kv the structure of the g-Sylow groups of Z(¥|v) is in some sense
well known: they are semi-direct products of a g-Sylow group T,(¥|v) of T(¥|v) by a
q-Sylow group of Gy, and can be described as follows. Let T,=lim p,. be the g-Tate
module. Gg, acts in a natural way on each pug,., hence on T,. Let ¢ denote the
dimension of vK/q - vK. Then T,(¥|v) is isomorphic to the direct product of T, by itself
¢, times, on which Gg, acts coordinatewise.

As a corollary one gets:

5) If v is maximal, then the g-Sylow groups (g # char Kv) of Z(¥|v) are generated
by exactly ¢, + ¢, generators, where ¢, =0 if Kv is g-closed and 1 otherwise, and ¢, is
the dimension of vK/q - vK.

Now we say something about the cohomological dimension of Z(¥|v). For a
profinite group G denote by cd, G the g-cohomological dimension of G. It is well known
that ¢d, G equals the g-cohomological dimension of the g-Sylow groups of G.

(1.3) From 4) above and [35], I, Prop. 22, one now gets for g+ char Kv:
1) cd, T(¥|v)=dimg, (VK/q - VK).
2) cd, Z(#v)=cd, T(¥|v)+cd, Gy, .

We now briefly recall facts about'the so called core of a valuation (see [28], § 1).
For two valuations w and w’ of a field we say that w'<w if the valuation ring of w’
contains the valuation ring of w. For a Henselian valuation v of K set

V(v)={v} U {v[v'<v, KV separably closed}

and define the core of v to be the valuation y=inf V(v). One has:

(1. 4) Let v be a non-trivial Henselian valuation of a non-separably closed field K.
If v has rank 1 or Ky is not separably closed then y=v.

(1.5) Proposition. Let w and w' be Henselian valuations of an arbitrary field.
Then w and W' are comparable. As consequences one obtains:

1) Let L|K be a Galois extension, L not separably closed, and let v be a Henselian
valuation on L with y=v. Then K is Henselian with respect to the restriction of v to K.

2) Let LIK be a not separably closed algebraic extension of K. Suppose v is a
Henselian valuation of L with y=v. Then L contains a unique henselisation (K, vg)" of K
with respect to the restriction vg of v to K. Specially vy has a unique Henselian
prolongation to L.

B. Constant reduction theory. Let F|K be a function field of one variable and
denote by L the exact constant field of F. For an arbitrary valuation v of F and any
subfield R of F we denote by vy the restriction of v to R.

We say that a valuation v of F is a constant reduction of F if Fv|Kv is also a
function field of one variable (or equivalently, if Fv|Lv is also a function field of one
variable). If f € F is a non-constant function such that fv is a non-constant function of
Fv, then the restriction of v to K(f) is exactly the functional valuation vg , associated
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to f, ie, v} af*)=infv(a)=vg ;(} a,f*) for any element Y a,f* of K(f). Con-
versely, if vg is a non-trivial valuation of K and f a non-constant function of F then
any prolongation of vg , to F is a constant reduction of F.

Let now v be a constant reduction of F. We say that a non-constant function f is
regular at v if v prolongs vg , and it holds [F:L(f)]=[Fv:L(f)v]. From general
valuation theory one gets: if f is a regular function at v then v is the unique
prolongation of v; , to F.

We say that a constant reduction v of F is a good reduction of F if the following
holds:

i) Lv is the constant field of Fv.

i) v has a regular function f. Hence v is the unique prolongation of v, , to F
and it holds [F: L(f)]=[Fv:L{f)v].

iii) The genera gy and g, of F and Fv are the same?).

We now recall some fundamental results of constant reduction theory, see for
instance [6], [8], [20], [23], [24], [34] and others.

(1.6) Theorem. Let F|K be a function field of one variable with the constant
field L.

1) For any constant reduction v of F one has gr=gp,. Suppose gz =1. Then for
any valuation v; of L there exists at most one prolongation v of v, to F having the
property gp=gp,. In particular there exists at most one good reduction v of F which
prolongs v, to F.

2) Suppose F|L is separably generated. Then for any non-constant function f of F
there exists a finite set X,c L having the property: if v, is a valuation of L and
vi(X;) 20 then f is regular at v, i.e, v ; has a unique prolongation v to F and f is
regular at v.

Moreover, in this case Lv, is the exact constant field of Fv and it holds

[F: L(f)] = deg"f = deg™ fv=[Fv: L(/)¥].

Suppose F is separably generated and conservative (that means its genus does not
change by constant extensions). Then for any non-constant function f of F there exists a
finite set X< L having the property: if v is a valuation of L and v.(X;)20 then f is a
good function at vy, i.e., vy ; has a unique prolongation v to F, this prolongation is a good
reduction of F and f is regular at v.

C. Some model-theoretical considerations. Let [ be an infinite set and % a
non-principal ultrafilter on I. We say that a family (¢); of real numbers is locally
bounded if there exists a real constant ¢ >0 such that the set of all i with |c/|<c lies
in %. For a family (4,);., of models of a theory and a non-principal ultrafilter % on I
we say that an assertion holds locally, if the set of all i for which the assertion holds, lies
in %.

1) Here and elsewhere in this work the genus of a function field of one variable is the genus as defined
in [5], namely that over the exact constant field.
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Let S|R be a field extension. We say that R is existentially closed in S if any
existential sentence with parameters from R which holds in S does already hold in R
(see for instance [3] for definitions and basic facts). One has:

R is existentially closed in S if and only if there exists an ultrapower of R, say
R =R/, and an R-embedding of S in A.

In the above context let F|R be a function field of one variable. Then there exists
a canonical commutative diagram:

F

F/Fg?

R——— 2

where & = F!/% and F# is the compositum of F and # in &#. It is well known that
(compare with [28], proof of (3. 5))

FR =, = {(x"))%|deg" x* is locally bounded}.

Let E|R be another function field of one variable. Let locally ¢':F — E be R-
isomorphisms. Then o = (¢')/% defines an #-isomorphism F# — EZ by

o ((x)/ )= (0" (<)%

Conversely, if 6: FR — ER is an Z%-isomorphism then locally there exist R-isomor-
phisms ¢*: F — E such that ¢ = (¢*)/%. Therefore one has

Isomg(F #|ER) = (Isomg(F, E))'/%.

As a corollary one gets: Let S|R be a field extension with R existentially closed in S.
Then any R-embedding S ¢, £ of S in an ultrapower of R defines in a canonical way an
embedding

Isomg (FS|ES) o (Isomg(F, E))//%.

Suppose now that Isomg(F, E) is finite. Then (Isomg(F, E))'/% is also finite and has the
same cardinality as Isomg(F, E), hence the canonical embeddings

Isomg (F, E) & Isomg(FS|ES) o (Isomg(F, E))'/%
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are all isomorphisms. This applies for instance when the conservative genus g, of F is at
least 2, because in this case there exist bounds for the cardinality |Isomg(F, E)| which
depend only on g, and the degree [R’: R] of the constant field R’ of F over R. Actually
there exist bounds for the cardinality of Aut(F|R’) depending only on g, see [36],
Einleitung. Further, the order of Aut(F|R) is bounded by [R’: R] - |Aut (F|R)|. One now
gets our assertion from the following: If Isomg(F, E) is non-empty then Isomg(F, E)
and Aut(F|R) have the same cardinality. Thus we have

(1.7) Corollary. Let F|R and E|R be function fields of one variable. Suppose that
the conservative genus 8 of F is at least 2. If S|R is such a field extension that R is
existentially closed in S, then the canonical embedding

Isomg (F, E) ¢, Isomg(FS|ES)

is an isomorphism.

We now give a typical example of field extensions S|R with R existentially closed
in S.

Let K be a number field and denote by [P(K) the space of all finite places vg of K.
For any non-principal ultrafilter % on [P (K) let us denote

K*=([] Kvg)/.
There exists a canonical embedding
K o K*, aw(a, )/

where a,, = avy if vx(a) 20 and O else.

Ax [2] showed that for any o € Gy there exist non-principal ultrafilters % on
P (K) such that K% = K* n K is the fixed field K° of ¢ in K.

Further, Jarden [14] showed that “at random” the field extension K*|K¥ is
elementary.

Combining these two results one has:

(1.8) Theorem. Let K be a number field.

1)  For any o € Gy there exist non-principal ultrafilters % on [P(K) such that
K*=K* K is the fixed field K° of o in K.

2) For almost all o € Gy (in the sense of Haar measure) and any non-principal
ultrafilter U on [P(K) having K* =K° the following holds: K*|K* is an elementary
extension of fields. Specially, in this context K¥ is existentially closed in K*.
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§ 2. Galois characterisation of the constant p-reduction

Let p be a rational prime number. We say that a constant reduction v of a
function field of one variable F|K is a constant p-reduction if char Fv=p. The main
result we prove in this paragraph is the following

(2.1) Theorem. Let F|@Q, E|@Q be two function fields of one variable (@@ not
necessarily the exact constant field of F or E). Let v be a constant p-reduction of F|Q
and ¥ an extension of v to F and let 1: Z(V|v) = Gy be a monomorphism. Then there exists
a unique non-trivial valuation w of E and a unique prolongation W of w to E such that
1(Z(¥|v)) € Z(W|w). Moreover, w is a constant p-reduction of E|@Q and 1 carries T(3|v) into
T (W[w).

Proof. The residue field Fv of v is a function field of one variable over F,, thus
Fv is a global field of characteristic p. Identify the decomposition group Z(¥]v) of ¥|v in
Gy with T(¥]Jv)x Gg,. Let v, be an arbitrary non-trivial valuation of Fv and let ¥,
denote an arbitrary prolongation of v, to the algebraic closure Fv of Fv. Denote by ¥,
the composition of ¥ by V¥, and by v, the composition of v by v,. From general
valuation theory one gets: ¥, is a prolongation of v, to F and the decomposition group
Z(¥,lv;) of ¥lv; is exactly T(¥|v)x Z(¥o|v,) (which is a closed subgroup of the
decomposition group Z(¥|v) of ¥|v). One has v, F=ZxZ and Fv, is a finite field of
characteristic p. By (1. 2) and (1. 3) one obtains:

— Z(V,]v,) is solvable,

— ¢d, Z(Vy|lvy)=3 and the g-Sylow groups of Z(v,|v,) are generated by exactly 3
generators for any rational prime number g = p.

Let F2* be the absolute subfield of the fixed field F, of Z(¥|v,) in F and let v2*
denote the restriction of ¥, to Fi*. From the above we get:

— F?* v is finite and has characteristic p,

— v3% s discrete and has rank 1,

— (F?*, v3*) is Henselian.

By [29] it follows that (F2®, v3%) is p-adically closed.

Let E, denote the fixed field of 1(Z(¥,|v,)) in E. We show that E, is Henselian with
respect to a maximal valuation w,. It is clear that E,|E3* has transcendence degree 1,
hence cd, E,; <1+ cd, E}™ for any rational prime number g (see for instance [35], I,
Prop. 11, combined with I, Prop. 14). On the other hand cd, E, =3 for any rational
prime number g+ p and so cd, E{*>2 for all rational prime numbers g+ p. Applying
Satz II from [25] one gets: E2* is an algebraic extension of some @} for some rational
number [. We remark that I=p: for suppose I+ p and recall that from the above
cd, E{®™ =2. Therefore the I-Sylow groups of Ggu. are not finitely generated, hence the
I-Sylow groups of Gg, =1(Z(¥,|v,)) are not finitely generated. Hence the [-Sylow groups
of Z(¥,|v,) are not finitely generated, and this is a contradiction, because the g-Sylow
groups of Z(V,|v,) are generated by exactly 3 generators for any rational prime number
g+ p. So we have the following situation: E;|@3" has transcendence degree 1, cd, E; > 1
for any rational prime number q+p and Gg, =Z(V,]v,) is solvable, because v, is a
maximal valuation. From [28], §4, (4.6), it follows that there exists a Henselian
valuation w, of E,, which prolongs the p-adic valuation of E3®.
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We can suppose that w; is maximal: if it is not the case, then E, w,|F, has trans-
cendence degree 1 and w, E, has rational rank 1, because the absolute transcendence
degree of E, is 1. If T(w,) is the inertia group of w; it follows from (1.3) 1) that
cd, T(w,) =1 for any rational prime number q # p. Considering the exact sequence

1 - T(wl)’—’ GE1 - GE[VH - l

and using cd, E; =3 it follows (see [35], I, Prop. 15) that cd E, w; =2 for any q=+p.
On the other hand Gg,,,, is solvable as a quotient of the solvable group Gg,. By [25]
one gets: E,w, is Henselian with respect to a non-trivial valuation w,. Obviously
(E, w;)w, is algebraic over [, and E, is Henselian with respect to the composition
w, o w, of w, by w,. Now replace w; by w; o w,.

Let us denote by E’ the fixed field of 1(Z(¥|v)) and by E” the fixed field of (T (¥]v))
in E. It is clear that E”|E’ is a Galois extension. Denote by w” the core of the unique
extension of w;, to E” and let w' be the restriction of w” to E’. From (1. 5) one gets:
(E', w') is Henselian.

F" = FTM TEly) —— 1(TF|v) ETEV = 7w

Fy = FZOM 2@ v) —— 1(Z(|vy) E'¢EM = -<w,

F' =F?6m ZFy) —— 1(Z@F|v) E¢Cv = E'w

F Gp Gg E w

We want now to describe more closely the valuation w’.
1) w' is strictly coarser than wy, i.e., W < W,.

Suppose that the contrary holds, so w'=w,. Then, since w, is a maximal
valuation, so is w’. Further (E’, w’) is Henselian, and w’ E’ has rational rank at most 2.
So by (1. 2) 5) the g-Sylow groups of Gy are generated by at most 3 generators (q + p).
Now this is a contradiction, because Gy is isomorphic to Z(¥V,|v,)= T(¥;|v,) X G¢, and
the g-Sylow groups of Gy, are not finitely generated.

2) 1(T(v) S T(W'|W’), where W' is the unique prolongation of W' to E.

We show first that 1(T'(¥]v)) is contained in T(W"|w”). Suppose it is not the case.
Then E”w” is not separably closed. By (1.4) it follows that w”=w, and now this
contradicts 1). Therefore 1(T(¥|v)) < T(W"|w”), and now the assertion 2) is clear, since
TW"|w")< T(W'|w').

3) charE'w' =p.
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We first show that char E'w’>0. Assume char E'w'=0. Then T(#’|w’) is abelian
by (1. 2) 1). By 2) it follows that T'(¥|v) is abelian, because (T(¥]v)) < T(#'|w’) and 1 is an
isomorphism. On the other hand T(¥]v) has as quotient the inertia group of the
p-adically closed field F* — the absolute subfield of the fixed field of Z(¥,|v,) in F —
and this inertia group is not abelian, because it contains the ramification group of
Ffi‘\gle';“’s which is a free not finitely generated pro-p-group. Therefore char E'w >0, and
to show that char E'w’ =p it is enough to remark the following: w' <w,, so the same
holds for their restrictions to @, w’ is not trivial on @ and the restriction of w, is the
p-adic valuation.

4) E'W'|[F, has transcendence degree 1.

Assuming the contrary, i.e., E'wW'|[F, is algebraic, it follows that w’ is a maximal
valuation. Thus w’' =w, and this contradicts 1).

5) w=w.

By 4) above w’ has rank 1. Further (E’, w') is Henselian and not separably closed.
Now apply (1. 4).

Let now w be the restriction of w' to E. It is clear from 4) above that w is a
constant p-reduction of E, so we have also w=w. By (1. 5) 2) it follows that there exists
a unique Henselian prolongation of w to the henselisation E! of (E, w) in E’. Denote
also by w this unique Henselian prolongation of w to E! and by W the unique
prolongation of the latter w to E. Tt is clear that the restrictions of W to E’, E” are
respectively w’ and w”. From 1)—4) it follows now that Ww|w has the properties one asks
for in (2. 1).

We now show that W|w is the only non-trivial valuation of E|E with
HZFV) S Z(F]W).

Let Wo|w, be any valuation of E|E with 1(Z(¥v))S Z(W,|w,). Denote by E, the fixed
field of Z(Wy|w,) in E. Then E,< E’, so E’ is Henselian with respect to the restriction
wg of W, to E’. From the structure of the Sylow groups of G, it follows that wg is not
maximal (see the proof of 1) above). On the other hand E has absolute transcendence
degree 1, so w; has rank 1. By (1.4) we get now w =w;, hence W=W =W,, and
consequently w=w,. []

(2.2) Corollary. Under the hypothesis of (2. 1) suppose that 1(Z(¥|v)) is maximal
in the family of all subgroups of Gy which are isomorphic to decomposition groups of
constant reductions of E. Then 1(Z(¥|v)) is the decomposition group of the unique reduction
Wwlw given by (2. 1) and further 1(T (V|v)) = T (W|w).

Proof. Apply (2. 1) to 1 and once again to 17! : Z(Wlw) — Z(¥]v). [

(2.3) Corollary. Under the hypothesis of (2. 1) let @ : Gp — Gg be an isomorphism.
Then ® maps the decomposition group of any constant p-reduction V|v of F onto the
decomposition group of a unique constant p-reduction W|\w of E for all prime numbers p.
Further it holds ®(T (¥|v)) = T(W|w).



Pop, On the Galois Theory of function fields 209

Proof. Let V|lv be a constant p-reduction of F. By (2. 1) there exists a unique
constant p-reduction Wlw of E such that ®(Z(¥|v)) is contained in Z(W|w). Applying now
(2. 1) to @7 ! one gets: there exists a unique constant p-reduction ¥'|v of F such that
&~ !(Z(Wlw)) is contained in Z(¥'|v'). It follows that ¥|v and ¥'|v' are two constant
p-reductions of F with Z(¥|lv)< Z(¥'|v). Therefore ¥=¥', so ®(Z(¥|v))= Z(W|w). Further
apply 2.2). [

§ 3. The proof of the main result

Let F|@, E|@ be function fields of one variable (@ not necessarily the exact
constant field of F or E) and let @:Gp— G; be an isomorphism. By (2.3) the
isomorphism @ defines a bijection

@ V|V W|w

between the family of all constant reductions of F and that of E. Moreover, for any ¥|v
it holds @®(Z(¥|v))=Z(W|w) and &(T(¥|v))= T(W|w), hence by (1. 1) it follows that &
induces an isomorphism

¢V : GFV — GEW .
Hence by Uchida’s theorem [38] there exists a (unique) isomorphism
(3. 1) ¢y: ETWw— FT¥

such that n; @(g) = ¢5 ' n3(g) P53, g € Z(V|v). As a consequence, the restriction of ¢; to Fy
defines an isomorphism

3.2 ¢,:Fv— Ew.

The above isomorphisms ¢; can be viewed as “local components” of the isomorphism ¢
we are looking for. We shall now develop a method of “interpolating” these local
isomorphisms.

The first step in doing this is to show that our map ¢ has good geometric
properties. We begin with some preparations.

Conventions and remarks. I. For any sub-extension F'|F of F denote by E'|E
the corresponding subfield of E by ®. Hence & defines an isomorphism

G —> G,

II. Let V be a family of constant reductions of F.

1) Let F'|F be a sub-extension of F. The prolongation of V to F’ is by definition
the set V' of all prolongations v’ to F’ of the valuations ve V. In particular, V is the
restriction of V' to F.
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To emphasize that v’ prolongs v we shall sometimes write v'|v.

By general valuation theory one has: Suppose that F’|F is Galois and V is the
restriction to F of a family V' of constant reductions of F’. Then V' is the prolongation
of V to F' if and only if V' is Gal (F'|F)-invariant. Further, two elements of V' have the
same restriction to F if and only if they are conjugated by some g € Gal (F'|F).

2) The prolongation of V to F will be denoted by V.

3) The image of V by ¢ will be denoted by W and W denotes the restriction of
W to E.

It holds: W is Gg-invariant and its restriction W' to E’ is exactly the prolongation
of W to E'. Furthermore, there exist unique maps

0V —W, ¢:V— W

making the following diagram commutative:

where the vertical arrows are the canonical restriction maps.

We now want to define the so called geometric families of constant reductions of a
function field of one variable F|@.

Let ¢t be any non-constant function of F. Denote by V, the set of all prolongations
of the functional valuations vy , to F, where vg € [P(K) runs over the set of all finite
places of the constant field K of F. A direct verification involving (1. 6) shows that for
any non-constant functions t, u of F the families V, and V, are almost equal?).

Definition. We say that a family V of constant reductions of F is geometric if
there exists ¢ such that V and V, are almost equal.

It is obvious that any two geometric families of constant reductions of F are
almost equal. Moreover, if V is a geometric family of constant reductions of F, then it
follows by (1.6) that F has good reduction at almost all ve V and further, any
non-constant function ¢ of F is a good function at almost all ve V. Therefore, the
canonical restriction map

prrgx: V— P(K)

2) We say that two sets are almost equal if their symmetric difference is a finite set.
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is almost bijective®). From this and applying (1.6) we get the following local
characterisation of the geometric families of constant reductions:

Local Characterisation Lemma. Let the genus of F satisfy gr= 1. Then a family V

of constant reductions of F is geometric if and only if 'V is almost equal to the family of
all good reductions of F.

Proof. One applies the observations above combined with (1. 6) 1). [

(3.3) Concerning the behaviour under finite extensions one has the following
immediate facts:

1) Let F'|F be a finite extension. Then a family of constant reductions V of F is
geometric if and only if its prolongation V' to F’ is geometric.

2) Suppose that V is geometric (hence V' is also geometric) and F'|F is Galois.
Then almost all v'|v are nonramified. Therefore, for almost all v'|v the canonical pro-
jections

n, : Z(V'|v) — Gal (F'v'|Fv)

are isomorphisms.
What we meant by good geometric properties of ¢ now reads as follows:

Geometric Continuity Lemma. ¢ maps geometric families of constant reductions of
F onto geometric families of constant reductions of E.

Proof. Let V be a geometric family of constant reductions of F. We show that its
image W by ¢ is geometric. We begin with:

1) F and E have the same genus, i.e., 8x = gg.

By (1. 6) it follows that both F and E have good reduction at almost all p-adic
valuations. Let v be a good reduction of F and ¥ a prolongation of v to F. Let W|w be
the corresponding reduction of E by @. Then by (1. 6) the genera of F and E satisfy
grv=8r, 8rw < gz. On the other hand, Fv and Ew are isomorphic by (3. 2). In particular
they have the same genus and so one obtains g, < g;. Taking a valuation w at which E
has good reduction one obtains the opposite inequality, so g =g, as contented.

2) Suppose that gp>1. Then ¢ defines a bijection between the set of all good
reductions of F and the set of all good reductions of E.

It is sufficient to show that the image W|w of any good reduction ve V of F is a
good reduction of E. Let v be a good reduction of F. Then F and Fv have the same
genus by hypothesis. By (3. 2) Fv and Ew are isomorphic, so they have the same genus
and further F and E have the same genus by 1). Therefore E and Ew have the same
genus. From the reduction theory it follows (see [20], [24], [23]) that w is a good
reduction of E.

3) If gr>1, then W is geometric.

%) We say that a map f: A — B is almost bijective if there exist subsets A'< 4 almost equal to 4 and
B’< B almost equal to B such that f maps A’ bijectively onto B'.
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Since gr>1 and V is geometric it follows by the local characterisation Lemma
that V is almost equal to the set of all good reductions of F. Therefore, by 2) it follows
that W = ¢ (V) is almost equal to the set of all good reductions of E. Since gz =gr>1 it
follows by the same lemma that W is geometric.

We now prove that W is geometric. Let F'|F be a finite sub-extension of F having
genus g, at least 2. Adopting the obvious notational conventions it follows by 3) that
W' is geometric. On the other hand, W' is the prolongation of W to E’. Hence W is
geometric. [

We now show how one can “interpolate” the family of all reductions (Fv), defined
by a geometric family of constant reductions V of F. Let % be a non-principal ultrafilter
on V such that its image by the canonical projection

V—Pr@)

is a non-principal ultrafilter on /P(@Q). Then the images of % by ¢ and all canonical
projections are non-principal ultrafilters, which we also denote by #%. So for instance its
images by

o~

v V—sYV P(K) — P(Q).

Further denote F*=]] Fv/% and define correspondingly K*, @*. Taking into account

that for any x+0 in F one has vx=0 for almost all ve V it follows that there exist
canonical embeddings

Fo F*, Ko K* @Q o Q%

defined by x> (x,)/%, where x,=xv if vx=0 and x,=0 otherwise. The following
diagram is commutative:

F— F*

o— @
We now describe the compositum of F and @* in F*. First we remark that
F#, ={(x,)/%|deg"" x, is locally bounded }

is a function field of one variable over K* with the constant field K* =K @Q#*, and
moreover, F¥, is relatively algebraically closed in F* (compare with [28], proof of (3. 5)).
Furthermore, for x* = (x,)/% in F, locally the degrees deg’" x, are equal, and then they
locally are equal to the degree of x* as function in F¥,.



Pop, On the Galois Theory of function fields 213

We now show that the compositum FQ* of F and @* of F* is exactly FX .
Indeed, by (1. 6) any non-constant x € F is a good function at almost all v, hence it
locally holds deg” x = deg”¥ xv. Therefore, (x, = xv)/% locally has bounded degree, thus
it lies in F¥,. Moreover, by what we said above, x has the same degree in F and in Fg,.
We conclude that FK* and Fg, are equal. As a consequence, F and K*=K@Q* are
linearly disjoint over K in F* and for any non-constant function h of F it locally holds

3.4 [FQ*: Q@*(hW]=[Fv: Q@nv]=[F*: Q(h)*].

Therefore, if we denote by F¥ the relative algebraic closure of F in F* and
correspondingly K% Q% we have: K¥ =K@Q®, F and K¥ are linearly disjoint over K,
and finally F* = FQY.

(3.5) We now describe the behaviour of our interpolation procedure under a
finite Galois extension F'|F. Let V, V' and % be as before. Then F'*|F* is a Galois
extension, the group G*=][] Gal(F'v'|Fv)/% acts on F'* in a canonical way and its

fixed field is exactly F*. Therefore G* is exactly the Galois group of F'*|F*. The
canonical projection

n* : Gal (F"*|F*) — Gal (F'|F)

is injective. We can describe n* as follows. Since Gal(F'|F) is finite it has only finitely
many subgroups, hence locally Z(v'|v) are equal, say equal to Z. Furthermore, almost all
v'|lv are non-ramified and hence almost all canonical projections

n,. : Z — Gal(F'v'|Fv)
are isomorphisms. The mapping
1*:Z —> G*=Gal(F'*|F*), 1*(g)=(n,.(8))%

is an isomorphism and it is exactly the inverse of the canonical projection 7*.

Next we remark that F'@Q* = F/* is G*-invariant. Indeed, let g* =1*(g) (g € Z) be
an arbitrary element of G*. By what we said above it follows that g, = m,.(g) locally is a
@v-isomorphism of F'v’. Therefore one locally has deg™ " x,. = degF ¥ (g, (x,)) for any
x, € F'v'. Hence F{* is g*-invariant. Since F@Q* is contained in F*, it is pointwise
G*-invariant and we get: the restriction G’ of G* to F'Q@* is contained in
Gal(F'Q*|FQ*). We now show that G’ is exactly Gal(F'Q*|FQ*). Let f be a
non-constant function of F|K. Then f is also a non-constant function for F’|K. By (3. 4)
we have

[FQ@*:@*(N=[F*:@()*], [FQ*:Q@*(=[F*:Q()*]

hence [F'Q*: FQ*]=[F'*:F*]. Our claim now follows from the injectivity of the
restriction map Gal (F'*|F*) — Gal(F'Q*|F @*). We finally remark, that the canonical
projection

7' : Gal(F' Q*|F@*) — Gal(F'|F)

10:  Journal fiir Mathematik. Band 406
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is injective and has Z as image. The inverse of n’ over Z is
V1 Z — Gal(F'Q*|F@Q*), 1'(g) ((x,)/%)=(m, (g) (x,))/U.

We now show how one gets information on F and E from isomorphic geometric
families V and W. We use the local isomorphisms (3. 1) defined at the beginning of this
paragraph.

Preserving the notations of above, the images of # by @ and all canonical
projections are again non-principal ultrafilters, which will also be denoted by %. Then
the local @v-isomorphisms ¢, : Ew — Fv define a @*-isomorphism

¢*E* — F*, ¢*((x)/U) = (¢, (x))/%.

Taking into account that all ¢, preserve the degree of the functions it follows that ¢*
defines a @*-isomorphism

¢o: Ef,=EQ* — Ff,=FQ*.

Thus, we have obtained the following: enlarging the constants of F and E in a canonical
way by @* the two function fields FQ* and EQ* become @Q*-isomorphic. We do
not know yet whether the isomorphism ¢, is defined over @. Nevertheless, if gp =2
and @*|@Q%¥ is an elementary extension (see (1.8) for notations), then by (1.7) ¢, is
defined already over @%.

Now let F'|F be a finite Galois sub-extension of F and E’|E the corresponding
subfield of E. Construct the @*-isomorphisms

¢t E*—F'%, ¢ E'Q*— F'Q*

as we did for F and E. We show that ¢* is the restriction of ¢'* to E*, hence ¢, is the
restriction of ¢y to EQ*. Indeed, for any ve V let v, v/ be its restriction to F, F’
respectively. Then, by their definition, the local isomorphisms ¢,, ¢, are exactly the
restrictions of ¢y to Ew, E'w’ respectively. Hence ¢, is the restriction of ¢,. to Ew and
we are through.

If now additionally, the genus g of F' is at least 2 and @*|@Q% is elementary,
then the isomorphism ¢; is defined over @¥ and consequently also ¢, is defined
over @*. On the other hand we always can choose such an F’ and we have obtained:

When for the given non-principal ultrafilter % the corresponding field exten-
sion Q*|QY is elementary, then for any finite extension F'|F the isomorphism ¢g is
already defined over Q¥. Hence, its restriction to E'Q% is a Q@¥-isomorphism

" E'Q* — F'Q*.
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Now let @': Gal(F'|F) — Gal(E'|E) be the canonical isomorphism induced by the
isomorphism @. Taking into account that ®(Z(¥]v)) is the decomposition group of the
corresponding w|w and v/ =¥|., w =W|; it follows by general valuation theory that
@’ (Z(¥|v)) is the decomposition group of w’|w. Therefore, with the notations from (3. 5),
@’(Z) locally is the decomposition group of w’|w. Now construct

j*: @'(Z) — Gal (E'*|E*)

as we constructed i* in (3. 5).

Directly from the definition of ¢'*, 1* and j* one gets: j*®'(g)=¢'* ' 1*(g)p'*
for all g € Z, i.e., the following diagram is commutative:

Gal (F'*|F*) 2210¢",  Gal(E'*|E¥)

| |

Gal (F' Q*|F@*) -#"0% , Gal(E'Q*|EQ*)

| |

Gal(F'|F) L Gal(E'|E).

Finally we remark that our interpolation construction has good functorial properties.
Namely, for F”< F' finite Galois extensions of F and the corresponding Galois
extensions E” < E’ of E consider the @*-isomorphisms ¢, and ¢g. Then it holds:

I. The following diagram is commutative:

Gal(F'Q*|FQ*) Gal(F'|F)
Gal (F"Q*|FQ*) Gal (F"|F)

where the arrows are the canonical restriction maps. Correspondingly, the same holds
for E.

II. The restriction of ¢ to E"@* is exactly ¢g.
The proof consists in straightforward verifications which we omit.

Therefore we can take limits over all finite Galois sub-extension F’|F of F and so
obtain: For any non-principal ultrafilter % on V there exist canonical constant
extensions FQ*, EQ* of F and E by @* and a @*-isomorphism § of EQ* onto F@*
making the following diagram commutative:
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Gal(FQ*IFQ*) —*0% , Gal(EQ*EQ*)

(3. 6) l l

Gal (F|F) d Gal(E|E).

When @*|@* is an elementary extension, the above isomorphism ¢ is defined over @%.
Hence, in this case, the restriction ¢ of ¢ to EQ? is an isomorphism

¢:EQ* — FQ*.

Taking into account that FQ¥*=F, i.e., Gal(FQ¥|FQ®¥)= Gpu« (and correspondingly
the same for E), we can interpret (3. 6) as follows:

(3.7) If @*|Q" is an elementary extension then there exists a @®-isomorphism
¢ : E— F such that ®(g)=¢ ' g¢ for all g € Gpgu.

We now come back to the proof of the main result. Let V be a fixed geometric
family of constant reductions of F. Denote by 2 the set of all elements ¢ of G, which
have the property (1. 8) 2). It is clear that 2 is a dense subset of Gg.

Let 0 € 2 and % =%, a corresponding non-principal ultrafilter. Fix a preimage of
9 by the canonical projection V — [P(@) and denote it also by %. Finally, the images
of the latter % by @ and all other canonical projections are non-principal ultrafilters,
which we also denote by %. One concludes that there exists a @Q¥-isomorphism
¢ : E — F with the properties from (3. 7). We show that ¢ does not depend on %: Let
¢', ¢" be isomorphisms corresponding to non-principal ultrafilters %', %". For all
g € Gpg one has:

P(g)=¢' 'gp'=9¢"""g¢",

s0 p=¢o¢”" ! is a @-isomorphism of F which commutes with Gzg. On the other hand
there exists exactly one such isomorphism, namely the identity (see the lemma below).
Hence we have proved:

There exists a field isomorphism ¢:E— F such that &(g)=¢ ‘g¢ for all
g € | Gpge«, where % runs over the family of all non-principal ultrafilters which have the

w
property (1. 8) 2).

On the other hand | ) Grq« is the preimage of X by the canonical projection
xU

Tpg : Gr — Gg, 0 it is a dense subset of Gz. Now continuity reasons imply:

P(g)=¢ 'gd, geGy.

The proof is finished. [J
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Lemma. Let F|K be a function field of one variable. Then the only automorphism
¢ of F which commutes with Gpg is the identity.

Proof. For any prime divisor P of F|K denote by ¥,|v, the valuation defined by
vp together with one of its prolongations to F. Denote by Z, the decomposition group
of ¥p|vp. Then ¥po ¢ is also a rank 1 valuation of F, and its decomposition group in
(Grg)? = Ggg is (Zp)? =Zp. Applying (1. 4) and (1. 5) we obtain ¥p =¥, o ¢p. Therefore, for
any element f+0 in F we have ¥,(¢(f)/f)=0, i.e. $(f)/f is a constant a € K depending
on f. It follows that any non-constant function f of F is invariant by ¢, hence ¢ is the
identity. [
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