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The field of moduli of abelian surfaces
with complex multiplication

By Naoki Murabayashi at Yamagata

§ 1. Introduction
Let E be an elliptic curve defined over the complex number field C whose endo-
morphism ring End (£) is isomorphic to O, the ring of integers of an imaginary quadratic
field K. By the theory of complex multiplication, we have:

(1.1) The following statements are equivalent:

(i) FE has a model defined over Q.

(it) The j-invariant j; of E is contained in Q.

(iii) The class number iy of K is equal to one.

Independently Baker and Heegner-Stark solved the class number 1 problem in 1967:

(1.2) There are nine imaginary quadratic fields Q(W), d < 0, having class number
equal to 1:

—-d=3,4,7,8,11, 19, 43, 67, 163.

E has two representations. One of them is the algebraic one given by a Weierstrass

equation
E:y*=4x—g,x—g,,

where g,, g5 € C such that g3 — 27g3 + 0. The other is the analytic one as a complex torus

EQC)=C/L, L =Z7+1Zr,

where the complex points E (C) is seen as a complex Lie group and 7 € §, the complex upper
half plane. So we can represent j; in two manners:
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PREPPSI :
y g —27g3

1 e o]
= -q— + 744+ Y c(n)q",

n=1
where ¢ = 2™, ¢(n) € Z and we can compute c(n). By computing an approximate value, we
can exactly get the j-invariants of the elliptic curves of CM-type with the property in (1.1).
This leads the following:

(1.3) We can exactly determine the set of Q-rational CM-points (with respect to the
maximal order) in &/, where 7, is the coarse moduli scheme of elliptic curves and
isomorphic to the affine j-line A}.

In particular we have:

(1.4) For the elliptic curves as above, we can explicitly determine a defining equation
of them.

Now we can present the following questions:

(Q:i,g) Generalize the statement (1.{) to the case of g-dimensional abelian varieties
of CM-type (1 =i <4).

For a g-dimensional abalian variety (g = 2), its defining equations are very complex.
So we can not expect a good answer for (Q : 4, g) (g = 2). But for the case of g = 2 or 3, since
any simple principally polarized abelian variety of dimension g is isomorphic to the Jacobian
variety of a curve of genus g, we can try to determine a defining equation of the curve
corresponding to the considered abelian variety. In particular in the case of g = 2 we have
Igusa’s j-invariants and their representations by theta series. Therefore, if the answer for
(Q:1,2) and (Q:2,2) are known, we can find those for (Q: 3, 2) and (Q:4,2).

In this paper we will give the answer for (Q : 1, 2). More precisely our result (Theorem
4.12 in § 4) is the generalization of “(ii) <> (iii) in (1.1)” to the case of g = 2 under the
restriction to CM by the maximal order.

§ 2. Preliminaries

In this section, we give a review of the theory of abelian varieties of CM-type and their
field of moduli. By an algebraic number field, we always mean a subfield of C algebraic over
Q of finite degree. A CM-field is a totally imaginary quadratic extension of a totally real
algebraic number field. Let K be a CM-field with [K: Q] = 2r and F the maximal real
subfield of K. Let O be the ring of integers in K. We consider a structure P = (4, C, 6)
formed by an abelian variety 4 of dimension n defined over C, a polarization C of 4, and an
injection @ of K into End®(4):= End(4) ® Q such that 67*(End(4)) = 0. We always
assume that 6(K) is stable under the involution of End®(4) determined by C.
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‘One can prove that there exists a subfield My of C which is uniquely characterized by
the following condition:

An automorphism a of C is the identity map on My if and only if there is an isomorphism
Aof A to A° such that A(C) = C° and A-0(a) = 0°(a)- A for all ae K.

My is called the field of moduli of P. Let
@ : K — End.(Lie(A4))

be the representation of K, through 0, on the Lie algebra of 4 and let ¢, ..., g, be the n
injections of K into C which form &. Then one writes

D~ o;.
i=1
An isomorphism & of R-linear spaces,

(5:K®Q|R - C" a®ar (ar’,...,aa’")

can be defined. For each o € K, let

o’ 0
Sp() = S(a) = ( )
0 o’"

be the diagonal matrix diag(a’!, ..., «°"). Then there exist a fractional ideal a of K and an
analytic isomorphism

A:CYd(a) » 4
such that the following diagram is commutative for all « € O:
Cr/d(a) —— 4
So(®) | Lo
C"/ & (a) —] A.

Take a basic polar divisor in C and consider its Riemann form E(x, y) on C" with respect to A.
Then there is an element # of K such that

E(i(x), 5(}’)) = Trgq(nxy®) ((x,y)e KX K),
nt=-n, Im@H>0 (=1,....,n),
where ¢ denotes the complex conjugation in C. Since # is obtained from a basic divisor, we
have

Trgq(naa®) =2Z.

P is said to be of type (K, ®; n, a) (with respect to A).
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Put
Cy=F, X I /{{xx% (x)} | xe K*},

where F, denotes the group of totally positive elements of F and I denotes the group of
fractional ideals in K. For an element {s, b} of F, X I, its image in Cy is denoted by (s, b).
If P'= (A4, C', ) is an another structure of type (K, @; 7, a’), then P is isomorphic to P’ if
and only if (P’': P):=(n"'n,a’‘a) is equal to 1 in Cy.

Let (XK', @') be the reflex of (K, @). Put

Iy(®'):={b € I.|b® = («), aa® = N(b) for Ja e K*},
where b® denotes the product [] b if ' ~ Y 1,. From the theory of complex multi-

=1

i=1 i=
plication, the following holds (see [5], p. 68):

Theorem 2.1. M, is an unramified abelian extension of K' corresponding to the ideal
group I,(9).

From now on we assume that there exists a subfield D’ (resp. D) of K’ (resp. K) such
that there is an isomorphism

Gal(K'/D") - Gal(K/D), a, > [0,],

satisfying tr @ (al°®)) = (tr @ (a))°° for every a € K. This condition was introduced in [5]. For
g€ Aut(C/D"), put

})0' = (AO', CO‘, 00-) bl
where

0,(a)=0(a""y
and g, = gy denotes the restriction of ¢ to K. Then P, is of the same type (K, @) so that
(P,: P)e Cy

can be considered. If o, is the identity map, then (P,: P)=1. It follows that for
geGal(My/D'), (P,: P) is well defined. The following is Proposition 3 in [5]:

Proposition 2.2. Let M, be the field of moduli of a structure (A, C, 0|p,), where 0| is the
restriction of 0 to D. If (K, @) is primitive (i.e. A is simple), then

Gal(My/Mp) = {c € Gal(Mg/D')|(P,: P) =1}.

Take a basic polar divisor X contained in C and consider the isogeny ¢, of 4 onto its
Picard variety:

ox:A - Pic®(4), v [X,—X].
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Then there exists an ideal f of @ which is uniquely determined by the property

@1 Ker(py) = {ye4|6()y = 0}.

It is known that {4 = (n)bg aa®, where by denotes the different of K over Q ([6], p.118).
We will write | = f(P).

Proposition 2.3 ([5], (2.7)). Assume that (K, ®) is primitive. If M, is linearly disjoint
with K’ over D', then

f(P) =f(P) VyeGal(K/D).

§ 3. Arbitrary conjugations of abelian varieties of CM-type

In this section, we review an analytic description of conjugations of abelian varieties of
CM-type under an arbitrary automorphism of C. We refer to [1] and [3] for details.

Let
re s KX — Gal(K*®/K)

denote the reciprocity law of class field theory, where K; denotes the idéle group of K and
K*®® denotes the maximal abelian extension of K in @, the algebraic closure of Q in C. Let Z
denote the profinite completion of Z and let

x:Gal(@/Q) » 2~

denote the cyclotomic character. Since the archimedean part of K, is connected in our case,
a homomorphism

7o (K® 2)* - Gal(K*®/K)
can be defined such that the diagram

K: = Gal(K*™/K)

forget components at ool lo ot
K® 2)* —— Gal(K**/K)

commutes.

Let s be an automorphism of C and put ¢:=s|y € Gal(Q/Q). Select analytic iso-
morphisms

A:C"/®(a) > A(C) and pu:C"/$*(b) - A*(C),

where °~ ) g,5iff & ~ Y 0,. Let A, and 45 denote the torsion subgroups of 4 (C) and

i=1 i=1
A*(C), respectively. Then there exists a unique g € (K ® 2)* rendering the diagram
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Kla 222, 4

ngxl lab—»a'
K/b —— A4S
po@*

tor

tor

commutative. It can be shown that modulo K* < (K ® 2)*, g depends only upon K, &,
and 0. Set

gx(o, ®)=gK e (K® 2)*/K*.

We consider Tate’s half-transfer construction. For each ¢ € @, choose an element
w, € Gal(Q/Q) such that

(Y =w¢|K'

Put w,,:=w,0. Then for each embedding 7:K — @, we have chosen an element
w, € Gal(Q/Q) such that

T=wlx and w,=w,e forallz.
Since we denote the Galois action by superscript, the order of the multiplication in

Gal(Q/Q) is opposite to that in [1] and [3]. Then, according to Tate, for each o € Gal(Q/Q)
and CM-type @ of K, there exists a unique Fy (o, ®) € Gal(K*®®/K) such that

Fi (o, ®) € [] (w,0w.") mod Gal(Q/K*)

ted

independent of the choice of a lifting w, for each ¢ € @ and the choice of an ordering of the
product. Tate called this construction the half-transfer because

Fy (0, ®) Fy (o, %) = Very g (0),

where Veryq : Gal(Q*/Q) — Gal(K**/K) denotes the transfer homomorphism. Tate
proved that there exists a unique f (o, ®) e (K ® 2)*/K* such that

(e ® 1) fx (0, D)) fx (0, ) = x(0) mod K*,
fK(fK(a’ ¢)) = FK(aa ¢) .

The following result is Theorem 3.1 of Chapter 7 in Lang [3]:

Theorem 3.1. There exists an element ec (F® 2)* which is uniquely determined
(modulo +1) by K, ®, ¢ independently of A such that

e2=1 and gg(o, D)= fy(o, D)e.
In particular A° is isomorphic to C"|&*(fa), where f = fx (o, D).
Remark 3.2. Tate conjectured that one can always take e = 1 and this was proved by

Deligne in his letter to Tate, dated Oct. 8, 1981, using his theory of absolute Hodge cycles on
abelian varieties. But full details of the proof are not yet extant.
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§ 4. Main results and their proof

In this section, we restrict ourselves to the case in which A4 is a two-dimensional abelian
variety. By changing the identification of K as a subfield of C if necessary, we may assume
that @ contains the identity. We note that the field of moduli of (4, C) coincides with the field
of moduli My, of (4, C, 8]g). By 8.4, Example (2) in [6] (p. 73—p. 74), Proposition 5.17 in
[4] (p.131), and Theorem 2.1, we have

Lemma 4.1. Assume that A is simple and the field of moduli of (A, C) is equal to Q.
Then, K is cyclic over Q and I,(®") = I. Conversely if K is cyclic over Q, then A is simple.

From now on, we assume that K/ Q is cyclic. Hence we can write that & ~ 1 @ ¢ where
oisa generator of Gal(K/Q). ThenK’ = K, &' ~ 1 @ o°. Since K/ Q is quartic and cyclic, the
following three diagrams show the only possibilities for the ramification of a prime in K/ Q:

gB4 QZ ERZ SR’Z K
p? q r v F
p q r Q.

typel typell  typelll

Let Sk (resp. Ty, Ug) be the set of prime numbers which ramify in K/Q as type I (resp.
type 11, type III).

Lemma 4.2. Suppose 1,(®') = Iy. Then Sy = {p}, Uy = 0.

Proof. LetK = Q({s), where {,, denotes a primitive m-th root of unity. Since the class
number /g of K is equal to one in this case, [, (') = Ix. On the other hand, by the theory of
cyclotomic fields, we have Sg = {5}, Ty = Uy = 0. So the lemma holds in this case.

Assume K #+ Q({5). In this case the group of roots of unity in K coincides with {+1}.
Denote by Ey the unit group of K. By Dirichlet’s unit theorem,

Eg={+1}x{e,> x7/2ZxZ.

Since 6% = g on K, €% = ¢,. So we have Ex = E. Let p be an element of Sy (Sg is nonempty
by Minkowski’s theorem). We have PP = B2 = p 0. Since P € I, (?"), there exists o« € K*
such that p Oy = («), ao® = N(*B) = p. Then we have (a¢) = (a). Accordingly there exists
g€ Ey = Epsuchthate = a/a®. Sinceee® = 1 and &2 = ¢, ¢ = 1. So we get a®> = + p. Since Fis
the unique proper intermediate field in K/Q, F= Q(]/I;). Therefore Sy = {p}.

Assume that there exists an element r of Uy. By the same argument, we obtain that
@(W) c K SoK= @([/_, W). This is a contradiction. Hence Uy = 0. O
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If Sx = {p}, then we have F= Q(]/I;) with p =2 or p =1 (mod 4). From the genus
theory of quadratic fields over Q, it follows that the narrow class number 47 of Fis odd.
Since A7 = hy or 2hg, this implies that 7 = h. Therefore we obtain that Ny q(g,) = — 1,
where ¢, is a fundamental unit of F, and A, is odd. So the canonical map

Cr = Cg, cl(b) — cl(bO)
is injective, where Cy (resp. Cy) denotes the ideal class group of K (resp. F).

Proposition 4.3. Let p be a prime number such that p =1(mod4). Let ¢, be a
Sfundamental unit of F such that ¢, > 0. Then the following assertions hold:

(@) Ifp =1 (mod B), the extension F(|/— ¢, |;p )/ F is ramified at both of the prime ideals
of F lying above (2)

(b) Ifp = 5 (mod 8), the extension F(]/— ¢, i;p) | F is unramified at the prime ideal of F
lying above (2).

Proof. Assume that p = 1 (mod 8). We have the decomposition (2) = qq’ in F, where

q and q’ are distinct prime ideals of F. We put F} := F (/- ¢, |;p ). To show that q is ramified
in F, /F, suppose to the contrary that it is unramified; thus ¢’ is also unramified. By the theory
of Kummer extensions the only primes of @ which ramify in F;/Q are 2, p, and oo, and we
have assumed 2 is unramified, so the ramification occurs at p and co. Since p is prime to the
degree of the extension F;/Q, the conductor ¢(F;/Q) of the abelian extension F,/Q is p co.
Therefore we have

F, Q).

Since Gal(Q (¢ 2/ Q) is a cyclic group of order p — 1, for each positive divisor m of p — 1,
there exists a unique subgroup C,, of order m. Since p =1 (mod 8),

(p—1)/4= 0(mod2).
On the other hand, the order of Gal(Q((,)/F,) is equal to (p — 1)/4. Therefore,
Gal(Q((,)/F) 2 C, = Gal(Q(,)/Q((,)"),
where Q({,)" denotes the maximal real subfield of Q({,). So we have

Feag)”.

This is a contradiction.

Next, assume that p = 5 (mod 8). Then q = (2) is a prime ideal of F. By the theory of
Kummer extensions of prime degree, it holds that q is unramified in F,/F if and only if

the equation : X? = — &,}/p (mod ¢?)

4.1 L
@.1) has an integral solution in F.
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Let
V1 (Op/aD) = (Cp/9)”

be the canonical projection. (0r/q)* is a cyclic group of order 3. For a (mod g2) € (0r/q%)*,
a (mod q?) € Ker () if and only if x:= (a — 1)/2 € Of. So we have the isomorphism

Ker(y) — Op/q = (Z/22Z)*, a (mod ¢*) — x (mod q).

Hence we have

(Opla®)* = (222 ® Z/3Z.
So
(4.1) holds <> (—¢,]/p)* =1 (mod ¢?).
Now we claim that q ramifies in F (]/s;) /F. Assume that this is false. Let co; be the

archimedean place of Fcorresponding to F £ C and let 0, be the other one. Then F (l/s;) |F
is unramified at co, and ramified at c,. So,

¢(F(/eo)/F) = 0,
Therefore F (]/\3;) is included in the maximal ray class field H , over F with conductor co,.

In our case H,, coincides with the Hilbert class field H, of F. Hence 2|h,. This is a
contradiction.

Similarly we get that q ramifies in F(]/—¢,)/F. These are equivalent to
¢o % + 1 (mod ¢?).
Since &3 (mod q?) € Ker (y) and

Ker(p) = {+1 (mod q?), % |/p (mod q*)} ,

we have

egsﬂ or ~—|/1;(modq2).

Next we claim that q ramifies in F(]/&, i;p) | F. In fact, we assume that this is false. Then,

c(F()/eo)P)/Q) = p.

So we have
F(J/eo)p) Q)"
Therefore, (p — 1)/2 = 0 (mod 4). This contradicts to p = 5 (mod 8).

From this we obtain

go)/p (mod a2) ¢ (O /a%))?.
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Now we assume that &) = [/p (mod q2). Then, it holds that

g0 )/p = & (mod ¢2) € ((Op/a%)*)?

and this is a contradiction. So we have

gy = — [/1; (mod q?).
Hence

(—80]/1;)3 =1(modqg?). O
Proposition 4.4. Let K be a quartic CM-field over Q and let F be the maximal real

subfield of K. Put Ty = {q,, ..., q,} (t = 0). Then K/Q is cyclic, Sy = {p}, and Uy = 0 if and
only if K has one of the following representations:

M K=Q(/—q, ~~q,80]/13), where &, is a fundamental unit of F such that e, > 0.
Moreover the prime numbers p, q,, ..., q, satisfy one of the following conditions:

(1) p=1(mod8), t21,q, g, =3 (mod4), (g) =—1(G=1,...,0);

(I,) p = 5(mod 8). Moreover if t 21,

g, q,=1(mod4) and <§>=—1 i=1,...,0;

i

(I3) p=5(mod8), t =1, q, =2. Moreover if t = 2,

<£> =—1 (i=2,...,0);
4q;

(I,) p=2. Moreover if t 21,

g =+5mod8) (i=1,...,1).

(I K=Q(/— 9, 9.&P)

p=5(mod8),t=2,49,=2,q,  q = 3(mod4), <§>=—1 (i=2,...,0.

i

Proof. (=). Let K= Q((s). By a direct calculation, we can see that K has a
representation as type (I,). Assume that K + Q({;). First we will show that

(4.2) l(Ry), ..., cl(Q)) (s Cx) = (Z/22),
where Q; is the unique prime ideal of K lying above (g;) (i =1, ..., f). Suppose that

Q‘il“'nf'=(a), aEKX’ 5i=00r1 (l=l”t)
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Then (%) = (¢5'--- ¢%). So, a* = + &f g3 -+ g®. We suppose that nis odd, i.e. n = 2m + 1.
Then we have
o)? P P
(7) =t¢&47 " ¢q".
&g

Therefore we obtain K= F(]/ +¢,q5" -~ ¢%). Since none of +¢,q% - ¢’ are totally
negative, this contradicts the fact that Kis totally imaginary. Hence we get that nis even, i.e.

n=2m. So,
2
o
(&) =+atat
€0

Since F= @(]/1_)) is the unique proper intermediate field of K/Q, we especially have
0, =-'+=9,=0. Therefore we obtain (4.2). Put

Co(K/Q) = {cl(B)|be Iy s.t. b = b} (< Cy),

where ¢ is a generator of Gal(K/Q). By (a.2) of Proposition A.1 in [5] (p.81),
|Co(K/Q)| = 2'. So we have

(4.3)  Co(K/Q) = Lcl(P), cl(RQy), ..., cl(R)) = {cl(W)), ..., cl(Q)),
where P is the prime ideal of K lying above (p). Therefore it can be written that

P=Qh--QM), aek*, A4=00r1 (i=1,...,0).
So,
(V/P) = pOx = B* = (g gi*o?).

Hence we obtain
(@t qgla)® =+ engh- g|/p.

As before we must have that n = 2m + 1 and

At At 2
g -
(————‘ )=—soq:~-~qm/é.
0

Therefore K can be written in the form

K=Q(/—q} qleolp).

From the theory of Kummer extensions, if 2 ¢ {q, ..., ¢,}, we have

On the other hand, if 2€ {q,, ..., g,} (i.e. ¢, = 2), we have

Ay=0or1l, Ay==4=1.
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If p = 1 (mod 8), then 2 ¢ T;. In particular both of the prime ideals q and ¢’ of F lying
above (2) do not ramify in the extension F(]/— q, " q,&,/p)/F. So the equation

X*=—gq, Qrsol/l;(m()d 9%

must have an integral solution in F. Since Op/q> = Z/4Z, — q, - q,&, ]/1; =1 (mod ¢2). On
the other hand, from Proposition 4.3(a), it follows that —30]/1; = 3 (mod q?). Therefore
g, - q, =3 (mod q*). Hence we get that t+=1 and g, - ¢, =3 (mod4). The other
conditions in (I,) follow from the fact that (¢;) remains prime in @(]/1;) i=1,...,0.

In the other cases we get the conditions by the same argument.

(«=). Itcan be easily shown that Q(}/— g, ' - q,&,}/P) is an imaginary cyclic quartic
extension of Q. In each case we can see that Sy = {p}, Ty = {q,, - .., ¢,}, and Uy = @ from the
theory of Kummer extensions and Proposition 4.3. 0O

Proposition 4.5. Let (K, @) be a CM-type such that K/Q is a cyclic quartic extension

and @ ~1 @ o, Gal(K/Q) = (o). Let Ty = {q,, ..., q,} (t = 0) and let Q, be the unique prime
ideal of K lying above (gq;) (i =1, ..., t). Then the following are equivalent:

Q) Ip(®) = Iy.

(i) Sx={p}, Ug =0, Cx =<cl(Q)), ..., cl(RQ,)) ® Cy, where Cy is the image of the
canonical map Cp — Cy.

Proof. (i) = (ii). From Lemma 4.2 we obtain that Sy = {p} and Uy = §. Put
Io(K/F) = Px{beI¢|b® =D},

where Py denotes the group of principal ideals in K. Then, /,(®') € I,(K/F) (see the
appendix in [5]). By the assumption,

Cx = Co(K/F) = {cl(B), cl(Q)), ..., cl(R,), Cp,
where P is the unique prime ideal of K lying above (p). From (4.3) and the fact that | C|
is odd,
Cx = {cl(Qy), ..., cl(Q)) ® C;.

(ii) = (i). For any be I, we put b:=b@, e I. Then, 66"’ = bb’ O, = (N (b)) and
N(b) N(b)® = N(b)*> = N(b). Sowe have b e I,(®') for Vb € I,.. Since Q;Q?° = Q? = (g;) and
4:9°=q?=NQ)(=1,...,1),Q;e€,(P). From the fact that P, < I,(®’), we obtain (i).

It is clear that (i) = (iii).

(iii) = (ii). Assuming (iii), we have

Cx 2@y, ..., cl(Q)) & Cp
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and

el(Q)), ...,cd(RQ)) =(Z/22), Cr=Cy.
Comparing the orders, we get (ii)). O

Proposition 4.6. Let (K, ®) be as in Proposition 4.5. Let P = (A4, C, 0) be of type
(K, @; n, a). Denote by My (resp. M) the field of moduli of (A, C, ) (resp. that of (4, C)).
Assume that 1,(®") = Iy. Then:

(a) My =K;
(b) M=Q or F.

Proof. The assertion (a) follows from Theorem 2.1. By the assumption we can put
D =D'=Q, Dand D' beingasin § 2. Since Cx = C,(K/F), it can be written that a = («) a,,
where o € K* and a, € I such that af = a,. Then P is isomorphic to the structure of type
(K, @; aa®n, ay). From Proposition 4 in [5], we obtain (F,: P) = 1. By Proposition 2.2,
0 € Gal(K/M). Hence M < F. So we get the assertion (b). O

Propositiond4.7. The notation and assumptions being as in Proposition 4.6, suppose that
f(P)Y ={(P). Let Ty = {qy, - .-, q,} (t 2 0) and let Q, be the unique prime ideal of K lying above
(g;)- Then (P, : P) can be written uniquely in the form

(P,:P)=(g" g, Q- QM) p,=00r1 (i=1,...,0.

Proof. Take an element g € éut(C) such that ¢|; = ¢ and fix it. Let P; be of type
(K, @; 7, a'). Put (v, b):=(P,: P) € Cx. Therefore

(4.4) Ni,p(B) = BB = (0’ 'a) (@’ 'a)® = aa®(a'a®) ",

On the other hand, it holds that {(P;) = f(P). In fact, putting f = §(P) and taking a basic
polar divisor X contained in C, we have
{x7€ 4°16,()x" = 0} = {x7€ 4710,(i")x" = 0}
= {x* e 4°0°()x" = 0}
= {xeA|0()x =0}
= (Ker(py)’
= {yedlpx(y) =0}
= {)’e 4% oy (%) = 0}
= Ker(¢y,).

2 Journal fiir Mathematik. Band 470
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Since X° is a basic polar divisor contained in C?% we get the claim. Consequently
(n)dbga’a’® = (n)dgaa®. So we have

4.5) aa?(a'a®) ™' = (n'n™") = (v).
By (4.4) and (4.5), we obtain Ny r(b) = (v). Since
Ker(Ngp: Cx = Cp) = {cl(Qy), ..., cl(Q)),
by multipling a suitable element {xx?, (x)} (xe K*) of F, x I, we can uniquely write
b=Q%---Q pw=0o0r1 (i=1,...,1).
"Sl:hen () = Ngp(b) = b? = (g}*- -~ q). Since v € F, , it can be written that v = gd™ g4 -+ - g/
0
(0, B) (e5'(e5)% () ™" = (gf*- -~ qp«, QY- Q).
Therefore we can uniquely write
(B:P)=(gi" g R Q). O
Proposition 4.8. Let (K, @) be as in Proposition 4.5.

(a) Let P, = (A;, C;, 0;) be of type (K, @; n;, a;) with respect to A; (i =1,2). Then A, is
isomorphic to A, if and only if a, = (¢)a, for some a€ K™.

(b) Let Py = (A5, Cs5, 05) be of type (K, °; 13, a3). Then A, is isomorphic to A if and
only if ay = (B)a” for some e K*.

Proof. We shall prove assertion (a). 4, is isomorphic to 4, if and only if there exists a
C-linear isomorphism

i:C? > C?
such that 7(#(a,)) = &(a,). Set

isomorphism induced by ©

14, 2 €28y » € (a,) 2 4,

and define the Q-algebra isomorphism
*:End®(4,) » End°(4,), fr 1 tofor.

So there exists 7e Gal (K/Q) such that the diagram

1

K —_— K

g Lo

End®(4,) —- End°(4,)
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commutes. We can write 7 = ¢ ¢ (0 < i < 3). There exists a € K* such that f/(#(1)) = & ().
Then for any ae K,

(8 (@) = 1(Sp(@(E(1))) = (i- S5(@) ($(1))
= (So(a™) < 1) ($(1))
= So(a”)($(x))
= d(aa®).

Therefore, defining the R-linear isomorphism
(c'®1)~:C? - C?
by the following commutative diagram

K®qR —25 K®R
5| | @
CZ —_— C2,

(¢'®1)"

we have 7= Sy(a) o (6’ ® 1)~. Then it holds that
7is C-linear < (¢' ® 1)~ is C-linear
< i=0.

So assertion (a) has been proved.
We can prove assertion (b) by the same argument. O

From now on, we assume the situation in Proposition 4.7. Let € Aut(C) be as in the
proof of Proposition 4.7. Put ¢ := &|g. From (a) of Proposition 4.8, it follows that

(4.6) Ax A%< p,=-=u,=0 in Proposition 4.7
< (B:P)=1.

On the other hand, by Theorem 3.1 and (b) of Proposition 4.8, we obtain
@47 Ax A< cd(fa) =cl(a”),
where f = f4 (5, ) e (K® 2)* /K~

< cl(il(f)) = cl(a™?),

where il/(f) denotes the fractional ideal in K associated to f
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= Dl = (B,

where Hy denotes the Hilbert class field of K

Hy/K
and (%) denotes the Artin symbol associated to b e I,

had ;K(f)‘Hx = <HK/K>

a2

= F(e. Ol - (1)

ay = Hy/K
< 6% 1|Hx=< K2 )

a

We put C,:=<cl(Q,),...,cl(Q,)) and C,:= Cp. By the Artin map, we can identify
Cx = C, @ C, with Gal(H/K). Let H, be the fixed field of C, and H, the fixed field of C,.
Since K/Q is Galois, Hg/Q is also Galois.

Lemma 4.9. H,/Q is abelian and H,/Q is Galois.
Proof. Set ¢':=G |y, (€ Gal(H/Q)). Then
Gal(Hg/Q) = (o', Gal(Hg/K)) =<d',C{, C,).
For any cl(b) e Cg,
(55 - (5
b b’
Since C7 = C;,we geta' "1 C;0’ = C;(i =1, 2). Therefore H;/Q is Galois (i = 1, 2). It follows

that
Gal(H,/Q) = (s, C,, C,>/C,.

1 (H'éfK) . <HK/K)'1 (HK/K> <
( o)

For any cl(b,)e C,,

So H,/Q is abelian. O
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Now we have the following Hasse diagram:
H,
K /
| ”
F
|
Q.

In fact, since F is totally real, H is also totally real. So Hpn K = F. The following
commutative diagram is well known:

Artin map

Cx — Gal(Hg/K)
(48) Nyir l l restriction
CF _A;W Gal (HF/F) .

For any cl(b,) € C,, Ngr(b,) € Pr. Consequently

(%)
b,

Therefore we have H, < H,. Since [H, : Hg] = 2, H, = (K, Hg). Thus we get the diagram.

Hf

We can write cl(a) uniquely in the form
cl(a) = cl(ay)cl(a,) (cl(a,)eC,, cl(ay)eC,, a, =a,0, a,elp),

where a is the same ideal which occurs in the definition of P = (4, C, ) being of type
(K, @; 1, a). Then from the facts Hy = (H,, Hg), cl(a)® = cl(a3) and the commutative

diagram (4.8), it follows that
H. /K
0 gy = ( ’ciﬁ )

if and only if the following two conditions are satisfied:

(4.9) 6207y, =1,

(4.10) G207y, = (HF/F>.

4
a,

Proposition 4.10. Under the assumptions in Proposition 4.7, condition (4.10) always
holds.



18 Murabayashi, Abelian surfaces

Proof. Sinceg|y, =1,6%0 7" |y, = 6|4, So there exists a unique element cl(b) € C;
such that

@l = (25).

Put g, := 6|y, (¢ Gal(Hg/Q)). Therefore

(%57) -

=o;'0}0

_ (H/F
- (%)

Consequently we have cl(b)> =1 in C;. Since A is odd, cl(b) =1 in C,. Hence ¢? = 1.

On the other hand, from the assumption f(P)? = {(P), it follows that
cl(dgaa®) € Co(K/Q) = C,.
Clearly d§ = dg. So we have
cl(aa®) =cl(a,)?e C;nC, = {1}.
Therefore cl(a,) =1 in Cg. Hence we obtain cl(a,) =1in C,. O

Proposition 4.11. Assume the situation in Proposition 4.7. Let Sy = {p} and
Tx = {41 ---» q} (t 2 0). Then condition (4.9) holds if and only if K has the expression

K=Q(/—q, " q.8)p)

where &, is a fundamental unit of F such that ¢, > 0 and the distinct prime numbersp, q,, ..., q,
satisfy one of the following conditions:

(D p =5 (mod 8). Moreover if t 21,

g;=1(mod4) and <§)=—1 (i=1,...,0;

(II) p=5(mod8), t =1, q, = 2. Moreover if t = 2,

g =1(mod4) and (-3):—1 (=2,...,1);

(III) p = 2. Moreover if t 2 1,

g;=5(mod8) (i=1,...,1).
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Proof. We note that H, is a CM-field. Put 0, := ¢|4, (€ Gal(H,/Q)). Then
3(ely,) '€ Gal(H,/K) = (2/2Z)".

Consequently o3 = 1. Therefore the order of g, is equal to 4. Let L be the fixed field of (o,
and F’ the fixed field of (o3). We have the following Hasse diagram:

— |
—
(,L - L.

So we obtain
Gal(F'/Q) ~ Gal(F/Q) @ Gal(L/Q) = (Z/22)'**.
Clearly
(4.9) holds < 63 = g|y,

<> F’ is the maximal real subfield of H,.
Now the proof will be divided into two parts: first, for 2 ¢ T, then for 2 € Ty.
First part: the case 2 ¢ T,. Take a prime ideal B of H, lying above (p) and fix it. Set
T:={¢eGal(H,/Q)|x* = x (mod P) Vxe Oy},

the inertia group of B. Let L, be the fixed field of 7' which is called the inertia field of 8. Since
the ramification index of (p) in the extension H,/Q is 4, we have |T| = 4.

Claim 1. T=Z7/47.
Proof of Claim 1. Clearly
Gal(H,/Q) = Gal(H,/K) ® Gal(H,/L), Gal(H,/L)=0o,).

Now we assume that T = (Z/2Z)*. So T has two elements v, and v, of order 2. These can be
written uniquely in the form:

"1=T1°'2ia Vz=720'§ (1,j€{0,2}),

where 1, 7, € Gal(H,/K). If (i,j) #+ (2,2), then v, or v, e Gal(H,/K). If (i,j) = (2, 2),
then vi'v, = 1 1, € Gal(H,/K). Therefore

|T~Gal(H,/K)| = 2.
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So P ramifies in H,/K and this is a contradiction. 0O
By Claim 1,

T=<{v), v=10i (i=1or3, 1eGal(H,/K)).

Since v? = g3, we have the diagram:
K
|
F
|
Q

The set of prime numbers which ramify in L,/Q is contained in 7. Since 2 ¢ Ty and
[L,: Q] =2' we have

(Ly/D)lgy " g,

where ¢, (L,/Q) denotes the finite part of the conductor of the abelian extension L,/Q.
Therefore

L Q.. q)-
Put n:=gq, - g,. For any subfield M of Q, we set
V(M):={N|N is a quadratic field over Q s.t. N M}.
Clearly V(L,) € V(Q(¢,)). Comparing the orders, we have
V(L) =V(Q(@,)).
On the other hand, since Gal(L,/Q) = (Z/2Z)',

L,=<{N|NeV(L,)>.
Therefore
F' is the maximal real subfield < L, is totally real
< Nisreal VNe V(L))
< Nisreal VYNe V(Q(,))

= Q(/(-)"T g)isreal (i =1,...,1)

< g, =1(mod4) (i=1,...,0.
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From Proposition 4.4 we obtain that

(4.9) holds < K= Q()/—q, " 4,¢0/p)

D, 4y, -- -5 q, satisfy condition (I) or (III).
Second part: the case 2e T,. Let g, = 2. Since (2) remains prime in F = @(]/1;), it
holds that p = 5 (mod 8). Take a prime ideal Q, of H, lying above (2) and fix it. Let T be

the inertia group of Q, (in H,/Q) and let L, be the fixed field of it. The ramification index of
(2) in H,/Q is 2, so we have |T'| = 2. Therefore

T=<{v), v=r103 (1eGal(H,/K)).

So we have the diagram:
H

1
L,

/
/

o——m——

In this case K has an expression of type (I;) or type (II) in Proposition 4.4.

Claim 2. If F’ (which by definition is the fixed field of {63 in H,) is the maximal real
subfield of H,, then K is not of type (II) in Proposition 4.4.

Proof of Claim 2. Assume that K has an expression of type (II). Put

a::l/——‘qz"‘qlgoi;peK.

Since (o, Q,) =1 and

2
=a""r=0=—q

b

we have Q2| (a” — ). Therefore, letting
V,:={¢eGal(H,/L,)|x* = x (mod Q") Vx e Oy}

(m = 0) be the ramification group of degree m of Q, in H,/Q, we have V,, = {1} if m 2 2.
V=V, is simply called the ramification group of Q, and it is well known that T/ V is a cyclic
group whose order divides N(,) — 1 which is odd. Since | T| = 2, we obtain

T=V=V,2V,={1}.
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Therefore, by Hasse’s conductor formula, the 2-exponent of the conductor ¢(H,/Q) is 2.
So we have

«(H,/Q) = 22P42 T gy 0.

Hence, F' < H, < Q({,: ). Comparing the orders, we have

P4q2---9¢

V(FI) = V(Q (szpq;...q,)) .

Since Q()/ —1) € Q({52,4,...4)» @/ —1) & F'. So this contradicts to that F' is totally
real. O

Now suppose K has an expression of type I; in Proposition 4.4. Set

—2q, " 4,5 /P

and let all notations be as in the diagram above. Since Q, || (8) and 3| (8® — B), it follows
that

T=V=V,=V,2V,={1}.

By Hasse’s conductor formula,
¢(H,/Q) =2%pq, -~ q,0.
We note that

V(Q() = {Q/-1), Q(1/-2), Q(/2)}.

Claim3. L, F'.
Proof of Claim 3. Suppose that L, = F'. Then

(F'/Q)pqy g,
SO

F'eQ,,.q) and V(F)SV(QE,,..q)
Since | V(F')| =2'"'—1 and | V(Q (Cpqz...qt))l = 2'—1, this is a contradiction.

Put
F''=FnL,.

By Claim 3, [F': F'] =[L,: F']=2.So
Gal(F"/Q) = (2/2z)".
Therefore we can get the following claim by the same method as in the first part.

Claim4. F”istotallyrealifand onlyif g, =1 (mod 4) (i = 2, ..., f). Moreover, if this
holds, we have

V(F") = {@(Wﬂm >0, m divides pg, """ q,} .
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Claim 5. F’ is the maximal real subfield if and only if F” is totally real.
Proof of Claim 5. 1t is clear that the former property implies the latter.

Conversely suppose the latter. It holds that

F=F"()/-1, F'(/-2), or F'()2).

Now suppose that F’ = F”(]/ —1). Then we have the following diagram:

F’ —
/
Q@/~1) ’

FI/
@ /

L

We have Q, (1 +]/—1). On the other hand, v does not fix 1+]/—1 because of

H=L(1+) 1.8 (1+)/~1)=1-}/~1and
QA+ -1 -a+y-1).

From Hasse’s conductor formula, the 2-exponent of the conductor ¢(H,/Q) is 2 and this
is a contradiction. Consequently we have

F'=F'()/=2 or F'()2).

Set K, =<K, F")». Then we have the diagram:

2
1

Kl
\F(l

K, =F'()/—29, " q.¢)P) =F”(|/ —2801217),

Since

it holds that

F'=F'()/=2) < L =F'(/e)p)
F'=F"()f2) < Ly =F'()/=e)p).

Take a prime ideal r of F” lying above (2) and fix it. Then r ramifies in either
F”(|/soi;p)/F” or F”(]/—eoi;p)/F”. In fact, suppose that r is unramified in both the

and
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extensions. Then r is unramified in F"'/F", where F"':= F”(l/soi7p, /- soi;p). Since (2)
is unramified in F”/Q, (2) is also unramified in F”’/Q. On the other hand, (2) ramifies in
F"'/Q because of F"” 2 Q(]/ —1). This is a contradiction. Combing this with the two facts:

L = F”(|/eoi;p) or F”(]/—¢&y)/p); t is unramified in L,/F" (by the definition of L), we

obtain that
L = F"(]/—-soi;p) <> r is unramified in F”(|/—60[/1;)/F”.

Therefore

F’ is the maximal real subfield <> F'= F ”(]/5)

<> r is unramified in F”(|/—£0i;p)/F”
<> the prime ideal of F lying above (2)

is unramified in F(]/:_so%)/ F.
From (b) of Proposition 4.3, the last condition is true. So we get the assertion. O
From Claim 4, Claim 5, and Proposition 4.4, we have
(4.9) holds < K= Q(/—q, " q.5)/P):
D> 41, - --» q, satisfy condition (II).
This completes the proof of Proposition 4.11. O

From the propositions in this section and the facts stated in §2, we get the main
theorem.

Theorem 4.12. Let K be a CM-field with[K : Q] = 4. Let P = (A, C, ) be a structure
formed by a two-dimensional abelian variety A defined over C, a polarization C of A, and an
injection 0 of K into End®(A) such that 6~ (End (4)) = Ok. Assume that 0(K) is stable under
the involution of End® (A) determined by C. Let | be the ideal of O which is uniquely determined
by property (2.1) in § 2.

Then A is simple and the field of moduli of (A, C) coincides with Q if and only if the
Sfollowing three conditions hold:

(a) K has an expression of the form

K= @(V—ql"'qteopp) (tz0),

where ¢, is a fundamental unit of F = Q (‘/ﬁ) suchthatey > 0andp, q,, ..., q,are distinct prime
numbers which satisfy one of the following conditions:

(a;) p =5 (mod 8). Moreover if t 21,

g;=1(mod4) and (§)=—1 (=1,....0;

i
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(a,) p=5(mod8), t =1, g, =2. Moreover if t = 2,

g =1(mod4) and <§)=—1 (=2,...,0);

(a3) p=2. Moreover if t 2 1,

g;=5(mod8) (i=1,...,0).
(b) hyx = 2'hg, where hy, denotes the class number of an algebraic numer field M.
(c) {°=T{ for every 1 € Gal(F/Q).

Proof. (=). From Proposition 2.3, we get condition (c). By Lemma 4.1, we see that
the situation in Proposition 4.7 holds. Combing Proposition 2.2 with (4.6) and (4.7), we

obtain
o Hy/K
O,ZQ 1 |H1( = ( I;Z > .

By Proposition 4.10, this is equivalent to condition (4.9). From Proposition 4.4, Proposition
4.5 and Proposition 4.11, we have conditions (a) and (b).

(==). By Proposition 4.4 and Proposition 4.5, we obtain that K is cyclic over @ and
I,(®") = I from conditions (a) and (b). By Lemma 4.1, 4 is simple. Moreover by Theorem
2.1, My = K. Combing condition (c), we get the situation in Proposition 4.7. By Proposition

411, condition (a) lmplles
H K
~2 _ll ; ( K/2 >

a

From (4.6) and (4.7), (P, : P) = 1 where o is a generator of Gal(K/Q). By Proposition 2.2,
MQ = @- O

Remark 4.13. There exist CM-fields K, which are cyclic and quartic over Q and satisfy
I,(®') = I, but which do not have one of the forms given in Theorem 4.12; for such fields
M = F + Q. By Proposition 8 in [5], for such K, ¢ must be greater or equal to 1. The
CM-fields, being cyclic and quartic over Q, with (@) = I and ¢ = 1 are all determined in
[2]. These are exactly eight fields. Among of them, just the two fields

Q(/-32+)2) = (/=301 +/2)}2)

and

Q(/-7017 + 4Y17)) = Q()/= 7@ + /1D /17)

satisfy none of the conditions (a,), (a,), and (a;) in Theorem 4.12.
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On Sprindzuk’s classification of transcendental
numbers

By Masaaki Amou*) at Kiryu

1. Introduction

In 1962 Sprindzuk [13] proposed a classification of the complex numbers, in con-
nection with that of Mabhler [9], by dividing them into four classes and he called the
numbers in these classes 4-, S-, T-, and U-numbers (cf. also [14], p.140 and [15], p.13).
The purpose of this paper is to show the existence of numbers with certain properties
related to this classification, and especially to show the existence of 7-numbers. We first
recall the definition of Sprindzuk’s classification and the several known results concerning
this classification, then we state our main results.

As usual, for both a polynomial P e Z[x] and an algebraic number «, we denote by
H(P) and H(x) the height of P and that of «, respectively. Namely, H(P) is the maximum
of the absolute values of the coefficients of P and H(x) is the height of the minimal defining
polynomial of a.

Let w be a complex number, and let w,(w, 4) be the function of positive integers d,
h defined by Mahler [9] as

w,(w, h) = min| P(w)|,

where the minimum is taken over all polynomials Pe Z[x] with degP<d, H(P)< h
satisfying P(w) # 0. Sprindzuk’s classification is based on the behaviour of w,(w, h) as well
as Mahler’s one, but in the former, the role of the variable d in the later is replaced by
that of the variable h. More precisely Sprindzuk defines

v(w, ) = lim sup 108108 (1/wa(®, 1))
d=o logd

, v(w)=supv(w,h).
heN

*) This research was partly supported by the Grant-in-Aid for Encouragement of Young Scientists (No.
04740010), the Ministry of Education, Science and Culture, Japan.
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Note that v(w, k) is nondecreasing as a function of 4. He calls v(w) the order of w. If it
is finite, he also defines

. - 1 s h . s

t(w,h) = llrdn_‘s::p %ﬁw), tH(w) = hr;lﬂsgp tl(g)g Z) .

He calls ¢(w) the type of w. In case v(w) = oo, if there exists # such that v(w, h) = oo, he
denotes by H, = H,(w) the smallest 4 for which this holds, and otherwise he puts
H, = Hy(w) = 0. In this notation Sprindzuk defines the classes of 4-, S-, T-, and U-
numbers as follows:

A-numbers: 0 <v(w) <1; if v(w)=1, then t(w) =0,
Sinumbers: 1 £ v(w) < 0] if v(w) =1, then t(w) >0,
T-numbers: v(w) = o0; H,(w) = w0,
U-numbers: v(w) = o0; Hy(w) < 0.

Then Sprindzuk [13] proved the following fundamental result.

Theorem S. (i) All algebraic numbers have orders not exceeding 1 and if an algebraic
number has order 1, then it has type 0.

(i1) All transcendental numbers have order not less than 1; a real transcendental number
of order 1 has type not less than 1, and a complex transcendental number of order 1 has type
not less than 1/2.

(ili) Almost all real and almost all complex numbers belong to the class of S-numbers
and have orders not exceeding 2.

We know from (i) and (ii) that all algebraic numbers precisely consist of the class of
A-numbers. Concerning (iii), Chudnovsky claimed the following best possible result (cf.
[3], Chap. 2, Remark 7.5).

Theorem C. Almost all real and almost all complex numbers belong to the class of S-
numbers and have order 1.

Remark. We give a proof of this result in the appendix because Chudnovsky only
gave a sketch of the proof from which it seems difficult to complete the proof.

It is natural to ask the existence of S-numbers w with v(w) = v for any given v > 1,
of U-numbers w with H,(w) = h for any given positive integer 4, and especially of 7-
numbers. One of our main results (Theorem 1 below) includes the affirmative answer to
all the questions. Let v = {v,},.n be a sequence of nonnegative real numbers (which may
contain oo) satisfying

1.1) v,=0 for h<hy, 1=Sv,Sv,,,S00 for h=h,
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with some positive integer 4,. For each such sequence v, we define
A (V) = {weR\Q|v(w, h) = v, for all h},
and define the real number », and M, as follows:
(@) If hy>1, then ms, = hy and M, = h, + 1.

(ii) If there exists a positive integer hg = 1 such that v, =1 for & < h; and v,, > 1,
then s, =1/(hy+1) and M, = 2.

(i) If v, =1 for all A, then s, =0 and M, = 2.
Further, for any real numbers a, b with 0 < a < b, we define
E(a,b) = {xeR|a<|x|<b}.
In this notation we have the following

Theorem 1. For each sequence v = {v,}, . satisfying (1.1) with some positive integer
hy, R (v) is contained and dense in E (s, M,).

Corollary. (i) There exist S-numbers w with v(w) = v for any given v > 1.
(i) There exist T-numbers.
(iii) There exist U-numbers w with H,(w) = h for any given positive integer h.

We next state our second result. Let w be a complex number, and let w,(w, #) be a
function of positive integers d, 4 defined as

Ww;(w, h) = min|w —af,

where the minimum is taken over all algebraic numbers o with dega < d, H(a) = h satis-
fying a + w. Then we define

1 ~
(@, h) = lim sup log log EO; v;d(w, h)

The function #(w, ) of h describes how well w can be approximated by algebraic numbers
of height . Let v = {v,},. n be a sequence of nonnegative real numbers (which may contain
o0) satisfying

1.2) v,=0 for h<hy, 1Sv,S00 for h2h,

with some positive integer /,. Note that v need not be a nondecreasing sequence. For each
such sequence v, we define

AWv) = {weR\Q|5(w, k) = v, for all h}.

3 Journal fiir Mathematik. Band 470
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Further, for any a 21, we write simply E(a) instead of E(1/a,a) (E(1) = @). In this
notation we have the following

_Theorem 2.  For each sequence v = {vp}nen satisfying (1.2) with some positive integer
ho, X (v) is contained and dense in E(hy + 1)\E(h,).

The plan of this paper is as follows. In the following three sections, we give preliminary
results to prove our theorems. More precisely in §2 we prove an effective version of a
theorem of Kornblum [8] on the polynomial analogue of Dirichlet’s theorem on primes
in arithmetic progressions. In § 3, using this result, we prove Proposition 2 which gives a
certain information on distribution of real algebraic numbers with given height. In §4 we
prove Lemma 2 which gives a lower bound for the distance between roots of polynomials.
The proof of our theorems are divided into two parts, namely the proof of the inclusion
relations and that of the denseness. In § 5 we prove the inclusion relations. In § 6, using
Proposition 2 and Lemma 2, we prove Proposition 3. Then we deduce the denseness from
it. Finally in § 7 we refer certain results on purely imaginary numbers analogous to Theorem
1 or Theorem 2, and propose a further problem.

The author thanks Professor K. Komatsu for referring him to the paper [6], and
Professor M. Ishibashi for sending him the paper [ 7] before publication. He is also indebted
to Professor I. Wakabayashi and the referee for valuable comments.

2. An effective version of a theorem of Kornblum

Let F,[x] be the ring of polynomials over the finite field of g elements. In 1919
Kornblum [8] proved the polynomial analogue of Dirichlet’s theorem on primes in arith-
metic progressions as follows.

Theorem K. Let A and M be relatively prime polynomials in T, [x]. Then there are
infinitely many irreducible polynomials P € [ [x] such that P = A (mod M).

The purpose of this section is to show the following effective version of Kornblum’s
theorem as a corollary to a recent result of Ishibashi [7] with the aid of Carlitz-Hayes
cyclotomic theory of rational function fields over finite fields of constants (cf. Carlitz [2],
Hayes [6]).

Proposition 1. Let A and M be relatively prime polynomials in T, [x]. Then there
exists a positive constant ¢, depending only on q such that, for each positive integer d greater
than 4degM + c, log max (2, deg M), there is an irreducible polynomial P € [, [x] satisfying
degP = d,P = A (mod M).

We shall use the following corollary to prove Proposition 2 in the next section.

Corollary. Let A € Z[x] be a nonconstant polynomial, and let h be a positive integer
with h 2 H(A). Assume that A(0) % 0 if h = 1, and that A(0) is not divisible by some prime
factor p of h if h> 1. Let n be a positive integer greater than deg A. Then, there exists a
positive constant c, depending only on h such that, for each positive integer d greater than
4n+ c,logn, there is an irreducible polynomial P € Z [x] satisfying
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degP=d, H(P)=l|a,|=h, and P = A(modx"),
where a, is the leading coefficient of P.

Proof. We put p=2if h =1, and we choose a prime factor p of 4 which does not
divide A4 (0)if 4 > 1. Let 4 be the reduction modulo p of 4. Since 4 has a nonzero constant
term by the assumption, 4 and x" are relatively prime in F,[x]. Hence, by setting ¢ = p,
A = A4, and M = x" in the proposition, we have a positive constant ¢, depending only on
p (and hence only on /) with the property stated there. Put ¢, = ¢, + 2. We show that this
¢, has the property stated in the corollary. Let d be an arbitrary positive integer greater
than 4n + ¢, logn(>4n + c,logn + 1). Then, by the proposition, we can take an irredu-
cible polynomial P € F,[x] such that degP = d', P = 4 (mod x"), where d'=d if h> 1,
d'=d—1if h> 1. This implies the existence of an irreducible polynomial Q € Z [x] such
that

degQ =d', HQ=h, and Q= A4 (modx").

Put P=Q if h=1, P= Q+ hx? if h > 1. We see that P satisfies the desired properties.
This completes the proof of the corollary.

To prove Proposition 1, we first quote a result of Ishibashi [7]. Let k be an algebraic
function field of one variable with constant field F,, and K be a finite Galois extension
over k whose constant field has degree f, over F,. We denote by G the Galois group of
the extension K/k, and by gy the genus of K. For a prime divisor p of k, we denote by

K/k
<—é—> the Artin symbol of p in G (cf. Fried-Jarden [4], Chap. 5). Further, we denote by

log, x the logarithmic function of x with base g. In this notation Ishibashi [7] proved the
following

Theorem 1. Let € be a conjugacy class in G. Then, for each positive number D greater
than 2log, {136(gx +|G|)| G|}, there exists a finite prime divisor p of k which is unrami-

K/k
fied in K such that (—é——) =€, D <deg(p)<D+2f,.

We next summarize from the results of Hayes [6], §§2—4. In the following, for any
polynomial U e [, [x], we denote by U the residue class modulo M which contains U.

) 1
Theorem H. Let M = a [| P/ be a nonconstant polynomial in F,[x], where a€[,

i=1
and each P, is a monic irreducible polynomial. Then there exists an abelian extension K over
k = [ (x) with constant field [, which satisfies the following properties:

(i) For a finite prime divisor (i.e., an irreducible polynomial) P of k, P is ramified in
K if and only if P divides M.

(i) There exists an isomorphism ¢ from the group of units of F,[x]/(M) to the Galois
group G = Gal(K/k) such that, for any finite prime divisor P which does not divide M,

K/k _
<_P_> = <P(P)-
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(ili) Put a; = q%™ — g%~V where d, is the degree of P,. Then we have

1
|G|= 1_[ ai<qdegM

i=1

and

!
degD = ), {(”iai—qd‘("i_l))d,-+(q—2)qa‘1},
i=1 _

where D is the different of K|k.

Proof of Proposition 1. We assume that M can be factorized as in Theorem H. For
this M, let K be an abelian extension over k = F (x) which satisfies the properties stated
in Theorem H. We now apply Theorem I to € = ¢ (A). Then, for each positive integer D
greater than D, = 2log, {136(gg + | G|)| G|}, there exists a finite prime divisor P of k which
. . . K k ~ .
is unramified in K such that <~Ié—) =@(A), D<degP<D+2 (i.e.,, degP=D+1).
From Theorem H (i) we deduce that P does not divide M. Hence from Theorem H (ii)
we deduce that ¢ (P) = ¢(A), namely P = A (mod M). Therefore, to complete the proof
of the proposition, it remains only to estimate D, from above. By the Hurwitz formula,
we have

2gx—2=—-2|G|+degD.

Hence, using Theorem H (iii), we have

1
28k < ), (dinj+1)a;<2q%MdegM .
i=1

This with the upper bound for |G| in Theorem H (iii) implies the desired upper bound for
D,. Thus the proof of the proposition is completed.

3. Distribution of algebraic numbers with given height

In this section we prove Proposition 2 below which plays an essential role in the
proof of our theorems. In the following, for any polynomial

P(x) = .i ax‘eZ[x] (a;#0),

i=0

we denote by A (P) the maximum of |a,| and |a,|. Also, for any algebraic number « with
minimal defining polynomial ¥, we put H(x) = H(¥).

Proposition 2. Let h be a positive integer, and let £ be a real number in E(h + 1) with
|€| % 1. Then there exist a positive constant c(&, h) depending only on &, h and an infinite
set ¥ (&, h) of positive integers associated to c(&, h) such that, for each de N (&, h), there
are at least 2h + 1)¥° real algebraic numbers « satisfying dega = d, H(®) = A(x) = h, and

(CRY |€—al <exp(—c(& h)d).
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If a complex number « satisfies P(x) = 0 for some nonzero polynomial Pe Z[x] of
height 4, then we have

1
e < <
g <lel<h+d

(cf. Shidlovskii [12], p. 30, Lemma 2). Hence we have the following corollary to the pro-
position which describes the topological closure of the set of all real algebraic numbers
with a given height.

Corollary. For each positive integer h, the set of all real algebraic numbers of height
h is contained and dense in E(h + 1).

Proof of Proposition 2. We first prove the assertion in the case where
— < i<,

To this aim, we expand 1 as a power series of £ in the form

0

(32) 1= a0,

v=

where a,’s are the integers defined uniquely by the following inductive procedure: a, is
the largest integer for which 1> a, ¢; a, is the largest integer for which 1> a, & + a, &2,
and so on. It is easily seen that 0 < a, < A4 for all v and a, # 0 for infinitely many v. For
each n such that a, + 0, we define a polynomial

P(x)=—-1+ Z a,x’,

v=1

and consider the set of all polynomials Q € Z [x] satisfying degQ <2n, H(Q) < h, and
Q = P,(mod x"*1). Obviously, this set contains (24 + 1)" elements. By the corollary to
Proposition 1, for each Q in this set and for each positive integer d greater than

42n+1)+clogn+1)

with a certain positive constant ¢ depending only on 4, there exists an irreducible polynomial
Pe Z[x] satisfying deg P = d, H(P) = |a;| = h, and P = Q (mod x?"*?'), where q, is the
leading coefficient of P. Hence, assuming n > 4 + clog(2n + 1), we have a set of (2h4 + 1)"
primitive and irreducible polynomials P € Z [x] satisfying deg P = 9n. H(P) = AP) = h,
and P = P,(mod x"*1).

We now claim that each P above has a real root « satisfying (3.1) with a certain
positive constant c(h, ¢) depending only on A, ¢ and with d =9n provided that n is
sufficiently large. To this aim, we wish to find a positive number ¢ as small as possible for
which P(é —¢) <0 < P(& + &). We shall use the equalities

(33) Plte)=PRO+{RC¢te-REO}+{PCLte—-P(ELo)}.

For any ¢ with 0 < ¢ < ¢, using (3.3) with
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P () <0, F(E—-e)—PF()=s—ae= —¢,
we have

p@—@<—aﬂP@—@—R@—@““*+%{c’

which implies that if

hén+l
1-¢

<g<¢,

then P(¢ —¢) < 0. On the other hand, for any ¢ with 0 <& <1 — £, using (3.3) with

Pn(é)g—én’ Pn(£+8)_Pn(£)gaIS;8a
we have

n+1
P +¢)> —f"-f—s—h—ié%—g—,

which implies that if

2h{U+Y/Y __1-¢

&M+ ¢ 7

then P(¢ + &) > 0. These estimates for ¢ imply our claim, and the assertion of the pro-
position in the present case holds.

Similarly we can prove the assertion in the case where —1<¢< —1/(h+1) by
expanding 1 as a power series of ¢ in the form (3.2) with integral coefficients a, which
satisfy —h<a,,_,<0,0=<a,,<hforveN.

It remains the proof in the case where 1 <|&| <h + 1. For any nonzero algebraic
number a, we have |€ —a ™| = |Ea" (6! — «)|. Hence, by noticing 1/(h +1) < |&7 1| <1,
dega ! =dega, H(a™ ') = H(x), and A(x~!) = A(x), the assertion in this case follows
from the assertions in the former cases. This completes the proof of the proposition.

Definition. For he N and e E(h + 1) with |£]| 1, we choose a positive constant
c(¢, h) and an infinite set A" (€, h) of positive integers satisfying the property stated in the
proposition, and fix them. Then, for each de A47(&, h), we define U(¢; d, h) to be the set
of all real algebraic numbers o satisfying dega = d, H(x) = H(x) = h, and (3.1).

Note that U(&; d, h) has at least (24 + 1)?/° elements. We shall use these sets in §6.



Amou, SprindZuk’s classification of transcendental numbers 35

4. Distance between roots of polynomials
The main purpose of this section is to prove Lemma 2 below which gives a lower
bound for the distance between roots of polynomials with integral coefficients. In the
following, for any polynomial R with complex coefficients, we denote by L(R) the length

of R, i.e., the sum of the absolute values of the coefficients of R. To prove Lemma 2, we
shall use the following facts on polynomials.

Lemma 1. Let R(x) be a nonzero polynomial with complex coefficients, which is
factorized as R(x) = c(x —y,) - (x —v,), where y,’s are not necessarily different. Then we
have:

(i) |R(w)| £ L(R)ymax(1,|w|)? for any complex number w.
(i) L(R/(x—1y)) £dL(R)max(1,|y])~* for any root y of R.
(i) |e|max (1, |y,]) --- max(1,]y,]) < L(R).

Among these facts, (i) is trivial. The fact (ii) is a special case of Lemma H of Giiting
[5], and the fact (iii) is a result of Mahler [10].

Lemma 2. Let P, Q be polynomials of degrees d, d’ with integral coefficients, and let
o, B be roots of P, Q with multiplicities s, s', respectively. Assume that o & B. We have:

Q) If P(B) %0 or Q(x) %0, then
| — B Z max (d,d") "' L(P)”“*) L(Q)~“).
(ii) If P(B) = 0 and Q(a) = 0, then
lo — B 2 max (d~ WO~ L(P)~2@Dis @' @IH=1[(Q)~ 2@ =1y

Remark. The reader may compare this lemma with Theorem 6’ of Giiting [5]. While
Giiting’s theorem has good dependence on the heights of polynomials, our lemma has
good dependence on the degrees of polynomials.

Proof of Lemma 2. For the proof of (i), assume that P(f) + 0. Let

P(x)=a ﬁ (x =) (¢ =0,5 =5)

i=1

and

v =b [ x—F) Br=p).

i=1

where ¥ is the minimal defining polynomial of . Our starting point is the equality
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|P(B)]
i .
lal 1 18~ al*

o= Bl =

Using Lemma 1 (i) and (ii), we have

1
lal TT 18— ol* < dL(P)ymax(1,|B)*"*max (1, )"

i=2

Since P(p) # 0, the two polynomials ¥ and P are relatively prime. This implies that their
resultant

q
r(¥,P)="b"[] P(B)
j=1
is a nonzero integer. Hence, using Lemma 1 (i) for | P(B;)| with j = 2, ..., g, we have

q —d
|P(B)IZb~L(P)' 1 ( I_Iz max (1, Iﬁ;l)) .

These estimates yield that

Ia—ﬁlszd“L(P)“‘(b 11 maX(1,|B,~I)>_d.
j=1

J

Since Q is divisible by ¥* in Z [x], we have g < d'/s". Also, by Lemma 1 (iii), we have

(b [T max(. Iﬂﬂ))s <L©).

Hence we obtain

|~ Blzd ™ L(P)"“I*IL(Q) ™).
The assertion of (i) now follows from the symmetry of the role of « and that of f.

For the proof of (ii), let us express P as in the proof of (i) but with a, = f, a, = «,
and s, = 5. In this case our starting point is the equality

| P (B) /5!

=Bl = .
lal T1 18~ "

Using Lemma 1 (i) and (ii), we have
1
lal [T 18—l £ d***1 L(P)max(1,]|B])*~*~ > max (1, |a])~*.
i=3

To estimate | P*Y(B)/s,!| from below, we use the semidiscriminant
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SD(P) = a2 ﬁ (P (o) /s;1)
i=1

11

of P defined by Chudnovsky. Since SD (P) is a nonzero integer (cf. Chudnovsky [3], p. 35),
using Lemma 1 (i) and (ii) for | P“)(a;)/s;!| with i =2, ..., I, we have

1
|a|-<‘*-2>d"<sz+"'*S”L(P)‘“‘“< 11 max(1,|ait)-“-w>
i=2

as a lower bound for | P“V(B)/s,!|. These estimates yield that

! -@d-2)
|a—ﬁ|séd_("”’L(P)"<|alH maX(LI%l)) :

i=1

Therefore, using / £ d and Lemma 1 (iii), we obtain
‘a _ ﬂl g d~(d/s)~1L(P)~2(d—1)/s .

The assertion of (ii) now follows from the symmetry of the role of « and that of S. This
completes the proof of the lemma.

For later convenience, we state the following corollary to the lemma.
Corollary. With the notation as in the lemma, if o. % f3, then we have
log|a— B> — ((d+d")log(d+d"))/max(s,s’),
where the constant implied by the symbol >> depends only on the heights of P and Q.

At the end of this section, we quote a result of Chudnovsky (cf. [3], Chap. 2, Lemma
1.12) which shall be used in §6 and the appendix.

Lemma 3. Let w be a complex number. Let Pe Z[x] be a polynomial of degree d,
and let o« be a root of P nearest to w. Then we have

|P(0)| 2| —a|* {2d%(d+ 1) H(P)*} ¢+,

where s is the multiplicity of o in P.

5. Proof of the inclusion relations

In this section we shall prove the inclusion relations stated in Theorems 1 and 2,
namely:

(@) #() = E(m,, M,);

(b) Z(V) = E(ho + 1)\E (ko).
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Lemma 4. Let h be a positive integer, and let w be a nonzero real nhumber. We have:
) Ifo<|w|=1/(h+1), then v(w, h) = 1.
(i1) If w is a transcendental number in E(h + 1), then v(w, h) = 1.
(i) If |o| = h+ 1, then v(w, h) = 0.

Proof. We first prove (iii). Let P be a polynomial of degree d =1 and height at
most 4. Then we have
d—1 h I w |d h

lol*—h Y o) =]o|’- +
,-;o lo| -1 " Jo| -1

as a lower bound for | P(w)|. Since |w| = h + 1, this bound is not smaller than 4/ (|w| — 1),
which does not depend on d. This implies (iii).

For the proof of (i), let P be as above and denote by P the reciprocal of P. Since
|1/w| = h + 1, as in the proof of (iii), we have 4 /(|1/w| — 1) as a lower bound for | P(1/w)|.
Hence we have h|w | *!/(1 — |w|) as a lower bound for | P(w)|. This implies that v(w, k) < 1.
On the other hand, we easily see that the opposite inequality v(w, #) = 1 holds by considering
a series of the values | P(w)|, where P ranges over all polynomials of the form P(x) = x*.
Therefore (i) holds.

Finally, we prove (ii) by using the pigeon-hole principle (cf. Baker [1], p.87). Let
B*(d, h) be the set of all polynomials of degree at most d with integral coefficients between
0 and 4 inclusive. Then PB*(d,h) contains (h+1)?*! elements. Further, for each
PePB*(d, h), we have

|P(w)| £ (d+1)h{max(1, | o))}’ = c(w;d, h), say.

Hence, if we devide the interval [ —c(w; d, h), c(w; d, h)] into (h + 1)? disjoint subintervals
each of length 2(d+ 1) A {max (1, |w|)/(h + 1)}*, then there exist two distinct polynomials
P, and P, in B*(d, h) such that P,(w) and P,(w) belong to the same subinterval. Put
P =P — P, Since PeZ[x] is a nonzero polynomial of degree at most 4 and height at
most 4 which satisfies

|P(0)] £2(d+ 1) h{max(1, |w])/(h + 1D},

using |w| < h+ 1, we obtain the desired inequality. This completes the proof of the
lemma.

The inclusion relation (a) obviously follows from this lemma. Moreover, we see
from this lemma that if w is an arbitrarily given real transcendental number, then a sequence
v = {v,}nen defined by v, = v(w, h) satisfies (1.1) with some positive integer A,.

We now turn to the inclusion relation (b). It is a consequence of the following lemma
which also shows that, if w is an arbitrarily given transcendental number, then a sequence
v = {0, },cn defined by v, = §(w, h) satisfies (1.2) with some positive integer 4.
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Lemma 5. Let h be a positive integer, and let w be a real number which is different
from +1, h+1, and 1/(h + 1). We have:

(1) Ifwisin E(h+1), then i(w,h) 2 1.
(ii) If w is not in E(h+ 1), then d(w, h) = 0.

Proof. Obvious from Proposition 2 and its corollary.

6. Proof of the denseness
In this section we prove Proposition 3 below and deduce the assertions of the den-
seness of our theorems from it. To state the proposition, we introduce two functions @ (d)

and 4(d, h) as follows. First, @ (d) is a nondecreasing positive function of positive integers
d which satisfies

(6.1) d(logd)* = 0(®(d)), @(d)=o0(d(logd)***)
for any ¢ > 0, as d tends to infinity. Secondly, 4(d, /) is a function of positive integers d,

h such that, for each fixed h, 4(d, h) is a nondecreasing positive function of d which
satisfies

6.2) d(logd)® = 0(4(d, h))
as d tends to infinity. We note that this estimate need not hold uniformly in A.
Proposition 3. Let [ be a positive integer, and let 1, < E(/ + 1)\E (/) be a nonempty
open interval whose endpoints are also contained in E(I + 1)\E (/). In case | = 1, we assume
that 1, does not contain +1. Let ®(d) and A(d, h) be as above. Further, let {h;}; . be a
sequence of positive integers greater than or equal to | taking each value h 2 [ infinitely often.
Then there exist an increasing and bounded sequence of real algebraic numbers {y;} ;. with

H(y) = A (¥;) = h; and a sequence of positive numbers {A;} ;. satisfying the following pro-
perties: If we put w the limit of y;’s, then, for each j, we have

. 1
) Z OXP(—4) <=y <exp(—4),
where A; = A(d,, h;) with the degree d; of v;.

(i) For any pair (P,a)e Z[x] x Q with P+ 0, P(x) =0, and a *7,,7y,, ..., we have

| —a| Z exp (=D (P, )

with
(6.3) D(P,a) =y @(d)/s,

where d and s denote the degree of P and the multiplicity of a in P, respectively.
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Proof. We wish to construct y;’s and 4;’s in order of y;, 4,, ,, 4,, ... so that for
each j, y; and 4; satisfy six conditions (I;)~(VI;) below. Our method deeply depends on

the one developed by Schmidt [11] for constructing certain numbers related to Mahler’s
classification, especially for constructing Mahler’s T-numbers.

In the following we denote by (P, «) an arbitrary element of Z [x] x @ with
P+0, P(x)=0.

Also, for any pair (P, a) as above, we use the letters 4 and s for denoting the degree of P
and the multiplicity of « in P, respectively. Further, for any real algebraic number y, we
denote by I(y) the open interval consisting of all real numbers x which satisfy

1 1
7 &P (=4 (degy, H@)) <x—y< 3 exp(—4(degy, H®))) .

Under the notation and the assumptions as in the proposition, the first three conditions
are as follows:

(I;) v;is a real algebraic number in I(y;_,) with H(y;) = A (7;) = h;. Also we have
1
I(y) = Lo, [T = 3 |1(y; )| Here I(y; ;) means I, in the case where j = 1 and | - | denotes

the length of intervals.
(I;) For any pair (P, a) such that H(P)<j—1, a*7y,,...,7;, and
D(P,a)>A;_, = A(d;_y,h;_;)
with degree d;_, of y;_,, we have
ly; — a| > 2exp (—D(P, ).

(II1;}) For any pair (P, ) with H(P) = j, « % 7, the same inequality as in (II)) is
satisfied.

Further conditions are more technical and necessary only to construct y;, 4; with
(I;)—(III;) successfully. Therefore, before stating such conditions, we explain how to
deduce (i;) and (ii) from the above conditions. We first show that (I;) for i = j imply (i)).
In fact, the lower bound for w — y; in (i;) follows from ;. , € I(y;) and from the fact that
{y:}icn 1s increasing. On the other hand, using y; ., € I(y;) for i 2 j, we have

© 1 0
w=Y= .Z.('))i+l = 7)< 5 .Z'exp(—A'.),
1=J i=j

1 . 1 Lo s .
Hence, using |I(y,)| = 5“(7:—1”’ ie,exp(—4,) = —2-exp(——A._1) for i = j + 1, we obtain

4
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12 ...
® =<7 Z 277 texp(—4;) = exp(—4,).
i=j
This gives the upper bound for w — y; in (i)).
We next claim that (I,)-(III,) for i =1, ...,/ imply

|y, — ol > exp (= D(P, )
for all pairs (P, «) with H(P) < j, « # y;, ..., ;- The condition (ii) clearly follows from this
claim. To prove the claim, in view of (II;) and (IIL)), it is enough to show the above
inequalities for all pairs (P,a) with H(P)<j—1, a#7;,...,7;, and D(P,a) £ 4;_,. Let
(P, o) be such a pair and put H(P) = h. Following an argument of Schmidt [11], p.284,

we choose the smallest k = /4 such that D(P, a) < 4,. Then, in either case where k > h or
k = h, we deduce from (I,) for i =k, ..., j and (II,) or (III,), respectively, that

1y, — ol 2 |7 — @l — 7, — vl > 2exp (= D(P, ) —exp(—4,) .
Since D (P, «) < 4,, we obtain the desired inequalities.

To state further conditions, we introduce a nondecreasing positive function ¢(d) of
positive integers d with ¢ (1) = 1 which satisfies

(6.4) logd = 0(p(d)), d(logd)* = o(®(d)/(d))
as d tends to infinity. Then we impose further three conditions as follows:
(V) 1£4;=d;(logd))>.
(V;) For any pair (P, o) with H(P) £ j, d = deg P < d;/ logd;, we have
|7, — ol > dexp(—4;/0(d)).
(VI;) The set J;, consisting of all real numbers x € I; = I(y;) such that
|x —a| > 3exp(—D(P, @)/ ¢(d))
holds for all pairs (P, o) with H(P) < j, a # ¥y, ..., 7;, and D(P, a) > 4, is a nonempty set.
In the following argument to construct y; and 4;, for simplicity, we write 4 >>; B

for positive numbers A4, B if there exists a positive constant ¢ depending only on j, 4; such
that 4 = ¢B. We now start our inductive construction of y,’s and A;’s.

Construction of y, and A,: Let &, be an arbitrary number in I,. Then, by Propo-
sition 2, there exist infinitely many positive integers d, such that U (¢,;d,, h,) = 1,, where
U(&,;dy, hy) is the set defined in §3 after the proof of Proposition 2. We show that there
exist y, e U(&,;d,, hy) and A, satisfying (I,)—(V,) whenever d; is sufficiently large. Put
U, = U(¢,;d,, h,) with sufficiently large d,. Obviously, every y, e U, satisfies (I,). There
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is no condition (II,). We claim that there exists A, with (IV,) such that each y, e U, and
A satisfy (III,). In fact, for any y; € U, and any pair (P, «) with H(P) =1, a % y,, we have

log|y, —a| >, —((d+d,)log(d+d)))/s
by the corollary to Lemma 2. In view of (6.1) and (6.3), this implies our claim.

We next show the existence of y, € U, satisfying (V,). Let y, 7" € U,. By Lemma 2, the
mutual distance of y and y’ is larger than exp(—4d,logd,). On the other hand, in view
of (6.1), (6.2), and (6.4), we have

dylogd, = 0(4,/¢(d,))

as d; tends to infinity. Hence, for each pair (P,a), we have at most one element in I,
whose distance from « is not larger than 4exp(—4,/¢(d,)). Let 4 be the number of all
elements in A, and let B be that of all pairs (P, «) with H(P) =1, deg P < d,/logd,. Since

A= (2}11 + 1)d1/9’ B= (dl/logd1)31+d1/logd1 ,

the above observation implies the existence of y, € U, satisfying (V,). Thus we have obtained
y, and 4, satisfying (I,)—(V,) with sufficiently large d,.

We can also prove that there exists a positive constant C, depending only on ¢, &,
4, hy such that y;, and 4, above satisfy (VI,) provided that d; > C,. Let us postpone the
proof.

Construction of y; and A; for j > 1. Assume that j> 1 and that

Visees V=15 Ars-ordjoyg

with the desired properties have been constructed. In particular, we have a nonempty set
J;_, defined in (VI;_,). Let £; be an arbitrary number in J; _,. Since J; _, is a subset of
I, _,, by Proposition 2, there exist infinitely many positive integers d; such that

u(f,, i ) <l

As in the step where j =1, we show that there exist yjeu@j; d;, h;) and 4; satisfying
(I;)-(V;) whenever dj is sufﬁc1ently large. Put U; = U(¢;; d;, k) with sufficiently large d;.
Obv10usly, every y; € 1I satisfies (I;). We claim that every y; € H ; satisfies (II;). Let y;e U,
and let (P, a) be any pair with H(P) sj—1,a%y,...,7, and D(P,a) > 4;_,. Assume
first that D(P,a)/@(d) = c(¢), hj)d;, where c(¢;, J) is the constant appeared in the
definition of U;. Then, by the definition of J; _; and that of U;, we have

1&j—al>3exp(=D(P,a)/@(d)), |y—¢&l<exp(—c(&;h)d,).

Hence, using |y; — a| 2 |¢; — a| — |y; — &;|, we have the desired inequality since ¢(d) 2 1.
Assume next that D(P, a)/ @ (d) > c(¢;, h;) d;. Then d is sufficiently large since d; is suffi-
ciently large. Applying the corollary to Lemma 2, we have
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e (e DB b
log|y; — o] >, (<d+c(fj’hj)fp(d)>log<d+ C(éj’hj)‘p(d)>>/s‘

In view of (6.1), (6.3), (6.4), and the above observation for d, this implies the desired
inequality.

To show the existence of y; € I; and 4; satisfying the rest of the conditions (II1,)-(V)),
we can apply the same argument as in the case where j = 1. Thus we have obtained
7€ W(;; d;, hy) and J; satisfying (I;)—(V;) with sufficiently large d;. We now turn to the
final stage of the proof.

Nonemptiness of J;: Assume that y; and 4; satisfy (I;)-(V;). We show that there is
a positive constant C; depending only on ¢, @, 4, j, hj, A, ..., 4;_, such that y; and 4;
satisfy (VI;) provided that d;> C;. Let C; be a sufficiently large constant depending only
on the quantities listed above, and assume that d; > C;. We first claim that, for each x € I,
|x —a| > 3exp(—D(P,0)/ ¢(d))
holds for all pairs (P, «) with H(P) <j, « # 7, ..., ;, and
D(P,a)> 4;> D(P,a)/(¢(d)logd).

We consider two cases. Assume first that d < d;/logd;. Then, by (V;) and x eI, we have
1
|x —al Z |y —al = |x =y > dexp(—4;/¢(d)) - sexp(—4),

which with ¢ (d;) 2 1 implies|x — a| > 3exp (— 4,/ ¢(d;)). Hence, using D(P, o) > 4;,d < d,
we obtain the desired inequalities. Assume next that d > d;/logd;. Then, by the corollary
to Lemma 2 and x €I;, we have

log'Vj"“' >>j_d(10gd)2/sa IOglx_)’jl < —4;

j*

In view of 4,> D(P,)/(¢(d)logd), (6.3), (6.4), and A; 2 1 in (IV)) if H(P) = j, we deduce
from the above inequalities that

Iy —alZ2lx—yl, |y—al>6exp(=D(P,a)/¢(d)).
Hence we obtain
lx—al 2|y —al —|x =y >3exp(=D(P,0)/ 9(d)),
as desired. Thus we have shown our claim.
Noticing the above claim, for each pair (P, ) with
H(P)Sj, a%y,...,7, D(P,a)>4;, and D(P,0)/(¢(d)logd) 2 4;,
we define an interval (which may be an empty set)

6.5) X(P,a) = {xeL;||x—a| < 3exp(—D(P,a) /0 (d))} .
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Then we denote by X the union of all these intervals and by ¥, , the union of all these
intervals with deg P = d, H(P) = h. Since J; = I; \% our task is to show that the Lebesgue
measure u(¥) of ¥ is smaller than the length |I | of I;. We next claim that, for any pairs
(P,a), (Q,p) withdegP =degQ =d, H(P) = H(Q) h, and o % B, X(P, o) and X(Q, )
are disjoint. In fact, by the corollary to Lemma 2, we have

(6.6) log|a — B| >; — (dlogd)/max (s, s"),
where s, s’ are multiplicities of o, B in P, Q, respectively. In view of D(P, «) > 4;, (6.2),
(6.3), and 4; < d;(logd; )2 in (IV)) if h = j, we may assume that d > c¢; with a sufficiently
large constant ¢; which is determmed by C;. Hence (6.4)-(6.6) and 4; 21 in (IV)) if h =

imply our clalm Therefore %d » 1s the diSJomt union of the intervals %1, ..y X,,, say, where
X, = X (P, o;) with deg P, = d, H(P,) = h. We wish to show that

(6.7) pXyp) = Y 1%] < Texp(—4;logd).
i=1

Fori=1,...,m, let a; and b, be the left and the right end points of X,, respectively. We
may assume that a; <a, < --- <a,. Then put 9, =[b;,a;,,] fori=1,...,m—1, and
put I; = [a,, b, ,,]. Again by (6.4)-(6.6), d>c;, and 4;=21 in (IV)) if & =j, we have
|X;] 19,4 fori=1,...,m — 1. Hence we obtain

m-—1 m-—1 m-1 logd
DINEAFSDY I‘Dil‘”"é( Y I‘Dil> < exp(—4;logd) .
i=1 i=1 i=1

Also, by (6.5) and D(P,, a,,)/(¢(d)logd) = 4;, we have
Ixml é 6exp(_D(Pma “m)/(P(d)) _S_ 6exp(—AJ10gd) .

From these estimates we deduce (6.7). Consequently, using (6.7) with d>c¢;, h=1,...,],
we obtain

J
pE)< Y Y Texp(—d;logd)=17j Y d~4,

h=1 d>cj d>cj

which implies that (%) <|I ;1, as desired. This completes the proof of the nonemptiness
of J;, and hence that of the proposition.

We now prove the denseness stated in Theorems 1 and 2, namely:
(@) #(v) is dense in E(s,, M,);
(b) #(v) is dense in E(k, + 1)\E (k).

Proof of (b). We apply Proposition 3 by taking / = h,, I, = E(h, + 1)\E(h,) and
assuming
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. logd(d,n)
©8) dh_'rr:o logd "

for each fixed h with h = hy. Then we have {y));cn, {4;}en, and @ with the properties
stated in the proposition. We wish to show that w € Z(v). In view of (i;)’s and (ii), w is a
transcendental number. Since w e, = E(h, + 1)\E(h,), we see from Lemma 5 (ii) that
¥(w, h) = 0 for all h < h,. We next show that &(w, h) = v, for all h = h,. We see from the
upper bounds in (i;)’s with (6.8) that &(w, h) = v, for all & = h;. On the other hand, we see
from the lower bounds in (i;)’s with (6.8) and from (ii) with (6.1), (6.3) that ﬁ(a),~h) v,
for all 4= h,. Thus we have shown that (w, h) = v, for all h. Therefore w e % (v), as
desired. Since we can choose I, with I, = E(h, + 1)\E(4,) arbitrarily, (b) holds.

Proof of (a). Since E(s,, M,) is the disjoint union of the sets
E (s, M,) " (E(k + 1)\E(k))

for ke N, it is enough to show that £ (v) is dense in each of these sets. So we choose a
positive integer k arbitrarily such that E(s,, M,) N (E(k + 1) \E(k)) is nonempty. For such
k, we can easily see that k = h,. We now apply Proposition 3 by taking

I=k, I,cE(m, M) (EE+1)\EK))

and assuming (6.8) for each fixed 4 with 4 >=1. Then we have {y;};.n, {4} jen» and @
with the properties stated in the proposition. We wish to show that w € Z(v). As in the
proof of (b), w is a transcendental number. To show that v(w, h) = v, for all h <k, we
consider two cases. We first assume that 4, > 1. Then k£ must be equal to h,. Hence, by
Lemma 4 (iii), v(w, h) = 0 for all A < k (= h,). We next assume that s, = 1. If k =1, then
we have nothing to prove. If k> 1, then we have |w|<1/k. Hence, by Lemma 4 (i),
v(w,h) =1 for all h<k. By using |w|=<1/k, we also have k < h; in the case where
m, =1/(h{ + 1). Therefore we have shown the desired equalities.

We next show that v(w, h) = v, for an arbitrarily fixed # = k (= h,). To show that
v(w, h) 2 v,, we consider only the suffices such that #; = 4. Then, in view of (i;)’s, d; tends
to infinity as j tends to infinity. Let ¥; be the minimal defining polynomial of ;. Since
|y| <h+1 for any root y of ¥; (cf. §3), we have

|¥(@)| <h(lo|+h+ 1" o -yl

Hence, by (6.2), we have | ¥;(w)| < exp (—4;/2) for all sufficiently large j. This with (6.8)
implies that v(w, h) = v,. To show that v(w, h) < v,, we may assume that v, < co. Let ¢ be
an arbitrary positive number. Then, by (6.8) and (1.1), we have a positive constant c(e)
such that

(6.9) A, h') < c(e)d™**

holds for all de N and all »’ with A’ £ h. Let P be an arbitrary polynomial with integral
coefficients of degree at most d and height at most 4, and let « be a root of P nearest to

4 Journal fiir Mathematik Band 470
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. Our task is to estimate | P(w)| from below by assuming that d is sufficiently large. By
Lemma 3, we have

(6.10) |P(0)| 2|0 —al*d™*,
where s is the multiplicity of « in P. We first assume that o = y; for some j. Then, com-
bining (6.10) with the lower bound in (i;), we have —s4(d;, h;) — Sdlogd as a lower bound

for log| P(w)|. Since y; is a root of P, we have sd; <d. Also, by H(y;) = I?(yj) = h;, we
have h; < h. Hence, by (6.9), we obtain

(6.11) log|P(w)| = —c(e)d™"*—5dlogd.
We next assume that o = y; for all j. Then, combining (6.10) with (ii), we have
(6.12) log| P(w)| 2 —Agp,P(d) — 4dlogd.
We now deduce the desired inequality from (6.11) and from (6.12) with (6.1). This com-
pletes the proof of (a), and that of Theorems 1 and 2.
7. Purely imaginary case and a further problem

We can obtain certain results for purely imaginary numbers analogous to Theorem
1 or Theorem 2. In this section we refer such results (Theorems 3 and 4 below) and propose
a further problem. We first state the result analogous to Theorem 1. For each sequence
v = {v,},n satisfying (1.1) with some positive integer s, we define

S ={/—-1we)/—1R\Q|v()/ —1w, h) = v, for all h},
and define the real numbers », and M, as follows:
() If hy> 1, then m, = |/hy and M, =}/h, + 1.

(i) If there exists a positive integer ho 2 1 such that v, = 1 for all h < hg and v, > 1,

then m, =1/)/hy+1 and M, = |/2.
(iii) If v, = 1 for all h, then s, = 0 and M, = /2.
Further, for any real numbers a, b with 0 < a <b, we define
E'(a,b)={)/~1xe)/~1R|a<|x| <b}.
In this notation we have the following

Theorem 3. For each sequence v = {v,},.n Satisfying (1.1) with some positive integer
hy, F (V) is contained and dense in E'(ss.,, M.).
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We next state the result analogous to Theorem 2. For each sequence v = {v,},cn
satisfying (1.2) with some positive integer k., we define

Fv) = {V —1oe) —1R\Q|i()/ —1w, h) = v, for all A} .

Further, for any a = 1, we write simply E’(a) instead of E’(l/[/a, [/E) (E’(1) = 0). Then
we have the following

~Theorem 4. For each sequence v = {v,},.n satisfying (1.2) with some positive integer
hy, F(v) is contained and dense in E'(hy + 1)\E'(h,).

For the proof of these theorems, we need the following proposition which is an easy
consequence of Proposition 2.

Proposition 2. Let h be a positive integer, and let n be a purely imaginary number
in E'(h + 1) with |n| % 1. Then there exist a positive constant c¢(n, h) depending only on n, h
and an infinite set N"'(n, h) of positive integers associated to c(n, h) such that, for each
de N'(n, h), there are at least (2h + 1)%/'8 purely imaginary algebraic numbers B satisfying
degp=d, H(P) = H(P) = h, and

(7.1) In— Bl <exp(—c(n,hd).

Proof. Put & =n?. Since ¢ e E(h+ 1) with |£] %1, we can apply Proposition 2 to
&. So we have a positive constant c(&, h) and an infinite sequence A7(¢, k) of positive
integers with the property stated in Proposition 2. Let d'e A4"(&, k), and let « be a real
algebraic number satisfying dego = d’, H(a) = H(x) = h, and

& —al <exp(—c(hd).

Assume that d’ is sufficiently large, and put d = 2d". Since ¢ <0, we have a < 0. Hence
the square roots of « are purely imaginary numbers. Let  be the square root of « which
satisfies 7 <0. We claim that § is a purely imaginary algebraic number satisfying
degf =d, H(B) = H(B) = h, and (7.1) with some c(y, k). Since « <0, « can not be a
square in the number field Q (). Therefore, by a well known theorem of Abel and the fact
that Q(a, f) = Q(p), B has degree d. So, if we denote by P the minimal defining poly-
nomial of «, then that of f is P(x?). Hence we have H(B) = H(B) = h. Finally, using the
equality |n — | = |€ —a|/|n + B, we obtain the desired upper bound for |# — f|. Thus
we have shown our claim. This implies the desired assertion, and the proof of the proposi-
tion is completed.

Corollary. For each positive integer h, the set of all purely imaginary algebraic numbers
of height h is contained and dense in E'(h + 1).

Proof. Let B be a purely imaginary algebraic number of height A, and let P be its
minimal defining polynomial. Since we can represent P as P(x) = P, (x?) + x P,(x?) with
P,,P,eZ[x] and B is purely imaginary, we have P,(*) = P,(f*) = 0. Hence, by the
result quoted in § 3 before the corollary to Proposition 2, we have e E(h + 1), and so
BeE’'(h+1). Combining this with Proposition 2’, we obtain the desired assertion. This
completes the proof of the corollary.
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The proof of Theorems 3 and 4 can be carried out by the similar way to that of
Theorems 1 and 2 by using Proposition 2’ and Lemma 2. So we omit it.

Finally, we propose a problem which generalizes Theorems 1-4. For each sequence
v = {v,},n satisfying (1.1) or (1.2) with some positive integer A, and for a root of unity
{, we define

FW; ) ={{welR\Q|v(w,h) = v, for all h}
or

Fv;0) = {{welR\Q|i{w,h) = v, for all h},
respectively. Then we propose the following

Problem. What are the topological closures of & (v;{) and & (v;{)?
Since Z(v) = L (v; +1), #(v) = P(v; +1), (V) = L(v; + I/ —1), and
FW=F w1}/ -1,

Theorems 1-4 solve the problem in the case where { = +1, + /-1

Appendix

In this appendix we prove Theorem C’ below which implies Theorem C stated in the
introduction.

Theorem C’. Let h be a positive integer. Then almost all real and almost all complex
numbers  satisfy

) | P(0)] > exp (—c(w, h)dlog((d+1)h))

for all nonzero polynomials P € Z [x] with H(P) < h, where d denotes the degree of P and
c(w, h) is a positive constant depending only on w and h.

Remark. Chudnovsky claimed a more general result as follows (cf. [3], Chap. 2,
Remark 7.5): Almost all real and almost all complex numbers w satisfy

| P(w)| > exp (—6dlog(dh))

for all nonzero polynomials P € Z [x] with dh = c(w), where d and h denote the degree and
the height of P, respectively, and c(w) is a positive constant depending only on w.

However we have not succeeded in proving this assertion.

For the proof of Theorem C’, we need the following simple result.
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Lemma 6. Let A be a positive number. Let P € Z [x] be a polynomial of degree d and
height h, and let a be a nonzero root of P with multiplicity s. Assume that
s= Alog((d+1)h).
Then we have

1 1
e is|a|Ze7.
Proof. This is a consequence of Lemma 1 (iii). In fact, from it we have
max (1, |a|)* S L(P)=(d+1)h,

which with the assumption for s implies the desired upper bound for |«|. If we consider
the reciprocal P of P, then we get the same upper bound for |1/«|. This implies the desired
lower bound for |«|. Thus the proof of the lemma is completed.

Proof of Theorem C'. Since the proof for the assertion in C is the same as that for
the assertion in R, we prove only the assertion in R. For any positive number y, we denote
by X(y) the set of all real numbers w satisfying

|P(w)| < exp(—ydlog((d+1)h))

for infinitely many polynomials P e Z[x] with H(P) < h, P(0) #+ 0, where d denotes the
degree of P. Put

X= () ¥@¢), R=R\X.

y>0

Since it is easily seen that each w e R satisfies (1) with some c(w, ) for all nonzero
polynomials P e Z [x] with H(P) £ h, our task is to show that X has measure 0. We note
that if y <y’, then X(y) > X(y'). So it is enough to prove the following claim: For any
¢ > 0, there exists y > 0 such that u(X(y)) <e, where u denotes the Lebesgue measure
on R.

In the following, for simplicity, we denote by (P, ) an arbitrary element of Z [x] x @
with H(P) < h, P(0) +0, and P(x) = 0. Also, for any pair (P,«) as above, we use the
letters d and s for denoting the degree of P and the multiplicity of « in P, respectively.

Let y and /A be positive numbers such that both A and y/2 are sufficiently large. For

any w e X(y), by Lemma 3 and the definition of X(y), there exist infinitely many pairs
(P, o) satisfying

@ -l sexp(— Tlog(@+ 1),

where 7’ = y — 4. We here denote by X, (resp. X,) the set of all w € X(y) satisfying (2) for
infinitely many pairs (P, &) with

s<Alog((d+1)h) (resp.s=Alog((d+1)h)).

Then X(y) = X, U?%,. We first show that u(¥X,) = 0. For any pair (P, «), we define
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J(P,a) = {we Rllw—al<exp<——?z,d>}.

Then, by the definition of X,, each w € X, belongs to infinitely many 3 (P, «)’s. Since the
number of all pairs (P, «) with deg P = d, H(P) < h is less than d(2A + 1)¢*!, we have

pE)< Y 2dQh+1)**Lexp (- ZI d)

d=2do

for arbitrarily large d,. This implies that u(¥,) = 0. We next estimate x(X,) from above.
For each w € X,, by the definition of X, and Lemma 6, there exist infinitely many pairs
(P, o) satisfying

lo—a| < exp(—y'log((d +1)h)), e %<|a|<ex.

Hence every w € X, satisfies e /Y < |w| £ e!/*. This implies that

p(x,) < 2(et— e 1),

which with the fact u(X,) = 0 proves our claim above. Therefore the proof of the theorem
is completed.
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PBW-bases of quantum groups

By Claus Michael Ringel at Bielefeld

1. Introduction

Let 4 = (a;;);; be the Cartan matrix of a finite-dimensional semisimple complex Lie
algebra of rank n (see [H]), this is a symmetrizable matrix, and we denote by (g;); the minimal
symmetrization, thus ¢; are positive integers without a proper common divisor such that
£,a;; = &;a;;.

Let Q(v) be the function field in one variable v over the field @ of rational numbers.
We denote by U™ the (+)-part of the quantum group U = U, (4) over Q (v) (as defined

by Drinfeld [D] and Jimbo [J1] and modified by Lusztig [L2]), it is the free Q (v)-algebra
with generators E, ..., E, and relations

n(ij) i
X (—1)‘[’1(;])] E{EE =0,
t=0 &

i

for all i # j, where n(ij) = — a;; + 1; we use the notation
v'—v~°
[S]= — =Us-l+ux—3+_,.+v—s+l,
v—v

s !

here, s, r are non-negative integers, and r < s; also, given a polynomial fin the variable v and

an integer a, we denote by f, the polynomial obtained from f by replacing v by v“, for
2s __ v 2s

example, [s], = PR The considerations in this paper will be restricted to the

(+)-part U*, but the reader should observe that one may use the well-known triangular
decomposition U = U~ ® U° ® U™, see [Ro], in order to obtain related results for the
Borel part U° ® U™ or even for U itself.

We denote by e, ..., e, the standard basis of Z". The Cartan matrix defines on Z" a
symmetric bilinear form by (e;, €;) = ¢;4;;. We consider U * as a Z"-graded algebra by
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assigning to E; the degree e;. Given a homogeneous element X of U™, we denote its degree
by dim X.

We are going to present a sequence X, ..., X,, of homogeneous elements of U™ such
that the monomials X7* --- X2 form a Q (v)-basis of U”, and such that for all i <j

_ p(dimX;, dimX; e vy
X X; = o @imXedmO X X+ Y (@agseens @) XPY - XY

16, j)
with coefficients c(a; 4, ..., a;_;) in Q(v); here, the mdex set I(i,j) is the set of sequences
(@; 415 G445 -- -, a;_,) of natural numbers such that Z a, dim X, = dim X; + dim X;. We say

t=i+1

that the sequence X, ..., X,, generates a PBW-basis of U*.

It follows that U™ is an iterated skew polynomial ring over Q (v). To be more precise:
Let U; be the subalgebra of U™ generated by X, ..., X;. Thus U, = Q(v) and for 1 < j < m,
we have U; = U;_,[X];1;, 6;], with an automorphxsm 1; and an 1;-1-derivation 6; of U;_
Note that the automorphlsm 1; is given explicitly by

lj(A,i) — v(dimxi,dimXJ)X'i fOI' i<j,
and we will show that

— 5,(dimX;, dimX;) §
tjéj v 6111..

The last assertion has the following consequence: we can apply a recent result of
Goodearl and Letzter [GL] in order to see that all prime ideals of U™ are completely prime.
We are indebted to Alev and Goodearl for drawing our attention to this problem.

There do exist several investigations dealing with the construction of PBW-bases for
U™ (or related algebras), let us mention papers by Khoroshkin and Tolstoy [KT1], [KT2],
[KT3], Levendorskii and Soibelman [LS], Lusztig [L1], [L4], Takeuchi [T], Xi [X], and
Yamane [Y1], [ Y2]. These investigations usually start with the Drinfeld-Jimbo presentation
and use direct calculations, often involving a braid group operation. Here we want to show
that the Hall algebra approach as introduced in [R3], [R5], [R7] (see also [L3] and
especially the new paper by Green [Gr]) is very suitable to deal with the problem. As
we will recall below, one may identify U* with the socalled twisted generic Hall algebra
Jii(if) ® Q(v). Using this identification, we obtain a special @ (v)-basis of U™, so that the
basis elements may be considered not just as elements, but as algebraic objects with a rich
structure: as modules over a finite-dimensional hereditary algebra A of finite representation
type. Since the basis elements may be interpreted as 4-modules, one can discuss their module
theoretical, homological or geometrical properties: whether they are indecomposable, or
multiplicityfree and so on. A slight modification of these basis elements will form the
PBW-basis of interest; those elements which correspond to indecomposable modules
(together with some ordering) will be a generating sequence for the PBW-basis. The Hall
algebra approach allows to use the representation theory of finite-dimensional hereditary
algebras in order to derive properties of U*; in particular, the shape of the Auslander-Reiten
quiver of A will be of importance. The Auslander-Reiten quiver of A encodes a lot of
information about the PBW-basis which we will present. As examples, we will write down in
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full detail the rank 2 cases and the case A,. In the latter case, we provide an explicit
comparison with the PBW-basis presented by Yamane [Y1], [Y2].

Before we use the Hall algebra approach, we want to exhibit our results on U* without
any reference to the representation theory of finite-dimensional hereditary algebras. Here is
the recipe for writing down explicitly a PBW-basis: a generating sequence will be indexed by
the positive roots for 4, thus we will consider suitable orderings of the set of positive roots.

We denote by @* the set of positive roots for 4, and we assume that * is embedded
into Z" so thate,, ..., e, are the simple roots and (—, —) is the corresponding bilinear form.

For any positive root a, let us define an element X (a) of U*. For the simple roots e;, take
X(e;) = E,, thus the generators E|, ..., E, will belong to our basis, the remaining elements
will be constructed inductively. Given a ring R, and x,, x,, t,, ¢, € Rwith ¢,, ¢, central in R;
then the element 7, x, x, — t,x, x, will be called a skew commutator of x, and x,. We are
going to construct the generating sequence X,,..., X, as iterated skew commutators,
starting from E,, ..., E,. (This sequence may also be obtained using a braid group operation
on U, as we will show at the end of the paper.)

First of all, we choose some orientation of the edges of the graph of 4. Recall that one
attaches a graph to 4 as follows: it has as vertices the integers 1, 2, ..., nand the edges are the
subsets {i, j} with a;; < 0. To choose an orientation means to select for any edge {7, j} one of
the pairs (i, ) or (J, i); in case (i, j) is selected, we draw an arrow i — j. Since the graph of 4
is a forest, it is sufficient to choose a total ordering < on theset {1, 2, ..., n} and to write i —> j
in case {7, j} is an edge and i < j. Thus, we just may take the natural ordering of the integers
1<2<--<n; in this case, i — j means a; +# 0 and i<j. Usually, in Lie theory,
constructions using 4 will not depend on the orientation of the edges. Thus, if we want to
stress that we use the chosen orientation in an essential way, we will write 4 instead of 4.

Here is the first such instance: 4 defines a (usually non-symmetric) bilinear form
{—,—) on Z" as follows: let {e;, ;) = ¢;, and for i + j, let {e;, e;) = ¢;q;; provided i — j,
and zero otherwise.

A pair (b, a) of positive roots will be called 4-orthogonal, provided the following two
conditions are satisfied:

{a,b) =0, and <(b,a) =<0,

and we denote r? = — (b, a). In the simply-laced cases (A,, D,, E, E;, Eg) we have r® < 1,in
the cases B,, C,, F,, we have r® < 2, whereas for G,, we have r? < 3.

Suppose that (b, a) is a A-orthogonal pair, and that X (a), X (b) are already defined. If
r =rP 21, then also a + b is a positive root and we define

X(a+b)= X(b)X(a) — v™" X(a) X(b).

If r = 2, then one of a, b is a short root, the other one is a long root. Consider first the case
that a is a short root, thus 2a + b is a root and we define
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X(2a+b) = [2] (X(a+b)X(a)— X(a)X(a+b)).

Second, in case a is a long root, then a + 2b is a root and we define
X(@+2b) = — (X(b) X(@+b)— X(a+b)X(b).

It remains to consider the case r = 3, thus we deal with G,, and we assume that a is a short root
and b is a long root. Then also 2a + b, 3a + b and 3a + 2b are positive roots, and we define

X(Qa+b) = ﬁ (X(a+b)X(a)— v ' X(a) X(a+Db)),

X(3a+b) = fﬁ (X(2a +b) X(a) —v- X(a) X(2a + b)),

X(3a+2b) = [3] (X(a+b)X(2a+b)—v-X(Ra+b)X(a+bh)).

We will show that these definitions are well-defined and we obtain in this way a set of
elements X(a) labelled by the positive roots a.

Also, we may index the positive roots a,, a,, ..., a, such that {a,, a;> > 0 implies i < ;.
(We will see in Lemma 1 that such an ordering has the following additional property: If
a;, a;) <0, then i >j.) Then X(a,), X(a,), ..., X(a,,) generates a desired PBW-basis.

... 1 . . .
For any positive root a, let ¢(a) = 3 (a, a); it is well-known that £(a) is a non-negative

integer (it is equal to 1 in the simply-laced cases, itis 1 or 2 for B,, C,, F,,and 1, 2, or 3 in the
case G,); of course, we have ¢(e;) = ¢;. Consider the element

) 1 t
Y@" =g, Y@

these elements are called divided powers.

Let o = Z[v,v"'], and let U be the «/-subalgebra of U™ generated by the elements
E®. We will see that U contains all the divided powers X (a)®, thus U, may be considered
as an analogue of the Kostant Z-form in classical Lie-theory.

The author is endebted to the referee for very useful comments concerning the
presentation of the results.

2. Hall algebras

It has been shown in [R7] that U™ may be identified with the twisted generic Hall
algebra # = #, (4) ® Q(v), where 4 is obtained from 4 by choosing some orientation of
the edges of the graph of 4. (For a new, and much better proof we refer to Green [Gr].) For
the convenience of the reader, we recall the main definitions.
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Choose a k-species & = (F;, ;M;) of type 4; we say that & is reduced provided
g; = dim, F; for all i. (Readers not familiar with k-species may restrict their attention to the
simply-laced cases A, D,, Eq, E,, Eg. In these cases, we may consider instead of & a quiver
of type 4 and its representations over k.) A reduced k-species & is given by ﬁeld extensions F;
over k of degree ¢;, and, for i — j an F;-F-bimodule ; M; of k-dimension —¢;a;;. Actually, in
case k is a finite field, there is (up to 1som0rphlsm) Just one reduced k- specws of type 4.

We consider representations of %, a representation being of the form (V, f;;), with ¥,
a finite-dimensional right F-vector space, and f;: V; ® ;M; — V; an F;-linear map, for any
i — j. Note that the representations of & are just the finite-dimensional right modules over
the tensor algebra of .

Given a representation M of &, we denote its isomorphism class by [M ] and by dim A/
its dimension vector, it is an element in the Grothendieck group K, () of all representations
modulo exact sequences. We identify Z" with K, (%) so thatdim S; = e;, where S;1s the simple
representation of & corresponding to the vertex i.

It is known [Ga], [DR1] that dim furnishes a bijection between the isomorphism
classes of the indecomposable representations of % and the positive roots. For a positive
root a, we denote by M(a) = M, (a) an indecomposable representation of & with
dim M (a) = a. In particular, S; = M (e;) is the simple representation corresponding to the
vertex i. Given a map a: @+ —» N, we set

M (o) = My (2) = @D x(a) M(a)

(for t e N, and any representation N, we denote by ¢N the direct sum of ¢ copies of N). The
theorem of Krull-Remak-Schmidt asserts that in this way, we obtain a bijection between the
set of isomorphism classes of representations of & and the set # of mapsa: &* — N,. For
any a € 4, let dimo =) a(a)a, thus dim M («) = dimo.

Note that we will identify ae @* with the corresponding characteristic function
@* - N,; in particular, the simple roots e; are considered as elements of #. Given two
functions #* — N, we may add them, and we can take multiples by non-negative integers.
However, since we identify positive roots with the corresponding characteristic function,
we have to be careful about the addition: the addition inside Z" will be denoted by +, that
inside the set # will be denoted by @. For ¢ € N, t-fold multiple of « € # will be denoted by
to (for ¢ = 2, this uses the addition in %; note that there are no proper multiples in @*).

In order to define the multiplication of 5, we need Hall polynomials and the Euler
form. Recall that we have defined a bilinear form { —, — ) on Z". This form is called the Euler
form, since for representations M, N of &, we have

(dimM, dimN> = ¥ (—1)'dim, Ext'(M, N)
t20

= dim, Hom(M, N) — dim, Ext' (M, N),

see [R1]. Note that (—, —) is the symmetrization of {—, — ).
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We will have to consider polynomials in one variable ¢, with integral coefficients; we
usually will consider the corresponding polynomial ring Z[q] as a subring of Q (v), where
2
q ="

We recall from [R3] that given three elements «, B, y € 4, there exists a polynomial ¢2,
in Z[4q] such that for k a finite field, and % a reduced k-species of type 4, the number ¢? 1k |)
is equal to the number of subrepresentations U of M, (ff) which are isomorphic to M (1)
such that M, (f)/U is isomorphic to M, (a). The polynomials d)fy are called Hall poly-
nomials (some have been calculated explicitly, see [R4]). Sometimes, it will be convenient
to write P38, instead of ¢F .

We note the following: If the polynomial q&" is non-zero, then ¢ (Jk|) = 0 for
some finite field k. Consider now a reduced k-species ¥ of type 4, then My(ﬁ) has a
submodule U which is isomorphic to M, (y) with M, (f)/U isomorphic to M («). If U
is a direct summand, then M, (f) = M, (« @ y). If U is not a direct summand, then
Ext! (M, (@), My (7)) # 0.

More generally, we also will need the Hall polynomials ¢ . ,whereas, ..., a,, fare
elements of 4; again, these are polynomials in a variable g with integer coefficients and with
the following property: for any finite field k, and . a reduced k-species of type 4, the number
@2 .. (k]) is the number of filtrations My, (f) =Ny 2 N, 2 -2 N, =0 such that
N, _,/N; is isomorphic to My (;), for 1 Si<t.

By definition, # is the free Q (v)-module with basis the set # of functions &% — N,
(or, equivalently, the set of isomorphism classes of representations of some fixed reduced
k-species & of type A4), with multiplication

axy = v(dima, dimy) Z ¢[I ﬂ
a
BeRB !

for a, ye 4.

Theorem. There exists an isomorphism n: UT — # of Z"-graded Q (v)-algebras such
that n(E;) = e;.

For a proof, see [R7], or, better [Gr].
In the last sections, we also will conmder H, (4) itself; by definition, it is the
s/-subalgebra generated by 4. Note that 2 is a free d basis of 4.
3. The basic formula
We will work with J instead of U*. As we have seen, 5 is the free Q (v)-module with
basis the set # = {®* - N}, but sometimes it will be more convenient to work with a

slightly modified basis:

We denote by dim: Z" — Z the linear form given by dime; =¢;. For ae 4%, let
dim « = dim(dim «); thus dim o = dim, M, (), for any reduced k-species &.
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Also, let us recall from [R3] that given « € # and any reduced k-species & of type 4,
the k-dimension of the endomorphism ring of M, («) is independent of & and is denoted by
e(a). Also observe that for a positive root a, the k-dimension of the endomorphism ring of

1
M (a) is just 3 (a, a), thus the two definitions of ¢(a) coincide.

Let
<a> — v—dima+a(a)a ,

the set of these elements (o) with a € 4 is again a Q (v)-basis of J#; this is the basis we are
mainly interested in. Note that {e;,> = e;. The multiplication formula may be rewritten in
this basis as follows:

<Ot> * <},> — vs(a)+z(y)+<dima,dimy> Z U_E(ﬂ)¢£y<ﬂ>~

PeRB

We have noted that for any reduced k-species &, the k-dimension of the endomorphism
ring of M, () is independent of &. Similarly [R3], also the k-dimension of Hom (M, (x),
M (B)) is independen of ¥ and will be denoted by &(a, §). In the same way, the k-dimension
of Ext'(M, (x), M, (B)) is independent of % and will be denoted by {(«, f). Note that
{dima, dim ) = ¢(a, B) — { (o, B).

Proposition 1. Let a,,...,0,€ B and let us assume that for i<j, we have both
{(o, o) = 0 and &(aj, o) = 0. Then

<@ai> = (o) * %oy,

Proof. 1t is sufficient to prove the assertion for ¢t = 2, the general case follows by
induction. Thus, let o = a,, and y = a,. Since {(x,7) =0, the only B with ¢2 +0 is
B=a@®y. And ¢;2" =1, since &(y, a) = 0. Also,

ddima, dimy) = ¢(a, y) — {(a, ) = &(a, 7).
On the other hand, we have
e(a@y) =c¢(@)+e@) +elny)+eya)=cel@+el)+e@y).

Altogether:
<f1> * <’}’> — v—-dima+e(a)—dimy+e(y)a * 7

— v—dima@y+e(a)+e(y)+<dima,dimy> ¢:;®ya @ Y

= p dima®y+e(@®y) y ® Y
= ®y).
Theorem 1. Let o,y € & with e(y, a) = 0 and {(a, y) = 0. Then we have

Gy * oy = v Ome Iy w (G + Y g <BY,

BeJ(a,v)
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with coefficients cgin Z [v, v 17, where J (a, y) is the set of maps B € & different from o @ 7 such
that ¢¥ , + 0.

Proof. The previous proposition shows that

Ca) # () =L@ y>.

Thus, let us consider {y) * {a), it can be written in the form )’ cg B, where f ranges over all

[]
elements from 4 such that ¢y",a + 0, and clearly the coefficients c; belong to Z [v, v 1. Of
course, we have

r__ —dim g +¢&(f)
Cﬂ = CBU .

It remains to calculate the coefficient c, 4 ,. Let & be a reduced k-species. Let U be
a submodule of M, (x @ y) isomorphic to M (a), with factor module isomorphic to
M (y). Clearly, U has to be a direct summand (see [R2], Lemma 2.3.1). Since
Hom (M, (y), My, () = 0, the theorem of Krull-Remak-Schmidt asserts that U'is the image
of a homomorphism of the form (1,f): My (2) » M,(x) ® M,(y), where f is a
homomorphism M, (ax) - M, (y). In this way, we obtain a bijection between the considered
submodules U and the elements of Hom (M., (), M, (y)). Thus, we see that

#07 = g
= p?e@n,
Also,
e(a®@y) =e()+e(y) +e(®y).

Finally, we note that

(dima, dimy) = (dima, dimy) + {dimy, dima)

=g, y) —{(y, ).
Altogether, we see that

’ __ 4o~ dimy+e(y)—dima+e(a) ,,{dimy,dima) LaDy
Coy =10 v o7,
— U—dima Dy+e(@dy)—e(a,y) U—C()',a) UZ'B(H, )

=p~ dima@y+e(@®y) v(dima, dimy) .
This shows that

Choy ot @ 7 = v (5 )

4. Ordering the positive roots

It is well-known that & is representation-directed, see [BGP], [DR2]; this means
that there exists a total ordering of the positive roots, say a,,a,,...,a, such that
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Hom (M, (a;),M(a;)) £ 0 (or equivalently, &(a;,a;) + 0) implies that i <j: such an
ordering will be called A-admissible. The usual visualization using the Auslander-Reiten
quiver will be recalled in Section 6.

Lemma 1. A total orderinga,, a,, ..., a, of the positive roots is A-admissible if and only
if the following property is satisfied: (a;, a ) >0 implies i < j.

i’ j

Such an ordering has the additional property: {a,, a;y <0 implies i > j.

i j

Proof. We write M (a;) instead of M (a)).

First, let us observe that Ext' (M (a;), M (a;)) + 0 implies i > j. For, assume that there
exists an exact sequence

0> M(a) > N—->M(@)-0

which does not split. Let M(a,) be an indecomposable direct summand of N. Then
Hom (M (a)), M(a,)) + 0 and Hom(M (a,), M(a,)) + 0, thus j < ¢t <i. We cannot have
a;=a, since Ext'(M(a), M(a))=0. Thus i>j. Of course, i>; implies that
Hom(M (a),M(a;)) =0. In particular, the groups Ext' (M (a;), M(a;))) and
Hom (M (a,), M(a; )) cannot be non-zero at the same time.

As a consequence, we see: if {a;, a;) > 0, then

i’ _)
(a;, ;) = dim, Hom (M (a,), M(a;)),
whereas, if {a;, a;> <0, then
(a;, a;) = — dim, Ext' (M (a;), M (a))).

Assume that thereis given an ordering a,, a,, ..., a, with the property that {a;, a;> > 0
implies i <j. If Hom(M (a;), M(a;)) 0, then Ext (M(a) M(a;)) =0 and therefore
a;, a;» >0, thus, by assumption i <.

For the converse, let us assume that the ordering a,, a,, ..., a,, is 4-admissible. Let
(a;,a;» >0. Then Hom(M(a) M(a; ) =<a,a) > O and therefore i £j. On the other
hand, let {a;, a;> <0.Then Ext!(M(a), M (a; ) =— a;» < 0. Aswe have seen above, we
have i > j. This completes the proof.

1’]

Let us fix some A-ordering a, a,,...,a

Proposition 1. For any o€ #, we have
Cay =<a(ag)ag) * - *<o(a,)a,) .

Proof. For i<j, we have e(aj,a) =0, by assumption, and we also have
{(a;, a;) = 0. Thus, the assertion is a direct consequence of Proposition 1.
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Given an element w in #, and ¢ = 0, then w** denotes its ¢-th power. For a positive
root a, we also consider a corresponding divided power of {a):

1
[t]!s(a)

(@Y = —— Cay*.

Lemma 2. Let a be a positive root, and t = 0. Then
(ray = (a)®).
Proof. Let & be a k-species, where k is a finite field. The number of filtrations
tMy(@)=My;>M >--->2M, =0
with factors isomorphic to M, (a) is given by evaluating the following polynomial at |k|:

(UZe(a)t _ 1)(02£(a)(t—1) _ 1) ... (UZz(s) _ 1)
(UZc(n) _ 1):

= (VB[N0 = @@ - []1,,,.

Let us express a** in the basis 4. Since {(a, a) = 0, we see that a*' is a multiple of ra, namely

a* = va(’)(é) vs(a)(i) ’ [t]!s(a) “1a.
It follows that

*t) _ 1 *1

@M= M, @
1

"

— U—tdima+te(a) UE(’)(:'Z)UE(S)(E) - ta

= (ray,

—tdima +te(a) a*t

v

since &(ta) = t?&(a) = (¢t + 2(})) e(a). This completes the proof.

We define
X, =<ap.

Proposition 2. Let o € &, and set o.(i) = a(a;). Then

<a> - X§*“(1» 0 X X'(n*a(m)) — < ﬁ 1

—_— Xl*’(l) K ook Y KoM
i=1 [“(I)J!e(ai)> "

Proof. According to Proposition 1’, we have

Ca) = a(D)a * - xLa(m)a,,) .
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Lemma 2 asserts that

(a(i)a) = X0,
This shows the first equality. The second uses just the definition of divided powers.

Theorem 2. The monomials X ¥ x -+ x XX*™ with a(1),...,a(m)e N, form a
Q (v)-basis of H#, and for all i < j

X« X, = o@mXedimX) 0 g Xob Y e@yagsoes @) XX ko % XK
IG,))

with coefficients c(a;.y, ..., a;_,) in Q(v). Here, the index set I1(i,]) is the set of sequences
j-1

(@i415 Qi1 2> - -» A;_y) Of natural numbers such that 'y, aa, = a,+a;.
t=i+1

Proof. Given a(1),...,a(m)e N,, define e & by a(a,) = a(i). According to Pro-
position 2, we have

Xr) gy YoRam) (ﬁ [a(i)]!e(-,-)> O8
i=1

thus the given monomials are non-zero scalar multiples of the elements of 4, and therefore
form a Q (v)-basis of #.

Let i<j. We apply Theorem 1 to a;, a;. We have to show that for fe J(a;, a)),
the element ¢(f) is a scalar multiple of some monomial XXortw % XY with

Jj—1
Y aa =a +a,.
t=i+1

Let Be J(a;, a)), and let (¢) = B(a,). Since ¢£,-,,. #* 0, there is an exact sequence

0 — M) L~ DBOM@) — Ma) — 0,

t=1

and we write f = (f,), with f,: M (a;) » B (¢) M (a,). Note that the sequence does not split, since
otherwise f = a; @ a;, contrary to the assumption feJ(a; a;). Consider some ¢ with
B(2) > 0. We claim that then f, % 0. Otherwise, the cokernel of f would split off () copies
of M(a,), and since the cokernel of f'is indecomposable, this would mean that the sequence
splits. Since Hom (M (a;), M (a,)) #+ 0, it follows that i < t. Also, we can exclude the case
i = t, since in this case f;, and therefore also f would be a split monomorphism. Altogether,
we see that i < ¢. The dual arguments (applied to g) show that also ¢ <j. According to

Proposition 2, {#) is a scalar multiple of XX%*'---» X}*%-*. Also, the exact sequence
Jj—1

exhibited above shows that ) a,a, = a, + a;. This completes the proof.
t=i+1

S Journal fir Mathematik. Band 470
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5. The automorphisms and skew derivations
For any element d € Z", there exists an automorphism i, of # given by
15(w) = pUimw. Dy
for w a homogeneous element of s# (of degree dim w).
We also note the following rather obvious assertion:

Lemma 3. Let R be a ring, let 1 be an endomorphism of R. For r € R, we define a map
0, R > Rby

0,(x)=rx—1(x)r for xeR.
Then 6, is a 1-1-derivation.

Proof. The map J, clearly is additive. Also, for x, y € R,
0,(xy) = rxy —1(xy)r
=rxy —1(x)ry +1(x)ry —i(x)1(y)r
= (rx —1)r)y +1(x) (ry — 1(»)7)
=0,(x) y —1(x) - 6,(y).
One may call 6, an inner 1-1-derivation.

Let K be a commutative ring, and assume that R is a K-algebra and that 1 is K-linear.
Then also 6, is K-linear, for any r € R. If Ris generated as a K-algebrabyr,,...,r,,anddisa
1-1-derivation, the values 6 (r;), with 1 < i < n, determine J uniquely.

Let #; be the subalgebra of # generated by X, ..., X;. Thus #;, = Q(v) and for
1 £j < m, wehave #, = #,_,[X;;1;,d,], with an automorphism z; and a 1;-1-derivation §;
of #,_,. Note that the automorphism i; of #_, is given explicitly by
lj(‘Xi) = U(dimXi,dimX,-)Xi for i<j;
it is just the restriction of 1, to #;_;.
The 1;-1-derivation §; is given by the formula
5,(X) = Xyx X, — ;XD » X,

— i e *a; -
=3 (@rys e @) XA H XY
16G.))

for i <j; in particular, §; is the restriction of the inner i-1-derivation 6y, to #;_,.

Altogether, we see that J# is an iterated skew polynomial ring over Q (v).
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Theorem 3.  The automorphism 1; and the 1-1-derivation §; of #,_, satisfy the following
relation:
1;0; = V@2 51,

Proof. Let i<j. First of all, we have 1;(X;) = v***) X, and therefore
5jlj(Xi) = p(@ea) 6](‘Xl.)

Let us denote d = a; + a;. We know that J,(X;) is a linear combination of monomials of the
ji—1
form XXt -+« X*%-'where ) a,a, =a,+a; = d,thus §,(X;) belongs to ;. It follows
t=i+1

that
lj(sj(X}) = p@=) 5,'(Xi) = pl®ir )T (@ia) 5j(Xi) =y 5j’j(Xi),

since (d, a;) = (a; +a;, a;) = (a;, a;) + (a;, a).
As an application we obtain:
Corollary. Any prime ideal of U* is completely prime.

Proof. The corresponding assertion for # is a direct consequence of Theorem 2,
Theorem 3 and a recent result of Goodearl and Letzter [GL], Theorem 2.3, see also [Go].

6. The Auslander-Reiten quiver

The Auslander-Reiten quiver is a convenient tool to visualize the module category of a
finite-dimensional algebra. We want to point out that the Auslander-Reiten quiver is also
extremely useful for dealing with the corresponding Hall algebras. Let us formulate a
combinatorial version of those definitions which are needed.

As vertices of the Auslander-Reiten quiver I' take the positive roots. If a, b are positive
roots, write a — b provided the following conditions are satisfied: first, a & b, second
{a,b) >0, and third, if ¢ is a positive root with {a,c) >0 and {¢,b) >0, thena =c or
¢ = b. In general, if (a, b) > 0, then there exists apatha =a, - a, —» --- —» a, = b (of length
t =2 0) from a to b.

For example, the Auslander-Reiten quiver for Eg with the following orientation

(O]

!
O—->0—-0—-0-0
is of the form

./.\O/O\O/O\O/O\O
22N 72 N 2N 7 N 70N
*o—->0—-+>0—->0->0—->0—-0—-0—-2>0—-0—-20—-0
./ \O/ \O/ \O/ \O/ \Of \O
2N 72N N 2N N 7N /N
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We may endow I" with a valuation by associating to any arrow a — b a pair of positive
a,b a,b . .

<8 (b)> i <_8(_a)2) In case the valuation of an arrow is (1,1), one usually

drops these numbers, this happens for all the arrows in the simply-laced cases; in the cases

B,, C,, F,, some arrows will carry a valuation (1, 2) or (2, 1); for G,, all the arrows will carry

avaluation (1, 3) or (3, 1). Note that the valuation of I allows to recover ¢(a) for any vertex a.

integers, namely <

The Auslander-Reiten quiver is usually considered as a translation quiver: some of the
vertices are called projective, for any of the remaining vertices, say a, there is defined a vertex
ta, such that there exists an arrow ta — b if and only if there exists an arrow b — a. Here
is the combinatorial recipe:

For any vertex i of 4, let 6; be the reflection in Z" at e; with respect to the symmetric
bilinear form (—, —). The orientation A determines a unique Coxeter element C; for
example, if we start with the natural ordering 1<2<---<n of the vertex set, then
C=4,6," 6, A positive root a will be said to be projective, provided C(a) is no longer
positive; for the remaining positive roots, let Ta = C(a). Note that for any non-projective
positive root a, there are paths from 7a to a, and all are of length 2. (In the drawing of an
Auslander-Reiten quiver, the translation t usually will correspond to a shift from right to
left; sometimes one connects a and ta by a dotted line; in the drawing above, the projective
vertices have been denoted by ®.) The translation 7 is very useful. For example, given
positive roots a, b, then either a is projective and then {(a, b) = 0, or else {(a, b) = &(b, ta).
In particular, if {(a, b) & 0, then there is a path from b to a.

A path a;, — a, - --- — a, in the Auslander-Reiten quiver is said to be sectional,
provided we have a,_, # ta,,,, for all 1 <i< . Finally, two vertices a, b are said to be
incomparable provided there is no path from a to b, and no path from b to a.

What kind of information can be read off from the Auslander-Reiten quiver? First of
all, the A-admissible orderings of the positive roots are just the refinements of the arrow
relation: in order to deal with a PBW-basis, we may start with any total ordering
a,a,,...,a, gf the positive roots such that a; — a; implies i <. Given positive roots a, b,
there exists a 4-admissible ordering a, a,, ..., a,, such thata = a;, b = a; with i <j, if and
only if there is no path from b to a.

AlSO, in case there is an arrow a — b in the Auslander-Reiten uiver, then
q
<b> * <a> =0 ax(e(a), £(b)) <a> * <b> .

Actually, the same formula is true in the general case that there exists a sectional path
a=a, — a, -+ — a, = b (note that the existence of such a sectional path implies that we
have Ext!(M, (a) @ M, (b), M, (a) ® M, (b)) = 0). Of course, in case the vertices a,b are
incomparable, then

Ca) x (by = (b) x<a).

As we have seen above, the main problem to be solved is an effective procedure for
calculating the various skew derivations.
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Lemma 4. Let a, b be positive roots, and assume that there is no path fromb to a. If
O¢py (€aD) # 0, then { (b, a) + 0, and therefore, there is a path from a to b.

Proof. Since thereis no path from b to a, we know that {(a, b) = 0, thus<a) *x (b>isa
multiple of {(a @ b). If we assume that {(b, a) = 0, then also <(b) * {a) is a multiple of
(a @ b), therefore J,,({a)) = 0.

Thus, we have to consider pairs a, b with a path from a to b. If we express 6,,,, ((a)) as a
linear combination
Z Cg B>

BeJ(a,b)

as in Theorem 1, the index set J (a, b) will involve only f§ € 42 such that f(¢) + 0 implies that
there exists paths of length at least 1 from a to ¢ and from ¢ to b.

7. The rank 2 cases

Assume that we deal with a Cartan matrix of the form

2 ag,),
a,, 2)
where one of the numbers —a,,, —a,; is equal to 1, whereas the other is

r=—¢a,,=—¢4a,; =1,2, or 3. We work with the orientation 1 — 2. Note that
d =e, + e, is a positive root and let us stress that e, = (e;).

We have
e,xe, =e, De,,

whereas
e, xe, =0 "(d+e De,).
Also note that dimd = ¢, + ¢,, and ¢(d) = ¢, + ¢, — r, thus {(d) = v™"d. It follows that
(e;+e,y=<d)=v"d=e xe,—v "e, xe,.

Consider now the cases r = 2, and let us assume that ¢, = 1, thus a, is a short root,
whereas a, is a long one. On the one hand, we have

e, xd)=ddDe,y)=v""dDe,,

where we use that dimd @ e, = r+ 2 and ¢(d @ e,) = 3. On the other hand, we use that
{(d,e,) = r—1, and a rather easy calculation of Hall polynomials, in order to see that

<d> * e2 = U_’d * ez

=072 (g + 1) (e + 2¢) + 9@ D ey)
=07 o) (e +2e) + 0T A D
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It follows that

2r—2

(2]

e, +2e, = (@) *xe,—v "2 e, x<{d)).

After these preparations, we may consider in detail the different cases:
Case A,. In this case, we have r = 1, thus
(e;+e,)=e,xe,—v e, xe,.
The corresponding Auslander-Reiten quiver is of the form

ez DECEY el .
Case B,, with ¢, = 2. The considerations above show that
(e, +e,)=e xe,—v 2-e,xe,,

1
(e, +2e,) = tz—] (Ke;+e) xe, —e, x{e; +e,));

here, we have used that dime, + 2e, = 4, whereas ¢(e, + 2e,) = 2, so that

1
(e, +2e,) =v"4"2(e; + 2e,) = ] (Kd) xe, — e, *<d)).

In this case, we deal with the Auslander-Reiten quiver

e, + 2e e
1 2 N A 1
e, e +e,.

The arrows ~ carry the valuation (1, 2), the arrows N\ carry the valuation (2, 1).
In Appendix 1, we will present the multiplication table for the elements
X;=/Ke), X,=(e +2e,), X;=<e;+e,), X,=<e.
Case B,, with ¢, =1. Here, a similar calculation shows that

(e;+e,>=e xe,—v %-e,%e,,
1

e, +e,) = 2]

(e;xCe; +e,)> —<e;+e,)xey).

The corresponding Auslander-Reiten quiver is of the form

e +e, .o €,
N
e, 2e,+e,.
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Here, the arrows .~ carry the valuation (2, 1), the arrows \ carry the valuation (1, 2).
Case G,, with ¢, = 3. The Auslander-Reiten quiver looks as follows :

- e, + 3e, . . 2e, + 3e, . /el
ez e1+2e2 e el+e2.

The arrows ~ carry the valuation (1, 3), the arrows N\ carry the valuation (3, 1).
For any positive root a, we can express {a) as a skew commutator as follows:

(e, +e,)=e xe,—v e, *e,,

1
(e, +2e,) = ] (Ce,+e,>*xe, —v e, x (e, +e,)),
1
{e;+ 3e,) = [‘3‘]‘ (Cey +2e,) xe, —v-e, x{e; +2e,)),
1
(2e,+ 3e,) = Bj (Ke;+e,)> «x<e; +2e,> —v- (e, +2e,) e, +e,)).

The first equality has been shown above. For the second equality, we only have to
add to previous considerations that (e, + 2e,) = v~ >*!(e, + 2e,), since in this case,
e(ey +2e,) =1.

The calculation of <{e, + 3e,) proceeds as follows: We have
e, x e, +2e,) = {(e; +2¢;) D e,) = v 2((e; +2¢,) Dey),
and, on the other hand,

ey +2e,)x e, =0 (g7 + g+ 1) (e, + 3e,) + g7 ((e; + 2¢,) D ey))
=073 ([31(e; + 3e,)) + 07" ((e; + 2¢;) D ey).

Since e, + 3e, has dimension 6, and the dimension of its endomorphism ring is 3, we see that
(e; +3e,) = v 3(e; + 3e,).

A similar proof shows the last equality.
In Appendix 1, we will present the multiplication table for the elements

X, =<ey), X, =<e;+3e,), X;=<e +2e,),
X, =<2 +3e,), Xy={(e,+e), Xs=<e).
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Case G,, with ¢; =1. The Auslander-Reiten quiver looks as follows:

e +e e, +e e
1 2 \ y 1 2 N b 1
e2 e 3e1+2e2 i 3e1+e2.

This time, the arrows ~ carry the valuation (3, 1), the arrows \ carry the valuation (1, 3).
For any positive root a, we can express (a) as a skew commutator as follows:

<e1 +e2> = el*ez —v_3ez *el,

1

2e, +¢e,) = tﬁ (e;x(e;+e,> —v (e, +e)xey),
1
e +ey) = [_3]' (e;x(2e; +e,> —v- 2, +e,)*e),

1
Ge, +2e,) = E ({2e;+e,)x<{e;+e,)—v-{e,+e,)*x{2e +e,).

We are going to present the elements of the form (e, + te,) with1 < t < a,, as linear
combinations of monomials; this will be needed at the end of the paper.

Case A,, thus ¢, =1,¢, =1:

(e, +e,)=e xe,—v e, xe,.
Case B,, with e, =2,¢, =1:

(e, +e,) =e xe,—v %e,*e,.
Case G,, withg; =3,¢, =1:

(e;+e,)=e xe,—v e, xe,.
Case B,, with g, =1, ¢, = 2:

(e, +e,)=e xe,—v 2e, xe,,
e, +2e,) =e, xe*? —ple,xe, e, +v 2ef P xe,.
Case G,, with¢, =1,¢, =3:
e, +e,)=e xe;—v %, xe,,
ey +2e,)> =e xef?) —v e, xe e, + v YeF xe,

e, +3e,) =e xefr¥ —ple, xe xef? + v 2ef P xe xe, —v el xe,.
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For arbitrary 4, we will be interested in the elements of the form {e;+ te;) withj + i

and 0 =< 7 < a;;. Here is the general rule for expressing them as linear combinations of
monomials:

Proposition 3. Let 0 <t < —a;;. If i is a sink for A4, then

Ce; +te;) = Z (—1)yp s e~ tH) EO E G,

J7e
r+s=t

if i is a source, then

(ej+1ey= Y (—1)yp sr-a t*OVEO E EO.

r+s=t

Proof. We may restrict to the case where i, j are the only vertices. If we assume that
i is a sink, then we relabel the vertices as follows: j=1, i = 2, and we use the previous
consideration. The case when i is a source follows by duality.

A direct proof of Proposition 3 may be given along the line of the proof of the
fundamental relations, see [R5].

8. The inductive construction of exceptional modules

Let A be a finite-dimensional hereditary k-algebra (for example, the tensor algebra
of a k-species as above), let n be the number of isomorphism classes of simple /4-modules.

Recall that a (finite-dimensional) 4-module M is said to be exceptional provided its
endomorphism ring is a division ring and Ext! (M, M) = 0. A set M, (i e I') of modules is
said to be orthogonal provided Hom(M;, M;) = 0 for all i # j.

Proposition 4. Let M be a non-simple exceptional A-module. Then there exist
orthogonal exceptional modules M,, M,, and an exact sequence

0—-a,M, > M->a M -0,

with ay,a, 2 1.
Remark. In the case of an algebraically closed field, the result is due to Schofield [S].

Crawley-Boevey recently has shown that a braid group operates transitively on the set
of complete exceptional sequences. Ideas from [CB] and [R8], which have been developed
in order to establish this result, will be used for a proof of Proposition 4.

We recall the following: A sequence (M|, ..., M,) of exceptional modules is called
exceptional, provided Hom(M;, M;) = 0 = Ext' (M|, M) for any pair i < j. An exceptional
sequence (M|, ..., M,)is said to be complete, if s = n. (Note that a pair (b, a) of positive roots
is A-orthogonal if and only if (M (b), M(a)) is an orthogonal exceptional sequence; this
explains the order of the roots.) In our case of a finite-dimensional hereditary k-algebra, the
indecomposable projective modules, the simple modules, as well as the indecomposable
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injective modules, always taken in a suitable order, yield examples of complete exceptional
sequences.

Given a module N, we denote by ¢ (N) the smallest subcategory containing N and
being closed under extensions, kernels of epimorphisms and cokernels of monomorphisms.
Incase (M,, ..., M) is an exceptional sequence, then Crawley-Boevey [ CB] has shown that
C(M, ® - ® M,) is equivalent to the module category of a finite-dimensional hereditary
algebra with precisely s isomorphism classes of simple modules.

Lemma5. Let M be a non-simple exceptional A-module. Then there exists a module N
such that (M, N) or (N, M) is an exceptional sequence, and M considered as an object of
E(M @ N) is not simple.

Proof. Take a complete exceptional sequence (Ny, ..., N,) with M = N, for some j,

and such that the length of (P N, is minimal.
i=1

Let M be an exceptional A-module with the following property: If (M, N) or (N, M)
is an exceptional sequence, then M is simple in ¥ (M @ N). Under this assumption, the
reduction process as exhibited in [R8] shows that the sequence is orthogonal. Namely, in
case we use transpositions, the modules N, are not changed, only their indices are. We cannot
use a proper reduction which does not involve M, since this would contradict our minimality
assumption. Thus, assume that we make a proper reduction involving M. Up to duality, we
have Hom (N, N;,,) # 0. By assumption we know that M = N; is a simple object in
% (M @ N,,,), thus there is an exact sequence

0->tM->N;,;, >N -0

with Hom (M, N’) = 0. The proper reduction replaces the pair (M, N, ,) by the pair (N, M),
thus we obtain a new exceptional sequence

(Nyy ooy Ni_jy, Ny M, N, i, ..., N,)
of smaller length. This contradiction shows that our given sequence was orthogonal.

Note that given an orthogonal, complete exceptional sequence (N, ..., N,), all the
modules N; are simple [R8]. Thus, we see that M is simple.

Proof of Proposition4. Assume that M is non-simple, and exceptional. According to
Lemma 5, there exists an exceptional sequence (M, N) or (N, M) such that M is not simple
in (M @ N). Let M,, M, be the two simple objects in this subcategory (M @ N), with
Ext'(M,, M,) % 0. Since M is not simple, in €(M @ N), there exists an exact sequence

0O—»aM,>M-a M -0,

with a,, a, 2 1. This completes the proof.
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Consider now the special case when 4 is the tensor algebra of a k-species & of type 4.
Assume that there is given an exact sequence

0—-»a,M, > M->aM -0,

with indecomposable modules M, M,, M,, and a;, a, = 1. Let M = M(a), M, = M (a,),
M, = M (a,) with positive roots a, a,, a,. We see that a = a, a, + a, a,. Note that the linear
combinations of a,, a, which are roots form a root system of rank 2, thusitis of type A,, B,,
or 3,; in particular, we see that a, a, < 3. We are looking for conditions in order to have
a;=1=a,.

n

Recall that a root a is called sincere, provided a = ) c;e; with ¢; # 0 for all i.
i=1

Proposition 5. Let & be a k-species of type A, with A not of the form A, or G,. Let a be
a sincere positive root. In case A is of the form C, for some n = 2, assume in addition that
a is short. Then there is an exact sequence

0— M(a,) > M(a) > M(a;) > 0
with A-orthogonal positive roots a,, a,.
Proof. According to Proposition 4, there is an exact sequence
0—-a,M(a,) > M(a) > a, M(a,) - 0,
with 4-orthogonal positive roots a,, a, and a,, a, = 1. In case the roots a,, a, have the same
length, the root system generated by a,, a, isof type A,, thusa, =1 = a,. Weassume thata,,
a, have different length. The existence of a sincere root implies that 4 is connected, thus 4
is of the form B,, C, with n = 2, or F,. If a is a short root, then a = a, + a,, thus again

a, =1 = a,. Thus, we can assume that a is a long root, and therefore only the cases B,, with
n 2 3, and F, remain.

In drawing the graph of 4, we use the usual conventions. In the case B,, we label the
vertices of the graph of 4 as follows:

o=%o0—o0— ‘** —O0—0
1 2 3 n—1 n
with a,, = — 2. Similarly, in the case F,, we label the vertices

o—o=%o0—o0
1 2 3 4
with a,; = — 2. We use an arbitrary ordering < on the set of vertices {1, 2, ..., n}. Let P(i) be

the projective cover of S;, for 1 <i < n, and Q (i) its injective envelope. Let p(i), q(i) be
positive roots such that M (p(i)) = P(i), M(q(i)) = Q(i).

We deal with the Auslander-Reiten quiver I'. We can write a =t~ °p(i) for some
1 £i< nand some s = 0. Since a is a long root, we have i = 2 for B,, and i 2 3 for F,.
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Consider first the case when i < n. Then there exists an arrow from a, to a in I such
that a, lies in the t-orbit of p(i + 1); a corresponding non-zero map M (a,) — M (a) is
injective and its cokernel is indecomposable, say of the form M (a,), and a, lies in the t-orbit
of p(n); here, we use that a is sincere, so that the “wing” with center a exists. In this way, we
have obtained the two positive roots a,, a, we were looking for.

This shows that we can assume that i = n. Case B,: Since a is sincere, there is a path
p(1) > --- > a,andapatha — --- - (1), and an easy length consideration shows that both
paths are sectional. In particular, the root a is uniquely determined. Up to duality, we can
assume that q(1) is a simple root. It follows that we deal with the natural ordering
1<2< -+ <n, since otherwise we would obtain some i > 1 with Hom (M, Q(i)) = 0. As a

consequence, M(a) = Q(n), and therefore a =2e,+ ) e, The case n=2 has been
i=2
excluded, thus n = 3, and there is an exact sequence of the form

0> M() e)> M- MQe, +e,) > 0.

i=3

Case F,. Consider the sectional pathsp(1) - --- = b, and b, — --- - q(1), where both
b,, b, belong to the t-orbit of p(4). We have b, = t2b,. Note that Hom (P (1), t M (b,)) = 0,
thus the two modules M (b,), M (b,) are the only modules N = M (c) with ¢ in the -orbit of
p(4) which satisfy Hom (P (1), N) # 0. This shows that M (a) is one of these two modules.
Up to duality, we can assume that b, or t~'b, is equal to q(4). In both cases, there exists an
exact sequence

0 — M(z*b,) > M(b,) - M(b,) - 0,

thus, for a = b, we have found an exact sequence as required. It remains to consider the
casea = b,. Note thatb, + tq(4), since Hom (M (zq(4)), M (q(4))) = 0, whereas we assume
that a is sincere. It follows that b, = q (4). But q(4) is sincere only in case we deal with the
natural ordering 1 <2< 3 <4, and then we have the exact sequence

0 -8, » M(q4) - M(q@3) -0,
as required. This completes the proof.

Remark. In Proposition 5, we had to exclude the case A |, since otherwise a would be
asimple root, thus M (a) a simple representation. Also, we have excluded the case G ,, since it
has been discussed in detail before: the only 4-orthogonal positive roots are the simple roots,
and there are three sincere roots which are not of the form e, + e,. Finally, consider the case
C,

0Oo=0—O0— ''* —O0—0
1 2 3 n—1 n

t
with a,, = — 2. The only long positive roots are given by e, +2 ) e;, where 1 % ¢ < n. We
i=2
see that there is just one sincere long positive root, and it cannot be written in the form a + b,
where a, b are long positive roots. It follows that it cannot be written in the form a + b, where

a, b are 4-orthogonal positive roots.
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9. Skew commutators

Let a, b be roots. The linear combinations of a, b which are roots form a root system of
type A; X Ay, A,, B,, or G,.

Assume that the pair (a,, a,) is 4-orthogonal. Let r = — (a,, a,>. Then M(a,), M(a,)
are orthogonal exceptional modules. The subcategory

% =%(M(a,) @ M(a,))

is equivalent to the category of representations of a K-species & of type A’, where 4’ is a
Cartan matrix of rank 2. Here, we take K = k in the simply-laced cases, and also in case at
least one of the roots a,;, a, is a short root; in case both roots a,, a, are long, let
K = End M(a,). The last case can happen only for r = 2. Note that as a K-species, &' again
is reduced. Let us fix an equivalence from the category of representations of %’ onto €, and
denote it by v. Since the objects M (a,), M (a,) are the simple objects in €, they are the images
of the simple representations S; and S;, of &’ under v. We obtain an embedding of the
Grothendieck group K, (') = Z?* into K, (¥), which again we denote by v (with v(e,) = a,,
fori =1, 2). Under this embedding, the bilinear form { —, — ) of K, (&) restricts to a scalar
multiple of the corresponding bilinear form of K, (#"’), since € is an extension closed full
subcategory of the category of representations of .#. In fact, in case K = k, we obtain the
corresponding bilinear form itself, in case K = End M (a,), we obtain the r-multiple: given
two representations M, N of &', we have

(vM,vN) = dim, Hom(vM, vN ) — dim, Ext' (vM, vN)
= [K: k](dimy Hom (M, N) — dimy Ext!'(M, N))
=[K:k]{M,N>,

and, in case a,, a, both are long roots, then [K: k] = 2 =r.

Since 4" is of rank 2, it is of the form A, x A, A,, B,, or G,. In case r = 0, the only
indecomposable objects in % are the two modules M (a,), M (a,), thus let us assume that
r>0. For the connected rank 2 cases, we have seen above how to express the inde-
composable as skew commutators, and we claim that we obtain corresponding formulae
when we replace e, by a,; in case of two long roots a,, a,, we also have to replace v by v2. Itis
sufficient to consider #”' = ¥, (4') ® Q(v), and the ring homomorphism #' — # which
sends E; to {a,>, and v to v'®*¥, In this way, we see that the recipe outlined in the introduction
is based on our calculations in the rank 2 cases.

Of course, we may use the information provided by Proposition 5 in order to improve
the inductive construction of the elements X (a). For any 4-orthogonal pair (a, b), with
r =r? > 1, we have defined

X(a+b) = X(b) X(a) — v "X(a) X(b),

and we wonder which additional elements we have to take care off. We may assume that 4 is
connected and not of type G, . In the simply-laced cases, we will have obtained a PBW-basis
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in this way, thus, we only have to consider the cases B,, C, and F,. We work with the graph
and the labelling as presented in the last section.

For B,, the only positive root to be considered in addition is 2e, + e,; for C,; we have
t

to deal with all the additional roots e, + z e, for2 < i £ t; and for F,, we have to take into
i=2
account the roots 2e, + e, and 2e,; + 2e, + e;. For these roots a, we have to construct X (a)

. . 1 .
as outlined in the introduction, as the ﬁ-multlple of a proper commutator.
10. The o/-form U,

Recall that we denote .of = Z (v, v '] and that U} is the «/-subalgebra of U* generated
by the elements E®.

Proposition 6.  The s/-algebra #, () is generated by the elements e{", with 1 < i < n
and t 2 1.

This is known, see [R6], [R7]. For the convenience of the reader, we outline below
a direct argument.

Corollary. The isomorphismn: U* — # of Q(v)-algebras defined by n(E;) = e; maps
U onto #,(4).

In order to present a proof of Proposition 6, we need the following lemma:
Lemma 6. Foranyd=(d,,...,d,)eZ",

eI o welkd) = Y @D (g

dima=d

Proof. Wehavee(*® = (d,e,> = v~ %*i*4* g e accordingto Lemma 2. Let us denote

B =@ de;. Thus dimd = dimB =Y d;¢;, and e(B) = ) d?e,. Also,
i=1

C(B9 B) = Z C(diei’ diej),

i<j
since for i 2 j, we have ((d;e;, d;e;) = 0.
Any module M with dimension vector d has a unique filtration
M=M2M,22M,=0

with factors M,_, /M, isomorphic to d; S;, since Ext!(S;, S;) = 0fori 2 j. This shows that the

i»j
Hall polynomial ¢3 ., is equal to 1, for any o with dima = d.

..... dne,
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Also, for i <j, we have {d;e;, d;e;> = — ((d;e,, d;e;), therefore

— S dis 2g;
e(l*dl) ok e:'*d,.) =07 Zd.e;+2di5:d1e1 e % dnen

— ces 2 — ei.die;
= p-Ldisi Y diEy i§j<d.e.,d,e1> Z [a]

dima=d
= p~dimp+e(B)—L(B.H) Z [o]
dima=d
— v-—dimd+<d,d> Z [OC] )
dima=d

We insert [o] = v™*~¢® (g and note that {d, d) = (dima, dima) = &(a) — {(a, «). In this
way, we obtain the formula as stated.

Proof of Proposition 6. According to Lemma 2, e = (e,>® = (re;>, thus the
elements e{” belong to 7, (4).

Let ¢ be the subring of J, (4) generated by the e, with 1 < i < nand ¢ > 1. Let us
show that any o € # belongs to ¥. We use induction on dima. If there are at least two
different positive roots a; with a(a;) = 0, then we use Proposition 1’ in order to see that
{a) =<a(a)a, ) *---x<a(a,)a, ). By assumption, we know that dima(a;)a, < dima,
for all i; thus by induction, all the elements {a(a;)a;) belong to ¢. This shows that {a)
belongs to %. It remains to be seen that for any positive root a, and any 7 € N, the element
{ta) belongs to %.

We apply Lemma 6 for d = ra. Note that {(ra, ta) = 0, thus

{(ta) = e(l*dn) % oo % e;*dn’ — Z U‘C(ﬂ,ﬂ)<ﬁ>_
dimpg=d
p*ta
If B + rais given withdim § = d, then f§ cannot be a multiple of a root, thus there are at least
two different roots a, with f(a;) # 0, and therefore we know already that () belongs to .
Of course, also e{*?") x --- x e*) belongs to ¥, therefore (7a) belongs to %. This completes
the proof.

We obtain the following consequence, where X, ..., X,, generates a PBW-basis of U*
as constructed above.

Theorem 4. The elements X {**M) % -« x X3 with a(1), ..., a(m,) € N, form an
&/ -basis of U, .

11. The subalgebra ¢ | .#

Let & be a reduced k-species of type 4. We denote by rep-# the category of all
representations of #. Recall that a subcategory .# of rep-% is said to be closed under direct
summands provided for every module M in .#, all its direct summands belong to 4. A
subcategory # of rep-& will be said to be closed under potential extensions provided for
M, M,in #,and ¢p{ \, *+ 0, also M belongs to .#. (Let us stress that it may happen that
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@i v, + 0, whereas there is no exact sequence of the form 0 - M, - M — M, — 0; the
evaluation of the Hall-polynomial @57 ., & 0 at |k| may be zero: as an example, for D,,
there are indecomposable modules M, M,, M, with ¢}{ ,, =g —2.

The following is obvious from the definition of the Hall multiplication: Let # be a
subcategory of rep-& which is closed under potential extension. Let # |.MH be the Q (v)-
subspace of # generated by the elements [M ] with M € M. Then # | M is a subring. Similarly,
let Jf; ()| M be the o -submodule of H, (4) generated by the elements [M ] with M € M. Then
H, (A)| M is a subring.

Proposition7. Let # be a subcategory of rep-& which is closed under direct summands
and potential extensions. Let /" < M be a subcategory, and assume that any represedtation
in M has a filtration with factors in /. Then # | M is generated as a Q (v)-subalgebra by the
elements [N] with N in .

The proofis similar to that of Proposition 4: Let ¢ be the Q (v)-subalgebra generated
by the elements [N] with N in 4. In order to show that any [M], with M in .# belongs to ¥,
we use induction. Let M = M («) for some a € 4. Note that M is the direct sum of the
modules M (x(a)a), withae &*. If a(a;) + 0 for at least two different positive roots a,, then
all the modules M («(a)a) have smaller length, and by induction [M (x(a)a)] belongs to 4.
Proposition 1’ shows that also [ M ] itself belongs to 4. It remains to consider the case o = ¢a
for some positive root a and some ¢ = 1. By assumption, M = M (¢a) has a filtration with
factors in .#; thus, there are modules Ny, ..., N, with ¢y #+ 0. Write

[NI*--x[NJ= ) ¢ [M(B)],

dimf=ta

with coefficients c; € Q(v). Note that [M(ta)] occurs with a non-zero factor ¢,,. Thus

IM]=c'(INI*-*[NJ— Y ¢ [MPB)]).

dimpg=ta
B+ta
If B + rais given with dim § = d, then there are at least two different roots a; with f(a;) = 0,
and therefore we know already that [ M (f)] belongs to 4. Altogether, this shows that [M]
belongs to ¥.

Forexample, if i is a vertex for 4, let rep-# (i be the subcategory of all representations
which do not have S; as a direct summand. By construction, this subcategory is closed under
direct summands. If i is a sink or a source for 4, then rep-# (i) is also closed under potential
extensions (note that for i a sink, S; is projective; similarly, for i a source, S, is injective). In
these two cases, we will consider

H i) = H|rep-F<i),
H (A)<iy = #, (4) | rep-F<iy.

The set of isomorphism classes of representations in rep-&<i) will be denoted by % (i},
thus (i) is the free Q (v)-module with basis £ (i).
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Lemma 7. Let i be a sink or a source. Let N be the set of indecomposable
representations N with dimension vector €;+ te; for some j + i, and some t = 0. Then any
representation in rep-<<i) has a filtration with factors in N.

Proof. We consider the case where i is a sink. The other case follows by duality. Since
i is a sink, S; is projective. Thus, a representation M belongs to rep-& (i) if and only if
Hom (M, S;) = 0. In particular, we see that in this case the subcategory rep-¥<i) is closed
under factor modules.

Let M be a representation in rep-¥<i). Let M’ be the maximal submodule of M
without composition factor of the form S;. The composition factors of M’ belongto 4", thus
it remains to exhibit a filtration of M/M’ with factors in A", By definition of M’, the socle
of M/M' is a direct sum of copies of S;. It follows that the socle of M/M’ is contained in
the radical of M/M’, since Hom (M, S;) = 0. We can assume that M/M’ % 0. Let M" be a
submodule of M containing M’ such that N = M" /M’ is local and of Loewy length 2. Then
clearly N belongs to A". Also, M/M" again belongs to rep-%<i), thus by induction M/M"
has a filtration with factors in .4". This completes the proof.

Of course, if N is an indecomposable representations with dimension vector e; + te;
for some j #+ i, and some ¢ = 0, then ¢ < — q;;, and, conversely such indecomposable re-
presentations do exist.

ij*

Consider again the case where i is a sink. The bimodule ; M, has, as a right F;-vector
space, dimension — a;; (since its k-dimension is —¢;a;;). Let M’ be an F;-subspace of ; M; of
codimension ¢. We construct a representation of . by attaching F;to j, and ;M;/M' to i, and
we use the projection map F;, ® ;M; — ;M;/M'for the arrow j — i.

The case when i is a source follows by duality; of course, we also can write down an

explicit recipe: attach again F; to j, an F;-subspace M" of Homg, (; M;, F;) to i, and use as map
M" ® ;M; — F; the evaluation map.

Corollary. Let i be a sink or a source. The Q (v)-algebra # i) is generated by the
elements e; + te;, where j i, and 0 < t < — a;;.
12. Reflection functors

Let i be a vertex of 4. Let 0,4 be obtained from 4 by changing the orientation of all
arrows which have i as starting point or end point.

Let & be a reduced k-species of type 4. Let 6,% be the k-species obtained from & b4y
replacing , M, by its k-dual, if r =i or s = i; note that ;% is a reduced k-species of type o; 4.

Let us assume that i is a sink for 4. We denote by a,", the Bernstein-Gelfand-Ponomarev
reflection functor, see [BGP], [DR2]: it is an equivalence

ol rep-F iy - rep-0,Fi).

6 Journal fiir Mathematik. Band 470
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Theorem 5. Let i be a sink. The functor o yields an o/-algebra isomorphism

02 H, (D)) > H, (0, 4) i)
where

o (MY = (o M.

Proof. The subcategories rep-¥{i), rep-o,#{i), are closed under extensions. Let
Ny, N, beinrep-&¥{i). If M is a module with a submodule M, isomorphic to N,, such that
M/M, is isomorphic to N, then M belongs to rep-¥{i), and

and
dim, o} M = dim, o; N, + dim, ;" N, .

Also, we may calculate the Hall-polynomials, as well as the bilinear form between modules
in rep-& (i) inside this subcategory, and therefore

O o= drinipey, and (dimN,, dimN,) = (dima; Ny, dimo; N,).
Recall that
(N (N = 2 o™ oYy, KM,
with ¢(M) = ¢(N,) + ¢(N,) + {dim N, dim N, — ¢(M). Similarly, we have
(o7 Npy <o Ny = F 0™ by, oon, (M,
with the same function c. It follows that
0, (AN % AN)) = 0, (L o™ v, M)
=2 0" ™ Ny, {0/ M)
= X 00 iy, ons COTMD
= {0/ N> * {0/ N>
=0,{N,) *0;{N,).
This shows that o; is a ring homomorphism.
Example. Let i be a sink. Let j# i, and 0 < ¢ < — qa;;. Then
o;{e;+te) =<e;+(—a;—1e).
Proof. Recall that we denote by &; the reflection in Z" at e; with respect to the
symmetric bilinear form (—, —), thus g;(e;) = ¢; — M e; and (e;, e;) = g;a

(ei’ ej)

(e;,e;) =2¢. This shows that 4,(e)=e;—a;e, and that q,(e)=—e; thus

;j» whereas
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o;(e;+ te;) = e;+ (—a;;— 1)e;. On the other hand, for M an indecomposable representation
of & different from S;, we have dimg; (M) = &,dim M, see [DR2].

Lusztig has proposed several braid group operations on U. In particular, consider for
any i the following operator 7}, defined for the canonical generators E;, F;, K, of U by

T” (E;)) = — FKf,
Til,’l (Fz) = _Ki_si Ei >
T\ (E) = Z (—1)’v'5"Ei‘s’Ej E® for j=#i,

r+s=—ajj

T'\(F)= Y (=1yv"FPFE® for j#+i,

r+s= —aij

Ty (K,) =

ﬂ(u)’

this defines an automorphism T}, of U.
Theorem 6. Let i be a sink. The homomorphism o, is the restriction of T}, to ¥, (4 Gy

We show that T;; and o; have the same effect on a generating set of #°(i>. We have seen
above that the elements {e; + re;> with j & iand 0 < 7 < g;;form such a generating set, and

On the other hand, Lusztig has shown in [L4], 37.2.5, that

" I
Ti,l (xi,j;l.t;—l) = Xijit, —ajj—t;—1

where

ir(—aij—t+1
Xpjing-1 = », (=)0 W CwTTDEDEED,

r+s=t

ir(—aij—t+1) (s) (r)
Xi i1 = Z (— o ’ EFEE".

r+s=t

By Proposition 3, we know that x; ;., ,._, = {e; + te;> 4, since i is a sink for 4, and that
X s 1= = {e; + te;),, 4, since i a source for g; A Here, we have added to {e;+ te;) the
indices 4 and g, 4, respectively, in order to point out the relevant orientation. ThlS completes
the proof.

13. Construction of the PBW-basis, using a braid group operation

We recall from Lusztig [L4] that the operators T;';, where i runs through the vertices of
the graph of 4, define a braid group operation on U. The considerations above allow to see
that our generating sequences for PBW-bases can be obtained from the generators Ey, ..., E,

using this braid group operation (in the simply-laced cases, a similar result was pointed out
by Lusztig in [L3]).

Recall that a sequence i, ..., i, is called a sink sequence for 4, provided i, is a sink for
4, and for any 1 < t < m, the vertex i, is a sink for the orientation o; * 0;

t+l Im
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Consider a A-admissible ordering a,,...,a, of the positive roots. There exists a
sequence I, ..., i, of vertices of 4, with the following properties:

(1) The sequence i,, ..., i, is a sink sequence for 4.

1 T2

(2) We have a; =6, 6, " G, _,(e;).

(We may construct this sequence iy,...,i, as follows: Let C be the Coxeter

m

transformation for 4. For any j, there exist some power C* such that C*(a ;)is a positive root,
but C**!(a;) is not positive. Then there exists a unique vertex i; such that (C*(a;), e >0,
this is the vertex we are interested in. In terms of representation theory: the representation
M(C*(a;)) is indecomposable projective, thus has a unique simple factor module, namely
Mi(e; ,))

We fix a 4-admissible ordering a,, ..., a,, of the positive roots and we set X;=<a;).

Theorem 7.

iz, 1

e 77 " N 2
Xi — Fig1 71ij—1,1(Eij)‘

Proof. Since we deal with a sink sequence, the operations 7', are given by o;, see
Theorem 6, thus we can use the reflection functors o;", see Theorem 5. This shows that

Tilll,l ilzl,l Ti’j,_l,1(Ei,.) = <5’,~16i2 5ij_l(Sij)> s

where S is the simple representation of 6; -

1 6,0, & corresponding to the vertex i;.
However,

6;,6;, " 5i,»_,(Si,)> ={6;,0;, """ 6i,--,(eij)> = X;.

This completes the proof.

Appendix 1. The rank 2 cases

For all the rank 2 cases, we are going to present the multiplication table for one of the
generating sequences for a PBW-basis, explicitly.

Case A,. Let
S;=de, X,={e;+e,), X;=<e).
Then
X, * X, =vX, % X,,
Xy x X, =0vX,*X;,

X3*Xl =U_IX1*X3+X2.

Actually, for arbitrary A,, an explicit presentation of # by generators and relations, using
as generating set the generating sequence for a PBW-basis, will be given in Appendix 2.
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Case B,, with ¢; = 2. The elements
Xi={ep, Xy=Ce;+2¢), Xy=< e +e), X,={e)

satisfy the following relations:
X,x X, = VX, *X,,
X;xX,= vV*X,*X;,
X, Xy= v2X,*X,,
Xy X=X »X3+[2]1X,,
X+ X, = X+ X, + (02— 1) X3,
Xox X, =0 2X, x X, + X;.

Proof. The vanishing of a skew commutator for X;, X;,, follows from the general
considerations concerning Auslander-Reiten quivers. We have seen above how to write X,
and X, as skew commutators. This yields the fourth and the sixth equality. It remains to
show the fifth equality.

We have X, = {e,> =e,, and X, = {e, + 2e,> = v **2(e, + 2e,), thus
X,x X, =v %e, x(e; + 2e,).

Note that {e,, e, + 2e,> = — 2. The Hall polynomial ¢¢:®©:f2¢ is given by ¢q?. On the

ey, e;+2e;y

other hand, there are ¢ + 1 images of non-zero maps M (e, + 2e,) — M(2(e, +e,)). The
number of images of the form M (e, +e,) is ¢ + 1, the remaining ones are of the form
M (e, + 2e,). This shows that the Hall polynomial ¢2(©; 3, is given by ¢> — g = v* — v%.
Thus, we see that

Xox Xy =v""e; * (e +2e,)
=v %v%e, @ (e, +2e) + v *(v* — v (2(e; +¢,))
=X, * X, +v *"2(v* —v?) X,
here, we use that X, * X, = v~ %(e, + 2e,) xe, = ¢, @ (e, + 2¢,) and that
Xé*z) ={2(e; +€,)) = U_6+4(2(e1 + ez))-
Case G,, with ¢, = 3.  We denote the elements as follows:
X, =<ey), X, =<e;+3e,), X;={<e +2e,),
X,=Qe, +3e,), Xs={e;+e,), Xs=<ep).
We have the following relations: Of course, as usual, we have

X x X, =0v’X,x X,,, forall 1<i<5.

11
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In addition
XyxX, = vX, *X;+[3]X,,
X,x X, = VX, x X, + 0% —v* =0 + 1) X,
XsxXy;= vXyx X+ [3]X,,
XexXy= 0PX %X+ 0% —v* —0? + 1) XY,

Xy X, = Xy * Xy + @ -0 ) X2,
X+ X, = X, *x X5+ 03 —v ) XD,
X6*X3= X3*X6+(1)3—U—1)Xg*2),

Xox X, =071 X, * X, + [2] X3,
Xex X, =03 X, Xg + (0 =D X35 X5+ (0 —v—0v"N)X,,

Xe# X, =0 3X, x X+ X .

Consider X * X;. Note: Xg =<e,;> =e,. X5 =<e;+2e,> =v">*!(e, + 2e,), and
ey, e; + 2e,> = —3. The Hall polynomial ¢2'$¢1%2¢2 is given by ¢*. On the other hand,
there are ¢° + 1 images of non-zero maps M (e, + 2e,) — M (2(e, +e,)). The number of
images of the form M (e, + e,) is ¢ + 1, the remaining ones are of the form M (e, + 2e,). This
shows that the Hall polynomial ¢2€* 3, is given by ¢°> — ¢ = v® — v?. Thus, we see that

Xox Xy =v"%e, * (e, + 2e,)
=0 "vle, ® (e, +2e,) + v 7 (v° —v?)(2(e; +e,))

=X;*x X+ @0 > —v HXH?D,

here, we wuse that X;%Xg=v"*(e,+2¢,)xe,=v""e, @ (e;+2e,), and that
X*2 = (2(e, + €,)> = v~ 8**(2(e, + e,)). This proves the assertion concerning X¢ * X ;.
The shift by 7 yields a similar formula for X, * X, by duality, we obtain the corresponding
result for X, % X,.

Consider Xy * X,. We have X = (e,> = e, X, = {e; + 3e,> = v~ ®*3(e; + 3e,),and
{e,, e, + 3e,> = — 6. Therefore

Xeo* X, =0 3e, x(e; + 3e,)
=0"%(cie; ® (e, + 3e;) + ¢, (e, + €,) D (e; + 2€,) + ¢3(2e; + 3e,)),
where

— hHe1D(er+3ez)
cl - ¢e1,e1+3e2 ’

— Hle1+e2)D(es+2e2)
cZ - ¢e1.e1+3e2 ’

Ca = 2e;+3e>
37 Wey,e1+3e;
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are the various Hall polynomials. Clearly, ¢, = ¢ €113 = 43 The last polynomial has

ey, e;+3ey

been determined in [R4], itis ¢c; = @285 3%, =¢*—¢* —¢q.

e, e +3ex T

Thus, it remains to calculate c,. Consider maps f: M (e, + 3e,) - M (e, + 2e,) and
f':M(e, +3e,) > M(e, +e,). The corresponding map

[j]:,] i M(e, + 3e,) > M(e, + 2e,) @ M(e, +e,)

is injective if and only if £+ 0 and f” cannot be factored through f. Since End (M (e, + 3e,))
operates transitively on Hom (M (e, + 3e,), M(e, + 2e,)), we can fix some projection
n: M(e, + 3e,) > M(e, + 2e,) and we obtain all images of injective maps

M (e, +3a,) - M(e, +2e,) ® M(e, +e,)

by using only the maps [}T] , where f’ does not factor through n. Now assume there is given

another map f”: M(e, + 3e,) —» M (e, +e,) such that [}r,] and [;} have the same

image. The projectivity of M (e, + 3e,) shows that there exists an automorphism ¢ of
M (e, + 3e,) such that o = n and f'¢ = f"”. The first equality implies that ¢ =1, thus
f"=f". Also, since 7 is surjective, the multiplication by = yields a bijection between

Hom (M (e, + 2e,), M(e, +e,))
and the set of those elements of

Hom (M (e, + 3e,), M (e, +e,))
which factor through n. This shows that

_ flerte)®D(e;+2er) _ e(e +3ez,e1+e) _ e(er+2ez,e1+er) _ 3 2
€2 = O e V3es =q q =q°—q".

Also, we note that

X, xXg=<e, @ (e, +3e,)> =v""""¢; @ (e, + 3e,),
XyxXg={(e;+€) D (e, +2e,)) =v " *(e; +e,) @ (e, +2e,),

X, =(2e,+3e,> =v"7"3(2e, + 3e,).
Therefore

Xex X, = U-g(v6e1 @ (e; + 3e;) + (v°® — 04)(31 +e,) @ (e, + 2e,)

+ (0% — v* — v?)(2e, + 3e,))

=0 20000 X, % X+ 02 (0® — )03 Xy * X5+ 072 (0° — v* — 0P 00 X,
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Consider X, * X,. We have X, =0v"°*3(2e, +3e,), X, =v ®"3(e, + 3e,), and
{2e, + 3e,,e, + 3e,> = — 3. Thus

Xyx Xy, = 0#6—3—3(01((‘31 + 3e,) @ (e, + 3e2)) + 02(3(31 + 232)))
with
= B,

Cc, = 3(e; +2e3)
2 2e; +3ez,e1+3ey "

We calculate the Hall polynomials. We have ¢, = ¢$1 %2821 +3e) = 46 = 412,

On the other hand, given three maps f, f, f: M(e, + 3e,) — M(e, +e,), the
corresponding map

f

S| M(ey + 3e,) - 3M(e, +e,)

fll
is injective if and only if £, /", /" are linearly independent over kK = End (M (e, + e,)). This
shows that the number of injective maps M (e, + 3e,) — 3M (e, +e,) is given by the
polynomial (¢*> — 1)(¢*® — q)(¢* — ¢?). Of course, different triples will yield the same image
if and only if they are obtained from each other by the multiplication using an automorphism
of M (e, + 3e,), and the number of such automorphisms is given by the polynomial ¢* — 1.

Note that the cokernel of any injective map M (e, + 3e,) —» 3M (e, +e,) is of the form
M (3(e, + 2e,)). Altogether we see that

= 3 s e 30 = (= D@ — ¢ =02 =01 =0 420
Thus:
X, * X, =0"12(v'2 (e, + 3e,) @ (2e, + 3e,) + (012 — 0% — 08 + %) (3 (e, + 2¢,)))

=03 X, * X, + (@ —v* — v + 1) X{*,
since
X, * X, =<(e; +3e,) @ (2e; + 3e,)) = v '>"12 (e, + 3e,) @ (2e, + 3e,)

and X{*¥ = (3(e, + 2e,)> = v 13"°(3(e, + 2e¢,)). This completes the consideration of
X, * X,. The shift by ¢! yields the corresponding result for Xq * X,.
Appendix 2. The case A,
A PBW-basis for this case has been exhibited by Yamane [Y1], [Y2]. We will show that
his basis can be derived easily from the considerations above. For the convenience of the
reader, we choose an analogous indexing, and label the cases in the same way as he did.

We consider the following orientation:

O —> 0 —> " —> 0 — 0.
1 2 n—1 n
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Let P (i) be the projective cover of S;, for 1 < i < n,and set P(n + 1) = 0. Note that fori < j,
there is an embedding P(j) = P (i), and we denote by M;; = P(i)/P(j) the corresponding
factor module. In this way, S; = M, ;.,, and M;; is a serial module of length j —i. The
Auslander-Reiten quiver has the following shape:

Ml,n+l
7 N
\
M2,n+1 Ml,n
s N AN
M3n+1 M2,n Ml,n—l
A N & .
M14
- W 2N
Mn—l.n+1 M24 M13
AN 2N 2N
Mn,n+1 Mn—-l,n M34 M23 M12

Some general features should be mentioned: If M,,, M are indecomposable

modules, then dim Hom(M,, M;;) <1, and dimExt'(M,, M;)<1. We write

rs, ijy = (dim M,, dim M,;, it follows that —1 < (rs, ij> <1, and for (r, s) * (i, ), we
have —1 < (rs, iy + Cij, rs) < 1.

Given a pair of modules M;;, M,  with i <r or with i =r, and j<s, there are six
different cases to be considered.

Case (I): i =r <j<s. There exists an epimorphism M,; — M,;. Thus
rs,ijy =1, (ij,rs) =0.

Case (II): i<r<s<j. There are no homomorphisms and no extensions between
M, and M, thus

ijo
rs,ijy =0, <ij,rs)=0.
Case (III): i<r <j=s. There exists an inclusion M, — M,;. Thus
rs,ijy =1, <ij,rs) =0.
Case (IV): i<r<j<s. There exists an exact sequence
O->M,->M DM, > M; — 0,
in particular, we have a non-zero map M, - M,; - M,;. Thus
sy ijy =1, ij,rs)y =—1.
Case (V): i<j=r<s. There exists an exact sequence

O—’Mrs_’Mis_')Mij_)O’
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and Hom(M,,, M;;) = 0. Thus

Ok

{rs,ijy =0, ij,rs)y =—1.

Case (VI): i<j<r<s. There are no homomorphisms and no extensions between
M, and M,;, thus again

ijs

rs,ijy =0, (ij,rsy=0.

These considerations are sufficient for writing down the automorphism ;; = L u, -
The corresponding skew derivation §;; = dyy,,, Will be zero in the cases (I), (II), (ILI)
and (VI), thus it remains to consider the cases (IV) and (V). Since in these cases
dim Ext'(M;;, M,,) = 1, we see that §,;({M,,>) will be a multiple of an element of our basis.

ij®
Let m(ij) = dimM;; =j —i. Thus <M;;> = v~ "W [ M, ].

Case (IV). The exact sequence

Oqus_’Mis(‘BMrj_)M'i_’O

1

shows that 6,;((M,,») is a multiple of {M;;® M,;>. We determine the corresponding
coefficient. Obviously, the Hall polynomial is

Mis®M,; _ .,
¢M:;M,s” - q 17

thus the coefficient of [M;, @ M,;]in [M ;] x [M,]is v’ (¢ —1) = v™'(¢ — 1). Let us note
that there are no homomorphisms between M, and M,;, thus dimEnd(M;, & M,;) = 2;

. rj>
it follows that (M, @ M,;) = v """ 2[M, @ M,;]], and that (M, D M, =
{M;;) * {M,;>. On the other hand, we note that

My = v ™ML, (M) =v " M,].
Altogether, we see that
0;;(KM,») = (v — v )M, = (M, >
Case (V). The exact sequence
0->M, > M;,—> M;—->0

shows that §,;({(M,,>) is a multiple of {M,;>. Here, the Hall polynomial d)ﬁ}:ﬁ; M,.isequalto 1,
thus the coefficient of [M,] in [M,;] * [M,.] is v’" = p™'. We have (M;> = v~ "+,
(M,y = v~ ™9 and (M, ) = v~ mE~mE9*+1 - Altogether, we see that

0;;({M,>) = M5

We use the notation X;; = (M;;>. We have shown that
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Xij*x X, s =0 X0+ X, in case (I), (III),
Xij* X,o= X, % Xy, 1D, (v,
Xjx X=X, xX;+@0—v )X, *X,, av,
Xi* Xo =0 X, 0% X5+ X, V).

Condition (V) asserts that we may define X;; inductively by
Xo=X,;*X;;—v ' X x X;;, for i<j<s,

starting with X, ; ,, = e,. These elements in U* have been presented already by Jimbo in [J2]
(with v replaced by v™!). In order to rewrite these generators and relations in the form
presented by Yamane [Y1], [Y2], we have to adjoin a square root ¢ of v (this element ¢ is
denoted by ¢ in Yamane; but of course, in our presentation, we have ¢ = v? = t*; there is a
good reason to stick to the notation ¢ = v?, since in our approach, this g is usually evaluated
at prime powers, namely at the cardinality of some finite field).

Let Q(¢) be the rational function field in one variable ¢, let v = 2, and consider

E;= Pt Xii(= t_j+i+1[Mij])-
Then we obtain the following relations:

Eij*Ers = t2 ’ Ers*E'

ijo

in case (I), (I1I),

E;*xE =E,*Ej;, D, (VI),
E;*E =E, xE;+({*—t" ?)E,*E,, (IV),
tinj * E"S = ErS * Eij +1 Eis’ (V).

Proof. The extra factors /=" ¢*7""! cancel in all but the last equality. The last
equality can be written as follows: E;; % E,, =v™'- E; * E, + t ' E,,, and this relation is
directly derived from the relations before.

Our identification of U* and # yields anidentificationof U, = U™ ®¢,,, Q(#) and .
We have E;;,, = E;, and the last relation above shows that for j—i>1, we have
E;=1E ; xE_, ;—t'E_, ;E ;_,. This shows that the elements E; of U coincide
with the elements ¢;; as introduced by Yamane.

References

[BGP] I. N. Bernstein, 1. M. Gelfand, V. A. Ponomarev, Coxeter functors and Gabriel’s theorem, Uspechi Mat.
Nauk 28 (1973); Russian Math. Surv. 28 (1973), 17-32.

[CB] W.W. Crawley-Boevey, Exceptional sequences of representations of quivers, Proc. ICRA VI, Carle-
ton-Ottawa Math. LNS 14 (1992).



88

Ringel, PBW-bases of quantum groups

[DR1] V. Dlab, C. M. Ringel, On algebras of finite representation type, J. Algebra 33 (1975), 306-394.
[DR2] V. Dlab, C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc.

[D]
[Ga]
[Go]

[GL]

[(Gr]
[(H]

013
02]

173 (1976).

V.G. Drinfeld, Hopf algebras and the Yang-Baxter equation, Soviet. Math. Dokl. 32 (1985), 254-258.
P. Gabriel, Unzerlegbare Darstellungen I, Manuscr. Math. 6 (1972), 71-103.

K. R. Goodearl, Uniform ranks of prime factors of skew polynomial rings, Ring Theory, Proc. Ohio State —
Denison Conference 1992, to appear.

K. R. Goodearl, and E. S. Letzter, Prime factor algebras of the coordinate ring of quantum matrices, Proc.
Amer. Math. Soc., to appear.

J.A. Green, Hall algebras, hereditary algebras and quantum groups, Invent. math., to appear.

J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer Grad. Texts Math. 9
(1972).

M. Jimbo, A g-analogue of U(g) and the Yang-Baxter equation, Letters Math. Phys. 10 (1985), 63-69.
M. Jimbo, A g-analogue of U(g/(N +1)), Hecke algebra, and the Yang-Baxter equation, Letters Math.
Phys. 11 (1986), 247-252.

[KT1] S.M. Khoroshkin, V. N. Tolstoy, Universal R-matrix for quantized (super)algebras, Comm. Math. Phys. 141

(1991), 599-617.

[KT2] S. M. Khoroshkin, V.N. Tolstoy, The Cartan-Weyl basis and the universal R-matrix for .quantum

Kac-Moody algebras and superalgebras, Proc. Second Wigner Symp. Goslar 1991, to appear.

[KT3] S.M. Khoroshkin, V.N. Tolstoy, Twisting of quantum (super)algebras, connection of Drinfeld’s and

[LS]
[(L1]

[L2]
[L3]

[L4]
(R1]
[R2]
[R3]
[R4]

[R5]
[R6]

[R7]
[R8]

[Ro]

(s]
(1]

(X1
[y1]

[Y2]

Cartan-Weyl realizations for quantum affine algebras, Max-Planck-Institut Bonn, Preprint MPI/94-23.
S. Levendorskii, Y. Soibelman, Algebras of functions on compact quantum groups, Schubert cells and
quantum tori, Comm. Math. Phys. 139 (1991), 141-170.

G. Lusztig, Finite dimensional Hopf algebras arising from quantum groups, J. Amer. Math. Soc. 3 (1990),
257-296.

G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata (1990).

G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990),
447-498.

G. Lusztig, Introduction to quantum groups, Progr. Math. 110, Birkhéuser, 1993.

C. M. Ringel, Representations of K-species and bimodules, J. Algebra 41 (1976), 269-302.

C.M. Ringel, Tame algebras and integral quadratic forms, Springer Lect. Notes Math. 1099 (1984).

C. M. Ringel, Hall algebras, In: Topics in Algebra, Banach Center Publ. 26 (1990), 433-447.

C. M. Ringel, Hall polynomials for the representation-finite hereditary algebras, Adv. Math. 84 (1990),
137-178.

C. M. Ringel, Hall algebras and quantum groups, Invent. math. 101 (1990), 583-592.

C. M. Ringel, From representations of quivers via Hall and Loewy algebras to quantum groups, In: Proc.
Int. Conf. Algebra, Novosibirsk 1989, Contemp. Math. 131.2 (1992), 381-401.

C.M. Ringel, Hall algebras revisted, Israel Math. Conf. Proc. 7 (1993), 171-176.

C. M. Ringel, The braid group action on the set of exceptional sequences, Proc. Oberwolfach Conf. Abelian
groups and modules 1993, Contemp. Math., to appear.

M. Rosso, Finite dimensional representations of the quantum analog of the enveloping algebra of a complex
simple Lie algebra, Comm. Math. Phys. 117 (1988), 581-593.

A. Schofield, Semi-invariants of quivers, J. London Math. Soc. 43 (1991), 383-395.

M. Takeuchi, The g-bracket product and quantum enveloping algebras of classical type, J. Math. Soc. Japan
42 (1990), 605-628.

N. Xi, Root vectors in quantum groups, Preprint.

H. Yamane, A Poincaré-Birkhoff-Witt theorem for the quantum group of type 4, Proc. Japan Acad. 64 (A)
(1988), 385-386.

H. Yamane, A Poincaré-Birkhoff-Witt theorem for quantized universal enveloping algebras of type Ay,
Publ. RIMS, Kyoto Univ. 25 (1989), 503-520.

Fakultit fiir Mathematik, Universitit Bielefeld, D-33501 Bielefeld
e-mail: ringel@mathematik.uni-bielefeld.de

Eingegangen 1. Oktober 1993, in revidierter Fassung 24. Februar 1995



J. reine angew. Math. 470 (1996), 89—107 Journal fiir die reine und
angewandte Mathematik

© Walter de Gruyter
Berlin - New York 1996

Restricted mean value property
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0. Introduction

In the following U will denote a non-empty domain in the Euclidean space R4, d > 1,
and for the most part we shall restrict our attention to the case where d > 3 or CU is non-
polar. Let A be Lebesgue measure on R? and for every x € R? and r > 0 let

B(x,r)={ye Ré:|ly—x| < rt, ABx,n) = (ll(B(x, r)))-liB(x,r)/l >
1.e., Ap(., is the normed Lebesgue measure on the open ball B(x, r).

It is well known that a locally bounded Lebesgue measurable function f on U is
harmonic if and only if A4, , (f) = f(x) for every x € U and r > 0 such that B(x,r) < U.
The problem to what extent harmonicity of f is already a consequence of knowing that
for every x e U there exists one radius r >0 such that B(x,r) = U and Ag, ,(f) = f(x)
has a long history starting early this century. For a recent survey see [NV].

In the following let r always denote a strictly positive function on U such that
B(x,r(x)) = U for every xe U. If U = R? we assume that r < || - || + M for some M e R,.
A real function f on U is called r-median if

lB(x,r(x))(f) =f(x)

for every x e U (where we implicitly assume that f is Lebesgue-integrable on each ball

B(x, r(x))).

W. A.Veech [Ve2] proved that for a bounded Lipschitz domain U an r-median func-
tion f on U is harmonic provided that | f| is bounded by a harmonic function on U and
r is bounded away from zero on compact subsets of U. In [Ve3] he showed that an
r-median function f = 0 on a bounded Lipschitz domain U is harmonicifag < r < (1 — a)g
for some 0 <o <1 and a strictly positive function ¢ on U such that ¢ < dist(-,CU) and
|6(x) —a(»)| = |lx —y|| for all x,ye U. Later A. Ancona pointed out that the restriction
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on the boundary of U in the proof of Veech can be avoided. A different proof for general
domains U (and for slightly more general means) has been given by J.R. Baxter [Ba2].
Whereas Veech and Baxter used (quite different) probabilistic tools, A.Cornea and J. Vesely
recently gave a purely analytic proof for more or less the same result. In [Ve3] and [CV]
an essential step is the proof of a Harnack inequality for positive r-median functions. It
implies that Choquet theory for compact convex sets is applicable and hence an investiga-
tion of extremal positive r-median functions is sufficient. A careful study of the discrete
Martin kernel corresponding to the transition kernel P: (x, 4) — Ag(, ,(x)(4) then allows
these authors to show that every extremal positive r-median function is harmonic.

In [Ve3] Veech conjectured that every positive r-median function on a bounded
domain U is already harmonic if only r is locally bounded away from zero. By [Hu] this
is true if the dimension d is equal to one. In [HN6] we showed, however, that for
d=2 and any 0<a <1 there always exist ¥“-functions r and f on U such that
0<r<Zadist(-,CU) and f is a positive and r-median function, but not harmonic.

In this paper we intend to prove the following:

Theorem. Let 0 <o <1 such that r(y) 2 a(r(x) — ||x — y||) for every x e U and all
y € B(x,r (x)). Then every positive r-median function on U is harmonic.

By [HN 7] this is true if d <2 and CU is polar. So we shall assume in the following
that d = 3 or that CU is non-polar, i.e., that U is a Green domain.

In order to compare our assumption on r with the hypothesis of Veech, Baxter,
Cornea, and Vesely let us define

o(x):=sup{r(z) —|lx —z||:ze U} .

If § is any real function on U such that r < g and |g(x) — d(»)| £ ||x — y|| then ¢ < § (since
r(@) —llx —z|| £ 6(2) — l|x — z|| = ¢(x)). In particular,

o <dist(-,CU) ifU+R%, o<|-I|l+M if U=R"

In fact, g is the smallest Lipschitz function (with Lipschitz constant 1) majorizing r. (Indeed,
taking z = x we see that r < ¢ and, given x, y e U, we have

r@—llx—zIlsr@—lly—zll+llx—yll
for every z e U, hence ¢(x) < ¢(») + ||x — »||.) Moreover, obviously
r(y) za(rx) =lix =yl
for xe U and y € B(x, r(x)) if and only if r = ag.
So our geometric condition on r is equivalent to ag < r < ¢ for some real function

0 < ¢ £ dist(-,CU) on U satisfying |g(x) — g(»)| £ ||x — y|| for all x, y € U. L.e., we replace
the inequality r < (1 — a) g of Veech and others by the considerably weaker condition r < @.



Hansen and Nadirashvili, Mean value property for positive functions 91

As in [HN 1], [HN 2] the essential element in our proof will be the relation between
supermedian functions for random walks given by the measures P(x,-) = Ag ) and
positive solutions of Schrodinger equations Au — 61,0~ 2u = 0 for small § > 0. It will
allow us to show that (transfinite) sweeping by P on cubes Q in U is uniformly comparable
to the hitting of Q by Brownian motion provided the diameter of Q is controlled from
below by infe(Q). Expressed analytically, the discrete equilibrium potential e, and the
(classical) equilibrium potential e, for these cubes then satisfy ej < e, < ¢ ep.

It will be convenient to use a Whitney type decomposition 2, of U into cubes Q such
that the diameter of each Q is controlled by the values of ap on Q. We shall see that the
assumption a@ < r implies that the discrete Green function g generated by the transition
kernel P satisfies a uniform Harnack inequality on the cubes Q € 2,. The relation between
the equilibrium potentials ej, and e, then yields that for each Q € 2, and every measure
v on @ the discrete potential g* is comparable to the equilibrium potential e,. This com-
parison enables us to prove in a very direct way that every positive r-median function is
bounded by a harmonic function and hence harmonic by [HN1], [HN2].

Finally, let us note that in spite of some probabilistic terminology used above all our
proofs will be purely analytic and that our method can be applied to more general means.

1. Sweeping on cubes by volume means

Let us fix a cube Q such that O = U (for us any Borel set Q in R? such that Q is a
compact cube and Q contains the interior of O will be a cube). Let e, denote the equilibrium
potential for Q with respect to U, i.e., ¢, is the smallest continuous real potential on U
such that e, = 1 on Q. In probabilistic terms, e, (x) is the probability that Brownian motion
starting at x € U will hit Q before leaving U.

Let us suppose that r is a Borel measurable function and define a Markov kernel P
on U by

P(x.") = Apx.riy fOr xeU.

We shall say that a Borel measurable numerical function s =0 on U is P-supermedian if
Ps < 5. Of course the equilibrium potential e, is P-supermedian. We now intend to define
a discrete equilibrium potential ej, associated with P. It will be a P-supermedian function
such that ef; <1 on U and ej, = 1 on Q, but not necessarily the smallest one having these
properties if r is not locally bounded away from zero.

Let us first choose a compactification Y of U as in [HN1]: We take a sequence (g,)
of continuous potentials on U having compact superharmonic support such that for every
x € U and every neighborhood W of x there exist n,me N with

Oéqn_qm§1W’ (qn_qm)(x)>0

There exists a metrizable compactification Y of U such that the functions g,, ne N, can
be extended to continuous functions on Y separating the points of Y. If U is a bounded
regular set or U = R? (d 2 3) then U is the one-point compactification of Y.
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We define kernels S, , and 7, , on Y by

Sr,Q(x9 ) = Apx,rix))» T, o=1y ABriy fOT x€ U\Q
and
Sr,Q(x, ) = T;,Q(-x’ ) =& for xe QU(Y\U) .
For every xe U let .4 _,(x) denote the smallest w*-closed S, ,-stable set of positive
measures on Y containing &,. By Propositions 3.2, 3.3, 3.4 in [HN 1] there exists a unique

P-invariant measure o, in /s __(x) and we have ¢,(U\Q) = 0 and 0, (v) < v(x) for every
Ls.c. function v> —c0o on Y satlsfymg oV S 0.

If r is locally bounded away from zero (and this will be the case in our applications
later on) then simply

Ms, ,(X)={S]"p(x,"):m=0,1,2,...,00}, 0,=87%(x,)

where S, = lim S, and the sequence (S,"'Q (x, A)),,cn is increasing to g, (4) for every

Borel subset 4 of Q (cf. [HN5]). Similarly we have .#;,_,(x) and a T, ,-invariant measure
1, € My, ,(x). By Lemma 3.6 in [HN1] we know that 1Y\Qa =1y, 7, Again this is almost
evident 1f r is locally bounded away from zero.

Clearly, o, is a probability measure since P is a Markov kernel. Thus
0. (Q)=1-0,Y\U)=1-17,(Y\U).
We finally define the discrete equilibrium potential e, on U by
ep(x):=0,(Q) forxeU,

i.e., ep(x) is the probability that the random walk (transfinite unless r is locally bounded
away from zero) given by P starting at x will hit Q.

Obviously, 0 < ej < 1. Moreover, e; =1 on Q since 4, (x) = {e,} for x € Q. Using
the transfinite construction of the measures o, for yeY (cf. [HN 2], p-163) it is easy to
see that (y, 4)+ o,(A) is a kernel and that for every (finite) measure u on Y the measure
fay,u(dy) is the S,,Q-invariant measure contained in .#;_,(x). This shows in particular
that ej is Borel measurable. Moreover, it implies that

g, = _fay lB(N(x»(dy) for xe U\Q
since M, ,(x) = {e,} U M5, ,(Ap,rxy) for xe U\Q. Thus
ep(X) = A, rixy (€p) = Peg(x) for every xe U\Q .

In particular, ej, is P-supermedian since obviously Pep <1 =ej on Q.
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1.1. Remark. It is easily seen that there exists a smallest P-supermedian function
ép such that &, = 1 on Q (take f, =14, f, .1 = sup(f,, Pf,), ég = lim f,; cf. [BH], p. 42).

Moreover, Péj = é, on U\Q since the function s defined by s =1 on Q and s = Pé;, on
U\Q is P-supermedian, and it is not difficult to show that

éo(x) = 57 (x,0).
This implies that &, = e, if r is locally bounded away from zero whereas in general only
¢y < ej and we may have strict inequality. For example, if r <dist(-, Q) on U\Q then

&, =0 on U\Q since 15 is P-supermedian, but ej, >0 on U by the next theorem.

We want to compare eg and e, for 6 (Q) 2 yinfo(Q). Since ¢ < info(Q) + 6(Q) on Q,
1
the lower bound for 4 (Q) implies that ¢ < (1 + ;) d0(Q) on Q. Given y > 0 we first define

1 —d
ﬁ=(8<1+—)1/2> :
Y
Then by Proposition 2.4 in [HN 1] there exists a (very small) constant é > 0 such that for
every xe€ R?, for every r>0 and for every Borel subset 4 of B:= B(x,r) satisfying

AN B(x,r/2) =@ or Agy, (A) = p the following holds: If V" is a Borel measurable func-
tion on B such that

0<V<61,dist(-,CB)~?
and if u is a continuous solution of Au — Vu = 0 on B such that 0 <u <1 then

u(x) 2 f udlB(x.r(x))
CA

(note that u(x) < Apy. ,(x) (#) since u is subharmonic).
For every cube Q let x, be the center of Q and

Q7 = xo+(1+7)(Q —xg)

So Q" is an open cube with x,, = x, and @ < U. Let

1 -2
(R 1y

i.e., g, is the continuous function on Q_j satisfying g, =1 on the boundary of Q3 and
Ag,—V,g,=0 on Q]. Obviously, g, is subharmonic on Q} and not harmonic on Q,.
Hence g, <1 on Q]. Define

a:=supg;(Qy), ¢o(y):= 1—a’

Then we have the following result which has some independent interest.

7 "Journal fiir Mathematik. Band 470
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1.2. Theorem. Let y be a strictly positive real number. Then
eg=eg=co(v)eg
for every cube Q in U satisfying 6(Q) = yinfo(Q).

Proof. Fix a cube Q such that 6(Q) = infe(Q). Extend e, by 0 to a l.s.c. function
on Y. Then §, e, < ey, hence o, (ey) < e,5(x) and

eg(x) = 0,(Q) = g,(eg) = eo(x)
for every x € U since 0,(U\Q) =0 and ¢, =1 on Q.
Let x € U such that Q n B(x, r(x)/2) # §. We claim that
M@0 B(x,r(x)) 2 BA(B(x, r(x)) .
Indeed, if y € O n B(x,r(x)/2) then

0sem+ir-yi<(1+1)5@+ 2,
hence
Q> ——s ).
2(1+1)
Y
Let

r(x)
4 (1 + %) )/d

Then 2s5(x) is smaller than the lateral length of Q, hence

s(x) =

QN B(y,5(x)) 227A(B(y, 5(x)) -
Moreover, obviously B(y, s(x)) = B(x, r(x)). So we conclude that

M@ B(x,r(x) 2 274(B(y, 5(x))) = BA(B(x, r(x)) -

Define
V:= 61QQ_2

and let u denote the (unique) positive continuous function on U such that

u+Ku=1
where

Ku:=G""* = [u(y) V() G(,») Ady)
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and G denotes the Green function for U (see [HN1], [HN2]). Then evidently u <1 and
Au—Vu=0on U.

Moreover, r(x) < o(¥) + || x — y||, hence
dist (»,CB(x, r(x))) = r(x) = [|Ix = y[| < ¢(»)
for y € B(x, r(x)), i.e., ¥ < 61, dist(+, CB(x, r(x))) 2. Thus

(*) u(x) 2 [ udipy i -
cQ
Since ¢ < (1 + %) 0(Q) on Q we have

-2
I7:=5<1 + %) 8(Q) ?1,<81,07 2=V,

Let
g=H5"1.

The scaling properties for the Schrodinger equation yield that
supg(Q) = supg,(Qy) = a.
On the other hand g =1 = u on dQ" and
Ag—Vg=(F-V)g<0 onQ’,

i.e., g is (A — V)-superharmonic on Q’. The boundary minimum principle for (A — V')-
superharmonic functions hence implies that g — u = 0 on Q. In particular,

supu(Q) < supg(Q) =a.

There exists a continuous real potential ¢ on U such that {e, = eq} is a compact
subset of U for each ¢ > 0. Fix ¢ > 0 and define a continuous real function v on U by

v=1—-u—(1—a)ey,+eq.

Then v 2 0 on U\{e, = &4}, v is superharmonic on U\Qandv=1—a—(1—a)=0on
0. Hence the boundary minimum principle implies that v = 0 on U\Q. This shows that

1—uz(1—-a)ey.
In order to finish the proof it suffices to establish that

r
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To that end we proceed similarly as for the proof of Proposition 2.6 in [HN2]. Fix me N
and define a l.s.c. function ¢,, on Y by

0, (x) = lim inf (u n %) (y) forxeY.

y—x,yelU

Then ¢,, = u+ g/m on U and hence by (%)

T‘r,Q(pm é (pm .

Fix x, € U. Then the corresponding measure 7, satisfies

Tro (Om) S @ pm(X0) = u(xo) + @.

As soon as we know that ¢,=1 on Y\U for every meN we conclude that
7., (Y \U) = u(x,), hence by our previous observations

eg(xo) = 0,,(Q) =1—1,(Y\U) 21— u(x,)
and the proof will be finished.

So fix me N. Let (U,) be an exhaustion of U, i.e., the sets U, are open, U, < U, , ,

for every neN and () U, = U. There exist x,€ U\U,, ne N, such that

n=1

lim ¢,(x,) = infe, (Y\U).

n— oo

If lim sup u(x,) =1 then of course lim ¢,,(x,) =1 since ¢,,|y = u. So suppose

n— oo

lim sup u(x,) <1.

n— o

Then lim inf Ku(x,) > 0. Since Ku <1 and Ku is a continuous real potential on U which

is harmonic on U\Q we know that Ku < e,. So our choice of ¢ implies that lim g(x,) = oo
and hence lim ¢,,(x,) = . Thus ¢,, =1 on Y \U and the proof is complete. O
n— o

1.3. Proposition. Let y be a strictly positive real number. Then there exists a constant
¢, > 0 (depending only on y and the dimension d) such that

Pe < e < ¢, Pe})

for every cube Q in U satisfying 6(Q) = yinfo(Q).
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Proof. We already noted that Pej <ep on U and that Pej = e; on U\Q. Since
ep =1 on Q, it hence suffices to find a constant ¢; > 0 such that ¢, A ,)(Q) 21 for
every x € Q. So fix xe Q. If 2r(x) is less than the lateral length of Q then obviously

AB(x,r(x)) (Q) g 2—d .

If not, i.e., if r(x) > 5(Q)/(2W), then

A<B<x’j(7QE)>> =< 5(Q) )

1 d
A 2271 =
B, ron (@) 2 A(B(x,r(x))) 4Wr(x) 2 <4 (1 + 1) W>
l4

since r(x) S o(x) < (1 + %) 0(Q). O

2. Discrete Green function and P-potentials

As before let P denote the kernel given by

P(x, )= /’{B(x,r(x))
for xe U and let

1
p(x,y)= 1B ™) L e, riy (V)

for x, y € U. Defining recursively
py=p and p,. (x,y) = | p,(x,2)p(z,y)A(dz)
U
for x, y € U we obviously have
P*(x,")=p,(x,") 4

for every ne N and x € U. By induction it is easily verified that

Pov1(x, ) = [ p(x, 2) p,(2,y) A(d2) .
U

The (discrete) Green function associated with P is defined by

g(x,y)= Y p,(x,y) forx,yeU.

n=1

For every y € U the positive numerical function g(-, y) is P-supermedian since
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P(g(,»)(x) = [ p(x,2)g(z, y) A(dz)
U

= i !}p(x,z)p,,(z,y)l(dz)=

n=1

Z,l Prs1 (%)) S g(x, ).

n

So for every measure v on U we obtain a P-supermedian function g* on U defining

g (x):=[g(x,y)v(dy) forxeU.

A P-supermedian function s < oo on U is called P-potential if lim P"s = 0. It is evident

n— o

that every P-supermedian minorant of a P-potential is a P-potential.
2.1. Lemma. Let s be a (real) P-potential. Then Ps is a P-potential and
Ps = g(s—Ps)). .

Proof. Of course Ps is P-supermedian and Ps < s< oo. So Ps is a P-potential.
Moreover,

Ps= )Y P(s—Ps)+P"*'s

k=1

for every ne N, hence

Ps = Z P¥(s — Ps) = Z ka(‘,y)(s—Ps)(y),l(dy)=g““”s)'1. O
k=1 k=1

For the following two statements assume that r is locally bounded away from zero.

2.2. Lemma. Let s be a P-supermedian function on U such that s < q for some (classi-
cal) continuous real potential q on U. Then s is a P-potential.

Proof. There exists a continuous real potential g’ on U such that the set {g = ¢q'}
is compact for every ¢ > 0. Fix ¢ > 0 and let ¢ = (¢ — ¢q’)". Then ¢ is a continuous func-
tion with compact support in U, hence lim P"¢p = 0 by [HN 5]. Moreover, s < ¢ + ¢4/,
hence nTe

P's<P'o+eP"q' S P"o+eq

for every ne N and we conclude that lim P"s=0. O

2.3. Corollary. For every cube Q such that Q < U the function e}, is a P-potential and
Pey =g°e
where the measure gy, = (ep — Peg) A is supported by Q.

Proof. g is a P-supermedian function, Pej = e; on U\Q and e is majorized by
the (classical) equilibrium potential e,. So 2.3 is a consequence of 2.1 and 2.2. O
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3. Uniform Harnack inequalities for the discrete Green function

From now on we fix a real a such that 0 < « <1 and assume that

Three elementary lemmas will lead to a uniform Harnack inequality for the functions
g(x,), xeU.

3.1. Lemma. For all x,y,y € U such that ||y — y'|| £ axo(»)/3,

4 d
jg(X, ')d/lB(y,ag(y)/S) =< (&) g(x,»").
Proof. For every ze B(y,a0(y)/3)

2
r@) 2 ap(z) 2 ale(y)—lly —zll) > ale(y) —xe(»)/3) = ?a o(»)
and
4
rz)£e(@ =2e(y)+ae(y)/3 < ge(y),

hence

S N )

4 d
With ¢’":= <—> this implies that
o

jpn(x’ ')diB(y‘aQ(y)/S) é C/ j p,,(x, Z)p(Z, y')/l(dz) é C,pn+1(xﬁ y,)

B(y,ae(y)/3)

for every ne N and hence

§8Cx, ) d gy, aqi3) = 21 § Pa(X, ) d 26,0003

¢ 3 p () S gy 0
3.2. Lemma. Forall x,yeU
p(x,y) S 27 p(x, ") dAp(ya0y3) -
Proof. If y ¢ B(x,r(x)) then p(x,y) = 0. So assume that y € B(x, r(x)). Since
p(x. ) =p(x,y) = (A(B(x, r(x)))) "

on B(x, r(x)), it suffices to show that 1 < 2945, 4003 (B(x, r(x))).
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If xeB(y,20(y)/3), then r(x) = %ag(y), hence B(y,20(y)/3) < B(x,r(x)) and

AB(y.aary3) (B(x,7(x))) = 1. So suppose that x ¢ B(y,ag(y)/3) and let z be the point on
the segment [x,y] having distance ag(y)/6 from y. Then B(z, ao(»)/6) is a subset of
B(x,r(x))nB(y,20(y)/3) and hence

}“B(y,aa(y)/s(B(x, r(x))) 2 }'B(y,aa(y)/S)(B(Z’ “Q(y)/6)) =27%. o
3.3. Lemma. Forall x,ye U,

glx,y) = 24 j g(x, ") d’lB(y,ae(y)B) :
Proof. By 3.2

p(x,y) = 24 j. p(x,°) d}'B(y,aa(y)H)

and

Pa+1(x,3) = [ pu(x,2)p(2,y) A(d2)
U
é 2d !]pn (X, Z)(j‘p(z’ ) d’lB(y,ao(y)/3)) ;l.(dZ)
= 2d j (_‘. P,,(x, Z)p(Z, ) j'(dz)) dlB(y,aq(y)/?a)
U

=2 [ ppi1(x, ") dApy.a003)
for every ne N. The proof is completed taking the sum over n. O

Combining 3.1 and 3.3 and defining

we obtain the desired Harnack inequality:
3.4. Proposition. For all x,y,y’ € U such that ||y — y'| £ a0 (»)/3,
glx,y) S c8(x,y').
Let us recall that for every Q with 0 = U we know by (2.3) that ej, is a P-potential

and Pej = g%e with op = (eg — Peg) 4 and 05(CQ) = 0. For every measure v on U let || v||
denote the total mass of v. Proposition 3.4 has the following useful consequence.

3.5. Corollary. Let Q be a cube in U such that 6(Q) < = 1nf 0(Q) and let v be a finite
measure v on Q. Then g° is a P-potential and

vl
Sepr
Al
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Proof. 1t suffices to show that g” < ¢,||v||/|log|l (and hence g* < 00). Fix xe U. If

y,y'eQthen ||y —y'[|£6(Q) = %@(y), hence g(-,y) <c,g(-,»’). This shows that

logllglx,») = [ g(x,»)ap(dy') S ¢, [ g(x,y") 0 (dy") = c,872(x) S ¢,

for every y € Q0 and therefore

llogllg®(x) = llagll fg(x, »)v(dy) S c,livll. D

4. Decomposition 2, of U into cubes

In order to combine the results of the preceding sections it will be useful to have a

decomposition of U into cubes Q such thaty < §(Q)/infe(Q) < = for some constant y > 0.

If U + R? let us start with a Whitney decomposition 2 of U, i.e., 2 is a partition of
U into countably many disjoint (dyadic) cubes of the form

d
= [1 tm2™ ", (m+1)2""[, meZ meZ
i=1

such that
R I(%)

3  dist(Q,CU) .

IIA

In particular, 6(Q) > = mf 0(Q) for every Q € 2 since ¢ < dist(+,CU).

If U=R?(d=3) we take M = 0(0), Z=7nd([—2,1]%) and begin with
2={[-M,M[*}0{2"M(z+[0,1[):meZ",z€ Z}.
IfmeZ*, zeZ and Q = 2" M (z + [0,1[?) then 6(Q) = 2"M]/d and
On[-2"M,2"M]"+0,

hence info(Q) £ 0(0) + 2”Mﬂ < 2"‘“M]/_ d. Therefore 6 (Q) = = mfg (Q)forall Qe 2
(this is obvious for Q = [— M, M[?).

In both cases we now construct 2, by successive subdivisions of the cubes in 2 where
a subdivision of a cube

d
= H [a;, a;+b[
i=1
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consists in replacing it by the 2¢ subcubes

d b b
de—a+(1+¢e)—
i|=|1 I:al teo,at (1+¢) 2|:
with ¢;€{0,1} for 1 <i<d.

Given Q, € 2 we first take a subdivision of Q. For each resulting cube Q we evidently
have 6(Q) = %6(Q 1) and info(Q) =2 infe(Q,), and if §(Q) > g inf o (Q) the cube O will be
subdivided. And so on. If ke N such that 27% < % info(Q,)/6(Q,) this procedure will stop
after at most k& subdivisions and we shall have obtained a partition of Q, into finitely
many half-open cubes Q such that 6 (Q) < g inf @ (Q) and Q is contained in a cube Q' with
0(Q')=26(Q)and 4(Q")/info(Q') > g. This implies that

infe(Q) < infe(Q") +3(Q) < (g + 1) Q=50

Thus

1. 00 2
7 infe(Q) — 3

Applying this construction to each Q, € 2 we get the partition 2,.

5. Discrete Martin kernel versus classical Martin kernel
Let us fixe a cube Q€ 2, and let 4, =1, 4. By 3.5

Ca

L P) Ao (dx) <
[ g(x,y) Ao(dx) £ Al

A(Qo) < ©

for every Q € 2, and for every y € Q. So we may define Martin kernels k and Kon U x U by

_ Gy

k(ray) = 59 k(x,y)

j'O(g(')y))’

for x, y € U. For every measure u on U we define a P-supermedian function k* and a hyper-
harmonic function K* on U by

k*(x) = [k(x,y)u(dy), K*(x)=[K(x,y)u(dy)

for x e U. Of course,

Ao(k*) = [ Ao (k(-, ) u(dy) = [1dpu = ||l

and similarly



Hansen and Nadirashvili, Mean value property for positive functions 103

Ao (K*) = Il el -
For every Qe 2, let

Ty = (j' G(x, ) Ay(dx)) oy
(.e., 1y =G o, because of the symmetry of G) so that
Ke=G"%=e¢,.
Defining 1, = ([ g(x, *) 4o(dx)) 6, we have
ke = g7 = Pej.
For every Q € 2, and for all y, y'e Q we have by 3.4 the inequality

g(xay) é ng(xay/)
for every x € U, and hence

Ao(gC, ) S ca40(g(-,y")

So we obtain the following
5.1. Lemma. For every x € U, for every Q€ 2, and for all y,y' € Q,
k(x,y) < c3k(x,y").
By 1.2 and 1.3 there exists a constant ¢ > 0 such that

Pej < ey = cPe
for every Qe 2,. Let

— b
C=cc,

(and note that C depends only on a and the dimension d). The following theorem is the
key to harmonic majorants for positive r-median functions.

5.2. Theorem. For every Q € 2, and for every measure v on Q with ||v|| = Ioll,
C'Ke<k"<CK™.
Proof. Lemma 5.1 implies that

r Tg v
¢; Ykt < lzolt . < ke

~ vl

(see the proof of 3.5) where ke = Pej, Pej, < ey < cPe}y, and e, = K"e. Therefore

r
(et 1kro < Wl < 2 e

= vl
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Integrating with respect to 4, we obtain that

(ce) Hitall = lltpll = izl
where by assumption |74l = |[v||. Thus

(ce3) 'K <k Zcc3K™. O

6. Positive r-median functions

After the preparations in the preceding section it is now easy to establish the main
result of this paper.

6.1. Theorem. Let U be a non-empty domain in R?, d 2 1, let r be a strictly positive
real function on U such that B(x,r(x)) = U for every xeU. If U= R? assume that
r< |-l + M for some MeR,. Let « €0,1] such that r(y) = a(r(x) — || x — yll) for every
xe€ U and all y € B(x,r(x)). Then every r-median function f=0 on U is harmonic.

Proof. We already noted in the introduction that because of the results in [HN7]
we only have to study the case where U is a Green domain. By [Ve2] (cf. also Lemma
3.8 in [HN1]) we may assume that r and hence the r-median function f =0 is Borel
measurable. So we may use the notations and results of the preceding sections. Let us note
that j fd < o for every Q € 2,. Indeed, taking x € Q we have Q c B(x, r(x)), hence

)

[fais | fdi=i(B(x,r(x))f(@x)<o.
Q

B(x,r(x))

In particular, 4,(f) < c0.

Let ¢ be a strictly positive continuous real potential on U. For every n€ N let

Jo=1nf(f,nq).

For the moment fix ne N. Since f, is P-supermedian and bounded by the potential nq,
we know by 2.2 that f, is a P-potential and hence by 2.1

Pf,= g°* with ¢, =f,— Pf,.
Then of course
Pf, = k" for p,==([g(x,") Ao (dx)) @, A
and Pf, < f. Define
— #(Q)

Qe2, “TQ” e

By Theorem 5.2 we know that

-1 5D po o tom < D)
el = =5 = il

for every Q € 2,. Taking the sum we conclude that
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C 1K <k < CK™.
Integrating the left inequality with respect to 4, we get
Hvall = Ao (K™) = CAq(k*) = CAo(f) < o0.

Thus the sequence (|| v,||) is bounded and there exists a subsequence (v,) of (v,) converging
weakly to a finite measure v on the (classical) Martin compactification Uu 6™ U of U and

lim K™ = K".

n— oo

Evidently, the sequence (f,) is increasing to f, hence the sequence (Pf,) is increasing to
Pf = f and we obtain that

f=CK.
By [HN1], [HN4] it remains to show that K" is harmonic, i.e., that v(U) = 0.

We just noted that lim f, = lim Pf, = f. Therefore lim ¢, = 0. Moreover,0 < ¢, < f
and by 3.5 noe "o ne

[ 2(x, ) Ao (dx) € —2— 1(Qy)
A

for every Qe 2, and y e Q. So lim u,(Q) = 0 for every Q € 2, by Lebesgue’s convergence

theorem. If y is a continuous real function with compact support in U, then there are only
finitely many Q € 2, such that O n {y =+ 0} 0, and hence

lim v, () =0.

n— o

Thus v(U) = 0 and the proof is completed.

Let us note, however, that we can completely avoid to use the previous result on
harmonically bounded functions: Knowing that for every positive r-median function there
exists a positive harmonic function 4 on U such that C"'h < f < Ch it is obvious that
positive r-median functions satisfy Harnack inequalities. So we may apply Choquet theory
and it is sufficient to consider extremal r-median functions. But for any extremal r-median
function f > 0 the inequality C ~'4 < f, h > 0 harmonic on U, implies that f is a multiple
of 4 and hence harmonic. 0O

7. Generalizations

In view of [HN2], [HN4], [HN5] it is possible to obtain the preceding results for
more general means:

Let U be a Green domain (with Green function G) in R%, d =21, let p: Ux U —» R*
be a Borel measurable function, and define
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By =p(x,")4

for xe U. Let r and g be as before, suppose that ap < r for some real « > 0 and that for
some strictly positive numbers a, b, f and some 1 € ]0,1[ the following holds for every
xeU:

(1) p.(h) = h(x) for every harmonic function #= 0 on U,
u,(s) < s(x) for every superharmonic function s > 0 on U,

(i) p(x,») S afp(x,)dAgy 003 for every ye U,

(i) p(x,") 2 B(A(B(x,7(x)))) ! on B(x,r(x)) and
(Gsx - G”x) 1U\B(x.ﬂr(;vc)) é bgzp (x7 )
If d £ 2 we suppose in addition that
(iv) sup{r(x)"2[(G*—G"*)di:xe U} < oo.
A Lebesgue measurable function f=0 on U is said to be u-supermedian (u-median
resp.) if
[fdu, < f(x)  (Jfdp,=f(x) < oo resp.)
for every xe U.
Properties (1), (iii), and (iv) are already familiar from [HN 2], [HN 4] (recall that (iv)

holds if there exists ¢ > 0 such that, for every x € U, the measure yu, is supported by a
domain ¥, = B(x, cr(x))). The additional property (ii) is a mild regularity condition replac-

oo}
ing Lemma 3.2. Defining (p,) recursively as in Section 2 and taking g = ) p, the proof
of Lemma 3.3 shows that n=1

g(x,y) £ afg(x,")dAgy a0i3)

for all x, y e U. Moreover, the first inequality of (iii) implies that

1 /4)\¢
fg(x, ')dlB(y,aq(y)/3) = ‘B <;> g(x,y")

for all x, y,y’ e U such that ||y — y'|| £ a¢(»)/ 3. Indeed, the proof of Lemma 3.1 carries
over to our more general situation if we replace the equality p(z,y") = (1(B(z, r(2)))) !
by the inequality p(z,y") = B(A(B(z,r(z)))) ~*. Taking now c,:=(4/a)a/p we thus get as
before that

g(x,y) = c,8(x, ")
for all x, y, '€ U such that ||y — y'|| £ a0 (y)/ 3.

From Proposition 2.5 in [HN2], Proposition 2.7 in [HN4], and from [HN5] we
know that the results of Sections 1 and 2 hold as well in our more general situation.
Proceeding as in Sections 5 and 6 we hence conclude that there exists a constant C > 0
such that for every u-median function £ = 0 on U there exists a harmonic function 4 = 0
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on U with C™'h £ f < Ch. So the results of [HN 2], [HN 4] (or the reasoning used at the
end of the proof of 6.1) imply that any such function f is harmonic. Thus we obtain the
following result:

7.1. Theorem. Every u-median function f =0 on U is harmonic.

7.2. Remark. Again it is clear that our method applies as well to more general
elliptic operators.
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A Barth-Lefschetz type theorem for branched
coverings of Grassmannians

By Meeyoung Kim at Notre Dame

1. Introduction

In [L1], R. Lazarsfeld proved a generalization of Barth-Larsen theorem [B]: Let X
be an n-dimensional connected complex projective manifold and f: X — P" be a branched
covering of degree d. Then the induced maps f*: H' (P",C) —» H'(X, C) are isomorphisms
fori<n—d+1.

There is a certain vector bundle & on P" associated with f, which satisfies a strong
positivity condition, i.e. £(—1) is spanned. In this proof, the ampleness of & plays an
essential role in applying Sommese’s Lefschetz-type theorem (cf. [S1], Proposition 1.17).
Lazarsfeld also showed the homotopy version of the above theorem using the spannedness
of &(—1) (cf. [L2], Theorem 5.1).

Once we replace P" by the Grassmannian Gr (r, n), which is the set of » — r dimensional
linear subspaces in C”", in general the associated vector bundle & may be no longer even
ample, but we can still expect it to be spanned. In Proposition (3.2), we prove that & is
spanned. Not only can we expect spannedness, but also some further positivity of &,
namely k-ampleness for some k; k-ampleness is the generalization of ampleness introduced
by Sommese [S1]:

Let E be a spanned vector bundle on a compact complex manifold X. E is k-ample
if for each subvariety Z — X such that E|, has a trivial quotient bundle, it is true that
dim Z £ k, equivalently, the maximum of the dimensions of the fibres of the map P (E) —» P¥
associated with H°(IP(E), &) is less than or equal to k where & is the tautological line
bundle on P(E).

Using this concept we get, for Grassmannians, a result analogous to Lazarsfeld’s,
see Corollary (4.3). The analogous homotopy version, which answers the question raised
in [FL], p. 86, is Proposition (4.4).

8 Journal fiir Mathematik. Band 470
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The k-ampleness of & essentially guides the bound for the cohomology isomorphisms

in (4.3) which is obtained by using Schubert calculus, appropriate Koszul complexes, and
Kodaira-Griffiths vanishing theorems.

I am grateful to my advisor, A.J. Sommese, for suggesting and discussing this pro-
blem. I would also like to thank M. A. de Cataldo and J.-M. Hwang for helpful discussions.

Notation. Throughout the paper, we will use the following conventions:

(1.1) Little or no distinction is made between a vector bundle E and the associated
sheaf of germs of holomorphic sections.

(1.2) E®" E®" and E™ denote n-th direct sum, tensor power and symmetric power
of a vector bundle E, respectively.

(1.3) Given a continuous map f: Y — Z and a sheaf of abelian groups 4 on Y,
fi9(%) denotes the g-th direct image sheaf.

(1.4) We say a vector bundle E is spanned on X if its associated sheaf is generated
by its global sections at every point of X.

(1.5) We use the notation of Hodge-Pedoe [HP], XIV, when dealing with Schubert
calculus.

In the next section, we recall some basic facts about Grassmannians and Grassmannian
bundles that are needed in the sequel, but for which we could not find an adequate reference.

2. Grassmannians

Let X be a compact complex manifold, E be a vector bundle of rank e on X, Gr(s, E)
denote the set of e — s dimensional linear subspaces of the fibres of E. Let n: Gr(s, E) » X
be the projection induced by the bundle projection E — X. There is the universal exact
sequence:

0> F' 5n*E-> Q-0

on Gr (s, E) where F" is the tautological rank (e — s)-subbundle of 7* E. We denote by & ,
the tautological line bundle det Q on Gr(s, E). Indeed, the restriction of £, ; to each fibre
of mis 1* Opn (1), where Gr(s, €) & PV is the Pliicker embedding. In particular, Gr(1, E) is
P(E) with projection n: P(E) — X and ¢, j is the tautological line bundle on P (E).
(2.1) For n: P(E) — X and a coherent sheaf ¥ on X, we have:
n(q)(n*? ® Qfp ® ('p) =0 wherep20,¢g>0, and m21,

so that we deduce:

HY(X,% ® E™)~ HI(P(E), n*4 @ ¢7p) for g=0,m21.
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(2.2) We know that n, &% ;> E® for Gr(1,E) = P(E) "> Xand k2 1. If s 2 2,
then this is no longer true. However the following holds:

., £¥ pis a quotient bundle of the k-th symmetric power (A*E)® for n: Gr(s, E) — X.
In particular, we see that n, & = A°E.

The following generalization [SS], Theorem 5.45, of Le Potier’s lemma (cf. [SS],

Theorem 5.16) enables us to carry vanishing theorems for line bundles over to vector
bundles.

(2.3) Theorem (Shiffman-Sommese). Let n: B — X be a fibre bundle with compact
fibre B, x € X where B,, B and X are complex manifolds. Let ¥~ be a vector bundle on B,..
Suppose & is a vector bundle on B such that for all x € X, there exists a neighborhood U of x
and a local trivialization ¢ = (n, ¢,) :n 2(U) - U X B, such that ¢ = ¢%¥ on n~*(U).
Then £ is a vector bundle on X with fibres n,¢ ®,,k(x) = I'(B,, g ) for every x€ X.
If H(B,, Q5 (¥)) =0 for (p, q) * (0, 0) and for all x € X, then

H(X,9® Q% ®n =HMBm™Y%R® QAL

for all p, q = 0 and for all coherent sheaves G on X.

(2.4) Remark. By LePotier vanishing theorem for Grasmannians (cf. [SS], Theorem
4.56):

HY(Gr(s, €), Q15,69 ® Ugrs,00(1)) = 0, for (p, 9) * (0,0),
we can apply Theorem (2.3) to the Grassmannian bundle B = Gr(s, E) —/— X. We get:
H(X,9® Q% Q@ NE)~H (X, 9 ® % Q@n, & p) = H(Gr(s, E), 1*9 ® L5y ® & 5)
for all p, ¢ = 0 and for any coherent sheaf 4 on X.
The following two propositions are Griffiths and Le Potier vanishing theorems (cf.
[SS], Theorem 5.52 and Corollary 5.17); they are generalizations of Kodaira vanishing

theorem which will be useful in the sequel of this paper.

(2.5) Proposition (Griffiths). Let 4 be a spanned vector bundle on a compact complex
manifold X. Suppose L is an ample line bundle on X. Then

HIX, K, @ 9™ @det¥®L)=0 for ¢>0, m20.

(2.6) Proposition (Le Potier). Let E be an ample vector bundle of rank r on a compact
complex manifold X. Then

HIX,Ky @ E)=0 for qr.

Now let ¥V = C" x Gr(r, n) be the trivial n-bundle over Gr(r, n). On Gr(r, n) we have
the universal exact sequence:

Q.7 0> >V ->2-0
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where %" is the universal rank n — r subbundle of ¥ and Q is the universal rank r quotient
bundle. From the above exact sequence, % and 2 are immediately seen to be spanned.

(2.8) Since det2 =det# = Og,., (1), we have
N2 N2V (), APy = AN'Y(1) forl=0,1,...,rand '=0,1,...,n—r.

(2.9) The tangent bundle 75, , = Hom, (X", 2) ~ % ® 2, and the canonical
bundle KGr(r,n) ; 0Gr(r’")("‘n).

(2.10) Note that A°(Gr(r, n), %) = h°(Gr(r,n), 2) = hi°(Gr(r,n), V) = n because
" and 2" have no global sections and h*(Gr(r,n), ") = h*(Gr(r,n), 2') = 0 by (2.5).

With the notion of k-ampleness, we have:
(2.11) 9% and 2 are r(n —r) — r ample and r(n — r) — (n — r) ample, respectively.

Proof. The statement for % follows by using the universal exact sequence (2.7), by
the fact that the zero locus of a section of 2 is the subgrassmannian Gr(r,n — 1) and by
the fact that for any subvariety Z < Gr(r, n) such that % |, has a trivial quotient bundle,
there is a section se H°(Gr(r, n), 2) which vanishes on Z. Similarly we can prove the
statement for 2. O

2.12) T4 isr(n—r)—n+1 ample.

Note that in the case of projective space, r = 1, the tangent bundle is 0-ample, that
is ample. For the k-ampleness of the tangent bundle of a homogeneous space G/ P, see [G].

3. k-ampleness of &

Let f: X —» Gr(r, n) be a degree d branched covering of the Grassmannian Gr(r, n)
where X is a connected complex projective manifold. Then the flatness of f gives the vetor
bundle f, Ox = Og,,.., ® F where F is the kernel of the trace map Tr in the split exact
sequence:

Tr
0 — 0Gr(r,n) — f;(ox - .f*@X/(gGr(r,n) — 0.

The rank d — 1 vector bundle & = # ¥ associated with f/ can be considered as a variety,
& = Spec((Sym)G,(,,,,)g" ). As in [L1], f factors through &: X ¢ & — Gr(r, n) where
X o & is a closed embedding and & — Gr(r, n) is the bundle projection.

By taking the annihilators, we have the isomorphism Gr(r, n) - Gr(n — r, n). The-
refore we may assume, without loss of generality, that n = 2r. We may also assume that
2 < r £ n—2, otherwise the Grassmannian is the projective space and we are in the case
of [L1].

We need the following canonical bundle formula to prove the main propositions in
this section.
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(3.1) Let # and %, be two vector bundles on X of rank f; and f,. Fori=1,2 and
any 0 < r, <f, let m;: Gr(r;, #) —» X be the Grassmannian bundle projections, and let
B = Gr(r,, #;) X x Gr(r,, #,) —— X be the fibred product.

B G, #)

le AN l Ty
Gr(ry, 7)) —— X

Then Ky = n* Ky @ (detn* )" ® (detn* %) @ p* &/ @ p% &5 72 where &, and ¢, are
the tautological line bundles of Gr(r,, %) and Gr(r,, %,), respectively.

(3.2) Proposition. Let & be a vector bundle on Gr(r, n) associated with a branched
covering f: X — Gr(r,n). Then & is spanned on Gr(r, n).

Proof. Let®B = 29"’ Since a subgrassmannian Gr(r, n — 1) can be realized as the

zero locus of a section of 2, for any point x = Q,, ,_, € Gr(r, n), there is a Koszul complex
associated with B:

0 - ATOTNBY —» ATETDTIEY o - 5 BY Ocriey = Ucrirm/%.Gremy = 0-
We tensor the above complex with & to get the following Koszul complex:
321) 05N B 5 ERQANNIB 5 .. 5 ERB > E > £, —~ 0.

Let G = Gr(r, n) from now on. Now we will prove that the following cohomology groups
vanish fori=1,...,r(n—r):

H(G, &Q® NB)x H™" " (G, F Q@ NBQ Us(—n))’ =0

by Serre duality and K; = O;(—n). Then by looking at the hypercohomology of (3.2.1),
the above vanishings will tell us that H°(Gr(r, n), &) generates each stalk &|, and so &
will be spanned.

Since f, Oy = O; @ F, to show the above vanishings, it suffices to prove
(3.2.2) H{(X, f* (N8B () ® Ky) =0

by the Leray spectral sequence and Serre duality. Note that

(3.2.3) NB = @ < ® /\"f,@V>.
1sJsn—r \1Zijsr, Y ij=i
1sjsJ

So for (3.2.2), it is enough to show that fori=1,...,r(n—r),

(3.2.4) H! (X, f* (( X® /\if.@V)(n)> ® 1<X> =0
1gijsr, Z§Ji,-=i

where each J is in the above range.
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Case J=1. Let 9 =Gr(r—i,f*2). For1Zi<r(n—r),k=1,

H*(X, f*(N2' () ® Kx) = HY(X, f*(N712(n—1)) ® Ky)
> H" (9, n*(Kx ® f*(0g(n—1))) ® ér—i,f‘Q)
= H"(%,Ks® f:ﬂ,pg ® n*f*(Us(n—1—r+1)))
=0
by (2.4), the canonical bundle formula (3.1) where 7 : 4 — X is the bundle projection, and

Nakai-Moishezon criterion ([H], p. 434, Theorem 5.1) and Kodaira vanishing theorem.
In particular, for k = i we have the desired vanishing (3.2.4).

Case J = 2. We want to show that H'(X, f*(A°2" ® A*2"(n)) ® Ky) = 0 where
a+b=i1Zasb<randn—r=2.

Now consider the following Koszul complex associated with the universal exact

sequence (for all the Koszul complexes throughout this section, see [Sc]; which deals with
the more general Eagon-Northcott complex):

(325 0> A2 - (966(2) N @g(aﬂx) QU — - — (pga(i') R U 5 Y9 5 0.,
Pull back by fand tensor with /*(A*2¥ (n)) ® K, to get:

(32.6) 0 - f*(AN2' @ N2 (n)) ® Ky - [[*(A°2'(n) ® Kx]ea(Z) ..
> [f* (@0 ® A2' (n) ® Kx1®D - f*(@® @ A’2'(n) ® Ky - 0.

Again by using the hypercohomology of the above complex, it is enough to prove the
following:

HHX, (2" @ N2 (n) @ Ky) = HH(X, f* (P @ N72(n—1) ® Ky) =0
for 0 £/ < a. By applying (3.1) to the following diagram,

B -2 Gr(r—b,f*2)=9
le N T l T

P(f*U) —— X,
we get for j =1,

H(X, f*(%" ® N7°2(n—1)) ® Ky)
= Hi(%, 11Ky ® [*(V(n - 1) ® &)
= HI(B, m*(Kx ® f*(0s(n—1))) ® &' ® pt¢))
=~ H/ (B, Kz ®@pt&i' @p1&s ® @ n* (f*Gs(n—r+b—2)))
=0
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by noting that B = P (n} f*%) and applying (2.1), (2.4), Nakai-Moishezon criterion and
Kodaira vanishing theorem (note that f'is finite) where £, (resp. &,) is the tautological line
bundle via n, (resp. #,) and £ is the one via p;,.

Case J = 3. By recalling (3.2.4), we want to show
Hi(X, f*(N2" @ Nb2Y @ A2V (n) ® Ky) =0

fora+b+c=i,1<a<b=<c<r and n—r = 3. Similar to the case of J =2, after
tensoring (3.2.6) with f*(A°2"), it is enough to prove

H7UX, x4 @ NP2Y @ A2Y(n) @ Kx) =0 for 0<IZa.

For the above desired vanishings, by replacing a by b in (3.2.5), pulling back by f and
tensoring with f* (%" ® A\°2Y (n)) ® Ky, for 0 </ < a and 0 £ k < b, we want to show
the vanishings of

H75R X (U @ 4% @ A°2Y () ® Ky)

which is a subgroup of H™'"*(X, f*((% ® %)"*" ® A" °2(n—1)) ® Ky). Using, as in
the case of J = 2, the following diagram

B D Grr—ec, f*2)=9%
P | N T | ™
P(/*( @ W) —— X,

we see that the cohomology group above is identical with

H™7H G, nt (U @ )P (n—1)) @ 1Ky ® &)
~ Hi—l—k(B’ KB ®palké;+l ®p;é§n—2r® fl+k ® Tc*f*(gG(n —r4c— 3))
=0

where £, (resp. &,) is the tautological line bundle via 7, (resp. 7,) and £ is the one via p;.

For the remaining cases, J = 4, we complete the proof of the vanishings (3.2.2) as
in the previous cases. 0O

(3.3) Remark. Let Q, be an n-dimensional smooth Quadric in P"*! and & be the
vector bundle associated with a covering map of Q,. Then we can directly show that & is
0-regular (cf. [M], p. 99), hence & is spanned.

Now for (3.4) below, we consider a branched covering f: X — Gr(2,n) and the
vector bundle & associated with f.

(3.4) Proposition. On Gr(2,n), n 2 4, & is (n — 2)-ample.
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Proof. Itisenough to show that & ® 2" is spanned, for then we infer the proposition
by the natural surjective map (£ ® 2') ® 2 -» & — 0 and the (n — 2)-ampleness of 2 by
(2.11) (cf. [S1], Corollary 1.10).

Tensor (3.2.1) with 2" of Gr(2, n) to get:
05 ERQN IR R 5EQNIIB R 5 56@2 -E6® 2'|,-0.

Let G = Gr(2, n). By looking at the hypercohomology of the above complex and by an
argument similar to the one in the proof of (3.2), it suffices to show that for
i=1,...,2(n—2), the following cohomology groups vanish:

(*) H' (G, E® < (9] /\"f,@v> ® .@V>
§ §2 z lj=i
1sjsJ

where J is an integer as in (3.2.3). Note that (x) is a subspace of

o (8, o) ere)on)
15i;52 .Sji_,»—z

by Leray spectral sequence and Serre duality. We will show that () vanishes in the case
of J = n—2 and (3) vanishes otherwise. We need to keep in mind 2’ (1) = 2

Case J+=n—2. Ifi=1, then
H'(X, /*(2' ® 2' (1) ® Ky) = H'(X, f*(2P(n—2) ® Ky) =0
by the fact that 2 ® 2 = 2 @ det 2 and Griffiths vanishing theorem (2.5).
If i = 2, we need to show the following cohomology groups vanish:
(i) H*(X, *(2'® 2' ® 2" (n—1)) ® Ky) if J = 2 (which implies n = 5),
(i) H2(X, f*(2"'(n—1)) ® Ky) otherwise.

Consider the following exact sequence by pulling back the universal exact sequence (2.7)
by f and tensoring with f*(Og(n — 1)) ® Ky:
(3.4.1) 0 f*(2'(n—1)) ® Kx = [/*(Os(n — 1)) ® K]®"
> f*(Un-2)® K, - 0.
Since, for k = 1, the k-th cohomology of the middle vector bundle vanishes, (ii) is isomorphic
to H'(X, f*(#%(n —1)) ® Ky) and it vanishes by (2.5). Repeating this argument, we see
that the cohomology group in (i) is isomorphic to
H' (X, f*(2'® 2" ® % (n) ® Ky)
xH'(X, f*(%(n—1) ® Ky) ® H'(X, f*(2P ® % (n - 2)) ® Ky)
=0
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by applying the canonical bundle formula (3.1), and Nakai-Moishezon criterion and Ko-
daira (or Griffiths) vanishing theorem (cf. the proof of (3.2)).

If i = 3, we need to show the following groups vanish:
Q) H3(X, f*(2'®2'®2'® 2'(n—1)) ® Ky) if J =3 (which implies n = 6),
Gy H3*(X, f*(2" ® 2'(n—1)) ® Ky) otherwise.

By tensoring (3.4.1) with f*2" and by iterating the similar argument as in the case of
i =2, (ii)’ turns out to be

HY(X, f*(% @ % (n—3)) ® Ky)
= H'(X, f*(%®(n—3)) ® Ky) ® H'(X, f*(A\*%(n - 3)) ® Ky)
=0

by (3.1) and (2.5). In a similar way we can show that (i)’ vanishes.
If i = 4, by iterating this process, we complete the vanishing of ().
Case J =n—2. The desired vanishing is
H 2GR 2?2 2)2H" (G, FR®2°2® 2(—n)) =0.
Since f, Oy = O; ® &, we will show that (a) and (b) below are isomorphic:

(a) H””Z(G, Q@n-l(_n)) ~ H"_Z(G, Qv®n—1(n) ® KG)
=~ H" %(G, 2°" (1) ® K;),

(b) H" (X, f*(2"®"'(0) ® Ky) = H" (X, f*(2°"7'(1)) ® Ky),
that will give us the desired vanishing.

Note that (a) is isomorphic to

@) H" (G, 2°" 7 ® 29(1) ® K,)

since 2® 2 =2 @ det2 and H" (G, 2°" * ® (det2)(1) ® K;) = 0 by (2.5). Simi-
larly, (b) is isomorphic to

() H" 2 (X, [*(2°"7° ® 29(1) ® Ky).
We will show that (a’) and (b’), both are isomorphic to C".
Consider the following Koszul complex:

0> AN22®02-2®3% 59%50.
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Pull back by f and tensor with £*(2%"~4(1)) ® K, to get:
0—/*(29"73(2) ® Ky —/*(2°"72 ® 29(1)) ® Ky - [*(2°"* ® 29(1)) ® Ky 0.
Since H*(X, f*(2®%"3(2)) ® Kx) = 0 for k = 1 by (2.5), so in particular,

H' 2 (X, f*(2°7 2 ® 29(1) ® Ky) = H" 2 (X, f*(2°"* ® 29(1)) ® Ky).

Let us assume # = 5. Then by an argument similar to the previous one, using the following
Koszul complex:

0> AN*202% > 2@2% > 32% 50

which gives

0 - f*(2°"° ® 29(2)) ® Ky - f*(2°"7* ® 2°(1)) ® Ky
- [*(2°"7°® 29 (1)) ® Kx — 0,

we have H" 2(X, f*(2°" *® 29(1)) ® Ky) = H" 2(X, f*(2°" 5 ® 29 (1)) ® Ky).
By iterating this process, we see that (b’) is isomorphic to

(b”) H""2(X, f*(2"77(1)) ® Ky).

Now consider the Koszul complex associated with the universal exact sequence of
Gr(2, n) (cf. (3.2.5)):

0 _,f*((gGe(nﬂx)(l)) ® Ky __,f*((gg?(nfz) ® ’@(1)) Ky > -+
- (8D ® 2°72(1)) ® Ky » [*(27V(1)) ® Ky — 0.

Then since
(342 H*X,f*(2"1) ® Kx) =0 for /=0,1,...,n—3 and k=I+1
by Le Potier vanishing theorem (2.6), we have
H™2(X, f*(2070 (1) ® Ky) = [H"2(X, f*(2772 (1) ® Ky)]1®".
Consider the following Koszul complex associated with the universal exact sequence:

0 - f*0 ® Kx = [*(0-" D) ® Ky > -+
- f*(08D ® 273(1)) ® Ky - f*(2"72(1)) ® Ky — 0.

By looking at the hypercohomology of the above complex and at the vanishings (3.4.2)
we see that

H"2(X, f*(2°72(1) ® Ky) = H*""2(X, f* U ® Kx) = H°(X, f* () = C.
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Hence (b') is isomorphic to C". Using the same complexes (without pulling back by 1) we
see that (a’) is also isomorphic to C", hence we have all the desired vanishings. Therefore
& ® 2 is spanned on Gr(2,n). O

(3.5) Proposition. On Gr(r, n) for n = 2r, & is r(n — r — 1)-ample.

Proof. Since & is spanned, ¢, defines a morphism P (&) —2— PV; let F be an
irreducible component of maximal dimension of ¢ ~*(p), where ¢ ~*(p) is a fibre of ¢ of
maximal dimension. Since F cannot meet the fibres of P(&) —— Gr(r, n), i.e. projective
spaces P?~ 2, along a positive dimensional scheme, so F——— 7 (F) is finite. We will consider
the codimension of V' = n(F) < Gr(r, n). We need to keep in mind that the preimage by
fof a generic subgrassmannian is connected by Faltings’ [F], Satz 5, Korollar, or Sommese-
Van de Ven’s connectedness result [SV], Theorem 2.2 (note that we can consider any
generic subgrassmannian to be sitting insde of a higher dimensional generic subgrass-
mannian satisfying the bound for the connectedness result, which makes the preimage of
any generic subgrassmannian connected), and it is smooth for a generic subgrassmannian
by [H], III, Theorem 10.8.

We claim that the codimension of V in Gr(r, n) is at least r; this would imply directly
(3.5). Suppose that codim V' = r — 1 then

V~ Z(xat.A.arQalA“ﬂr

! 1
where o, isaninteger,0 <a, <a, < <a,<n—1and Y a,=r(n—r)+ i(r -2 —1).
i=1
Fix generic Gr(r,r+2) (~Q,5 ,+;) and Gr(n—r,n—r+2) (~821. ,-3n-2n-1)- BY
standard Schubert calculus [HP], p. 327, we can check that V intersects either the generic
Gr(r + 2) or the generic Gr(n —r,n — r + 2) in Gr(r, n).

If V meets Gr(r,r + 2) then dim ¥V~ Gr(r,r + 2) = r + 1. But this is contradiction
Since & |Gy, + 2) is r-ample for a generic Gr(r, r + 2) by Proposition (3.4). In the same way,
the other case gives a contradiction.

If codim V< r — 1 then the same argument gives a contradiction as above. 0O

(3.6) Remark. Ifn < 2rthen by using the natural isomorphism Gr(r, n) - Gr(n—r, n)
we derive that & is (r — 1) (n — r)-ample.

(3.7) Remark. k-ampleness of & on Gr(r, n) in (3.5) is not sharp compared with
(3.4). We want to leave this as a conjecture:

Conjecture. & is r(n —r) — max{r, n — r}-ample.

Note that the conjecture is consistent with Lazarsfeld’s result for the coverings of
the projective spaces.



120 Kim, Coverings of Grassmannians
4. Barth-Lefschetz type theorem for coverings of Grassmannians

The goal of this last section is to show (4.3) and (4.4) using [L1], Theorem 2.1, and
the following Sommese’s Lefschetz type theorem.

(4.1) Let E be a k-ample vector bundle of rank e on a connected projective manifold X
of complex dimension n, then the map obtained by cupping with the top Chern class of c,(E):

Ue(E)
——

H(X,C) H*(X,C)

is injective if a < n— e — k and surjective if azZn— e+ k.

For the proof, see [S1], Proposition 1.17. (4.1) is a generalization of Kleiman, Bloch
and Gieseker’s result for ample vector bundles (see [K] and [BG]).

(4.2) Theorem. Let Y be a connected complex projective manifold of dimension n and
E —T— Y be a k-ample vector bundle of rank e. Suppose X is a connected complex projective
manifold of dimension n embedded in the total space of E. Let f: X < E — Y be the
composition. Then f*: H'(Y,C) - H'(X, C) is an isomorphism for i < n —e — k.

Proof. Consider the diagram:

XdPE @
N e
Y

where j is the composition X ¢, E< P(EY @ 1). As in the proof of Lazarsfeld [L1], Sec. 2,
we see that j* (&) = 0 and j* (ny) = (degf)c, (f*E) where & = ¢,() is the first Chern class
of ¢, the tautological line bundle of P(EY @ 1), and ny, € H**(P(E¥ @ 1), C) is the coho-
mology class defined by X. Follow the same steps as in [L1] by replacing the ampleness
of E by its k-ampleness. Then to conclude, it is enough to show that f*: H'(Y,C) —
H'(X, C) is surjective for / = n+ e + k. We have

H'"2(X,C) 2 H'(PE' @1),C) < H'(Y,C)
Us* () L v
H'(X,C)
where j, is the Gysin map. ( Jj*(ny) is surjective for / 2 n+ e + k by (5.1). So is j* in the

same range. Since j* (&) = 0 and H*(P(EY @ 1), C) is a H*(Y, C)-algebra generated by
&, f* issurjective for IZ2n+e+ k. O

Using (3.4), (3.5) and (4.2), the following Barth-Lefschetz-Lazarsfeld type theorem
is obtained:

(4.3) Corollary. If f: X — Gr(r, n) is a finite surjective morphism of degree d, then
f*: H(Gr(r,n), C) » H'(X, C) is an isomorphism for i < r —d+ 1. If r = 2, then f* is an
isomorphism for i< n—d—1.
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Note. Ifn < 2r, then since & is actually (r — 1) (n — r)-ample (see (3.6)) we can write
n—r—d+ 1 as the bound for cohomology isomorphisms in (4.3).

(4.4) Proposition. If X is a connected complex projective manifold, f: X — Gr(r, n)
is a finite surjective morphism of degree d and n = 2r, then for any fixed point xe€ X,
Sy (X, x) = n,(Gr(r, n), f(x)) is an isomorphism for i < r —d+1.If f: X —» Gr(2, n) is
a double covering, then f, : m,(X, x) —» n,(Gr(2,n), f(x)) is an isomorphism for i < n— 3.

Proof. We have
p*€lxy - p*¢ > €

! ! i

X o & ;»Gr(r,n)
1

where f factors through the embedding i and the bundle projection p. Note that since &
is spanned, so are p*& and p*&|,. By Bertini’s theorem for vector bundles, we may suppose
that X Gr(r, n) < X, the zero locus of s is non-singular for se I'(X, p*&|y).

To deduce the desired isomorphisms of homotopy groups, we will use the following
Barth-Lefschetz theorems by Sommese and Sommese-Van de Ven.

(4.4.1) If B is a submanifold of the Grassmannian Gr (r, n), then for x€ B
n,(Gr(r,n), B,x) =0 for j<2dimB—2r(n—r)+n.
(4.4.1) is a corollary of Sommese’s homotopy results for homogeneous complex

manifolds [S2], Proposition 3.4, which revolve round the theme of the k-ampleness of the
tangent bundle of a homogeneous space.

(4.4.2) Let E be a spanned k-ample vector bundle on a compact complex manifold W
and Z be the zero locus of a holomorphic section of E. Fix x € X. Then

m;(W,Z,x)=0 for j<dimW—rankE— k.
(See [S3] or [SV], Remark 3.2.1.)

Now fix xe Z = X n Gr(r,n) = s *(0) and consider the homotopy sequences of the
pairs (X, Z) and (Gr(r, n), Z):

ni(Z’ X) - ni(Xa X) g TI,-(X, Za X)

;l lf* lf*

n.(Z,x) - n,(Gr(r,n), x) - n,(Gr(r,n), Z, x).

By (4.4.1) and (4.4.2), n;(Gr(r,n), Z,x) =0 for j < n—2d+2 and mn(X, Z, x) = 0 for
i<r—d+1 since & is r(n —r —1)-ample. Note that the first above bound for relative
homotopy groups is strictly bigger than the second one. So from the diagram of exact
sequence for homotopy groups, we conclude the first part of (4.4). In particular, if r = 2
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and d = 2, we get the second part of (4.4) by looking at the above diagram and using
(n — 2)-ampleness of &. O

(4.5) Remark. Corollary (4.3) can be also obtained as a corollary of Proposition
44)ifrz 3.
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The Jeffrey-Kirwan localization theorem
and residue operations in equivariant cohomology

By Victor Guillemin') and Jaap Kalkman?) at Cambridge

1. Introduction

Let G be a compact connected Lie group and M a compact Hamiltonian G-space
with symplectic form ¢ and moment map, p: M — g*. If zero is a regular value of u, the
action of G on the level set, Z = u~*(0), is locally free and the reduced space

Mred = Z/G

is a compact symplectic orbifold. Let :: Z — M be the inclusion map and p: Z - M, ,
the projection of Z onto M, ,. p induces a bijective map

(1.1 p*iH* (M., C) » HF (Z,C)

(from ordinary cohomology into equivariant cohomology) and by composing the inverse
of this map with 1* one gets a surjective map

r: H¥(M,C) » H*(M,,,,C).

We will refer to this from now on as the Kirwan map. (Its surjectivity was proved by
Kirwan in [Ki].)

Now let d = dim M, ,, and let o € Q;(M) be an equivariantly closed d-form. The
localization theorem which we will be concerned with in this paper is a formula for
evaluating the integral

(1.2) [ r@

Mrea

1) Supported by NSF grant DMS 890771.
2) Supported by a NATO science fellowship.
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in terms of the restriction of « to the fixed point sets of certain one-dimensional subgroups
of G. For the case of the circle this formula can be found in [Ka], and the main purpose
of this paper is to reformulate the results of [Ka] in a way that makes sense for arbitrary
groups. First, however, we will try to summarize in a few words the content of the Jeffrey-
Kirwan theorem: This theorem expresses the integral

(1.3) [ r(@expio,.,

M;ca

in terms of the restriction of « to the fixed point set of the Cartan subgroup, T, of G. If
the fixed points of T are isolated, it says that the integral (1.3) is equal to the sum of
residues at the fixed points:

e PO () 1% o (x)

l_[ Ai(p)(x)

1.9 Y (res) = o
p

the 4;(p)’s being the weights of the isotropy representation of T at p and n(x) = [ ] o;(x)
being the product of the roots of G 3). The “prime” next to the summation sign means
that the sum is over a subset of the fixed point set which we will describe more carefully
below (see §3), and there is also some ambiguity (about which we will have more to say
below) in the definition of ““(res),-,”. For non-isolated fixed points their formula is more
complicated, but in particular it says that the integral (1.3) is equal to:

[ rrl(xexpid)*n(x)]

(integration being over the T-reduced space, uy *(0)/T). Here ¢ is the equivariant sym-
plectic form ¢ + u(x), (xexpié)* is the image of aexpié in H; (M), and ry is the Kirwan
map associated with the action of T on M. This shows that the non-abelian localization
problem for G can be reduced to an abelian localization problem. In view of this result,
we will assume from now on that 7= G.

We will now give a brief summary of the contents of this paper: The set of critical
points of the moment map u can be written as a finite union of symplectic submanifolds
of M:

(15) Mcrit = U Mi ’

each M, being the fixed point set of a one-dimensional subgroup T; of T (see [GS]). We
will define in §2 a residue operation

(1.6) (res);: Hf (M) - H¥7"(M)

where d;, = codim M; — 2. (This will involve some non-intrinsic choices: in particular, a
splitting of T into a product of 7; and a complementary torus isomorphic to T/T;. We

3) See [JK]. Another nice account of these results can be found in [Du].
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will prove, however, that the definition itself is intrinsic.) Our main result then says that,
for an equivariantly closed form, a € Q4 (M), d = dim M, .,

(1.7) Jorlad=%" [ nl(es)(®]

M;ea (Mi)red

where r, is the Kirwan map associated with the action of T/ T; on M;. (The “prime” means
as above that not all the i’s occur in the summation. For details see theorem 3.1.) From
this formula one gets, by induction, an expression for (1.2) as a sum of iterated residues
of a over certain connected components of the fixed point set of 7. In §4 we will carry
out the details of this induction and obtain explicit formulas for these iterated residues.
(With some effort these formulas can also be obtained from the contour integral approach
of [JK]. For details see [Ka2].)

If ¢ is a regular value of the moment map and M, is the reduced space u~'(£)/T
one can define, in analogy with (1.1), a Kirwan map

res HE (M) » H*(M,)
and, in analogy with (1.2) one can consider the expression

1.8) [ relo].

M

It is not hard to see that this expression is constant on every connected component
of the set of regular values. More explicitly the set A° of regular values of u is a disjoint
union of open convex polytopes

A= A0 -+ U AL

and (1.8) is constant on each 4?. In §5 we will show that as one crosses a common codi-
mension-one face F of two adjacent 4?’s, the change in (1.8) is given by:

2§ (), [res); ()]

(Mi)y

the sum being over the set of i’s for which u~!(n) intersects M;. (Added in proof: We
were recently informed by Shaun Martin of a result of him which is quite similar to this.)

2. The formula (1.7) in the circle group case

We will describe in this section how the proof of (1.7) goes in the case G = S*. Most
of what we are about to relate has nothing to do with symplectic geometry; so, for the
moment, the manifold M can be any compact S'-manifold with boundary. We will,
however, assume that M is oriented and that the action of S* on the boundary of M is
locally free. Let Z = 0M, let X = Z/S!, and let 1 and p be the inclusion of Z into M and
the projection of Z onto X. Then, defining the Kirwan map, as above, by

2.1 r=(p*) ",

9 Journal fiir Mathematik. Band 470
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one can ask if, in this more general setting, there is a localization formula for the integral

fried.

X

We will see shortly that the answer is yes, however, to see why, one needs to understand
better the map (1.9) (or, what amounts to the same thing, the map

22 (P*)" ' H}(Z) » H*(X),

since 1* is just “restriction”). Let v be the infinitesimal generator of the action of S! and
recall that the Cartan model (2, d) for the equivariant DeRham theory of Z is the
complex:

2.3) 0= 0%*2)" ®Clx]

where Q*(Z)S' is the algebra of S! invariant DeRham forms, C[x] is the polynomial ring
in one variable and d is the exterior differentiation operator

(2.4) d=d1+1()®x.

By assigning to x the formal degree two, d becomes an operator of degree one and (as is
proved for instance in [Ca]) computes the equivariant cohomology of Z. Thus, to prove
that the inverse (2.2) exists one has to prove the following:

Proposition 2.1.  For every a € @* with du = 0, there exists ve @* ! and y € Q*(X)
such that

(2.5) a=dv+p*y.

(This, of course, doesn’t quite prove the invertibility of p*. It just proves the ‘“‘onto-
ness”’; however the “one-one-ness” is easy.)

Let us first prove (2.5) when k > dim X in which case (2.5) reduces to a = dv. Let 0
be an S '-invariant DeRham one-form on Z with the property :(v)6 = 1. Then d6 = x + 0,
so if dau = 0, we can formally set,

o

and hence (formally)

_(x+dO)a
(27) Jv—m——oc

Notice, however, that the right hand side of (2.6) is

0,y (Zd0)

X X

i
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and if o = Y o, x" with o, € 2*(Z)5" this can also be written as

(2.8) ¥ 0, (—dO)x it

Suppose now that dego = dim X. Then dega, + 2r 2 dim X and since a,(—d0)' is zero
if dega, + 2i = dim Z the only non-zero terms in this sum are those for which i < r. Hence
(2.8) is a polynomial in x; or, in other words, an element of §. This proves that o is d-exact
as claimed.

The argument we just sketched is due to Berline and Vergne (see [BV]). It breaks
down if the degree of « is less than the dimension of Z; but we claim that, in this case,
one can still deduce from it the weaker result (2.5). Namely if v, is the sum of the terms
of degree =0 in (2.8) and S the coeflicient of the term of degree —1 one gets

(2.9) a=dv, +1()p

by comparing terms of non-negative degree on both sides of (1.15). However, 1(v)f is
horizontal and S!-invariant; so it is of the form p*7y for a (unique) y € 2*(X), and (1.17)
reduces to

&= av+ +p*y

which, with v, replaced by v, proves the proposition. In addition it shows that at the level
of forms, (p*)~1! is given by

Oo
x+do’

(2.10) o — (res), - o 1(v)

Two other descriptions of this map are useful: On the one hand one can think of 6
as a connection form with respect to the fibration, p, in which case the form

1(0)(Oo) (x + dO)~?

is just the horizontal component of a(x + d6)~!; so (2.10) is the map

o
(21 1) a - (res)x =0 <m>horizontal

On the other hand, the right hand expression in (2.10) can also be written as

O
(2.12) (res), = P, 1 do

where p, is the Gysin map (or fiber integration map) on equivariant forms.

To get a localization theorem from this result, let M, i =1, ..., N, be the connected
components of the fixed point set of S* and let U, be a tubular neighborhood of M; such
that U;n U; = @ fori+jand U;n0M = 0. If a is a closed equivariant form on M of degree
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< M, then, by applying Stokes’ theorem to the identity (2.7) (which is valid on all of
M — | ) M,), one gets

0o O
'Lx—i—d(b _Z,:‘alj,kx+d0

which can also be written

Oo Oa
2.13) ,j(p*(x+d0>=§a;[,kx+d6

and as one shrinks the radii of the tubular neighborhoods, U,, to zero the expression on
the right becomes localized on the components of the fixed point set. If M, is oriented one
can show, in fact, that as the radius of U] shrinks to zero, the k-th term on the right tends to

2.14)

where i, is the inclusion map of M, into M and e(x,v,) the equivariant Euler class of the
oriented normal bundle, v, of M,*). In particular, if dega = dim X, one can take residues
of both sides of (2.14), and one obtains

(2.15) fr@y=Y | (res)a
X k My
with
(2.16) (res), o« = (res), E(%T) .

This is the residue formula (1.7) in the circle group case.

Remarks. (1) The multi-dimensional generalization of (2.16), which we will describe
in §3, is quite different from the definition of residue used by Jeffrey and Kirwan in their
proof of (1.4). (Their definition involves a rather complicated contour integral, whereas
ours involves a sequence of iterated residues of the same type as (2.16).) For the case of
isolated fixed points the equivalence of their definition with ours is proved in [Ka2].

(2) Our theorem also differs from theirs in another respect: Our definition of the
superscript “prime” in (1.4) is not the same as theirs.

(3) In (2.13) and (2.15) one can allow M to be an orbifold-with-boundary since the
only non-trivial ingredient involved in the proof of these two identities is Stokes’ theorem.

(4) Here is another description of the mapping (2.11). In the finite sum

(a)hm' = Z (ai)hor xi

%) For a proof of this result see, for instance, [AB] or [BV].
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substitute the curvature form, —d#6, for the indeterminant, x. This version of (2.11) is
known as the “Cartan’ map. (See [Ca].)

(5) The symplectic version of (2.15) (for a compact Hamiltonian S!-space with
moment map, u) can be derived from (2.15) by applying this formula to the manifold-
with-boundary

M, ={meM, u(m) = 0}
or to the manifold-with-boundary
M_={meM, u(m) <0}.

Note that u is constant on each of the connected components M, of the fixed point
set. By applying (2.15) to M, one gets a residue formula involving the M,’s on which u
is positive, and by applying it to M_, a residue formula involving the M,’s on which u is
negative.

Acknowledgements. We would like to thank Eugene Lerman and Shlomo Sternberg
for many helpful suggestions and comments, and we would also like to thank Lisa Jeffrey
for several illuminating discussions about localization and residues. Some of the results
described here were presented for the first time in a course we taught at M.L.T. in the
spring of 1994, and we are grateful to our auditors (in particular, Ana Canas da Silva,
Eckhard Meinrenken and Chris Woodward) for proposing a number of improvements in
our exposition. Finally, we would like to thank Sylvie Bessette for a beautiful job of editing
this manuscript.

3. The definition of (res); and the proof of (1.7)

Consider one of the summands in (1.5), e.g., M, and recall that there exists a circular
subgroup 7, of T which acts trivially on M,. Let H be a codimension-one subtorus of T’
whose intersection with 7] is finite, and let t, and b be the Lie algebras of these two groups.
We will choose a basis x, y;,...,y,_, of t* such that x is an integer basis of t} and
Vis--+» Vu—, @ basis of h*. Let v be the normal bundle of M, in M and (to simplify slightly
the computations below) assume that v splits into a direct sum of T-equivariant line
bundles

v=L® - ®L,.

(This involves no essential loss of generality. For justification of this “splitting principle”
see [BT], p.275.) Then the equivariant Euler class, ey (v), of v is a product:

(3.1) H (mix+ﬁjyj+.ui)
i=1

where m;e Z, i =1, ..., 1, is the weight of the representation of 7; on L; and f/y; + ; is
a Cartan representative of the H-invariant Chern class of L,. (Here we are using the
Einstein summation convention with f7 e Q°(M,) and y; € Q°(M,).) Now let

a=Y o ,xy, a,eQ¥(M)
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be an equivariantly closed element of Q,(M). Then, formally,

*
1 a

er(v)

(res); (@) = (res), -,
where 1: M, — M is the inclusion map. To give a rigorous meaning to the right hand side

we will write
* 1 ! 4 fip\ 7L
ma — x_l I-[ 1+ H; +.fzy_,
er(v) Hmi i=1 m;x

and expand the right hand side into a product of power series.

1 . ! e “ +f.ly ki
(32) —-——( o x'yJ) (__1)k|< 4 iJj x“ki_l.
[1m 2% il:II kiz':: 1 m;
By multiplying out these power series term by term, one can rewrite this product as a sum
j=mo

where f; is a polynomial in y,, ..., y,_, of the form

(3.4 ﬂj= Zﬂj,]ylv ﬁj,JGQ*(Mx)-

Moreover, formally
1*a

Ter()

and since T acts trivially on M,, this implies

(3.5) dyB;=0
for all j (in particular for j = —1). Now set
(3.6) (res); (@) = B .

This definition would appear to depend on the choice of the splitting, 7= T, X H;
but we will now show that it doesn’t: If T= T, x H' is another splitting, then

yi=y
and
x'=x+)a;y, aeR,

and with this change of variables (3.3) becomes

@3.7) S B -Tap)i= 3 FG)

i=mo i=mo
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where the f;’s are computed from the f,’s as follows:

(1) Ifi=0, replace (x'— Y a;y;)' by the finite sum
d i o
> (—1)’(r>(2ajyj)’(x’)' i
r=0

(2) If i= —m <0, replace (x'— Y, a;y;)~™ by the power series

k=0

© <k+m——1

Z k )(Zajyj)k(xl)‘m—k-

Note that the first substitution has no effect whatsoever on the negative terms in the sum
(3.7), and the second substitution doesn’t change f_, () (though it does change the other
negative f,’s). Thus

B-1(»)=B~1(»)

as claimed.

Another fact worth remarking is that (3.6) lowers the degree of o by the amount:
codimM, —2. (N.B. B_, is two degrees higher than B_,x~'. This accounts for the
“_2’,.)

Having defined (res), (and hence, in effect, (res); for all /) we will turn to the proof
of (1.7). We will begin with a few combinatorial preliminaries: Recall ([A] or [GS]) that
the image, 4, of the moment map is a convex polytope. Moreover, its interior contains
the set, 4°, of regular values of u, and this set is a disjoint union of convex polytopes

(3.8) A°=A%0 - u 4.

By assumption the origin is a regular value of g, so it is contained in one of these 4?’s.
Let 6 be a non-zero element of the weight lattice of t*, and consider the ray through the
origin:

(3.9) {={10,0<t<o0}.

If one chooses 0 appropriately, this ray won’t intersect any of the walls of the 4’s of
codimension greater than one, and will intersect the codimension-one walls transversally.
(See the figure on page 132.)

Since 0 belongs to the weight lattice of t*, its annihilator

h={vet, <O,v) =0}
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NV ARV N

Allowed Forbidden

is the Lie algebra of a codimension-one subtorus, H, of T; and the assumptions on ¢
imply that the moment map, y, is transverse to ¢ and that H acts in a locally free fashion
on u~(¢). In particular, u~*(¢) is a manifold-with-boundary and the quotient space

w, & w1/ H

is an orbifold-with-boundary whose boundary is
oW, =p ' (0)/H.

In addition there is a residual action of the circle group, S = T/H, on W, and this action
is locally free on the boundary. Consider now the Kirwan map

r:Hy (M) > HM,,) .
This factors into Kirwan maps
o:Hr (M) - Hg(W))
and
r,: Hg(W;) » H(M,y) .

We will use this factorization and the theorem (2.15) to prove

Theorem 3.1. For [a]e H{(M), d = dim M, ,,

(3.10) [ rlad=%" | rl(res)(@],

Mred (Mi)rea

ITEEE]

an “i”’ occurring in the sum on the right if and only if M;~pu~'(¢) is non-empty.

Thus the summands in (3.10) correspond to the points of intersection of ¢/ with the
(n — 1)-dimensional walls of the polyhedral complex (3.8). (Note, by the way, that ¢ is
not unique. There are many rays with the properties above, and each such ray gives a
different formula for the left hand side of (3.10).)
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Proof of (3.10). The fixed point set of S in W, is the union of the sets
(3.11) (0™ (p) O M) H = (W)),

where the p;’s are the points of intersection of ¢ with the (n — 1)-dimensional walls of the
complex (3.8). However, (3.11) is just the reduced space associated with the action of 7/T,
on M;. Therefore, in view of (2.15), we need only check that if we take the residue (res);
of a, upstairs on M, and then apply to it the Kirwan map, r,, we get the same element of
H*((W,),) as that which we would have gotten by applying the residue operation, down-
stairs on W, to the class, o(a) € Hg(W,). This, however, follows easily from the following
result:

Proposition 3.1. Themapr,: Hy(M,) — Hg((W,),) takes the T-equivariant Euler class
of the normal bundle of M, onto the S-equivariant Euler class of the normal bundle of (W,),.

Proof. Let Z,= u '(p,)n M;; and let © be the projection of Z, onto (W,); and
1: Z; —» M, the inclusion map. Then, if v is the normal bundle of M; in M and v, the
normal bundle of (1)), in W,

1*¥v =m*y,.

Hence the proposition follows from the fact that, as a map from oriented real vector
bundles to cohomology, the Euler class is functorial.

A few cautionary remarks about orientations. (1) Already, in (2.15), there is a small
orientation problem (which we conveniently chose to ignore). Namely, for the left hand
side of (2.15) to make sense, we need to assign an orientation to X. Since M is oriented
and X = M/ S, this amounts to assigning an orientation to S*, or equivalently, to making

a choice between the two basis vectors, of the Lie algebra of S'. At the root of

+ 0
—_— 80’
this problem is the fact that the “x” in (2.16) is not an abstract indeterminant but is an

0
element of the dual of the Lie algebra of S!, and hence, one should choose x and 70 to
have consistent orientations.

(2) The formula (3.10) may appear to be immune to orientation problems since M, 4
and (M,),., are symplectic orbifolds. Nonetheless, for the same reason as above, one has
to choose the indeterminant, x, figuring in the definition of (res); so that its orientation is
consistent with the orientation of the ray, 7, at all points of intersection, p;, of £ with the
walls of 4.

(3) By induction one gets from (3.10) a formula for the left hand side of (3.10) in
terms of the restrictions of a to the components of the fixed point set of 7. (For details
see the next section.) A consistent choice of orientations at all stages of this induction
seems to be equivalent to the choice of a polarization of the weights of the isotropy
representations in the Jeffrey-Kirwan theorem.
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4. The iterated residues

The formula (3.10) given one an inductive method for computing the integral (1.2)
in terms of the restrictions of « to the components of the fixed point set of 7. In this
section we will carry out the details of this induction and obtain a formula for (1.2) in
terms of iterated residues. We will begin by describing some of the combinatorial features
of this formula: As in §2 let 4 be the image of the moment map, and let

4.1) A° = A%0 - A

be its set of regular values. Draw a line, Z, from the origin to the boundary of A which
avoids all the codimension-two walls of the 42’s, and then, for each intersection, pjof £
with a codimension-one wall, W}, draw a line, £}, from p; to the boundary of 4n W, which
avoids all the codimension-three walls of the A?’s. Now, from the intersection of the £;’s
with the codimension-two walls of the A;”s draw lines ... (it is clear how to continue). We
will call the object obtained by this iteration process a dendrite®). Thus a dendrite will
consist of a main branch (the line ¢), secondary branches (the lines #;), branches going
out of these secondary branches, and so on. The branches that are created at the (k + 1)-st
stage of this construction will lie on the (n — k)-skeleton of (4.1) and at the last stage they will
lie on the edges of the 42’s and terminate in vertices. (See the figure below.) In particular,
a dendrite D will be a (non-disjoint) union of paths, a path being a closed polygonal curve
on D starting at the origin and terminating in a vertex. (In the figure D consists of two
paths both terminating in the same vertex.)

3) Definition (from Webster’s New Collegiate Dictionary): “dendrite. 1. A branching tree-like figure
produced in a mineral by a foreign mineral. 2. A crystalline arboreal form.” This, we feel, is a fairly appropriate
description of the object above.
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In our localization formula the only paths that will make contributions are paths of
the following type: Suppose ¢ (the main branch of D) intersects the (n — 1)-skeleton of
(4.1) in a point p,. Then, since p, is a critical value of 4, it must lie on the image of one
of the M;’s on the list (1.5), and, to simplify our notation let’s rebaptize:

Mi — M(l)
and
Ti =TW
where T, is the one-dimensional subgroup of T leaving M; fixed. Now repeat this con-

struction with M replaced by M? and ¢ by the branch of D going out of p,. By iteration
one gets a sequence of branches of D,

4.2) AR AL

a sequence of points on these branches,

4.3) Do=0,p1,D2s -3 Dn
with £™ = {p,}, a sequence of symplectic manifolds,

(4.4) M=MOSMV S ... 5 M® = F,
and a sequence of subtori of T

(4.5) TO={0}cTVc - cT®W=T

(with dimT® = i) such that M is a connected component of the fixed point set of 7%
and p, is contained in u(M®). (In particular, F is a connected component of the fixed
point set of T whose image is p,.) This construction gives rise to a path, P, consisting of
the line segments joining 0 to p,, p, to p,, etc. We will call a path of this type an admissible
path (and regard (4.4) and (4.5) as part of its defining data).

Now fix D and consider all admissible paths, P, joining the origin to the vertices of
D. Each of these will make a contribution, r(P), to the localization formula, and the
integral (1.2) will be the sum of these contributions; so the main task we are faced with
is to compute the r(P)’s. We will start by fixing some notation: Let P be defined by
(4.2)-(4.5), and let x,, ..., x, be a basis of t* such that x§, ..., x* is a basis of the integer
lattice in the Lie algebra of T®. For each M in the chain (4.4), let v; be the restriction
to F of the normal bundle of M® in M~V Then the normal bundle of F in M is the sum

v=v® DV,

and hence the equivariant Euler class of v is:

n

(4.6) er( = [ er(v).

i=1
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Let
4.7 o, i=1,...,N

be the weights of the representation of 7 on the typical fiber of v, and order these weights
so that

o, N,_;<iZN,
are the weights of the representation of T on the typical fiber of v, (where
0=N,<N,<--<N,=N).
Since T* =1 acts trivially on v,,

a;(x) =mx,+ Y myx, m=*0,

1>r

when N,_, <j £ N,. Note also that

4.8) )= Y (@ +u), peHF).

Nr-1<jsN,

Now let o be a closed equivariant form on M of degree d, where d = dim M — 2dim T,
and let i, be the inclusion of F into M. Then by (3.10) the contribution, r(P), to the
localization formula is the integral over F of:

1 r LS
(4_9) (res)x"_—_o <m (res)x"—1=0 (81‘( 1) (I'CS)x;=0 8T(v1)>>

which, in view of (4.6) can be written more compactly as

*
1Fo

#=0 er(v)

4.10) (res),, =o - (res)

This is the iterated residue we referred to at the end of section 1. The gist of what we have
proved so far is the following

Theorem 4.1. For a fixed dendrite D the integral (1.2) is equal to the sum over all
paths P belonging to D of the residues (4.10).

Finally we will describe how to go about evaluating these residues explicitly. For this
we will need

Lemma 4.1. Let A be a graded commutative algebra over C and let f = f(x) be a
polynomial in x with coefficients in A. Then, for indeterminants y,, ..., y,,

S (x) Z f(y.
R x—y) (k=) [T:—

j#i

“4.11) (res)
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More generally,
(412) (reS)x_—_ [ee) (x _ yl)k{‘(X)(x _ yn)k,. = ; f;(ki h 1)(yi)
where
PR S
TR TTe—)

Proof. Without loss of generality we can take 4 = C in which case it suffices to
prove (4.11) with the y;’s replaced by a “generic” set of complex numbers, ¢, ..., ¢, with
¢; # c; for i+ j. But in this case (res), - ,, can be replaced by the contour integral

1 f(x)

prrs Ny Eoy sk

over a contour in the complex plane which bounds a region containing all the ¢;’s (and,
in this case, (4.11) is a standard identity in complex variable theory). Similar remarks
apply to (4.12).

Since the left hand side of (4.11) is a polynomial in the indeterminants y,, ..., »,
this proves in particular:

Corollary 4.1. For all m the expression

(4.13) Y TT;Ty

j*i

is a polynomial in y,, ..., y,.
Remark. In the applications below, the algebra 4 will be the tensor product
QF)®Clxy,...r x,].

Before attempting to compute (4.10) in general we will first consider some special
cases.

Case 1. F is a point p and the weights of the isotropy representation of T on the
tangent space at p have the following genericity property: Any subset of n distinct weights
are a basis of t*. Under this assumption one gets the following formula for (4.10) by
applying inductively the identity (4.11):

Theorem 4.2. For every sequence

J = rdn-1)
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with j, < N, and j, % j; for r % s, let Q; € R" be the unique solution of the system of n linear
equations

4.14) o;j(xy, ..., x,) =0, jeJ,

x,=1

and let A; be the determinant of the coefficient matrix of this system. Then (4.10) is equal to

-1
(4.15) 2 () (045! (H a; (Q;)) .
J j¢d
Proof. The iterated residue
(res),, _, - (res),, :T(()?)

is equal, by (4.8) and (4.11), to

-1
Y a(Q;x,) A;? ( IT (0, x,,)>

J j+J
in view of the fact that, by eliminating x,, ..., x,_, from the equations
aj(xy, .., x,) =0, jeJ,
one ends up with the solution
x5 .- %) =x,0,.

Notice, however, that «(Q; x) is a homogeneous expression in x of degree

d
—2—=d1mM/2—n

whereas

( I cx,-(QJx)>—1

j+J

. d . .
is of degree 5 + 1, hence, if one factors out redundant powers of x,, one obtains

1
X

n

-1
Z a(Q;) AJ_1 ( l—[ aj(QJ))
J

e
whose residue is clearly (4.14).

Remark. If one reorders the sequence (j,, ...,J,) so that the j,’s still satisfy j, < N,
the new sequence gives the same contribution to (4.14) as the old sequence, hence if n, is
the number of such reorderings (4.14) can be rewritten:
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(4.16) Y 2a(Q,)n, 45! ( 1 aj(Q,)>—

e
the sum now being over unordered sequences.

Case 2. F = {p}, but the a;’s no longer satisfy the genericity condition described
above. We won’t discuss this case in detail. The iterated residue (4.10) can be computed
exactly as above, but now the denominators will involve multiple factors, and, hence, by
(4.12) the answer will involve derivatives of o on the right hand side and be slightly more
complicated than (4.15) (but not much).

Case 3. The o,’s satisfy the same genericity condition as in case 1, but dim F > 0.
In this case the expression whose iterated residue we have to compute is

*
oged

@17 1_[ (O‘i(x) + l‘i)

where the y;’s are two-forms. Replacing the p,’s by indeterminants, y,, we get the formal
expression

1Fo

(4.18) (res),, - (res),, M@ )

and, by essentially the same argument as above, this is equal to:
_ _ -1
(4.19) 2 (@Fa) (@) A ( I1 fx,-(QJ))
J jEJ

summed over all sequences, J = (ji, ..., J,) With j, & j for r % 5, and j, < N,. Here however,
Q,, is the solution in terms of V;» j € J, of the system of equations

(4.20) aj(x)=y, jeJ
and, hence, is an n-tuple of linear functionals in the y;’s. (As above, A4, is the determinant
of the coefficient matrix of the system (4.20). However, this is now an n X n matrix rather

than an (n — 1) x (n — 1) matrix.) The way we have written it, (4.18) appears to be a rational
function of the y,’s; however, we claim:

Proposition 4.1. (4.18) is a polynomial in y, ..., yy.
Proof. Induction via the identity (4.13).

Thus to compute the iterated residue of (4.17) we merely have to substitute the p;’s
into (4.19) in place of the y,’s.

The general case. This can be handled in the same way as above, except that (4.19)
is a little more complicated. (In particular, it involves some derivatives of « with respect
to xy,..., x,.)
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S. The localization formula for the reduced spaces M,

For a regular value ¢ of the moment map u one defines the reduced space M, to be
the quotient u~!(¢)/T; and for this quotient one has a Kirwan map

= ()]

where p, is the projection of u~' (&) onto M, and 1, the inclusion of u~'(£) into M. Now
let a be a closed T-equivariant form on M of degree d, where d = dim M — 2dim T, and
for each & consider the integral

(5.1) J relad.

Mg

We claim that as ¢ varies inside a fixed connected component 4? of the set 4° of regular
values of y, the integral (4.1) stays constant. To prove this let U; = u~*(4?), and note that
the action of T on U is locally free, and hence the projection

n:U - U)T
induces a bijective map on cohomology,
n*: H*(U,/T) - HF(U).
Letting j, be the inclusion of M, into U;/T one can rewrite (5.1) as

(52) [ i*@*)™ (@)

Mg

o; being the restriction of « to U; and this is clearly independent of ¢ (since the homology
class (jy)«[M,] is independent of £).

What happens, however, if ¢ crosses a common codimension-one wall F of two
adjacent 42°s? The answer is easy to read off from the formula (3.10). Namely, let 49 and
49 be the two polyhedrons in the figure below and ¢, and &, points inside them:
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Let Z be the oriented ray joining &, to £, and let £ be the point where it intersects
F. If one uses the formula (3.10) to compute (5.1) at £, one must include the residue terms
associated with the intersection at ¢, but if one uses this formula to compute (5.1) at ¢,
one can neglect these terms. Thus the change in (5.1) as one goes from 49 to 49 is

(5.3) 2" ] (r)e(res)[o]

(M)

the sum being over all i for which M, intersects p~(¢).
We will describe a couple of applications of this result:

(1) Let 6 be the equivariant symplectic form

cHux)=0c+ Y wx,

i=1

the p;’s being the coordinates of the moment map, and let w = (w,, ..., w,) be an n-tuple
of complex numbers. Consider the expression (5.1) with « equal to the equivariant form

(5.4 6= Tw!

where d = dim M /2 — n. By the result above this expression is equal to a constant
(5.5 % (W)

on each of the polytopes 47, but this constant, of course, depends on w; and in fact it is
clear from (4.4) that it is a polynomial in w of degree d. By definition this is the Duistermaat-
Heckman polynomial associated with 4?, and, from (5.3), one gets an explicit formula for
how this polynomial changes as one crosses an (n — 1)-dimensional wall between two
adjacent 42’s. (For a somewhat less precise result of this kind, see [GLS], theorem 5.1.)

(2) From (5.3) one gets a slightly more flexible method for computing the integral
(1.2) than that which we described in §2. Namely let i, ..., i, be a sequence such that 49
contains the origin, 47 and 4 have an (n — 1)-dimensional wall in common, and a7
has an (n — 1)-dimensional wall on the other side of which is the region exterior to 4.
From (4.3) one gets a formula for the (constant) value of the function (5.1) on the polytope
47 in terms of the value of this function on 47 ; and, since the value of (5.1) is zero

when ¢ is in the exterior of 4, one gets by recursion, a formula for (1.2) (as a sum of
expressions of the type (5.3)) of which the formula we described in §3 is a special case.

10 Journal fiir Mathematik. Band 470
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We can illustrate the two methods schematically by the two figures below:

\VA

In the first figure we have joined the origin to the exterior of 4 by a single ray and
in the second figure by a sequence of such rays.
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A remark on Hodge cycles on moduli spaces
of rank 2 bundles over curves

By Indranil Biswas at Saint-Martin d’Heres

1. Introduction

Let k be an algebraically closed field of characteristic zero and of finite transcendence
degree over Q. Let X/k be an irreducible smooth projective curve of genus g = 2. Let A~
be the moduli space of stable vector bundles of rank 2 and fixed determinant with degree
one over X. It is known that .47/ k is an irreducible smooth projective variety of dimension
3g—3 ([S], Ch’ VIA, Part 1) (/" is nonempty as g = 2). Consider the complex Q, in
which Q). is the sheaf of algebraic differential i-forms, and the homomorphisms are given
by the exterior derivation. The n-th hypercohomology H"(£2;), of the complex Q,., with
respect to the Zariski topology of A" is denoted by Hfg(A") ([D], p.16-17). Leto: k - C
be an embedding. Define A := A" Xg ., Spec C. (It turns out that A¢ is the moduli space
of stable bundles of rank two and fixed determinant with degree one over the Riemann
surface X¢ = X Xg,.., Spec C (Proposition 2.3).) The complex 2}, is quasi-isomorphic to
the constant sheaf C. In particular, Hpg(Ag) = H"(Ag,C). Using the projection
py: Ag = N, we obtain a morphism of complexes p¥Q, — Q, . The induced homo-
morphism

¢l': : HI;R(‘/V) ®k,a'C - Hn(%,c) s

is an isomorphism ([D], Theorem 1.4). A cohomology class 6 € H3i (A") is called a Hodge
cycle relative to o on N if

2(0) e H¥ (A, @)/ —1)'Q) nH Y (g).

(Hpp (ML) = Y, H"7I(AL) is the Hodge decomposition.) The class 6 is called an absolute

J
Hodge cycle if it is a Hodge cycle relative to any embedding of k in C.

Our aim here is to prove that any Hodge cycle on 4" relative to ¢ is an absolute
Hodge cycle (Theorem 4.5). Since, after choosing a point of X, the variety .4#" can be iden-
tified with the moduli space of stable bundles of rank two and fixed determinant with any
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odd degree over X, the same statement holds for moduli spaces of rank two bundles with
fixed odd degree determinant.

The moduli of rank one bundles over a curve, i.e. it’s Jacobian is an abelian variety.
Deligne proved that for an abelian variety defined over a field of finite transcendence
degree over Q, any Hodge cycle is an absolute Hodge cycle ([D], Main Theorem 2.11).
We reduce our problem to the case of the Jacobian. A recent result on generators of the
cohomology group of A4¢ which was proved independently by several mathematicians
— V.Baranovsky [Ba]; A.King and P. Newstead [KN]; B. Siebert and G.Tian [ST] and
D. Zagier [Z] - forms a key input for the reduction.

It is easy to see that for any cycle Z on a smooth projective variety X defined over
k the cycle class [Z7] is an absolute Hodge cycle ([D], p. 28, Example 2.1(a)) on X. So if
the Hodge conjecture is valid for X then any Hodge cycle on it is an absolute Hodge cycle.
The Hodge conjecture for a smooth moduli space of vector bundles over the general curve
is now known. For the case of rank two bundles it was proved in [BKN]. For higher
rank it was proved in [BN]. Thus any Hodge cycle on the smooth moduli space of vector
bundles over the general curve is an absolute Hodge cycle.

In a work in progress using the correspondence developed in [Bi] we hope to prove
that any Hodge cycle on a smooth moduli space of vector bundles (of any rank) over a
curve is actually an absolute Hodge cycle.

Acknowledgment. Theauthor is grateful to M. S. Narasimhan for posing the question
addressed here, and to N. Nitsure for some very useful conversations. Thanks are also due
to the referee for pointing out several references.

2. Change of base field

We continue with the notations of the introduction. Let E, — X be a stable vector
bundle of rank 2 and degree 1. Given a homomorphism ¢ : k — C, we have the bundle

Ec - Xg:=XX SpecC

Speck

where E_ is the pull-back of E, using the projection p,: Xo — X. Let us recall the Pro-
position 3 (p.97) of [L].

Lemma 2.1 ([L], Proposition 3). The bundle E¢ on X is a stable bundle.

Remark 2.2. Using the argument in the proof of [L], Proposition 3, and the fact
that a stable bundle is simple, i.e. endomorphisms of a stable bundle are scalars, it can be
shown that for two stable bundles E, and E, over X, if the corresponding bundles on X
namely, E; and E¢, are isomorphic then E, is isomorphic to E;.

Let # (resp. #) be the moduli space of stable vector bundles of rank 2 and degree
one over X (resp. X¢).
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Fix a homomorphism o : k —» C (throughout the rest of this section). Choose and fix
a point ze X. Let z¢ be the corresponding point in X. Define A" (resp. A¢) to be the
moduli space of stable bundles of the type V' — X (resp. W — X.) with

rank (V') = 2 (resp. rank (W) = 2) and /2\ V = 0(z) (resp. /2\ W=0(z)).

Let J! (resp. J2) be the component of the Picard group of X (resp. X¢) consisting
of degree one line-bundles. The morphism det: .# — J* (resp. det : M — J¢) defined by
2

E A E is a smooth morphism; and 4" = det™*(0(2)) (resp. A = det™ (O (z¢))).

The moduli space .# represents the following functor: To a variety S/C associate
the isomorphism classes of families of stable bundles of rank 2 and degree 1 on X,
parametrized by S, modulo the equivalence relation given by tensoring with line bundles
pulled back from S([N1], Theorem 5.12).

Let & be a universal family over X X .#. From the openness of the subset corre-
sponding to the stable bundles in any given family of bundles ((M], Theorem 2.8), we get
that the subset of .# Xg,.., Spec C given by the points on which the restriction of the family
Ec=8& Xg,., Spec C is a stable bundle, is an open set. So, from Lemma 2.1 it follows that
Ec over (XX M) X, SpecC is a family of stable bundles. Hence there is a (unique)
morphism g, ¢ : M Xg,.., Spec C — M representing this family &¢. Now both .# and .4
are smooth irreducible varietes of dimension 4g — 3; and it is easy to see that at any point
of M X, Spec C the differential of the morphism g,  is an isomorphism. So the diffe-
rential of g, ¢ is an isomorphism everywhere. Since .4¢ is simply connected, the restriction
of g, ¢ to N Xg.;, Spec C must be an isomorphism onto A¢. Now, since Jg = J Xgp.c Spec C
we have

Proposition 2.3.  The morphism g,  induces an isomorphism between A" X, Spec C

and A¢. And, more generally, o, ¢ is an isomorphism.
3. Cohomology of the moduli spaces

3a. Cohomology of #;. Given an embedding ¢: k — C, from Proposition 2.4 we
see that the variety ¢ is the moduli space of stable bundles of fixed determinant over the
Riemann surface X¢:= X Xg, ., SpecC.

Let & — X X A be a universal bundle. So

8¢ = & Xspeci SPEC C

is a universal bundle on X, x .4¢. Since any two universal bundles differ by tensoring with
a line byndle, the endomorphism bundle End (&) (and similarly End () does not depend
upon the choice of the universal bundle. Let

¢, € H*(Xe X 4, Q)

be the 2-nd Chern class of the bundle End (&¢).
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Let 1e H°(Xg, Q) and [X] € H* (X, Q) be the positive generators. Consider the
Kiinneth decomposition

=a@[Xc]l+tw+B®1
of ¢, e H*(X¢ %X A, Q) as in [N2], [ST] (a, B and y here differ from those in [N 2] and
[ST] by multiplication with rational numbers). Using the dual pairing between homology
and cohomology, the cohomology class p can be thought of as an homomorphism from

H,(X¢, Q) into H3(Ag, Q). The classes a, f and the image of the homomorphism
together generate the cohomology algebra H*(Ag, Q) ([N2]).

For r = 0, the homomorphism y induces the following composition of maps:
(3.1) Ap:AH,(Xe,@) » A H3 (N, Q) —» HY (N, Q) .
The cup-product on H!(X¢, Q) gives a symplectic form we /2\ H,(X¢, Q). Denote
yi=(Ap)(@) e HS (U, Q).
It is known that the homomorphism v is an isomorphism ([MN]), Proposition 1).

1
Define Vg := H, (X, Q) to be the Q-vector space. For i,j,k, 120, let a'fiy* Ay
1 1

denotes the pair (A g, F; ; ;) consisting of the vector space A Jg and the homomorphism

!
(3.2) Fjni N Vo —» HAEF$I6k31 40 )

12

! !
defined by v aiiy* (A p)(v), where A v is defined in 3.1.

Let us recall Proposition 5.1 and Proposition 5.2 of [ST]. (The combination of
Proposition 5.1 and Proposition 5.2 of [ST] is equivalent to the Proposition 3.3 of [KN1].)

Proposition 3.3 ([ST], Propositions 5.1, 5.2). The homomorphism
atb+2l<g-—1 21 at+tb+ct2l=g-1 21
(& i) o (B )
a,b,l a,b,c,1

surjects onto the even cohomology H*® (ANg, Q). Moreover, the homomorphism obtained by
restricting of the above homomorphism imposing the extra condition that

2a+4b+6¢c+61<L3g—3,

is an isomorphism onto @  H?*(A¢, Q).

Remark 3.4. The dimension of the variety A¢ is 3g — 3. So the second part of the
Proposition 3.3 (which is Proposition 5.2 of [ST]) says that the above homomorphism is
an isomorphism up to half the real dimension of A¢. The class « € H?(AZ, Q) gives a
polarization on .4¢. Hence from the Hard Lefschetz Theorem, [GH], p.122, we know
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that for i < 3g — 3, the homomorphism H'(Ag, Q) — H® ™ ° (¢, Q) given by cupping
with ¢3¢ 72~ is an isomorphism. So if we choose a Q-basis of P H?!(Ag, Q) then,

2i<3g-3
using the cup product with powers of «, we obtain a Q-basis for H*"(A¢, Q).

Now we will reformulate Proposition 3.3 making it suitable for our use in the next
section.

Define o':= (2n]/—1)a and f'=(2n|/—1)>f and y"=(2n]}/~1)*y and
p=Qr)/-Dy.

Choose and fix a peC such that u? = 2n|/—1. So y’ gives a homomorphism from
H, (X¢, uQ) to H3(Ag, 1> Q) — which in turn, as in (3.1), induces a homomorphism

(3.5) Ap's A Hy(Xe, nQ) > HY (Mg, 1" Q).

Define Vg := H,(X¢, pQ). Imitating the earlier construction, for any i,j,k,/20 let
1 l 1

o' "By Ay’ be the pair (A Jg, F/;, ) consisting of the vector space A Vg and the

homomorphism, F/;, ;, of it into H"(A¢, u"Q) with n = 2i+4)+ 6k + 3/, defined by

replacing «, §, y and y in (3.2) by «/, ' etc.

We have the following corollary of Proposition 3.3.

Corollary 3.6. The homomorphism

atb+2l<g-1 21 at+tb+c+2l=g-—1 21
(E i) oG i)

a,b,l a,b,c,1

surjects onto @ H*"(AZ, 2n])/—1)"Q). Moreover, the restriction of the above homo-

morphism imposing the extra condition that 2a + 4b + 6¢ + 61 < 3g — 3, is an isomorphism
onto @ H™(A,Qr)/-1)"Q).

2n<3g-3

As in Remark 3.4, the Hard Lefschetz Theorem implies that the homomorphism
Uade 372 H (U, @n)/=1)'Q) » H® ™7 (e, @n)/ =D 7*7'Q)
is an isomorphism when 2/ <3g — 3.
3b. The de Rham cohomology of .4#. In the introduction we briefly defined the de
Rham cohomology of a variety. Denote the bundle End (&), where &, is the universal

bundle on X x 4, by W,. Let

C,(W) e Hig (X X )
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be the 2-nd Chern class of the bundle W,. (We will interchangeably consider the i-th Chern
class as a co-dimension i cycle modulo rational equivalence.) Recall the definition of Chern
classes [Gr], 2.2, [D], p.21. The first Chern class of a line bundle L on a variety Y/k is
defined to be the image of the element in H! (Y, O)) defining L, under the homomorphism
of hypercohomologies induced by the following morphism of complexes on Y

0 yOF —— 0 —— -

l ldlog l

d 1 d 2
Oy > Oy >

d

where dlog (f):=df/f. Chern classes of a vector bundle are defined using the splitting
principle. Note that for a bundle ¥ on a smooth variety Y/k and an embedding 6:k —» C,
the j-th (rational) Chern class ¢;(¥¢) € H*/(Y¢, Q) of the bundle

Vo=V Xg ek SpecC — Yo=Y X SpecC

peck Speck

over the manifold Y, coincides with C;(V) ® 2=}/ — 1)~% under the identification
Hl%lJ((Y) ®k,o‘C = sz(YC’ C) .
Denote by «, the element p, (C,(W,)) € Hag (4"), where p,_ is the Gysin homomor-

phism. Define B, € Hfz (") to be the pull-back g*(C,(W,)), where g: 4" — X X A is the
embedding defined by y+ (z, y); z being the base point in X. Define

(3.7) Yer=p2.(Co (W)L C, (W) — 22, U B, .
Let y: Hfg(AN) ®,.,C = H(Ag,C) be the canonical isomorphism.
Proposition 3.8. (¢, ®1) =0, x(f, ®1) =" and x(y,®1) =7v".
Proof. Chern classes commute with pull-back of bundles. Hence the class
Cy (W) € Hg (X X A")

corresponds to (27r]/——1)2c2 € H*(Xg % A, (27z‘/—_1)2 Q). Also the Gysin map com-
mutes with base change. Hence, after examining the constants in the definition of a’ and
p’ we conclude that y (o, ® 1) = a’ and x (B, ® 1) = . In order to prove (y,® 1) =7’ it
is enough to show that y’ satisfies a similar identity as (3.7). More precisely, if

Pt HIT2(Xe x Mg, ©) > HI(A,C), j20,

is the homomorphism given by integration along fibers multiplied by (2n]/ —1)~ ! then
we need to show that

y, = P*((27tl/-‘_1)2-62k.)(27tl/——_1)2.c2) — Z.GIUBI .

After expressing the Kiinneth components of ¢, in terms of a symplectic basis of H* (X, Q)
it is a routine calculation to verify the above equality. 0O



Biswas, Hodge cycles on moduli of rank 2 bundles 149

Consider y, : Hiz (X) » Hr(A") defined by 01— p, (p¥(0) U C,(W,)), where p, is
d

the projection onto X. For integers a, b, c,d = 0, as in Section 3a, let of By A v, denote
the pair

d
(/\ Hl%R(X)9 Ez’fb,c,d)
d
consisting of the k-vector space A Hpg(X) and the homomorphism F), ., of it into
HRa+4b+6e*34( 47 which is defined by replacing o/, B’ etc. in the definition ot F, , _, (in

Section 3a) by o, B, etc. (We identify H'! (X, Q) with H, (X, Q) using the cup product
(which is non-degenerate) in H* (X, Q).)

Let x': H¥:(A") > H*(Ag,C) be the k-linear injective homomorphism defined by
v x(vx1).So x = ¥’ ® Id. Similarly, define 7 : Hz (X) — H!(X, C) to be the canonical
injection. As before, H! (X, C) is identified with H, (X, Q) using the cup product. With
this notation it is easy to see that the following diagram commutes:
d
Ffyea + NHpp(X) ——  Hpg #0reem3d(n)
(3.9) LA X3

d

Fyea®aQ : /\HI(XC,C) - H2a+4b+6c+3d(%’®)‘
Now Corollary 3.6 and the commutativity of (3.9) together imply
Proposition 3.10. The homomorphism
atb+2l<g-1 21 atb+ct+2l=g-1 21
( Q?l o B /\wk> ® < (j}l o B /\wk>

surjects onto @ H2E(N). Moreover, the restriction of the above homomorphism imposin
7 DR P g

the extra condition that 2a + 4b + 6¢ + 61 < 3g — 3, is an isomorphism onto

@ H™(H Qrn)/-1)"0).

2n<3g-3

The Hard Lefschetz Theorem holds for the de Rham cohomology. So, in particular,
for 2i < 3g — 3, the homomorphism

o372 HRL(A) — HSE™ ()

is actually an isomorphism.

4. Absolute Hodge cycles on A~

We use the notations in the introduction. Let 0 € H2i (A7) be a Hodge cycle relative
to an embedding ¢ of k in C. Denote the isomorphism from Hpg (A") ®, ,C, n 2 0, onto
H"(A;,C), given by the obvious map, by d. So the condition that 6 is a Hodge cycle

relative to o implies that §(0) € H2 (g, (2n]/ —1)'Q). Now, if 2i < 3g — 3 then from the
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second part of the Corollary 3.6 the cohomology class §(0) can be uniquely expressed as
follows:

dj
4.1 6(0) = ;d'“ﬁ'b‘?'“(/\w')(ml),

da
where each d; is a non negative even integer, m, € A H;(X¢, 1 Q), and the indices {qa,, ..., d,}
are chosen from the set of indices prescribed by the first part of the Corollary 3.6. Moreover
if 2i > 3g — 3 then from the remark following Corollary 3.6, 6(0) can again be expressed
uniquely as in (4.1) with the indices chosen from a different set of indices. So the (unique)
expression (4.1) for 4(0) holds for all i = 0. Note that d, is always an even integer.

Using the non-degenerate form on H, (X, @) given by the cap product, the Q-vector
space H, (X, Q) is canonically identified with H' (X, @) — which in turn induces an iso-
morphlsm between H, (X, #Q) and H' (X, nQ). Usmg this isomorphism, the element

m, € /\ H, (X, u@) can be thought of as an element of /\ H'(Xg, pQ). The cohomology
algebra P H (J, 1’ Q) of the Jacobian of the curve X¢ is canonically isomorphic to the

b da
exterior algebra A H'(X¢, uQ). In particular, A H!(X¢, pQ) is isomorphic to

H%(Jg, @n)/ =% Q).

Let
m, € H*(Je, 2n)/ —1)*/2Q)

be the image of m, under this isomorphism.

Let J, be the Jacobian of the curve X. So Je = J; Xg,..x Spec C. We have the iso-
morphism

fj : Hlj)R(']k) ®%,,C — Hj(Jc, ()
induced by the projection J; — J.

Lemma 4.2. The cohomology class m, is the image of an absolute Hodge cycle on J,.
In other words, there is an absolute Hodge cycle w, on J such that f; (v, ® 1) = m,.

Proof. In view of the main theorem (Theorem 2.11 of [D]), it is enough to show
that there is a Hodge cycle w; on J, relative to ¢ such that f;, (w;, ® 1) = m;. From Pro-
position 3.10 and the remark following it, it follows that the class 6 € H3i(4") can uni-
quely be expressed as

@3) 0= af B (A o) ()

where u, e A HJr(X), and the indices (p,, q,,7,,s,) are chosen from the set of indices
prescribed by the second part of Proposition 3.10 and the remark following the proposition.
If we consider 6 as an element of H?!(A¢, C) (using 8) and, similarly, consider u, as an ele-

ment of A H 1(X¢, C), then from the commutativity of (3.9) it follows that (4.3) is an
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expression for §(0). Now by the uniqueness of the expression (4 1) it follows that (4.3)

must coincide with (4.1). In particular, any m;, is of the form (/\ T)(my) with
dj
mie A Hi (X)

(r was defined in Section 3b). Since the cohomology algebra H; (J;) is the exterior algebra
A Hg(X) any m,; must be of the form f; (w, ® 1). By definition,

m; e H*(Jg, @n)/—1)*?Q).

So, in order to prove that w, is a Hodge cycle on J; relative to ¢ it is enough to show that
m, € H*/%92/2(J.). This is equivalent to showing that m;, is of type (d,/2, d,/2) with
respect to the type decomposition of A H!(X¢,C) induced by the Hodge decomposition

p.q
of H'(X,C). Note that for any ee A H'(X¢,C) and a, b, c =0,

+q
(44) (a/aﬂ'b rc /\ Ip/®C)(e)GHa+2b+3c+2p+q’a+2b+3c+p+2q(%).

Hence the condition that 6(0) € H"'(A¢) and the injectivity of the homomorphism in the
second part of Proposition 3.10 (and the remark following it) combine together to imply
that any m; is of the type (d,/2, d,/2). This completes the proof. O

Recall the definition of an absolute Hodge cycle given in the introduction (see also

(DD.

Theorem 4.5. Any Hodge cycle on A relative to an embedding o of k in C, is an
absolute Hodge cycle.

Proof. As before, let 0 e Hé (/") be a Hodge cycle relative to an embedding ¢ of
k in C. The decomposition (4.3) is canonical in the sense that it does not depend on the
embedding . The decomposition (4.1) depends, at least a priori, on ¢. The classes a,, f3,
and y, in H3z(A") are cycle classes; in particular they are absolute Hodge cycles ([D],
Example 2.1 (a)). Also any product of absolute Hodge cycles is again an absolute Hodge
cycle. Any w;, is an absolute Hodge cycle on J, (Lemma 4.2). So, (4.4) and the fact that

the image of the homomorphism /\ y', defined in (3.5), is in H 6’(/V ,2n)/—1)*Q), and

the commutativity of (3.9) together imply that any class af> B y;” (/\ y,) (u,) occurring in
(4.3) is an absolute Hodge cycle on .4~ This completes the proof. O
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Décomposition d’un groupe en produit libre
ou somme amalgameée

Par T. Delzant a Strasbourg

0.1. Produits libres. Le théoréme de Grusko dit que le rang (nombre minimal de
générateurs) d’un produit libre est additif:

rang(A4 * B) = rang(A4) + rang(B).
Le point de départ de cet article est qu’un fait analogue se produit pour les relations.

Soit G un groupe de présentation finie; on définit T(G) comme étant le nombre
minimum de relations triangulaires d’une présentation triangulaire de G, ¢’est-a-dire d’une
présentation dont toutes les relations sont de longueur deux ou trois.

Theéoréme 1. T est additive pour les produits libres:
T(A + B) = T(4) + T(B).

Ne prendre en compte que des présentations triangulaires n’est pas restrictif : si G
est défini par une présentation quelconque (A%, R;); <,<n1 <i<k» Un argument de triangulation

bien connu montre qu’il admet une présentation triangulaire ayant ) (| R;| — 2) relations.
Ainsi, T'(G) est le minimum, sur toutes les présentations de G de la somme Z (R, —2).

1<isk

Question. On peut définir pour tout groupe G et tout entier i un entier S;(G), en
disant que S;(G) < k si et seulement si il existe un polyédre simplicial P i-connexe muni
d’une action de G, dont la restriction au 0-squelette est libre, et dont le nombre de faces
modulo I’action de G n’exceéde pas k. On vérifie que S, (G) est le rang de G, et S,(G) n’est
autre que T(G); le théoréme de Grusko dit que S, est additif pour les produits libres, et
le théoréme I qu’il en va de méme pour S,; qu'en est-il de S;?

Notons que c’est cette définition simpliciale de T que nous utiliserons par la suite.
0.2. Somme amalgamées, graphes de groupes. Contrairement au théoréme de Grusko,

le théoréme I admet une généralisation naturelle au cas des sommes amalgamées, HNN-
extensions, et plus généralement graphes de groupes au sens de Serre [S].
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Soit G un groupe, et (Cy, ..., C,) une famille de ses sous-groupes. On définit un
invariant 7(G; Cy, ..., C,) du couple (G; C,, ..., C,) en disant que 7(G;C,,...,C,) <k
si et seulement si il existe un polyédre simplicial simplement connexe de dimension deux P,
muni d’une action de G vérifiant les deux propriétés suivantes:

(a) Le nombre de faces de P modulo I’action de G n’excéde pas k.

(b) Les stabilisateurs des sommets de P sont conjugués a Cy, ..., C,, et chacun de
ces groupes fixe un sommet de P.

L’objet de cet article est d’étudier le domaine de validité de I'inégalité:
*) TA;C)+T(B;C)=T(A*:B)
et de ses généralisations possibles, puis d’en exhiber quelques applications.

On dit que deux couples (G; C4, ..., C,) et (H; Dy, ..., D,) sont isomorphes si il existe
une permutation g de {1, ..., n} et un isomorphisme de G sur H envoyant C; sur un conjugué
de D,;

a(i)*

Dans ce qui suit, on fixe un couple (G; C,, ..., C,) et on suppose tous les groupes C;
finiment engendrés. On note b, (G; C, ..., C,) le premier nombre de Betti de G relativement
a(C,,...,C,) modulo 2, c’est-a-dire le rang du Z,-espace vectoriel des homomorphismes
de G a valeur dans Z, qui s’annulent sur les C;.

Une décomposition de (G;C,,...,C,) en somme amalgamée, est une écriture
G = A *¢ B de sorte qu’il existe une partition {1,...,n} = [, Ulgtelleque C;c Asiiel,
et C; < B sinon.

Plus généralement, nous souhaitons étudier des décompositions de G en graphes de
groupes au sens de J.-P. Serre [S]. Rappelons (voir [S] ou [D-D]) qu’un graphe de groupes
est la donnée d’un graphe abstrait X, de deux familles G, et C, de groupes respectivement
indexées par les sommets et les arétes de X, et pour chaque aréte orientée y d’une injection
0:C,+— G, si o(y) désigne I'origine de y. A un tel graphe est associé un groupe appelé
groupe fondamental au sens de Serre; on le note 7, (X).

Une décomposition de (G; Cy, ..., C,) en graphe de groupes, est la donnée d’un graphe
de groupes (X, (G,);c xo, (C,)ye x1) de groupe fondamental isomorphe a4 G de sorte qu’il
existe une partition {1, ..., n} = (I telle que C; = G, pour tout i€ I,.

Pour étudier le domaine de validité de (x), il est nécessaire d’introduire des hypotheses
de points fixes et minimalité.

Hypothéses de minimalité. La décomposition G = A ¢ B (resp. I’aréte orientée y de
la décomposition G = n, (X)) du groupe équip¢ (G; C,, ..., C,) est dite triviale si A = C
ou B = C (resp. 'origine de y est distincte de son extrémite et o(C,)) = G, ;)

La décomposition G = A4 x. B (resp. I'aréte orientée y de X) est dite réduite si I'on
ne peut décomposer les groupes équipés (4; (Cy);c; ) et (B; (Cy);.1,) (resp. le groupe équipé



Delzant, Décomposition d’un groupe 155

(Go(y); (Cory=0(z> (Cicroi) )) en graphe de groupes sans arétes triviales avec un sommet
marqueé C (Figure I).

Figure 1

Soit y une aréte orientée non réduite. Une réduction élémentaire de G = n,(X) est
une nouvelle décomposition G = n,(X’) de (G; Cy, ..., C,) en graphe de groupes obtenue
en remplagant l'origine de y par le graphe de groupe correspondant et en supprimant
laréte triviale du graphe ainsi obtenue (Figure II). Par exemple, si 4 = A’ *.. C, alors
G=A"*c B=(A"*c C)*. B = Ax*:B est une réduction de G = 4 %, B. Plus générale-
ment, une réduction de X s’obtient en répétant cette opération a plusieurs reprises.

4,
Al
4,
B
A2
B A
C 3
A3

Figure 11

Hypopthéses de points fixes. Soit 7 un arbre; on note T sa complétion, c’est-a-dire la
réunion de T et de son bord idéal 6T qui est 'ensemble des classes d’équivalence des
demi-droites de T, ou deux demi-droites sont dites équivalentes si elles coincident en dehors
d’un ensemble compact.

Le sous-groupe C de (G; Cy, ..., C,) est dit rigide (resp. semi-rigide) si le triplet
(G; C; Cy, ..., C,) satisfait a 'une des propriétés de point fixe suivantes:
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Rigide. Si G agit sans inversion dans un arbre 7, si tous les groupes C, fixent un
sommet de T et si C contient le stabilisateur d’une aréte non triviale, alors C fixe un
sommet de 7.

Semi-rigide. Si G agit sans inversion dans un arbre T, si tous les groupes C; fixent
un sommet de T et si C contient le stabilisateur d’une aréte non triviale alors C fixe un
point de la complétion T.

La décomposition G = 4 *. B (resp. G = n, (X)) est dite rigide ou semi-rigide si le
groupe C (resp. C, pour toute aréte y) l’est.

Remarque. Les propriétés de rigidité ou semi-rigidité sont en particulier vérifiées si
le groupe C satisfait lui méme une propriété de point fixe indépendament du fait qu’il soit
contenue dans G. Ainsi, notre définition de «semi-rigide» contient la notion de «petite»
au sens de M. Bestvina et M. Feighn [B-F]. Par exemple si le groupe C ne contient pas
le groupe libre a deux générateurs, il est «petit» et de ce fait satisfait la propriété de point
fixe asymptotique. L’interét principal de notre définition est de regrouper la définition de
[B-F1], et «rigide», qui est une hypotheése trés naturelle en topologie de petite dimension (1.6).

Exemple. Un autre exemple particuliérement important est le suivant: soit
G = A *¢ B, et supposons que ni 4 ni B ne se décomposent comme somme amalgamée ou
HNN-extension au-dessus d’un sous groupe strict de C; alors la décomposition G = 4 *. B
est réduite et rigide; en particulier une décomposition d’un groupe en produit libre est
reduite et rigide. Ce méme phénomeéne de minimalité apparait en topologie de dimension
deux ou trois quand I’on découpe une surface le long d’une courbe fermée simple non
homotope a zéro ou une variété de dimension trois irréductible le long d’une surface
incompressible (1.6).

Théoréme II. Soit G = A % B une décomposition semi-rigide de (G;C,,...,C,).
Supposons que I, L Iy est une partition de I'ensemble {1, ..., n} pour laquelle C; = A, i€ I,
et C,c B, iely.

(1) Si cette décomposition est réduite:

T(4; C, (Cier) + T(B; C(Ciery) S TG s .., ).

iSIA iEIB

(2) Si cette décomposition n’est pas réduite, il existe des sous-groupes (D, ..., D,) de
C pour lesquels soit

T(A§ (Ci)ieIA) + T(B§ (Dj)l <j<ks (Ci)ieIB) =T(G;Cy,...,C)
soit
T(A; (Cdicrys (Dj)1§j§k) + T(B§ (Ci)iel.,) =7(GCy,...,C).

(3) Plus généralement, soit G = n,(X) une décomposition semi-rigide de (G; C4, ..., C,).
1l existe une réduction (X'; (H,),(D,)) de X pour laquelle:

ZT(HS; (Dy)o(y)=s’ (Ci)iel_,) ST(G; Cy, ..., C).
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Quel que soit le couple (G; C), une décomposition de la forme G = 4 * B (resp.
G = A x¢) de (G, C) est rigide; compte-tenu des propriétés élémentaires de 7( . ;.) on obtient
(voir § 1.4):

Corollaire 1. T'(G; C) est additif: si G = A *¢ B,
TG, C)=TA4;C)+T(B;C).

Le corollaire suivant permet de donner une réponse a une question traditionelle de
la théorie combinatoire des groupes, au moins pour les cas des décompositions semi-
rigides : si un groupe finiment engendré G est une somme amalgameé, G = 4 *. B, les
groupes A et B sont aussi finiment engendrés; peut-on donner une borne sur leurs rangs
qui ne dépende que des groupes G et C? (Cette question est notament étudiée dans [L-S],
p- 91, [Z], [P-R-Z], [K-Z].) Des propriétés élémentaires de 7(.;.) et du (2) du th. II, on
déduit (voir 1.2):

Corollaire II. Si G = A . B est une décomposition semi-rigide du groupe G (par
exemple si C ne contient pas le groupe libre a deux générateurs),

rang(A4) + rang(B) < 2rang(C) + 12T(G) + b,(G) .

La sous-additivité de la fonction T(.;.) peut aussi (voir 1.5) étre mise a profit pour
préciser le théoréme de M.J. Dunwoody sur le probléme d’accessibilité de C.T.C. Wall
[W], [D], [D-D], ainsi que ses généralisations dlies a M. Bestvina et M. Feighn [B-F],
M.J. Dunwoody et R.A. Fenn [D-F].

Corollaire III. Soit G = n,(X) une décomposition semi-rigide de (G;C,,...,C,)
en graphe de groupes sans arétes triviales. Le nombre des sommets de X est majoré par
4(T(G; Cy,...,C)+2b,G;Cy,...,C,)+n).

L’analogie de ces résultats avec des énonceés bien connus de la topologie de petite
dimension n’est pas accidentelle : rappelons (voir le §1.6) que si M est une variété de
dimension trois P2-irréductible et S une surface incompressible (non nécessairement con-
nexe mais dont deux composantes ne sont pas paralléles), alors la décomposition de &, (M)
obtenue en découpant M le long de S est rigide. Soit (M) le nombre minimal de 3-simplexes
d’une triangulation de M. Il est facile de voir que T'(n,(M)) < 2¢(M); le corollaire III est
donc une généralisation algébrique du théoreme de Kneser et Haken qui montre que le
nombre maximal de composantes connexes de M — S est majoré par (2b,(M) + 6¢(M))
([He], p.140; [J], Th. I11.20).

Pour illustrer le corollaire I, comparons-le au théoréme de Schubert sur I'additivité
du genre des noeuds ([B-Z]) : grice a la prop. 1.1, si T(4; C) = b,(4; C) = 0 alors 4 = C;
par exemple, si G = (A4,); <;<,*c €st obtenue en amalgamant n groupes le long d’un méme
groupe C et si pour tout i, }li # C, alors n £ T(G; C) + b,(G; C) (c’est essentiellement le
méme argument qui permet de déduire le cor.IIl du th.II). Ainsi, la sous-additivite de
T(4; C) (donc celle de T(4, C) + b,(4; C)), fournit immediatement un équivalent algé-
brique du résultat principal de [D-F] sur la finitude des sommes de noeuds en grande
dimension.

11 Journal fir Mathematik. Band 470
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Appelons décomposition terminale d’un groupe G une décomposition de ce groupe
en graphe de groupes a stabilisateurs d’arétes finis, sans arétes triviales et a stabilisateurs
de sommets indécomposables en somme amalgamée ou HNN-extension au dessus d’un
groupe fini. Dans le langage de [D-D], I’arbre de Serre associé a une telle décomposition
est terminal, et réciproquement tout arbre terminal détermine une telle décomposition.
L’existence d’une décomposition terminale d’un groupe de présentation finie est (assurée
par) le théoréme d’accessibilité de M.J. Dunwoody. En général, il n’y a pas unicité; voir
les résultats de W.Dicks et M.J. Dunwoody, D.Kramtsov et F. Herrlich ([D-D],
prop. 1V, 7.4, [K], [He]) sur ce probleme, posé par P. Scott et C. Wall ([S-W], p.193).
Cependant, (voir le lemme I.2.1) il est aisé de voir qu’étant donné un groupe fini @, il n’y
a qu’un nombre fini de classes d’isomorphismes de paires (G; F) avec F isomorphe a @,
et T(G; F) + b,(G; F) donné. D’autre part une décomposition terminale est réduite par
définition; on en déduit (voir I.2):

Corollaire IV. (a) Soit G un groupe de présentation finie. A isomorphisme prés il n’y
a qu’un nombre fini de décompositions réduites de G comme somme amalgamée G = A xp B
ou HNN-extension G = A = avec F fini.

(b) A isomorphisme prés, il n’y a qu’un nombre fini de décompositions terminales de G.

Un phénoméne analogue, appelé «superaccessibilité», a été mis en évidence par
Z. Sela [Se] dans son étude des décompositions acylindriques de certains groupes; cepen-
dant une décomposition terminale peut trés bien étre cylindrique au sens de [Se].

Plan. Cetarticle est divisé en trois partie. Dans la premiére sont etablies les propriétés
¢lémentaires de T(.;.). Admettant le théoréme II dans le cas rigide, on en déduit le cas
général (semi-rigide) et les corollaires de I'introduction. Dans la seconde partie est démontré
un lemme technique important (II.1.1). Celui-ci permet d’obtenir aisément le théoréme I,
en utilisant un théoréme d’unicité de Kuros; en particulier un lecteur seulement intéréssé
par ce théoréme I pourra se contenter de lire le paragraphe II. La troisiéme partie consiste
a montrer que le raisonnement qui permet d’obtenir le th. I se généralise au cas des graphes
de groupes rigides; la difficulté essentielle est qu’on ne posséde pas de théoréme d’unicite
pour de telles décompositions.
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ments.
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démonstration topologique du lemme II.1.1, central dans cet article, est celle suggérée par
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relations, et évidement moins parlante : qu’il en soit chaleureusement remercié.
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I. Préliminaires

Dans ce paragraphe on établit, en utilisant les propriétés bien connues des orbiédres
pour lesquelles nous renvoyons a l'article fondamental de A.Haefliger [Ha], certaines
propriétés ¢lémentaires utiles de 7(.;.), puis on en déduit les corollaires I, II et IV de
Iintroduction. Ces résultats élémentaires ne sont utiles qu’a la démonstration du théoréme
II; ainsi leur étude peut étre omise par un lecteur seulement intéressé par le théoréme 1.

Notations. On fixe un groupe G et une famille (C,, ..., C,) de sous-groupes. Si la
famille des C; est vide, on convient de poser n =1 et C, = {1}. Rappelons que si
T(G;C,,...,C,) =t il existe un polyedre simplicial simplement connexe P muni d’une
action de G ayant ¢ orbites de faces et dont les stabilisateurs de sommets sont exactement
les groupes C,, ..., C, et leurs conjugués. Soit P’ la premiére subdivision barycentrique
de P, de sorte que G agit sans inversion sur P’ au sens de [Ha]. Le quotient Q = P'/G est
un polyédre simplicial de groupes ayant G comme groupe fondamental au sens de la théorie
des orbiédres; ce polyédre est developpable, et son revétement universel est P’

I.1 Proprietées. Dans ce qui suit, (V'C;) désigne un sous-groupe de rang minimal
contenant tous les C;.

Lemme I.1.1. (1) rang(G) < rang(VC,)) + 12.T(G; Cy, ..., C,) + b,(G; Cy, ..., C,).

2) T(G; Cy,...,C,) =0 si et seulement si il existe une action de G dans un arbre et
dont les stabilisateurs de sommets sont (exactement) les groupes C,, ..., C, et leurs conjugués.

3) Si T(G;Cy,...,C)=0=b,(G;C,,...,C,), G est isomorphe au groupe fonda-
mental d’'un graphe de groupes dont les stabilisateurs de sommets sont les C;, et le graphe
sous-jacent un arbre.

Remarque I.1.2. Soulignons un détail technique important dans la définition de T':
on n’exige pas que 'action de G sur P soit sans inversion au sens de [Ha].

Démonstration. Démontrons le point (1). Soit 7 un arbre maximal tracé dans le
1-squelette de l'orbieédre Q. Grice a la définition de Haefliger ([Ha], p.514) de
n$™®(Q, T)(= G), on se rend compte que G est engendré par les groupes C; (et donc (V' C;))
et les arétes de Q — T. Mais le nombre d’arétes de Q — T qui ne sont pas adjacentes a une
face de Q n’excéde pas b,(G; Cy, ..., C,) + n: en effet les arétes adjacentes 4 aucunes faces
de Q — T qui n’aboutissent pas a I'un des sommets marqués C; définissent des homo-
morphismes vers Z, indépendants et nuls sur les C;; ainsi, comme le nombre d’arétes
d’un triangle subdivisé est 12, le nombre total d’arétes de Q — T n’excede pas
127(G; Cy,...,C)+ b,(G; Cy, ..., C,), d’ou (1).

Le point (2) résulte de la définition de T et du fait qu’un polyédre simplicial simplement
connexe de dimension 2 sans face est un arbre.

Pour voir (3), on peut raisonner ainsi: soit T I'arbre obtenu grice a (2). Comme
tous les C; fixent un point dans 7 et comme b,(G; Cy, ..., C,) = 0, G agit sans inversion
dans cet arbre. Soit X= T/G le graphe de groupe quotient:c’est un arbre car
by(G; C,,...,C,) =0 et tous les C; fixent un points dans 7. D’autre part si 'un des C,,
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disons C, fixe deux sommets distincts s, s’ de T, ce groupe fixe aussi une aréte issue de
s :la premiere aréte du segement [s, s']. On peut alors supprimer ’aréte correspondante
du graphe X pour obtenir un graphe ayant moins d’arétes mais les mémes stabilisateurs
de sommets; on recommence ainsi jusqu’a obtenir une description de G ayant exactement
n sommets de stabilisateurs C;. O

Lemme L.1.3. (1) Siil existe un x tel que C'< xCx™?, alors
T(4;C,C,C,,...,C)=T(4C,C,,...,C,).

(2) Si C et C’ sont deux sous-groupes de G pour lesquels il existe x et y tels que
xCx 'c C etyCy~t < C, alors

T(4;C,C,,...,C)=T(4;C,C,,...,C,).

Pour ne pas alourdir les notations, on traite le cas particulier ou les groupes C; sont
absents, le cas général résultant d’un raisonement analogue.

Notons que le point (2) résulte du (1) grice a la suite d’inégalités:
T(G;C')zT(G;xCx™,C)=T(G;C,C)=2T(G;C,yC'y™ ") 2 T(G; C).
Pour le (1), on montre successivement deux inégalités.

Tout d’abord, vérifions que T(4; C,C’) < T(4; C). Soit P un A-polyeédre ayant
T(A4; C) faces modulo I’action de G, une orbite w = 4/C de sommet de stabilisateur C.
Soit P* le polyédre obtenu a partir de P en ajoutant a chaque élément se 4/C, s = g.C,
de w des arétes en bijection avec gCg~!/gxC’(gx)™! et une extrémité libre; le polyédre
P* est doué d’une action de A4, ayant 2 orbites de sommets de stabilisateurs C, xC'x .

L’inégalité inverse est plus délicate. Soit P un A-polyédre simplement connexe, s un
sommet de stabilisateur C et s de stabilisateur C’' = C. On joint s et s’ par un chemin /.
Soit Q le polyédre obtenu en identifiant s’ a tous les points de Cs’, g.s’ a gCs’ pour ge 4,
l’aréte / a Cl, ainsi que g./a gCl pour g € A. On note =« la projection de P sur Q. Montrons
que Q est simplement connexe : soit y un lacet de Q d’origine 7 (s’); ce lacet se reléve dans
P en un chemin j joignant s’ & I'un de ses translatés c,s’ par C. Ainsi c,/.7/ est un chemin
fermé dans P; celui-ci est homotope a zéro. Donc son image dans Q, qui vaut Iy/ lest
aussi. Comme 7 est I'inverse de / dans Q, y est bien homotope a zéro. O

Lemme 1.14. (1) Si (C,Cy,...,C) <= A4, 5i (C,Cjyy,...,C) =B, et si G=Ax:B
alors

T(G;C,Cyy..., Gy Ciayy ooy C) S T(4;C, Cyy ..., )+ T(B; C, Cpiyys ..., Cy).

(2) SiD,D,C,,...,C,< A, si D et D' sont isomorphes, si G = A *,p,-1_p et si C est
le sous-groupe engendré par t et D,

TG,D,D,Cy,...,C))ST(A4;D,D',Cy,...,C))
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et
T(G;C,C,,...,C) £ T(4; D, D', C,,...,C)).

(3) Si X = (G, C)) est un graphe de groupe pour lequel chaque sommet s est équipé
d’une famille de sous-groupes (C,;);.,, et si G = n;(X), on a:

T(G’ Cl’ e Cn) é ZT(GS’ (O(Cy))o(y)=s7 (Ci)iels) .

Pour le (1) (resp. le (2)), on remarque d’abord que si Q, et Qp sont deux orbiédres
deéveloppables de groupe fondamental 4 et Bet sil'un des sommets a de Q , a un stabilisateur
C isomorphe a celui C de 'un des sommets b de Qj (resp. si deux sommets a et a’ de Q,
ont des stabilisateurs D et D’ isomorphes), 'orbiédre Q obtenu en recollant Q, et Qp grice
a une aréte marquée C (resp. 'orbiedre Q obtenu en ajoutant une aréte d’extrémité a et
b (resp. a et a’) et marquée D), alors 7,(Q) = A *c B(resp. A *,p,-1_p).

Notons que Q est développable puisque pour chacun de ses sommets, I'application
canonique du groupe de ce sommet G, dans n{™(Q), composée de I'injection (Q, et Qp
sont développables) de G, dans 4 ou B et de 4 ou B dans A . B (resp. A *,p,-:1-p) est
injective (voir [Ha], p. 516, Th. 4.1).

Si I'on applique cette construction en partant des polyédres Q, et Qp fournis par la
définition de T'(.;.), on remarque que le revétement universel de Q est la premiére subdi-
vision d’un G-polyédre P ayant le nombre requis de sommets pour prouver (1) et (2).

Pour la deuxiéme inégalité de (2), on remarque que 'orbiédre Q* obtenu a partir de
Q en remplagant son sommet marqué D par un sommet marqué C et en supprimant 1’aréte
marquée D dont les deux extrémités sont ce sommet a méme groupe fondamental que Q
et méme nombre de faces. Le cas des graphes de groupes (3) résulte de (1) et (2) par
récurrence sur le nombre d’arétes. O

L.2. Démonstration des corollaires I, II et IV de Pintroduction. Dans ce sous-para-
graphe, on explique comment les propriétés élémentaires de 7'(.;.) permettent de montrer
les principaux corollaires au théoréme II annoncés dans I'introduction.

Corollaire I. On applique le théoréme II, (2) 4 la décomposition 4 x. B de (G; C).
Si cette décomposition est réduite, il n’y a rien a démontrer. Sinon d’apres le (2), il existe
des sous-groupes D; de C pour lesquels T(4;C)+T(B;C,D,, ...,D,) = T(G,;C).
Comme tous les D, sont contenus dans C, le lemme 1.1.3 (1) montre que
T'(B;C,D,,...,D,) = T(B;C) ce qu’il fallait montrer.

Corollaire 11. Si la décomposition étudiée est réduite, il n’y a rien a démontrer
compte-tenu du lemme 1.1.1 (1); sinon en raisonnant comme précédement, on voit qu’il
existe des sous-groupes D,, ..., D, de C pour lesquels T'(4; C) + T(B; D,, ..., D,) = T(G);
comme tous les D; sont contenus dans C, rang(¥D;) < rang C. On applique le lemme 1.1 (1)
pour conclure.

Corollaire IV. Dans la description G = n®(Q) de G comme groupe fondamental
d’un certain orbiédre, les stabilisateurs des faces et arétes de Q sont des sous-groupes des



162 Delzant, Décomposition d’'un groupe

C;. Soit y une aréte de Q adjacente a aucune face et séparante. Si C; stabilise un sommet
a droite et a gauche de 'aréte y, il doit stabiliser y, et Q a méme groupe fondamental que
I'orbiedre obtenu en supprimant cette aréte et en identifiant ses extrémités. En particulier
quitte a effectuer cette opération un certain nombre de fois, on voit qu’on peut remplacer
Q par un polyédre Q' dont le nombre d’arétes séparantes et adjacentes a aucune faces est
majoré par n. Comme chaque face de Q a 3 cotés et comme Q a au plus 67(G; Cy, ..., C,)
faces, le nombre d’arétes total est borné par 37(G; C,,...,C,) +b,(G;C,,...,C,) +n.
Ainsi, si ’on suppose de plus que les C; sont finis et fixés, il n’y a qu’un nombre fini de
donnée combinatoires pour 1'orbiédre Q’. En particulier:

Lemme 1.2.1. Soient C,,...,C, des groupes finis fixés et k un entier; il n’y a
qu'un nombre fini de classes d’isomorphismes de paires (G;C,,...,C,) telles que
TG;Cy,...,C)+b,(G;Cy,...,C,)<k.

Montrons donc le (a) du corollaire IV dans le cas d’une somme amalgamée. Compte
tenu du théoréme 11, si G = A4 % Best réduite, T(4; F) + b, (A, F) < T(G) + b,(G). Ainsi,
compte tenu du lemme 1.2.1, il suffit de voir qu’il n’y a qu’un nombre fini de classes
d’isomorphismes de groupes finis F possibles. Il résulte du théoréme d’accessibilité de
Dunwoody [D] qu’il existe une décomposition terminale de G. On en fixe une X : pour
montrer (a), il suffit donc de voir que F est I'un des stabilisateurs d’aréte de X puisque
ceux-ci sont en nombre finis. Mais les groupes 4 et B admettent des décompositions
terminales X, et X. Le groupe F étant fini, il fixe un sommet de X, et un sommet de X,
et est strictement contenu dans les stabilisateurs de ces sommets, sinon la décomposition
G = A = B ne serait pas réduite. Si X' est le graphe obtenu en recollant X, et X le long
d’une aréte joignant ces deux sommets marquée F, X’ est une autre décomposition terminale
de G. Grace a [D-D], proposition IV, 7.2, (i), les stabilisateurs d’arétes de X et X’ sont
les mémes a conjugaison prés dans G; donc F est I'un des stabilisateurs d’aréte de X. Pour
montrer (b), il suffit d’appliquer (a) en raisonnant par récurrence sur le nombre d’arétes
d’une décomposition terminale du groupe étudié.

L.3. Decomposition rigides et réduites. On ne rappelle pas les diverses définitions de
rigidité et semi-rigidité pour lesquelles on renvoit a 'introduction. Le lemme suivant sera
surtout utile pour ramener I’étude des décompositions semi-rigides a celle des décompo-
sitions rigides.

Lemme 1.3.1. (1) Si C' < C et si la decomposition G = A *; B (resp. G = A *¢) est
rigide (resp. semi-rigide), toute décomposition G = A' .. B’ (resp. G = A'*..) lest.

(2) Si la décomposition G = A . B (resp. G = A *c) est semi-rigide mais pas rigide,
alors C se décompose C = D %,4,-1_ ) pour un certain p:D — D; de plus il existe des
décompositions de G, A et B, comme HNN-extension au dessus de D:G = G'*,p,-1-p,
A=A*p-1.p e B=Bwx*p,-1_p, avec G =A%, B (resp.G =G *p,-1-p,
A=A*p,-1-p avec G'= A'*,,-1_p). Si la décomposition G = A . B est réduite, il en
va de méme de G' = A'xp B’.

La propriété de point fixe impliquée dans la definition de la rigidite est satisfaite par
passage a un sous-groupe, c’est ce que dit (1).
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Le point (2) est plus délicat : on explique le cas d’une somme amalgamée, le cas d’une
HNN-extension étant analogue. Si la décomposition G = A4 % B est semi-rigide mais pas
rigide, il existe un arbre 7 muni d’une action de G pour laquelle tous les C; fixent un point,
C fixe un point a 'infini @, et C contient un stabilisateur d’aréte. Quitte a écraser toutes
les arétes de T dont le stabilisateur n’est pas conjugue a un sous-groupe de C, on peut
supposer que C contient tous les stabilisateurs d’arétes a conjugation pres, et fixe un point
o a linfini dans T. Soit ¢y, ..., ¢, une famille de générateurs de C. Chacun fixe un axe
[w;, w], avec w; € 6 T. Quitte a remplacer ¢, par son inverse, on peut supposer cet axe fixe
point par point, ou que ¢; y agit comme translation de longueur positive /;. Soit a un point
commun a tous ces axes; la demi-droite [a, w] est positivement invariante par tous les c;.
Quitte a changer c; en ¢;c; !, et & répéter plusieurs fois cette opération, on se raméne au
cas ou tous les /; sont nuls sauf un. Ainsi, C est engendré par des ¢léments d,, ..., d, qui
fixent a et un élément ¢ qui agit par translation sur [a, w]; soit D, le sous-groupe de C
stabilisateur de a; "' D, ¢ est un sous groupe de D,. Il existe donc un homomorphisme
y:D, — D, tel que pour tout d de D, on ait y(d) =t~ 'dt.

Donc le groupe C se décompose comme HNN-extension Dy * ;-1 = -

On considére le graphe X, quotient de T par 'action de G. L’image de la premiécre
aréte e de [a, w] ne disconnecte pas le graphe X, car I'image de [a, ta] est un lacet dans
ce graphe; la théorie de Bass-Serre produit un groupe G’ — le groupe fondamental du
complémentaire de cette aréte — et une décomposition G = G'*j, (avec D = G, stabilisateur
de ¢). Comme tous les stabilisateurs d’arétes sont contenus dans des conjugués de C, on
peut supposer D = C. Mais alors, D fixe [u, w] pour un certain u, et ¢ est une translation
de [b, w] = [a, w] pour b suffisament proche de w. En partant du point b au lieu de a
dans ce qui précéde, on obtient un groupe D, un homomorphisme y : D +— D, qui est un
isomorphisme sur un sous groupe D’ de D et des décompositions G = G *;-,,,ay,-1 €t
C = C"*4_ -1 au dessus du méme sous-groupe D.

Le méme argument appliqué a A et B,montreque 4 = A" *,_,,4y¢-1, B = B %4 011
et G'= A'*, B’. Cest ce que dit (2).

Si la décomposition ainsi décrite de G’ n’est pas réduite, alors on a par exemple
A'= A"*,. D (le cas d’une décomposition en graphe de groupes se traiterait de fagon
analogue); donc, comme D’ < D le groupe 4 se décompose

A =A% payi-1 = (A" *p. D) %y = tp(d)t™ = A"*p. C

et la décomposition initiale de G n’est pas non plus réduite. O

1.4. Sous-additivite de T et applications. Dans ce sous-paragraphe, on montre com-
ment les lemmes 1.1.3 et 1.1.4 permettent de ramener la démonstration du théoreme II au
cas rigide. On explique aussi comment le (2) du théoréme II résulte du (3).

Lemme L.4.1  Pour démontrer le théoréme 11, il suffit de le montrer dans le cas «rigide».

Démonstration. Pour simplifier les notations, on montre se résultat en I’absence des
groupes C;. Grice aux propriétés de sous-additivite de 7 (lemme 1.1.4), une récurrence
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ramene le probléme au cas d’une seule aréte : G = A *. B, ou G = A*,,-1 .. On n’écrit

que le cas d’'une somme amalgameée; le cas général résulterait d’un raisonnement analogue.

On fait une récurrence sur le premier nombre de Betti de C. Supposons que la décomposition

étudiée soit semi-rigide mais pas rigide. Grace au lemme 1.3.1 (2), C = D*,,-1 - pour

uncertain p: D — D; G=G'*p,, A = A%, et B= B, de sorte que G' = A’ *;, B’
Pour simplifier, supposons cette décomposition de G’ réduite. Par hypothése de ré-

currence,comme b, (D) = b,(C) —1,T(G’; D) =z T(A’; D)+ T (B’; D). On peut aussi appli-
quer ’hypothése de récurrence a la décomposition G = G’ *,p,- -, €t on obtient

T(G;D,D)=T(G)
mais D’ est contenu dans D, donc
T(G;D)=T(G)
d’ou
T(G)=T(A;D)+ T(B'; D).

Comme D' D, T(A'; D, D)= T(A"; D)etd’apréslelemme1.1.4(2), T(4; C) < T(A4"; D, D).
De méme, T(B; C) < T(B’; D, D’). Ainsi, on a:

T(4;C)+ T(B;C) < T(4; D)+ T(B; D)< T(G'; D) £ T(G).

Ce que nous souhaitions démontrer. Le cas ou la décomposition 4’ %, B’ n’est pas réduite
résulterait du méme raisonnement, en remplagant G' = A%, B’ par une réduction. O

Lemme L.4.2. La partie (2) du th.11 résulte de la partie (3).

On garde les notations de I'introduction : supposons que la décomposition G = 4 *. B
ne soit pas réduite. Une réduction X’ de cette décomposition s’obtient en deux étapes : on
part d’une décomposition 4 = 7, (X,) de 4 dont C est 'un des stabilisateurs de sommets
et (H,),.x, les autres dont toutes les arétes aboutissant au point de stabilisateur C, et on
note D; les stabilisateurs de ces arétes; X” est alors obtenu en attachant un sommet marqueé
B a X, et une aréte marquée C puis en supprimant I’aréte triviale ainsi construite (Figure
II). Le th.II (3) dit qu’alors:

Z T(Hs; (Cl)lels9 (Dk)keKs) + T(B’ Dl’ e Dn’ (Ci)ielg) é T(G’ Cl’ ceto Cn) .

En utilisant le lemme 1.1.4 (3), on voit que:
T(4;C, (Cicr,) £ X T(Hy (Cierp Pdiex,) + T(C C, Dy, ..., D).
Mais d’aprés le lemme 1.1.3, 7(C; C,...) = T(C; C) = 0 donc:
T(4;(Cier) + T(B, (D1 gjsis (Clier) S T(G Cy, .., C)

comme promis.
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LS. Sommets essentiels, accessibilite. Soit G = m,(X, s,) une décomposition de
(G; Cy, ..., C,) en graphe de groupes. Rappelons que I’ensemble {1,...,n} admet une
partition ) I, pour laquelle C; = G, i€ I,. Dans ce paragraphe, on définit la notion de

sommet essentiel, et on montre comment le corollaire III résulte du théoréme II.

Définitions. Un sommet s de valence un est dit inessentiel si I est vide et si son
stabilisateur est égal a celui de I’aréte dont il est issu. Un sommet s de valence Jeux de X
(ayant deux arétes adjacentes y et z) est dit inessentiel si I est vide, et G, se décompose
G, = C, *c C,; plus généralement, un sommet de valence k, origine de y,, ..., y, est dit
inessentiel si I est vide, si s n’est pas le point base s, et si son stabilisateur est isomorphe

a un graphe de groupes dont le graphe sous-jacent est un arbre ayant k sommets de
stabilisateurs €égaux aux C,.

Un sommet essentie/ est un sommet qui n’est pas inessentiel.

Remarque 1.5.1. Grace au lemme I.1.1, on voit qu'un sommet s est inessentiel
si et seulement si J; est vide et si désignant par y les artes issues de s, on
a:T (G (Cyopy=s) = b1(Gy; (C,)o)=5) = 0. En particulier, le nombre de sommets essen-
tiels du graphe X n'excéde pas ) T(G,; (C,),i=5) + b1(G; (C))yy=5) + 1.

s/Is=0

Lemme L5.2. Si la décomposition est semi-rigide, sans aréte triviale, le nombre de
sommets inessentiels de valence deux n’excéde pas la moitié du nombre de sommets total; il
n’y a pas de sommets inessentiels de valence un.

Si s est un sommet inessentiel de valence un, il est égal au stabilisateur de I’aréte
dontil estissu, en particulier celle-ci est triviale. Soit s un sommet de valence deux inessentiel.
Ecrivons G, = C, *¢_ C, pour un certain groupe C,. Enlevons ce sommet et remplagons
les deux arétes y et z d’origine s par une nouvelle aréte x allant de e(y) a e(z). On note
X' le graphe ainsi obtenu. Montrons que s’ = o(x) et s” = e(x) sont des sommets essentiels
de X'. Supposons au contraire s’ inessentiel. On peut décomposer G, = C,. *¢c C,; mais
C. c C, c Gg; cela contredit la (semi-)rigidite de y:si C, # C,, on peut construire une
action de G sur un arbre tel que C contient un stabilisateur d’aréte, mais ne fixe aucun
point : pour faire cela, il suffit d’oter le sommet s’ de x’ et de faire agir G sur I'arbre de
Bass-Serre du graphe ainsi obtenu. Donc C, = C,, ainsi G; = C, *¢_C, = C,, et I'aréte z
était triviale. O

On obtient ainsi le corollaire III de I'introduction.

Corollaire 1.5.3. Le nombre de sommets d’une décomposition sans aréte triviale et semi-
rigide de (G; Cy, ..., C,) comme graphe de groupe n’excéde pas

4(T(G; Cy,...,C)+2b,(G;Cy,y ..., C) + n).
Si tous les sommets sont essentiels, il est majoré par T(G; Cy, ..., C,) + b,(G; Cy, ..., C,) +n.

Démonstration. Soit X’ la réduction de X fournie par le théoréme II. Gréce a la
remarque 1.5.1 et aux propriétés de sous-additivité de T(.,.), on voit que X" a au moins
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autant de sommets essentiels que X. D’autre part, jointe a la remarque 1.5.1, I'inégalité
exprimée par le théoréme II (3) montre que le nombre de sommets essentiels de X” (et
donc celui de X) n’excéde pas T(G; Cy,...,C,) + b,(G; C,,...,C,) +n.

Soient e le nombre de sommets essentiels, i, le nombre de sommets inessentiels de
valence deux, e, de sommets essentiels de valence deux, s, le nombre de sommets de valence
un, et s, le nombre de sommets de valence au moins égale a trois. Un calcul de caractéristique
d’Euler montre que s; < s; + 2(b,(X) —1). Grace au lemme précédent,

Siti,+e,+53 < 2(s;+e, +53) £2(2s,+e,+2b,(G, Cy, ..., C))).
Comme tous les sommets de valence un sont essentiels, on obtient comme promis

s;+iy+e,+s53 < 2(2e+2b,G,Cy,...,C))
<4(T@G,C,,...,C)+2b(G,Cy,...,C)+n). O

Le lemme suivant explique comment on peut se débarasser des sommets inessentiels par
réduction.

Lemme 1.5.3. Soit G = n(X) une décomposition de (G;C,,...,C,); il existe une
réduction de X sans sommets inessentiels.

La démonstration se fait par récurrence sur le nombre d’arétes. Si s est un tel sommet,
etsiy,,...,, sont les arétes issues de s, G, s’écrit comme groupe fondamental d’un arbre
de groupe T, ayant les C,, comme stabilisateurs de sommets. La réduction de X obtenue
en remplagant s par 7, et en supprimant les arétes triviales ainsi crées a une aréte de moins
que X, sauf si X avait s comme seul sommet, auquel cas /; est non vide ('ensemble {1, ..., n}
a au moins 1 élément) et s est essentiel.

1.6. Topologie de petite dimension.

Proposition 1.6.1. Soit M une surface (resp. une varié¢té de dimension 3 irréductible)
et C une courbe fermée simple non homotope a zéro (resp. F une surface incompressible). La
décomposition de n,(M) obtenue en découpant M le long de C (resp. F) est rigide et réduite.

Pour démontrer ce fait, nous utiliserons deux résultats : le premier est dit a Hempel
[H], p. 89, th. 10.2; le second est expliqué dans [J], lemme I11.9, th. I111.10, ou il est attribué
a J. Stallings et F. Waldhausen:

Lemme 1.6.2. Soit M une variété P*-irréductible de dimension 3 et F une composante
du bord. Si n,(M) = n,(F) est infini, alors M = Fx [0,1].

Lemme 1.6.3. Soit N variété de dimension trois, F une composante incompressible du
bord; si (n,(N);n,(F)) se décompose comme somme amalgamée ou HNN-extension,
T, (N) = A xcB ou Ax; avec n,(F) < A, il existe une surface incompressible localement
séparante X telle que n,(Z) = Cet FNX = 0.

Démonstration de la proposition 1.6.1. On ne détaille que le cas d’une variété fermée
de dimension trois; le cas de la dimension deux, ou d’une variété a bord est laissé au
lecteur. On souhaite démontrer que si la surface F est incompressible la décomposition de
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ny (M) quelle définit est rigide et réduite. Pour cela il suffit de montrer que n,(M) ne se
décompose pas au-dessus d’un sous-groupe de 7, (F).

Si c’était le cas, le lemme 1.6.2 appliqué a M = N montre que ce groupe se décompose
aussi le long d’un sous-groupe de 7,(2) de =, (F) qui est un groupe de surface fermée. Si
cette surface est une sphére ou un plan projectif, M n’est pas irréductible. Donc il s’agit
d’une surface de groupe fondamental infini, sous-groupe de =, (F) : la dualité de Poincaré
montre qu’il y est d’indice fini. Si 7,(M) agit dans un arbre ou 7, (X) fixe un sommet, un
argument classique de barycentre montre alors que 7,(F) y fixe aussi un sommet. La
décomposition est donc rigide. Elle est réduite par un argument analogue : la surface F
sépare M en deux composantes, dont la premiére, disons N, satisfait 7, (N) = 4. Supposons
que A se décompose A'*. 7 (F) (une décomposition en graphe de groupes se traiterait
d’une fagon analogue); 1.6.2 (appliqué a N) montre qu’il existe une décomposition de N
le long d’une surface Z, telle que n,(X) < C < n,(F) et telle que la variété comprise entre

2 et F ait méme groupe fondamental que F; en appliquant 1.6.3, on voit que X est connexe
etn,(F)=n,(2)=C.

Remarque. D’aprés ce raisonnement, si M est une variété de dimension trois P2-
irréductible, une décomposition réduite de n,(M) correspond exactement a une surface
incompressible (non nécessairement connexe) dont deux composantes connexes ne sont
pas paralléles. Ceci justifie 'interét de cette notion.

I1. Une construction topologique

La construction présentée dans ce paragraphe s’inspire deux idées fondamentales de
la topologie de petite dimension et la théorie combinatoire des groupes. La premieére, due
a J. Stallings, est la solution a la conjecture de Kneser : si le groupe fondamental d’une
variété de dimension trois est un produit libre cette variété est une somme connexe. Plus
généralement, si G = n(X) est une décomposition du groupe fondamental d’une variété
de dimension trois, il existe une décomposition géométrique de ce groupe fondamental
obtenue en découpant la variété le long d’une surface incompressible X et telle que les
composantes du complément de X fixent des sommets de X. La seconde, due a
M.J. Dunwoody, est celle de résolution : si un groupe de présentation finie opére dans un
arbre T, il opére dans un autre arbre T dont on sait controler le nombre d’orbites de
sommets, et tel que les stabilisateurs de sommets et d’arétes de T soient contenus dans
ceux de 7.

Aprés avoir énoncé le lemme II.1, nous montrons son efficacit¢ en déduisant le
théoréme I de I'introduction; la troisiéme partie du paragraphe est consacrée a la démon-
stration de II.1. Nous utiliserons librement la notion de groupoide fondamental d’un
graphe de groupe pour laquelle nous renvoyons a [Se].

I1.1. Lemme technique principal.

Lemme II.1.1. Soit (G, C,, ..., C,) un groupe équipé d’une famille de sous-groupes,
(X; (G5 x0(C,), e x1) un graphe de groupe, {1,...,n} = | ) I, une partition de I'ensemble
se X©
{1,...,n} et A: G n,(X, s,) un isomorphisme tel que si i € I; A(C}) soit conjugué a un sous-
groupe de G,.
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Il existe un graphe de groupes (X; (G, )se 20> (C)ye 21), un sommet $, de X, un isomor-
phisme . : G — n,(X, §,), une partition U I de 'ensemble {1, ..., n} et un homomorphisme

de groupoides : J: n(X) — n(X) tel que A J o A, et satisfaisant les propriétés suivantes:

(*) Z T(Gs; (Cyoy=s5) (Ci)iei,) ST7G;Cy,...,C).

(*+) 1l existe une application j de I'ensemble des sommets de X dans celui des sommets
de X telle que, pour tout sommet s de X, J(G,) est contenu dans Gjy,.

(**%) Pour toute aréte y de X, d’origine o(y) et d’extrémité e(y), J(y) est une aréte
de X joignantj(o(y)) aj(e(»)). En particulier, comme J est un homomorphisme de groupoides,
J(C,) < Cyyyy.-

(#+xx) Siiel, 1(C) < G,.

Dans toute la suite I: 7,(X, s,) — 7,(X, §,) est défini par I =710 471, de sorte que
JoI=1d.

I1.2. Démonstration du théoréeme I. Bien que le théoréme I soit une conséquence
formelle du théoréme II, il est agréable d’en donner une démonstration autonome basée
sur 1’énoncé du paragraphe précédent et sur le théoréme d’unicité de Kurds que ’on peut
énoncer ainsi:

Theéoréme I1.2.1 (voir [S-W] Thm. 3.5). Soit G un groupe de rang fini. Il existe des
groupes G, ..., G, non libres et indécomposables en produit libre et un entier s tels que:

G=G *x " xG,x L, ou L, est le groupe libre de rang s.

SiG = Gy * - %G, * L, est une autre décomposition satisfaisant les mémes propriétés,
r=r',s=ys" et il existe une permutation s de {1, ..., r} telle que G; = G, ;.

Pour démontrer le théoréme I de I'introduction on peut raisonner ainsi.

Soit G = 4 * Bun produit libre. Soient 4 = 4, -+ A, * L,et B= B, *---x B, x L,
les décompositions de A et B fournies par le théoréme de Kuros;
G=A;x %A, * B x --x B, » L, estune déecomposition de Kurds de G isomorphe a
G =G, *--xG, * L. En particulier, pour démontrer le théoréme I, il suffit de voir que

T(G)=YXT(G)=2T(4)+ Y T(B)).

On applique le lemme I1.1.1 a la décomposition de G en graphe de groupes, G = 7, (X),
ou X est un graphe a r sommets marques G; et r + s — 1 arétes a stabilisateurs triviaux.

Soit X:(G,, C ,) le graphe fourni par le lemme II.1: tous les stabilisateurs des arétes
de X sont triviaux d apres la propriété (**x); ainsi G est 1somorphe au produit libre de ses
stabilisateurs de sommets et d’un groupe libre de rang égal a b, (X).

Comme G, est indécomposable en produit libre et est non libre, il satisfait la propriété
de point fixe suivante:
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Si G, agit dans un arbre T et si les stabilisateurs des arétes de 7" sous cette action
sont triviaux, G, fixe un sommet de 7.

Ainsi, en faisant agir G, dans I'arbre de Bass-Serre de X, on voit que /(G,) doit étre
contenu dans un conjugué de I'un des G,. On a donc I(G,) =« mG,m™'. En appliquant J,
on voit que G, = nJ(G,)n"' = nG,,n~'. Or G, ne peut étre contenu dans I'un de ses
conjugués, ni dans I'un des conjugués de G,, ¢ # s puisque ces groupes fixent des points
différents dans ’arbre de Serre de X; il en résulte que G, = mJ (G,,)m‘1 = G, et J, dont
la restriction a chaque G, est injective puisque 4 et A’ sont des isomorphismes, définit un
isomorphisme de G, et G,. Comme par construction YT (G,) £ T(G), on a obtient
Y. T(G,) < T(G) ce qui est le résultat souhaité. O o

Démonstration du lemme 11.1.1. Pour démontrer le lemme II.1, notre stratégie est
simple : nous allons montrer que le graphe de groupe fourni par la «résolution» (voir [D])
de M.J. Dunwoody convient.

Soit P un polyédre simplicial simplement connexe de dimension deux muni d’une
action de G, et dont les stabilisateurs de sommets sont les C; et leurs conjugués, et ayant
T(G;C,,...,C,) faces modulo I’action de G.

Soient p,, ..., p, des représentants des orbites des sommets de P, de stabilisateurs
égaux a I'un des C;; quitte a renuméroter la famille des C; et a répéter certains de ses
termes ce qui ne change pas la valeur de 7T'(;), on peut supposer que le nombre k d’orbites
de points fixes est égal au nombre des C;, et que C; est le stabilisateur de p;.

Notons qu’en général k > n ce qui posera un petit probléme par la suite, mais ’on peut
supposer, quitte a renuméroter, que pour j > k il existe i < n tel que C; soit (conjugué) C;.

Chaque sommet p de P s’écrit donc p = g.p;, et g est unique dans le quotient G/C;.
Pour chacun des indices i, on choisit dans I’arbre de Bass-Serre T du graphe X un point
fixe ¢; par C;.

Nous allons construire successivement plusieurs objets géométriques illustrés sur la
Figure III.

Figure I1I
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L’application ¢. La formule suivante définit une application ¢ équivariante du 0-
squelette de P dans T:si = gp,, 0(p) = g.¢;.

On prolonge ¢ au 1-squelette de P en imposant a 'image par ¢ d’une aréte [p, q] de
p d’étre 'unique segment joignant g(p) a ¢(g).

La lamination A. Chaque face 4 de P est alors équipée d’une lamination A, (la
terminologie est celle de Thurston pour les surfaces) avec une singularité en son centre :
A, N4 est constitué des points du cote de 4 dont I'image par ¢ est un sommet de
T : ainsi si m désigne la mesure naturelle sur P! tirée en arriére de la mesure simpliciale
de T par I’application g, 4 est constitué des points situés a une distance entiére d’un sommet.

A T’exception d’un point sur chacun des cotés, chaque point de d4 a exactement un
vis-a-vis, c’est-a-dire un point ayant méme image par ¢ dans 7. On joint ces deux points
par un segment quand ils appartiennent a 4, N 44.

Les trois points de 64 ayant méme image sont reliés par un tripode.

I est aisé de faire en sorte que la lamination ainsi construite le soit de fagon équi-
variante.

Le graphe K. On définit un graphe K (en pointillé dans la Figure III) sur P : dans
chaque triangle 4, K est obtenu en joignant les milieux des points de A a leurs vis-a-vis.
Si une aréte de P n’est adjacente a aucune face, la restriction de K a cette aréte est aussi
constitué des milieux des points de 4.

Lemme I1.3.2. Le graphe K est transversalement orienté.

Comme G agit sans inversion sur 7, on peut équiper chaque aréte de cet arbre d’une
orientation, le résultat étant G invariant. Une telle orientation définit une orientation
transverse de K (Figure I1I). O

L’arbre T. En recopiant ’argument de Dunwoody [D], on définit un arbre : les
sommets de 7T sont les composantes connexes de P — K; les arétes sont les composantes
connexes de K, les relations d’incidences sont les relations évidentes.

Notons que I'action de G dans T est sans inversion, puisque les arétes de T sont
orientées comme transversales aux composantes de K; cela permet de construire:

Le graphe de groupe X. Par définition, c’est le quotient de T par l’action de G.

Par construction, ’application ¢ induit une application simpliciale G-équivariante de
T dans T de fagon tautologique : en effet deux points de 4 (ou K) ayant méme image par
o définissent le méme sommet de 7. En particulier les stabilisateurs des sommets et arétes
de T sont contenus dans ceux des sommets et arétes de 7 qui sont leurs images par .

Par construction X définit une décomposition de (G; C, ..., C,) et ’homomorphisme
¢ passe au quotient en un homomorphisme de groupoide J qui satisfait aux propriétés
(*x) et (x*%) et (x**x) requises par I’énoncé du lemme II.1.
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Il reste & vérifier la propriété la plus intéressante de X, c’est-a-dire I'inégalité (x)
portant sur 'invariant 7.

Tout d’abord le lemme I1.3.3 permet d’attirer I’attention du lecteur sur une petite
difficulte. Rappelons que I'ensemble des indices {1, ..., k} numérote I’ensemble des orbites
de sommets de P, et que cette numérotation est choisie de sorte que le stabilisateur de la
i-éme orbite soit C;sii < n; de plus sij > nil existe un i de sorte que C; = C;. Par construction
il existe une partmon UJ de I'ensemble {1,...,k} telle que pour tout jel, G, fixe le
sommet s dans 7. On note 7, la partition 1ndu1te sur {1,...,n} = {1,....k}.

Lemme IL.3.3. Pour tout sommet s de X,

T(Gsa (C’y)o(y)=s= (Cj)jsfs) = T(Gs’ (C'y)o(y)=s’ (Ci)ieis) :

Soit j > n; on sait que_ C; = C; pour un certain 1nd1ce i £ n. On distingue deux cas.
Supposons tout d’abord j e J, et iel . Danscecas, T(G,; ...) a cause de la définition
de T(.;.). Si au contraire, iel, et jeJ, t*s, C;= C se d01t de fixer deux sommets
distincts, set 7. Ainsi, C;est contenudansle stablhsateur d’une aréteissuedet, C; < nyx !
et T(G,; ..., Ci_,Cj, C i+t ) = T(GS,C » Gj+1,C)) d’apres le lemme 1.1.3 (1),
puisque C; est contenu dans un conjugue de C,. On supprime ainsi successivement tous
les C;, j > n sans changer la valeur de 7. O

b

Pour achever de démontrer le lemme I1.1, il suffit donc d’obtenir:

Lemme I13.4. Y T(G;(C)yg)=s> (C)jes,) £ T(G; Cys ..., C).

seX

On considére le polyédre P obtenu a partir de P en contractant chaque composante
du graphe K en un point; triangle par triangle, le résultat P obtenu se lit sur la Figure IV.

Al

Figure IV

Les fibres de I'application P — P étant connexes, P est un G-polyédre simplement
connexe, constitué de digones et de triangles.

Les sommets de P sont d’une part les sommets de P, d’autre part les composantes
connexes de A. Ainsi, modulo I'action de G les stabilisateurs des sommets de P sont les
groupes (C;); i<, et les C,, ol y décrit lensemble des arétes de X.
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Soit Q le polyédre simplicial de dimension deux obtenu a partir de P en y supprimant
les intérieurs des digones et en identifiant les deux arétes de chaque digones par un homéo-
morphisme fixant leurs sommets et préservant la mesure induite par ¢. La Figure V montre
le résultat obtenu face par faces. Comme les fibres de ’application P — Q sont connexes,
Q est un polyedre simplicial simplement connexe de dimension 2 ayant méme-0-squelette
que P.

Figure V

Soit y une aréte de I'arbre T, c’est-a-dire une composante de K; y définit un point
f(y) dans Q, et Q — f(y) a deux composantes connexes, qui sont simplement connexes
d’aprés le théoréme de Van-Kampen. Si s est un sommet de 7, on définit Q, comme étant
I'adhérence dans Q de la composante connexe de Q — {f(y)/o(y) = s}.

Les polyédres Q, sont simplement connexes, et Q est obtenu en recollant les Q, grace
aux indications donnés par I’'arbre T:si s et s’ sont les deux sommets d’'une méme aréte,
0, N Q, est le point f(y); sinon, Q; N Q,. est vide.

De cette construction, et de la définition de G,, il résulte que si s est un sommet de X
représenté par un point abusivement noté s de T, si y,, ..., Yy, sont les arétes de T issues
de s, et si I, désigne 'ensemble des i tels que le sommet p, smt dans Q,, Q, estun G, polyedre
51mplement connexe ayant k,+ 4 I orbites de sommets de stabilisateurs respectlfs C oo
C,iel,.

Pour chaque sommet s du graphe X on choisit un représentant (aussi noté s) dans
T. Ainsi Q est la réunion des G.Q,, et si s = s’ G.Q, N G.Q, est constitué de points, donc
ne contient pas de simplexes.

Le nombre de simplexes de Q modulo l'action de G est donc la somme

Z T(G,; (C Vo =s> (Cjje , ). Comme ce nombre est égal a celui des simplexes de P modulo
seX

Paction de G, puisque ceux-ci sont en correspondance bijective, on obtient I'inégalité
souhaitée. 0O

Remarque I1.3.5. Supposons que G soit le groupe fondamental d’une surface S ou
d’une variété de dimension trois V, et que P soit le revétement universel de S ou du
deux-squelette X d’une triangulation d’une variété de dimension trois irréductible. Dans
ce cas les composantes connexes de K sont des courbes fermées simples tracées dans. S,
ou les traces dans 2 d’une surface plongée dans V, et la décomposition de =, (S) ou =, (V)
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décrite par T est géométrique, c’est-a-dire qu’elle provient du découpage de S ou ¥ le long
d’une famille de courbe ou d’une surface. Ainsi la construction proposée est une générali-
sation de la construction de Stallings dans sa solution a la conjecture de Kneser.

II1. Démonstration du théoréme I1

Partant d’un groupe G muni d’une telle décomposition G = 7, (X, s,), et d’un polyédre
simplement connexe P muni d’une action de G ayant T faces modulo G, nous avons
construit une nouvelle décomposition G = n, (X, §,) satisfaisant I'inégalité qu’exprime le
théoréme II. C’est en étudiant les liens entre X et X que nous obtiendrons le théoréme II :
malheureusement I’argument expliqué au II.2 pour démontrer le théoréme I repose de
fagon essentielle sur le théoréme d’unicité de Kuros (Th.11.2.11), et c’est ce point qu'’il
faudrat contourner.

IIL.1. Un lemme de point fixe. On ne répéte pas les notations du paragraphe II.
Chacun des G, agit sur T via I; dans ce paragraphe, on met en évidence quelques propriétés
de cette action.

L’hypothése de rigidité est une propriété de point fixe; montrons qu’elle entraine:

Lemme III.1.1. Supposons que la décomposition G = n,(X) soit rigide. Pour toute
aréte y, 1(C,) fixe un sommet de T.

Démonstration. Par construction, chacun des C; fixe un point dans 7. De plus pour
toute aréte y de X, J (C’y) < G, €t J est surjective. En appliquant 7, on obtient C'y < I(C).
Donc I'image par I de C, contient un stabilisateur d’aréte de T: la définition de «rigide»
dit qu’alors 7(C,) fixe un sommet dans cet arbre. O

Vient alors I'important lemme d’accessibilité.

Lemme IIL1.2. Si G =n(X) est une décomposition rigide de (G;Cy,...,C,)
dont les sommets sont tous esentiels. Le nombre de ses sommets n'excéde pas
3T7(G; Cy,...,C,)+4b,(G; Cy; ..., C,) +n.

Remarquons que la borne de cet énoncé intermédiaire n’est pas optimale.

Démonstration. Pour démontrer ce lemme, on peut recopier 'argument de Dun-
woody [D] ou raisonner ainsi.

Considérons le graphe de groupe X* obtenu a partir de X en y supprimant les
sommets inessentiels de valence 1 et les arétes dont ils sont issus. Ces deux objets ont méme
groupe fondamental et ona: ). T (G (C). (C)) =Y. T(G,; (C,), (C)).

se X* seX

Soit s5; le nombre de sommets de valence i de X*,

Comme X* n’a pas de sommets inessentiels de valence 1, ceux-ci sont tous essentiels,
et d’aprés la remarque 1.5.2,

12 Journal fiir Mathematik. Band 470
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(*) $;2b,(G;Cy,...,CH+T(G;Cyy...,C,).

Soit s; le nombre de sommets de valence i de X. Le nombre de sommets de valence au
moins égale a trois Y, s; est majoré par
iz3

Y (i—2)s;=2b,(X) =2+ 2s,

iz3

<2b(G;Cy,...,C)—24+b,(G;Cy,...,C)+T(G;Cy,...,C)<3b,+ T
(d’apres (*)).

Le nombre de sommets de X* tels que I, + () est majoré par n. Celui tel que
T(G,; (C,)) # 0 ou b,(G,; (C,)) # 0 est majoré par T(G; Cy,...,C,)+b,(G; Cy, ..., C,).
Ainsi, si le nombre de sommets de X excéde le nombre proposé dans le lemme, il existe
un sommet s dans X tel que pour tout o€ !(s), ¢ soit un sommet de valence deux
satisfaisant 1, =0 et b,(G,; C,,C,) = T(G,; C,, C,) = 0 autrement dit est inessentiel:
G, =C,xp, C..

Soit X le graphe obtenu a partir de X* en y otant les sommets de j~!(s) et leur deux
arétes adjacentes, et en les remplagant par une seule aréte marquée D,. Le graphe obtenu,
noté X a méme groupe fondamental que X.

On fait agir le groupe G, sur ’arbre de Bass-Serre Tdece graphe via ’homomorphisme
I, et ’'on considere le quotient comme description de G, comme groupe fondamental d’un
certain graphe de groupes que ’on note I'.

En raisonnant comme au lemme II1.1.1, on voit que pour chaque aréte y issue de s,
C, fixe un sommet dans le graphe I'. Comme modulo les C,, le groupe G, admet un nombre
fini de générateurs, c’est-a-dire qu’il existe un nombre fini d’éléments qui joints aux C,
engendrent G, ce graphe a méme groupe fondamental qu’un sous-graphe fini I;. Notons
que I, est un arbre car b,(G,; (Cy)o(y,zs) = 0. Soit I, le graphe obtenu a partir de I en
y supprimant les arétes triviales : par construction les stabilisateurs D, des sommets de I,
sont de la forme J(mG, m™ ') n G, avec j(¢') + ¢. Un tel groupe fixant s et ms’ dans
I’arbre de Bass-Serre de X doit étre contenu dans le stabilisateur d’une aréte de X issue
de s; ainsi, D, = aCya™'.

Notons que comme aucune aréte de I, n’est triviale, si pour deux sommets ¢ et ¢’ de
Ibona:D,c aD,a ! alors t = t' et D, = aD,a”"; sinon D, serait contenu donc égal au
stabilisateur d’une aréte issue de ¢.

Soient (D, ..., D)) les stabilisateurs des sommets de I,. Pour obtenir la contradiction
souhaitée, il suffit de voir que s est inessentiel.

Montrons que T(G,; (C,),¢)=s) = T(G,; Dy, ..., D;) = 0. La seconde égalité provient
du fait que G, est écrit comme arbre de groupes ayant les D; comme stabilisateurs et du
lemme 1.1.1. Pour la premiére, remarquons les deux faits suivants:

Vy, 3t, 3a | C,caDua’,
Yt 3y 3b | D,cbCbl.
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Ainsi, en appliquant plusieurs fois le lemme 1.1.3 (2) on obtient:

T(Gs’ (Cy)o(y)=s) = T(Gs’ (Cy)o(y)=s9 (Dt))

d’apres la seconde ligne puis
T(G; (Cylogy=5» (D) = T(G; D) =0
d’apres _la premiére.
Comme on a pris soin a ce que b, (Gy; (C,),(,=5) = 0, on voit que s est inessentiel. O

Raffinement. Un raffinement élémentaire de la décomposition G = n(X) est une
nouvelle décomposition de (G; Cy, ..., C,) obtenue en choissant un sommet s de X, en
décomposant (G; (Cy);cr,» (Cy)oy=s) €n amalgame ou HNN, A, xc B, ou A *_, et en
remplagant dans X le sommet s par deux sommets de stabilisateurs 4 et B, (ou 4;) et une
aréte les joignants (Figure VI). On obtient ainsi un graphe de groupe ayant méme groupe
fondamental. On dit qu’une décomposition G = n(Y) est une raffinement de la décompo-
sition G = n(X) si I’on obtient Y a partir d’une suite de raffinements élémentaires. Le
lemme suivant, ou I’on a mis des notations évidentes, résulte immeédiatement du lemme
1.1.4 pour le (a) et de la définition de réduction (¢lémentaire) pour le (b).

Figure VI

Lemme IIL.1.3. Si Y est un raffinement de X,

(a) Z T(Gs’ (Cy)a(y)=s’ (Ci)iels) é Z T(Hs9 (Dy)o(y)=s’ (Ci)ie.l,-)’

se X0 seYO0

(b) si Y’ est une réduction de Y, il existe une réduction de X' telle que Y’ soit un
raffinement de X'. O

Maximalité. Grice au lemme d’accessibilité I11.1.2, on obtient I’existence d’un raf-
finement maximal & une décomposition rigide d’un groupe en graphe de groupe : c’est une
décomposition rigide de G ayant un nombre maximal de sommets, tous essentiels.
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On vérifie immédiatement que si la décomposition G = n, (X) est maximale, et si X’
est une réduction de X, alors G = 7, (X") est encore maximale. Ces notions de raffinement
et de maximalité sont utiles & cause des deux lemmes suivants.

Lemme I11.1.4. Soit G = 7,(X) une décomposition rigide sans sommets inessentiels
et maximale de (G; Cy, ..., C,).

(1) Si x est une aréte orientée non réduite, X est réduite.

(2) Si X, est une décomposition de (Gy; (C,)o=5> (Ci)ic1,) dont les stabilisateurs
d’arétes sont conjugés a des sous-groupes de C,, y € X 1. alors X, est un arbre et a exactement
un sommet essentiel.

(3) Soit X, comme dans (2), et G, le stabilisateur du sommet essentiel s de X. 1l existe
un sous-ensemble Y, de l'ensemble des arétes issue de s dans X, une décomposition X, de
(G (C))oy=ss (C)ic1,) dont les sommets sont indexés par {s} | ) Y,, dont 'unique sommet
essentiel, noté s, a toujours G, comme stabilisateur, et dont les autres stabilisateurs sont les
(C,) pour y € Y, (Figure VII).

Cys
Cys

Cy

G C,,
Cys

C,y
Figure VII

(1) Supposons que l'aréte x a deux sommets distincts, s et ¢, et supposons que
(Gs’ (Ci)ieI,’ (Cz)o(z)=s) ainsi que (Gt’ (Ci)ielt’ (Cz)o(z)=t) se décomposent en Hs *Cy Cx et
C, *¢, H, (ceci est un peu simplificateur, il faudrait écrire plutdt un graphe de groupe de
ayant un stabilisateur de sommet égal & C, mais cela ne change rien au raisonnement); on
obtient alors de fagon évidente une nouvelle décomposition de G ayant un sommet de plus
de stabilisateur C, : celui-ci doit étre inessentiel, c’est-a-dire : C, = C, *; C,. En raisonnant
comme au 1.5.2, on construit alors une action de (G; C,, ..., C,) dans un arbre ou C, ne
fixe aucun sommet, ce qui est une contradiction et démontre (1).

Le point (2) se montre en remplagant le sommet s par le graphe X;, ce qui contredit
la maximalité sauf si les nouveaux sommets introduits sont inessentiels.

Le point (3) se montre en trois étapes illustrées sur les Figures VIII.
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Cye

Figure VIII

C,,
C
H =C, .
Cys
Cys
C
=c, i
Cie
—— G’
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y2

C,s

Cys

Cys

Soient z,, ..., z, les arétes de X| issues de s stabilisateurs C,, et Z,, ..., Z, les graphes
des groupes complémentaires de ces arétes dans X, indexes de fagon évidentes. On considére
alors le graphe Y, ayant p + 1 sommets de stabilisateurs G, et H, = n,(Z;) et p arétes
24, ..., 2, de stabilisateurs C, .

D’apres le (2), ces sommets sont inessentiels, autrement dit, il existe une partition
Z, ) Y, del'ensembles des arétes issue de s telle que:

1gigk

- CcGysiyeZetC,cGysiiel,.

— H, est le groupe fondamental d’un arbre de groupe T; ayant un sommet de stabili-
sateur C, et # Y, sommets de stabilisateurs C,, y€ Y.
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On obtient le graphe X en réduisant les arétes y; grace aux graphes T, ainsi construits.
Les sommets de X, ont pour stabilisateurs G, ainsi que les C,, ye ) ¥;=Y,. O

Lemme II1.1.5. (a) Si la décomposition G = n(X) est réduite, rigide sans sommets
inessentiels et maximale, il existe une section i de I'application j telle que pour tout sommet
s, induise un isomorphisme de G, et G.

(b) Si la decomposition G = n(X) est rigide maximale et sans sommets inessentiels,
elle admet une réduction X':(G;;(C,),(C));;,) pour laquelle il existe une section i de
U'application j telle que pour tout sommet s, J induise un isomorphisme de G, y et G.

i(s

On fait agir G sur I'arbre T via I, et on restreint cette action a G,; le quotient G,\T'
est une description de G, comme groupe fondamental d’un graphe de groupes. Comme G,
est finiment engendré modulo les C, (pour o(y) = s), ce graphe a méme groupe fondamental
qu’un sous-graphe fini X, et I’on choisit X ayant un nombre minimal d’arétes. Grace au
lemme III.1.1, chacun des C, fixe un point dans T. On peut donc appliquer le lemme
I11.1.4.2) qui montre que X, a exactement un sommet essentiel. Soit G, le stabilisateur de
ce sommet.

Par construction I(G!) fixe un sommet ¢ de 7, et le lemme II.1.1 montre que
J(G)<=G L Si t # 5, G, est donc contenu dans le stabilisateur d’une aréte issue de s et
G est inessentiel. Ainsi, J (G) < Get I(G]) = G, avecj(f) = s; on pose i(s) = ¢, et I induit
un isomorphisme de G, et G, ,,.

Montrons qu’il existe une réduction X' de X dont ’ensemble des stabilisateurs de
sommets est ’ensemble des G, et dont les stabilisateurs d’arétes sont contenus dans les
(C})o(y)=s- I suffit de remplacer successivement chacun des sommets par le graphe Y, obtenu
au (3) du lemme II1.1.4, et d’effectuer les réductions correspondantes, ce qui est loisible a
cause du point (1) du méme lemme. O

Montrons enfin que si i est ’'application construite au lemme précédent on a:
Lemme II1.1.6. (a) Si X est réduite,

T(Gg; (Cierr (Cyoy=s) = T (i (Cietnys (Crlogy=i9) -
(b) Sinon, la réduction X' construite au lemme 111.1.5 satisfait:

T(Gs’; (C)ie Iy (C;:)o(y)=s) = T(éi(s); (Ci)ieii(,p (Cy)o(y)=i(s)) .

On montre (b) qui contient (a). De fait pour tout aréte y = [s, s'] issue de s, / (C ) fixe
une aréte de 7" (deux sommets distincts) et est donc contenu dans un conjugué de C, pour
une certaine aréte z issue de i(s).

D’autre part la construction de X’ montre que C; contient le stabilisateur ()
sous I’action de G, d’une aréte issue de i(s).
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Ainsi, pour toute aréte z issue de i(s), il existe une aréte y issue de s et un a e G telle
que C, cal (C, Ya ! et re01proquement pour toute aréte issue de i(s), il existe un b € G,

i(s)
et une aréte z telle que I(C ycbC,b7t.

De méme, si ie I,, C; = hatG,, donc J(C,) < G,, et soit i in G| soit C, fixe au moins
deux points dans I’arbre de X’ et est donc contenu dans I'un des C; pour o(y) = s; récip-
roquement, si iel, soit iel, soit / (C)) est contenu dans le stablhsateur d’une aréte issue
de s dans X.

Ceci permet d’appliquer le lemme 1.1.2 (2), et ’on obtient:
T(G;§ (Cogyy=s (Ci)iels) = T(Gs; (I(C;z))o(y)=s’ (I(Ci))iels) = T(Gs; (Cz)ﬂ (Ci)ieis) . d

IIL.3. Conclusion. On voit maintenant la démonstration du théoréme II : grice a
I’étude faite au premier chapitre, on sait que pour montrer le théoréme 11, il suffit d’étudier
le cas d’une décomposition rigide (lemme 1.4.1) dont tous les sommets sont essentiels
(lemme 1.5.4). Soit X un tel graphe. Grace au lemme III.1.3, on peut supposer X maximal.
Soit X le graphe construit en I1.1.1 a partir de X. Par construction:

ZT(Gs; (Cy)o(y)=s’ (Ci)iefs) =T(G;Cy,....C).

Les lemmes I11.1.4 et II1.1.5 permettent alors de construire une réduction X' de X
pour laquelle on a

Z T(G;’ (C;)o(y)=s’ (Ci)iels) é T(Gs’ (Cy)o(y)=s9 (Ci)iefs) é T(G’ Cl’ ] Cn)
C’est ce que promet le théoréme II (3); si X était réduite, X' = X.

La partie (2) du théoréme II, qui contient (1) résulte alors de 1.4.2.
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The stabilisation trick for coactions

By Siegfried Echterhoff at Paderborn and Iain Raeburn at Newcastle

Crossed products by coactions of a locally compact group G were introduced to
allow the application of duality techniques to crossed products by actions of nonabelian
groups. When G is abelian, a coaction ¢ of G on a C*-algebra A is given by an action «
of the dual group G on 4, and the crossed product 4 x;G by the coaction is isomorphic
to the usual crossed product A4 x,G. Thus in general one expects crossed products by
coactions to have important features in common with ordinary crossed products, especially
those features which are apparantly true only for abelian groups.

In analysing an ordinary crossed product 4 X, H, a standard technique involves
choosing a normal subgroup N for which N and H/N are more manageable than H, and
decomposing 4 X, H as an iterated crossed product (4 X, N)x H/N. The action of H/N
on AX,N is often twisted by a cocycle, and there are two different kinds of twisted
crossed product for which one always has such a decomposition (see [G] and [PaR]). A
corresponding theory for coactions is potentially very useful, since crossed products by
coactions of abelian groups are familiar objects, and one can certainly have N and G/N
abelian but G nonabelian. One notion of twisted crossed products by coactions was
developed in [PR], and a decomposition theorem obtained which is analogous to that of
Green for actions [G], Proposition 1. In particular, the twisted crossed product 4 X, , G
is the quotient of 4 X;G by a “twisting ideal” I, and, as in [G], its properties can often
be deduced from those of 4 x;G.

The effective use of these decompositions of crossed products has been limited by
the need to extend the established theory to the appropriate class of twisted crossed prod-
ucts. The stabilisation trick of [PaR], which says that every twisted action is Morita
equivalent to an ordinary action (cf. [Kal]), provides an attractive route for extending
theory cheaply. In [PR], the question of finding a similar stabilisation trick for twisted
coactions was raised, but left open: the version in [PaR] seemed badly suited to the twisted
actions of Green on which [PR] was based.

Recently the first author has given a version of the stabilisation trick which is com-
patible with Green’s theory [Ech]. The construction in [Ech] is deeper than that of [PaR],
and depends crucially on Green’s imprimitivity theorem; however, the Morita equivalence
thus obtained is compatible with induction of representations and the Mackey machine
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[Ech], § 3. Here we shall show that a similar approach, based on Mansfield’s imprimitivity
theorem for crossed products by coactions, gives a stabilisation trick for twisted coactions
which is compatible with Mansfield’s theory of induced representations [M].

Our main theorem says that for every twisted coaction (6, W) of (G,G/N) on a C*-
algebra A, there is an ordinary coaction ¢ of N on B, say, which is Morita equivalent to
(6, W). This implies, for example, that the twisted crossed product 4 x; 5, G is Morita
equivalent to B X, N. After a short section on preliminaries, in which we set up terminology
and recall the basic properties of twisted coactions, we discuss the relevant notion of
Morita equivalence in §2, and prove our main theorem in §3. The idea is to prove that
the equivalence in Mansfield’s imprimitivity theorem is equivariant, and then the one we
want will be the quotient of this corresponding to a twisting ideal. In our last section, we
give some applications. We prove first that twisted coactions are Morita equivalent if and
only if the dual actions are Morita equivalent in the sense of Combes [Com], and then
that our stabilisation theorem is compatible with the induction process of [M].

Morita equivalence for coactions and twisted coactions was first discussed by Bui
[Bui], who based his theory on results of Baaj and Skandalis about coactions on Hilbert
modules [BS]. The resulting theory is asymmetrical: (4, §,) is Morita equivalent to (B, dg)
if there is a coaction J, on a Hilbert B-module X which is compatible with J, such that
A can be naturally identified with J (X') and J, with a canonical coaction on 2 (X) in-
duced by d,. In [ER] we gave a symmetric version of the theory, based on imprimitivity
bimodules, which we feel is more elegant and easier to work with. However, since Mansfield
constructed a Hilbert module X and identified 2#°(X") rather than directly building an
imprimitivity bimodule, here we have had to use the approach of [Bui] alongside our new
one. While every Morita equivalence in Bui’s sense is certainly one of ours, the converse
is not so clear. We shall discuss this point in §2, since we shall want to use results from
[ER], and then prove that equivalences pass to quotients by appropriately induced ideals.
In an appendix we shall prove that, at least for nondegenerate coactions, the two notions
of equivalence coincide.

Acknowledgements. This research was supported by grants from the Australian
Research Council and the University of Paderborn.

§ 1. Preliminaries

Conventions. Throughout, G will be a locally compact group, and N a closed
amenable normal subgroup. We denote by C*(G) the reduced group C*-algebra, acting
concretely on L2(G) via the (integrated form of) the left regular representation A¢. Since
N is amenable, the representation s+ A%/™ of C*(G) on L?(G/N) factors through the
reduced algebra C*(G), and induces a surjection g of C*(G) onto C*(G/N) (see, e.g.,
[M], Lemma 3). We also have C*(N) = C*(N), the full group C*-algebra of N.

Tensor products of C*-algebras will always be spatial, so that, for example, if 4 acts
concretely on a Hilbert space #, then 4 ® C*(G) acts on # ® L?(G) = L*(G, ). If we
have a nondegenerate homomorphism ¢ of one C*-algebra A4 into the multiplier algebra
A (B) of another, we shall without comment extend ¢ to a strictly continuous homomor-
phism of .# (A) into .# (B), and denote the extension by ¢ also. We write 1 for the identity
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of an algebra or the identity operator, and id, for the identity homomorphism on an
algebra A.

We shall denote by M the representation of C,(G) as multiplication operators on
L?(G), and write either M, or M(f) for multiplication by the function f. We write wg,
for the strictly continuous function wg: s+ A% in

M(Co (G, CX(G))) = M(Cy(G) ® CHG)),
and observe that M ® id;(wg) is the unitary operator W on L*(G) ® L*(G) = L*(G X G)

given by (W;&)(s, 1) = &(s, s~ ). This operator arises frequently because it implements
the equivalence between A ® A% and A° ® 1:

WA @D W =18@®18.

This equation implies that the integrated form of 1¢ ® A% factors through the regular
representation, and hence gives a nondegenerate homomorphism d; of C¥(G) into the
subalgebra .#(C*(G) ® C*(G)) of B(L?*(G x G)), which is called the comultiplication on
C}¥(G), and satisfies (05 ® id) o g = (Id @ dg) © dg.

Coactions, twisted coactions, and crossed products. Our conventions concerning coac-
tions and crossed products will be those of [LPRS] and [PR]. Thus a coaction on a C*-

algebra A is an injective and nondegenerate homomorphism 6: 4 — .#(4 ® C*(G)) such
that

1) 0(a)(1®2), 1®2)0(a)e AR CX(G) forae A and ze C}(G);

(2) (G ®idg)ed = (id, ® o) 6.
The coaction is nondegenerate if in addition

(3) 6(4)(1® C*(G)) is dense in 4 ® C*(G).
(In general, if an algebra C acts on a Banach space X, then C- X, or just CX, will stand
for the closed linear span of the set {c-x:ceC, xeX}.) Note that nondegeneracy is
automatic if G is amenable [L], [K] or discrete [BS], 7.15. The crossed product A x;G

is defined in terms of a faithful representation of 4 on # as the closed span in
B(# ® L*(G)) of

{6(@(1® M) :acA, fe Cy(G)} .
This is independent of the choice of representation of 4, and indeed the triple
(A%;G,6,1Q M)

has a universa] property with respect to covariant representations: pairs (m, 1) of nonde-
generate representations n: 4 — B(H#), u: Co(G) — B() satistying

1®idg(8(a) = n ®idg(we) (n(@) 1) p®idg(wg) foraed.
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Given such a pair, we write 7 X u for the representation of 4 X, G such that

nxu(d(@(1® M) =n(a@u(f),

and we sometimes write j,, j for the embeddings 6, 1® M of 4, Cy(G) in M (A %;G)
(see [PR], §1, for a discussion of these points, and detailed references to [LPRS]). It
follows easily from the universal property that there is a dual action § of G on 4 xX;G
such that §,(8(a)(1® M(f))) = 6(a)(1® M(a,(f))), where a,(f)(t):=f(ts); indeed, &
is implemented spatially on # ® L?(G) by the representation 1 ® g, where ¢ is the right
regular representation of G.

Example 1.1. Suppose o : G — Aut B is an action of G, and i, i; are the canonical
embeddings of B, G in the multiplier algebra #(B X, ,G) of the reduced crossed product,
viewed concretely on L?(G, i), say. Then the pair (i; ® 1, i; ® A°) is a covariant repre-
sentation of (B, G, «) which induces a nondegenerate coaction

4:Bx,,G— M((B%,,G)® CG))

called the dual coaction (see [R], §3, for a discussion of why we use the reduced crossed
product here). The duality theorem of Imai and Takai [IT] asserts that the second dual
system ((BX, ,G)x;G, &) is isomorphic to (B® 4 (L*(G)), » ® Ad ).

We can restrict a coaction ¢ of G to a coaction of G/N by composing with the cano-
nical surjection g of C*¥(G) onto C*(G/N): the restriction 4| is by definition (id, ® ¢g) - &
(cf. [M], Lemma 4). Following [PR], we say the coaction ¢ is given by a twist on G/N
if 8| is implemented by a unitary We .#(A4 ® C*(G/N)), which is both a corepresentation
of G/ N (Condition (1) below), and satisfies an additional consistency condition ((3) below).

To be more precise, we need to introduce the flip isomorphism ¢ = 6. p:c @ d—dQ® ¢
of C® D onto D® C.

Definition 1.2. A twisted coaction of (G,G/N) on A is a pair (6, W) where ¢ is a
coaction of G and We % .#(A ® C*(G/N)) satisfies

1N 1) (idA ®agn,en(W® 1)) = (id, ® 5G/N)(W)§
2) ol(a) =W(@®1)W* for all ae A; and
() 0®idg y(W) =id, ® 065,6(W®1cs)-
A covariant representation (n, u) of (4, G, 8) preserves the twist W if
e idG/N(wG/N) =nQ®idgn(W),
and the twisted crossed product A %; G is the quotient of 4 X;G by the twisting ideal

Iy = () {kerm x u: (m, p) is covariant and preserves W'} .
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For ne N, the dual action §, leaves I, invariant, and hence induces a dual action of N on
A5 wG [PR], §4.

We shall be interested in two main classes of twisted coactions, both discussed in [PR].

Example 1.3. If ¢ is a coaction of N on A4, then the composition Infe of ¢ with the
natural embedding id, ® 1°|y of 4 ® C*(N) in #(4 ® C*(G)) is a coaction of G on A4,
and 1®1 is a twist for Infe [PR], Example 2.4. The twisted crossed product 4 X, ¢, G
is naturally isomorphic to 4 x, N [PR], Example 2.14. Note that Infe is always non-
degenerate: since N is amenable, ¢ is nondegenerate by [L], Lemma 3.8. Using

285 (C*(N)) CH(G) = CHG)

we obtain Infe(4)(1® C*(G)) = (id, ® 1%1,)(e(4) (1® C*(N))) (1® C*(G)), which is
dense in 4 ® C*(G) since £(4)(1® C*(N)) is dense in A ® C*(N).

Example 1.4. Suppose ¢ is a coaction of G on 4, and let B= A4 X, G/N. Then
(m, 1) == ((j, ®idg) ° 6, Jewmy ® 1) is a covariant representation of (4, G/N, §|) whose in-
tegrated form 6y =nxpu: B— M(B® CX*(G)) is a coaction of G on B. If

Wy = (jC(G/N) ® idG/N) (WG/N) € /{(B ®Cx (G/N)) >

then (d5, Wp) is a twisted coaction of (G,G/N) on B [PR], Lemma 3.3. We call this the
decomposition coaction, because BX;_ . G is naturally isomorphic to 4 x;G by [PR],
Theorem 3.1. It can be routinely verified that é5 is nondegenerate whenever ¢ is non-
degenerate.

Multipliers of imprimitivity bimodules. An imprimitivity bimodule ,Xy is an A-B
bimodule which is simultaneously a full left Hilbert 4-module and a full right Hilbert B-
module in such a way that the following compatibility conditions are satisfied:

a x,yyp=Lx,a* ydp; Lx-b,y)>= x5,y b*>; LKx,p> z=x{y,2)p.

If there is an 4-B imprimitivity bimodule , X, we say that the C*-algebras 4 and B are
Morita equivalent. Such algebras have essentially the same representation theory, and,
more importantly for us, the lattices of ideals in both 4 and B are isomorphic to the lattice
of closed sub-bimodules of X [Rieff2], § 3. (This is unambiguous: the norms on X induced
by the two inner products coincide [Rieff 2], Proposition 3.1.)

If X and Y are Hilbert B-modules, then %(X,Y), or just Z(X,Y), will denote the
Banach space of adjointable B-linear maps 7: X — Y, and 4 (X,Y) the subspace of com-
pact adjointable maps. The multiplier bimodule # (X ) of an imprimitivity bimodule , X
is the collection of pairs m, € %, (4, X ), mg € % (B, X) such that m (a) - b = a - mg(b); one
thinks of the multiplier m = (m 4, my) as specifying the maps

my:ar—a-m, mg:b—m-b.
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The space .#(X) is naturally an #(A)-#(B) bimodule, and the inner products on X
extend uniquely to .#(A)-, .#(B)-valued inner products on .#(X), though .#(X) is not
in general an .# (A)-#(B) imprimitivity bimodule (see [ER], §1). It was proved in [ER],
1.3, that m +— myis an isomorphism of .#(X') onto % (B, X), and m +— m , an isomorphism
of #(X) onto %,(4, X); conversely, if we start with a full Hilbert B-module X, we can
view it as a ) (X )-B imprimitivity bimodule, and use (B, X) in place of the multiplier
bimodule .#(x, X5). We shall also need the concept of an imprimitivity bimodule homo-
morphism @ : Xy — M(:Yp): a triple @ = (D, Py, D) in which

®,:A - MC), Pp:B-—> M(D)
are homomorphisms, and &, : X —» #(Y) satisfies

M(C)<¢X(x)’ (1)) = B (4<x,¥>), Px(a-x)=By(a) Dx(y),
and similarly on the right [ER], 1.8.

We shall denote the dual of an imprimitivity bimodule ,X, by ,X,. The set

A X . . . .
L:= ( 7B ), equipped with multiplication and involution given by
(al xl)(% x2>=<alaz+A<x1,y2> ay xy+x;° b, >
by V2 b, Froay+by- 7, yi.Xyp+bib,)’

a x\*_ (a* vy
5 b) \x b*)°

is a C*-algebra called the linking algebra for X. (It is naturally isomorphic to the algebra
Z (X @ B) of adjointable operators on the Hilbert B-module X; @ Bz [BGR].) The C*-
norm on L induces the C*-norms on the diagonal corners 4, B, and the norm on X as
the upper right-hand corner of L agrees with the norm on X induced by the inner product.
Conversely, if there is a C*-algebra L containing copies of 4 and B as full complementary
corners, then the upper right-hand corner is naturally an A-B imprimitivity bimodule. It
was shown in [ER], Proposition A1, that the multiplier algebra .#(L) of the linking
M(A) M(X)
MX) M(B)
involution defined similarly. In the same way, we can identify #(L® C*(G)) with
<Jf(A ®C*@G) M(X® C,*(G)))
ME®CHG) M(BRCHG)))

algebra can be conveniently identified with ( ), with multiplication and

§ 2. Morita equivalence of twisted coactions

Definition 2.1. Suppose that d is a coaction of G on a C*-algebra B, and X is a
Hilbert B-module. Following [BS], 2.2, a coaction of G on X compatible with d is a linear
map
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satisfying
(1) 8x(xb) = 8(x) - 65(b) and
05 (<x, yp) = (Ox (%), 55 (¥).um) (== 0x (x)* © 65 (1)) ;
(2) (1®2) 0x(x),0x (%) (1®2) e X® CX(G);
(3) 6x(X) - (B® C*(G)) is dense in X ® C*(G);
(4) (0x ®idg) = 0y = (idy ® ¢) ° by
Following [ER], one can make sense of these statements by identifying
Z(B® C*(G), X® C*(G))

with the multiplier bimodule of the imprimitivity bimodule

x(X)®C:(G)(X® Oy (G))B®c:(c) >

so that 8 by definition maps X into .#(X ® C*(G)). Now the general properties of multi-
plier bimodules allow us to interpret (1), (2) and (3). As in [ER], Example 1.10, a pair of
maps (dy, 0g) satisfying these three conditions induces a nondegenerate homomorphism
Sy A (X) > L(X® CX(G)) such that (3, 6x,65) is an imprimitivity bimodule
homomorphism, which therefore extends uniquely to the multiplier bimodule .# (X)) [ER],
Proposition 1.9. Using this and similar extensions one can see that the coaction identity
(4) makes sense: both sides are linear maps of .#(X) into 4/ (X® C*(G) ® C*(G)).

Remarks. In[BS]itis also hypothesised that the maps 6, ® id; and idy ® J; extend
to the multiplier bimodules: the above discussion suggests that this is automatic. One can
verify quite easily that the coaction 6, we obtain is the same as the one defined in [BS],
2.8, [Bui], 2.8, by k> V(k @ 1)V *.

Definition 2.2. Following [Bui], we shall say that two coactions é,, d5 are Morita
equivalent if there is an 4-B imprimitivity bimodule X, and a coaction é, of G on X which
is compatible with 6, and satisfies J, = d, x, (under the canonical identification of 4 with
the algebra # (X') of compact operators on the Hilbert B-module X').

Two twisted coactions (d,, W,) and (o5, W}) are Morita equivalent if there is a Morita
equivalence (X, dy) of o, and 5 such that

(5) (1dy® q)(65(x)) = W, (x ® 1) W* for all xe X.

As in the comments in Definition 2.1, the equation J, = d,x, implies that the triple
(04, Ox, 6) is an imprimitivity bimodule homomorphism. Thus any Morita equivalence in
the sense of Definition 2.2 is also a Morita equivalence in the sense of [ER], and the
results of that paper apply. In fact, we show in the appendix that the two notions are
usually equivalent. (We point out that Condition (1) in [ER], Definition 3.1, is redundant:
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if (8, Oy, 0p) is an imprimitivity bimodule homomorphism, which is the content of (2) and
(3), and x=a-y, then (1®2) 05(x) =(1®2),(a)  Ix(»y) is in X® C¥(G) because
(1®z)d,isin A ® C*(G).)

Example 2.3. Suppose that ¢,, &5 are coactions of the amenable subgroup N. Then
we can inflate ¢,, &5 to twisted coactions (Infe,,1® 1), (Infeg,1® 1) of (G, G/N). If
(X, dy) is a Morita equivalence between ¢, and ¢z, and Infdy = (idy ® (4%|y)) o dx, then
it can be routinely verified that (X, Infd,) is a Morita equivalence between (Infe,,1® 1)
and (Infeg, 1 ® 1). We shall see in Corollary 4.3 that the converse is also true, though not
SO easy to prove.

Our main Morita equivalence will be a quotient of a Morita equivalence of twisted
coactions corresponding to ideals in the algebras which are invariant under the coactions.
The notion of d-invariant ideal in [LPRS], §4, amounts to saying that ¢ induces a coaction
on the ideal; here we want a coaction on the quotient, for which another definition seems
more useful.

Definition 2.4. Let 6 be a coaction of G on A, Ia closed idealof A, and ¢p: 4 > A/I
the quotient map. We say that I is G-invariant if it is the kernel of the homomorphism

(d®idg)od: A > M(A)IQ® C*(G)).

If G is amenable, it follows from [LPRS], 4.3, that this is equivalent to the definition
of é-invariant in [LPRS]; we do not know if this is true in general. However, it is an easy
matter to check that this one does what we want:

Lemma 2.5 (cf. [LPRS], Lemma 4.6). Suppose that I is a G-invariant ideal of A with
respect to the coaction 6, and ¢: A — A|I is the quotient map. Then there is a coaction
Oq: A/l M(A]I® C*(G)) such that

5A/I(¢ (@) = (p ®idg)(6(a)) foraeA.

If 6 is nondegenerate, then so is 04,;, and if W is a twist for 3, then Wy, ;= (¢ ® idg ) (W)
is a twist for 04;.

Proposition 2.6. Suppose that (X, 0y) implements a Morita equivalence between
twisted coactions (04, Wy) and (65, Wg) of (G,G/N). Let J be an ideal in B, and

I=5pKX-J,X-J>

the ideal of A induced from J via X. Then I is a G-invariant ideal of A if and only if J is a G-
invariant ideal of B. Moreover, if J is G-invariant, then (64,;, Wy,;) is Morita equivalent to

(5B/J’ I/KZ/J)‘
For the proof we need:
Lemma 2.7. Suppose that & = (D, Oy, Pp): 4 Xz = M (cYp) is an imprimitivity bi-

module homomorphism, J = ker @y, and I is the ideal of A induced from J via X. Then
X-J=ker®, and I = ker®,.



Echterhoff and Raeburn, The stabilisation trick for coactions 189

Proof. Since @y (x - j) = Dx(x) - Pz(j) =0 for all je J, we have X - J < ker @. On
the other hand, V = ker @y is a submodule of X such that (¥, V') is contained in ker @;.
Since Y+ sp(Y,Y )y is an isomorphism of the lattice of submodules of X onto the lattice
of closed ideals of B, with inverse given by K+ X - K ([Rief2], Theorem 3.1), it follows
that V= X J. Similarly, we have V' =ker®, - X, and ker®, must be the ideal induced
fromJ. O

Proof of Proposition 2.6. We equip Y:= X/X - J with the canonical A/I- and B/J-
inner products and actions to obtain an A/I-B/J imprimitivity bimodule. We claim that
Y is complete with respect to the norm given by these inner products. To see this, we

. A X\ . o I X-J\.
observe that if L = ( 2 B> is the linking algebra for , X, and K= ( TT J ) is the
ideal of L corresponding to J, then < 0 0) is just the upper right corner of L/K, and

hence complete in the quotient norm. But the quotient norm on L/K is the C*-norm, and

similarly on the diagonal corners, so
lxt VI, = 0 x+WV\[I> (0 x+V\*(0 x+V
YrPy=1lo o “lo o 0 0

arlx+V.x+V) 0
0 0

L/K

=g x+Vx+ Vol =lx+ V”,24/1;
thus Y is complete, as claimed.

If®,: 4> A|]l, by: X > Y= X/X J and ®5: B — B/J are the quotient maps, the
triple @ = (P, Dy, Pp): 4 X3 — 4, Yp,, is an imprimitivity bimodule homomorphism, as
are the triple ® ® idg = (@, ® idg, Py ® idg, P ® idg) and the composition

(P®idg)od = ((¢A ®idg) 0 04, (Px ®idg) Oy, (P ® idg) ° 53) .

If J is a G-invariant ideal of B, so that J = ker ((¢5 ® idg) © &), then Lemma 2.7 implies
that I = ker((¢, ® idg) © 6,) is G-invariant. Similarly, if I is G-invariant, so is J.

Suppose now that J, and hence also I, are G-invariant. Since X -J = ker®, by
Lemma 2.7, there is a well defined linear map dy on Y = X/X - J such that

5Y(¢X (x)) = (P4 ®idg) o Oy (%),
and the triple

(5,4/1’ Oys 5B/J) : A/I(Y)B/.I - /”(Au@c:(a)(Y@ cr (G))B/J®c:(c))

is an injective bimodule homomorphism. It is easy to check, using the corresponding pro-
perty of d, and the equation

5y (Y)(B/J ® C}(G)) = (¥x ®idg) (0x (X)(B® C} (1)) ,

13 Journal fiir Mathematik. Band 470
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that §y satisfies condition (3) of Definition 2.1. Thus J,.y, makes sense, and because we
already know (d4,;, dy, 0p,;) is a bimodule homomorphism, it follows that 6,,; = 0y, To
see that d, satisfies the coaction identity (4), we compute:

8y ®idg) o by o By = (By ® idg) * (B ® idg) ° b
= (D, ®idg ®idg) o (55 ® idg) o Oy
= (@ ® idg ® idg) ° (idy ® 3¢) ° b
= (idy ® dg) © (P ® idg) © Oy
= (idy ® 65) o Oy o Dy .

We have now shown that (Y, dy) is a Morita equivalence between d,,; and dg;. To
check that J, respects the twists, we write y = &y (x), and verify that:

(idy ® 9) (05 (») = ((idy ® g) = (Px ® id5)) (35 (x))
= (Px ® idg, ) ((idx ® 9) (35 (x)))
= (P @ idg/w) (W, - (x @ 1) - W*)
= (2, ®idg (W) - (P ®idgy(x® 1) - (P ® idg y(W5*))
=W O®1) Wy,

This completes the proof. O
We finish this section with some examples of G-invariant ideals we shall need later.

Example 2.8. Let (4, G, o) be a C*-dynamical system with G amenable. Suppose
that / is an a-invariant ideal of 4, and denote by a; and « ,,; the induced actions of G on
ITand A/1. Then J =%, Gisanidealin B= AX,G, and B/J = A/I%,,, G:the quotient
map ¢ is the integrated form of the covariant representation (j,;°w,js), Where
p:A— A/l and j,,, j; are the canonical embeddings of 4/1, G in #(4/I%,,, G) [G],
Proposition 12. The dual coaction 6, =4 of G on B= 4 x G is the intdgrated form of
(i, ®1, i ® A9). Thus for ae 4 and s e G we have

(¢ ® idG)((SB (iA (a))) = (¢ ®idg) (iA (a) ® 1) =Jar (V’(“)) ®1,

and
(¢ ®idg) (65(i6 () = (¢ ®idg) (i (5) ® AF) = jG(s) ® A .
It follows that
(¢p®idg)edg=0y1°¢,

which implies that J is a G-invariant ideal in B with dp,,= &,,;. Similar computations
show that the restriction of 5 to J coincides with a;.
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Example 2.9. Let (6, W) be a twisted coaction of (G,G/N) on A, and let (5,, W)
be the decomposition coaction on B = 4 X, G/N, as in Example 1.4. Then B/}, is cano-
nically isomorphic to 4 by [PR], Example 2.13. We claim that I:= I, is G-invariant with
respect to (Jg, Wp), and that the canonical isomorphism carries (J,,, Wp,;) into (6, W). We
shall show that

(*) (p®idg)odp=10-¢,

wherg ¢ : B — A is the quotient map. Recall from [PR], Example 2.13, that ¢ is the
integrated form of the covariant representation (id,, j), where j: C,(G/N) — #(A) is the
homomorphism obtained by slicing the corepresentation W: in other words, j (f) = S, (W)
for f in the Fourier algebra 4(G/N) [PR], Remark 2.2. Thus ¢ (6(a)(1 ® M;)) = aj(f):
in particular, if we view J as a *-homomorphism from 4 into .#(B), we have ¢ - § = id,.
Hence for ae A4, fe Cy(G/N) we get:

(¢ ®idg) (6 (6 (@ (1 ® M) = (¢ ®idg) (6 ®idg) (5(a))(1 @ M, ® 1))

= (id, ®idg) (6@)(j(/H®1)
=0(aj(f)),

where we used that (j(f)) = j(f) ® 1 [PR], Remark 2.2. Since the elements 6 (a) (1 ® M)
span a dense subspace of B, this gives (), which implies that I is G-invariant and that
0g;; = 6. To finish off, we have

Wer= ¢ ®idg y(Wp) = (¢ c(1® M)) ® idc/N(WG/N) =j®idg,n(Wgn) =W,

which establishes the claim.

§ 3. The main theorem

Theorem 3.1. Let N be a closed amenable subgroup of a locally compact group G,
let (6, W) be a nondegenerate twisted coaction of (G, G/N) on a C*-algebra A, and let «
denote the dual action of N on the twisted crossed product A% ; y G. Then the twisted system
(4,G,G|N, 8, W) is Morita equivalent to the untwisted system ((A X, ,G)*%,N, N, &), in
the sense that (6, W) is Morita equivalent to the inflated twisted coaction (Inf&,1® 1) of
(G,G/N) on (A%; 5 G)X,N.

We already know from [PR], Theorem 4.1, that 4 is Morita equivalent to
D:=(A%;yG)X,N,

so we shall try to build a coaction of G on the imprimitivity bimodule ,Y, constructed in
[PR]. Since ,Y, is a quotient of the (4 X;G) X;N-A X; G/N bimodule X in Mansfield’s
imprimitivity theorem, we shall construct a coaction on X, and then use Proposition 2.6
to pass to the quotient bimodule. Unfortunately, this is not as easy as it sounds, and not
just because Mansfield’s construction is complicated. He does not construct his imprimi-
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tivity bimodule explicitly: he builds a Hilbert module X, , and then proves that
(4 x5G) %3 N is isomorphic to the algebra #°(X) of compact operators on X, without
directly writing down a formula for the (4 X; G) X; N-valued inner product. Thus we shall
be forced to use the description of M (X ® C*(G)) as Z((4 X G/N) ® C*(G), X® C*(G)),
and it will take quite a bit of work to check that our formulas make sense.

The coaction of G on X, s,y Which we construct will be compatible with the de-
composition twisted coaction of (G, G/N) on 4 X5 G/N. To be precise:

Proposition 3.2. Let 6 be a nondegenerate coaction of G on a C*-algebra A, let J|
be the restriction of 6 to G/ N, B:= A X; G| N, and let (0g, Wp) be the decomposition twisted
coaction of (G, G/N) on B (see Example 1.4). Let 8 denote the restriction of the dual action
5 to N. Then (8, W) is Morita equivalent to the dual coaction f of N on C:= (A %;G) Xg N.

As we foreshadowed above, we shall have to go into the technical details of Mans-
field’s construction. We shall always assume that A is represented faithfully and nondege-
nerately on ] and that 4 X;G, 4 X, G/N are represented on # ® L*(G) as

4%,G =5p{3(@)(1® M)):ac 4, fe Cy(G)}
A%, GIN =5p{3(a)(1 ® M)): ac 4, fe Co(GIN)}

(it is proved in [M], Proposition 7, that the latter is a faithful representation of 4 X; G/N).
Mansfield defined dense subalgebras 2, 2y of 4 x;G, A%, G/N as follows. Choose Haar
measures on N, G and G/N such that

[g(s)ds= [ [g(sn)dnd(sN)
G

G/N N

for all ge C.(G), and let ¢ : C.(G) = C.(G/N) be the surjective map satisfying

d(f)(sN) = £f(sn)dn.

We write 4,(G) for the compactly supported elements in the Fourier algebra 4(G) of G,
and C;(G) for the functions in C,(G) with support in a fixed compact subset E of G. For
fixed E and u € A,(G), Mansfield says an operator Te B(# ® L*(G)) is (4, E, N ) if Tis
the norm-limit of a sequence in

sp{3(3,(@) (1 ® M(4(/))):f€ Cx(G), ae 4},

where d,: A — A is the composition of § with the extension to #(4 ® C*(G)) of the slice
map S,: A® C*¥(G) - A. If N is trivial, he says T is (4, E). Mansfield proved that the
space 9y, of operators in B(# ® L*(G)) which are (4, E, N) for some ue 4.(G) and ES G
compact is a dense *-subalgebra of 4 x5, G/N; if N = {e}, we write 9 := 2. We shall now
define similar subspaces of (4 %; G/N) ® S, where S is an arbitrary C*-algebra; in our
applications, S will be C*(G).

Definition 3.3. Let S be a C*-algebra represented as a nondegenerate subalgebra
of B(x") for some Hilbert space . Define y: C,.(G, S) - C.(G/N, S) by
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v(8)(sN) = [ g(sn)dn for ge C,(G,S).

For ge C,(G, S), we define an operator M5(g) on L*(G) ® A = L*(G, ") by

(M°(8)¢)(s) = g(5)(£()) -

Then, for ue A.(G) and E = G compact, an operator Te B(# ® L*(G) ® X') is called
(u, E, N)S if T is the norm-limit of a sequence in

sp{(6(3,(@) ®1)(1® M*(y(2)) : g€ Cx(G, S), ae 4} .

If N is trivial, we say T is (u, E)S. The set of all elements in B(# ® L*(G) ® #") which
are (u, E, N)® is denoted by 2y, and 2%:= 23,

Mansfield did most of his calculations on the spaces 2 and 9y, and we shall do most
of ours on the spaces 25 and Z5. The next lemma shows that the spaces 2%, 95 are closely
related to the algebraic tensor products 2 © S, 9, © S; this will allow us to use his results
in our calculations.

Lemma 3.4. Fix ue A,(G) and a compact subset E of G, and suppose that x € Dy is
(u, E, N)S. Suppose further that F is a compact subset of G such that E is contained in the
interior of F. Then x is the norm-limit of a sequence of finite sums of the form

3 56.@)(1© MGU) ©=.

in which a,€ A, f,e Co(G) and z;€ S. In particular, x is the norm-limit of a sequence of
elements Y d; ® z;€ Dy O S such that every dj is (u, F, N).

Proof. 1t is enough to show that each element (6(5,(a)) ® 1) (1 ® MS(y(g))) for
g€ Cg(G, S) can be thus approximated. By a standard compactness argument, for each
¢ > 0 there exist f;€ Cx(G) and z; € S such that ||g(s) — Y fi(s)z;|| <& for all se G. Fix a

constant ¢ > 0 such that ||y (g)|l, = crligll, forall ge lC}(G). Then
1(6(.@) @) (1 ® M3 (v(g) — Y 6(0.(@)(1® M(¢(f)) ® zll

=11(00.@)®NUM(w(g— Y i®z)))I
<lalllw(g— X fi®z)|lo

<llalleplle — 2 /i ® zilw

Scpllalle,

as required. O
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Proposition 3.5. 2% is a dense x-subalgebra of (A%;G)® S containing 2 © S, and
Dy is a dense x-subalgebra of (A %5 G/N)® S containing Dy O S. Further, if xe 2° and
ye Dy, then xy and yx are in 25, and D59 is dense in 9°.

Proof. The arguments used in the proofs of [M], Lemma 10 (i) and Lemma 11 (i),
show that 2 is closed under addition. Since the elementary tensors d ® z are trivially
contained in @N, it follows that 2, © S < 23, and since 9y is dense in 4 X5 G/N, we
deduce that 25 is dense in (4 x 5)G/N) ® S. The other algebraic assertions follow from
Lemma 3.4 and [M], Lemma 11, while the density of 2525 in 25 follows from Lemma
34 and [M], Lemma 17. 0O

Recall from [M], Proposition 16, that there is a well-defined map ¥ : 2 — 9y such
that: if x is the norm-limit of a sequence x; Z 6(5,(a;)) (1 ® M(f;)), and all f;; have
support in a fixed compact subset of G, then lI’(x) is the norm-limit of the sequence

z 0(8,(a;))(1 ® M(d(f;)))). We want to define a similar map ¥%: 2% —» 23 such

i=1

that: if x € 25 is the norm-limit of

S (6(5.(a,) ®1)(1® M(g,)).
i=1

with ue 4,(G) and g;;€ C;(G, S), then ¥5(x) will be the norm-limit of

wS(x)i= Y (6(3,(a) ®1)(1® MS(p(g,)) .
i=1

Lemma 3.6. The map ¥5: 25 — 2§ as given above is well-defined. Further, for each
ue A, (G) and compact subset E = G, there is a constant c, g such that

NP5 = e el x|l
for all x e D5 which are (u, E)S.
Proof. We can replace L?(G), L>(G/N) by L*(G,X"), L*(G/N, X) in the proofs

of [M], Lemma 14 and Lemma 15, and deduce that, for each pair (u, E), there is a con-
stant c, ; such that

| £ 66 onte M wE) |

$ GG ontem©)).

provided all the g; have support in E. (It helps to realise that the norm of an element
x€ A x5 G/N is the operator norm of its image in B(# ® L?(G)).) The arguments in the
proof of [M], Proposition 16 show that ¥5 is well-defined, and taking limits gives the
desired inequality.

The dual action § of G on 4 X, G is given by s+— Ad (1 ® g,), where ¢ denotes the
right regular representation of G. It was shown in [M], Lemma 11, that 2 is invariant
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under | ~- Hence, again using Lemma 3.4, we see that there is a well-defined action y of
N on 25 such that

Yo =0 ®idg =Ad(1®¢,®1).

Lemma 3.7. For x, y € 9%, the maps n y,(x)y and n yy,(x) are continuous with

compact support, and the action of W5(x) as a multiplier on (Ax;G)® S is given by the
Sformulas

P5(x)y = [y.(x)ydn and y¥P5(x) = [ yy,(x)dn.
N N

Proof. By Lemma 3.4 there exist u, v € 4.(G) and compact sets E, F < G, such that

nj

x is a limit of elements x; = Y d;; ® z;;, where all the d;;e 2 are (u, E), and y is the limit
m;j i=1

of elements y; = Z ¢;j ® w;;, where the ¢;; are (v, F). The proof of [M], Lemma 18 shows

that there is a compact set K, depending only on E and F, such that the maps
n—§(m(d;) ¢,

have support in K. This shows that n+ y,(x;)y; has support in K, and hence also that
n—y,(x)y has support in K. The continuity of this map follows from the continuity of §
on A%,G. It follows also from [M], Lemma 18, that ¥5(x))y; = fy,,(x )y, dn for all j;

taking limits on both sides, and repeating the argument for y ¥ (x) gives the result. 0O

The Zy-valued inner product on & was defined in [M] by {d,e), = ¥(d*e), and
we shall define a 23-valued inner product on 2° by

X, 1095 = PS(x*y).

In fact, since ¥¥(d® z) = ¥(d) ® z for all elementary tensors d® z€ 2 © S, this inner
product coincides on 2 © S with the 2y © S-valued inner product satisfying

d®z,c®@w) =<{d,c) @ z*w.

Let X be the completion of 2 with respect to the Zy-valued inner product on &, and recall
that we have already denoted the completion 4 x5, G/N of &y by B. Then X® S denotes
the completion of the algebraic tensor product X © S with respect to the (B ® S)-valued
inner product, which has 2 © S as a dense subspace.

Lemma 3.8. 25 embeds naturally as a dense subspace of X ® S, so that the 2-valued
inner product on 95 as defined above is the restriction of the (B ® S)-valued inner product
on X® S.

Proof. Let x,y € 25 Then by Lemma 3.4 we can write x = limx;, y = limy;, and
nj

assume there exist ue 4.(G) and ES G compact such that x;= Z d;®z; and

i=1
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yi= ) ¢;®w,;, where all d;;,
i=1

and (iii) (by observing that the set D’ given in (ii) and the w given in (iii) only depend in
our case on u and E) that there exist we 4.(G) and F £ G compact such that x}y; is
(w, F)S for all j, and the same is true for all (x; — x))*(x;—x;) and (y; —y)*(y;—yp. It
follows from this and the inequality in Lemma 3.6 that (x;) and (y;) are Cauchy sequences
in X® S. Denote by X and j the limits of these sequences. Then, again using the inequality
in Lemma 3.6 and the continuity of the inner product on X® S, we see that
(%, 7> = P5(x*y). Hence the map x> X gives the desired embedding. O

c;j are (u, E). It follows then from [M], Lemma 11 (ii)

Lemma 3.9. Let n:S — B(,) be a nondegenerate x-representation of S and let
7n(S) = D. Then the homomorphism idy @ n: X® S - X ® D satisfies

idy ® 7(3(5,(0)) ®1)(1® M*(f)) = (6(5,(@) ®N(ARMP(n<[)) e 2”,
forany a€ A, fe C.(G, S).

Proof. The equation is clear when f=g®zeC,(G)® S, since in that case
(6(8,(@) @)1 MS(f)) = (6(5,(@)(1® M,)) ® z. Now let fe C.(G, S) be arbitrary.
By Lemma 3.4 we can approximate y:= (6(5,(a)) ® ) (1 ® MS5(f)) by finite sums of ele-
ments of the form (6(6,(4))(1® M,)) ® z such that all the g have support in a fixed
compact set E < G. Since there exist v € 4.(G) and F < G compact such that x*x is (v, F)S
whenever x is (4, E)5, the inequality in Lemma 3.6 implies that y can be approximated by
similar finite sums in the X ® S-norm on 25. The same arguments show that the images
of the sums under idy ® n converge to (6(5,(a)) ® 1)(1® MP(n-f)), and the lemma
follows from the continuity of idy, ® n. O

We shall now return to the setting of Proposition 3.2. Thus S will now be C*(G),
acting faithfully on L?(G) via the left regular representation A° of G. The spaces 2@
and 25© will be denoted 2¢ and 2§, and we write M for M&© = M ® id,;.

Recall that the decomposition coaction of G on B = 4 X; G/N is given by dp:= 1 X ,
where n = (6 ®idg) o6 and pu = (1 ® M| /n ® 1) (since 4 X; G/ N is represented faith-
fully on # ® L*(G) via the covariant representation (6,1 ® M |¢,,n) We have j, = é and

Jewmy =1® M|cy6n))- We shall define a coaction dy of G on X which is compatible with
0, (see Definition 2.1). For this we recall that W, = M ¢(w;) is given by

(W E)(s, 1) = E(s, s 1t) for Ee L*(GxG),s,teC,

and define We B(# ® L?(G) ® L*(G)) by W=1® W;. We want to define , on 2 c X
by 64 (d) = (d® 1) W*, but first we have to prove that this defines an element of

Lrocre(B® CHG), X® CXG)),
and for this we need some lemmas.

Lemma 3.10. Let de 9, xe 2 and be 2§. Then xW, Wx and (d ® 1) W*b are all
elements of D°, where the products are taken in B(# ® L*(G) ® L*(G)).
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Proof. Since Wg* = M¢(w¥), we have
(0@ @N(1@M ()W*=(600,(a) ®1)(1® M (gws)),

which is (4, E) if and only if supp g < E. Because 2¢ is invariant under taking adjoints,
this shows that both x W * and Wx are in 26.

To prove that (d® 1) W*be 2¢ for all de 2 and b € 2§, we note first that 9, ® 1
lies naturally in the (algebraic) multiplier algebra of 2. For if ye 2¢ is the limit of

elements of the form zn: d; ® z; where the d; are all (, E), then, for fixed c e 2, there
exist we 4,(G) and F glG compact such that d;c is (w, F) for all i. Then y(c ® 1) is the
limit of the i d,c ® z;, and hence is (w, F), and belongs to 2¢; similarly, (c® 1)y e 2.
Suppose no;vz’éhat b=7Y c;® z; for some c;€ Zy and z;€ C}(G). Then, if d has the form
Y 5(8,(a))(1® M( fi))j we can compute

d@NW*b =73 ((6(8,(@))(1® M(f)) @D W*(¢;® z))
=2 (0(0,(@) @U@ M(fiwH))(1®z)(c;®1)

= Z (00, (@)®)(1® MG(f”)) (®1),

which belongs to 2 because f;; = f,wg(1® z;) is in C,(G, C¥(G)) with the same support
as f;. Taking limits, and doing a little bit of bookkeeping concerning the supports, gives
the desired result. O

Lemma 3.11. ForneN, let y, = Ad(1 ® 0, ® 1) acting on B(# ® L*(G) ® L*(G)).
Then 3,(W) = W1 ®1® 25).

Proof. For & e L*(G x G), we have

(@, @D W (0¥ @ 1)E)(s, t) = (W (X @ 1)E) (sn, 1) = ((F @ 1)E) (sn,n ™ s~ 1)

= &(s,n ) = (W (1@ A E) (5. 1).
Since W =1® W, this gives the result. O
Proposition 3.12. For each de 9 we define 5y(d): 25 — 2 by
5¢(d)(b) = dDT)W*b.
Then 84 (d) extends to a bounded operator éx(d): B® CX¥(G) - X® CX(G), with adjoint

given by 6,(d)*(y) = YC(W(d*®1)y) for ye DC. The linear map d+ 6x(d) extends to
a bounded linear map 8y : X - %3 c3c)(B® CX(G), X® CX(G)) satisfying
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(1®2) 05(x), ox(x) (1®2)eXQCX¥G) forxelX,zeCXG).

Proof. 1t follows from Lemma 3.10 that 6,(d) is a map from 2§ into 2°. To see
that it can be extended to all of X, we start by fixing y € 29, be 2§ and computing

| <3x (d) (B), 5x(d) (B))gg || = Iy P (b* W (d*d @ D) W*b)||
=l £ Yy (b*W (d*d @ 1) W*b) dnl|

= [ yo*y,(Wd*d@ )W *)bdn]|
N

because 7, (c) = ¢ for all ¢ € 2¢. (This last observation holds because 5 (n) fixes 9y.) From
Lemma 3.11 we know that y,(W*) = (1 ®1® A%.,) W*, and thus

| ¥ <S5 (d) (), 35 (d) (B)Dgs |l = || [ yb* Wy, ((d*d ® 1)) W*bdn||
N
= || ([ yb*W (5 (n)(d*d) ® 1)dn) W*b||
N
= lyb* W (P (d*d) @ 1) W*b||,

where the last equation follows from [M], Lemma 18, since we can approximate yb* We 2¢
in norm by appropriate elements in 2 © C*(G). Thus

|y <ox (d)(b), 6x (@) (B)Dagll = ¥ 1II6* W ({d, d)g, ® 1) W*b||
= Iy l1611211<d, d>g, |l -

By letting y run through an approximate identity in 2 © C*(G) < 2€ (see [M], Lemma
17), we conclude that

|05 () BII* = 1 <05 (D) (b), 3x (D) (B)>gg |l = [IKd, dDg, H1I61I* = lId|I*[|b]|* .
Thus we can extend d,(d) to an operator from B® CX*(G) to X® C*(G) with
I ox (Il = |1 dllx -
Easy calculations show that 6, (d)*, defined on 2€ as in the proposition, is an algebraic

adjoint on the dense subset 29 it follows from the Cauchy-Schwartz inequality [Rieff1],
Proposition 2.9, that it extends to an adjoint of d,(d) on X ® C*(G) with

105 (d)*|| = 1105 (D] -
Finally, if de 2 and ze C*(G), then (1 ® z) 5y (d)b = (d ® z) W*b; since
dR®)W*e 2 X® C*(G),

this implies that (1 ® z) 6, (d)e X ® C*(G) for de 2. A computation like that in the
previous paragraph shows that
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1e Z)5x(d)“x®c:(c> S dlixlizll,

and hence it follows by continuity that (1 ® z)d,(x) e X ® C*(G) for all xe X. Almost
the same arguments show that d,(x)(1® 2z)e X® C*(G) forall xe X and ze C*(G). O

Lemma 3.13. Wb ® 1) W* = 6,(b) for all be B.
Proof. Since (6,1 ® M) is a covariant representation of (4, G, d) and

W=(01QM®idg)(;) ,

we have

W(s(@@1)W* = (6§ ®idg) - 6(a) = n(a)

for all ae A. The operator W commutes with u(f) =1® M(f)® 1 for all fe C,(G), and
especially for fe Co(G/N). Thus for ae 4 and fe Cy,(G/N) we have

W((@URM)@NW*=W(E@@1)(1®MQ)W*
=n(@u(f)=35(6(@(1® M)).
This equality extends to all of B by continuity. O

We now come to the key technical result.

Proposition 3.14. 6;: X - o0 (B® CX(G), X ® C*(G)) is a coaction of G on
X which is compatible with ég.

Proof. By Propoéition 3.12 it remains to show that §, satisfies Conditions (1), (3)
and (4) of Definition 2.1. For x€ 2 and b e 9, Lemma 3.13 gives

Sx(xb) = (xb@DNW* = (x @D RN W* = (x ® 1) W*5,(b) = 64(x)55(b) ,

and this extends by continuity to x€ X, be B. Next let x,ye 2. Then for ze 2¢ and
be 2P, we have

20g(Kx, ¥Pp)b=zW (X, y>p @ 1) W*b
= [zW(@E M) (x*y) @ 1) W*bdn = | z3,(W (x*y ® 1)) W*b)dn
N N
= 2P (W (x*y @ ) W*b) = 20, (x)* (y ® ) W*b)
= z(0x (x)*ox (») (b)) ,

which implies that 5,({x, y)p) = 5 (x)*dy(y) forall x, y € X, and completes the verification
of condition (1).
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Next we show (3). Using Lemma 3.6 to reduce to norm convergence, and a partition
of unity argument to approximate fe C,(G, C*(G)) by a sum of functions of the form
gwi(1®z) for ge C.(G) and z e C*(G), we can prove that (2 @ 1) W*(1® C*(G)) is
densein X ® C*(G). Since 6, (X)(B ® C*(G)) contains (2 @ 1) W*(1 ® C*(G))(Zy ® 1),
(3) now follows from the density of X2, in X [M], Theorem 19.

Finally, we come to the hard bit: we have to check the coaction identity
3.1 (05 ®idg) o by = (idy ® 3¢) ° b .

Recall that for y € X the expression (§; ® id;)(d4(y)) is an adjointable map in

Z(B®C*(G)® C*G), X® C*(G)® C*(G)),
which is given on an element of the form (65 ® idg)(c)d, with ce B® CX¥(G) and
de B® C}(G)® CXG),

by the equation

(32)  (Bx®idg)(6x(1)) (95 ® idg)(€)d) = (9x ® idg) (65 (1) (1)) (d) -

On the other hand, (idy ® ;) (64 () € Z(B® C*(G) ® C*(G), X ® C*(G) ® C*(G)) is
given on elements of the form (id; ® d4)(c)d by

(3.3)  (idy ® 66) (65 (1)) ((ids ® 36) () d) = (idx ® 36) (3x (¥)()) () -

The difficulty in proving (3.1) is that the two sides are naturally defined, in (3.2) and (3.3),
on elements of a different form. We shall start with (3.1) for ¢ = d5(b) (1 ® z) (recall that
dp is nondegenerate), and then approximate (1®1® z)d by a linear combination
Y (1® 64(z,)) d;, to give us an argument of the form required in (3.3).

To simplify the formulas in the calculation, which concerns operators on
(#®L*(G) ® L*(G)® L*(G),

we shall adopt subscript notation: for example, 7,; means that Te B(L*(G) ® L*(G))
acts on the second and third spaces, so that 7,; =1® T® 1, and

T,=(1®1®DT,,(11® 1),

where X (h ® k) := k ® h. With this convention, the operator W, ,; is by definition (W), ;.
Since W, satisfies the pentagonal identity

(W6)23(H5)2, =1d ® 06(W5)23a = (%)34(%)23(%*)34 >
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we have W,y W ,, = (W5)34 Wy,3(W5*)s4. Recall also from Lemma 3.13 that W imple-
ments Jg.

For the calculation itself, we start withde 2 © C}¥(G) © C¥(G)and ¢ = d5(b)(1 ® 2)
for be 9y, ze C¥(G), and choose z;€ C¥(G), d;e 2 © C*(G) © CX(G) such that

2, d=(101®1®z2)d~ Z 06(2:)344;

(in the operator norm; equivalently, 1®1® z)d ~ ¥,(1® d4(z,)) d; in
B® CXG)® C/(G)).
Then
(Ox ®idg) (3 (1)) (0 ® idg) () d)

= (9x ®idg) (55 (1) () (d)
= (0, ®ide) (Y ® N W*55(b)(1 ® 2))(d)
= (0 ®ida)(Y® DGR W*(1®2))(d)
= (D)1, WhazaWihsd
= (yb) 1, Wiha Wihsz4d
= (10)12(W5)3a W53 (W5*)3424d
~ (D) 12 (W6)3a W13 (W5*)34 Z 06(21)344;
= }: (H6)34 (YD) 12 Wi%3(2)3 (W6*)34 d;
_; Z (H6)34 Y12 WS (Wi23 b1, Wi%53) (2)3 (W6*)34d;
= Z (W6)34 (‘Sx 03] (53(1’)(1 ® Zi)))123(%*)34di
= Z idy ® d¢ (5x ») (53 (I Zi))) (d)
= Z idy ® dg (6x(»)) (ids ® 3 (65D ® z)))d;) using (3.3)
= idy ® d¢ (5)( ()’)) (ids ® b¢ (53 (b)) (Z (1 ® d¢ (Zi)) di))
~ idy ® 85 (05 (1)) (35 ®ids (5 »))(1®1®2)d)
=idy ® d¢ (5x (J’)) (53 ® idc(aa(b)a ® Z))d)

idy ® 85 (8x (1)) (05 ® idg(c)d) .

We have now proved that both sides of (3.1) agree on elements y of the dense subspace
9 of X; since d, and d are isometric, it follows that (3.1) holds on all of X. O
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Proof of Proposition 3.2. After Proposition 3.14, it only remains to identify Inf}
with the coaction d,, on C = X (Xp) induced by the dz-compatible coaction dy, and
check the equation for the twists. For the first, it is enough to check that they agree on
the image i,,,;(2) of the dense subalgebra & of 4, and on iy(N). Recall that B is by
definition the integrated form of the covariant representation (iy.,c ® 1, iy ® V) of the
system (4 X, G, N, B:=8y). Since A%|y(A¥) = AS for ne N, the coaction Infj of G on C
is just the mtegrated form of the covariant representation (iy,,q ® 1, iy ® A°|y). From the
description of the action of C.(N, 2) on X in [M], Proposition 22, we see that the action
of iy(n) on de & < X is given by iy(n)d = A(n)''?B,(d), where 4 is the modular function
of N. Hence, if d® ze 2 © CX(G),

InfB(ix(M)([d®2) = A(n)'?B,(d) ® 47z = A > (1 ®1® 1)1, (d ® 2),

and InfB(i, XdG(x)) (d® z) = xd® z. On the other hand, for any ce C the action of

Oxx(c) onye X ® C¥(G) is given by 5x(x)(c)(y) V(c®1)V*y, where V is the unitary
in Lecre (X ®s, (B® CX(G)), X® CX(G)) given on elementary tensors y® be 2 O Zy
by

Viy®b)=dx(»b)=(@D)W*b.

Because 2 © 2y has dense image in X ®;_ (B ® C*(G)), it is enough to show that

InfB(iy(m)V (y ®@b) = V(4" B,(») ®b),

and

InfB(igs,c () V(Y ®b) =V (xy ® b)

for all x,ye 2, ne N and be 2¥. But

Inf B (iy(m) V (y ® b) = Inf f(iy(m)) (y @ YW *b
=AM (1 ®1® 19)7,(y ® 1) W*b)
=AM ?y,(y@NUR1® A7)y, (W*)b
= A" (B,(» @) W*b,

where we have used that 1 ® 1 ® AS and b are fixed points for y, and Lemma 3.11. For
x € 2 we have

Inf B(isx,c () V (y ® ) = Inf iy, () (y @ HW*b
=(xy@NW*b=V(xy®Db),
and we have proved that Inff = &,

Finally, we have to show that (idy ® ¢) (65 (x)) = (1 ® 1)(x ® 1) W*, which amounts
to showing that

(idy ® 9) (Ox (0) (B)) = (x ® 1) Wy*(idp ® ) (b)
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for xe X and b e B® C}¥(G). It is enough to show this for x = 6(5,(a)) (1 ® M,), where
ueA.(G),ac Aand g eC.(G),and b=d®z€ 2 O C}(G). Since W* = (1® M®)(wd),
Lemma 3.10 gives

(idy ® ) (8¢ (x) (b))
= (idy ® 9)((6(6,(@)) 1 ® M) @ 1) W*(d ® 2))
= (idy ® 9)((3(3,(@) ® 1) (1® M (gw$))(d ® 2))
=000, @)®N(®1® (1 ®M®idy)(gwd)(d® q(2)))
= (6. (@)1 ®M)@N((1® M Qidgy) Wk y)(d® q(2))
=(x®DW*((Id® P ®2),

which finishes the proof. O
With Proposition 3.2 available, it is easy to prove Theorem 3.1.

Proof of Theorem 3.1.  As above, we write B = 4 %; G/N, B for the dual action of
Non Ax;G, C=(AX%;G)*zN, D = (4%; 4, G)*,N, and (65, W) for the decomposition
coaction of G on B. Thus Proposition 3.2 gives us a Morita equivalence (X, dy) between
(C,InfB,1®1) and (B, 65, Wy). If I, is the twisting ideal for W, then 4 Xs,wG/[N is by
definition B/Iy. If Jy, is the corresponding ideal in 4 X;G, then it is shown in [PR],
p-337-8, that Jy, is a B-invariant ideal; that the ideal Jy, X; N in C coincides with the one
induced from 7y, via the bimodule X; and hence that C/(Jy %, N) is Morita equivalent to
A X5 wG/N. Since the quotient map of 4 X;G onto 4 X;G/Jy, = A X, G intertwines f§
and «, it induces an isomorphism of C/(Jy, Xz N) onto D. On the other hand, the quotient
B/Iy = A% wG/N is naturally isomorphic to 4.

We have now constructed a Morita equivalence of D and 4. We showed in Example
2.9 that the ideal /:= I, is G-invariant for the coaction (85, W), and that the isomorphism
of B/I with A takes the quotient coaction (g, Wp,,) into (6, W). Thus it follows from
Proposition 2.6 that the corresponding ideal Jy, Xz N in C is G-invariant, and that
(X/(X - I), 6y,x.1,) implements a Morita equivalence between

(ClIw %4 N, nf B)c, sy, s 1® 1) and (B/1, 05, W) = (4,0, W).

To finish the proof, we recall from Example 2.8 that, for any f-invariant ideal J in any
C*-algebra E,

((Ex;N)/(Jx,N), N, B) = ((E/J) X, N, N, &),
where « is the action of N on E/J induced by . But the dual action o of N on
(AX%;G) Iy =A% 5w G

is by definition that induced by the dual action ff of N = G on 4 X;G. Thus we obtain the
desired Morita equivalence of (D, Inf4,1®1) and (4,6, W). O
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§ 4. Applications

Morita equivalence and duality. Recall that strongly continuous actions
o:G —> AutA and f: G — Aut B are Morita equivalent if there is an A-B imprimitivity
bimodule X and a strongly continuous action u of G on X such that:

us(x - <y, 22p) = us(x) - (), us(2) g,
as(A <X, y>) = A<us(x)’ us(J’» ’ and
Bs(<x9 y>B) = <us(x)’ us(y)>B :

If (X, u) implements such a Morita equivalence, then the crossed products 4 X, G and
B x4 G are Morita equivalent via an imprimitivity bimodule X x, G which is the completion
of a C.(G, A)-C.(G, B) pre-imprimitivity bimodule obtained by putting appropriate actions
and inner products on C,(G, X)) [Com].

Theorem 4.1. Suppose that (6,, W,) and (0, W) are nondegenerate Morita equivalent
twisted coactions of (G, G|/N) on A and B, respectively, and let o and 8 be the dual actions
of Non A x5, w,Gand BX;_ yw G,respectively. Then (6,, W,) is Morita equivalent to (6, Wp)
if and only if a is Morita equivalent to f.

The theorem will follow from Theorem 3.1 and the following lemma, which at least
in part is already known (e.g., see [BS], §6). Recall from [ER], Corollary 2.3, that every
A-B imprimitivity bimodule X can be represented faithfully on a pair of Hilbert spaces
(o, A") so that 4 and B are closed nondegenerate subalgebras of B(s#°) and B(X'), X is
a linear subspace of B(, 5), and the actions and inner products are given by composition
of operators: e.g., ,{(x,y):=x0y*.

Lemma 4.2. Suppose that (6, W,) and (55, Wg) are Morita equivalent twisted coac-

tions of (G,G/N) on A and B, respectively. Then the dual actions of N on AX;, v, G and
BX;_ w,G are also Morita equivalent.

Dually, if a and B are Morita equivalent actions of G on the C*-algebras A and B,
then the dual coactions & and B on the reduced crossed products A%, ,G and Bx 5., G are

Morita equivalent.

Proof. If we represent X faithfully on (5, %), and represent 4 X; G and BX,; G
on #® L*(G) and A ® L*(G) in the usual way, then

X%, G=55{5(x)(1® M,): xe X, fe Cy(G)}

is an 4 x5 G-Bx; G imprimitivity bimodule [ER], Theorem 3.2. Conjugation by 1® ¢
defines an action 8y of G on X %, G such that

(03), (55 () (1 ® My)) = 5, (x)(1 @ M(0,(f))),

where a,(f)(t) = f(ts). Since 6A and &, are also given by Ad(1® ¢,) for s € G, it follows
that 5X implements a Morita equxvalence between &, and 5\ By [ER], Corollary 3.3, the
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twisting ideal Iy, is the ideal of 4 x; G induced from Iy, via X x; G. Since these ideals
are invariant under 5 |y and 5 Ins the actions of N on the resultlng quotients are Morita
equivalent, too. But these actions are just the dual actions o and 8 on the twisted crossed
products.

Assume now that (, X, u) is a Morita equivalence for actions o and § of G, and
suppose (m 4, Ty, ng) is a faithful representation of , Xz on (J#, X"). Let

indm, =&, x(1® A%)
be the regular representation of 4 X, G, and analogously define

indny: C.(G,X) - B(L*(G, ), L*(G, H))
by
(ind”x(f) 6)(1) = I nx(u,_,(f(s)))(ﬁ(s_lt))ds.
G

Routine calculations show that (ind 7, ind 7y, ind ) is a bimodule representation, and
thus the image X %, .G :=ind 4 (X X, G) is an imprimitivity bimodule for the reduced crossed
products. In fact, since the elementary tensors f® x, fe€ C.(G), xe X generate a dense
subset of C.(G, X), (ind ny) (X x,G) is the closure of #y(X)(1® C*(G)) in

B(# ® L*(G), #® L*(G)),

where 7y (x) E(2) = my (1,1 (x)) (E(2)).

We now define
1: X%, .G - B(X®L*G)® L*(G), #® L*(G) ® L*(G))

by 2(y) = 1 ® W) (y ® 1) (1 ® W5*), and claim that # is a coaction of G on X %, ,G. For
x€ X and ze CX¥(G), a direct computation shows that

1(7x (x) (1@ 2)) = (7 () @ 1) (1 ® 36(2)) -

Since nx(x) ®1eM((X%,,G)QC*G)) and 1 ® d5(2) € M((BX;,G) ® CX(G)), it fol-
lows that # maps Xx,,G into #((Xx,,G)® C, *(G)) Moreover, since 4 and f are
similarly defined using Ad (1 ® W), it follows that (&, &, f) is an imprimitivity bimodule
homomorphism. To see that (4 ®idg) o 4 = (idy ., ¢ ® dg) o 4, we just need to observe
that, on elements of the form 7,(x), both sides deliver the element 7,(x) ®1® 1 of
M(X %, ,G® CXG)® CX(G)), and that, on 1 ® ze1® C*(G), the desired equation re-
duces to the comultiplication identity (65 ® idg) ° 5 = (idg ® ) © d5. The rest is straight-
forward. O

Proof of Theorem 4.1. 1f (8, W,) and (65, W) are Morita equivalent, then it follows
from Lemma 3.2 that their dual actions are Morita equivalent. If the dual actions o and
B are Morita equivalent, then Lemma 4.2 implies that the coactions & and f are Morita
equivalent, and Lemma 2.7 that the twisted coactions (Inf&,1® 1) and (Inf$,1®1) are

14 Journal fiir Mathematik. Band 470
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Morita equivalent. Since Morita equivalence is an equivalence relation on twisted coactions,
it follows from Theorem 3.1 that (6,, W,) is indeed Morita equivalent to (d, W3). O

From Theorem 4.1 we obtain the desired converse to Example 2.3.

Corollary 4.3. Suppose that ¢, and eg are coactions of N on A and B, respectively.
Then the inflated twisted coactions (Infe,, 1 ® 1) and (Infeg, 1 ® 1) of (G, G/ N) are Morita
equivalent if and only if €, is Morita equivalent to ¢g.

Proof. It was shown in [PR], Example 2.14, that 4 X, &, G is isomorphic to
A X, N, and the corollary will follow from Theorem 4.1 if we can show that this iso-
morphism is equivariant with respect to the dual actions of N. But the isomorphism in
[PR], Example 2.14 takes Infe,(@)(1®@ M) € A X1, G to e,(@(1Q@M(f|y)eAx,, N.
Since the dual action of n e N on both algebras is given by right translation of f, this map
is N-equivariant. O

Morita equivalence and induced representations. Suppose that (X}, dy) is a Morita
equivalence between coactions d, and d5 of G. Let M be a closed amenable normal sub-
group of G, and let ¢™: C*(G) » C*(G/M) denote the quotient map. Then with
Oy| = (idy ® g™) o 6y, (X, Oy|) is @ Morita equivalence between the restrictions J,] and &
of d, and 05 to G/ M. Thus the Morita equivalence (X, dy) gives several ways of inducing
representations of crossed products: using the bimodule X x; G, we can induce represen-
tations from BX, G to 4%, G, and similarly, we can use X x; G/M to induce from
Bx;s,G/Mto Ax; G/M. We claim that these are compatible with Mansfield’s induction
process ind$ ,m- More precisely, we have four maps defined on the various spaces of uni-
tary equivalence classes of representations

Rep (B, G/ M) P00, Rep (4 x,,,G/M)

indg, l lindg ™
Rep (B%,,G) X%, G)ind Rep(4%,,G),

and we claim that:

Theorem 4.4. The above diagram is commutative.

Recall that Mansfield’s bimodule X“ is actually an (4 X, , G) x5 M-A4 X 5./G/M im-
primitivity bimodule. The key ingredient in the proof of Theorem 4.4 will be the following
proposition, which may be of some independent interest.

Proposition 4.5. Suppose that (X, dy) is a Morita equivalence between d, and dg. Then

X4®, xoulGim (X %5, | GIM) = (X %5,G) x5z M) O xopyxsgy X B

as (Ax;,G) x5 M-Bx;_ G| M imprimitivity bimodules.

Proof. We shall exploit the linking algebras for Xx,; G and XX, G/M. Let

0, 0
L-(4 X be the linking algebra for X; then 6, = * * ) is a coaction of G on L
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[ER], Appendix. Represent , X} faithfully on (5, %), so that L acts faithfully on # @ ¥,
1 0
and let p = ( 0 g), q= < 0). By representing L X; G faithfully on

01
(#ARL*(G)D(ARL*(G) =(#DA)R® L*(G)

as sp{6,(/)(1® M,)}, we can see from [ER], Theorem 3.1, that L x, G is canonically
isomorphic to

A%, G X%, G

Xx;,G Bx;,G)’

where 4 %; G and B X, G are represented on # ® L*(G) and X ® L*(G) in the usual
way. Thus L x; G is the linking algebra for X x; G as an A%;,G-Bx; G imprimitivity
bimodule. Further if 3, is the dual action of G on Lx; G, then the restrlctlons of 6 to
the corners are just the dual actions §,, 8, and d,, where 5, is defined as in the proof of
Lemma 4.2.

On the other hand, if y is a strongly continuous action of H on a linking algebra L,
which restricts to actions o, u and f on the corners 4, X and B, respectively (i.e., if (X, u)
is a Morita equivalence for « and f), then the construction of the crossed product L x, H

,A H X
as the completion of C,(H, L) = (CC‘((g Y)) %(( o B)) ) shows that

Ax H Xx,H
x = - a u )
L " <X><,;H Bx,,H)

Applying this to the linking algebra L x; G gives
' AX; G)xe M (XX, G)X5s M

(Lx, Gyxg t = (A0 O BM (X5, Gx M
r - (X% G)xzz M (BX;,G) x5z M

On the other hand, representing Lx,, \G/M on (#® L*(G)) ® (A4 ® L*(G)) via the
covariant representation (6,,1® (M o 1p)) where y denotes the inclusion of C,(G/M) into

C,(G), shows that
Xs GIM X%, GIM
LXmG/M:(A 241G/ 1 G/ )

X%\ GIM Bx, GIM
(This representation of L X, ,G/M is faithful by [M], Proposition 7.)

We have now shown that Mansfield’s (L X, G) X33y M-L %, G/ M imprimitivity
bimodule X is actually an imprimitivity bimodule for the linking algebras of the im-
primitivity bimodules (X x; G) Xs>,,, M and X X5 G/M. To proceed further, we need a
lemma.

ox | m

Lemma 4.6. Let A, B, C, D be C*-algebras, and suppose that Xy and Y, are im-
primitivity bimodules. Let L, g and L. , be the linking algebras for X and Y, and view
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10 00
p= ( 0 0), q= ( 0 1) as elements of both M (L¢,p) and M (L, g). Suppose further that

E is an L p-L, p imprimitivity bimodule. Then p Eq is isomorphic to the balanced tensor
products pEp ®,X and Y @, qEq as C-B imprimitivity bimodules. In particular, pEp ® , X
is isomorphic to Y ®,qEq.

Proof. Let us first mention that the corners p Ep, ¢ Eq and p Eq are naturally C-A,
D-B and C-B imprimitivity bimodules, respectively: just restrict the inner products on E
and the actions of L. , and L, ; on E to the appropriate corners. For example, the A4-
valued inner product on pEp is given by

{pep, pfp>4 = pep, pfp)r, , = P<pep, pfP)r, ,PEPL g =A.

We want to define ¢: pEp ®,X - pEq by ®(z® x) = z - x, where the action of
xeX=pL,q

on z is the right action of L, p on E. Since A = pL, g p is a full corner in L, 5, we know
that L, ypL, pis dense in L, 5, which implies that (pEp) - (pL, 3q) = pEL, gpL, pq is
dense in pEq. To show that & extends to a well-defined map on pEp ®, X we have to
show that @ preserves the C- and B-valued inner products. For this let w, ze Z, x,y€ X,
and compute:

(zox,w-ydp=Xz2"X, Wy, ,
=x*{z, W)L, 5V
=x*{z, W),y
= ((w,z),4x)*y
=W, 204" X, ¥
=X, W®))s.

A similar computation shows that @ also preserves the C-valued inner products. Since @
clearly preserves the left and right actions of C and B, we deduce that @ is well-defined,
and also that it induces an isomorphism of p Ep ®, X onto pEq. The rest of the lemma
follows by symmetry. O

Proof of Proposition 4.5 (continued). We intend to apply Lemma 4.6 to E = X *. If
we can show that X4 =~ pX*~p and X% = ¢gX*q, then we shall have

XA@AXG/M(XXG/M) =pX'p ®yxomP(L*XG/M)gq
gP((LxG)XJV)‘I(’9(13><G)><M‘IXL‘I
X (XXG)XM@pxgxuX®,

as required. By symmetry, it will be enough to show that X4 =~ pX%p.
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If we represent both L X, G/M and Lx,, G on & = (#Q L*(G)) ® (¥ ® L*(G)),
then the bimodule X" is also represented as operators on .%, and p, ¢ become the projections
onto the two factors. Hence pX%p acts naturally on #® L?(G). When we realise
M (L ® C*(G)) as matrices of operators on .%, the slice maps S, corresponding to u € 4 (G)
can be performed elementwise, and hence

5, 0

0
5L(Su(6L<g 0>))(1 ® Mf) = 51,(5( 0 0

))(1 ® M,)
_ (6A(Su(6,,(a)))<1 ®M,) 0
= ) .

It follows that the map
0
0: 8,(S.0u@N (1 © M) = 5,5, o Pa@ sy

is isometric for the operator norm, and hence extends to a map of the dense subspace 24
of X4 into the corresponding subspace p2Lp of p XLp — indeed, this is a bijection because

1Y) 0
p(SL((; z>)p=<A(§a) 0) for any (; Z)eL.

Since the identification of 24 with the corner in 2 preserves the dual action J, it follows
from [M], Lemma 18, that 0 preserves the Z;i-valued inner product, modulo the identi-
fication of 4 x G/M with the corresponding corner in L X G/M. Thus it extends to an
isomorphism of the Hilbert (4 x G/M)-module X“ onto the completion p X%p of p2Lp.
This isomorphism converts the natural left action of 24 < A x;G into the left action of
pP"p. The action of (4 %, , G) x M on the left of X* is the integrated form of the natural
left action of 24 on itself and the representation of M given by

m-x:=Am)""*Ad(1® g,,) (x);

since 0 preserves this action of M, it intertwines the left action of (4 x5, G) X M and that
of the corresponding (isomorphic) corner p((L %, G)xM)p. O

Proof of Theorem 4.4. Proposition 4.5 says that the diagram

Rep(BX,, G/M) 7m0, Rep(4x,,/G/M)

4.1 ind | | indg

5 — s Rep((Ax, G)x; M
RCp((BX‘;BG)X‘,BM) (K0 Gy = Myind p(( 5.G) %5, )

commutes. However, it is shown in the discussion preceding Proposition 1 of [Ech] that,
for any Morita equivalence (X, u) between ordinary systems (C, M, ) and (D, M, y), and
any covariant representation (rn, U) of (D, M,y), the induced representation (X x,G)-
ind = x.\U is unitarily equivalent to a representation of the form (X-ind x, V); in particular,
the diagram
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Rep ((BX,,,G) X3, M) ~=D" M, Rep (4 %,,G) x5, M)
(42) resl lres
—_—
Rep (B x;,G) o Rep (4 X, ,G)

commutes. Putting together the diagrams (4.1) and (4.2) gives the theorem. O

Induced representations of crossed products by twisted coactions and the stabilisation
trick. We now suppose that (0, W) is a twisted coaction of (G, G/N) on A, and that M
is a closed normal subgroup of G contained in N. Since the composition g¥'™ o g™ of
the quotient maps ¢™: C*(G) - C*(G/M) and ¢"'™:C*(G/M) - C*(G/N) is just
q": C¥(G) » CX(G/N), it follows that (6|, |i/ac/n) = l6,n> Which then implies that
(O1g/m» W) is a twisted coaction of (G/M, G/N) on A. Unless confusion seems likely, we
shall denote all these restricted coactions by d|.

Suppose now that ¢ X u is a representation of 4 X, , G/ M. We want to define the
induced representation ind$ m(@>x ) of A%,y G by viewing ¢ X u as a representation of
A x5 G/M and inducing this representatlon to 4 X;G via Mansfield’s bimodule X. For
this to give a representation of 4 X, ,, G we need to know that Mansfield’s induced repre-
sentation indJ m(@ X p) of Ax;G preserves W if ¢ x u does. But this follows from the proof
of [PR], Lemma 4.2, which is the special case M = N, and we therefore have a well-
defined inducing procedure indg,,, on the twisted crossed products.

Note that if (X, d,) is a Morita equivalence for two twisted actions (J,, ;) and
(65, Wp), then the equation (dx|g ) le/n = Oxlg,n implies that (X, éx|) is a Morita equi-
valence for (J41g,u» Wy) and (9l u> Wp). Moreover, the Morita equivalences between
AX;, w,G and BX, 4 G and between A X,y G/M and BX,  y G/M are given by
quotients of X' X5 G and X x sx| G/ M, respectively: we denote these quotients by X ;G
and XX, | »G/M. Theorem 4.4 implies that we have a commutative diagram

Rep (B Xy, |y, G/ M) L2t Reen (A sy, GIM)

indg, l lindg ”

Bx _— A X G
Rep( as.WBG) Xy, »Gyind Rep ( 54, Wp ) -

We want a similar diagram to relate the representation theory of a twisted coaction (é, W)
of (G, N) on B to that of the Morita equivalent coaction ¢ of N on A. By definition, this
Morita equivalence is really an equivalence of (6, W) and the inflated twisted coaction
(Infe, 1 ®1). Since g™ o A%|y = A9M|, \ o p™, where pM: C*(N) > C*(N/M) denotes
the quotient map, it follows that (Infe)|g,, = Inf(e|y,)). Thus we have natural iso-
morphisms 4 Xy, 1. G=AX. N, and AX 16101 G/ M= AX, N/M, which
allows us to view X' x; G and Xx , | wG/M as A X, N-BX, 3G and

X N/M-BXs G/ M

imprimitivity bimodules, respectively.
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Theorem 4.7. Let (6, W) be a twisted coaction of (G, G/N) on B and let M < N be
a closed normal subgroup of G. If ¢ is a coaction of N on A, and (X, dy) is a Morita equi-
valence between (Infe, 1 ® 1) and (6, W), then we have a commutative diagram

Rep (B X,y G/ M) 20T, Rep (4 %, N/ M)

indg,, | Jind¥

Rep(BX; ,,G S Rep(Ax_N).
ep( oW ) Krn wGyind > ep ( eN)

Theorem 4.7 will follow from Theorem 4.4 and the proposition below. Before we
state it, recall that the natural isomorphism of 4 X, ;G onto AX_N is given on
AX 100, G BY

o%(Infe(@)(1 @ M))) = e(@)(1 @ M,,).
Note that, according to the definitions preceding the theorem, the representation
(X X5y, w G)-ind (¢ % p)
of Ax_N is by definition the representation ¢ x v such that
(X %4, G)-ind (g X p) = (6 X v) o DG

Further, let ®5/™ denote the corresponding homomorphism of A X6, G/ M onto
AX, N/M.

Proposition 4.8. Let S and ®°'™ be as above and let ¢ X u be a representation of
AX, N|/M. Then the representations (indpy,y (¢ p)) > @€ and ind§,y ((¢ x p) e @) of
A X ... G are unitarily equivalent.

Proof. Let 2 and 2,, denote Mansfield’s dense subalgebras of 4%, G and
A X601 G/ M, respectively, and & and &, the corresponding dense subalgebras of 4 x, N
and 4 %, N/M. We claim that #¢ maps 2 onto a dense subalgebra of & and that ¢/
maps 2,, onto a dense subalgebra of &,,. To see this, observe that for ue A (G) and
ze C¥(N) the pairings of C*(G) with A(G) and C¥(N) with A(N) are related by

Ay (@, uy =z, uly)
Thus for u € 4,(G) we have S,(Infe(a)) = S,((id, ® 1%y)  £(a)) = S, (¢(a)), and
&% (Infe (S, (Infe(a))) (1 ® M))) = &(S,, (@)1 ® M;,) .

Since ®¢ extends to a homomorphism on 4 X ¢, G, it is norm-decreasing; thus if xe 2
is (u, E) for some ue A,(G) and E £ G compact, then ®(x) is (u|y, ENnN), hence in &
The same argument shows that ®¢/™ maps 2,, into &,,. The density of 2 in & now follows
from A4,(G)|y = A4.(N), which in turn holds because A4(G)|y = A(N) [H] and because for
each compact set C < G there exists w € 4,(G) such that w =1 on C. Similarly, the image
of 9,, is dense in &),.
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Now view 2 and & as dense subspaces of the bimodules X and Y used by Mansfield
to induce from G/M to G and N/M to N, respectively. Then from the definition of the
2, and &),-valued inner products, [M], Theorem 19, and [M], Proposition 17, we deduce
that (P9(x), DC(y))s,, = P/ ({x,¥)p,,) for all x,yeP (it may help to note that
d()ly=d(f1y). Thus @¢ extends to a bounded linear map ®* from X onto a dense
subspace of Y, satisfying

(DX (x), DX (¥)) 4 xo NIM = DM ({x, ¥4 era.G/M) :

Since @€ (xb) = & (x) D™ (b) for all xe 2 and b e Z,,, and P is a homomorphism, we
have #*(a-x - b) = ®%(a) - ®*(x) - B '™ (b) for ae A % 1, G, xe Xand be A X, G/ M.

If now ¢ X u is a representation of 4%, N/M on #; then it follows from these pro-

perties of @€ that the map U: X ®4 ... 6/m# — ¥ @« nm# defined on elementary
tensors by

Ux®v)=d*x)®@v
is a unitary which intertwines ind§,,((e X p) e @) and (indg; y(e x p)) - @¢. O
Remark 4.9. Since € is equivariant with respect to the dual actions of N on
A%, G and AX,N,

@¢ extends to a homomorphism &M of (4%, G)*mr M onto (4x,N)x, M, and
(M, dX ®Y/M) is in fact an imprimitivity bimodule homomorphism from X onto Y.

Proof of Theorem 4.7. Let ¢ X u be a representation of B X; G/M which preserves
W. Then it follows from the proof of either [Bui], Theorem 3.3, or [ER], Corollary 3.3,
that the representation (X x; G/M)-ind (¢ X p) of A Xy, G/ M preserves the trivial twist
1®1. Thus (X x,,,G/M)-ind (g X p) has the form (g x v) - #%/™ for some representation
o x pof A%, N/M, and then ¢ X y is by definition the representation of 4 x,| N/M induced
from ¢ x p via X x; G/ M.

It follows from Proposition 4.8 that indg (X x,,,G/M)-ind (¢ X p)) is equivalent

to (indy,, (o X v)) o ®%, and hence it too preserves 1 ® 1. On the other hand, we know
from Theorem 4.4 that indg,, (X X;;G/M )-ind (¢ X p)) is equivalent to

(X %4, G)-ind (indg)p, (@ X 1) -

It follows, again using [Bui], Theorem 3.3, or [ER], Corollary 3.3, that indg,, (¢ x p)
preserves the twist W. Moreover, since

(X 4, G)-ind (indg (¢ X 1))

is equivalent to (indY,, (o x v)) o @, it follows that indy,, (¢ x v) is the representation of
A x_N induced from indg,M(Q X p) via X x5 G. This completes the proof. O
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Appendix

Suppose (X, dy) is a Morita equivalence between coactions d, and d; of G on C*-
algebras 4 and B, in the sense of [ER]; that is, d, satisfies conditions (1), (2) and (4) of
Definition 2.1, and the natural identification of 4 with X" (Xp) carries 4 into 0, We
shall show that, provided J, and d, are nondegenerate, (X, d) is also a Morita equivalence
in the sense of [Bui]; since most coactions are known to be nondegenerate (see [Q] for
a recent discussion), this says the two theories of Morita equivalence are effectively the
same. We have to show that J, satisfies condition (3) of Definition 2.1, and indeed we
shall do better:

Lemma A. If 6, and &, are nondegenerate, then 5x(X)-(1® C*(G)) is dense in
X ® C*(G). As a consequence, 5x(X) - (B® C*(G)) is dense in X ® C*(G).

Proof. Let L= </£ X) denote the linking algebra for ,X; and let §, = <5A Ox )
X B 0z Op
denote the corresponding coaction of G on L. We show that 4, is nondegenerate. Then
5, (LY(1 ® C*(G)) is dense in L ® C*(G), which implies that the upper right corner
3x(X)(1 ® C*(G)) of 6,(L)(1® C*(G)) is dense in the upper right corner X ® C*(G)
of L ® CX(G).

We know from [K], Theorem 5, that §, is nondegenerate if and only if the closure

I(L) of {S;(6,(])): fe A(G), [€ L} coincides with L. Factorising 4 (G) via the action of
CX(G) on the left and right, this will follow if the closed linear span of

{(1®2)6,(H(1®wW):z,we C¥(G),le L}
equals L ® C*(G).

To see this let ¥ denote the closure of (1 ® C*(G)) 65 (X)(1 ® CX*(G)) in X ® CX(G).
Since

(A®CHG)) (18 CXHG)) (X (1® CHG)) = (1® C}G)) dx(4 - X)(1® CXG)) ,

it follows that Y is a left 4 ® C*(G)-submodule of X ® C;*(G), and a similar argument
shows that Y is also a right B® C*(G)-submodule of X ® C}*(G). Since Y contains the
closure of 5, (X)(1 ® C*(G)) (by the existence of an approximate identity in C*(G)) we
see that

(Y, Y>m(B®C:(G)) =2 <5x (X) ' (1 ® Cr*(G))’ 5x(X) ' (1 ® Cr*(G))>J¢(B®c:(G))
= (1® C}G)) 35X, X >p)(1® C}(G))
is dense in B® C*(G), since &, is nondegenerate. It follows from this and the Rieffel

correspondence between the closed submodules of X ® C¥(G) and the closed ideals of
B® C*(G) [Rieff2], Theorem 3.1, that Y = X ® C*(G). Since

(1® C}G)) 3,(H(1® CX(O))
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and (1 ® C*(G)) 6,(B)(1 ® C*(G)) are dense in A ® C*(G) and B® C*(G), respectively,
this implies that

(1® CHG) o (L)(1® CXHG))

_ ( (1®CHGN MR CHG) (1®CXHG)Ix(X)(1® Cr"‘(G)))
(1@ Cr®) (X))@ CHG) (1®CXHG))IB)(1® CHHG))

is dense in L ® C*(G). Thus ¢, is nondegenerate.

To see the last statement, use an approximate identity in B. O

[BS]
[BGR]
[Bui]

[Com]
[CMW]

[Ech]
[ER]

[G]
[(H]

[1T]
[Kal]
(K]
L]
[LPRS]
M]
[PaR]
[PR]

Q]
[R]

[Rieff1]
[Rieff2]

References

S. Baaj and G. Skandalis, C*-algébres de Hopf et théorie de Kasparov équivariante, K-Theory 2 (1989),
683-721.

L.G. Brown, P. Green and M. A. Rieffel, Stable isomorphism and strong Morita equivalence of C*-
algebras, Pacific J. Math. 71 (1977), 349-363.

H.H. Bui, Morita equivalence of twisted crossed products by coactions, J. Funct. Anal. 123 (1994),
59-98.

F. Combes, Crossed products and Morita equivalence, Proc. London Math. Soc. 49 (1984), 289-306.
R.E. Curto, P.S. Muhly and D.P. Williams, Cross products of strongly Morita equivalent C*-
algebras, Proc. Amer. Math. Soc. 90 (1984), 528-530.

S. Echterhoff, Morita equivalent twisted actions and a new version of the Packer-Raeburn stabilization
trick, J. London Math. Soc. (2) 50 (1994), 170-186.

S. Echterhoff and 1. Raeburn, Multipliers of imprimitivity bimodules and Morita equivalence of crossed
products, Math. Scand., to appear.

P. Green, The local structure of twisted covariance algebras, Acta Math. 140 (1978), 191-250.

C. Herz, Le rapport entre I'algébre 4, d’un groupe et d’un sous-groupe, C.R. Acad. Sci. Paris A 271
(1970), 244-246.

S. Imai and H. Takai, On a duality for crossed products by a locally compact group, J. Math. Soc.
Japan 30 (1978), 495-504.

S. Kaliszewski, A note on Morita equivalence of twisted C*-dynamical systems, Proc. Amer. Math.
Soc., to appear.

Y. Katayama, Takesaki’s duality for a nondegenerate coaction, Math. Scand. 55 (1985), 141-151.
M. B. Landstad, Duality for covariant systems, Trans. Amer. Math. Soc. 248 (1979), 223-267.

M_B. Landstad, J. Phillips, I. Raeburn and C. E. Sutherland, Representations of crossed products by
coactions and principal bundles, Trans. Amer. Math. Soc. 299 (1987), 747-784.

K. Mansfield, Induced representations of crossed products by coactions, J. Funct. Anal. 97 (1991),
112-161.

J.A. Packer and I. Raeburn, Twisted crossed products of C*-algebras, Math. Proc. Camb. Phil. Soc.
106 (1989), 293-311.

J. Phillips and I. Raeburn, Twisted crossed products by coactions, J. Austral. Math. Soc. (A) 56 (1994),
320-344.

J.C. Quigg, Full and reduced C*-coactions, Math. Proc. Camb. Phil. Soc., to appear.

I. Raeburn, On crossed products by coactions and their representation theory, Proc. London Math.
Soc. 64 (1992), 625-652.

M. A. Rieffel, Induced representations of C*-algebras, Adv. Math. 13 (1974), 176-257.

M. A. Rieffel, Unitary representations of group extensions; an algebraic approach to the theory of
Mackey and Blattner, Studies in Analysis, Adv. Math. Supp. Stud. 4, Academic Press, New York
(1979), 43-82.



Echterhoff and Raeburn, The stabilisation trick for coactions 215

Fachbereich Mathematik-Informatik, Universitit-Gesamthochschule Paderborn, D-33095 Paderborn, Germany
e-mail: echter@uni-paderborn.de

Department of Mathematics, University of Newcastle, NSW 2308, Australia
e-mail: iain@math.newcastle.edu.au

Eingegangen 26. Oktober 1994, in revidierter Fassung 10. Juli 1995



	
	Title page
	Tabelle, Liste
	The field of moduli of abelian surfaces with complex multiplication.  
	On Sprindzuk's classification of transcendental numbers.  
	PBW-bases of quantum groups.  
	Restricted mean value property for positive functions.  
	A Barth-Lefschetz type theorem for branched coverings of Grassmannians.  
	The Jeffrey-Kirwan localization theorem and residue operations in equivariant cohomology.  
	A remark on Hodge cycles on moduli spaces of rank 2 bundles over curves.  
	Décomposition d'un groupe en produit libre ou somme amalgamée.  
	The stabilisation trick for coactions.  


