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Math. Scand. 65 (1989), 50-58, by Paul E Jambor: “Radical of splitting ring
extensions* (published 15th May 1990) was already published in B.J. Gardner,
ed. “Ring, modules, and radicals* (Proceedings of the Hobart Conference
1987), Longman, New York, 1989.
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AN ADDITION THEOREM IN A FINITE ABELIAN GROUP

JORGEN CHERLY

1. Introduction.

We say that a subset 4 of a finite abelian group G is an additive basis if there exists
an integer h such that any element of G can be written as a sum of at most
h elements of A. The set A is said to be an additive basis of order & in case h is
minimal. We denote by |A4| the cardinality of the set A.

Let F, be a finite field of g = p™, me N elements and let F,[X] denote its
polynomialring. The degree of a polynomial a € F,[X] is denoted 6°a.

A subset 4 of F,[X] is said to be an additive basis if there exists an integer
hsuch that any element of F,[ X] can be written as a sum of at most h elements of
A. The set A is said to be an additive basis of order h in case h is minimal.

The Snirel’'man density d4 of 4 is given by

dA = inf ¢ " 'card 4,
n20
where 4, = {ae A|5%a < n}, see [1] [2] [3].

For any integer n, let G, = {f€F,[X]|6°f < n}. It is clear that (G,, +) is
a finite abelian group of order |G,| = ¢"* 1.

We prove here the following results:

THEOREM 1.1. Let A be a subset of G which contains 0. If A is an additive basis of
order h for G then

h < 2[1G/141]
This inequality is optimal.
Theorem 1.1 implies the following addition theorem in F,[X].

THEOREM 1.2. Let A be a subset of F,[ X] such that
(i) O0eA

(i) dA>0

(i) For any n = 0: A, is an additive basis for G,

Received June 9, 1992.



6 JORGEN CHERLY

Then A is an additive basis of order at most 2 [1/dA].
In [1] we obtained the estimate h < 1/(d4)*. J. M. Deshouillers proved in [3]

that A is an additive basis of order at most 4/dA. Our proof is different and we
improve the constant factor from 4 to 2.

2. Preliminary results.

Let (G, +) be a finite abelian group. We shall denote by A, B, C,... non empty
subsets of G. We define the addition of sets of group elements by

A+ B={a+ blaeA,beB}. We shall need the following two theorems from
H. B. Mann’s book [4] chapter 1.

THEOREM 2.1. Either A + B = G or |G| = |A| + |B|
THEOREM 2.2. IfC = A + Bthen|C| = |A| + |B| — |H| where H is the subgroup
H={geG|C+g=C}

3. Some lemmas.

LEMMA 3.1. Let C = A + B, where A and B are non empty subsets of G, and O € B.
Then either C + B = C or |C| = |A| + |H| where H is the subgroup

H={geG|C+g=C}

ProoF. Assume C + B # C, then C + B o C since 0 B. Hence we can find
elements bye B and ¢, + by ¢ C. Since C + b, is a union of complete cosets of
H we have

CH+bo={c+bo+H}={){a+bo+H} |J {c+bo+ H}

ceC acA ceC\A

Now for any ae A we have
{a+by+H}n{co+by+H} =

Indeed let a,€ A be such that a, + by + hy = ¢o + by + h, with hy,h, e H.
Then ¢y + bo€ay + by + H < C, contrary to the fact that ¢, + boé C.
It follows that

C+bo>{A+bo}ufco+bo+ H}
Hence

ICl = IC + bol Z |4 + bo| + lco + bo + H| = |A| + |H]
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LeEMMA 3.2. Let C = A + B, where A and B are non empty subsets of G, and
O€ B. Then either
C+B=Cor
1
ICl = |4] + ~ |BI

ProoF. (for the non abelian casesee J. E. Olson [5]). Assumethat C + B > C.
Hence by Theorem 2.2 and lemma 3.1

2|Cl 2 2|A] + |BI
LEMMA 3.3. Let A be a non empty subset of G,0e A and k = 2: Then either
k+1
kA = (k + 1)4 or |kd| = “2L IAl.

Proor. (see also J. E. Olson [6] Theorem 2.2). Assume k4 # (k + 1)A. Then
mA £ (m + 1)A for all msuch that 2 < m L k.
By lemma 3.2 with A —» (m — 1)A4, B — 4 we obtain

imA| =z |{(m — DA| + %lAl forallmsuchthat2 <m<k

k k k —1
Hence Y |mA|2 ) |(m—1)4] + TIAI
2 m=2

which implies [kA| = % 4]

4. Proof of Theorem 1.1.

Define the integer k, by ko = [|G|/|A|]. Assume koA + G. Then by lemma 3.3
and the definition of k,

ko +1 |G|
> |4] > 5

Whence by theorem 2.1 we have 2k, 4 = G.

The inequality in Theorem 1.1 is optimal. Indeed let A be any subset of G such
that |4| = [(|G| + 2)/2]. Then by Theorem 2.1, A4 is an additive basis of order 2.
Also 2k, = 2[|G|/|A]] = 2 for |G| #+ 2.

koAl 2




8 JORGEN CHERLY

5. Proof of Theorem 1.2.

By (i), (ii), (iii) and Theorem 1.1 we have: Foranyn = 0: 4, is a basis of order h, for
G, with

h, < 20" /1441 < 2[1/dA]

It is then clear that any element of F,[ X] can be written as a sum of at most
2[1/dA] elements of A.
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MODULAR SUBSTRUCTURES IN PSEUDOMODULAR
LATTICES

A. DRESS, W. HOCHSTATTLER, W. KERN

Abstract.

Pseudomodular lattices have been used in [DL 86] in order to investigate combinatorial properties of
algebraic matroids and were further analyzed in [BL 87]. The purpose of our paper is to present local
conditions, characterizing modular sublattices of a pseudomodular lattice. As an application, we
derive a result of [HK 89], implying that Lovasz’ min — max formula for matchings in projective
geometries remains valid for pseudomodular lattices, and we discuss a relation woth B. Lindstroms
construction of subgeometries of full algebraic combinatorial geometries which are isomorphic to
projective geometries over skew fields.

1. Introduction.

All lattices we consider will be geometric, i.e. of finite length, relatively comple-
mented, graded, and the rank function defined by the grading is semimodular.
Each lattice L will be endowed with a strictly increasing semimodular rank
function (which may or may not be identical to the one induced by the grading),
i.e. r: L > Ny is strictly increasing and satisfies

Vx,yeL:r(x) + r(y) 2 r(x v y) + r(x A y).

Recall that r is called modular if this inequality is satisfied by equality for every
pair x,ye L.

Recently, [DL 86] and [BL 87] introduced an interesting generalization of
modular lattices, the class of so called pseudomodular lattices, which was shown
in [DL 86] to contain all full algebraic combinatorial geometries and which may
be defined as follows:

DEerINITION (cf. [BL 87]). A geometric lattice L endowed with a strictly
increasing semimodular function r: L — N is called pseudomodular, is for any
a,b, c € L the following implications holds:

If

ravey—r@=ribve—rib)=ravbvc)—ravb),

Received September 7, 1992.



10 A. DRESS AND W. HOCHSTATTLER AND W. KERN

then
r@ave)advc)—rianb)=ravc)—r).

It is easy to see that pseudomodularity actually is a generalization of modular-
ity. However, as we will see in Section 2, there is somewhat more to say about the
relation between pseudomodular lattices and modular ones. Essentially, it will
turn out that modular sublattices of pseudomodular ones can be chaacterized by
local conditions which can be checked easily. In Section 3 we will use this fact to
derive a result of [HK 89], implying that Lovasz’ min — max formula for
matching in projective geometries extends to pseudomodular lattices. Finally, in
the last section we comment on B. Lindstréms construction of large projective
geometries, defined over skewfields, which are contained in full algebraic combi-
natorial geometries.

2. Modular Substructures.

Let L be a geometric lattice with a strictly increasing semimodular rank function
r:L — Ng and let M be a geometric lattice with strictly increasing modular rank
function p: M — N,. Furthermore, let ¢: M — L be a mapping. We say that
¢ defines a modular substructure of L if
® ¢:M — Lis a homomorphism, i.e. itis A-and v -preserving and
® p(x) =r(p(x)) VxeM.

The following result states that, if L is pseudomodular, then modular substruc-
tures can be characterized by local conditions which in concrete situations are
easy to check (cf. Section 3):

THEOREM 2.1. If L is pseudomodulair, then ¢ : M — L defines a modular sub-
structure if and only if

(i) @ is A-preserving,

i) @(x v y)=o(x) v @(y) whenever x v y = 1),

(iti) if I = [x, 1] is an interval of length 2, then p(y) = r(¢(y)) forall yel.

Proor. We show that if ¢ satisfies conditions (i) — (iii) above, then for any
upper interval I = [x, 1], theinduced map ¢ : I — Lis ahomomorphism satisfy-
ing p(y) = re(y) for all yeI. The proof is by induction on k:= length of I.

Ifk = 2, the claim is immediate from conditions (i) - (iii). Thus suppose thatk = 3
and assume the claim holds for smaller values of k. We have to show that for any
two y,,y, €I we have

1) o(y1 v ¥2) = ¢(y1) v @(y2) and
@ P(V1 A ¥2) =re(y1 A y2).
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We may assume that y, A y, = x, for otherwise the claim follows from our
inductive assumption by looking at the interval [y, A y,, 1)]. Let us first show
that (1) holds. If y, v y, = 1, then (1) is the content of condition (ii). Hence
assume that y; v y, < 1. Let y; € M be acomplement of y; v y, in the interval
[xs lM]

Applying ¢, we are in a situation as shown in Figure 1 below, where u:= ¢(y,) v
@(y2), v:=@(y1) v @(y3), and w:= @(y2) v @(y3):

#(y2V ya)

Ligure 1.

Note that, due to condition (ii), we have

o(y1) v 0(y2 v y3) = o(ly),

hence

uv oy vys)=o(ly),

asindicated in Figure 1 above. Furthermore, note that ¢ is order preserving since
it was assumed to be A -preserving. This implies that

o(y1 v y) 2 u= () Vv o(y)

etc. We are to show that actually equality holds. First note that modularity of
p gives

P(y1 VvV y2) A(y2 Vv y3) = p(yr Vv y2) + p(y2 v y3) — p(ly) =
= p(y1) + p(y2) — p(x) + p(y2) + p(y3) — p(x) — p(1p)
= p(y1 Vv y2) + p(y3) — p(x) — p(lp) + p(y2) = p(¥2)

and therefore

(*) 1 vy A2V ys)=y,.
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By induction on k, we know that ¢y, ;,,; defines a modular substructure of L.
Thus, in particular,

(%) ro(yy v y2) + ro(yz Vv y3) = ro(ly) + ro(y,).

Now, applying the semimodularity of L with respect to u and ¢(y, v y3), we get
—usingu v @(y; v y3) = ¢(ly)and r(u A @(y2 v y3)) 2 re(y,) - the inequality

(€
r) 2 ro(Ly) + ro(y2) — ro(v2 v ¥3) € ro(y; v ),
which together with ¢(y; v y,) = u implies (1), that is,
o1 vV y2))=u=0(y) Vv o(y2)

in view of the strict monotonicity of r.
We are left to show that (2) holds, i.e.

p(x) = ro(x).
Since the length k of the interval I = [x, 1,,] is at least 3, we can find y,, y,, y; €
I\ {x} such that each y; is a relative complement to the join of the other two y;s,
Le, with y; v y, v y3 = 1y and p(y1) + p(y2) + p(y3) = p(1a) + 2p(x). From
our argument above, we conclude that, applying ¢, we are in a situation as
sketched in Figure 2 below:

?(ya V ys)

Figure 2.

Now let a:= ¢(y;), b:= ¢(y3) and c:= ¢(y,). Since, by induction, ¢ defines
a modular substructure of L when restricted to each of the intervals [y;, 1,/], we
get

r@ve)y—r@=r@avbvc)—r@avb) =rbvc)—rb) =p(y)— px).

Since L is pseudomodular, we conclude that
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rlave)abvce)—ranb)=r(avc)—r(a),ie. (cf. (),

ro(y2) —ro(x) =ro(y, v y2) —ro(y,)
and therefore

ro(x) = p(y2) + p(y1) — p(y1 v y2) = p(x),

as claimed.

3. An application in Matching Theory.

In this section we assume the reader to be familiar with the basic theory of
matroids and geometric lattices. Suppose L is a geometric lattice with point set
E and let now r denote the rank function induced by the grading. A subset A < E
is called a double circuit, if r(A) = r(A\ a) = |A| — 2for every a € A or, equivalent-
ly, if A is the complement of a coline, i.e., a flat of codimension 2, in the dual of L.
These sets play a central role in the context of matching in geometric lattices (cf.
[HK 89] for more details). It is easy to see (cf. [HK 89]) that the following holds:

LEMMA 3.1. Let A < E be a double circuit. Then there exists a partition

A = Al O .. .L.J Ad
suchthat C;:= A\ A;is acircuit fori = 1,...,d and these are all circuits contained
in A.

Proor. If in the dual of L the hyperplanes containing the coline E\ A are
H,,...,H;, then A;:=H,nA,...,A;:= H;n A are precisely the subsets de-
scribed above.

As can be seen from [HK 89], the crucial point in proving Lovasz’ min — max
formula for matchings conxists in showing that in case L is pseudomodular the
closures C; of the circuits in 4 induce a modular sublattice of L. More precisely,
one has to show (cf. Theorem 3.1 of [HK 89]) that

d
r(ﬂ C,)?__d—Z.
i=1

As we will see next, this is a simple consequence of Theorem 2.1;
Indeed, let M = M, denote the Boolean algebra of (all) subsets of {1,...,d}.
Obviously, M is modular relative to the map p: M — N, defined by

iel

p):= 4] -2 - %(Md -D=2(4l-1)+d-2

forall I < {1,...,d}. We claim
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PROPOSITION 3.2. If — with the above notations — we define

o:M->L
by
o():=\C;
i¢]

for all proper subsets I < {1,...,d} of {1,...,d} and
o({1,...,d}):= 4,
then ¢ defines a modular substructure in L.
ProOOF. Obviously, ¢ is A -preserving and for [UJ = {1,...,d} we have
Az o) v o) = NANAIi§1} v n{ANF;j¢J)
2 n{A\A|i¢I} v A{A\4;|j¢J]}
=u{d;liel} v u{4;|jeJ} 2 A

and therefore ¢(I) v ¢(J) = A. Thus we are left to show that condition (iii) of
Theorem 2.1 is satisfied, too. Too check this, observe that p({1,...,d}) =
|A] — 2 = r(A4) and p({1,...,d}\ {i}) = |4] — |4i| — 1 = r(C)), since C; = A\ 4;
is a circuit. Finally, for i #+ j, we have

rCi A C) = p({L,....d}\ {i,j}) = |4] — |4 — 14|
in view of the following sequence of inequalities
rCiAC)sr(C)+r(C)—r(CivC))=
(4] — 14l = 1) + (4] — 14, = D) = (4] = 2) =
|4l = |4l = 14l = 1C:n Cl = 7(C; A Cy),

the first one of which holds because Lis ssmimodular, while the second one holds
because C; n C;, being a proper subset of a circuit, must be independent.

COROLLARY 3.3. Under the assumptions of Proposition 3.2, one has

r(éé):d—z

PROOF. Since ¢: M — L defines a modular substructure, we conclude that
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d d
r(m é,.)=p(m=|A| 2o Y (Al-D=d—2,
i=1 i=1

1

as claimed.

4. Projective Geometries in Full Algebraic Matroids.

In [L 88] B. Lindstrom shows that for every field F of prime characteristic p the
full algebraic matroid L = L,(F) of rank n, whose flats are the algebraically
closed subfields of the algebraic closure F(X, .. ., X,) of the purely transcenden-
tal extension F(X,,...,X,) of F in n algebraically independent variables
X,...,X, contains as a subgeometry a full projective space of (projective)
dimension n — 1 over a certain skew-field, defined in terms of the “p-poly-
nomials” in the polynomial ring F[X] in one variable X over F, that is, the
F-linear combinations of the monomials of type X™ (h=0,1,2,...). More
specifically, his surprising and beautiful result asserts that

(i) the set of all p-polynomials in F[X] forms an Ore-domain R(F) with
quotient skew-field, say, Li(F), when for any two such polynomials P[X], Q[ X] €
R(F) one defines the sum P[X] + Q[X] as usual and the product P[X] o Q[X]
by composition, i.e., by

P[X]oQ[X]:= P[Q[X]],
and that

(ii) there exists a modular substructure ¢: L,(F), where M = M(Li(F)") de-
notes the relatively complemented modular lattice of (all) subspaces U, V..., of
the n-dimensional (right) vectorspace Li(F)" over Li(F) (with dimension as rank
function) and where for U < Li(F)" the field ¢(U) is the algebraic closure in
F(X,,...,X,) of all polynomials

Q[Xb-- Xl = Ql[Xl] +...+ Qn[Xn]

with (Q,[X],...,0,[X])e U n R(F)".

Unfortunately, to verify that ¢: M — L satisfies the conditions in Theorem 2.1
requires almost all the work, Lindstrém has done to establish his result directly.
So one saves not much by invoking Theorem 2.1 in this specific context. Still,
Theorem 2.1 together with the fact from [DL 86], referred to already in the
Introduction, that every full algebraic matroid is pseudomodular, seems to
present a conceptual framework with regard to which Lindstrdm’s amazing
construction can be understood and appreciated more easily and in a more
systematic way and which may help to find similar results, e.g. for full algebraic
matroids defined over fields of characteristic 0.
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APPROXIMATION BY NEAREST INTEGER
CONTINUED FRACTIONS (II)

JINGCHENG TONG

Abstract.

In a paper with the same title recently published in this journal, a recurrence relation of a Diophantine
inequality is established: min(0,-,, 0, ..., 0,+:) <2/3 + \/ S — 20), where oy =2/5 and
o; = 1/(3 — a;-). In this note, we give the explicit form of this inequality: min(6,-,, 6,, ..

Onei) < 1N/5 + (B = /2215,

.

Let x be an irrational number, x = [gobg; €, by, ..., &,b,, ...] be its expansion
in nearest integer continued fraction. Let A,/B, = [eobo; €1by, .. ., &,b,] be the
nth convergent and 6, = B,%|x — A4,/B,|. It was proved in [2] that min (0,_,,
0,,0,+1) < 5(5/5 — 11)/2. The present author generalized this result. It is pro-
ved in [4] that min(0,_, O,, ..., O,+) < 2/3 + \/5 — o), where oty = 2/5, a; =
1/(3 — a;-,). In this note, using the Fibonacci sequence, we give an explicit
estimation of the value min(@,_,6,, ..., 6,.,) as a function of k directly.

THEOREM 1. min (0,-1,0,, ..., O0,41) < 1/3/5 + (3 — /5)/2)**3//5.

ProoOF. Let fy =1, f, =1, f,+2 = fo+1 + f, be the Fibonacci sequence.

We first prove that the recurrence relation o; = 1/(3 — ¢;—;) and oy = 2/5
imply that o; = f3;+1/f2i+3.

If i=1, then oy =2/5= f3/fs. Suppose o, = for+1/fax+3. Then o,y =
1B — o) = /(3 = fax+1/fox+3) = fau+3/Gfak+3 — S+ 1) = San+3/(Rfon+3 +
Juv2) = fau+3/(fae+3 + fak+a) = facr 3/fau+s. Therefore by induction we have
% = foi+1/f2i+a.

Replacing o, in the expression min (6,—y, 0,,, - .., O,44) < 2/(3 + /5 — %) by
Jax+1/fak+3, we have

min (0,1, 0,y - . -5 On i) < 2f2043/((3 + \/5)f2k+3 = 2f+1)

By Binet’s formula for the Fibonacci sequence [1], we have

Received December 15, 1992.
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fa=(@" = (=75
where ¢ = (1 +\/5)/2, —¢ 1= —\/5)/2. Now a direct calculation of

2(@/(— ¢~ W2 = DIB + /H(PN(=¢~N* T2 — 1) = A@N—¢~ N —
DA—¢ 1)) yields

MinOp— 1, O - - - » O sx) < 1/3/5 + (3 — /S)2* /5.

Now we can have a comparison of the two approximations by simple con-
tinued fraction and by nearest integer continued fraction. Let x be an irrational
number. Borel’s theorem [3] asserts that among any three consecutive conver-
gents p;/q; of simple continued fraction of x, there is at least one satisfies
Ix — pi/aqil < 1/(\/ 5g;%). As a much weaker corollary we know that there are
infinitely many convergents p;/q; satisfying |x — p;/g;] < 1 /(\/ 5 g;%). For nearest
integer continued fraction we only have the following even weaker form.

COROLLARY 1. Let x be an irrational number. Then there are infinitely many
convergents A;/B; of nearest integer continued fraction of x satisfying

|x — Ai/Bi|l < 1/((\/5 —¢) B?).

PRrooOF. Since (3 — \/5)/2)**** — 0 when k — oo, we know that min (6, -y, 0,,
ces Ol I/J 5 for any fixed positive integer n. Therefore for any given small
¢ > 0 and any positive integer n, pick up k such that min (0,4, 6,,...,0,+) <
1/(\/ 5 —¢) then we can have an integer m(—1 < m < k) such that 6,,, <
1/(J/5 — ¢). Since there are infinitely many positive integer n, there are infinitely
many i such that 6; < 1/(,/5 — ¢). Since 6; = B;*|x — A;/B;|, we have the con-
clusion.
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COUNTING MATRICES WITH COORDINATES IN
FINITE FIELDS AND OF FIXED RANK

DAN LAKSOV' and ANDERS THORUP?

Abstract.

Over a given finite field, we present a method for obtaining explicit expressions for the number of
matrices of given rank satisfying certain conditions. Asillustration of the method, we present a series
of new formulas, and we obtain simple proofs of known formulas.

Introduction.

We present a method for obtaining explicit expressions for the number of
matrices of fixed order and rank with entries in a finite field and satisfying certain
additional conditions.

The method is simple and formal and makes it possible to derive many
formulas using only standard linear algebra. Applying the method in various
examples, we obtain simple proofs of known formulas, and we obtain a series of
new formulas. Formulas of this kind have mostly been obtained through the use
of recursion and exponential sums. In the references we have listed some articles
that illustrate the differences in methods and that are not used elsewhere in the
text.

On the other hand, our method explains the appearance of the recursion
formulas. Moreover, the expressions obtained from our method are in many
cases different from those obtained using exponential sums. As a consequence,
we obtain new non-trivial identities between expressions that can be interpreted
as special values of certain generalized hypergeometric series.

To illustrate our method, we consider the set of all m x t matrices and the four
subsets defined by the following conditions on the matrix X:
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(1) The matrix X is arbitrary,

(2) The rows of the matrix X are non-zero and mutually different,

(3) The matrix X is a solution to the equation X’SX = 0 where S is a given
regular symmetric m x m matrix,

(4) The matrix X is a solution to the equation X'AX = 0 where 4 is a given
regular antisymmetric m x m matrix.

Explicit expressions and a recursion formula for the number of all matrices of
rank r were givenin [Lb]. A recursion formula for the number of matrices of rank
r satisfying Condition (2) was obtained by [Ls] and an explicit expression was
given in [C3]. Explicit expressions for the number of matrices satisfying Condi-
tion (3) or (4) with no condition on the rank were given in [C1, C2]. In the present
work we obtain explicit expressions for the subsets of matrices of given rank r.
The expressions we derive for the number of all matrices satisfying (3) or (4) are
different from those obtained in [C1] and [C2]. Taken in connection with the
previous expressions, the new expressions may be seen as a new family of
nontrivial identities of hypergeometric series. In fact, these identities led us to the
discovery of an error in the expressions obtained in [C2], see Note (6.3) below.

The explicit expressions involve the g-binomial coefficients or Gaussian poly-
nomials,

[t:I _@=D¢ " =1..(¢7" -1
r @-D@ ' =D...(g=-1 °

When g is a variable, the expression on the right hand side is in fact a polynomial.
In our formulas g will be the number of elements in a finite field. Our method
explains the occurrence of these polynomials. In fact, as we show in Section 3,
anumber of well known properties of the Gaussian polynomials may be obtained
on the basis of similar properties of numbers arising from finite dimensional
vector spaces over finite fields.

1. Interpolation formulas.

In this section we prove an interpolation formula needed in Section 2. The
formula is of Lagrange type, giving the transition between two different bases of
the polynomial ring R[x] over a ring R.

DEerFINITON 1.1. Let R be a commutative ring with unity. Fix a sequence
A1,4,,. .. of elements in R, and define polynomials for r =0, 1,...

Q(x):=(x = A)(x — 43)...(x — 4,).
Then Qy(x) = 1, and the sequence Qy(x), @4(x), ... forms an R-basis for R[x].
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Hence every polynomial f(x) of R[x] uniquely determines coefficients [{] in
Rforr=0,1,... such that

(1.1.1) flx) = i[ ]Q,(X)

where [{] = 0 forr > deg f.

Our notation for the coeflicients resembles the usual notation for the
g-binomial coefficients. The connection between the two notations will be ex-
plained in Remark 1.5 and Note 3.2.

Assume that the differences A; — 4; are invertible in R whenever i # j.

PROPOSITION 1.2. For every polynomial f(x), the following formulas hold,

1. _
(1.2.1) [r]_i);———g;“ui), for r=0,1,...

where Q' denotes the formal derivative of the polynomial Q.

Proor. Clearly, the two sides of (1.2.1) are R-linear maps R[X] — R. There-
fore, it suffices to prove that the equations (1.2.1) hold when f = Q, for
n=0,1;... Clearly, the left hand side is equal to 1 for r = n, and zero otherwise.
Consider the right hand side of (1.2.1) for f = @,.. The numerator Q,(4;) vanishes
when i < n. In particular, the right hand side vanishes for r < n, and for r = n the
only non-vanishing term is equal to 1. Hence it remains to be shown that the right
hand side is equal to O for r > n.

Clearly, it suffices to prove that the right hand side is zero for r > n when the
elements 4, 4,...,4,+, areindependent variables overZ. Setp =r + 1 — n,and
x;:= A,4ifori = 1,..., p. Denote by G the right hand side. Then, after a change of
indices,

_ ' Q) & Qux)
G= i=n+1 Qr+1(’ll) l=zl Qr+1(xl)

After a reduction of the fractions in the sum on the right hand side, we obtain the
equation,

1

15isp il — X))

p
G=Y
i=1

It follows that G is symmetric in the p variables x,...,x,. Moreover, every
denominator on the right hand side divides the Vandermonde determinant
4=1], <i<jszplX;j — X;). Therefore, the product G4 is an alternating polynomial
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inx;,,...,x,, and of degree less than the degree of 4. Consequently, G = 0 and we
have proved the Proposition.

1.3. Assume for the rest of this section that the sequence of 4;’s consists of the
powers of a single element g, that is, 4; = ¢' . Then

(1.3.1) 0(x)=0x—Dx—¢q)...(x —¢' ")

In this case, the coefficients of the interpolation formula can be expressed by the
g-binomial coefficients,

[r],= @-Dg "= -1
i] @-D@ ' =1D...(4-1

For 0 < i £ r, it follows immediately from the definition that

(1.3.2) m N [r i i]'

Moreover,

r|_ 94q) i —()_ 9dd)
(133 H o TV @

as follows by an extraction of powers of ¢ and a simple reduction.

for r,i=0.

PROPOSITION 1.4. Assume that i; = q'~'. Then, for every polynomial f and
r=20,1,2,..., the coefficient in the expansion (1.1.1) is given by the formulas,

f1_¢ fd) 1 ¢ .-(f)[r]
= = —1 X
H L@ o5V e

ProoF. The first formula is just a rewriting of (1.2.1), and the second equation
follows from Equation (1.3.3).

ReMARK 1.5. The formulas apply whenever the element g and the differences
q' — 1fori > 0 areinvertible. When the latter elements are regular, the formulas
can be interpreted in the total ring of fractions of the given ring. In particular, the
formulas hold for an element g which is transcendental over a ground ring.
Moreover, the formulas for an arbitrary element g follows by specialization from
the transcendental case.

Consider the case where q is transcendental. Then the g-binomial coefficients
are a priori rational functions of g. It is well known that they are in fact
polynomials in g, called the Gaussian polynomials. Moreover, the following two
formulas are well known,
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x" |m
r| Lr
(explaining our choice of notation), and

Q.(x) = Z'jo(_ 1)ig® m i

As we shall see in the Section 3 (Note 3.2 and Remark 3.3), these assertions follow
easily from our results.

2. The method.

Let g be a power of a prime number and denote by F, the field with g elements. Fix
a vectorspace V of finite dimension m over F,. For a given family . of subspaces
of ¥, denote by 7, the set of subspaces of dimension r in the family . Moreover,
for any t = 0, denote by

Hom (F;, V) € Hom(F}, V)

the set of those linear maps F; — V whose image belongs to 7. Note that the set
Homy, (F;, V) consists of the linear maps ¢: F; — V' such that the rank of ¢ is
equal to r and the image of ¢ belongs to 7. In particular, the set Hom 5 (F7, V) is
the set of injective linear maps F] — V whose image belongs to 7.

Our method is to combine some simple relations between the numbers of
elements in the sets 7,, Homy (F;, V) and Homy (F}, V) with the interpolation
formula obtained in Section 1 with respect to the polynomials

Q) =(x—Dx—q...(x —q'").

When a basis for V is given, V = F7, then Homy (F;, V) is a subset of the set of
m X t matrices, and we obtain the explicit formulas mentioned in the introduc-
tion.

PROPOSITION 2.1. Let I be a family of linear subspaces of V. Then the cardinali-
ties of the sets 7,, Hom4(F}, V) and Homg (F;, V) are related by the following
Sformulas,

(2.1 [Homy. (F;, V)| = |7,|- Q.(q),

2.1.2) Hom,, (F., V)| = [:‘] - [Homy. (F,, V),
dimV

(2.1.3) [Hom (Fg, V)| = Zo |7 Quq').

ProOF. Let U be a subspace of dimension r in V. Clearly, the number of
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surjective linear maps F, — U is equal to the number of injective linear maps
F; — F;; hence the number is equal to the product,

¢-Vd'—-9q...d —q "

In other words, the number is equal to Q,(q"), where Q,(x) is the polynomial of
(1.3.1). Therefore, the number [Hom . (F;, V)| of linear maps F; — V withimage in
. is the product of Q,(¢q") and the number of possible images, |7,|. Hence the first
equation holds. The second equation follows by using the first for t and for t: = r,

noting that the quotient Q,(¢")/Q,(¢") is the g-binomial coefficient [ ] by (1.3.3).

Finally, the last equation follows from the first by summation over the possible
ranks of the subspaces in 7.

COROLLARY 2.2. Considered the polynomial f = f4 defined by

dimV

Jfx):= Z_,O |72 Qr(x).

Then the following formulas hold:

A« 1@
220 "’""H 20
22.2) ’ [Homg (F,, V)| = f(¢),

(223)  [Homy,(F, V)| =[f ]Q,(q')— Y (—1q z’[ }f(q’ 5,

co [f . N fld)
(224) |H0myr(Fq, V)l = [ :IQr(q) = Qr(q) Z Qr+1(ql)

29 m Y (~1Yq (2)[ ]f(q'“)

i=0
ProoOF. By definition of f, the equation (2.2.2) follows from Equation (2.1.3).
Moreover, it follows from the definition of the coefficient [{] that |7,| = [{ ] .
Therefore, the remaining formulas of the Corollary follow from the formulas of
Proposition 2.1 and the general expressions for the coefficient [{ :l in Proposi-
tion 1.4,

REMARK 2.3. The Proposition has an obvious dual form. Let 7 * denote the
family of polars to the family J, that is, a subspace W of the dual space V*
belongs to 7 *, if and only if the intersection of the kernels of the linear forms in
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W belongs to 7. Clearly, the set of all rank-r linear maps V — F; whose kernel
belongs to J corresponds bijectively to the set of all rank-r linear maps F; — V*
whose image belongs to 7 *. Hence a dual form of the proposition is obtained by
applying the proposition to the family * of subspaces in the dual vector space
V*.

3. General matrices.

In this and the following sections the method of Section 2 is illustrated by
applying it to the cases mentioned in the introduction. As in Section 2, the vector
space V is assumed to be of finite dimension m over the field F, with g elements.

Let # be the set of all subspaces of V. Then Homg (F;, V) is the set of all linear
maps F; - F7, and Homg (F, V) is the set Hom,(F], F7) of all injective linear
maps F; — F7". Clearly,

(3.0.1) |Hom, (F, F7) = Q.(¢™).

@ q

Hence, from Formula (2.1.2), we obtain the following result of Landsberg [Lb].

PROPOSITION 3.1. The number of ¢,(t,m) of all m x t matrices of rank r with entries
in F_ is given by the following expressions,

K 2,(9)2:(¢™)
(t,m) = [Hom,(F;, F7)| = Qg =
u(t, m) = [Hom, (F}, Fy)| _r] 0 ==
Norte 3.2. It follows from Equation (2.1.1), or directly, that the number,
m|_ Q.(q"
3.2.1 F,| = ===
G20 o’ [r 0.)

is equal to the number of dimension-r subspaces of V. Clearly, the set Hom(F;, V)
can be identified with the set ofall m x t matrices, and consequently the cardinal-

ity of Hom(F}, V)is ¢'™. Now, let f = fz =) 3 [T] Q,(x) be the polynomial of

Corollary 2.2. Then it follows from (2.2.2) that g™ = f(¢"). Consequently, since
t is arbitrary, it follows that f(x) = x™. From (3.2.1) and the first equation of
(2.2.1), we obtain that

-G

Consider finally Equation (2.2.3). By (3.0.1), or directly, the left hand side of
(2.2.3) is Q,(¢g™. The polynomial f on the right hand side of (2.2.3) is f = x™
Therefore, Equation (2.2.3) implies the following equation,
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0. = 3 (~ g m @y

The latter equation holds for all m. Therefore it implies the following equation of
polynomials,

(3.2.3) 0.9= 3 (—1qd mx
i=0

ReEMARK 3.3. The results of 3.2 were obtained for the given prime power q.
However, the results imply corresponding results for an element g which is
transcendental over Z. Indeed, when ¢ is transcendental, the g-binomial coeffi-

cient [r] is a quotient of polynomials in g with integer coefficients and the

denominator is a monic polynomial in g. It follows from the interpretation of
t]. . .

(3.2.1) above, that the value of [r] is integral when evaluated on any prime

power. Therefore, the g-binomial coefficients are polynomials in g with integer
coefficients. Consider next the two sides of Equation (3.2.2) when g is transcen-
dental. The two sides are polynomials in g, and equal when ¢ is a prime power.
Therefore, Equation (3.2.2) holds when ¢ is transcendental. It follows similarly
that Equation (3.2.3) holds in the transcendental case.

4. Matrices with different rows.

Consider the set of all m x t matrices whose rows are non-zero and mutually
distinct. Let V:= F",and denote by ¢, . . ., {, the dual of the canonical basis of V.
Then, clearly, the latter set of matrices can be identified with the set of linear maps
Homyg (F;, V) defined by the following family 2 of subspaces of V: A subspace
U belongs to 92, if and only if the functionals &; when restricted to U are non-zero
and mutually distinct.

Clearly, the number of matrices in Homg(F}, V) is (¢ — 1)(¢' — 2)...(¢" — m).
Therefore it follows from Equation (2.2.2) that the polynomial of Corollary 2.2 is
f(x) =(x — )(x — 2)...(x — m). Hence, from Formula (2.2.5), we obtain the
following result of Carlitz [C3].

PROPOSITION 4.1. The number 6,(t,m) of m x t matrices of rank r with entries in
F,, whose rows are non-zero and mutually different, is given by the following
expression,

o,(t,m) = IHomgr(F;, F;")| = l::;l '_io(_ l)lq(;)l:::l(qr—l _ 1)(qr—i _ 2)”.(qr—i —m).
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NoTE 4.2. The interest in the numbers 6,(t,m) originally comes from their
applications to coding theory. They appear in the investigations of the distribu-
tion of multigrams in solutions of maximal length of linear recurring sequences
associated to linear codes. For more details see §7-10 of [Ls].

5. Matrices with quadratic symmetric conditions on the entries.

In this section the prime power g will be assumed to be odd. Let S be a regular
symmetric bilinear form on V. In a given basis of V¥, identify S with a regular
symmetric m x m matrix S. Consider the set of all m x t matrices X such that

X'SX =0.

Clearly, the latter set of matrices can be identified with the set Hom (F}, V) of
linear maps defined by the set & of subspaces of V that are isotropic for S. Recall
that a subspce U < V is said to be isotropic for the bilinear form S if S is equal to
zeroon U.

5.1. Define for ¢ = +1 a function ¢%m) as follows: If m is odd, ignore the
argument &, and set

r m+1—2|'_1

o(m):= [] |

+ —i _—'—l
. + 1) " - )
i=1 qg—1

='(
1 &

q_

If m is even, set

r m+1—2i+8 -1 %—i_l
oimy:= [ & (g — 1)

i=1 q -1

r
= 1"[
i=1

m_ .

(g2

m+2~2i -1

e e D £ 4
ql—l q2+8 i=1 q -1

(where the last equation assumes m > 0 or ¢ + — 1). Note that the numerator in
the above products contains 0 as a factor when r is large. More precisely,

r> when m is odd,
m .
gi(m) =0 < r>7 when mis even and ¢ = 1.
m .
r>—2——1 when mis even and e = —1.

LEMMA 5.2. Let S be a regular symmetric form on V. If the dimension m of V is
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even, define ¢ = ¢&S) as +1 or —1 according as (— 1)% det S is a square or
a non-square in F}. Then, the number of isotropic subspaces of dimension r for the
form S is equal to the following expression,

|| = ay(m).

Proor. The starting point of the proofis the following well known formula for
the number of solutions in V to the equation S(x, x) = 0. The number of solutions
isequal to g™ ' if mis odd, and equal to g™ ! + &(q — l)q%‘ Lifmis even, see [D,
Theorems 65 and 66, pp. 47-48]. Hence the number of non-zero solutions to
S(x,x) = 0 is equal to the expression,
| when m is odd,

(-21) oimg -1 = {

@ ' +eg—1)g2 ' —1 when m is even.

The number |.%;| of dimension-1 isotropic subspaces is obtained by dividing the
latter expression by ¢ — 1. Therefore, the formula of the Lemma holds for r = 1.
Clearly, the formula holds for r = 0. In particular, the formula holds for m = 1
and m = 2. The formula is proved in the general case by induction on m.

Assume that m > 2. Then there are 1-dimensional isotropic subspaces of ¥,
because the expression (5.2.1) is positive. Fix a 1-dimensional isotropic subspace
Lof ¥, and consider its “orthogonal complement” L*. If v is a generator of L, then
I is the set of all vectors u such that S(u,v) = 0. The complement L* is of
dimension m — 1, because S is regular. Moreover, L contains L, because L is
isotropic. The restriction, S*, of S to L* is not regular, since L is contained in the
null space of S*. However, consider the form S, induced by S* on the quotient
Vo:= LY/L. Then, as will now be shown, the form S, is regular; moreover,
dim Vy = m — 2 and, if m is even, then &3S) = &So).

To prove the latter assertions, choose a generator v for L, extend the vector v to
a basis (v, u,, ..., u,_ ) for L', and extend the latter set with a vector w to a basis
(v,w,uy,...,u,_,)for V. In the latter basis, the form S corresponds to a matrix of
the following form,

0 a 0 .. 0
a
0
: So

0

where a = S(v,w) and S, is an (m — 2) x (m — 2) matrix. By Laplace develop-
ment of the determinant of S we have that det S = —a? det S,. The matrix S, is
a matrix of the form S, defined above. Therefore, the form S, is regular and, for
m even, &S) = &3S,). Hence the assertions hold.
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Consider the set of all isotropic subspaces containing L. Clearly, every iso-
tropic subspace containing L is contained in L*. Therefore, the isotropic subspa-
ces containing L correspond bijectively to the isotropic subspaces in ¥, for the
form S,. Hence, by the induction hypothesis, the number of isotropic dimen-
sion-r subspaces containing L is equal to ¢%_;(m — 2). In particular, the number
is independent of L. Therefore, for r = 1, the number |.%,| of all isotropic dimen-
sion-r subspaces is equal to ¢¢_,(m — 2) multiplied by the number ¢5(m) of L’s
and divided by the number (¢ — 1)/(g — 1) of L’s contained in a dimension-r
subspace. Hence we obtain the equation,

ai(m)(q — 1)

7=

"oy 4(m—2).
The numerator of the fraction is equal to the expression (5.2.1). The asserted
formula follows from the definition of o%(m).
From Lemma 5.2 and Formula (2.1.1), we obtain the following result.
PROPOSITION 5.3. Consider the m x t matrix solutions X to the equation,
X'SX =0.
The number a,(t,m) of rank-r solutions is given by the expression,
(5.3.1) o,(t,m) = [Homy, (F%, F7)| = oX(m)Q.(q),

and the total number o(t, m) of solutions is given by the expression,

(53.2) a(t,m) = [Hom o (F3, F7)| = Y. ai(m)Q.(q")

where the summation is from r = 0 to the upper limit given by the inequalities
following the definition of ¢ in 5.1.

ExaMPLE 5.4. The determinant of the form S is well defined modulo the
subgroup of squares, (F;‘)z. If m=0 (mod 4), then &S)=1 if and only if
det Se(F)?%ifm = 2(mod 4), then &(S) = 1ifand onlyif —det S e (F¥)>. For small
values of m we obtain the following expressions for a(t, m):

a(t, 1),

Nt if —detS¢(FX?
O'(t, 2) = {1 + Z(qt _ 1) if —-detSE(F.’;)Za

ot,3)=1+(q+ )¢ - 1),
ot,4) =1+ (g> + )¢ —1) if detS¢(F¥?>
Finally, when m = 4 and det Se(F})?,
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o(t,4) = 1+ (g + g — 1) + 2q + 1)(¢' — 1)(d' — 9)

Note 5.5. The expression for the number o,(t, m) in (5.3.1) seems to be new.
The number a(t, m) in (5.3.2) was considered by Carlitz [C1, Theorem 4, p. 131],
who obtained a different expression. The result of Carlitz is the following: The
product g¥¢* "™ g(¢ m) is equal to the following expression when m is odd:

) N Z 1 HZr l t—-i)

1<2r<t l_[l 1(1 _q—Zi) ’

and equal to the following expression when m is even:

B l_[Zr 1(1 _ qt 1) B HZr 2(1 _ q i)
1+ mr T _gq&m mr —5r
1<§-§tq H1=1(1 - 2) 1<2rZ§t+1q l—[z=l(1 2)

Comparing the expressions (5.3.2) with the expressions of Carlitz we obtain
ag-identity foreachm = 1,2,.... The expressions of Carlitz can be interpreted as
special values of certain generalized hypergeometric series, see [C1]. The identity
obtained for m = 1 was observed by Carlitz [C1, Formula (4.9), p. 129]. It is the
following:

m+1—i)

qim(m+1) = z ~—2r I—IZV 1

0§2r§m+1 H; 1(1 *‘1~2l)

6. Matrices with quadratic alternating conditions on the entries.

Let again g be an arbitrary prime power. Assume that the dimension m of V is
even. Let A be a regular alternating bilinear form on V. In a given basis of ¥
identify A with a regular alternatingm x mmatrix A. Consider theset ofalim x ¢
matrices X such that

X'AX = 0.

Clearly, the latter set of matrices can be identified with the set of linear maps
Hom,, (F;, V) defined by the set .o of subspaces of V that are isotropic for A.
Recall that a subspace U < Vis said to be isotropic for the bilinear form A4 if 4 is
equal to zero on U. It is easy to determine the number |.«#,| of isotropic dimen-
sion-r subspaces. Indeed, consider a basis (v4,...,v;) for an i-dimensional iso-
tropic subspace U. Let v be an arbitrary vector. Then (vy, ..., v;, v) is a basis for an
(i + 1)-dimensional isotropic subspace, if and only if v¢ U and ve U. The
complement U+ has dimension m — i because 4 is regular and U < U~ because
A is alternating. Hence the number of possible v’s is equal to g™ ~* — ¢'. It follows
by induction that the number of bases of isotropic dimension-r subspaces is equal
to the product,
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@ —-Da" =@ 2 =¢)...@" " =g ).

Hence, the number of isotropic dimension-r subspaces is equal to the latter
product divided by the number of bases for an r-dimensional subspace, that is,
divided by Q,(q"). Thus the number of isotropic dimension-r subspaces of V is
equal to

r m+2— 21_1

a4, (m) = nq

Therefore, from Formula (2.1.1) we obtain the following result.
PROPOSITION 6.1. Consider the m x t matrix solutions X to the equation,
X'AX =0.

The number a,(t, m) of rank-r solutions X is given by the expression,

r m+2—-2i 1

6.1.1) a(t,m) = [Hom 4 (F, V)| = ] LFT“ 0,(a),

i=1
and the total number a(t, m) of solutions is given by the expression,

mi2 r m+2—2i

612 aGm) = Homu(F, V) = 3 [T —— Lo.q).
r=0i=
NoOTE 6.2. It follows from the expressions for the number a,(m) above and the
number o,(m) in Section 5 that the following equation holds,

%,(m) = a,(m + 1).

The latter equation has the following interpretation that seems to the authors to
be a strange coincidence. Work over a finite field with an odd number g of
elements. Assume that mis even. Let 4 be an alternating regular m x m matrix
and let S be a symmetric regular (m + 1) x (m + 1) matrix. Then the number of
dimension-r isotropic subspaces for A4 is equal to the number of dimension-r
isotropic subspaces for S.

NoOTE 6.3. An alternative expression for the number a(t,m) in (6.1.2) was
obtained by Carlitz in [C2, Theorem 4, p. 25] using exponential sums. The result
of Carlitz is the following:

2r— 1(1 _ q i)
a}t(t—-l)a(t, m) — m(t—r)—2r n =
1 0§22:r§tq I_L=1(1—‘1 %)

In [C2], the exponent of g in the first term in the sum was erroneously given as
m(2t —r) —
Asin Section 5, the expressions of Carlitz can be interpreted as special values of
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b=

hypergeometric series. Comparing the expression of Carlitz with the expression
(6.1.2) we obtain for an even integer m the following g-identity:

gre-n-r Lot~ ¢1_';') _ q%t('_l)mZ/:z l_r_I (gn*2-2 - g — ¢ Y ‘
0Z2rst l—[:‘=1(1—q l) o0i=1 ql_l

7. Recursion formulas.

In this section we return to the setup of Section 1. We prove a recursion formula
for the coefficients in the interpolation formulas. When applied to the sequence
Ji:= ¢~ !, we recover the recursion formulas for the numbers ¢,(t, m) and J,(t, m)
considered in Sections 4 and 5.

LemMMA 7.1. The polynomial f(x) can be factored in R[x] asf(x) = (x — A)g(x) if
and only if the recursion formulas,

1)t

or equivalently, the formulas

[f ] Q) = (1 z)[“j] 0.00) + (x - “[r M l]Q,Al(x),

r
hold forr = 1,2,....
ProOF. All the assertions of the Lemma follow immediately from the formulas

(x = AQ(x) = (4r+1 — HGp(x) + Qr44(x) for r=0,1,....

7.2. As we saw in Section 3 and 4, the two conditions (1) and (2) considered in
the Introduction correspond to the numbers ¢,(t,m) and 6,(t,m) defined in
Proposition 3.1 and Proposition 4.1. By Formula (2.2.4) and Note 3.2,

Jm

r

o, (t,m) = |: ]Qr(q‘)’

where f, = x"™. Hence, by applying Lemma 7.1 to the factorization
Ju(x) = xf, - 1(x), we obtain the following recursion formulas of Landsberg [Lb],

¢r(ta m) = q’¢r(t9m - 1) + (q‘ - qr~1)¢r~l(t’m - 1)
Similarly, by formula (2.2.4) and the analysis of Section 4,
Som

r

0,(t,m) = [ j]Qr(qt)
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where f,(x) =(x — )(x —2)...(x — m). Here f,(x)=(x —m)f,_,(x), and we
obtain the recursion formulas of Laksov [Ls],

6r(ta m) = (qr - m)ér(tom - 1) + (qt - qr_l)ér-l(t’m - 1)
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FREE ARCHIMEDEAN /-GROUPS

DAO-RONG TON and KAI-YAO HE

Abstract.

In this paper we discuss the existence and description of the free archimedean I-group #,,([G, P])
generated by a po-group [G,P], and give some properties of the free abelian I-group (the free
archimedean I-group) &, of rank a.

We use the standard terminologies and notations of [ 1, 5,9]. We assume that all
groups considered will be abelian. The group operation of an I-group is written
by additive notation. Let G be an l-group and S = G. We denote by [S] the
l-subgroup of G generated by S. The convex [-subgroup generated by an element
g€ G is denoted by G(g). A po-group is a partially ordered group [G, P] where
P = {xeG|x = 0} is the positive semigroup of G. P is said to be semi-group if
pe€ P whenever pe G and np € P for some positive integer n. Let G and H be two
po-groups. A map ¢ from G into H is called a po-group homomorphism, if ¢ is
a group homomorphism and x = y implies ¢(x) = ¢(y) for any x, yeG.
A po-group homomorphism ¢ is called a po-group isomorphism if ¢ is an
injection and ¢ ~! is also a po-group homomorphism. We use N and Z for the
natural numbers and the integers, respectively.

1. Sub-product Radical Class of Archimedean /-groups.

A family % of I-groups is called a sub-product radical class, if it is closed under
taking 1) I-subgroups, 2) joins of convex I-subgroups and 3) direct products. All
our sub-product radical classes are always assumed to contain along with a given
l-group all its l-isomorphic copies. Let % be a sub-product radical class and G be
an l-group. Then the join of all convex I-subgroups of G belonging to % is the
unique largest convex l-subgroup of G belonging to #. It is denoted by %(G) and
is called a sub-product radical of G. %(G) is a characteristic l-ideal of G.

An Il-group G is said to be archimedean if it satisfies one of the following three
equivalent conditions:

Received October 6, 1992.
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1. For any 0 < a,beG, there exists ne N such that nb £ a.

2. Forall q,beG,ifnb < aforallneZ,thenb = 0.

3. Foralla,beG,ifnb < aforallneN,thenb £0.

Let G be an I-group. An element ae G is archimedean if a = 0 and if for all
0 < b £ a, there exists ne N such that nb £ a [12, 18]. Let P(G) be the set of all
archimedean elements of G. An element a € G is said to be generally archimedean
if the positive part a* and the negative part a~ are both archimedean. The
following lemma is easy to show using [18].

LemMMA 1.1. Let G be an l-group and g€ G. Then the following are equivalent:
(1) g is generally archimedean.

(2) |g| is archimedean.

(3) G(g) is archimedean.

(4) G(lgl) is archimedean.

Let .o/r be the family of all archimedean [-groups. /1 is a quasi-torsion class
[13], that is, «/r is closed under taking 1) convex l-subgroups, 2) joins of convex
I-subgroups and 3) complete I-homomorphisms. It is clear that o/r is closed
under taking l-subgroups and direct products. So /r is a sub-product radical
class. Let G be an [-group. Then there exists a unique largest archimedean
I-subgroup of G, the «/r radical o/r(G). Clearly, G is archimedean if and only if
G = or(G). In [18] it was proved that the I-subgroup A(G) of G is the unique
largest archimedean convex I-subgroup of G. In [12] J. Jakubik also proved the
existence of such A(G). So we have «/r(G) = [P(G)]. By Theorem 1.3 of [5]
r(G) consists of the elements g = x — y where x,ye P(G)and x A y = 0. Infact,
x=g"* and y = g~. And so such g are generally archimedean. Conversely, if
g€ G is a generally archimedean element, then g € o/r(G). Thus Lemma 1.1 infers

Lemma 1.2. or(G) = [P(G)]
= {geG|g is generally archimedean}
= {geG|lgle P(G)}
= {ge G| G(g) is archimedean}
= {ge G| G(lg|) is archimedean}.

COROLLARY 1.3. The set of all generally archimedean elements of an I-group G is
closed under the addition, inverse, met and join.

So we obtain a useful result.

PrOPOSITION 1.4. Suppose that an l-group G has a set of generators which
consists of generally archimedean elements. Then G is archimedean.

In what follows we will give an application of Proposition 1.4.
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2. Free Archimedean /-group Generated by a po-group.

A partial l-group G is a set with partial operations corresponding to the usual
l-group operations . , —1, 1, v and A such that whenever the operations are
defined for elements of G then the I-group laws are satisfied. Suppose [G, P] is
a po-group. Then G has implicit partial operations v and A as determined by
the partial order. That is,

xvy=yvx=yifandonlyifx £y and
xAy=yax=x ifandonlyif x < y.

Using these two partial lattice operations together with the full group operations,
G can be considered as a partial I-group. Thus we have the following definition as
a special case of the #-free algebra generated by a partial algebra.

DEFINITION 2.1. Let % be a class of I-groups and [G, P] be a po-group. The
l-group 4 ([G, P)) is called the %-free I-group generated by [G, P] (or %-free
I-group over [G, P)) if the following conditions are satisfied:

(1) Za([G, PDe%;

(2) there exists an injective po-group isomorphism a: G — % ([ G, P]) such
that a(G) generates %4 ([ G, P]) as an [-group;

(3) if Ke% and B:G — K is a po-group homomorphism, then there exists an
I-homomorphism y: %4([G, P]) = K such that ya = f.

(G, P] . > Za([G, P))

’ b
K

The classes of I-groups which will be refered to are «/r and the following:
&, the class of all I-groups,
o, the class of all abelian I-groups.

&£, o and Ar are all sub-product radical classes of I-groups.

In 1963 and 1965, E. C. Weinberg initially considered the «/-free I-group
generated by a po-group [G, P]. He has given a necessary and sufficient condi-
tion for existence and a simple description of Z,([G, P]) as follows:

PRrOPOSITION 2.2. [17,18]. Let [G, P] be a torsion-free abelian po-group.

(1) There exists an o -free I-group %4([G, P]) generated by [ G, P] if and only if
there exists a po-group isomorphism of [ G, P] into an abelian I-group, if and only if
P is semi-closed.

(2) Let 2 bethe set of all total orders T of G suchthat P = T. Then %,([G,P]) is
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the sublattice of the direct product [] [G, T] which is generated by the long
constants {g) (g€ G). Te?
The elements of %4([G, P]) have the form

x =\ A {xi)

iel jeJ
where I and J are both finite and x;;€ G (iel, jeJ).
In 1970, P. Conrad generalized Weiberg’s result.

PROPOSITION 2.3 [6]. Let [G, P] be a torsion-free po-group.

(1) There exists an ¥-free I-group F,([ G, P]) generated by [ G, P] if and only if
there exists a po-group isomorphism of [ G, P] into an I-group, if and only if P is the
intersection of right orders on G.

(2) Suppose that P = ﬂ P; where {P,|Ae A} is the set of all right orders of

Aed

G such that P, 2 P. If G, is G with one such right order, then denote by A(G,) the
l-group of order preserving permutations of G,. Each xe G corresponds to an
element p, of A(G;) defined by p.g = g + x. Then F4([G, P]) is the sublattice of
the direct product H A(G;) which is generated by the long constants {g)(g€G).
Aed

In this section we will discuss the «/r-free I-group %, ([G, P]) generated by
a po-group [G, P]. Because /r is a sub-product radical class of I-groups, by
Gritzer’s existence theorem on a free algebra generated by a partial algebra (see
Theorem 28.2 of [10]) we have

THEOREM 2.4. There exists an sfr-free l-group %4([G,P]) generated by
a po-group [G, P]if and only if [ G, P] is po-group isomorphic into an archimedean
l-group.

Now suppose that a po-group [G, P] is po-group isomorphic into an ar-
chimedean [-group [F’, F'*] with the po-group isomorphism 6. Thus [G, P] must
be torsion-free abelian and semi-closed. By Proposition 2.2(1) there exists the
of -free I-group Z,([G, P]) generated by [G, P] with the po-group isomorphism
o of [G, P] into %, ([G, P]). By definition 2.1 there exists an [-homomorphism
y from %, ([G, P]) into F’ such that ya = . Let D = {F, | A€ A} be the set of all
archimedean l-homomorphism images of %,([G, P]) with the [-homomorphism
B,- Thus yZ,([G, P]) e D and D is not empty. For each A€ A, y,a is a po-group

homomorphism of [G, P] into F;. The direct product [] F; is an archimedean
Aed

l-group. Let © be the natural map of the po-group G
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[F,F"] «——1— Z((G,P)

a

di
(G, P] : Fc[lF
8 ﬂ‘l AeA
(L, L*]

onto the subgroup G’ of long constants of [| F;. That is, n(g) = (---,7;a(g),"*")

Aed
for ge G. Because ya = § is a po-group isomorphism, x is a po-group isomor-
phism of G onto G'. Let F be the sublattice of || F; generated by G'. For each
JeA

geG, let g = n(g) denote the long constant of G'. Since [] F; is a distributive
lattice, the sublattice generated by all g’ is Aed

F = {\/ N 9i;19:;€G, I and J ﬁnite}.

iel jeJ
Suppose that f is a po-group homomorphism of [G, P] into an archimedean

l-group [L,L']. Then there exists an [-homomorphism y’ of %, ([G, P]) into
[L, L*] such that ya = B. So ¥’ %,([G, P])e D. Now we extend f to F as follows:

ﬂ*<\/ A g£j> =V A B(gij)-
iel jeJ iel jeJ
To see that §* is well defined, suppose that
NV AB@)F+ N N Blhma)-
iel jeJ meM neN
Then we have
VAV V B@ij— hmsem) +0
iel jeJ meM feNM
in [L, L*]. Because y' %, ([G, P])e D,
VAN V B@;— tum) £0
iel jeJ meM feNM
in F. That is, we have
VAGi+ V N h
iel jeJ meM neN

in F. Therefore f* is single valued.
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That f* is a lattice homomorphism is an immediate consequence of the fact
that L is a distributive lattice. Now consider g = \/ A\ gi;;andh= \/ /\ h,,in

iel jeJ meM neN
F.

Bfg—mW=NN N V @ij— hmsom)

iel jeJ meM feNM

VAN VYV B@ij — hmgom)

iel jeJ meM feNM

VA B@)— NV N Blh)

iel jeJ meM neN
= p*(9) — B*(h).
Hence p* is an I-homomorphism of F into L and f*r = §.
The above discussion proves the following theorem.

THEOREM 2.5. Suppose that a po-group [ G, P] is po-group isomorphic into an
archimedean I-group. Then the sfr-free I-group %,,([G, P]) generated by [ G, P] is

the sublattice F of the direct product H F; which is generated by the long constants
AeA

g' (g € G) where {F, | A€ A} are all archimedean I-homomorphic images of the </ -free
I-group %4([G, P]) generated by [G, P].

NoTE. Suppose that a po-group [G, P] is po-group isomorphic into an ar-
chimedean I-group. By Proposition 2.3 there exists an #-free I-group % ([ G, P])
generated by [G, P]. If we take % ([G, P]) instead of Z,([G, P]) in the above
discussion, we obtain another description of %,,([G, P]).

Let % be a class of algebras and X be a nonempty set. The algebra %4(X) is
called the %-free algebra on X if X generates %,,(X) as an algebra, and whenever
Le% and A: X — L is a map, then there exists a homomorphism o: %(X) — L
which extends 1. By Birkhoff’s Theorem ([4]) there exists a #-free algebra % (X)
on any nonempty set X if % is closed under subalgebras and direct products. Let
% be a class of I-groups and X be a nonempty set with | X| = a. Then the %-free
l-group %%(X) on X is said to be of rank a. We can construct the #-free I-group
Fa(X) on X using the #-free I-group generated by a trivially ordered group. Let
% be a class of I-groups which is closed under I-subgroups and direct products.
We denote by 4(%) the class of all groups that can be embedded (as subgroups)
into the members of %. It is clear that (%) is closed under subgroups and direct
products.

PROPOSITION 2.6. Let % be a class of I-groups which is closed under l-subgroups
and direct products and X be a nonempty set. The #-free I-group %5(X) on X is the
A -free l-group generated by the 4(U)free group on X with trivial order.
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Proor. By Birkhoff’s Theorem there exists the %(%)-free group Fga,)(X) on
X. ZyaX)e9(U) means Fgq)(X) can be embedded (as a subgroup) into
a member of #. By Theorem 28.2 of [10] there exists a #-free l-group
Fa([Fs@)(X), {0}]) generated by the trivially ordered %(%)-free group Fya(X).
Now any map from X into an l-group Le% can be extended to a group
homomorphism of F,(X)into L and hence to an I-homomorphism of % 4, (X)
into L and hence to an I-homomorphism of %o ([ Ze@)(X), {0}]) into L.

Theorem 2.7 of [14] is a special case of the above Proposition 2.6. The
following theorem is a consequence of Proposition 2.6.

THEOREM 2.7. Let X be a nonempty set. The o/ r-free I-group %4,(X) on X is the
Ar-free l-group generated by the G(fr)-free group Fg .4(X) with trivial order.

X - ‘g'.g(dr)(X) - 'g'..dr(X)

PRrOPOSITION 2.8. Suppose that %,,([G, P,]) and %4,([G, P,]) are the L r-free
I-groups generated by po-group [G, P,]) and [G, P,], respectively. If P, = P,. Then
Z4:([G, P,]) is an I-homomorphic image of %4,([G, P1]).

ProoF. [G, P,]canbeembedded into £%,,([G, P,]) asa po-group and G gener-
ates Z,,([G, P,]). So [G, P,] is also embedded into £,,([G, P,]) as a po-group.
Hence there exists an [-homomorphism ¢ from %, ([G, P;]) into %,,.([G, P,]).
But [G, P,] can be embedded into £, ([G, P,]) as a po-group and G generates
Z4([G, P,]). Therefore ¢ is onto £,,([G, P,]).

3. The Relation between Z,([G, P]) and £%,,([G, P)).

In [6] P. Conrad has given the relation between the .#-free I-group % (X) and
the o7 -free I-group %,(X) on a nonempty set X. Let Y be the l-ideal generated by
the commutator subgroup [ % (X), Z#(X)]. Then %, (X) =~ F(X)/Y.

In this section we will give the relation between Z,([G, P]) and Z,,([G, P]).
Clearly, if Z,([ G, P]) is archimedean then %,([G, P]) = %,.([G, P]). We will give
anecessary and sufficient condition in which Z,([G, P]) is archimedean. First we
need some concepts. Let [G, P] be a torsion free abelian po-group and S be
a nonempty subset of G. S is said to be positively independent if for any finite

k
subset {x;,**,x,} of S and non-negative integers {1y,..., 4}, ¥, 4x;€ —P only
i=1

ifA; = 0(i = 1,...,k). Thereexists a total order P, of G such that P, = P U Sifand
only if Sis positively independent. Let x = \/ A {x;;> € Z/([G, P]). Thenx £ Oif
iel jeJ
and only if for some i€ the set {x;;|j€ J} is positively independent [3].
A po-group [G, P] is said to be strong uniformly archimedean if, given ue G
and a positively independent subset {v, ..., v, } of G, there exists n € N such that if
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k

Ay, +, A are non-negative integers and Y A, 2mn with meN, then
i=1

k
Aiv; £ mu.
)

13

THEOREM 3.1. The o/ -free l-group %,([G, P]) generated by a po-group [G, P} is
archimedean if and only if [ G, P] is strong uniformly archimedean.

PROOF. Necessity. Suppose that ue G and {vy,...,v,} is a positively indepen-
dentsubset of G. Then, {v,>* A - A (0> F 0in Z ([ G, P)). Since %, ([G, P])
is archimedean, there exists ne N such that

n( o) A A o)t = (o) A A o)) £ upt
It follows that if A=n, AKv> A ALue)) £ <u). Now if A,,---, 4 are

non-negative integers and Z A; 2 mn with me N, then we have
i=1

k k
Z, Aoy 2 (Z 1i)(<vl> A AKo) £ mlup,

k
because P is semi-closed and mn({v) A -+ A {0y)) §(Z /1,->(<01> A A
i=1
{ve)) £ m{u) would imply n({v;> A -+ A (v ») < {u), a contradiction. Hence
k
we have Y Av; £ muin [G, P].
i=1

Sufficiency. It follows from Proposition 1.4 that it suffices to show that {g) is
generally archimedean in %, ([ G, P]) for each g € G. And because G is a group and
g~ =(—¢) v 0,it suffices to show that g* is archimedean in Z,([ G, P]) for each
geG. Let geG and 0 < x = \/ A\ {x;;) € %([G, P]) where x;;e G. We must

iel jeJ
show there exists n € N such that nx £ ¢*. Since x > 0, the set {x;;|jeJ} is
positively independent for some i. It suffices to show that there exists ne N such

that n(/\ (x;;) £ {g> v 0. And so it suffices to show that if {v;," -, v} is
JjeJ

a positively independent subset of G and g € G, then there exists ne N and a total

order T of G suchthat T 2 P,v;e Tand ny; — ge T(i = 1,- -+, k). Then, lifting the

identity map of [G, P] onto [G, T] to an l-homomorphism of %, ([G, P]) onto
[G, T] we would have /k\ [(nv; — g) A nv;] £ 0, and so n(/k\ v,-) fgvo.
It therefore suffices t: ;how that there exists ne N so thz;t= ;he set
{vli=1,..k}u{n;,—gli=1,... k}

is positively independent. Because [G, P] is strong uniformly archimedean, there
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k

exists ne N such that if 4,,. .., 4, are non-negative integers and Y, A; = mn with
i=1

k
meN, then Y Aw; £mg. Suppose that py,...,u and vy,...,v, are all

i=1

non-negative integers and

k

k
Y v + 2 vi(nv; — g)e —P.
i=1 i=1

k k
Then Y, (u + nvy; < ( Z v,-)g which contradicts the choice of n unless all v;

i=1 i=1
are zero and then contradicts positive independence of the v; unless all y; are zero.

Thus {v;|i = 1,...,k} U {ny; — g|i = 1,..., k} is positively independent.

COROLLARY 3.2. Suppose that a po-group [ G, P] is po-group isomorphic into an
archimedean I-group. Then %[ G, P]) = %,,([G, P]) ifand only if [G, P] is strong
uniformly archimedean.

Let G be a group. A nonempty subset S of G is said to be indepedent if for any
k
finite subset {x;,...,x;} of S and non-negative integers {4y,..., 4}, 3. 4x; =0
i=1

only if ;=0 (i = 1,---,k). Clearly, S is independent in G if and only if S is
positively independent in the po-group [G, {0]}] with the trivial order. Let G be
a torsion-free and abelian group. Weinberg has proved that the «/-free I-group
%4 G, {0}]) is archimedean (Corollary 3.4 of [17]). From this we get

COROLLARY 3.3. Suppose that G is a torsion-free and abelian group. Givenue G
and an independent subset {v,...,v;} of G, then there exists ne N such that if
k k

Ats..., A are non-negative integers and Z A; = mnwithmeN, Z Aiv; &+ mu.

i=1 i=1

4. Some properties of an archimedean /-group.

In order to discuss properties of %,,([G, P]) we need to know some properties of
an Archimedean I-group. First we introduce some concepts. Let {G,|ae A} be
a system of [-groups. For ge [] G,, we denote by g, the « component of g. An

acA
l-group G is said to be an ideal subdirect sum of Il-groups G,, in symbol
G =* [] G,,if Gis a subdirect sum of G, and G is an l-ideal of [ G,. An I-group
aeA aeA
G is said to be a completely subdirect sum, if G is an l-subgroup of [| G, and
aecA

Y. G, = G. We use the symbol <’ to denote subdirect sum. Let G be an I-group.
a€cAd

We denote by vG the least cardinal a such that |4 < a for each bounded disjoint
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subset 4 of G. G is said to be v-homogeneous if vH = vG for any convex
I-subgroup H # 0 of G. A v-homogeneous I-group G is said to be v-homogeneous
of a typeif vG = a. By Theorem 3.7 of [ 11] it is easy to verify the following lemma.
The proof is left to the reader.

LEMMA 4.1. Any complete l-group is l-isomorphic to an ideal subdirect sum of
complete v-homogeneous l-groups.

By using 4.3 of [11] it is easy to verify that if an I-group G is v-homogeneous and
non-totally ordered, then vG = N,. It is well known that any non-zero complete
totally ordered group is l-isomorphic to a real group R or an integer group Z. So
from Lemma 4.1 we obtain the structure theorem of a complete /-group.

THEOREM 4.2. Any complete l-group G is l-isomorphic to an ideal subdirect sum
of real groups, integer groups and complete v-homogeneous l-groups of W; type
i=0).

THEOREM 4.3. Let G be an archimedean v-homogenous I-group of ¥X; type. Then
G has the following properties:

(1) G has no basic element.

(2) G has no basis.

(3) The radical R(G) = G.

(4) G is not completely distributive.

(5) The distributive radical D(G) = G.

Moreover, every non-trivial convex l-subgroup of G enjoys these same five
properties.

ProoF. By Theorems 5.4 and 5.10 of [5] we need only to show (1). For any
0 < geG, vG(g) = N; > 1. So G(g) is not totally ordered, and [0, g] is also not
totally ordered by 4.3 of [11].

An l-group G s said to be continuous, if forany0 < xe Gwehavex = x; + x,
and x; A x, =0where x; $0,x, F0.

LEMMA 4.4 (Lemma 2.4 of [20]). A4 complete I-group G is continuous if and only
if G has no basic element.

An l-group G is said to be projectable if each of its principal polars is a cardinal
summand. The following lema is clear.

LEMMA 4.5. Let G be a projectable (in particular, complete) and non-totally
ordered l-group. Then G is directly decomposable.

An Il-group G is said to be ideal subdirectly irreducible if G cannot be expressed
as an ideal subdirect sum of I-groups.
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LEMMA 4.6 (Lemma 2.6 of [20]). A complete I-group G is directly indecompos-
able if and only if G is ideal subdirectly irreducible.

LemMA 4.7 (Lemma 2.7 of [20]). An archimedean l-group G is subdirectly
irreducible if and only if the Dedekind completion G" of G is ideal subdirectly
irreducible.

Now from Lemma 4.4, Lemma 4.5 and Lemma 4.6 we have

THEOREM 4.8. Let G be a complete v-homogeneous I-groups of N; type. Then

(1) G is continuous.

(2) G is directly decomposable.

(3) G is not ideal subdirectly irreducible.

Moreover, every nontrivial convex l-subgroup of G enjoys these same three
properties.

From Lemma 4.7 and Theorem 4.8 we obtain

COROLLARY 4.9. An archimedean v-homogeneous l-group of NX; type is not
subdirectly irreducible.

A subset D in a lattice L is called a d-set if there exists xe L such that
d, A d, = x for any pair of distinct elements of D and d > x for each de D. We
denote by w[a, b] the least cardinal « such that |D| < « for each d-set D of [a, b].

LEMMA 4.10. Let G be a v-homogeneous I-group of ¥; type and be a dense
I-subgroup of an l-group G'. Then G’ is also a v-homogeneous I-group of ¥; type.

Proor. Suppose that H is an arbitrary convex Il-subgroup of G. Let
H = H' N G. Then H is dense in H' and H is a convex l-subgroup of G. We will
prove that vH' = vH. Itis clear that vH' = vH. Let {x, e H'* |a.€ A} be a disjoint
of H' with an upper bound x’. Then there exists x, € H such that 0 < x, < x|, for
each a € A and there exists x € H such that 0 < x < x". Hence {x, A x|a€ A} is
a disjoint subset of H with an upper bound x. Hence |4]| < ¥, and vH' < vH.
Therefore

vH' = vH =vG = N;
and so G’ is a v-homogeneous I-group of ¥; type.
From Theorem 2.6 and Theorem 5.2 of [8] and the above Lemma 4.10 we get

THEOREM 4.11. Let G be an archimedean v-homogeneous l-group of \; type.
Then the Dedekind completion G" of G and the lateral completion G* of G are also
v-homogeneous l-groups of ¥, type.
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LEMMA 4.12. Let G be a v-homogeneous I-group of N, type and {x,|o€ A} be
a disjoint subset in G. Then |A| £ N;.

PROOF. Let G* be the lateral completion of G. By Theorem 4.11 G* is also
v-homogeneous of N; type. Let x be the least upper bound of a disjoint subset
{x,|a€ A} of Gin G*. So {x, |« € A} is a bounded disjoint subset in G*. Therefore
%S

THEOREM 4.13. Let G be a v-homogeneous l-group of W, type. Then the divisible
hull G of G is also a v-homogeneous I-group of N; type.

ProOF. Let P be any nontrivial convex I-subgroup of G%. For any 0 + xe P
there exists ne N such that 0 & nxe P n G. So P n G is also a nontrivial convex
l-subgroup of G. It is clear that vP = v(P n G) = N;. On the other hand,

1
p= {—
ny

1 .
¢ = ;g,- (jeJ, gjeGn P, nje N). By the Bernau representation of an ar-
J

chimedean [-group [2] we see that c; A ¢; = Oifand onlyifg; A g; = 0(j % j).
So {g;|jeJ} is a disjoint subset in G N P. By Lemma 4.12, |J| < X;. Hence vP <
N;. Therefore vP = N;.

geGnP,ne N}. So if {c;|je J} is a bounded disjoint subset in P, let

Now we turn to an archimedean I-group. In [19] we proved the following
result.

LEMMA 4.14. An l-group G is archimedean if and only if G is l-isomorphic to
a subdirect sum of subgroups of reals and archimedean v-homogeneous l-groups of
N; type.

Suppose that G is a subdirect sum of subgroups of reals and v-homogeneous

l-groups of N; type, G <’ [| T;. Let 4, = {6e 4| T; is a subgroup of reals}. If
ded

Y. T; = G, G is said to be a semicomplete subdirect sum of subgroups of reals
ded,

and v-homogeneous I-groups of ¥; type,insymbols Y. T, G<'[] T.
ded1 S 4 ded
THEOREM 4.15. (Theorem 4.7 of [19]). Anl-group G is archimedean if and only if
G is l-isomorphic to a semicomplete subdirect sum of subgroups of reals and
archimedean v-homogeneous I-groups of N; type.

5. Properties of <Z,.

Wedenote by <, the o/ -free I-group %,(X) of rank a. By Proposition 2.6 </, is the
& -free I-group #,([G, {0}]) generated by ¥(#)-free group G with trivial order. It
follows from Corollary 3.4 of [17] that 7, is archimedean. Hence &/, =~ &/r,. We
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have already known some properties of o7, . For example, <, is a subdirect sum of
integers (Theorem 2.5 of [3]); & (a > 1) has a countably infinite disjoint subset
but no uncountable disjoint subset (Theorem 6.2 of [ 16]); every infinite chain in
o, must be countable (Theorem 5.1 of [15]); the word problem for <, is solvable
(Theorem 2.11 of [14]); &/, (x > 1) has no singular elements (Theorem 2.8 of [3]).
In this section we will give further properties of &, using the structure theorem of
an archimedean I-group.

THEOREM 5.1. (o > 1) is an archimedean v-homogeneous l-group of X, type.

Proor. Since &, is archimedean, by Theorem 4.15, without loss of generality,

we have
> Led [T,
ded 1 <4 ded

where each T; (0€ 4,) is a subgroup of reals and each T; (6€4\4,) is an
archimedean v-homogeneous I-group of N; type. By Theorem 3.5 of [3] (or
Theorem 1 of [18]) 4, (« > 1) has no nontrivial direct summands. Hence 4, = @
and &, (a > 1)is a subdirect sum of archimedean v-homogeneous I-groups of ;
type. Let

m Y Ted; <[] T;
ded’ ded’
A=

ded’

where A" = 4\ 4, and each T;(0 € 4') is an archimedean v-homogeneous I-groups
of ¥; type. For any 0 < x € o7,. We denote by «/,(x) the convex /-subgroup in .2/,
generated by x and /;(x) the convex l-subgroup in «/; generated by x. By
Theorem 2 of [18] we have

@ v,y (X) = vty = Ro.

On the other hand, .</,(x) is dense in o/;(x). If {x, | x € A} is a disjoint subset with
an upper bound x, in /;(x). Then there exists x; € o, (x) such that 0 < x; < x,.
Put x,, = x, A x,. Then {x/ | x€ A} is a disjoint subset with an upper bound xj in
o, (x). Hence v/ (x) < vef,(x). And it is clear that v.e/,(x) < v/;(x). Thus,

3 vy (x) = v.oA2(x).

For any d0e4’, put Xx; =(..0..,x5,...0...). Then X, < x. Since
vT54(xs,) = vT;, = Ny where T; (x;,) is the convex I-subgroup of T; generated by
X5, there exists a disjoint subset {x?|fe B} in T; (x,,) such that x? < x; and
IB| 2 8. Thenxf =(...0...,x%,...0...)es/; by (1) and {x#| Be B} is a disjoint

subset with an upper bound X;, in &;(X;,). Hence
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4 vl (%) = v (X5,) Z No.

Combining (2), (3) and (4) we get v.,(x) = N, for any 0 < x € .o/,. Now for any
nontrivial convex l-subgroup K in &7,. Let 0 < xe K. Then

No = vo,(x) £ vK £ v, < N,.
Therefore vK = X, and &, is a v-homogeneous I-group of N, type.
By Theorem 4.3 and Theorem 5.1 we obtain

THEOREM 5.2. of,(o > 1) has the following properties:

(1) o, has no basic element.

(2) <4, has no basis.

(3) The radical R(s,) = oA,.

(4) o, is not completely distributive.

(5) The distributive radical D(4,) = <,.

Moreover, every nontrivial convex l-subgroup of <, enjoys these same five
properties.

By Theorem 3.6 of [7] and the above Theorem 4.11, Theorem 4.13 and
Theorem 5.1 we have

THEOREM 5.3. (1) The Dedekind completion oZ; of <, is a v-homogeneous
I-group of YR, type.

(2) The lateral completion /" of <4, is a v-homogeneous I-group of N, type.

(3) The divisible hull 42 of o, is a v-homogeneous I-group of R, type.

(4) The essential closure oLf of 4, is a v-homogeneous l-group of R, type.

From Theorem 4.8 we get

THEOREM 5.4. The Dedekind completion </, of <, has the following properties:

(1) oA is continuous.

(2) o, is directly decomposable.

(3) «; is not ideal subdirectly irreducible.

(4) o, has a closed l-ideal.

Moreover, each nontrivial convex l-subgroup of </; enjoys these same four
properties.
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ON PRINCIPAL GRAPHS AND WEAK DUALITY

UMA KRISHNAN* and V. S. SUNDER

Abstract.

The main result is that if a finite tree occurs as a principal graph of a subfactor N of a II, factor M of
index greater than 4, if the contragredient maps on the principal graphs are trivial, and if no vertex has
degree greater than 3, then the tree must contain a subgraph isomorphic to what is denoted by E{ in
[GHI] (and by T in this paper). The proof uses a notion that we call “weak duality” of graphs. The
result needed is that certain kinds of graphs can be weakly dual only to themselves. This paper also
contains a proof of the assertion that the distinguished vertex = of a principal graph is essentially
determined up to a parity-preserving automorphism of the bipartite graph.

1. Introduction.

This paper is devoted to a study of the properties of a pair (¢4, #) of pointed finite
bipartite graphs wich arise as a part of Ocneanu’s paragroup invariant of a finite
index subfactor. After setting up some notation and recalling some basic facts
about subfactors, we proceed to analyse the role of the distinguished vertex of the
graph ¥; in particular, we describe the extent of uniqueness of the vertex * up to
a graph automorphism. In the last section, we single out a property possessed by
a pair of principal graphs of a subfactor for which the contragredient maps are
trivial, which we term ‘weak duality’. The main result here is that if a pair of
graphs 4 and s are weakly dual, then % is necessarily isomorphic to J# if
% satisfies some conditions — at most triple points, no double bonds, and the
absence of two specific kinds of subgraphs. This is the technically complicated
part of the paper, although, when suitably combined with an observation by
Ocneanu, it leads fairly easily to a proof of what has been referred to, in the
Abstract, as the main result.

2. Notation and other preliminaries.

In this paper, we will be dealing with bipartite graphs. If ¢ is such a graph, its
vertex set V(%) admits a partition V(%) = 9°] | 4", the vertices of the former

* Research supported by the National Board for Higher Mathematics in India.
Received October 1, 1992; in revised form November 30, 1992.
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(resp., latter) being referred to as even (resp. odd) vertices. (We use the sym-
bol [ | here and elsewhere to indicate a disjoint union, and the even vertices of
% are written with a superscript 0 and odd vertices with superscript 1.) We shall
also find it convenient to encode the data of the graph ¢ by the matrix G with
rows (resp., columns) indexed by 4° (resp., 4!), with the (8°, £') entry equal to the
number of bonds joining the even vertex f° to the odd vertex &', Itisclear that the
adjacency matrix A(%), whose rows and columns are indexed by V(%) is given in

block form by
0 G
G 0]

It follows that the non-zero eigenvalues of A(¥) are precisely the numbers + 4,
where A2 is a non-zero eigenvalue of G'G; further, the restrictions of the Per-
ron-Frobenius eigenvector of A(%9) to 4 and %° are the Perron-Frobenius
eigenvector of G'G and a suitable (= |¢| ~') multiple of its image under G re-
spectively.

We now recall some basic facts concerning the principal graphs associated to
a finite-index inclusion N = M of I1, factors (usually assumed to be hyperfinite).
Most of these facts stem from one of three sources — the work of Jones, Ocneanu
and Popa — and we will not take the trouble of painstakingly ascribing each to
a specific author.

Let N = M be a pair of hyperfinite I, factors, with finite index. Then the basic
construction of Jones yields a canonical tower Nc M c M, cM,c...c
M, c ... and a semi-canonical tunnel M\ =Mo>M_=NoM_,>5M_;>
...>M_,>... In any case, the doubly indexed grid {4;,=M_,NM,:
k,n = 0} is canonical. It is well-known that the inclusion data of this grid is
encoded, in a precise manner, by a pair {¥, #’} of bipartite graphs which satisfy
several conditions. (Recall that the subfactor N is said to have finite depth
precisely when either (equivalently both) of the principal graphs is (are) finite.)

3. The distinguished vertex *.

Any graph % that arises as a principal graph is, in addition, a pointed connected
graph; i.e., it contains an even vertex — always denoted by *4 — which has the
distinguished feature of being an even vertex at which the Perron-Frobenius
eigenvector of the adjacency matrix A(%) is minimal. The content of the next
proposition is to note that the above “feature” determines the vertex essentially
uniquely. Although fairly straightforward, this proposition has been included
here because the authors have not seen a proof of this in the literature.

PROPOSITION 1. Let % be a principal grph of a subfactor N <= M, of finite depth.
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Then the vertex *4 is uniquely determined up to a “parity-preserving” automo-
rphism of the bipartite graph 4.

Proor. (In this proof and elsewhere, when we have to use the language of
hypergroups, we shall use the results as well as the terminology of [S] and [SV].)
If 4 is a hypergroup, the set %o, = {f€%:d; = 1} is a sub-group of the hyper-
group ¥, where of course, a+— d, denotes the dimension function of ¢ (which is
the unique “positive homomorphism” from the hypergroup ring Z% to R). Also
since the uniqueness of the dimension function implies that d; = d,, it follows
that

weYo=>1=d2=d,"d, =) Ca&ydd,=1+ Y <(a-&y)d,
ye¥ 1$ye9
and hence that (a-&,y> = Ofor 1 + ye%. In other words, a-& = 1. It is immedi-
ate that %o, is a group.

On the other hand, if the graph % is a principal graph, then in the terminology
of [SV], the set ¥ has the structure of a hypergroup which acts on the set *. If
aEe {4(‘(’,,, and if Ly and L,, respectively, denote the matrices (with respect to the
natural bases) of left multiplication by & on Z%° and Z%!, the already established
equationa - & = 1 implies that the matrices L, and L, are orthogonal matrices; as
these are non-negative integral matrices, they must be permutation matrices.
Hence, the map A+ f(4) = a- A defines a parity-preserving permutation of V(%)
such that f(1) = a, where 1 denotes the (unique) identity element of the hyper-
group %°.

To complete the proof, we need to verify that the map f defines an automo-
rphism of the graph %, i.e., G(B, &) = G(f(B), f(&)), for all Be ¥°, Ee 4. However,
we have G(B, &) = {f- 4, &), where A denotes the sum (with multiplicities taken
into account in case of multiple bonds) of the neighbours in %' of *4 (Where we
think of 4 as an element of Z%!). Hence,

G(f(B), f(O) =< B) A (2 &)) = (@ @) B-4,&) = G(B, <)

as desired.

ReMARK 2. Note that we have not proved that the distinguished vertex * is
determined uniquely up to an automorphism of the graph; what we have shown s
that once we have pre-determined the parity, then among the even vertices, the
vertex * is uniquely determined up to an automorphism. This prompts the
question: is it possible for a graph ¢ that arises as a principal graph to admit
vertices « and ¢ of different parity at both of which the Perron-Frobenius
eigenvector of the adjacency matrix A(%) assumes the minimal value, and yet
such that there is no (necessarily, parity reversing) automorphism which maps
o to £? (The graph A,, is a non-example.)
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ExampLE 3. We are grateful to Bhaskar Bagchi for this combinatorial example
which, besides being pretty, illustrates two different phenomena, viz., (i) there is
a bipartite graph % at all of whose even vertices the Perron-Frobenius eigenvec-
tor takes on the same value and yet the automorphism group of 4 does not act
transitively on the set of even vertices; (hence by the above proposition % cannot
arise as a principal graph;) (ii) there is a second pointed bipartite graph s# which
is not isomorphic to ¢ although the two graphs are “weakly dual” — cf. Definition
4).

Both the graphs 4, # have 15 = (g
the complete graph K¢. Each graph has 10 even vertices indexed by certain
subgraphs of K ¢ (isomorphic to C5 | | C; or Cg, where C, denotes a k-cycle — thus
Cg is a hexagon, etc.). In both graphs, an odd vertex is adjacent to an even vertex
precisely when the relevant edge belongs to the relevant subgraph.

. 6
The even vertices of »# correspond to all the 10 = (( 3>) / 2 subgraphs of K¢

isomorphic to C;] [ Cs.

The graph ¢ also has ten even vertices; these correspond to six subgraphs
isomorphic to C;]]C; and four subgraphs isomorphic to Ce. They are:
{1249)[1(356), (125)]](346), (136)][](245), (145]](236), (134)[](256),
(146)]_I (235)} and {(123456), (126453), (156423), (153426)} — where we have used
the obvious notation (v, ...v;) to denote the k-cycle that successively passes
through the vertices vy,..., v;.

Both graphs share the following properties: (i) each odd vertex has degree 4 and
each even vertex has degree 6 (and hence the value of the Perron-Frobenius
eigenvector at a vertex depends only on the parity of the vertex); (ii) given any two
distinct odd vertices, the number of paths of length two which join them is 1 or
2 according as the corresponding edges (in K¢) share a common vertex or not.
These facts ensure that the graphs are weakly dual as asserted, provided the
distinguished vertices of both ¢ and J# are taken to be the same graph isomor-
phic to C;[ ] Cs.

Note now that the graph ¢ has two kinds of even vertices. We assert that any
automorphism of ¢ leaves invariant the set of all even vertices of either kind.
Since the Perron-Frobenius eigenvector is constant on the set of even vertices of
9, this example does indeed illustrate the claimed features. (In fact Aut(s¢) is
isomorphic to S¢ while Aut(%) can be seen to be a group of order 48.)

To prove the assertion, first observe that %' is identified with the edges of K,
which in turn constitute the vertices of L(K)-the so-called line graph of K.
(Recall that two vertices are adjacent in the line graph L(K) precisely when the
corresponding edges in K have a vertex in common.) Suppose now that we are

) odd vertices indexed by the 15 edges of
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given an automorphism o of 4; by property (i) above of G, the automorphism
o must preserve parity; so gl yields a self-map of the vertices of L(K); the fact
that ¢ has the property (ii) of the previous paragraph is seen to imply that this
map must preserve adjacency in the graph L(K), and is hence an automorphism
of L(K ). It is not hard to see that every automorphism of L(K ) is induced by an
automorphism of K. Thus, 6+ a|,,: yields a map from Aut(%) to Aut(K¢) = S,
which is clearly a monomorphism. Since no automorphism of K¢ can map
a subgraph of the form C5 | | C; onto a subgraph of the form Cg, the proof of the
assertion is complete.

4. Weak duality.

If two pointed bipartite graphs 4, # arise as the two principal graphs corre-
sponding to a finite-index subfactor, then the sets ¥°, #° of even vertices of the
two graphs are naturally equipped with involutions corresponding to the con-
tragredient mapping at the level of bimodules. We shall be concerned with
subfactors for which both these involutions are trivial; for brevity, we shall simply
say that the subfactor has trivial contragredient maps when this happens. For
such a subfactor —i.e., one with trivial contragredient maps — it follows from the
description of the grid {A, ,} discussed earlier, that the graphs ¥ and # are
“weakly dual” in the sense of the next definition.

DerFiNITION 4. Two pointed finite connected bipartite graphs (4, *4) and
(o, * ) are said to be “weakly dual” if the following conditions are satisfied:

(1) 9! = ¢

(2) G'(*g) = H'(*,) (i.e. the neighbours of * in ¢ and J# are the same).

(3) G'G(¢Y,n')y = H'H(E ") for all &', n' e %’ (i.e. the number of paths, of
length 2, between ¢! and 5! is the same in 4 and ).

(This would be the appropriate place to acknowledge our gratitude to Uffe
Haagerup for leading us to think along these lines; he had, in oral communica-
tion, pointed out that if the graph 4 “looks like an A, up to a certain distance from
*4”, 50 also must s — cf. Remark 7 (2).)

ReMARK. Note that when ¢ and ¢ are a pair of principal graphs, the
identification of the odd vertices in (1) is via the contragredient map 7. When the
contragredient map on the even vertices is nontrivial the graphs do not satisfy
condition (3), but they satisfy G'140G = H'T yoH.

We turn now to pairs of graphs which are not isomorphic but which are weakly
dual. The simplest known example comes from the principal graphs for the
inclusion N « M, when M is the crossed-product of N with a non-abelian group
of outer automorphisms of N. In this example, as is well-known, the graph 5 has
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multiple bonds while ¢ does not. An example of graphs without multiple bonds is
furnished by Example 3. Another such, but smaller, example is given below.

ExAMPLE 5. We begin by discussing a pair of graphs which are “almost”
weakly dual, but just fail to be so; nevertheless they have near relatives which do
furnish an example of a pair of graphs which are weakly dual but not isomorphic.
The non-example is discussed here mainly because of the key role these two
graphs play in Proposition 6.

(a) Consider the following pair of graphs, with even and odd vertices labelled
as indicated (fig. 1).

< &« &« £, A
1 © 1
g; P' gz
‘: 1 4
) Ps
G=1 H=Cq
Figure 1.

(Here and in the sequel, we write T to denote the “T-graph” each of whose arms
is two edges long. This graph is denoted by E" in [GHJ], but we use the notation
T because it is more suggestive.)

It is easily verified that the condition G'G = H'H is satisfied. Since every even
vertex in S has degree 2 while none in ¢ does, clearly these two graphs cannot be
wealy dual (by condition (2)).

(b) Consider these graphs with labelling as indicated (fig. 2).

5 ] <& o« g [
'Y
5 [ 6
A ,
l,', (1
G=A, # T H=A, #C,

Figure 2.
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(Here and elsewhere, we use the symbol # to denote “connected sum”, whereby
we mean that a pair of vertices, one from each of the graphs in question, has been
identified; to be sure, there are several ways of forming such a connected sum.)
Again, the condition G'G = H'H is satisfied. While the vertices «J and B have the
same degree, what fails now is that the minimum value of the Perron-Frobenius
eigenvector of A(%) occurs not at a2 but at the vertices a3 and aj.

(c) Finally, the desired example comes from the following graphs, with labell-
ing as indicated (fig. 3).

G=Ag#T H=A4,#C,

Figure 3.

Here, it is the case that *4 = a2 and *, = p2.

(d) It goes without saying that by extending the A-part of the graphs more and
more, the graphs 4 and # generate a whole sequence of pairs of non-isomorphic
graphs — namely A4,, # T and A4,, # Cg — which are weakly dual.

We are now ready to prove the following proposition which gives some criteria
on a bipartite graph ¢ which ensure that the only graph, up to isomorphism,
which is weakly dual to ¢ is % itself. (Observe that in view of Example 5 (c), (d), the
conditions (3) and (4) in the proposition are almost necessary.)

PROPOSITION 6. Suppose % is a finite connected bipartite graph satisfying the
following conditions:

(1) no vertex of 4 has degree greater then 3;

(2) % does not have double bonds;

(3) % has no 6-cycles; and

(4) % has no subgraph isomorphic to T such that each of the vertices of degree 1 in
T is an even vertex in 9 whose degree in 9 is still 1.

Then the identification ' = ' extends to a graph isomorphism of 4 to X .

Before proceeding to the proof proper, we set up some notation. We shall use
the notation (¢o — &; — ... — &,)€9 to signify that &, &,,. . ., &, are vertices of
the graph % such that &;_; is adjacent to £;in% for 1 <i< n.
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The set of neighbours of « in % will be denoted by .47%. In the following, since
we shall be dealing with a pair of weakly dual graphs ¢4 and 5, which have the
with a pair of weakly dual graphs 4 and »#, which have the y 4, when a is an even
vertex of either ¥ or .

We shall also employ the following notation: for vertices &, 7 in ¥:

(i) the symbol %(&, n) will denote the set of common neighbours in & of ¢ and 7,
ie. Y& n)=HFnAN? (note that, in the absence of double bonds,
|%(EY, 1Y) = G'G(¢, n'), whence |9(E?, £Y)| is the degree of £ in ;)

(ii) the symbol £¥(¢) will denote the set of degree one neighbours of ¢ in %; i.e.,
I8 = {Be N degg(B) = 1};

(iii) the symbol A will denote the set of triple points (i.e., vertices of degree 3)in
%% suppose A = {19,43,...,42},1= 0.

Proor. It is not hard to see that the above conditions (1), (2) and (4) of the
proposition imply the conditions (1’), (2') and (4') below. (To be precise, condi-
tions (1) and (2) are together equivalent to conditions (1') and (2'); while condition
(4)is equivalent to (4').) What we shall prove is that conditions (1'), (2'), (3) and (4')
suffice to ensure the validity of the conclusion of the Proposition. (We have,
however, chosen to state the proposition as we have, since we fell that this
formulation is more “visual” and easier to verify.)

1) (G'G)(&Y, &) < 3, for all ¢! in 91,

(2)) for all B %° deg(B°) < 3; and

(4) for all A°€ A there exists o€ A0 such that £¥(¢EL) = 6.

In the proof we would have occasion to use the following condition (3') which
can be seen to be implied by (3).

(3) If 2 = {0}, w}, w}} is a subset of ¥* such that between any two vertices in
Q thereis a path of length 2in %, i.e., (G'G)(w}, w}) + Ofor i # j, then, Q is the set
of neighbours of some triple point in %, i.e., Q = A0 for some %€ A.

We break the proof, which is somewhat involved, into the following steps.

Step 1. 5# has no double bonds.

Reason: H'H(EL, EY) = G'G(EL, EY) < 3 for all Ele@l.

Step 2. Each vertex in s has degree at most 3.

Reason: For the same reason as in Step 1, this is clear for the odd vertices.
Suppose, now, that there is an even vertex 6° in #° such that deg(6°) = 4.

Case (1). There is an even vertex 6° in #° such that deg(5°) > 4. Then 6° has
at least five neighbours, i, &3, &3, &4, and £5. The path (&} —6° —¢}) in
H# ensures that G'G(¢,, £}) = H'H(¢! ,&}) + Oforalliand j. By (3'), for any choice
of distinct i,j and k, {£}, £}, &4 } = Ao for some A%€ 4, ie. each &} is adjacent to

4
(<2> = >6 distinct triple points in ¢, which contradicts (1).
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Case(2). Suppose there is an even vertex 6° in #°° such that deg(6°) = 4. Then
6° has four neighbours &1, &3, &}, and £}. By the same reasoning as above, for
distincti,jand k, {£}, £}, &3} = Ao for some A° € A. So there are 4 triple points 49,
43,43, A4in @ such that ;0 = {£}:j + i}. Let &' be the induced subgraph of % on
the vertices {¢j: 1 < j < 4} U {4%: 1 £ i < 4}. Sinceeach A and ¢} has degree 3in
@', the conditions (1) and (2) imply that ¢’ is a connected component of %, and
hence ¥’ = % by the assumed connectedness of %.

Since % and # are weakly dual, we have the following:

() o' = {€1,85, 83,84}

(i) H'H(EL, &) = 2for 1 Si4j <4,

(i) HH(ELE) =3 for 1 <i < 4.

We proceed to deduce that there must exist another even vertex 6 # 6° of degree
4in # such that A0 = A = {£]' &} &Y &4}

By (ii) there are unique even vertices xg., distinct from 6° such that
(&} — k% — &}) are in #. Then for any & and j # i, we have (£} — §°), and
(¢! — x}),arein 9. Butdeg(&}) < 3. Therefore for each i, kj = 3 for somej + k.
Now (&} — k) = ki — &4)isin #. But k%, is the unique vertex other than 6° such
that (¢} — Kk — &p)isin #. So kf; = k§, = k%, which is then a vertex of degree at
least three. Hence each &} is connected to a x? + 6° such that deg(x?) = 3. We
now show that all the x? are the same.

Now, for 1 £i,j < 4, we see that,

W2 Hogl = LAl + [ Hoel = 1He 0 Al
23+3—|# =2

Let1<i#j <4 Thenthereexist 1 <k # [ < 4suchthat,életon .
Then since H#(&}, &) > {6% k2, k9} and 6° + &P, k7, the property (ii), stated
above, implies that k) = k.

So there does indeed exist 69 + 6°e#°, such that deg(69) =4, and
N = {8 & & L)

By (iii) there must exist even vertices 82, 83, B3, B2 in #°, such that (£,' — B?)
are in # and deg B0 = 1.

Thus the graphs ¢ and # are fully determined. Observe that all the even
vertices of 4 (42,1 £ i < 4) have degree 3, while the even vertices of # have
degree either 4 (deg(6°) = deg(6%) = 4) or 1 (deg(B?) = 1 for all i). So there can be
no choice of *4 and *, such that @'(xg) = H#"'(* ).

This completes the proof of Step 2.

Let A = {ul, p3,...,u2}, m = 0, be the set of triple points in #°°.

Consider the following partition of the sets of even vertices of 4 and # respect-
ively, obtained by considering the degrees of the even vertices:
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g°= 11 22" 1 @ nn\alla
teg! &l nled!
ElEnt

0= 11 &7 11 e aNoll«.
Eles! & ntear!
et

To establish that 4 is isomorphic to 4, it is enough to set up bijections
between the corresponding components of the above partition for 4° and #°,
which preserve neighbours —i.e., if f* #° — %° is the resulting “grand bijection”,
then N0 = N for all a® in H#°.

Step 3. In order that there exist a bijection between %° and #° as in the
preceding sentence, it is necessary and sufficient that the following conditions (A)
— equivalently (A’) — and (B) are satisfied:

(A) There is a bijection f: # + A so that A, = A, for all pin .

(A’) For any three element subset A4 of %', |{Aled: N =
A=K wed: N2 =N}

(B) £ = 1#*(&Y)| for all &' in &

Reason: The necessity of the conditions (A) and (B) is easy to see, as is the
equivalence of the conditions (A) and (A’). (One way of seeing that (A) <> (A’) is by
appealing to the “marriage lemma”.)

As for sufficiency, suppose the conditions (A’) and (B) are met. Note that
19(E4,nY)| = G'G(EY,n') = H'H(EY, ') = |#(EL, n')|; on the other hand, the con-
dition (A’) implies that, for all £*, n! in %', we have the equality

A eA: (&' — A —n"e G} = (e M- (& — 1 — n)e A}l
Therefore, for all £1, n' in 4!, we have
19 n'N\A| = | A, n" )\ A,

which establishes a bijection between the vertices of degree two connecting ¢!
and ' in ¢ and . This completes the proof of Step 3.

Hence, in order to complete the proof of the proposition, we only need to verify
the validity of (A’) and (B). The proof of (A") will be achieved in Steps 4 and 5, while
Step 6 will prove (B).

Step 4. For &/ = {&1, &3, &3} < 9L |{{A% e A: Npo = N} 2 {1 € -
Ny = N}

Reason : We consider three cases according to the number of triple points
u®e A such that &/ = A4, 40, (Which cannot exceed 3 since the odd vertices can
have degree at most 3, in either graph).

Case (i). Let /" = A, for some u°e 4. Then G'G(¢},¢)) = H'H(E!, E}) + 0
for all i, j. By (3') A0 = A0 for some %€ A.
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Case (ii). Suppose there exist ul,ude# such that u+ u$ and
N0 = N0 = A. By (i) above, there exists A7 € 4 such that A0 = A0 = 4.
Since there are at least two triple points in # each of whose set of neighbours
equals A, G'G(&},&)) = H'H(],&}) 2 2. Therefore, there exist k{; % A9 in ¢°,
such that (&! — k{; — &J) are in ¢ for all distinct i and j.

If all the «{s were distinct, (£} — k7, — &5 — k93 — &3 — k3, — £1) would
from a 6-cycle in 4. Therefore for some j + k, k{j = k), which then is a triple
point, 13, in °, such that A0 = A"

Case (iii). Suppose there exist three distinct points u, u3, uJ € .# such that
N, = A for all i. By (i) above there exists 19 € A such that 4/ PL=Ho=N
Since there are three triple points in 5 each of whose set of neighbours equals A",
we have H'H(&},£3) = 3. So there exist distinct «3, k9, distinct from A%, such that
(&1 — ) — &), (&1 — K5 — &) arein 4. Now G'G(¢, ', &3) = 3 and Deg(¢)) < 3.
Therefore (£} — x§ — &}) and (£] — k2 — &}) are in %. So we have {49,13 = «9,
A3 = K9} € A such that Ao = 4.

Step 5. End of proof of (A").

For all (' e%!

M 1gELE = X 19 - (A e A () — e g} + £

e

and,
) |#(ELE = ; IHE ") — {ul e : (u) — Ee A} + |F* (.
gl ,’l

(Reason: While |4(£!,n')| counts the number of even vertices B° such that
(&' — B° — n')isin %, the first summation on the right side counts such vertices of
degree two precisely once and vertices of degree three twice.)

If £! is such that |#®EY)| = 0, then

9L = 3 19E ") — (A eA: (A} — {e ¥} and
nt$&!

¢, &N = "é&l%’(él,n‘)l — e d: (@ — EHe A} + 157
Now [%(&*, &N = |#(E", &), and |91, n") = (", n).
Therefore,
AP e A: (A — ENe )l = W) e M: (1) — E)e A} — 17X ().
And hence,
A eA:(x) — EYe g} < l{uPe : (1 — EHe ).
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So, we have,
02 (A2 — EYe S} — [{u0 e M: (u — e )|
=|{AeA el — {uleM: e}
= Y ({Aed: N =N} —{pded: Vo = N}

NEY
= 0 (since each term in the sum is positive by Step 4 above)

Hence each term in the sum is zero, i.e.,
{AleA: N =N} ={uleM: Npo= N}

for all /* = %!, containing an element ¢! such that |.#F¥(&')| = 0.

But, by (4), every .4, has an element &} with | #¥(&})| = 0. If A" § A/, forany 4,
there is no triple point in 4 whose set of neighbours equals 4" and so, by Step 4,
there is no such triple point in J# either. So we have (A’).

Step 6. Proof of (B).

By (A) we know that for any ¢! in ¢*

(et (G — EVeF)l = T (et Hp =)
N
=3 {uled: Vo =N}
N

= {wled: () — &) e}
Therefore by comparing (1) and (2) we have
I£2EH = |#* N
The proof of the proposition is finally complete.

RemARK 7. (1) Each of the graphs A,, D, and E, satisfies the four hypotheses of
the last proposition. (For n > 8, we write E, = A,_g # Eg, where the *’s of the
two graphs are identified.)

(2) For a bipartite graph %, there is a natural induced metric on V(%). For each
integer n 2 0, write %o = {*}, ¥, = A7 U {*}, etc.) It is clear that if ¥ and
S are weakly dual, so are %,,; and 5,,;. In particular, we recapture Haagerup’s
observation: if ¥ and J# are the principal graphs of a finite-index subfactor and if
Gy = An+1, then 5, = A, , for even n. (To be sure, it must be verified that the
contragredient map is trivial on the even vertices; but for this it is enough to note
that for all n the set 93, ,; — %,y is invariant under the involution of the even
vertices.) The above statement is also valid for odd n; this follows from the case of
even n and the connectedness of the principal graphs.

(3) Itis tempting to call the subgraph conditions — cf. (3) and (4) of Proposition
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6 — a “double of a star-triangle” relation; more precisely, is there more than just
a superficial similarity between the two notions?

We now recall the following observation made by Ocneanu (see [K] for the
statement and [OK] for a proof).

OBSERVATION 8. Suppose a graph ¥ satisfies the following conditions:
(1) ¢ does not contain a subgraph isomorphic to Cy;
(2) % contains a triple point; and
@A) lGl > 2
Then it is not possible to construct a commuting square of the following form:
Gt

C c D
¢\ Ugt
A & B

In particular, there does not exist a finite depth subfactor N = M with trivial
contragredient maps, both of whose principal graphs are .

The above observation, in conjunction with the preceding proposition, has the
following interesting consequence.

THEOREM 9. Let N = M be a pair of 11, factors such that [M: N] > 4. Assume
that the subfactor N has trivial contragredient maps. If one of the associated
principal graphs % is a finite tree, each of whose vertices has degree at most three,
then % contains a subgraph isomorphic to T such that the vertices of degree one in
T are even vertices of degree one in 9.

PRrROOF. Suppose now that a graph ¥ arises as in the statement of the theorem.
The hypothesis ensures that ¥ satisfies conditions (1), (2) and (3) of Proposition 6,
as well as conditions (1) and (3) of Observation 8. Since ||G|| > 2, the graph 4 is
not A, for any n. Since ¥ is assumed to have at most triple points, it follows that
4 also satisfies condition (2) of Observation 8.

On the other hand, it must be obvious that a finite graph cannot arise as
a principal graph of a subfactor with trivial contragredient maps, if it satisfies
conditions (1)~(4) of Proposition 6 as well as conditions (1}+3) of Observation 8.

Hence it must be the case that % violates condition (4) of Proposition 6, and the
proof is complete.

REMARK 10. The hypothesis about trivial contragredient maps is essential. It
has been shown by Haagerup (in an unpublished manuscript) that there exists
a subfactor whose principal graphs are as shown below, where the non-trivial
contragredient mapping in the graph ¢ is indicated by the dotted line (fig. 4).
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,,,,,

Figure 4.

The above theorem shows that no T-graph —i.e., a graph with a unique vertex
of degree 3, with all other vertices of degree at most two — with norm greater than
2 can arise as a principal graph of a subfactor with trivial contragredient maps.

We conclude by describing some more graphs which cannot arise as a princi-
pal graph of a subfactor with trivial contragredient maps, as these are trees which
satisfy condition (4) of Proposition 6 (and which have norm greater than 2 and
have no vertex of degree greater than 3):

(i) any version of a connected sum of 4,, n = 2 and Eg in which a vertex of
degree one from A, has been identified with one of the vertices of degree one in Eg
or one of their degree two neighbours (fig. 5);

Figure S.

(ii) the Cayley tree and many other subgraphs of the Bethe lattice (fig. 6).
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Figure 6.
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A VARIATIONAL PRINCIPLE FOR THE
HAUSDORFF DIMENSION OF FRACTAL SETS

C. D. CUTLER and L. OLSEN

Abstract.

Let 2(E) denote the set of probability measures on a Borel set E < R", and let R(u), R(x) denote
respectively the lower and upper Rényi dimensions associated with a measure ue #(E). We prove
that the Hausdorff dimension dim (E) satisfies

dim(E) £ sup R(u)

ne?(E)
while, if E is additionally bounded, the packing dimension Dim (E) satisfies
Dim (E) 2 sup Ry).
ueP(E)

As a consequence, for any bounded Borel set E satisfying Taylor’s definition of a fractal (i.e.
dim (E) = Dim (E)) we obtain the variational principle

dim (E) = Dim(E) = sup R(w) = sup R(u).

ueP(E) ueP(E)

In addition we provide an example showing that the hypothesis “bounded” cannot be eliminated.

1. Introduction.

In recent papers on fractals attention has shifted from sets to measure, cf.
[1,2,3,4,5,6,8,9,10,12]. Thus it seems reasonable to make an attempt at finding
a relation between the dimension of a fractal E and parameters connected with
measures supported by E. Such relations have already been investigated, cf. in
particular [14, Theorem 1 p. 62] and Young [18]. Our principal result states that
if E = R"is a bounded Borel set satisfying Taylor’s definition of a fractal, i.e. the
Hausdorff dimension dim (E) of E is equal to the packing dimension Dim (E) of E,
cf. [15] and [16], then

(1) dim (E) = Dim (E) = sup R(4) = sup R(u)

ue?(E) ue?(E)

Received September 18, 1992.
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where R(u) and R(u) denote, respectively, the lower and upper Rényi dimensions
and 2(E) is the family of all Borel probability measures on E.

Formula (1) is a variational principle — i.e. it establishes an equality between
a number naturally connected with a space or a map (in this case dim E) and the
supremum of certain numbers connected to a class of probability measures
supported by E. It is well-known that variational principles play a major role in
ergodic theory (cf. e.g. [17, Chapter 8-9]) since these principles yield a canonical
way of choosing measures. Formula (1) yields in a similar way a canonical way of
choosing measures — namely measures p € 2(E) such that R(u) and R(u) are close
to dim (E) and Dim (E). It is interesting to note that our variational principle is
formulated in terms of the Rényi dimension since generalised Rényi dimensions
play an important part in so-called multifractal analysis, cf. e.g. Rand [13] and
the references therein.

We begin in section 2 by collecting the relevant facts and setting the notation.
Then in section 3 we derive some auxiliary inequalities and prove the variational
principle contained in formula (1).

2. Preliminaries.

This section contains a survey of the fractal dimensions which we will consider.
Let (X, d) be a separable metric space, E < X and s = 0. Then the s-dimen-
sional Hausdorff measure #°(E) of E is defined by

H*(E) = sup inf{ Y (diam E)f’|E < U2 E;, diam E; < é for all ie N}.
>0 i=1
The Hausdorff dimension dim E of E is defined by
dimE = inf{s = 0| #*(E) < o0} = sup {s = 0| #*(E) > 0}.
The s-dimensional packing measure 2°(E) of E is defined in two stages. First put

P(E) = inf sup{

>0

Z (diam B,y |B;nB; = fori %

i=1

and B; is a closed ball of radius at most 6

with center in E for all ie N}.

Then

P(E) = inf{i #5(E)|E = UZ, E}

i=1

The packing dimension Dim E of E is defined by
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DimE = inf{s 2 0| #°(E) < o0} = sup {s = 0| #*(E) > 0}.

It is a well-known fact that dim E < Dim E for all E < R", cf. [14].

Two other useful dimensions of a bounded set E are the upper and lower box
dimensions. For each é > 0 let N4(E) be the least number of sets of diameter at
most ¢ that cover E. Then the upper and lower box dimensions of E are defined by

- . logN‘;(E)
C(E) = limsuyp——————
(E) nSUp— ) 8
and
.. . log Ns(E)
C(E) = liminf —————
CE) =l It g5
respectively.

Let us introduce the Rényi dimension. Fix pe 2(X) and write
h(u) = inf { — Y w(E;)log u(E;)|(E); is a countable Borel
i=1

partition of X and diam E; < r}

for r > 0. Then the upper and lower Rényi dimensions of u are defined by

5 : ()
R(p) =1 ——
(1) n:lﬂsglp logr
and
I X ")
R(p = lu'ri znf log
respectively, (cf. [18]).
3. Inequalities and the Variational Principle.
We want to prove that
V) dim(E) £ sup R(w)
ne®(E)
for a Borel subset E of R, and
©) Dim(E) 2 sup R()
ueP(E)

for a bounded Borel subset E of R". Both proofs are based on the following result:
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THEOREM 1. Let E < R" be a Borel set. Then the following assertions hold:
i)
B
dim(E) = sup (inf lim inf M)

puePE) \xeE r\0 xOgr
ii) If
1 B
Ec {xllim sup—Og—”(—M = a} and y(E) > 0,
"o logr
then
Dim (E) = a.

Proor. i) Follows easily from [14, Theorem 1]. ii) Follows from [14, The-
orem 1], however see also Theorem 3.2 of [5].

We begin with three small technical lemmas

LEMMA 2. Let u be a Borel probability measure on R". Let E be a Borel set,t 2 0
and 6 €0, 1[. Suppose

log u(B(x,r)) < tlogr
for all xe E and re 0, 6[. Then
R(p) =2 w(E)t.

PrOOF. Let re]0,d[ and (E;); be a partition of R” such that diam (E;) < r. Let
I={i|E;nE 4 &}. If iel then we can choose a point x;€ E; n E such that
E; < B(x;,r), whence
4) log w(E;) < log u(B(x;,r)) < tlogrforiel.

By (4) we have

~ D HE)log u(E) 2 — 3. p(E)log w(E) 2 — 3 u(Ey)tlogr

iel iel
= —,u(U Ei) tlogr = — u(E)tlogr.
iel
Since the partition (E;); was arbitrary this inequality implies that
h(p) = — w(E)tlogr for re J0, 6L

whence

R(y) = lim inf — '(")

r—0

> tu(E).
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LEMMA 3. Let F = R"be abounded Borel set andr > 0. Then there exists afinite
collection F,,. .., F, of disjoint Borel sets with diam (F;) < r such that F < U;F;
and such that for each i, there exists an x;€ F satisfying

B(x,-, %r) o Fi.

Proor. Construct a sequence of balls B(x,,37), B(x,,4r),... such that x;e F
and d(x;, x;) > 4r for i % j. Because F is totally bounded this process must
terminate at some finite stage, giving balls B(x,,37),. .., B(xn, 37) such that any
x € F must satisfy min; d(x, x;) < 3r (consequently F = U™ , B(x;,3r)). Note that
the smaller balls B(x,,%7), ..., B(xn,47) are disjoint. Set

Fi = B(x;,31)\ U B(xj,%")
j=2

m

i—-1

F, =B(x;,50\{ U F;,u U B(xj,%;r))fori=2,...,m——1
i=1
m-1

j=i+1

Fm = B(xm’%r)\ U Fi-
j=1

J

Itis clear that the F;’s are disjoint, and since B(x,,17),. .., B(x,,, 37) are disjoint we
can conclude that B(x;,4r) < F;and F < U,F..

LeMMA 4. Let E = R" be a bounded Borel set and pe #(E). Let F < E be a Borel
set,t = 0 and 6€]0,1[. Assume

log u(B(x,7)) = tlogr
forall xe Fand 0 <r < 6. Then
R(p) < t + w(E\F)C(E\F).

ProoF. Let re]0,d[ and choose by Lemma 3 a finite pairwise disjoint cover-
ing(F,,...,F,)of Fwithdiam F; < r and such that there exists points x; € F for all
i satisfying

B(xi,%r) c F,'.

The set E\ F can be covered by N = N,(E\ F) closed balls By, . .., By of diameter
at most r. Define Q,,...,Qy by

Q1 = (Bin(E\F)\V;F;
Qi =B:n(E\F)\(v;F;u UiZiQ)fori=2,...,N.

Then Fy,...,F,, Q4,...,Qy are disjoint sets of diameter not exceeding r, and

E=uV(FinE)uu;Q;, v;0;<E\F.
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Hence

m N
h(p) £ — Y w(Fin E)log u(F; N E) — ; m(Q;)log u(Q:)

i=1

m N
~ ; u(F;)log u(F;) — ._Zl (@) log w(Q)

< = ¥ WF)log Bl bn) — 3 wQ)log Q)
N

< - Z u(Fy)tlog(zr) — _Z w(Q:)log u(Q:)

<

—tlogGr) — .; w(Qy)log u(Qy).

We know that if py,...,p, 2 0 and Y f_, p; = s€[0,1] then in fact —

1
logp; < slogk — slogs < slogk + e Therefore

N 1
h(w) < —tlog(Gr) + > u(Q)logN + -

i=1

69

k
i=1Di

N
1
< —tlog(ir) + u( U Qi)logNr(E\F) + "
1
< —tlogGr) + W(E\F)log N(E\F) + —
for r < 0, whence
r(.u) . tlog(z") lOg Nr(E\F) 1
— < —=7 E\F —
Riw hr?xsgp —logr _m?xst?p< logr + ENF) —logr elogr

<t + wE\F)C(E\F).
We are now ready to prove (2) and (3).
PROPOSITION 5. Let E = R". Then the following assertions hold:
i) If E is a Borel set then

dimE £ sup R(u).

ue#(E)

ii) If E is a bounded Borel set then

)
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sup R(u) £ DimE.
ueP(E)

PrOOF. 1) Let t < dim E. Then Theorem 1 part i) implies that there exists
a measure p e #(E) such that

¢ log n(B(x, 1))

(5) t < limin for all xeE.
rL0 logr
Now put
1 B(x, 1
E, = {erl—%ﬂ—(x—r»> tforO<r <——}, meN.
logr m

Let ¢ > 0 and observe that (5) implies that E,, 1 E. We can thus choose an integer
NeNso u(Ey) = u(E) — e = 1 — &. An application of Lemma 2 then yields

sup R(4) 2 R(u) 2 p(En)t Z (1 — o)t
1eP(E)

which proves the first part of the proposition since t < dim E and ¢ > 0 were
arbitrary.
ii) Let ue2(E) and t > Dim (E). Then Theorem 1 part ii) implies that

'L 0 logr
and we can thus choose a subset F of E with u(F) = 1 such that limsup, o

log u(B(x,r))
logr

< Dim(E) p-a.s.

< tfor all xe F. Now put

log u(B(x, r))

Fm={xeF| logr

<tfor0<r<l}, meN.
m

An application of Lemma 4 then yields
R <t + w(E\F,)C(E) = t + W(F\F,)C(E).

Since F,, 1 F we conclude that R(u) < t. This completes the proof since both
ue?(E)and t > Dim (E) were arbitrary.

Proposition S immediately yields the following variational principle
PROPOSITION 6. If E < R" is a bounded Borel set satisfying dim (E) = Dim (E),
then

dim(E) = Dim(E) = sup R(x) = sup R(n).

ue?(E) ue#(E)
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It is easily seen that the inequality in Proposition 5) ii) may not hold if
the assumption “bounded” is omitted. Indeed put E=N and gq,=
c((n + )(log(n + 1))~ ! for neN where c = sz:z?lo—lgT)Z’ and define
neP(E)by u =Y ,q.0, (here &, denotes the Dirac measure concentrated at x). If
0 <r <1 and (E;); is a countable partition of E = N then (E; N E); = ({n})pens
whence

hip) _ —Yau(nplogu{n})  —3.d.logd, _

—logr —logr —logr B

which implies that R(u) = R(y) = o0 > 0 = Dim(E).
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1. Introduction.

The order p of an entire function F € (O(C")is classically defined as the infimum of
allnumbers a > Osuch that |F(z)| £ C,e!" for some constant C,. Given the order
the type o is then defined as the infimum of all numbers b > 0 such that
|F(z)| < Cpeb*? for some constant C,. To make these notions dual in the sense of
convex analysis C. O. Kiselman has introduced the concept of relative order and
type, generalizing the classical order and type. This was first done in [1], but the
idea is more developed in [2]. There among others he considers an extension
problem for entire functions. Given two entire functions F and G in C", what size
can a disk D, = {weC; |w| < r} have such that there exists a holomorphic
function H in C" x D, satisfying certain growth conditions determined by F and
G on the sets C; = {(z,e)eC" x C; |w| = 1} and C, = {(z,w)eC" x C; |w| = e}
respectively? It turns out that the size of the disk is determined by the relative
order of G with respect to F. However using these disks we cannot let the growth
of H be controlled from both above and below on both of the sets C, and C,, nor
can we specify that both H(z, 1) = F(z) and H(z, e) = G(z). This paper is a con-
tinuation of that work. Instead of disks we consider annuli. In this way we can
extend F and G to H with H satisfying mainly the same growth conditions as

Received February 3, 1993.
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above but now from both above and below on both of the sets C, and C,. (The
difference in the growth condition is an arbitrary ¢ > 0). It is equivalent also to
assume that H(z, 1) = F(z) and H(z, ¢) = G(z). The size of the annulus turns out to
be determined by both the relative order of F with respect to G and the relative
order of G with respect to F. More generally we consider extensions to logarith-
mically convex Reinhardt domains in C* x C™ and we see that all domains to
which we can extend the functions can be written in an explicit way.

I am sincerely grateful to my advisor Christer Kiselman for all help I have
received in the preparation of this manuscript.

2. Relative order and type.

The notion of relative order and type is introduced in Kiselman [1] and studied
in detail in [2]. We give here the definitions and some simple facts.

DEFINITION 2.1. Let f,g: E — [ — 00, + 00] be two functions defined on a real
vector space E. We define the order of f relative to g as

1
order(f:g) = inf[a > 0; 3c,e R, Vx€E, f(x) < ;g(ax) + ca)

If g is convex and g(0) < + oo then the set above is an interval Jp, + oo[ or
[p, + oo, where 0 < p < + 0.

DEFINITION 2.2. Let f, g be two functions as above. We then define the type of
f relative to g as

type(f:g) = inf[b > 0; 3c,e R, Vx € E, f(x) < bg(x) + ¢ ].

The set above is an interval Jo, + o[ or [0, + o[, where 0 £ 0 < + 00, if g is
bounded from below.

Let E* be the algebraic dual of the real vector space E and E’ a fixed linear
subspace of E*. We define the spaces #(E, E') and & (E', E) in the following way:
F(E,E) is the space of all functions from E to [ — oo, + c0] which are convex,
lower semicontinuous for the weak topology o(E, E’) and takes the value — oo
only for the constant function —oo. #(E', E) is defined similarly for functions
from E’ to [ — o0, + 0] but with the weak star topology o(E', E) instead.

Let f: E —» [ — o0, + o0] be a function on the real vector space E. We define the
Fenchel transform of f by

2.1 f&)=sup(¢x— f(x), EeFE

xeE

We can apply the transformation twice getting
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2.2) fx)=sup(¢-x—f&), xeE

§eE’

A direct consequence of the definition is that we have fe#(E,E) and
feF(E,E). Obviously the transform is dependent on the subspace E’ chosen.
Usually in a topological vector space one takes E’ as the topological dual of E.
For instance in R", where the topological dual is isomorphic to R”, gne takes E' as
R". Some general properties of the Fenchel transform are f < f, f = f and

2.3) f =sup[ve F(E,E)v < f1.

Thus f~ = fifand only if fe #(E, E'). For more information see Rockafellar [3].
There is a duality theorem connecting the relative order and type via the
Fenchel transform.

THEOREM 2.3 (Kiselman [2], Theorem 4.3). Let E be a real vector space and E’
a linear subspace of E*. Assume that f,ge #(E, E'). Then

order(j: f) = type(f:g) and type(g : f) = order(f : g).

3. Growth functions.
Let F be an entire function in C". We then define its growth function as
3.1 S(®) = sup[log|F(z); zeC" |zl = €'], teR.

We shall also have use for holomorphic functions H e O(C" x Q'), where Q' < C™
is a logarithmically convex Reinhardt domain. We will then define the partial
growth function of H by

(3.2) h,(t) = sup[log|H(z, w)|; ze C", |z| < €], teR, we Q.

and also

(3.3)  h(t,5) = sup[log|H(z, w)}; (z, W)€ C" x 2, |z| £ €, |w;| = €', Vi]

z,w

= sup[h,(t); lwi| =€, Vi=1,...,m], t,seR.

In view of Hadamard’s three-circle-theorem, all functions here considered are
convex in the variables ¢t and s.

Anopensetin C"is a Reinhardt domainif (€®'z,, .. ., e*"z,) belongs to the set for
allreal 8,,...,0,ifz = (z,,...,z,) does. A set S € C"is logarithmically convex if the
set {xeR"; x = (log|z,...,10g|z,|), for some z€e S} is convex.

If F and G are two entire functions, we define the order of F with respect to G as

(3.4 order(F: G) = order(f:g),



76 STEFAN HALVARSSON

where f and g are defined by (3.1). The order so defined is independent of the
norm, since if B; denotes the closed ball with respect to the norm j, then B; is
included in €B;, for some constant k; Thus we have the estimate
fi(t) = fi(t + k;;), where f; denotes the growth function with respect to the norm i.
The independence now follows from the following lemma.

LemMA 3.1. (Kiselman [2] Lemma 3.2). Let f, denote the translate of f: E —
[— o0, + 0] by the vector y: f,(x) = f(x — y). If one of f and g is convex and real
valued, then

order(f,:g) = order(f:g,) = order(f: g).
We can also define what we will call the refined growth function of F, as
(3.5) St) = sup[log|F(2)}; zeC", |zi| = €],  teR"

Also this function is convex by Hadamard.

If F and G are two entire functions in C", then order (f, : g,) with f,, g, defined by
(3.5)is in general larger than or equal to order(f : g), with f and g defined by (3.1),
since we can always take all t; = teR. On the other hand if for example
F(zy,2,) = Fi(z,)F,(z,) and G(zy,z,) = F,(z,)F(z,), with order(F, : F,) > 1, we
get order(F:G) = 1, but order(f,:g,) > 1. But with the change of variables

zy+ 2, Zy — 2,

G o
we get order(f;:g,) = 1 also for f,, g,. Thus we see that the relative order between
two refined growth functions is coordinate dependent.

If we take g as the exponential function g(t) = €' and f as defined by (3.1), we
get the order of f relative to g as the classical order of F. We now take g, as the
convex function defined by g,(t) = e™**" t e R"and f, as defined by (3.5). Then we
have order(f:g) = order(f,:g,), since fi(ty,...,t,) < f(max);t;) if we use the
norm |z| = max;|z;| in (3.1). Similarly we can define g(t) = ¢” and g,(t) = e*™**"
to retain the classical type.

z) = z, =

4. Coefficient functions.

Let F be an entire function in C". We can then expand F in homogeneous
polynomials

@ )

where P;is homogeneous of degree j. We define the norm of the polynomials P; as
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4.2) I1P;ll = sup |Pyz)].
lz|=1
With this norm we define the coefficient function of F as
. —logllPjll,  jeN;
4.3 = ! ’
4.3) p(j) {+oo JER\N;

Note that in this definition we set —log0 = + c0.

5. Properties of coefficient functions.

Let f,g: E - [ — o0, + 0] be two functions on a real vector space E. We then
define the infimal convolution of f and g by

fOgx) =inf[f(y) + g(x — y)],  x€E;

where + is upper addition extending the usual addition to hold from
[— o0, +0]? to [~ 0, 4+ ], so that (+ ) + (—00) = + 0. In the same man-
ner lower addition + is defined, so that (+ o) + (—00) = —o0. If we apply the
Fenchel transformation to an infimal convolution we get

(.1 (fO9 =T+4

See also Rockafellar [3] concerning the infimal convolution.
Define the function K as

T

Then we have the following theorem connecting the growth and coefficient
functions of an entire function.

THEOREM 5.1 (Kiselman [2], Theorem 6.1). Let F € O(C") be an entire function.
Let f and p be defined by (3.1) and (4.3) respectively. Then

(5.3) pPf=<pOK on R.

CoROLLARY 5.2 (Kiselman [2], Corollary 6.5). Let F, G be two entire functions
in C". Iet f, g be their growth functions defined by (3.1) and p, q be their coefficient
functions defined by (4.3). Then

order(f : g) = order(p: §) = type(q: p).

Proor. This follows from Lemma 3.1 and Theorem 2.3. See Kiselman [2] for
the details.
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LEMMA 5.3. Let Fe O(C") and let p be its coefficient function defined by (4.3).
Then p(j), j € N, has faster growth than any linear function, or equivalently

—I-)L_Jl—-»+oo asj— + co.

PROOF. Since F is entire, ||P;| R» >0 as j— + oo, for all R > 0. Taking
logarithms we get
jlogR — p(j) » — 0 asj— +oo.

Since this holds for all positive R, the lemma follows.
It actually follows that

p—l(jf—)—-)+oo as |jl » + oo for jeR,

since p(j) = + oo for all je R\N.

LEMMA 5.4. Let a: E - [ — 00, + o0] be a function on a finite-dimensional real
vector space E which grows faster than any linear function:

a(x)
—= = 400 as |x| - +oo.
(x|
Then also
d(x)
—|;|-—>+oo as |x| - + oo.

Moreover if a is lower semicontinuous, then @ and & are determined by the set
M = {(x, a(x)); a(x) = @(x)}. Thatis, if ais redefined to + oo at all other points, then
d and 4 are unchanged.

Proor. To prove the first part of the lemma we just observe that the affine
functions are among the functions we take supremum of in (2.3). To prove the
second part let a,, be the function obtained from a by setting

a(x) if (x,a(x))e M,

(5.4 au(x) = {+ o) if (x,a(x))¢ M.

We will show that dy, = @ Thus also dy = d@. Obviously @y < 4. Pick some ée E'.
By the growth condition and lower semicontinuity of a and the definition of the
Fenchel transform there exists an xeE such that d(§) = £-x — a(x). Since
d(x) = & x — d(x) = a(x) and @ < a, we conclude that x is such that (x, a(x)) e M,
which implies ay(x) = a(x). We get @y (&) = € x — ap(x) = € x — a(x) = @(¢).
Thus actually dy(&) = d(&). But £ was arbitrary so if follows that d,, = d.
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By Lemma 5.3, this holds in particular for a coefficient function, since by
definition a coefficient function is obviously lower semicontinuous.
6. Extension of entire functions.
Before we proceed with the main theorem we will need the following lemma.
LemMA 6.1 (Kiselman [2], Part of Theorem 7.2). If the problem

Find F:E x R—]—o00, +00], such that

F(x,j) = fi(x), xeE, j=0,1, where

fii E—>]—o0, + 0], are convex and lower
semicontinuous for o(E,E’),

has a convex solution F which is finite at a point (0,t), 1 <t < + o0, then

t

order(f;: fo) = y—

Now let « € R™ satisfy z;'; 1% = 1and pe R\ {0} be a nonzero real number. We
consider hyperplanes H,, defined by

(6.1) H} = {xeR™; x a = p}.

The set {Hj},, consists of all hyperplanes containing p = (p,..., p) but not the
origin. The set {H;}, is a set of parallel hyperplanes. In R, Hj is just the point p.

Let S7 denote the closed halfspace which is bounded by H; and contains the
origin. More explicitly

6.2) Sz = {

Now define the logarithmically convex Reinhardt domain wj by

{xeR"x-a<p} ifp>0
{xeR™ x-a2p} if p<O.

6.3) } = {weC"; (log|w,|, log|w,|,...,log |w,|) eint S3}.
This is the smallest open set ' which satisfies
int 3 = {xeR™ x = (log|w,|,...,log |w,|) for some weQ'}.

There is also a largest open set which satisfies this property. We will denote this
set by €27. We then have
(6.3) Q) = wy VB,

where J = {i: pa; = 0} and B, the union of all sets IIw}, where IT is a projection
which takes some of the components with index in the set J to zero. That is, Q7 is
the interior of the closure of w}. The definition of £} just says thatif m = 1 and
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p > 0 then we add the origin to w} and if m = 2 that if some component w; of
we wj can be arbitrarily small with the other components having fixed values
then we add to wj, images of all points in wj, with w; projected to zero. If there are
more such components we go on recursively. For instance if p=1 and

1 1 . . .
o= (;,...,;) then Q} contains all points we C™ with some component

w; = 0, whereas wj, contains none. This is why we introduce the extension (6.3).
We want to fill in unnecessary boundaries.

Define §% ,, = §% , = R™ Then (6.3) and (6.3) can be used to define wj and
Q7 also for p = — o0, + 00, if we let 0- c0 = 0 in the definition of J. We have
@% o = 0%, = (C\{0})", for all . If a; = O for all i then Q% _ = C™, but there is

! o Z
no o such that Q* = C™ since some o; must be positive. For instance
QL9 = C? but Q2.2 = (C\{0}) x C.

THEOREM 6.2. Let F,Ge O(C") be two transcendental entire functions. Define
their growth functions f, g by (3.1) respectively. Let A, peR, a, fe R™ satisfy
0<A<1=Zp<+o,andy a; =) B; = 1. Define the domain

Q={zweC x C"we® N2}

A
where A’ = m,(—oo <AV <0),p = -;——é—l,(l <p £ +oo)and 2, Q. are
defined by (6.3'). Then the following conditions are equivalent:

(a) order(G:F) < p;
order(F:G) < %;

(b) For each ¢ > 0 (or equivalently some ¢ > 0) there exists an H € O(Q) such that

f£h,OK+e h,<fOK+e |w=1Vi=1,...,m
g<h,00K+¢ h,Z<g0K+e¢ |wl=e Vi=1,....m,

where h,, is defined by (3.2) and K by (5.2),
(b’) The condition (b) holds together with the extra assumption

H(z,1) = F(z), H(z,e) = G(2),
wherel1=(1,...,1)and e = (e, ..., e) (m times).
(c) There exists an H € O(R2) such that
order(f:h(-,0)) = order(h(-,0): f) =1,
order(g:h(-,1)) = order(h(-,1):g) = L.
where h(-,*) is defined by (3.3).
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(c') The condition (c) holds together with the extra assumption
H(z,1) = F(2), H(z,e) = G(2).
(The conditions are equivalent also for polynomials if condition (c) is altered to
order (f: h(-,0)) = order(h(-,0): f) =0,
order(g: h(-,1)) = order(h(-,1):g) = 0.

In this case condition (a) is equivalent with order(G: F) = order(F:G) = 0.)
If H e O(Q) satisfies condition (b) or (b') for some ¢ > 0 then it also satisfies
condition (c) or (') respectively.

PrOOF. Note first that sometimes Q5 N Q8. = w§. N w?.. Thatis, if sign (x;) = 1
when sign(f;) = 0. For instance when m = 1 this is always the case:

Q = {(z,w)eC" x C; " < |w| < e’}

and w is never zero even if ' = — 0.

(a)implies (b'). Make the expansions F(z) = Y 2, Pi(z)and G(z) = .72, Q,(2),
as in (4.1). Let p and q be the coefficient functions of F and G defined by (4.3)
respectively. Put

(6.4) H(z,w) = -Enil—j [EN (_VZL) jgo Pj(Z)wﬂj + Ey (%) jgo Qj(Z) (_‘3)"1] s

e

where y,y’ € Z™ are multi-indices satisfying Y 7, y; = ) 7=, ; = 1. Moreover, we
choose all y; nonnegative. That is y; = d;, for some k = 1,...,m, with d; as the
Kronecker delta. Some a; must be positive and we choose 7; positive for thisiand

.\ . . 1
all the others nonpositive. In this way the functions w—w” and wr——»—w—y,- are

holomorphic in Q5 N Q4. We have as usual w’ = w}'... w). The multi-indices
uj, v;€ Z™ are chosen such that pj; = v;; = 0, if p(j) = + oo, which occurs if and
only if §(j) = + oo, since we are demanding finite order. (Recall Corollary 5.2).
Otherwise we take u;; as the integer part of o; min(5(j) — §(j) — N,0) and v; as
the integer part of ;max(p(j) — 4((j) + N + m,0). For clarity:

(&0

2 N
The function Eyx(&) = (1 — é)exp(é +% +... +—§—V~>, N=12,...,1is a so
called Weierstrass function. We have Ey(1) =0, so that H(z,1) = F(2),

H(z,e) = G(z). It can be shown (Rudin [4]), that for |{| £ 1
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(6.5) 11— Ex()l s 1EV* 1.

The integer N is chosen such that e ™V < &.
When |w;| = 1,i = 1,...,m, we make the estimates

T
1 w\" 1 )
Ey g Q;j - Ey 7 )| €XP —Q(J)~§;Vﬁ

< 2exp(—q(j) + 4(j) — B(j) — N) £ 2exp(—N — B(j)),

using ) ;v 2 P(J) — 4(J) + N, q(j) 2 §(j) and (6.5).
When |w;| = ¢, i = 1,...,m, we make the estimates

Ey (_!:;_) ij“’ = |Ey (—‘Xey—) exp(-P(]') + Z”ﬁ)

< 2exp(—p(j) + P(j) — 4(j) — N) < 2exp(—N — §())),
using Y ; i < p(j) — §(j) — N, p = P and (6.5). We also have

ofe) - ()a(z) |- -u(2)

The partial coefficient function r,, of H is

rara |55 e m (o )o( )]l

By the triangle inequality and (6.5), we have

(6.6) IP;ll <e ™ " |P;| and

6.7)

(6.8)

(6.9) 1l <e ™ 11gll.

rw(j) = —1 g

¥4
(6.10) —log(1+e ¥ 1) — log( Ey (%) Pyw*i
1 w\" .
+ || En (7) 9; (;) ) =ru())
and
Y
(6.11) ro(j) < —log(1 — e=¥"1) — log E,,,(%) ij“f“

1 w\%
#(r)o(?)

When |w;| = 1,i = 1,...,m, we have by our estimates (6.6), (6.7) and since p = p
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(6.12) —log(l + e ¥ Y —log(l + e V1 + 2% + p(j) < r.()),

which implies p(j) — e* " < r,(j), hence taking the Fenchel transformation
7, < P+ e* "N (Recall the general rule p = p.)
For j such that p(j) = p(j), we also have

6.13)  ryj) s —log(l —e™™7") —log(l —e™" ' —2e7") + j(j),

which implies r,,(j) < p(j) + eV, for jsatisfying p(j) = p(j). Define py, from p by
(5.4). Thenr,, < py + €2V, hence py < 7, + €2~ N. But by Lemma 5.4 fy, = p,
soit follows that j — e "N < 7,,. Sofar,wehave j — €2V <7, < p + >V, thus
finally by Theorem 5.1

6.14 f<pPOK<F,+eO0K=7,0K+e<h,0K +¢,
hy<F,OKS(@+eO0K=pOK+e< fOK +¢

when |w;| = 1, forall i = 1,...,m, since we chose &> " < &.
When |w;| = e,i = 1,...,m, we have similarily using (6.10), (6.8),(6.9)and g = §

6.15)  —log(l + e ™Y —loge™ + 1+ eV 1+ §(j) £ ru()),

which implies §(j) — e~ ¥ < r,(j), hence taking the Fenchel transformation
7, < 4 + e ~. For j such that g(j) = §(j), we get from (6.11), (6.8) and (6.9)

(6.16)  r,(j) < —log(l —e™"7!) —log(l — e ! —2e7) + 4(j),

which impliesr,(j) £ §(j) + e® ¥, for j satisfying q(j) = §(j). Define g4, from q by
(5.4). Thenr,, < qp + €2, hence gy £ 7, + €2~ ~. But by Lemma 5.4 §, = g,
soitfollows that§ — e ¥ < 7,. Sofar,wehave§ — e ¥ <, < § + €7V, thus
finally by Theorem 5.1

6.17) ¢g=h,OK+¢ h,<g0OK+g |wl=e i=1,...,m

We now have to show that H is holomorphic in Q. Directly after the definition
of H in (6.4) we have chosen y and 7' so that w—w” and w 1/w"" becomes
holomorphic in Q. Since the Weierstrass functions are entire these do not cause
any trouble. Apart from the Weierstrass functions we show that the first part of
the series defining H converges locally uniformly in C* x €5 and that the second
part converges locally uniformly in C" x Q.. Then we can conclude that the
whole of the series defining H actually converges locally uniformly in Q.

It simplifies the argument to show the convergence just in C" x w% and
C" x h. respectively. By our choice of 4 and v it is then clear that we have locally
uniform convergence also in C" x Q5. and C" x ©f.. This is because we have no
negative exponents on components of w which may be zero. For instance ifa;; < 0
then sup;,, [W"| < + o0 on compact subsets of (C\{0})'"! x {0} x (C\{Op)™~*
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c B, since then w*/ becomes zero for uj; > 0. If o; = 0 then w*/ does not depend
on w;.
The first part of the series converges locally uniformly in C" x w?, if

(6.18) | Pl Rir*s = |Pj| RF ] r## >0 asj— +oo,

i=1
uniformly for all R,0 < R £ R; < + o0 and for all e R} such that
(6.19) (logry,...,logr,)€S, S is compact and S < int S%,,
since every r; is bounded from below on compact subsets of w}.. Taking logar-
ithms, this is equivalent to
Xrey pilogri — p(j)
J

with r; as above. From the definition of y;, we have p(j) — N < §(j), when y; is
nonzero. When y; = 0, we have convergence independently of re R}, by Lemma
5.3. For p; not equal to zero

Z?:x u;ilogr; — p(j) < 22"=1 a(P(j) — 4(j) + O(1)logr; — B(j)
J = J ’

(6.20)

— —00 asj— + oo,

(6.21)

since p = p. We will now use Corollary 5.2 to make estimates. We have
G < bp + ¢y, for b > 1/4, since type(q:p) = order(f:g) < 1/A. The expression
above is linear in §(j). Thus, we only need to estimate it on the endpoints of the
possible values of §(j). Since §(j) has a bound from above and since y; is zero
when §(j) is less than p(j) — N, the expression cannot be larger than the value for
4(j) = B()) — N, or §(j) = bp(j) + c. On the bound when §(j) < p(j) — N we
have u; = 0 and this case we have already considered. On the bound when
4(j) = bp(j) + c, the expression above is equal to

7= 1 2(P() — bp(j) + O(1))logr; — B(J)

j
_[A—b)yr alogr, — 175()) + O(max |logr;|)
J

(6.22)

— —00 asj— 4 oo,

L __
1—-b 1/h-1

= )/, by Lemma 5.3 and 5.4. (Recall that b > 1/4 = 1.) For each compact

locally uniformly for (logry,...,logr,)eS%, where b’ >

A
A—1
subset S of the interior of S5, there exist b, b’, such that § < S§. < int §%.. Thus we
see that the first part of the series converges locally uniformly in C* x w%. and by
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our discussion above we can conclude that we have locally uniform convergence
in C" x Q5.

In the same way we see that the second part of (6.4) converges locally uniformly
in C" x wf.. We want

623) QIR <§> =1 R ] (';) ~0 asj—> +oo;

=1

Taking logarithms, this is equivalent to

m ri :

iy vilog| — ) = q()
J

We have § < af + c,, for a > p, since type(p: §) = order(g: f) < p. For v; not
to be equal to zero, we must have 5(j) > §(j) — N — m. In this case

S vilog (';) —a() T B0 - d) + 01 log (r;) - 40
<
j = j |

(6.24)

— —00 asj— +oo;

(6.25)

since ¢ = §. This is an expression linear in p(j). We have convergence indepen-
dently of re R™ on the bound putting p(j) = §(j) — N — m, when v; =0, by
Lemma 5.3. On the upper bound for (jj), that is p(j) = ag(j) + c,, the expression
above is equal to

(6.26) 27 Bilad(j) — 5(]');‘ o(1)logr; — aq(j)
_ [~ 1) Y7, Bilogr; — ald(j) + O(max |logr;))

— —00 asj— +oo,
J

locally uniformly for (logr,,...,logr,) €Sk, where a' <

——=p,‘

a—1 p-1

But S%, < int S%.. By a discussion similar to that for the first part we can conclude
that the second part of the series defining H converges locally uniformly in
C" x Q.. (The Weierstrass function is an exception. It is holomorphic in £5,).

REMARK. It can be shown that if v; had not been put to zero for p(j) less than
G — N — m then the domain of convergence of the second part of the series
defining H had been only C" x 24, n /.. A similar statement holds for the first
part.

(b) implies (c) and (b") implies (¢'). Pick some ¢ > 0. By condition (b) there exists
a holomorphic function H € () satisfying
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(6.27) hO)ZfOK@®+eZ ft+ 1)+ K(—1) + ¢,
fO=h,OK@t)+e<h,(t+1)+K(—=1)+¢

when |w;| =1 for all i. If also condition (b’) holds one can take a function
satisfying

(6.28) H(z,1) = F(z), H(z,e) = G(2).

The estimates still hold if we take the supremum over w. Using Lemma 3.1, we
get order(h(-,0): f) = 1 and order(f: h(-,0)) < 1. In general the following prop-
erty holds

n L if F is not a polynomial;
(629) order(f: f) = {0, if F is a polynomial,

asis perhaps easiest seen by Corollary 5.2 and Lemma 5.3. By submultiplicativity
when F is not a polynomial

(6.30) 1 = order(f: f) < order(f:h(-,0)) order(h(-,0): f) £ 1,

so that all orders are 1. If F is a polynomial the only possibilities for the order are
0 or + oo and the latter is excluded by the estimates above.

In a similar manner, we get order(g: h(-, 1)) = order(h(-,1):g) = 1, when G is
not a polynomial. Otherwise 0.

(c) implies (a). We use Lemma 6.1 on the convex function h(-,-). The lemma
implies, since h(0, p’ — 8) < + oo for all 6 > 0, that

(6.31) order(h(-, 1): h(-,0)) < p,”_ c=p.
With a change of variables s+ 1 — s, we get from the other side
1=
. M . << =
(6.32) order(h(-,0):h(-,1)) £ -7 -1 1/A.

By submultiplicativity
order(g: f) < order(g: h(-, 1)) order(h(-, 1): h(-,0)) order (h(-,0): f) < p;

order(f:g) < order(f:h(-,0)) order(h(-,0):h(:,1))order(h(-,1):9) < %

If F and G are polynomials both orders will be zero.
(¢') implies (c) and (b") implies (b) obviously, so we are done.

REMARK. We see that condition (b) actually is two conditions. We will refer to
these as condition (b) holds for every ¢ > 0 or condition (b) holds for some ¢ > 0
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respectively. Note also that the conditions in Theorem 6.2 are independent of
o and B, for if some of the conditions in Theorem 6.2 holds for a, f e R™, with
Y a; =Y B = 1, then condition (a) holds. Since condition (a) is independent of a,
B the condition also holds for some other o, f, Y of =Y B = 1.

THEOREM 6.3. Let F, G € O(C") be two entire functions and € < C™ a logarith-
mically convex Reinhardt domain such that condition (c) holds in Theorem 6.2 for
Q=C"x Q. If order(F:G) > 1, then @ < Q3. n Q% for some o, f R™ and for

A
some A' = -1 and p' = P f 1 such that p and A satisfies condition (a). If
order(F:G) < 1 then @ < QF..
Proof. Put

(6.33) S = {xeR™ x = (log|wy|,...,log|w,|) for some we Q'}.

Then S’ is an open convex set and its intersection with the line t+— (t,.. ., t) is the
line segment (t,...,t), A’ <t < p’ for some A’ and p’ satisfying — oo < 4’ < 0 and
1<p £ +00. Thus by convexity and since S contains the origin
§ < int 83 N S, for some o, fe R™ satisfying ) o; = ) ; = 1, with 5%, S%. de-
fined by (6.2). Moreover if H e O(Q2) = O(C" x Q')is a holomorphicfunction, then
the function h(-,) defined by (3.3) satisfies

’

(6.34) order(h(-,l):h(-,O))§p,p_ .
and
(6.35) order(h(-,0): h(:, 1)) < ;

If H also satisfies condition (c) then by submultiplicativity

’

order(g: f) < order(g: h(-, 1)) order(h(:, 1): h(-,0)) order (h(-,0): f) < P

p—1
order(f:g) < order(f:h(",0)) order(h(,0): h(-, 1)) order(h(-, 1):9) = ; :
Thus

(6.36) order(G: F) < p,‘i C=p

A—-1 1

. < —_—
order(F:G) < 7 T
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p , A
R
and also as we see condition (a) in Theorem 6.2. But if condition (a) holds for
p and 1 we can extend F and G to C" x Q3. n Q.. Thus since S’ is contained in
S3. N 8. all we have to do now is to check the points in € for which some
component w; = Q. The set of i for which this can happen is the set of i for which
the component x; in x € S3- N S%, with the other components given fixed values is
unbounded from below. If A and p’ are finite this is exactly the set of i for which
Aa; 20 and p'B; = 0. By the definition of % and Qﬁ, we conclude that
Q < Q5 n Q% if ¥ and p’ are finite. If p’ = + oo we just choose all B; positive so
that Q% _ = C™ butif ' = — oo there is no « such that Q* _ = C™. The best we
candois to choose «; = d;;for somej. Then Q% | = {we C™; w; % 0}. Thisis why
we need the condition order(F: G) > 1, hence A’ > — o0, to conclude that there
, P
1P p—1

for some p and A satisfying 0 <A< 1,1 <p< +o00,p =

exist A, p, « and B such that @ < Q5. N Q4 for X' = with

A and p satisfying condition (a).

The obvious counterexample of Theorem 6.3 for order(F:G) £ 1 is when
F = G. However if f(t) > g (J K(t) for some ¢ then condition (b’) cannot be
satisfied for all ¢ > 0 using a function H holomorphicin C" x Q% withall §; 2 0
by the maximum modulus principle. This follows since then the polydisk with
radii e” is contained in Q%,, so that (¢, s) — h(t, s) is increasing in s€ ] — o0, p'[. If
condition (b’) is fulfilled for some ¢ > 0 then h(t,0) = f(t) and h(t,1) £ g O
K(t) + & which leads to a contradiction if 0 < ¢ < f(t) — g O K(t). Thus even if
order (F: G) < 1it might happen that the function H must have a pole for some
w; = 0. To be precise either & is contained in Q% N Q5 or there is a constant
A such that AF, G cannot be extended to C” x Q' fulfilling condition (b) or (b').

PROPOSITION 6.4. Let F and G be two entire functions and let p, q be their
coefficient functions respectively. For each ¢ > 0 in condition (b) or (b’) in Theorem
6.2, we can choose a holomorphic function H in Q < C"* x C™ which is rational in
the we C™ variable if p and § are finite in the same set and p — § is bounded there.
This is not possible if f — g O K or g — f O K is unbounded from above.

ProoF. Recall the definition of H in (6.4). We can approximate the Weier-
strass functions by polynomials, since we made estimates only on compact sets.
Recalling the definitions of u and v in (6.4) we conclude that we can choose
H rational in the w variable if § and § are finite in the same set and j — § is
bounded there. We will see later in Proposition 6.6 that they must be finite in the
same set if condition (b) is to hold. If on the other hand H is rational in the we C™
variable then there exists a polynomial P in C™ such that PH can be extended to
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an entire function in C* x C™. (We regard P as constant in the first n variables).
But | P| is bounded on the set of w e C™ such that |w;| = ¢ and we can choose P(1)
nonzero. Thus if H satisfies condition (b’) for some ¢ >0 and f — g K is
unbounded from above we get a contradiction by the maximum modulus
theorem in the same manner as in the paragraph proceeding Theorem 6.3. After

. 1 1
a change of variables (zy,...,z,, Wy,...,Wn)—{ 24,...,2,,—,...,—— ] We can
w W,

apply the result on the case when g — f (O K is unbounded.

REMARK. The first part of the proposition is also true for condition (c) and (c')
since if H satisfies condition (b) or (b’) for some ¢ > 0 then it also satisfies
condition (c) or (c') respectively.

We can get bounds for the coefficient functions from the growth functions.
Assume that f (0K < g+ Cor g K £ f + D. Then the following estimates
hold by Theorem 5.1.

(6.37) GOK2g2zfOK-C2p0K-C
or
(6.38) FOK2 f2gOK-D2§OK-D

Using(5.1) and since none of the functions §, § or K attains — oo wegetp + C = §
or § + D = p. That is, we can estimate p — § from above or below. However we
cannot have both f (DK £ g + Cand g (0K < f+ D at the same time if F and
G are transcendental. On the other hand if [/ — g| £ C then we can make
estimates as above to get |[§ — §| < C — K. Itiseasy to calculate K and it is done
in Kiselman [2], where also the estimates log(t + 1) < —K@@) <log(t + 1)+ 1
are obtained. We see that in this case the function H can have logarithmic growth
in the powers of the we C™ variable. Taking C = 0 we see that this should be
possible to improve.

Let us call a logarithmically convex Reinhardt domain ' = C™a /', p’-domain
if inf[£;(¢',...,e)eQ] = X < 0, sup[t;(¢,...,e)e Q] = p’ > 0 and the comple-
ment of Q' contains {we C™;w; = 0} for some i = 1,...,m, which is always the
case when A’ > —oo. Then Q' = 5 N Q¥ for some o, € R™ and the following
proposition holds.

PROPOSITION 6.5. Each condition in Theorem 6.2 is equivalent with the same
condition using w = C" x @, & = C™ a (X, p')-domain instead of Q = {(z,w)€e
C"x Cwe; nQb}.

PrOOF. If we examine the proof that (b), (b') implies (c), (¢') implies (a) in
Theorem 6.2 we see that this works also for a (4’ p')-domain. Thus if some
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condition holds for w then condition (a) will hold and from this we can conclude
that the same condition holds for Q. The other implication is trivial.

Thus we have found all finite-dimensional logarithmically convex Reinhardt
domains to which we can extend in the way of Theorem 6.2 without putting any
extra conditions on F and G.

REMARK. It is clear that it is enough for w to contain a (4, p')-domain and be
contained in one to satisfy Proposition 6.5.

A theorem like Theorem 6.2 can not hold if F is a polynomial when G is not, or
vice versa, as seen by the following proposition.

PROPOSITION 6.6. Let F, G e O(C") satisfy condition (a) or (b) in Theorem 6.2.
Expand F and G in homogeneous polynomials. Then F(z) = Y J_\ P{(z), where
Py, Py % 0, ifand only if G(z) = Y}~ Q1(2), Qu, Qn + 0. Also F(z) = Y2 o Pi(2),
where Py % 0, if and only if G(z) = Y 32\, Q(2), Ou *+ 0.

PrOOF. We have already noted in the proof of Theorem 6.2 that condition (a)
would be violated otherwise. If we examine the proof that (b’) implies (¢’) implies
(a), we see that (b) implies (a) regardless of if F and G are both polynomials or not.
7. Extension of entire functions, refined case.

If we instead expand F € O(C") in a Taylor series

(7.1) F(z) = ZAka, zeC" ke N",
x

where k is a multi-index, we define the refined coefficient function of F as

alk) = {—log |[Ad,  keN"

(7.2) oo ke RN

Similar connections hold between the refined growth and coefficient functions,
as between the ordinary growth and coefficient functions. Define K, by
(7'3) K,,(é) = K(él) +...+ K(én)a 66 Rn,
with K defined by (5.2). Then we have the following theorem.

THEOREM 7.1 (Kiselman [2], Theorem 6.6). Let F be an entire function in C".
Define a, f, by (1.2), (3.5) respectively and K, by (7.3). Then

ag f,£alKkK, on R".

COROLLARY 7.2. Let F, G be two entire functions in C". Let f,, g, be defined by
(3.5) and a,b by (7.2), with F, G respectively. Then
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(7.4) order(f,:g,) = order(d:bh) = type(ﬁ :d).

Proor. This follows from Lemma 3.1 and Theorem 2.3 in the same way as in
Corollary 5.2.

LeMMA 7.3. Let F € O(C") be an entire function and a be its refined coefficient
function defined by (7.2). Then

atl)
Ik

where |kl = Y7_, lkjl = Y-, k;.

PrOOF. Since F is entire

- 4+ as k| - + oo,

n
|4 [T R >0 as [k| - + oo,

1=1

for all Re R".. Hence taking logarithms

M=

k/logR; — a(k) > — 0 as |k| = + oo.
1

1

From the definition of a this actually holds for ke R". Thus we can apply
Lemma 5.4 on a refined coeflicient function since by definition it is obviously
lower semicontinuous.

Define the convex functions

(7.5)  h(t) = sup[log|H(z,w); ze C", |z} < €], teR", weQ < C™

and

(7.6)  h{t,s) = sup[log|H(z,w)}; ze C", we @, |z;| < €, |w;| = ¢*, Vi]
=sup[h,(t);|wi| =€, Vi=1,...,m], teR", seR;

Then in complete analogy with Theorem 6.2, we have

THEOREM 7.4. Let F,Ge O(C") be two transcendental entire functions. Define
their refined growth functionsf,, g, by (3.5) respectively. Let A, p € R, a, B € R™ satisfy
0<A< 1<p<+ooand) a; =), ;= 1. Define the domain

Q ={(z,w)eC" x C"; we ;. n Q5}
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A
defined by (6.3"). Then the following conditions are equivalent:

(@ order(g,: f,) < p;

A
where ) = '__1’(_00 SAV<0),p = —bp—l,(l <p' £ +o0)and Q},Qﬂ are

order(f:6) <

(b) Foreache > 0(or equivalently some ¢ > 0) there exists an H € O(R2), such that

[ 2h,0K,+6¢ h, = f,0K, + ¢, w| =1, Vi=1,...,m;
g, =h, 0K, +¢ h,<g, 0K, +¢, lwil =e, Vi=1,...,m,

where h,, is defined by (7.5) and K, by (7.3),
(b’) The condition (b) holds with the extra assumption

H(z,1) = F(z) and H(z,e) = G(2);
wherel =(1,...,1) and e = (e, ..., ). (m times).
() There exists an H € O(Q), such that
order(f,: h(-,0)) = order(h(:,0): f,) = 1;
order(g,: h(:,1)) = order(h(-,1):g,) = 1,

where h(-,") is defined by (7.6).
(c') The condition (c) holds with the extra assumption

H(z,1) = F(z) and H(z,e) = G(2).
(If F and G are polynomials the theorem still holds if condition (c) is altered to
order(f,: h(:,0)) = order(h(-,0): f,) = 0;
order(g,: h(:,1)) = order(h(:,1):g,) = 0.

In this case condition (a) is equivalent with order(f,:g,) = order(g,: f,) = 0.)
If a holomorphic function H € O(Q) satisfies condition (b) or (b) for some ¢ > 0
then it also satisfies condition (c) or () respectively.

ProOOF. Make the expansions

Fiz)= Y Az G(@) = ) Bz~

keNn keN®

Let a and b be the refined coefficient functions of F and G respectively. This time
in the proof that (a) implies (b’) we use the function H defined by
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(77) H(Z, W) —_ ___.I_T__[:EN< ) z AkaW + EN( ) Z BkZ ( >Vk]’
Ey (——) € / keNn keNn

e

with the same definitions of N, Ey, y and y’ as in the proof of Theorem 6.2. The
multi-indices u,, v, € Z™ are chosen such that u,; = v,; = 0, if d(k) = + co, which
occurs if and only if F(k) = + 00, since we are demanding finite order. (Recall
Corollary 7.2). Otherwise we take u,; as the integer part of a;min(d(k) —
g(k) — N, 0) and v,; as the integer part of f; max(d(k) — ﬁ(k) + N + m,0). We get
the partial refined coefficient function c,, of H as

U (Y e g () g ()
Ex(1/6) E”(T>A“W +E”<w?’)B"(e) ]

By the triangle inequality and (6.5), we have
1 e
Ey (—_7) B, <ﬁ> > < culk)
w e

¥
(lv—) Ao +
e

Y
EN (i_) Akwuk
e
1 w\%
a(or)a ()]
w e

The estimates are now the same as those in Theorem 6.2. When |w;| = 1, we get
d—e*N<ec, by (7.9) and estimates like (6.6) and (6.7), which implies
é,<d+e* N For keN' such that a(k)=d(k), we get by (7.10)
c,(k) < d(k) + e~ V. Hence using Lemma 5.4 we get d < ¢,, + ¢> ¥, so we have
d—¢e<¢é,<d+ ¢using e~V < ¢ Finally by Theorem 7.1

(1.8) ¢, (k) = —log

(7.9) —log(1 +e ¥ 1) — 10g< Ey

and

(7.10) cuk) £ —log(l —e ¥ 1) —log

460K, £é,0K, +e<h, 0K, +¢, lwi| = 1;
hwgawDKn§dDKn+8§frDKn+8> lwl‘=1’

When |w;| = e we get using (7.9), (7.10) and similar estimates as in (6.8), (6.9),
b—¢<¢é,<b+e Hence

gréngnéngKn+E§thKn+sa Iwil=e;
hy <6, 0K, <b0OK,+e<g 0K, 456  |wl=¢
To show that H is holomorphic in 2, we now show that

| Al R¥r* = |A TTRF T <> 0 as |kl > + oo,
=1

i=1
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uniformly for all Re R"%,0 < R; £ R’ < + o0 and for all re R such that
(logry,...,logr,)€S, S is compact and S < int S5..
Taking logarithms, this is equivalent to

(7.11) Z““‘“T:" —20 L, w asi— +oo.

By Corollary 7.2 we have b < da + cy,for d > 1/4,s0 as in the proof of Theorem
6.2 we can make estimates

ZZ": 1 Wi logr; — a(k)

7.12
(7.12) i
s max(_ at) Y-, add(k) — dak) + O(1)logr, — 5(k)>
|k| IK]
= max<_ al(k? , [A—d)Y", xlogr; —|k|1]5(k) + O(max |log r,-|)>

and the last expression tends to — oo locally uniformly on S3. as |k| - + oo for

d >

1 ! 7 > 1’ by Lemma 7.3 and Lemma 5.4.
Also we can show that
X r Vi n " m r" Vki
IBJdR*{—] =IB/IIRF]]{—) -0 as |k| = + oo,
€ =1 i=1\€
uniformly for all ReR"%, 0 < R, £ R’ < + o0 and for all r € R” such that
(logry,...,logr,)€S, S is compact and S < int S5..

The proofs that (b) implies (c) and (b’) implies (c') are similar to those of
Theorem 6.2 and omitted. Also the proof that (c) implies (a) is similar and
omitted. We have the trivial implications (c’) implies (c) and (b’) implies (¢'), so we
are done.

We have some similar statements as those following Theorem 6.2.
COROLLARY 7.5. The conditions in Theorem 7.4 are independent of « and .

THEOREM 7.6. Let F, G e O(C") be two entire functions and Q' < C™ be a logar-
ithmically convex Reinhardt domain such that condition (c) holds in Theorem 7.4
for @ =C" x . If order(f,:9,) 2 1, then Q' < Q3 N Q5. for some a, B R™ and
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y)
T and p' = ; _’i I such that p and A satisfies condition (a). If
order(f,:g,) < 1then @ < Q5.

for some A’ =

Also in the refined case it is necessary to have Q' < Q5 N Q4. to ensure the
possibility to extend all functions with specified orders to C* x €'.

PrROPOSITION 7.7. Let F and G be two entire functions and let a, b be their refined
coefficient functions respectively. For each ¢ > 0 in condition (b) or (b) in Theorem
7.4, we can choose a holomorphic function H in Q < C" x C™ which is rational in
the we C™ variable if & and b are finite in the same set and & — b is bounded there.
This is not possible if f, — g, (1 K, or g, — f, (0 K,, is unbounded from above.

ProposITION 7.8. Each condition in Theorem 7.4 is equivalent with the same
condition using w = C™ x @', Q' < C™ a (X, p’)-domain instead of Q = {(z,w)e
C"x C™weQi nQb}.

PrOPOSITION 7.9. Let F, G € O(C") satisfy condition (a) or (b) in Theorem 7.4.
Expand F, G in Taylor series

F(z) = Z A2, G(z) = Y Bz
keN™ keNn
Let C(F) denote the convex hull of those ke N" for which A, # 0 and define C(G)
similarly. Then C(F) = C(G).

PrOOF. Letdom(d) = {xeR";d(x) < + oo} be the effective domain of 4, where
a is the refined coefficient function of F. If b is the refined coefficient function of
G then by Corollary 7.2 we must have dom(d) = dom(ﬁ), if condition (a) is to
hold. Now C(F) = dom(d) < cl C(F) holds in general and we will see that actual-
ly dom(d@) = C(F). Define for je N

a(k)a ki é j’ Vl’
+ o0 otherwise;

(7.13) a(k) = {

and let C(a;) denote the convex hull of dom(a;). Then C(a;) is a subset of C(F) and
is closed since it is finitely generated. Now take a point x ecl C(F)\C(F) and an
arbitrary number M € R. Then x ¢ C(a;). Since C(a;) is closed and a; is bounded
from below there exists a non-vertical hyperplane P; = {(y,z)eR" x R;
z=¢;°y + ¢;} passing through (x, M) and also satisfying &;k + ¢; < aj(k) for
each k. Since by Lemma 7.3 a has faster growth than any linear function we can
take P;,, = P; = P for all j = N, for some number N and some hyperplane P.
Now a; — a pointwise, so by (2.3) and since M was arbitrary we conclude that
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d(x) = + oo. This shows that condition (a) implies C(F) = C(G). Also (b) implies
(a) regardless of the expansions of F and G.
8. Transformation of the relative order.

In Theorem 6.2 the correspondence between the maximum size of the domain
Q2 and the relative orders is complete when order (F : G), order(G: F) > 1 or if F,
G are polynomials. This is not always the case, but we will see that it is possible to
transform the orders. Assume that F, G e O(C") are transcendental and that I,
k are integers. We define the mapping g,: C* —» C" by 0,(z) = (z},...,z.) and make
the transformations

(8.1) Fyu(z) = F(oi(2))";
Gul(z) = G(ow(2)).

We have |0,(z)| = |z|!, with the norm |z| = max; |z;|, which is the norm we will now
use to determine the growth function of Fj,

8.2) Ju(t) = sup[log |Fy(2)}; ze C", |z| < €]
= sup[log|F(a,(2)\"|; ze C", |z| < €]
= sup[klog|F(z); 2/ €C", |z/| < €]

= kf (It),

[ being the growth function of F. Similarily g,,(t) = lg(kt). We can now see the
effect of the transformation on the relative order:

1
Ju®) = ;gkz(at) + Co
l
kf () < ;g(akt) + Ca
l ka
< gl —
f = kag< l s) + c,.
Thus
(8.3) order(Fy.: Gy) = %order (F:G)

and similarly

(8.4) order(Gy: Fy) = —Ilf—order(G : F).
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This gives the invariance

(8.5) order(Fy : G;) order(Gy,: Fy) = order(F : G)order(G: F) = 1.

If we have strict inequality there are numbers k, e N such that both
order (Fy, : Gyy), order(Gy,: ) > 1.

Otherwise we can get the orders arbitrarily close to one.
These transformations also work on the refined growth functions.

REFERENCES

1. C. O. Kiselman, The use of conjugate convex functions in complex analysis, Complex Analysis, J.
Lawrynowicz and J. Siciak (Eds.), Banach Center Publ. 11 (1983), 131-142.

2. C. O. Kiselman, Order and type as measures of growth for convex or entire functions, Proc. London
Math. Soc. (3) 66 (1993), 152-186.

3. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

4. W. Rudin, Real and Complex Analysis, Mc Graw-Hill Book Company, 1987.

MATEMATISKA INSTITUTIONEN
UPPSALA UNIVERSITET

S-751 06 UPPSALA

SWEDEN



MATH. SCAND. 74 (1994), 98-110

ABOUT CERTAIN SINGULAR KERNELS
K(x,y) = Ki(x — y)Ky(x + y)

TOMAS GODOY, LINDA SAAL and MARTA URCIUOLO!

§ 1. Introduction.

In this paper we give a solution to a problem about the I’-boundedness,
1 < p < o0, and the weak type 1-1 of certain singular integral operators. Here we
study operators of the form

(1.1) Tf(§) = jh(é = yk2(E + »)f(y)dy
R'l
for a wide class of functions k; and k,.

The case n = 1, p = 2, has been solved in [Ri-S] when k, is the Hilbert kernel
and k, satisfies

(1.2) © Jka(x)| £ ¢ and |ky(x) = TJ%’ forsome ¢ >0

The authors used strongly the L>-boundedness of the Hilbert transform and the
local Lipschitz condition (1.2).
Following this approach, we take k,(x) = ) 2/"¢;(2/x) where {¢;} ;. is a fam-

ily of functions in L'(R") satisfying o

(1.3) f(pj(x)dx =0

and for some 0 < ¢ < 1

(1.4 Ilfpj(x + h) — ¢j(x)ldx < c|hf

! Partially supported by CONICOR.
Received December 10, 1992.
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(1.5) J(l + Ixl)loi(x)dx < ¢

with c independent of j. It is known that k,(x) is a tempered distribution and that

the operator of convolution by k; is bounded on I”(R"), 1 < p < 0. See for

example [Sa-U]. So we ask for suitable conditions about k, in order to obtain the

boundedness of the operator given by (1.1), for this kind of kernels k,.
Condition (1.2) leads us to consider functions k, satisfying

(1.6) k2l = ¢

and for some 0 < 4 < 1, for all |h| < %d—,

h s
3)

THEOREM A. Let {@;} .z be a family of functions in L'(R") with compact support
contained in {x € R™ 27! < |x| £ 2} satisfying (1.3) and (1.4). Let k, be a function
satisfying (1.6) and (1.7). Then for f e [P(R"), 1 < p < 0,

(1.7 lka(x + h) — ky(x)] = C<

The main result we obtain is the following.

/)=  lim Y e 2 — yka(C + ) () dy
N.M)>(-w,0)J NSjsM
exists almost everywhere in R" and ||Tf||, < c, | fll,. Moreover, if feS(R")
{x: | Tf(x)| > A}l £ cA™ Y| fl, for all > O (weak type 1-1).

In § 2 we give some preliminaries, in § 3 we prove Theorem A, in §4 we obtain
the same result replacing the hypothesis of compact support of ¢; by (1.5), and in
§ 5 we show some examples of kernels k, and k, that give rise to operators Tf asin
theorem A.

ACKNOWLEDGEMENTS. We are deeply indebted to Prof. Fulvio Ricci for sug-
gesting us this problem and for his fruitful comments.

§2. Preliminaries.

In this section we state some properties about the I”-boundedness and the weak
type 1-1 of certain singular integral operators and the maximal operators
associated. We set, for g: R* - C and je Z, g¥(x) = 2/"(2'x).

Let us consider a family of functions {¢;} ;. in L'(R") satisfying (1.3), (1.4) and
(1.5). It is not hard to see that if we take {0} }vcz and {4 }x.z the Borel measures
with density @' and |p'"¥)| respectively, then
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1(8) — aO)] < X2, keZ
&) < c2*1ED7%, keZ

with ¢ asin(1.4) and (1.5). Moreover, the same conditions are satisfied by {0 }xcz-
Applying straightforward Theorem F in [D-R] we obtain the following results:
Forl<p<

@1 Mf(x) = sup (lo®| *|f)(x) is bounded on IP(R")
22 K f(x) = Z((p"" * f)(x) is bounded on [°(R")
Moreover if supp ¢® < {x: |x| < 2**!}, then

(2.3) K¥f(x) = sup
j
REMARK 2.4. We also observe that, for f € S(R"), the operators M, K; and
K¥ above defined, are of weak type 1-1. Indeed, with standard techniques we can
see that, for some ¢ > 0

2 (@ )

k=sj

is bounded on LP(R")

2.5 y lo®(x + y) — o¥(x)|dx < ¢ forall yeR"
keZ
Ix|> 12yl

See for example [G-St], [Sa-U]. So, the boundedness on L*R"), (2.5) and
theorem 2.4 in [C-W] imply the weak type 1-1 of K ;. The proofs of the weak type
(1-1) of M and K7 follow the same lines than those in the theorem last mentioned.

§3. The Main Result.
Before beginning with the proof of Theorem A, we make the following

REMARK 3.1. Let {@;};.; be a family of functions satisfying (1.3), (1.4) and
supp@; < {x: 27! < |x| £ 2}. Then, forre Z, f e ["(R"), 1 < p < o, there exists

(3.2) S.f(§) = lim Y oP(x) f(& — x)dx
(N, M)~ (-, ) NSjSM
Ix}>2r
for almost every £ e R"
Indeed, since supp ¢$ < {x:27/"! < |x| £ 27/*!}, we have that

S.f(Q) = j EP)fE — x)dx + SZ . @P(0) (€ — x)dx
Ixl>2
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Thus, for allre Z,

IS, £ = Mf(E) + KT f(%)
where M and KT are defined by (2.1) and (2.3) respectively.

REMARK 3.3. The lastinequality of the previous remark, (2.1), (2.3) and remark
(2.4) imply that sup |S, f(£)| is bounded on IP(R"), 1 < p < o0, and for f e S(R") it

reZ

is of weak type 1-1.
The same results hold for

(3.4) 9= lim > j PP () f(€ — x)dx
MM (- NSTEM )

Indeed, S, f(&) = K, f(&) — S,f(¢) and we apply (2.2)
Proor oF THEOREM A. For M, Ne Z, N < M, f € S(R") and ¢ € R", we set
Twnf(©) = f P& — Yka(& + ) f() dy
NSjsM
With a change of variables, we obtain
Tanf(©) = Y | oP(0k2(28 — x)f(& — x)dx.
NSjsM
We fix [ = I(¢) e Z such that 2! < |¢] < 2'*! and we decompose
33 TwfO= Y + ¥ J + X
N<jsM NsjsM NSjsM
|x|§21 21<lx|§21+3 |x|>2l+3

Since supp ¢¥ = {x: 2777 < |x| £ 27/*'}, the central sum is independent of
N and M, for |N| and |M]| large enough, and

< 6 lkzll MS(C)

PPk(2E — x) f(€ — x)dx
N§j§M21<|x'§21+3

where Mf is the maximal operator defined in (2.1). Furthermore (2.1) and remark
(2.4) imply

lim ) J PP (k28 — x)f (€ — x)dx

(N,M)> (-, ) NSjSM
21<|x| <2143

is bounded on L”(R") and of weak type 1-1.
We now study the first sum of (3.5)



102 TOMAS GODOY, LINDA SAAL AND MARTA URCIUOLO

L | ke = XS = x)dx
SjsM s 2!

= T | of0a0E -0~ kQOIE - dx
s=js s 2!

+h(2) ¥ | ePESE - x)dx
NEIEM Ix| =2

Now

) f 1P| 1k5(2€ — x) — k2(28)| 1S (€ — x)dx < ¢ Mf(x)

Nzj=M
Ix|=2!

Indeed, since |x| < 2' < |¢] we apply (1.7) to obtain

Z QP00 k228 — x) — k2(28)]1f(§ — x)| dx
Sc Z ItP}”(X)I(I 6|) If(€ = x)ldx
sc ) f o)1 2721 (& — x| dx < ¢ Mf (%)

So lim y PPX)[k2(2E — x) — kz(28)]1f (€ — x)dx exists for
(N.M)*(-eo.oo)N§i§M|x|<2'

all £e R", moreover (2.1) and remark (2.4) imply that it is bounded on L”(R"),

1 < p < o0, and of weak type 1-1.

Now, if 5 is as in (3.4),

lim k(2 } J P00 f(€ — x)dx = k(20811 (¢)

(N,M)—(— o0, ) NsSjsM
x| =2}

and it is absolutely bounded by ||k, ||, sup|S, f(¢)|. From this and Remark 3.3 we

reZ
obtain the [’-boundedness, 1 < p < o0, and the weak type 1-1 of the above limit.
So the study of the first sum in (3.5) is completed.

We now perform an analogous decomposition for the last sum in (3.5)
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Y f PP (x)k(28 — x) f (& — x)dx

|x|>2'*3

=L J‘WW“ﬁ@ﬁ%*M—ﬂH@-na
sjs x| 213

+ ) J PPk (E — x) f(€ — x)dx
Nsj=M |x|>21+3

But |x| > 2'*3 implies |x — & 2 |x| — |£] = 2|¢| and by (1.7),

) J. 0P k22 — x) — ko(& = )| 1f(€ — x)ldx

Nzj=M

o 1€
<c ¥ lo§0) £ — )l dx

NSjsM |é‘xl"
x| >21+3
o ((1E1N?
Sc Y lo7 ()| x [f(E — x)ldx
N§j§M|xl>2l+3 x

In the last inequality we use that |¢ — x| = 3 |x] if [x] > 2'*3.
As before, this sum is bounded by

¢ 2"”"JI¢‘_7’5"'.”:22’(X)I [f(& = x)ldx
m20

which, in turn, is bounded by ¢ Mf ().
Finally

lim )y J P kA(E = x) f(€ — x)dx = S143(k2f)C)
MM~ o.WNSJEM I

with S;,5 as in (3.2). If feIP(R") so does k,f and thus the [P-boundedness,
1 < p < o0, and the weak type 1-1 of the above limit follow from Remark 3.3.

§4.

In this paragraph we extend the result obtained in § 3, asking the family {¢,} ;. to
satisfy (1.3), (1.4) and (1.5). We need the following .

LEMMA 4.1. Let {@;}cz be a family of functions in L'(R") satisfying (1.3), (1.4)
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and (1.5). Then, for 0 < a < b, there exists a finite constant c(b/a), depending only
on b/a and n such that

) J lo(x) dx < c(b/a)
jeZ
! a<|x|<b

PRrROOF. As an easy consequence of the Theorem 4, pag. 153 [St], we note that
there exist ¢ >1 and ¢ >0 such that for all jeZ, |¢;l, <c. Since

P, = 27"1 =19 | ;|| we have, by Holder’s inequality that

Y : lpP(x)dx <c Y l 2= Laypn _ gl =14 = c(b/a).
2i<a- 2i<a-
< a<|x|<b

On the other hand,

jZ loP(x)ldx = 3 271 (27)1 (27 X)X |xl) ~% dx
2i>q-1t 2i>g-1
a<|x|<b a<|x|<b
<a’ ¥ Z"j"fkp,-(y)l Iy® dy
2i>a-1

being the last term bounded independently of a and b.
By personal communication, F. Ricci told us the following result.

LEMMA 4.2. Let K, be the tempered distribution given by K,(f) = Y. <o¥, >

jeZ

with @; satisfying (1.3), (1.4) and (1.5), where, as usual, (@9, > = j P9(x) f(x) dx.
er

Then K, can be decomposed as Y <Y, > where {y;}jcz is a family of functions
with compact support contained in {x: 2~ < |x| < 2}, and satisfying (1.3) and (1.4).

A slight modification of the proof of 4.2, gives us the following.

LeMMA 4.3. Let {@;};cz be a family of functions satisfying (1.3), (1.4) and (1.5).
Let k, be a function satisfying (1.6) and (1.7). Then there is a family of functions
{B;} jez with compact support contained in {x: 2~ ' < |x| < 2} satisfying (1.3) and
(1.4) such that for each f € S(R") and £e R* — {0},

Y | 0Pk — %) f(E = x)dx = Y. f BPx)kx(& — x)f (& — x)dx

jez jez

Proor. Before dealing with the proof, we introduce some additional notation.
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Weset for ke Z, E, = {xe R™ 2* < |x| £ 2**1}, also for ge L'°°(R") we write

mi(g) = |Ei| ™! f g and we define, for xe R”, ®(x) = k,(2£ — x) f(¢ — x).

Ex
We give the proof in several steps.

Step1. Y | |oP(x)||P(x) — my(®)|dx < 0.
j.1eZ

Ey

Indeed, we pick re R such that 2" = |£|/8. Then

12r jeZ 12r jeZ
Ey

2 2 | 1P P(x) — my(P)dx £ Y ZZ‘IWIILWEI)]I({J?’(X)I dx
Ey

Now, since f € S(R"), we have | ®| 1=, < c2™* for some positive constant
¢. Then by lemma 4.1 the above sum converges.
On the other hand

X 2 | 0P 1(x) — my(®)| dx

1<rjeZ
E:

lIA

1<r jeZ
E,

Y | oPNIE,|™! f [(x) — P(¢)| dt dx
E,

< Y Y sup [D(s) — (1)l J lpP(x)| dx
E,

1<r jeZs,teE;

Since 1 < rfor s,te E, we have [2¢ — s| 2 max {|¢|,2|s — ¢|}. So we can apply
(1.7) to obtain

s—t° _ .
! " < ¢ 219 ¢~ for some positive constant c.

[k2(28 — ) — k(28 — B)| £ Cm <

Then we can write
|P(s) — D(2)] = [k2(28 — 9)S(E — x) — k228 — ) f(C — 1)
S [ka(28 — 8) — k28 — O S(E — Ol + 1S (€ — 5) — (€ — D)l 1k228 — 1)
S22 e + 202 IV Nl 2l

and we can apply again lemma 4.1 to obtain the statement of step 1.
Step 2. For j,keZ, let ¢, be the function defined by ¢;, = ¢;xs, —

|Exl™ 2, J(p ; Where yg, is the characteristic function of the set E,. Then there is

Ex
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a family of functions {8;};;z with compact support contained in
{x:27' <|x| £2} and satisfying (1.3) and (1.4) such that Y <{(¢V},®) =

JikeZ
Z <3(J)

JjeZ
Indeed, since

(4.4) oY > = j PPN P(x) — my - (P)) dx
Ex-j

the double sum . (%), @) is absolutely convergent by step 1 and we can
j.keZ
rearrange it to obtain

Z <(p1ka Z Z <(p]k’(p> Z<‘9(l) ¢>

j.keZ 1j-k
where $;,(x) = Y. o¢§~ ”(X)XEO(X)-
j-k=1

It is not hard to see that the family {3,},.; satisfies (1.3) and (1.4). This
completes the proof of step 2.
Step 3. We define for jeZ Aj(x) = Z |E| 1 J.(pj(t)dt X, (x) then there is

keZ
Ex

a family of functions {n,},.; with compact support contained in
{x:271 < |x| £ 2} satisfying (1.3) and (1.4) such that

Y A9, @) =Y (Y, @)
jezZ JjeZ
Indeed, we set 0,(x) = |E;| ™'y (x) and ¢, = J(p ;- Then for each je Z
Ex

< Z cjka}‘”, <p> = Z J Qi(x)dx {01 — 04, D)

N<ksM N+1SksM
|x| s 2k
+ f @j(x) dx (o}, By — J @j(x)dx (o), ®)
xjs2M+1t |x}< 2N
Since lim (a,, #) = 0and ¢;e L'(R"), the last two terms go to zero as M — + o

$— 0

and N - — o0. Now Og—-1 — O = (0'_1 - 00)(‘“").

keZ
|x| < 2k

So (A9, > = Y J @i(x)dx{o_; — o)V, B).
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We observe that ) j Or+(x)dx (a1 — ao)?, ¢>’ < 0. Indeed
ol |x| <2k
Z J @ x(x)dx| = Z J‘ @1+ x(x)dx
k20 % 2% k20 -

<y2e j Ixl® |1+ a(x)l dx < o0
k=0
Ix| 2%

by (1.5). And, by Holder’s inequality,

Z f |y x(x)|dx < Z 2""“_”‘”(03_1/" l@i+rlly < o
k<0 k<0

Ix| s 2%

where w, denotes the measure of the n-dimensional unit sphere. Then

)

k1

J. Qraux)dx{(o_{ — 00)"), o)

Ix| < 2%

3o

The convergence of the last sum is a consequence of (4.4) and of the statement
in Step 1. Then we can write

S e Klo-y = a0)?, &)
1

< ;K(G—l - Go)Xsk)(l), P)| < o0.

szﬁf’, P>=33 f @(x)dx{(6-1 — 60)! 7P, Py = ZZ<nY’, )
Jje ik je
|x| < 2k

wheren, = ). J @j(x)dx (6 — 6). A computation shows that {n;};.z
—k+j=1
|x| < 2k
is a family of functions, with compact support contained in {x: 27! < |x| < 2},
satisfying (1.3) and (1.4). Two complete the proof we write Y (¢}, ®) =
jeZ

Y89, @) + ) (nf, @)

jez jez

Then we have the following.

THEOREM B. Let {¢;};.z be a family of functions in L'(R") satisfying (1.3), (1.4)
and (1.5). Let k, be a function satisfying (1.6) and (1.7). Then, for feLP(R"),
1<p<oo,
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Tf(0) = lim Y 22 — y)kaoAE + y) () dy
(N, M)~ (-0, o) J NSjSM

exists almost everywhere in R" and | Tf|{, < c, | fll,. Moreover, if feS(R")
{x: | Tf(x)| > A} S c A7 || flly for all A > O (weak type 1-1).

§s.
In this paragraph we give some applications of the results before obtained.

REMARK 5.1. Let k; = Q(x)/|x|", with Q a homogeneous function of degree

zero satisfying J Q(x)dx = 0, and, for some ¢ > 0,

Sn—-1

f 12(gx) — Q(x)|dx = clgl*
sn—1

for all g in So(n). Here | | denotes a smooth distance to the identity. Let k, be
a function satisfying (1.6) and (1.7). Then the operator given by

Tf(§) = p.v. J k(€ — yka(C + ) S () dy

Rn

is bounded on L(R"), 1 < p < o0, and of weak type 1-1.

Indeed, if we define @o(x) = ki(x)Xg (x), then ki(x)= Y 2"po(2x),
supp@o S {xeR™ 27! <|x] £2} and it satisfies (1.3). In order to apply
Theorem A it only remains to check the L!'-Holder condition (1.4). We must
estimate

1Q(x — h)/ Ix — hI" — Q(x)/ |xI" dx

2-1g|x—h|s2
2-Tgx|22

+ I 1Q(x — h)/|x — h"| dx
2-1<ix—h|ls2
fx:lxjs 2 ux: x| 2 2}
+ J + 1200/ IxI" dx

2-1gx|s2
x:lx—hlS2-TYu(x:|x—h|22}

The second and third integrals are similar. We study the last one. We can
assume |h| < 1/4, since for |h| = 1/4
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choo(x + h) — @o(X)ldx = 2 |l@olls < clhl* l@olls

Now, for |x — h| £27!, we have |x| £ 27! + |h| and for |x — h| = 2 we have
|x] = 2 — |h|. Then

1)/ |x]"dx = f [20x)| / |x]" dx
27 'six]s2 2-!six|s2
(x:lx—hl£2-Tyu{x:|x—h| 22} |x—h| 22
+ f [QO/ |xI"dx = c || L1l |Al".

2-'sixls2
|x—h{22

A change to polar coordinates gives us the last bound. It remains to treat the first
integral.

1R2(x — h)/1x — A" — Q(x)/ |x|"| dx

2-1<|x—h|s2
2-Txlx|s2

< J |2(x — h) — Q(x)||x — h|""dx

27 's|x-h|s2
2“§|x|§2

+ f 10l |Ix — B ™" — |x| " dx

2-15|x—h|s2
2-Tx|x|52

We note that ||x —h|™" —|x|""| < |W Y (n) [x[* " |p"~*"t|x — b~ "
) 0=<k=n-1 k
then J 1200 |Ix — k™" — |x|~"| dx < c|h| [Q]l,. On the other hand, the

2-1g|x—h| 52
2-Tg|x|s2

change of variable z = x — h gives us

12(x — h) — Q(x)||x — h| " "dx = J |2(z + h) — Q(2)| |z| "dz
2-15|x—h|s2 2-1gz|g2
2-Tgx|s2

For zeR" we set z = z'r with z’e §* ! and r 2 0, we also set o = h/r. Then the

last integral can be written | r7* ( f 1@z + a) — Q(2)| dz’) dr.
2-15rs2
Sn-1

Now we apply lemma 5 of [C-W-Z] to obtain, for a small enough,
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l9l < lal

J 12(z" + o) — Q(2')|dz’ £ sup j |12(gu) — Q)| dz' £ claf® = c|h|*r™®
Sn-1 Sn-1

Remark 5.1 follows from this last inequality.

REMARK 5.2. Let k,(x) be a C'(R" — {0}) function such that, for some constant
¢ > 0andforall x e R"|k,(x)| < cand |Vk,(x)| £ c|x|~'. Thenit is easy to see that
k, satisfies (1.7) for all & < 1. For example k, being homogeneous of degree 0 and
smooth out of the origin. A less restrictive condition for K, is given by the
following remark.

REMARK 5.3. Let {y/;} .z be a family of measurable functions on R? satisfying

(i) Suppy; <= {xeR"27!' <|x| £2}.

(i) There exist ¢ >0 and 0 < 6 < 1 such that |y ;(x + h) — y;(x)| < c|h|® for
almost all xe R".

By (i) and (i) ;€ L*(R") and ||y/}]l, < ¢, so if we define ky(x) = Y ¥;(2'x), we

jezZ

have that k, € L*(R") and satisfies (1.7). Indeed |k,(x + h) — k,(x)| < ¢ Y, 27 |h)°.

JjeZ
If |h| < |x|/2 and either 2/ or 2/(x + h) belongs to supp V¥;, then 2/ < ¢/|x|. The
result follows since for each h and x fixed, at most six terms are involved.
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ON APPROXIMATION IN WEIGHTED SOBOLEV SPACES
AND SELF-ADJOINTNESS

ANDERS CARLSSON and VLADIMIR MAZ'YA

Abstract.

Necessary and sufficient conditions for approximation by test functions in a type of weighted Sobolev
spaces are given. As an application a necessary condition for essential self-adjointness of a perturbed
Laplacian is proved. A lemma on the equivalence of two capacities is proved and used to obtain
criteria for closability, continuity and compactness of certain embeddings.

1. Introduction.

Let p € L. (R¥) be a positive function, locally bounded away from zero. In [6] the
1 . .

spectral properties of the operator A = — ;A on I?(p) with domain Cg (R") are

investigated. In particular it is proved that for N = 3 a necessary condition for
A to be essentially self-adjoint is that [p(x)dx = oo. In the present paper we
sharpen this result. This is done by giving necessary and sufficient conditions for
the density of test functions in a weighted Sobolev space.

For p = 1 we define I™?(R") as the set of distributions u on R¥ such that

m 1/p
lllm,p = ( > J IVEu()l? dx) < 005

k=1

here V*u denotes the vector (D®u),—;. L5?(RY) is the completion of C3(RY)
with respect to the I™? norm. Now let Q = RY be an open set and let u be
a nontrivial positive Radon measure on . We will study the space H};"*(Q),
defined as the completion of I?(u) n I™P(RN) n Cg with respect to the norm

lttllm,piw = NttllLogy + t4llm,p3

here C§ = {ue C*(R"):suppu = @}. The closure of C3 () in H}*(Q) is de-
noted I-T';'P (). Note that if p < N then by Sobolev’s inequality the elements in

Received January 12, 1993.
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. The elements in

. L N
Ly® can be identified with functions in I, where p* = N P

H,’:"" (€) are naturally identified with elements in g?. Note also that I™? < I .
The theorem to be proved is the following. (See Section 2 for definitions of the
capacitites B,, , and H} ~™ used.)

THEOREM 1. Let u be a nontrivial positive Radon measure concentrated on
Q < R" and let C denote B,, , for p > 1 and HY "™ for p = 1. Then

i) ﬁ,’:‘"’(ﬂ) = H}"P(Q) if either p 2 N or p < N and C(Q°) = 0.

Suppose now that p < N and C(Q°) < 0. Then Ii:"”(ﬂ) = H}""(Q)if and only if

(i) u(Q) = oo, when eitherm Z N,p=1o0ormp > N,p > 1.

(iii) u(F) = oo for every closed set F = RY satisfying C(F) < co, when either

N
1<p§;orm<N,p=1.

REMARK. When 1 <p< N, mp> N or 1 =p< N, m= N the condition
C(§¥) < oo is just a complicated way of saying that Q° should be bounded; see

[2].
Letting A be the operator above we can now prove the following theorem.

THEOREM 2. A necessary condition for the operator A to be essentially
self-adjoint is that [pep(x)dx = oo whenever F is a closed set such that B, ,(F) < 0.

PrOOF. Suppose p does not satisfy the condition in the theorem. Then by
Theorem 1 and the Hahn-Banach theorem there is a function 0 + ue H}'?(R")
such that

fu(x)v(x)p(x)dx + JVu(x)'Vv(x) dx=0

for all ve H »"2(RY) > D(A), where A is the closure of A. Thus

(u,v + ZU)L2(‘,) = 0,
so ueD((I + A)*) = D(A*) and u + A*u = 0. Now suppose 4 = A*. Then
ue D(A) and hence

Jlu(x)lzp(x) dx + Jqu(x)l2 dx =0
which implies that u = 0. This contradiction shows that A4 is not self-adjoint.

2. Capacities.

We will denote different constants, not depending on the essential functions or
variables considered, by A. The ball with radius » and centered at x will be



ON APPROXIMATION IN WEIGHTED SOBOLEV SPACES AND ... 113

denoted by B(x,r). If x = 0 we will write only B(r). The annulus B(R)\ B(r) is
denoted by A(R, 7).
We start by defining some convolution kernels needed.

DEefFINITION 1. The Bessel kernels G,, the Riesz kernels I, and the truncated
Bessel kernels G,,; are defined by

Ga(&) = (1 + &) 72,
Lx)=x*" 0<a<N
and
Gy1(x) = 0(x) G,(x)

where e CF(B(1))* is an arbitrary but fixed function such that 6 = 1 on B(}).
For o = 1 we define

Ka = Il*Ga—l'

It is easy to see, analogously to the cases with Riesz or Bessel potentials, that,
forl <p<N,I5" = {K,*f: feI?(RY)}.
Each of these kernels gives rise to corresponding capacities as follows.

DEerINITION 2. For E = RY and p > 1 we define
B, ,(E) = inf{|f|2: f€I?,, G, * f 2 1 on E},
R, ,(E) = inf {If12: fe L%, L, * f 2 1 on E}
CapE) = inf {|IfI5: f €%, K, % f Z 1 on E}
and
B, 1 (E) = inf{|[f]12: f€ Iy, Gpyy * f 2 1 0on E}.
It is proved in [2] that B, , and R, , are finite simultaneously, although not
comparable, for 1 < p < i:—. It is not hard to see from that proof that C, , and

B, , are finite at the same time, for 1 < p < N. The set functions B, , and B, p,;
are comparable. See [4] for a proof of this fact. We will need the following lemma,
which, for technical convenience, is the reason for introducing the truncated
Bessel kernel.

LEMMA 1. Let p > 1. If F = R¥ is closed then
B,y (F) = inf{||f|2: fe %, C* 3G, *f Z 1 on F}.
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PrROOF. Wemay assume B, ., (F)finite. Let A, = B(1)and 4; = B(j + 1)\B())
for j = 1. It is proved in [2] that Zj‘; 1By ,(F N Aj) £ AB, ,(F). Hence

) .Zl B, 1 (F N Aj) < oo

i=
Now choose f;e IZ, such that | f;||5 < 2794+ B,,1(FnA;)and G, * f; = 1 on
aneighbourhood of F n A4;. This can be done since G,,; * f;is lower semicontinu-
ous. It is seen from the definition of B, ,;; that we may assume that supp f; = 4]
where we denote E' = {x:dist(x, E) < 1}. By astandard regularization we obtain
functions g;e€ C3 (A7)" such that

lgjly < AR + Byt (F N Ay))
and G,;; *g; = 1 on F n A;. Consequently, if we set g = Zf’: u g; for some M to

be specified later we get G,,; *g = 1 on F\ B(M). Also, since the sum defining g is
uniformly locally finite, G,.; *ge C* and

() lghe <A Y lgilE< A Y (277 + By pa (F 0 4)).

=M j=M
Now let ¢ > 0. By (1) and (2) we get ||g|l, < €if M is large enough. By the same
argument as before with lower semicontinuity and regularization we can find
a function he CZ(RM)* such that ||hl|, < B, . (F A B(M))""? + ¢ and G, *
h =1 on F nB(M). Setting f = g + h we obtain | f||, £ B, .1 (F)'"? + 2¢ and
C®3G,, *f = 1 on F. Since ¢ was arbitrary the lemma follows.

For p = 1 the appropriate capacities are Hausdorff capacities.

DEFINITION 3. Let 0 £ d < N. Then for subsets E of R we define
Hy(E) = inf 3. rf

where the infimum is taken over all countable coverings Uf‘; 1 B(x;,r;) o E, with
r; < p. For d < 0 we define H3(E) = H)(E).

The following lemma is immediate except for (iii) which is (a variant of) the
well-known Frostman lemma.

LEMMA 2. Let 0 <d < N. Then
(i) H%(E) £ HY(E) £ AH’(E) + A(H’(E)“. In particular H% and H% are
finite at the same time.
(i) Y. H{(En A;) < AH!(E), where A; is as in the proof of Lemma .
j=o0
(iii) H4(E)is comparable to sup {u(E): |u|(B(x,r)) < r,r < 1, xe R}, for Borel
sets E.
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The following lemma, partly proved by Adams [3], will give a substitute when
p = 1 for the potentials used when p > 1.

LEMMA 3. Let m be an integer, 0 <m < N. Then for closed sets F — RV,
HY~™(F) is comparable to

inf {[loll; + IV"¢ll;:9eC®, 0= ¢ <1, ¢ =1 0n a neighbourhood of F}.

PROOF. Suppose e C®, ¢ = 1 on a neighbourhood of F and |¢||; + V"ol <
oo. If p is a positive measure supported by F then by [9, Sec. 1.4] we have
(B(x,r m
WF) < deu <4 swp LCED 1, 4 1vmol)

x;0<r=<1

Taking the supremum over y with

H(B(x,r))

sup N 1

x0<rs1 T
we get by Lemma 2 (iii) that HY "™(F) £ A(|l¢|l; + ||V™@|l,) which proves one
direction of the lemma.
To prove the other direction suppose first that F is compact. Cover F by balls
B(x;,r;), ri £ 1,1 i <5, such that

IIA

Y riTm S HYTM(F) +
i=1

where ¢ > 0. By Lemma 3.1 of [7] there are functions ;e C&(B(x;,2r)), 1 <
i <'s, such that |D*y;] < A,r;1* and such that ¢ = Y5_, ¥, satisfies ¢ = 1 on
a neighbourhood of F. We get

ol + 1V™ell = ¥ f (i)l + [V™¥i(x)D) dx

B(xi,2ri)

Il/\

2 N 4 ¥ om) < AHY™(F) + Ae.

Since ¢ was arbitrary we are done in case F is compact.

For the general case we introduce a partition of unity 1 = Y ,(,, where
0<¢,<1,¢, =1 onaneighbourhood of 4,,, supp{, = 45, and |V*{,| < A for
1 < k < m. Here A;and A4 are as in the proof of Lemma 1. Now choose functions
¢, corresponding to the sets F n A5, according to the construction for compact
sets in a way that

l@alls + IV @ully < AHY"™(F 0 A3,) + 27",
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where ¢ > 0. Letting ¢ = Z,‘?:(,C,, ¢, we obtain, using Leibniz’ rule, interpolation
and Lemma 2(ii),

loly +IVi@li 4 Y Y | IVko(x)ldx
n=0k=0
A’ZVI

<4 % [t + 9ot as

S Y (HYTM(F 0 Ay) +27")
n=0

<2%+AY HY"™FnA,)< 2+ AHY ™(F).
n=0

Since ¢ was arbitrary the lemma follows.

3. Some Applications of Lemma 3.

We record here some generalizations, depending on Lemma 3, to the case p = 1
of some results in [9,Ch. 12]. As before let 4 be a positive Radon measure
concentrated on 2 < RY and let W, X and Y be the completions of C¥(€2) with
respect to the norms

lully = ﬁu(x)n dx + jlmn dx

flullx = jlul dp + JIV"'u(X)I dx,
and
ully = fIV"'u(X)I dx,

respectively. Then we have the following theorems.

THEOREM 3. The identity operator defined on CZ () and mapping L} (Q) into X is
closable if and only if p is absolutely continuous with respect to HY ~™.

THEOREM 4. Theidentity operator defined on C3 () and mapping W into L' (u) is
closable if and only if u is absolutely continuous with respect to HY ~™.

THEOREM 5. Let m < N. Then the identity operator defined on C{(R2) and
mapping Y into LI} () is closable if and only if i is absolutely continuous with respect
to HY ™
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REMARK. Note that for m > N and for m = N respectively the above condi-
tion on absolute continuity is empty so the operators are always closable. In the
proof of Theorem 3 below “quasieverywhere” can be read “everywhere” in this
case.

For the proofs we will need two lemmas, proved in [5]. We give the proofs here
for the convenience of the reader. Recall that a function u is called H4-quasicon-
tinuous if it is defined H4-quasieverywhere and if for every ¢ > 0 there is an open
set G such that u|s. is continuous and H4(G) < e.

LEMMA 4. Suppose that u,e C3(2) and that |u,+y — u,|lw <47 ". Then u,
converges HY ~™-quasieverywhere to an HY ~™-quasicontinuous function.

PROOF. Let u be a positive Radon measure such that u(B(x,r)) < r¥ "™ for all
xeRM and all r < 1. Then by [9, Sec. 1.4] we have

‘[Iun+l - unl d/‘ =< A47",

By monotone convergence, di(x) = lim,_, , u,(x) exists a.e. [u]. Now, let
F = {x:ii(x) is defined}
and
E, = {xeF:|i(x) — u,(x)| 2 27"}.
Then, by part (iii) of Lemma 2, HY "™(F°) = 0. Also,

u(E,) = AZ”JIa —uldu<A27"

so HY "™, < A2 Let F, = U2 E,. Then HY "™(F,) £ A27* Thus, given
&> 0, we may choose k and an open set G, with HY "™(G,) < ¢ such that
F, u F® c G,. Since u, — il uniformly on Gj, the lemma is proved.

LEMMA 5. Suppose that u is H%-quasicontinuous and that E = {x:u(x) % 0} is
a Borel set with |E| = 0. Then H4(E) = 0.

PrOOF. Suppose that HY(E) = ¢ > 0. There is an open set G with H4(G) < ¢
such that u|g. is continuous. We do not specify ¢ here because the choice of it
depends on a certain constant, appearing later in the proof. However, ¢ is a fixed
positive number less than c.

Let K <« E\G be a compact set such that H4(K)>c —¢ and set K, =

{x:dist x,K) = —1-} By Lemma 2, part (iii), we can choose measures y, sup-
n

ported by K, such that
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sup Un(B(x, 7))

<A
x;0<r=<1 rd

and p,(K,) = H‘:(Kn)
Define ¢,(x) = n" ¢(nx), where ¢ € CP(B(1)) is a function such that 0 £ ¢ < A
and [¢ = 1. Set v, = ¢, * p,. Then we have

1
O * ta(y) = Jqﬁ..(y — du,(t) £ An”u..<B(y, ;)) < An74

Thus, for r < %

S AnrN i< A

Va(B, (x))
A

1
For—n—§r§1wehave

B(x, [
2B < | xaen) f Bl — ) dint)dy
1 r
= 7 XBx.n * ¢n(t) dﬂn(t)
1 r
= A XBexr+1)(8) dpta(t)

v

u,,(B(x, r+ %))
é A 1 d é A.
n

B oy

Thus we obtain
sup

x;0<r=<1

Also,
vo(RY) = J j Palx — y) dp,(y) dx

= J Jd)n(x — y)dxdp,(y)

= /"n(Kn) = H‘: (K»)

2 Hi(K)zc—e
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Let K¥ = suppv,. Then, since |E| = 0, we get
HYKX\E)Z A", (E) = A" 'v,(RY) 2 A7} (c — o).

Now we are in the position to specify & take any positive ¢ satisfying
A~ !(c — &) > &. Then we obtain

H{(K}\E) > H{(G).
Hence there are points x, € K} n E° n G°. We may assume that x, converges to
. . . 2
some point x,. Since x,€ K} there are points y,e K such that |x, — y,| <—.
n

Then y, — xq, s0 in particular x, € K. By the continuity of u on G° we obtain that
0 = u(x,) = u(x,) + 0. From this contradiction we conclude that H4(E) = 0 and
the lemma is proved.

PRrROOF OF THEOREM 3. We start with the sufficiency part. Suppose {u,} =
CX(Q) is a Cauchy sequence in X, converging to zero in I!(2). Then D*u,
converges in ! () for |« = m and since obviously D*u, — 0 as distributions we
get D*u, = 0 in L}(Q). Hence, passing to a subsequence, we may assume that u,
converges HY “™-quasieverywhere by Lemma 4. Also, by Lemma 5 we get that,
HY ~™-quasieverywhere, u, — 0. Thus u, — 0 a.e [4], and since {u,} is a Cauchy
sequence in I}(u) we obtain u, — 0 in X.

For the necessity part suppose F = Q is a compact set satisfying HY "™(F) = 0
and u(F) > 0. Let G, o F be shrinking open sets such that HY “™(G,) — 0 and
WG, \F)— 0 as n— oo. Then, by Lemma 3, we can find ¢, CJ(Q) such that
¢, =1o0n G, and

l@alls + IV @ully = 0.

Moreover, by construction, ¢, — 0 uniformly outside every neighbourhood of
F and there is a compact set K = Qsuch thatsupp ¢, < K foralln. Nowlete > 0
and choose n so that u(G,\ F) < ¢/4. Then, for j and k large enough,

€ €
Jlfp; — @ldp = J lo; — @il dp + 2u(G,\ F) < St =¢
o]

K\Gn

Hence {¢,} is a Cauchy sequence in X, converging to zero in L'(2). However,
since

"(pn”L‘(u) g #(F) > 0’

we cannot have ¢, — 0 in X. This proves the necessity part.
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The proofs of Theorems 4 and 5 follow the same lines as in [9, Sec. 12.4],
making use of the proof of Theorem 3.

Using Lemma 3 we can also obtain necessary and sufficient conditions for
continuity and compactness of the embedding of X into the Sobolev space
W*4(R¥). To state these theorems we need first some definitions. Let m < N.
Then a set F < B(x,r) is called (m, 1)-unessential if

H™F) < yr¥7m,
where y is a sufficiently small constant, depending only on m and N. Form = N
only the empty set is called (m, 1)-unessential.
Let #(Q) be the family of all balls B(x, r) such that B(x,r)\Q is (m, 1)-unessen-
tial. Then we define

Dp,1(n, Q) = sup {r; B(x,r)e # (), inf u(B(x,r)\F) < r" "™},

where the infimum is taken over all (m, 1)-unessential closed sets F < B(x,r). We
then have the following theorems.

THEOREM 6. Let0<k<m,1<qg<ooandm — k> N(1 — 1/q). Then
lully + IV*ully < Allullx
Jor all ue CZ(L) if and only if there are positive constants r and a such that
HWB((x,N\F) 2 a

for all balls B(x,r)e #(RQ) and all (m,1)-unessential sets F = B(x,r). The best
constant A is comparable to

pm—N1-1/a) ay {D_k, 1},
where D = Dy, s (p, Q).

THEOREM 7. Let 0 £ k<m, 1 <g< oo and m — k > N(1 — 1/q). Then X is
compactly embedded into W*(R™) if and only if D,, ;(1,Q) < co and

lim Dm,l(ﬂsQ\E(R—)) =0.

R-w

The proofs of these theorems are the same as those of the corresponding
theorems for p > 1in [9, Sec. 12.2-12.3], relying now on Lemma 3 of the present

paper.
4. Proof of Theorem 1.

We will need some basic results on the function spaces L™? and Lj?. We state first
a well-known lemma of Hardy type.
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LEMMA 6. (i) If 1 < p < N and ue L’;?(R") then
u(x)”
|x|?

(i) Ifp > N and ue L'"*(R") then

|u(x)|? dx < A( f [u(x)|P dx + J [Vu(x)|P dx).

|x[P
B(1)e B(1)

(iti) If p = N and ue I}'P(RN) then

dx < A JWu(x)l"dx.

(x| log X % = A( f lu(x)IP dx + Jqu(xn dx).

B(2)c B(2)

A proof of essentially the following decomposition lemma can be found in
Lizorkin [8].

LEMMA 7. Let 1 £ p < N. Then for each ue I™P(RY) there is a unique constant
¢ such that u — ce CyP(R").

We turn now to the proof of Theorem 1, divided into four cases starting with
the main one.

N .
Thecasel < p £ Lorp= 1,m < N. We start by proving the sufficiency part.

Suppose that u satisfies the condition in the theorem. We will show then that
Co nH'P < L. Letue C3 n Hy'P and suppose that ¢ + 0, where u — ce [g”.
We can assume that ¢ > 0. Let

F = {x:lu(x)—cl g%}

and suppose first that p > 1. Then u — ¢ can be written u — ¢ = K, * f where
feI and we get

p

c 2
Cop(F) = Cm,p<{x2 Kn*1fl2 3}) == /117 < oo.
If p = 1 then in the same way as in the proof of Lemma 3

HY-"(F)< 4 f IV™(u(x) — c)| dx < 0.

. ¢
On the other hand, since |u| = 5 on F¢, we have
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W(F*) <( ) flul"du < oo.

This contradicts the condition on u so ¢ = 0. It follows that ue LgP. Note that
since & < F we must have ¢ = 0if C(Q°) = oo, without using any condition on p.

Now let nge CT(B(2R))satisfy 0 < ng < 1,ng = 1 0on B(R)and |[V*5g| < AR
for k < m. Then for R = 1 we get

15l+ks=m

lu—unglhp, <A ¥ JIV"u(X)I" IV!(1 — nR)(x)I” dx

II/\
u M 3

<l

fV"u(x)I”dx+A Y R“” J‘ |V*u(x)|Pdx
1Tks
B(R)® 121

A(2R,R)

ll/\

Z J‘ |V*u(x)Pdx + AR™? J [u(x)|? dx.
k=t B(R)<© A(2R,R)

Thus ngu — u in ’*? as R — oo by Lemma 6 (i). Also

Jlnxu —ufPdu < J |ulP dp — 0
B(R)°

as R— oo since ue H}?(Q). It follows that ueﬁ';"’(Q), ie. Cg N HPP(Q) <
H,':""(Q) and hence H}}?(Q) = I-?f*”(()).

We now turn to the necessity part. Suppose that H;"P(Q) = H‘T"’ (£2) and that
Fis a closed set such that B,, ,(F) < co and u(F°) < oo where now p > 1. Assume
also that B,, ,(2°) < oo. Then there is an open set G o Q° such that B, ,(G) < oo.
By Lemma 1 we can find f eI, such that G,.;* feC® and G,,; *f =1 on
F U G. Now let T be a smooth function on R, such that T(t) = 1 if t = 1 and
SuUp,>o|t* ! T®(t)] < o for 0 < k < m. Then by the truncation theorem in [1]
(it works also for the truncated kernel) there is a function geI? such that
To(Gp1*f)=Gm1*g and |gll, £ Allfll,. We set u=1— G, *g. Then
ue C3 n L"? but, by Lemma 7, u ¢ I’g? since G,,,; * g € Li?. Moreover

Jlul" dp = J [ulP du < W(F°) < oo

by the assumption on F, so ue H Z'P(Q)\ﬁ":""(ﬂ). This contradiction shows that
u must satisfy the condition in the theorem.
For p = 1 we use instead u = 1 — ¢ where ¢ is the function constructed in
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Lemma 3, satisfying ¢ = 1 on a neighbourhood of F U G. Since [|g(x)|dx +
ﬂV"‘ o(x)|dx < oo it follows easily, using the multiplier 7z above, that p e [
Hence u¢ﬁ,’:"1(Q). But ||uldu < u(F°) < oo so ue H*' and we have again
obtained a contradiction.

The case 1 <p <N, mp> N or1=p<N,m2=N. For the sufficiency we
again decompose u = v + ¢ where ve L§?. Using Sobolev’s inequality

. 1/p* i/p
sup || §A( J [v(y)IP dy) +A( j IV'”v(y)I"dy>
B(x,1)

B(x,1)

B(x,1)

for every x € R¥, we see that v(x) — 0 uniformly as |x| — co. Thus, if ¢ & 0, we can
lc|

find R such that |v| < EX on B(R)°. Then, if u is not finite,

Jlul"du > ('-;l) W(B(RY) =

and we have a contradiction. Thus ¢ = 0 and we can proceed as in the first case,
again using Lemma 6(i). Note that if Q¢ is unbounded it follows immediately that
¢ = 0, without any condition on p, since v = ¢ on Q°.

For the necessity we observe that if Q° is bounded then there is u € Cg such that
u(x) =1 for large |x|. Then ueI™P\Iy? since u¢ I¥*. If pu is finite we get
ue H';"’(Q)\ﬁ,’:‘"’(Q) and we are done.

The case p > N is proved as above, now invoking Lemma 6 (ii).

The case p = N is proved by Lemma 6 (iii), this time using the multiplier

1 R?
=y| ——log—
nr(x) x(log R0 ™ >

where y is a smooth function satisfying x(t) = 0 for t < ;and x(¢) = 1 fort > 3.
This completes the proof.

REMARK. The-same question of density of test functions can be asked about
the more general norm

lull = llull Lo + k; IV¥ull

wherem = | = 2. Incaselp = N approximation is always possible. This is proved
in the same way as in this paper, using only somewhat different Hardy in-
equalitites. In the general case it is easy to give an implicit necessary and sufficient
condition. Namely, with obvious notation, Hy™? = H.™ if and only if
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“eﬁﬁm'p’Pe Pl—bJ‘I“ —PPdu< 0o=P=0.

However, it is not clear whether this condition can be stated in a more transpar-
ent way in the spirit of Theorem 1, for example in terms of polynomial capacities;
cfr [9, Ch. 10].
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AN EXISTENCE RESULT FOR SIMPLE
INDUCTIVE LIMITS OF INTERVAL ALGEBRAS

JESPER VILLADSEN

Given a C*-algebra 4 with unit 1 we define the Elliot triple of A4 to be
(KO(A)’ T(A)’ rA)

where K y(A) has the usual ordering and [1] as order-unit, T(A) is the tracial state
space of 4, and with S the state space functor, r: T(A4) - S(Ky(4)) is given by
r4(t)[p] — [q]) = ©(p — g)forall e T(A) and projections p, g € M, (A) where  is
extended to M, (A) by (a;;)— ), t(a;). We identify two such triples (G, 4;, f3),
i = 1,2 if there are isomorphisms ¢4:G, - Gy, ¢r:4, — 4, such that the dia-
gram

4, 25, 4,

A

S(Gy) Sdo S(G»)

commutes. Elliott [3] proved that this triple is a complete invariant for the simple
unital C*-algebras which arise as inductive limits of finite direct sums of matrix
algebras over C([0, 1]) — AI algebras for short. The project of determining the
range of the Elliott triple when applied to simple unital AI algebras was initiated
by Thomsen [6]. When A is a simple unital Al algebra K,(4) is a simple
dimension group, S(K((A)) is a metrizable Choquet simplex, T(4) is another
metrizable Choquet simplex and the map r 4 is an affine continuous surjection.
Furthermore, we know from [6] that the map r, preserves extreme points i.e.
r4(0: T(A4)) = 0.S(Ko(4))-

In this paper we show that, whenever G is a simple noncyclic dimension group,
such that the extreme boundary of the state space is compact and totally
disconnected, 4 is a metrizable Choquet simplex and f:4 — S(G) an affine
continuous map with f(d.4) = 0.5(G), then (G, 4, f) is the Elliott triple of some
simple unital Al algebra.

Received January 13, 1993.



126 JESPER VILLADSEN

NotaTION 1. For K a compact convex subset of a linear topological space, we
denote by Aff(K) the complete order-unit space of affine continuous real-valued
functions on K with pointwise ordering and 1 as the order-unit. For A: K — L
a continuous affine map between compact convex sets, let Aff(1): Aff(L) —»
Aff(K) be the positive order-unit-preserving homomorphism given by
Aff (A)(h) = hoA for all he Aff(L). It is well-known that for K a compact convex
subset of a locally convex Hausdorff space, the state space of Aff(K) is naturally
isomorphic to K via evaluation.

For convenience we write s* for AffS(s) when s is a homomorphism of ordered
groups, and write “homomorphism” instead of “positive order-unit-
preserving homomorphism” when dealing with homomorphisms of order-unit
spaces.

DEFINITIONS 2. Let 4 be a Choquet simplex. A partition of unity v,,..., v, in
Aff(4) is said to be extreme if there are closed non-empty faces 4,,..., 4 in
A with 4 = hull{4,,..., 4} such that v)|,, = J;; for 1 <i,j < k. A partition of
unity vy, ..., 0, in Aff(4) is peaked if ||v;]| = 1,j = 1,...,k. Note that in this case
span {vy,..., 0%} = I with vy,...,v, as the standard basis.

For v,1 — v an extreme partition of unity in Aff(4) with corresponding faces
E, E° we let Aff(4), = {f € Aff(4): f|g. = 0}, which is an order-unit space with
order-unit v, and define a homomorphism =, : Aff(4) — Aff(4), by n,(/)lg = fle
and 7,(f)|z- = 0 for f e Aff(4).

LEMMA 3. Suppose that 4 is a Choquet simplex and (I, v;) an inductive system
withlim (I, v;) = Aff(4). Let vy,. .., v, be a peaked partition of unity in Aff (4) and
let ¢ > 0. There is an i N and a homomorphism p :span {v,,... v} = L2 such that
lvgiop —id| <e.

PROOF. Since U2 v,i((I7))isdensein Aff(4)* thereare xy,. .., x,—; €(I )+

with

‘<I_E>Uj_ mio(xj)“< 2k2’] 1,...,k— 1. Now

NESNEEERS

and there is an i 2 ig so that v; 521 x;)) < 1. Let y; = v;;(x)),j = 1,...,k — 1
and y,=1—Y%_1y; Then (y;}5_, is a partition of unity in [3?. Since

€ € k=1 £
I-Z_<1_2k>vk< Z Vailyj) < 1 — (1—‘§E)Uk

we have that
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&
(1 Zk)vk < Vw,(yk) < - k + <1 - E{')Uk.

Hence, [0; = Vaily)ll < 0 = Lok

Let p:span {v,...,v} — [ be the homomorphism given by p(v;) = y; for
j=1,...,k Clearly, |[ve;cp — id|| <e.

LEMMA 4. Let A be a metrizable Choquet simplex and w,1 — w an extreme
partition of unity in Aff (4). Let V be a subspace of Aff(4d) with1eVand V = I® for
some meN. Let F < Aff(4),, be a finite subset and let ¢ > 0. There is a subspace
W of Aff(4),, withwe W = I for some ne N such that dist(f, W) < e forall fe F
and a homomorphism n: V — W with |5 — n,|y| <e.

PROOF. There is a 6 > 0 such that if x,,...,x;e [P+ with Y., x;— 1| <
then there are y,...,y,€l®* with Z§=1y,-=1 and |x; — yill <—2§n7 for

1 i<l It follows from Theorem 2.7.2 of [1] that there is a subspace W of
Aff(4),, with we W and W = I? for some ne N such that dist(f, W) < ¢ for all

f€F and dist(n,(e;), W) <

for 1 £i £ mwheree,,...,e,is the standard

basis for V x=IP. Since dlst(nw(e,-), W) < 2dist(r,,(e;), W) there are

5
X1,. s xme W with [x; — m(e)]l < ;,g for1 Si<mSo Y™, x —w|<d

P
and there are y,...,y,e W* with Y7 y;=w and |x;— yl < o for

1<i<m Let n: V- W be the homomorphism given by #(e;) = y; for
1Zi<m Let xeV with |x| £1. Then x=z;"=1<xiei for some
oy,...,0%,€[—1,1] and

n(x) — mu ()l = .Zl lou| 1y — muledll = .Zl (ly: = xill + lIx; — mule)ll) < e

DEFINITION 5. A tree is a triple (X, <, x,) where (X, <) is a partially ordered
set with a maximal element x, such that s(x) = {ye X :y <x,Vz < x:y & z} is
finite for every x€ X, s(x) N s(y) = & when x # y and X is the union of the level
sets &' given by £ = {x,} and F**! = U, gis(y) for ieN. For ieN we let
L=%"u{yeli., #:VxeX:x €y} - the leaves of Ui ¥’ — and
c(x)={yeL*':y < x} for xe L.

REMARK 6. Let 4 be a metrizable Choquet simplex with compact and totally
disconnected extreme boundary. Since every locally compact, totally discon-
nected topological space has a basis of sets being both open and closed, there is
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a basis Y for the compact, totally disconnected metric space d.4 such that . 4e Y
and (Y, <, d.4) is a tree, where s(y) is either empty or consists of mutually disjoint

sets with union y for every ye Y. Now put X = {ge Aff(4):3ye Y:gls o = 1,}.

Then (X, <, 1)is a tree where each L is an extreme partition of unity in Aff (4) and
the span of X is dense in Aff(4).

PROPOSITION 7. Let G be a simple noncyclic dimension group, such that the
extreme boundary of the state space is compact and totally disconnected. Let 4 be
a metrizable Choquet simplex and let f: 4 — S(G) be a continuous affine map with
f(6.4) = 0.S(G). There is a system (Z%,s;) with positive order-unit-preserving
connecting homomorphisms and inductive limit lim(Z",s;) = G, a collection
1e X < AffS(G) with dense span such that (X, £,1) is a tree where each L is an
extreme partition of unity in AffS (G) and homomorphisms p;: W, — AffS (Z"), ;:
AffS (Z™) —» W, where W, = span (L) such that

I6;° pi — idll <27,

lpivio6; —sFll <27'n Y,

lsk; — &)l <27°
for allie N and moreover there are Markov operators 6,: Cq([0, 1]) — Cx([0,1]) of

the form 6, = N;7*(0; + ... + 0)%) where 6},...,0% are restrictions of unital *-
endomorphisms of C([0,1]) for he L, i = 2 such that

Aff(4) = lim (W, ® Cg([0,1]), 6,),
Oeilv® 1) = AT (f)(v), ve W, ieN
where 0;: W; ® Cg([0,1]) » W, ® Cg([0, 1] is the homomorphism given by

Gi(z 9®Xg> = Z h®9h(xg)

geLl geL?
hec(g)

and
mult(s;) = 2'N; # L+,

Proor. Let(Z™,s;) be a system with positive order-unit-preserving connecting
homomorphisms and inductive limit lim (Z",s;) = G. Since G is simple and
noncyclic we may assume that mult (s;) » oo as i > oo where mult denotes the
smallest entry of a given matrix. We may therefore also assume that mult (s;) = 1
for all ie N.

By the above remark there is a collection 1€ X < AffS(G) with dense span
such that (X, <, 1) is a tree where each L is an extreme partition of unity in
AffS(G).
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Note that Aff(f) takes extreme partitions of unity in AffS(G) to extreme
partitions of unity in Aff(4) because f(0.4) = 0.5(G).

For convenience we write Aff(4), and n, for Aff(4)ace(r)g) a0 Tage(ry(q) TESPECt-
ively for ge X.

For meN a partition of unity {,,...,{, in Cg([0,1]) is chosen such that

Ci<l;1>_1 1 £i<m,and we let 1,,: 12 — Cx([0,1]), K, : Ca([0,1]) = [ be

-1
the homomorphisms given by 1,,(¢;) = {;,1 < i S mandk,(x) = Y1, x< >e,~

for x € Cx([0, 1]). Note that x,, o1, = id.

Let (d;){2 ; and (a;); ; be dense sequences in Cg([0, 1]) and Aff(4) respectively.
We show that there are increasing sequences (i,);- 1, (j,)p=1 in N (j; = 1) and
e subspaces Aff(f)(g)eZ, = Aff(4), such that Z, =~ I for some m;e N and

dist(n,(a,), Z,) <2 Pforall 1 £ q < p,gelr peN,

e homomorphisms #,:Z, —» Z, such that |, — mlz || <277 for all ge L,
hel**' h<g,peN,

e Markov operators 0,: Cg([0,1]) - Cg([0, 1]) which are of the form 0, =
N, '(6s + ... + 6)) where 6;,...,0;" are restrictions of unital *-endomor-
phisms of C([0,1]) and [|6,(f) — tonmnok, (Il <277 for all feF,, geLfp
helir*', h<g, peN where 1, =1, °¢,:Z,— Cx([0,1]), K, = ¢, '°
Cg([0,1]) = Z, for some isomorphism ¢g:Zy— 1, and

P
F,= U (gygq({db' csdph) Ugge Hgg, ° Kgq({dl" > dp})
q=1

where g, € s is the unique function g, 2 g,
e homomorphisms p,: W, - AffS(Z"») and 6,: ARS(Z"") —» W, , where W, =
span (I7) such that

sk, o pp —idll <2777,
1
s, — 9 II <2777t
1
”pp+1°5p z,+u " <2" pn

for all pe N and such that
e mult(s;,, ;) 2 2°N, # Lr** for all peN.

By Lemma 3, thereis an i; € N and a homomorphism p, : W; — AffS (Z"+) such
that |s%, o p; —id|| <272 Since the span of X is dense in AffS(G) there is
a j, > 1 and a homomorphism &, : AffS(Z"') > W, such that ||s?, — | <
272n; %, It follows from Theorem 2.7.2 of [1] that there is a subspace 1€ Z, <
Aff(4) such that Z; = I? eN and dist(a;,Z;) <27

Suppose that (z,)p 1 (j,, P+1areincreasing sequencesin N (j; = 1)and that Z,,
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gelr, 1<p<P,n,0,hel,,2<p<P5,p,1<p<Pand mult(s; , ),
1 < p £ P — 1 satisfies the above conditions. It follows from Lemma 4 that for
everyge I, he I+ h < g thereis a subspace Aff(f)(h) e Z, = Aff(4),such that
Z, = I for some m, €N and a homomorphism #,,: Z, - Z, such that

dist(my(@,), Zy) <2 ®*D, 1S q< P +1,

74 — malz, Il <277

It follows from the Krein-Milman theorem for Markov operators of [5] that
there is a Markov operator 6,: Cg([0, 1]) of the form 6, = N;,' (0} + ... + 637"
where 60},...,0" are restrictions of unital *-endomorphisms of C([0, 1]) such
that [|0,(f) — oo k()| <27 F for all f € F,. We may assume that Np, = Np
forallhe 7+'. Thereisa k; > ip such that mult (s, ,;,) = 2P Np # L»+*. It follows
from Lemma 3 that there is a k, > k; and a homomorphism p:Wp,; —
AffS(Z™) such that ||s%,,°p — idw,, I <2777 2n;.'. Since

”sikz°P°5P - S:)i,,” =< ”Sfokz"/”ép — Op| + 116p — wlp" <27Pn ‘1

and the unit ball in AffS (Z"*)is compact, it follows that thereisanip,; = k, such
that ||s%, ., cpedp — sk, .. <27 Pn; ' Note that mu]t(s,PH,P) = 2PN, # Iip+
and put pp,, = s’ ;.°p. Since the span of X is dense in AffS(G) there is
a jpyo>jp+y and a homomorphism Op+ 1 AfS(ZMr+1) > Wp,, such that
lsin., — Ops1ll <2 ®+*D=1n-1 The result follows from Zorn’s lemma.

For pe N let Z, be the subspace of Aff (4) spanned by (Z,),c.;,- Note that Z, is
isomorphic to the order-unit-space direct sum of (Z,),Li,. Moreover dist (a,, Z,) <
27Pforalll1 £q <p. Letn,:Z,— Z,,, be the homomorphism given by

np< )y Ug) = Y M)

geLip geLJ»
heLJp+1
hsg

forv,e Z,, g€ Ii». Then 1, is a homomorphism with n,(Aff (f)(g)) = Aff(f)(g) for

all geW,. Let ve Z, with |v| £ 1. Then v is of the form v =) ,.s,v, where
v,€Z,, |lvll £1 and

@) —vll = || Y. (1ulv,) — ma(v,)|| = max |lma(vy) — m(v)ll < 277
geLJp geLJp
heLip+1 heLip+1
hs<g hsg

Therefore the sequence (1,,(v));- , in Aff(4) is Cauchy for every ve Z, - let a,(v)
denote the limit. Then «,:Z, — Aff(4) is a homomorphism with a, o7, = a,
and a,(Aff(f)(g)) = Aff(f)(g) for all ge W,. Thus there is a homomorphism
a:lim(Z,,n,) > Aff(4) with aene,=0a, By |[n,@®) —vl <277|v| the
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homomorphism « is seen to be isometric. Using that (a;)®2 , is dense in Aff(4),
dist(a,, Z,) <27 Pforall1 < q < pand 1eZ,forall pe N and the fact that a is
isometric, one shows that a is an isomorphism.

Define I,: Z, - W, ® Cg([0,1]) and K ,: W, ® Cg([0,1]) = Z, by

Ip( > va) = Y. 9® vy,

geLJ» geLi»

Kp( ) g®xg) = 2 Kqlx,)
geLip geLip
for v,eZ,, x,€Cg([0,1]), g L>. The maps I,, K, are homomorphisms and
K,°I,=1id. Letting w, = I, °n,°K,and B, =n,,°K,wehave f,,,cw, =
B, and so there is a homomorphism B:lim (W, ® Cy([0, 1]), w,) - im(Z,,,7,)
with fow,, = B,, pe N. Itis easy to see that this is an isomophism. In addition
2o Bplg ® 1) = a5 Ny © Kplg ® 1) = w0 1, (A (f)9)) = (AT (f)(g)) =
Aff(f)(g) for all ge W,,.

Let 6,: W, ® Cy([0,1]) = W, . ; ® Cg([0, 1]) be the homomorphism given by

6p<z g®xy)= Z h ® 0,(x,).

geLJ» geLi»
heLlp+:
hzg

The set {) gersr g ® x,:x,€{d;:ie N}} is dense in W, ® C([0,1]) and

U (o,,,,{ ¥ h®x,,:x,,e{d,,...,d,,}}uwm{ 3 h®x,,:x,,e{d1,...,dp}})

q=1 heLJq heLiq

is equal to {3 g g ® X4:x,€ F,}. For z = Y ;11,9 ® x, where x, € F, we have

“9,,(2) - CUI,(Z)" = Z th(xg) — ponp° Kg(xg)” é 27F

and it follows from (a slight modification of) Lemma 3.4 of [5] that there is an
isomorphism y:lim (W, ® Cg([0, 1]),0,) = lim (W, ® Cg([0, 1]),w,) such that
700, =y, Where y,: W, ® Cg([0,1]) - lim (W, ® Cg([0, 1), w,) is the homo-
morphism given by y,(x) = lim,_, o, @ 4 © 0,,(x) for x € W, ® Cg([0, 1]). Note that
g ® 1) = 0y,(g® 1) forall ge W,.

To sum up, there is anisomorphism a © f o y: lim (W, ® Cr([0, 1]),6,) - Aff (4)
with oo foyof:(g ® 1) = Aff(f)(g) for all ge W, and ie N.

LEMMA 8. Let M,NeN and Aq,...,A, =0 with Z;-"=11,->0. There are
ky,. .., kmeNg such that
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M—-N<NY kiSM,
j=1

lellcj—lj <

2Nm m
M

m
2
j=1

M .
PrOOF. Put =37, 1; and ﬂf:ﬁv_z‘j:‘)“’ for 1 £j < m. There is an

hJEN0W1thﬂJ—1<hl§ﬂlf0r1§j§m. Putk1=h1 andkj+3 =hj+1—hj
for1 £j<m— 1. Wehave

M —N=N(@pu—1)<Nh,=NY kj<Nu,=M,
j=1

Nk, A N Mi, | N N
'M - x' T 7 I VA R v
and
Nk; A N MJ,; N N
Ml “7’ =M kj—“ﬁ =‘M‘|(hj"’hj—1)-(ﬂj—ﬂj—1)‘<2‘A7
for 2 < j £ m. Therefore
& | Nk; 2Nm
jgl M —ﬂj.<‘M—+|1—l|.

THEOREM 9. Let G be a simple noncyclic dimension group, such that the extreme
boundary of the state space is compact and totally disconnected. Let A be a metriz-
able Choquet simplex and let f: A — S(G) be a continuous affine map with f (0. 4) =
0.5(G). Then (G, 4, f) is the Elliott triple of some simple unital Al algebra.

PRrOOF. Let(Z",s;), X, (p:)i21,(0:)i% 1> (On)hex -1y and mult (s;) be as in Proposi-
tion 7. Let (ab,), (4;,), (13,) and (v},,) be the matrices for s;, 8;, s;* and p; respectively
and put Z; = {(p,q): 1 Sp S nivy, L S q S My Yperiv1 Von ' iy = 0} — the zero
entries of the matrix for p;,°d; for ieN.

It follows from Lemma 8 that for (p, q) ¢ Z; there are (k’;,q),,eLH 1in Ng such that

a;q—Ni<Ni Z k:qéai

Pq’

heLi+1
N,-kh Vi+1/1i 2N; # Li+1 VH.lj.i
h_ “*h i h__"h
ipq _p . | : +1 _p__i_q )
heLi+t| Gpq Hpq Gpq heLi+1  Hpg

For (p,q)€ Z; choose (kb )neri+1+ S Ng such that a,, — N; < N; Y pepis1 kb < db.
Letri, = ab, — Ni Y perivrkhyfor 1 Sp<mi,1 S qg<nmandieN. Letm; =
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(mf, ..., mi ) denote the order-unit in Z*. Then 4, = @%_, M, ® C([0,1]) is the

interval algebra with Ko(4;) = Z™. Forall he L*!,1 <r < N;and ie N there is
a continuous function wj:[0,1] —[0,1] such that 6j(x) = x-w}, for all
xe C([0,1]). Let y;: A; > A;, be the *-homomorphism with characteristic
functions w}, repeated k%, times, he L*',1 < r < N; and idyo 1, repeated r},, times
from the gth summand of A4; to the pth summand of 4;,, for 1 Zp < n;,4,
1 £ qg<n;andieN. Let B = lim (4;, §;) and note that Ko(B) = lim (Z",s;) = G.

Let 1;: W, =, W,,; be inclusion and let $:W,,, ® Cr([0,1])> W, ®
Cr([0, 1) be the homomorphism given by

.9,~< )y h®x,,) = Y h®0i(x).
heLi+! heLi+ 1
Observe that 0;° (1; ® idcyo,1y)- Define
i = 9i°(6; ® idcqqro,1) : AIT (4;) » Wi ® CR([0, 1)),
i = pi ® idcyqo,1): Wi @ Cr([0,1]) » AffT (4,)

forieN.
We show that the triangles of the following diagram commutes up to an error
which is summable.

W, ® Ca([0,1]) —2— W4y ® C([0,1])

" l / l"

ART (4) rr ART(4i11)

As for the upper triangle we have
10; = Gomill = [18io( ® idcn([o.u)) —9;°(6: ® idbR([o.1])) o(p; ® idCR(lo.ll))”
S u— e pill
<27i

Let x = (xy,...,%,)€AffT(4;) and 1 £ p < n;4;. The pth coordinate of AffT
Wi)(x) is
ni mi Ni .
Y g ) k:quqow;,+r'qu
a=1m, heLit1  r=1
and the pth coordinate of #; ., ° {i(x) is

ST Va0

q=1 heLi+1
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Assume that ||x|| £ 1. Then
IART (Y:)(X) — i+ 1 ° LX)l

n; iph
m, k .
qpg i+l g pq
£ max {Z iT1 Voh th ° W} Z i+1 le,,l]}
1Spsniv: \g=1 helLi+? P
mykp, N; ‘kP N, M omia 27F
_ l+1 A had - e
S max { .+1 Ahq + 2 i+ 1
15psnivy @= lheL‘+1 q=1 mp
n; kh |+1/1 .
< max {Zu ! M +2"}
1<psni+y = heL“‘ apq ”pq
k" N;
< max { Y E—=+ Y iy,
1SpsSnis lSqu heL"“ apq 15qsSn;
(P.@)eZi (P.9)€Z:
2N # Li+l z+1/1 .
X <____L_‘__._+ 1-— Z _P__ﬂ 427
%pq heLi+1 ”pq
1-i 1+l
< max { Yod 2 Y, - Mgl +27 }
1spsnivy (135qsSm lSqu heL'“
(p.9)eZi (P.9)4Z;

< max { Z lpiv1odi —sFIl + 2171 + Z lpivio6; —s¥ll + 2—i}
1=spsnmi+y \1Sqsm 1=qsm
(P.q)eZ; (P,9)4Z;
=n;llpis1°6; — ¥ +3-27F
<4270
Since
10; 4108 — Civ 1 o ART ()]l
SH0is1oli—GvroMivr oGl + 1+ 1oMmiv 1ol — Givr ~ATT ()]l
SN0iv1 = GivroMivall + M1 oG — ART ()|l
<527
the sequence (6 x4+ 1 © { ° AfT (Y;)(x))i%; is Cauchy for all x e Aff T (4;) - let a;(x)
denote the limit. Then o;:AffT(4;) > Aff(4) is a homomorphism with
o; +1 o AffT (Y;) = a;. Thus there is a homomorphism a: AffT(B) — Aff(4) with
ao AffT (o) = ;. Using that (JJART ;) — 7341 ° Gill)2 1 and ([[Con: — 601724
are summable one shows that « is an isomorphism.

Note that T(B) = 4 via S(x): 4 — T(B). We now show that rzo S(a) = f. Letk;
and y; be the inclusions
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Ki: Wi o W ® Cr([0,1]), g— 9 ® 1,
1i: AffS(Z") = AffS(Z2™") ® Cr([0,1]) = AfT(4,), g g ® 1.
With these definitions we have that
Oei ok = AT (f)lw,
Cioxi =Kiv1°0;
and p = y;[p] for every projection pe A; = AffT(A4;). Let we 4 and pe A4; be
a projection.
rs° S@W) [V »i(p)]
= S(@)(W)(¥ »i(P))
=woaoy.(p)
= weo(p)
= lim wefx+1 ° & Yii(p)

k— o

= lim wo 000k+ 1° Ck ° Xk ['/Ikl(p)]

k= o

= lim wo b i 41 °Ker1 0k [Vii(p)]

k— o

= f (w)(]im Ok ['/’ki(l’)])

k— o0

=S WY :(p)].

Hence (G, 4, f) is the Elliott triple of B.

The final step of the proof consists of replacing B by a simple Al algebra with
the same Elliott triple. Let ¢; be the *-homomorphism obtained from y; by
replacing two of the characteristic functions in each entry of y; by hy and h, where

holt) = %and hy() = ; L for te[0, 1] and all i€ N. It follows from [2] that the

C*-algebra 4 = lim (4, ¢;) is simple. Note that Ko(¢;) = Ko(;) = s;. Since
IAfFT(¢;) — AfFT ()| < 2mult(s) ™' <2'7°

the sequence (AT T ok ° Pri)(x))i~; is Cauchy for every xe AffT(4;), ieN — let

y:i(x) denote the limit. Then y;: AffT (4;) — AffT (B) is a homomorphism with

Yi+1° AffT(¢;) = y; for all ie N. There is an isomorphism y: Aff T (4) - AffT(B)
such that y o AffT (¢,;) = 7; for all ie N. Let 7€ T(B) and p € 4; be a projection.
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Then

r4° SO wi(p)] = SHI ()P wi(P)
= 7°AffT (¢:)(P)(7)
=7(p)(¥)
= lim AffT (Y ok ° dx:) (P)(7)

k- o

lim (Y ok © Pui(P))

k— 0

= (¥ «i(P))
ra(0) [V i(p)].

We conclude that r o S(y) e S(2) = f.
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ISOMETRIES OF BANACH ALGEBRAS SATISFYING
THE VON NEUMANN INEQUALITY

JONATHAN ARAZY

Introduction.

A famous classical result of R. Kadison [K] says that every isometry of one
C*-algebra onto another is given by a Jordan isomorphism followed by a unitary
multiplication. This result is generalized in the recent works [AS], [MT1] and
[MT2] on isometries of certain non self-adjoint algebras of operators on Hilbert
space. In the context of these works it is even possible to describe explicitly the
Jordan isomorphisms. In this paper we generalize Kadison’s theorem even
further to the context of Banach algebras satisfying the von Neumann inequality.

In what follows Z denotes a complex, unital Banach algebra (i.e. Z has a unit
eand |le[| = 1) with an open unit ball D. The term “Banach algebra” will always
mean “complex, unital Banach algebra”. We say that the von Neumann inequality
hold in Z if

1/ @I = 1Sl : = max{|f(A)}; 2] = 1}

for every z e D and every polynomial f. It is well known that the von Neumann
inequality holds in B(H), the algebra of all bounded operators on the Hilbert
space H, see [N], [FSN, Chapter 1.8]. Therefore, it holds in every subalgebra of
a C*-algebra. The following generalization of Kadison’s theorem is our main
result.

THEOREM. Let Z be a Banach algebra satisfying the von Neumann inequality,
and let ¢ be a surjective isometry of Z. Then there exists a Jordan automorphism
Y of Z and a unitary element u of Z so that ¢(z) = uy(z) for all ze Z.

The notions of Jordan automorphisms and unitary elements in general Banach
algebras will be explained latter.

Our approach is similar to that of [AS] and uses the notion of the partial
Jordan triple product and its connection to the holomorphic structure. We show

Received September 15, 1992.
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that under the validity of the von Neumann inequality, the symmetric part Z of
Z (in the sense of holomorphy) is the space H + iH of decomposable elements
(where H is the space of the Hermitean elements of Z), and that it is a C*-algebra.
Moreover, the abstract partial Jordan triple product (defined in terms of the
holomorphy) coincides with the algebraic one: {x, y, z} = (xy*z + zy* x)/2 for all
x,z€Z and ye Z,. A key result (Proposition 2.2) is the fact that the validity of the
von Neumann inequality in Z is equivalent to the complete integrability of the
vector field h(z) = e — z2 in D. We also use the well-known fact that isometries
preserve the partial Jordan triple product in general complex Banach spaces.
The paper is organized as follows. Section 1 below contains the background
material on Hermitean elements of Banach algebras and on the partial Jordan
triple product in Banach spaces and its connection to the holomorphic structure.
Section 2 contains the connection between the von Neumann inequality and the
vector field h(z) = e — z2, as well as the proof that Z, = H + iH. Section 3 con-
tains the result on isometries generalizing Kadison’s theorem mentioned above,
as well as its Lie algebraic counterpart which describe the bounded Hermitean
operators. Finally, in section 4 we collect some known facts and raise some
questions on Banach algebras satisfying the von Neumann inequality.

1. Background.

Hermitean elements of a Banach algebra.

We begin with a quick review of some basic facts concerning Hermitean
elements in Banach algebras which will be needed later. See [BD3], [BD1],
[BD2] and [Do] for more details.

Let Z be a Banach algebra with a dual space Z*. Let S:= {peZ*;p(e) =
lloll = 1} be the set of states. The numerical range of ze Z is V(z): = {¢(z); p € S}.
An element z € Z is Hermitean if V(z) < R. It is known that z is Hermitean if and
only if |lexp(itz)|| = 1 for every te R. Let H denote the set of all Hermitean
elements in Z. H is a real-linear, closed subspace of Z containing e, with the
property that a,be H implies i(ab — ba) € H. The subspace H + iH of decompos-
able elements is also closed, and H niH = {0}. The involution on H + iH is
defined by (a + ib)* := a — ib, a,b € H. It is continuous, but need not be isomet-
ric. In general not much more can be said about H and H + iH; there are many
examples where H = Re (this hold for instance in the disk algebra and in H*),
and in general, H and H + iH are not algebras. A fundamental result concerning
H + iH is the Vidav-Palmer Theorem,see [BD1,Chap. 2, Th. 9, p. 65],[BD3] and
the references therein.

1.1 THEOREM. Let Z be a Banach algebra so that Z = H + iH, namely every
element in Z is decomposable. Then Z is a C*-algebra with respect to the involution
# and the given algebraic operations and norm.
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The partial Jordan triple product and the symmetric part of Banach space.

We survey here the notions of the partial Jordan triple product and the
symmetric part of a general complex Banach space. For more details see the
survey article [A] or the original papers [Vi] and [U1]. The books [L] and [U2]
are general references to Jordan triples and the associated bounded symmetric
domains.

Let Z be a complex Banach space with an open unit ball D. Aut(D) denotes the
real Banach Lie group of all biholomorphic automorphisms of D. Its Lie algebra,
aut(D), is a real Banach Lie algebra, and it is identified with the completely
integrable holomorphic vector fields on D. Namely, a holomorphic function
h:= D — Z belongs to aut(D) if and only if there exists a one-parameter sub-

group {@, },cr of Aut(D) so that _667 @(z) = h(e,(2)) for every ze D and te R. One

denotes ¢, = exp(th). The Lie brackets in aut(D) are given by [h,k](z) =
H(2)k(z) — K'(2)h(z), z € D. The symmetric part of Z is

Z,:= aut(D)(0) = {h(0); heaut(D)}.

Itis known that Zis closed complex linear subspace of Z whose open unit ball is
D,:= Aut(D)(0) = D n Z,, the symmetric part of D. Aut(D) admits a Cartan
decomposition aut(D) = k @ p, where

k = aut(D) n B(Z) = {heaut(D); h(0) = 0}
is the subspace of skew-Hermitean bounded operators on Z, and
p = {heaut(D); H(0) = 0}

is a subspace of even polynomials of degree <2. Precisely, p = {h,;a€ Z,}, where
h.(z):= a — q,(z), and ¢, is a continuous, homogeneous polynomial of degree 2.
g, extends to a continuous, symmetric bilinear form by polarization:
q4(z, W) = (qa(z + W) — qu(2) — q.(W))/2. The partial Jordan triple product is the
map {...}: Z x Z; x Z - Z, defined by {z,a,w}:= q,(z,w). Z is a JB*-triple if
Z, = Z, i.e. the Jordan triple product is defined everywhere. This is the case
precisely when D, = D, i.e. when Aut(D)acts transitively on D, and D is a bounded
symmetric domain. For example, every C*-algebra is a JB*-triple with respect to
the triple product {z,a, w} := (za*w + wa*z)/2.

Let so(z) : = — z be the symmetry at 0. The corresponding Cartan involution on
aut(D), O(h): = sohs,, is a Lie-automorphism and 9% = I. It is easy to check that
k = {heaut(D);%(h) = h} and p = {heaut(D);(h) = —h}. From these facts it
follows that [p, p] < k, [k, p] = p,and [k, k] < k. Explicitly,fora,be Z;and u ek,

[ha, By 1(2) = 2{a,b,z} — 2{b, a,z},[u, h,] = hyq).
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In particular, for any a € Z, the operator D(a,a):= {a,a,} is Hermitean. Notice
also that the previous formula implies that D(a, a)b = {a,a, b} € Z,. It follows that
Z, is closed under the triple product and it is therefore a JB*-triple. Basic facts in
JB*-triples yield that for every ae Z, the restriction of D(a, a) to Z has a positive
spectrum and the following identity (called the “C*-axiom”) holds:
| D(a, a)|pz,) = llall?.

The group of linear isometries of Z is identified naturally with

K := {@p e Aut(D); 9(0) = 0} = Aut(D) n GL(Z).

The Lie algebra of K is clearly k. The Isometries are automorphisms and the
skew-Hermitean operators are derivations of the partial Jordan triple product.
Precisely,

1.2. PROPOSITION. (i) Let Z,, Z, be complex Banach spaces with open unit
balls Dy, D, respectively, and let ¢ be an isometry of Z, onto Z,. Let
aut(D;) = k; ® pj, (j = 1,2), be the Cartan decompositions. Then gk ™' = k,,
op9o ' =p;, and @h,9 ' =h,, for every ae(Z,),. In particular
o((Z,)s) = (Z,)s, and

(P{Z,a,w}={‘P(z),¢(a),¢(w)}’ ae(zl)sa Z,WGZl.

(ii) Let Z be a complex Banach space with an open unit ball D and let he k. Then
KZ,) < Z,, and for every ac Z,and z,we Z,

h{z,a,w} = {h(z),a,w} + {z,h(a), w} + {z, a, h(w)}.

PrOOF. (i) The fact that ¢(aut(D,))e ~! = aut(D,) is obvious. gk, ¢~ ! =k,
follows from this and from ¢(0) = 0. Let ae(Z,),, and let h:= @h,¢ " !. Then
heaut(D,), h'(0) = 0 and h(0) = ¢(a). Thus, ¢(a)e(Z,); and h = h,, € p,. This
completes the proof of the first three identities as well as the inclusion
o((Z,);) < (Z,),. The reverse inclusion follows by using ¢ ~! instead of ¢; this
yields the fourth identity. Applying both sides of the third identity on the element
o(z), we get 9{z,a,z} = {¢(2), p(a), ¢(2)}. By polarization, ¢ preserves the partial
triple product.

(i) Let @, = exp(th), te R. Then ¢, € K and by (i) ¢,((Z,)s) = (Z,),. Differenti-
ating with respect to t at 0, we get h((Z,),) < (Z,),. Letae(Z,),,and let z,we Z,.
Then by the last formula in (i) ¢,{z, a,w} = {@,(2), @.(a), p,(w)}. Differentiating
this at t = 0, we get the desired result.

Linear operators h on Z which satisfy the identity in (ii) are called derivations
of the partial Jordan triple product, or triple derivations for short. Notice that
Proposition 1.2 implies that for any aeZ, the operator iD(a,a) is a triple
derivation.
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The completely integrable holomorphic vector fields are characterized by
tangency to the unit sphere.

1.3. PROPOSITION. Let Z be a complex Banach space with an open unit ball D.
Let h: Z - Z be a holomorphic polynomial. Then the following conditions are
equivalent:

(@) hypeaut(D);
(i) h is tangent to the unit sphere 0D. Namely, if zeZ, feZ* are so that
Izl = Il = f(z) = 1 then Re(f(h(z))) = 0.

See [Ka] and [U2, Lemma 4.4] for a proof.

2. The symmetric part of Banach algebras which satisfy the von Neumann inequality.

Let Z be a Banach algebra with a unit e, an open unit ball D and a symmetric part
Z, = aut(D)(0). Let H denote the space of all Hermitean elements in Z.

2.1. ProposITION. (i) Z, < H +iH. (i) If aeZ,, thena® = {e,a,e}.

PrOOF. Let aeZ,, and let h,:= a — q,ep < aut(D) be the corresponding
vector field on D. Set b: = g,(e) = {e, a, e}. By Proposition 1.3 we have for every
state @ € S,0 = Re(p(h,(e)) = Re(p(a — b)). It follows that a — beiH. Since Z; is
C-linear, we get iaeZ;, and gq,(e) =ib. Thus by the same arguments,
ia — qi(e) = i(a + b)eiH. Set ay:=(a+ b)2 and a,:=(a— b)/2i. Then
a,a,€H and a = a, + ia,e H + iH. Also, b = a* = a; — ia,, and so the re-
striction of the involution of H + iH to Z is given by a* = {e,a,¢}.

2.2. PROPOSITION. (i) The integral curves of the vector field h(z) = h(z):=
e — z? on D are given by

0z) = exp(th)(z):= (r(t) + z)(e + r(t)2) ™", teR, r(t):= tanh(t),

(i1) h is completely integrable in D if and only if Z satisfies the von Neumann
inequality.

Proor. For any z e Z let J, be the maximal open interval containing 0 in which
the initial value problem: d¢,(z)/0t = h(p,(2)), t€J,; @o(z) = z; has a solution
¢.(z) € D. Let I, be the maximal open interval containing 0 of those t € R for which
(e + r(t)z) ! exists and g,: = (r(t) + z)(e + r(t)z) " * belongs to D. The meaning of
(i) is that J,=1I, and ¢z) = g,(2), teJ,. Indeed, since (9/0t)r(t) =
1/cosh? () = 1 — r(t)?, and (9/0r)(e + rz)"! = —(e + rz)”*z, we get by a direct
differentiation (6/0t)a,(z) = e — o,(z)>. This establishes (i). To prove (ii), we ob-
serve first that the completeness of h is equivalent to the fact that the Mobius
transformations
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U,2):=@+z)e+r2)"t, —1<r<l1, zeD,

map D into itself. Let D:= {4€C;|4| < 1}. Since D is circular and Aut(D) is
generated by the y,, — 1 < r < 1, and the rotations p,(z) : = €"z, we get that every
Y € Aut(D) maps D into itself. The submultiplicativity of the norm of Z implies
that D is a multiplicative semigroup. Thus, the finite products of members of
Aut(D) (namely, the finite Blaschke products) map D into itself. By [F], the
convex combinations of finite Blaschke products are norm-dense in the closed
unit ball of the disk algebra A. It follows that for every fe 4 with | f ||, < 1 and
ze D we have || f(z)|| < 1. This is equivalent to the validity of the von Neumann
inequality in Z. Conversely, if the von Neumann inequality holds in Z then y,
maps D into itself for all —1 < r < 1. Since Y, = exp(th), r = tanh(t), we see that
h is completely integrable in D.

2.3. REMARK. Proposition 2.2 yields the von Neumann inequality in C*-alge-
bras. Indeed, it is well known that if Z is a C*-algebra, then for every ae D the
Potapov-Mobius transformation

D,(z):= (e — aa*) " Y*(a + z)(e + a*z)” (e — a*a)'?

belongs to Aut(D), see [IS]. Applying this with a =re, —1 < r < 1, we see that
Y, € Aut(D) becomes a member of Aut(D) in the natural way. By the proof of
Proposition 2.2, this implies the validity of the von Neumann inequality in Z. The
original proof of the von Neumann inequality (see [N] and [RSN, Section 135])
uses also similar analytic tools. Another proofis given in [FSN], and is based on
much heavier tools (unitary dilations of contractions and the spectral theorem
for unitary operators).

2.4. PROPOSITION. (i) If aeH + iH and be Z then ab, bae Z. In particular,
Z,isan algebra, H + iH is amodule over Z;,,and (H + iH)Z, = Z(H + iH) = Z,.
(i) H+iH = Zifand only if ec Z,.

ProOOF. For aeZ consider the multiplication operators L,(z):= az and
R,(2):= za. Then

exp(itL;) = Lexpiray and  expl(itR;) = Rexpira)y tE€R.

Since ||L,| = |R,|| = |z|, it follows that ae H <> L, e H(B(Z)) <> R, € H(B(Z)).
Here H(B(Z)) denotes the space of Hermitean elements of the Banach algebra
B(Z) of all bounded operators on Z. Let ae H and be Z,. Then, by Proposition
1.3, exp(itL,)(b) = exp(ita)- b, and exp(itR,)(b) = b-exp(ita) belong to Z, for all
t € R. Differentiating with respect to t at 0, we get iab, iba € Z. Since Zis C-linear,
this implies (i). Next, if H + iH = Z then ee H < iH = Z,. Conversely, assume
thatee Z;and let ae H. By (i) with b = ¢, we get ae Z,. Thus H < Z,. Since Z; is
C-linear, this implies H + iH < Z,. Using Proposition 2.1 we get H + iH = Z,.
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2.5. REMARK. If ee Z,, and in particular — if the von Neumann inequality
holds in Z (Proposition 2.2), then Z; = H + iH is a Banach algebra (Proposition
2.3)in which every element is decomposable. By Theorem 1.1, Z; is a C*-algebra
with respect to the involution # and the given algebraic operations and norm.
We do not know whether e € Z; by itself implies the von Neumann inequality in Z.

The following theorem generalizes the result discussed in Remark 2.5. We
prefer to avoid Theorem 1.1 and to give an almost self contained proof, in order
to illustrate the power of the Jordan theoretic techniques.

2.6. THEOREM. Let Z be a Banach algebra with a unit e, satisfying the von
Neumann inequality. Then Z, = H + iH is a C*-algebra with respect to the given
multiplication, norm, and the involution (a, + ia,)* = a, — ia,, ay, a, € H. More-
over, the partial Jordan triple product {...}: Z x Z, x Z — Z constructed via the
holomorphy coincides with the algebraic partial triple product, namely:

{x,y,2} = (xy*z + zy*x)/2, x,z€Z, yeZ,.

Proor. By Proposition 2.4, Z, = H + iH is a closed subalgebra of Z with
a unit e and involution # (which at the moment is known only to be an
anti-linear homeomorphism of Z,). By Proposition 2.2 we have {z,e,z} = z* for
all ze Z. Polarizing, we get {z,e,w} = (zw + wz)/2,z,we Z. Let ae H, then as in
the proof of Proposition 2.3, exp(itL,) = Lexpiia), t€ R, belong to the group
K = Aut(D) n GL(Z) of linear isometries of Z. By Proposition 1.2 the members
of K are automorphisms of the partial triple product. Hence, for any ze Z and
teR,

exp(ita)z> = exp(itL,){z, e,z}
= {exp(itL,)(2), exp(itL,)(e), exp(itL,)(z)}
= {exp(ita)z, exp(ita), exp(ita)z}.
Differentiating with respect to t at 0, we get
az? = 2{az,e,z} — {z,a,z} = (a2)z + z(az) — {z,a,z} = az* + zaz — {z,a,z}.
Thus, {z,a,z} = zaz.Itfollows thatfora = a, + ia,e Z;witha,,a,e Handze Z,
{z,a,2} = {z,a,,2} — i{z,a5,2} = za,z — izayz = za”z.

Polarizing, we get {z,a,w} = (za*w + wa*z)/2 for every z,we Z and ae Z,.

Next, we show that (ab)* = b*a* for all a,be Z,. Since Z, = H + iH, it is
certainly enough to show that (ab)* = bafor a, be H. By the above arguments we
have for all te R

exp(ita)b = {exp(ita), exp(ita)b, exp(ita)}.
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Differentiating with respect to ¢t at 0, we get iab = i(ab + ba) — i{e, ab,e}. How-
ever, by Proposition 2.1, {e,z,e} = z* for all ze Z,. Applying this with z = ab
(and using the fact that Z, is an algebra), we get (ab)* = ba as desired.

The C*-axiom ||a*a| = |la||? in Z,, follows from the C*-axiom for JB*-triples,
see Section 1 above. Indeed, in our case D(a, a)z = (aa*z + za*a)/2,z € Z. Hence,

lall* = ID(a, d)llaz, < (la*all + laa*|)/2 < lall la* ||,

and thus, ||a|| < ||a*|| for all ae Z,. Replacing a by a* we get ||a|| = ||a*||,ae Z,.
It follows that equality holds in the above inequality, and so
la*a| = |laa®|| = ||a||?, a€ Z,. This completes the proof.

2.7. REMARK. We have a direct argument yielding ||z*|| = ||z|| for every

ze Z,. Indeed, let o, € R be so that tanh(f) = Y > ,t>"* !, teR, and letae Z,. It
is easy to check (from the initial value problem defining exp(th,)) that
exp(th,)(0) = tanh(ta):= Y =, a,t*"*'a(a*a)", teR. It follows from the anti
multiplicativity of # that (exp(th,)(0))* = exp(th,#) = tanh(ta®)e D,. Since
D, = Aut(D)(0) and K(0) = {0}, we get D, = exp(p)(0), where exp(p) is the sub-
group of Aut(D) generated by {exp(h,);ae Z}. It follows that (D,)* = D,, and
this is equivalent to ||z*|| = ||z|| for all z€ Z,.

2.8. PROBLEM. Does e€ Z; imply the von Neumann inequality in Z? In par-
ticular, does e€ Z, imply that h,(z) = e — z?, i.e. that {z,e,z} = z* for all ze Z?
Notice that, by the proof of Theorem 2.6, the last identity is equivalent to the
identity {z,a,z} = za*z for all ze Z and ae Z,.

3. The isometries and the Hermitean operators.

3.1. THEOREM. Let Z, W be unital Banach algebras which satisfy the
von-Neumann inequality, and let ¢: Z — W be a surjective isometry. Then,

(i) u:= ¢(e) is a unitary element of W,;

(i) @(2) = uy(2), z€ Z, where Y is an isometric Jordan isomorphism of Z onto W.
Namely, { is an isometry satisfying y(e) = e and

Y(ab + ba) = Y (a)(b) + Y (b)Y (a), for a,be Z;
W(Z) = W, and Y(2)* = Y(z*) for z€ Z,.

3.2. REMARKS. (i) Theorem 3.1 reduces the study of a geometrical problem
(the description of the isometries of Banach algebras satisfying the von Neumann
inequality) to that of an algebraic one (namely, the description of the Jordan
isomorphisms of these algebras). It is our generalization of Kadison’s theorem
discussed in the introduction.

(ii) The partial Jordan triple product is expressed in terms of the (binary)
Jordan product x o y:= (xy + yx)/2 and the involution # on Z,:
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{5, y,2} =x0(y*oz) + zo(y* ox) — (xo2)oy*, x,z€Z, yeZ,

It follows that a linear map which preserves the Jordan product and the partial
involution preserves also the partial Jordan triple product.

(iii) We do not know whether the converse of Theorem 3.1 is true, namely
whether a Jordan isomorphism of Banach algebras satisfying the von Neumann
inequality must be an isometry. This is true in C*-algebras. More generally, an
automorphism of a JB*-triple must be an isometry.

We need the characterization of tripotents as partial isometries.

3.3. PROPOSITION. Let Z be as Theorem 3.1 and let ue Z,.

(i) u is a tripotent (namely, {u,u,u} = u) if and only if it is a partial isometry
(namely, u*u is an idempotent);

(ii) u is a unitary tripotent (namely, {u,u,z} = z for every ze Z) if and only if
u*u = e = uu®,i.e. uis a unitary element of the C*-algebra Z,.

Proor. Part(i)is well known (see, for instance, [H]), If uis a unitary element of
Z,, then for every ze Z, 2{u,u,z} = uu®z + zu*u = 2z. On the other hand, if
{u,u,z} = z for every ze Z, then e = {u,u,e} = (u*u + uu™®)/2 and u is a partial
isometry. Since e is an extreme point of the unit ball of Z; (this holds in any unital
Banach algebra, see [BD1, Chap. 1, Th. 5, p. 38]), we get u*u = uu® = e.

Proor oF THEOREM 3.1. By Proposition 1.2, ¢(Z,) = W, and ¢ preserves the
partial triple product. Using Theorem 2.6 we get

e(xy*z + zy*x) = e(x)0()* 9(2) + (2)0(»)* P(x)

for all x,zeZ and yeZ, Set u= ¢(e) and notice that for every zeZ,
o(2) = p({e,e,2}) = {p(e), p(e), p(2)} = {u,u, p(2)}. It follows from Proposition
3.3 that u is a unitary element of W,. Let y/(z): = u” ¢(z). Then ¥ is an isometry of
Z onto W and y/(e) = e. By proposition 1.2,y preserves the partial triple product.
Hence, for every ze Z,

Y(z*) = ¥({e.z,¢}) = (Y(0),¥(2),¥(e)} = {e.¥(2) e} = ¥(2)*.
Thus  is self adjoint. Finally, for every ze Z,

¥(2?) = ¥({z,e,2}) = (¥, Y.V} = ¥(2)*

Polarizing this identity we see that i preserves the Jordan product. This com-
pletes the proof since ¢(z) = uy(z).

The next result deals with Hermitean operators on Z and it is the Lie-algebraic
analog of Theorem 3.1. By Proposition 1.2 we know that every Hermitean
operator T: Z — Z satisfies T(Z,) < Z,. Moreover, iT is a derivation of the
partial triple product, namely the identity in Proposition 1.2 (ii) holds with
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h =iT. An operator A: Z — Z is a derivation of the (binary) Jordan product
Xoy:=(xy + yx)/2if A(xoy) = Axoy + xo Ay for all x, y € Z. It is obvious that
in this case A(e) = 0. An operator T: Z — Z is self-adjoint if T(H) < H. This is
equivalent to T(H + iH) < H + iH and (T(z))* = (T(z*) for every ze H + iH.
T is skew-adjoint if iT is self-adjoint, and this is equivalent to
T(H + iH) < H + iH and (T(2))* = — T(z*) for every ze Z,.

3.4. PROPOSITION. Let Z be a unital Banach algebra satisfying the von
Neumann inequality. Then every Hermitean operator T: Z — Z has a unique
decomposition T = A + L,, where a:= T(e)e H and A is a skew-adjoint derivation
of the Jordan product.

PROOF. Set a:= T(e). ThenaeZ, = H + iH and
a=T(e) = T{e,ee} =2{a,ee} — {e,a,e} = 2a — a”.

Thusa = a*,and soaeH. Set A:= T — L,. Then A is Hermitean and A(e) = 0.
Since Z, = H + iH, we get A(H + iH) < H + iH and for ze Z,,

A(z*) = A{e,z,e} = 2{A(e),z, e} — {é, Az,e} = —(Az)*.
Thus A is skew adjoint. Next, for any ze Z
A(zY) = A{z,e,z} = 2{Az,e,z} — {z, A(e),z} = (Az2)z + z(Az2).

Polarizing, we get A(zow) = (Az)ow + zo(Aw) for every z,we Z. Thus A is also
a derivation of the Jordan product. The uniqueness of the decomposition
T = A + L, is obvious.

3.5. REMARKS. (i) Proposition 3.4 reduces a geometrical problem (the de-
scription of the Hermitean operators) to an algebraic one (the description of the
skew-adjoint derivations of the Jordan product).

(ii) Inthesituation described in Proposition 3.3, T admits also the decomposi-
tion T = B + R,, where a = T(e)e H and B is a skew-adjoint derivation of the
Jordan product. Of course, B=A4 + L, — R,.

(iii) Let T: Z — Z be of one of the forms T= A + L, or T = B + R,, where
ae H and A, B are skew-adjoint derivations of the (binary) Jordan product. Then
iT is a derivation of the partial Jordan triple product. This follows from Remark
3.2 (ii).

(iv) We do not know whether a bounded operator T: Z — Z for which iT is
a derivation of the partial Jordan triple product must be Hermitean. It is easy to
see that in this case exp(iAT) is an automorphism of the triple product for all
AeR. But we do not know whether exp(iAT) is in fact an isometry. See Remark
3.2 (iii).
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4. Banach algebras which satisfy the von Neumann inequality.

The results obtained above lead naturally to the problem of the description of the
class of Banach algebras satisfying the von Neumann inequality. This problem is
interesting from many point of views, but it is difficult and far from being solved.
We collect bellow some known facts relevant to this problem, and raise some
questions.

The first point we would like to make is that the von Neumann inequality is an
inequality in the category of Jordan Banach algebras. A Jordan algebra is a com-
mutative algebra with a product x o y (called a Jordan product), in which the
associative law is replaced by the weaker law (the Jordan algebra identity):
x%o(xoy) = xo(x?oy), where x?:= xox.

It is easy to see that for every element x the powers x" (which are defined
inductively via x" = xox""!) satisfy x"ox™ = x*o x' whenever n + m =k + L.
Thus the subalgebra generated by x is associative. A Jordan Banach algebra is
a Jordan algebra which is also a Banach space, so that || xo y|| < ||x| ||yl for all
x and y. We will assume that the field of scalars is C. Clearly, it is possible to
consider the von Neumann inequality in the category of Jordan Banach algebras,
and it is interesting to characterize those Jordan Banach algebras in which this
inequality holds. Notice that the von Neumann inequality has a local nature,
namely it is a statement on all the singly generated subalgebras of Z.

For any Banach algebra Z, let Z':= (Z, +,0, |-||> denote the associated
Jordan Banach algebra with the Jordan product xoy:= (xy + yx)/2 and the
same addition and norm. Notice that for every z € Z, the powers z" are the same in
Z and in Z’, thus the singly generated subalgebras are the same for Z and Z’.
Therefore we get,

4.1. CorROLLARY. The von Neumann inequality holds in Z if and only if it holds
inZ’.

We remark that not all Jordan Banch algebras hae the form Z’ for some
Banach algebra Z.

A JB*-glgebra is a unital, complex Jordan Banach algebra Z with an involu-
tion z~»z* (i.e. an anti-linear, multiplicative map of period 2), so that
{z,2*,z}|| = ||z||® for every ze Z, where the triple product is defined via the
binary product and the involution by

(X3 2= x0 (0 2) + 20 (y* o) — Y*o(x o)),

In this case, X := {xe€ Z; x* = x} is a real JB-algebra (i.e. a real Banach Jordan
algebra satisfying || x||? < ||x? + y?| forall xand y)and Z = X ® C. Conversely,
the complexification of every real, unital JB-algebra has a unique norm with
respect to which it is a JB*-algebra. An equivalent description is that
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aJB*-algebraisa JB*-triple having a unitary tripotent e, with the binary product
zow:= {z,e,w} and the involution z*:= {e,z,e}. Clearly, every C*-algebra is
a JB*-algebra.

4.2. PROPOSITION. The von Neumann inequality holds in any JB*-algebra Z.

Indeed, the vector field h,(z):= e — {z,e,z} = e — z? is completely integrable
since Z is a JB*-triple. The rest follows from Proposition 2.2 and the fact that the
singly generated subalgebras of Z are associative.

It is obvious that if the von Neumann inequality holds in the Jordan Banach
algebra Z then it holds in any subalgebra. The same is true for quotient algebras,
but this require some explanation. A quotient map in the category of Banach
spaces is a linear operator T: X — Y which maps the open unit ball of X onto the
open unit bal of Y. A multiplicative quotient map in the category of Banach
algebras (or, Jordan Banach algebras) is a quotient map which preserves the
product (respectively, the Jordan product). Notice that a multiplicative quotient
map must preserve the unit element. Also, a multiplicative quotient map
Q: Z —» W in the category of Banach algebras is also a multiplicative quotient
map Q: Z7 - W’ in the category of Jordan Banach algebras. The converse is
false.

4.3. PROPOSITION. Assume that the von Neumann inequality holds in the Jordan
Banach algebra Z and let Q be a multiplicative quotient map of Z onto a JB-algebra
W. Then the von Neumann inequality holds in W. The same is true in the category of
Banach algebras.

ProoF. The first statement implies the second via Proposition 4.1. To prove
the first, let f be a polynomial and letwe W, |w|| < 1.LetzeZbesothatQz = w
and ||z|| < 1. Since Q(z") = (Q(z))" for all n = 0, we get Q(f(2)) = f(Q(z)). Thus,

1MW = 17@2)1 = 12U/ = 1/ @I = 1/ Il -

4.4, COROLLARY. The von Neumann inequality holds in every subalgebra and in
very quotient algebra of a JB*-algebra.

There is an extensive literature on the generalizations of von Neumann
inequality in the context of commutative Banach algebras. These generalizations
deal mainly with the multi-variable (isometric and isomorphic) analogs of the
von Neumann inequality. See, for instance, [Da], [MT], [DD] and the refer-
ences therein. Nevertheless, to our knowledge, there is no complete characteriz-
ation of the commutative Banach algebras which satisfy the von Neumann
inequality. However, there is a characterization, due to I. G. Craw (see [Da,
Lemma 3.1]), of the commutative Banach algebras satisfying a multi variable
generalized version of the von Neumann inequality.
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4.5. THEOREM. Let Z be a commutative Banach algebra. Then

“f(zlazly'”azn)" § "f"oo= Sup{'f(Cl?CZ"“an)I; CjeCs |Cll = 1}

for every finite sequence zy,z,,...,2,€Z with |z;|| < 1 and every polynomial
fC1,82,...,8,), ifand only if Z is isometrically isomorphic to a quotient of a uniform
algebra.

We would like to mention also the result of T. Ando, saying that if T;, T, are
commuting contractions on Hilbert space and f({,,{,) is a polynomial, then
1f(Ty, )| £ 11 fllw- N. Th. Varopoulos [Val], [Va2] showed that this result
cannot be extended to three or more commuting contractions.

Let & be the algebra of all polynomials in the non-commuting variables x, x,,

., Xn, .... For every Banach algebra Z consider the norm

"f".?Z:': Sup{"f(ala Azy...50p,.. ')”a ajEZ, "a_," é I’j = 19 2a . '}
on 2. Notice that | - || 2 is submultiplicative.

4.6. DerFINITION. ([Dil]). A class € of Banach algebras is called a variety if
there exists a submultiplicative norm || - || on £ so that € is the class of all Banach
algebras Z for which || sz < || f |l¢ for every f e, namely the inclusion map
(2P, |'lle> = <P, ||l #z) is contractive for all Ze .

4.7. THEOREM ([Dil]). A class € of Banach algebras is a variety if and only if it is
closed under taking closed subalgebras, quotient algebras, | -direct products and
isometric isomorphisms.

4.8. COROLLARY. The class ¥A" of all Banach algebras satisfying the von
Neumann inequality is a variety.

Indeed, it is easy to see that ¥.4" is closed under [ -direct products. Thus,
Corollary 4.8 follows from Proposition 4.3 and Theorem 4.7.

4.9. ProBLEM. Compute the norm | ||y on 2.

Itisplainthat || | := || fllgc < | flyv4 for every f € 2, but the two norms are
inequivalent. Notice that it f depends on one variable then the above inequality
becomes an equality.

The following characterization of subalgebras of B(H) is due to Bernard (see
[Be], [Di2]).

4.10. THEOREM. A Banach algebra Z is isometrically isomorphic to a subal-
gebra of B(H) for some Hilbert space H ifand only if || f |3z < || f |l 8, for every
f€P, where l, is the separable, infinite dimensional Hilbert space.

Thus, the Banach subalgebras of C*-algebras form a variety, which is clearly
contained in ¥4, and so || f|l#pq, = || f llys for every feP.
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Algebras of the form B(X), the bounded operators on a Banach space X, do not
satisfy the von Neumann inequality in general:

4.11. THEOREM. ([Fo]). Let X be a complex Banach space. Then B(X) satisfies
the von Neumann inequality if and only if X is isometric to a Hilbert space.

Let D be the open unit ball of the Banach algebra Z. We denote by A(D, Z) the
Banach algebra of all bounded continuous functions on the closure of D which
are analytic in D, with the pointwise multiplication and norm || f|l 4.2 :=
sup{|| f(2)Il; ze D}. Let A be the disk algebra, namely 4 = A(D, C). For every
feAletJf e #(D, Z)(= the space of all holomorphic functions from D into Z) be
defined by the Cauchy integral

HO=1@=5=|  fOC-2d

=1
In general, Jf need not be bounded on D.

4.12. PROPOSITION. The following conditions are equivalent:
(i) Z satisfies the von Neumann inequality;

(i) J maps A isometrically into A(D, Z).

(ii)) J maps A into A(D, Z), and J. A — A(D, Z) is a contraction.

ProOOF. By definition, (i) « (iii). Let R: A(D, Z) — A be the restriction map,
defined by (Rf)({)e:= f(le), (e D. Then |[Rf|lx < || fll4w.2 and RJf = f for
every f € A. It follows that for every fe A, | fllo = IRIf o = IJf ll 4p,z)- Thus
(i) «> (iti).

4.13. PROPOSITION. (i) The map C: Z — A(D,Z) defined by C,(w) =z is an
isometric homomorphism;

(ii) The map Qo: A(D, Z) — Z defined by Qo f = f(0) is a multiplicative quotient
map.

(i) CQq is a projection of norm 1;

(iv) The von Neumann inequality holds in Z if and only if it holds in A(D, Z).

Proor. Clearly, (iv) follows from (i) and (ii) via Proposition 4.3. Parts (i), (ii)
and (iii) are easily checked.
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THE NEVANLINNA MATRIX OF ENTIRE FUNCTIONS
ASSOCIATED WITH A SHIFTED INDETERMINATE
HAMBURGER MOMENT PROBLEM

HENRIK L. PEDERSEN

Abstract.

The shifted moment problem is introduced and its associated polynomials of the first and second kind
are calculated. The Nevanlinna matrix associated with the shifted problem is found and a one-to-one
correspondence between the solutions to the shifted problem and those to the original is given. It is
proved that any of the four functions in the Nevanlinna matrix associated with an indeterminate
moment problem belongs to a certain class of functions, introduced by Hamburger. A two-variable
analogue of this result is established and is applied to the r times shifted moment problem.

0. Introduction.

We consider a normalized Hamburger moment sequence (s,),>o and the asso-
ciated polynomials of the first and second kind, (Py)x > o and (Qy )i > 0, following the
notation of Akhiezer, [1]. The sequence (P,),»o forms an orthonormal system
with respect to the inner product given by {x", x™)» = j r X" ™dp(x), where p is any
measure from the set V = {u = 0|s, = [ x"du(x)Vn 2 0} of solutions to the
moment problem. The P,’s are uniquely determined by the additional condition
that their leading coefficients are positive. The sequence (Qy)y» o is given by

Q) = [ B0 4,
R

where p is any measure from V.
The sequences ()0 and (b )iz o given by the formulas a;, = [ xPy(x)*du(x),
by = [ XP(x)Py + 1(x)dp(x) define the Jacobi-matrix

(20 bo 0 0
J= bo a; bl 0

0 bl a, b2

Received September 21, 1992.
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associated with the moment problem. The matrix obtained from J by deleting the
first row and column is in fact still a Jacobi-matrix associated with a certain
normalized moment sequence (§,), > o. This is because of Favard’s theorem, cf. [1]
p. 5. The sequence (5,), o is called the shifted moment sequence.

The investigation of the shifted moment problem goes back to Sherman, [7],
using continued fractions.

In case of an indeterminate moment sequence, the series

© 1/2
(1) pe) = (kzo |Pk(z)|2>
© 1/2
@ a2) = ( ) IQk(z)P)
k=0

converge uniformly on compact subsets of the complex plane.
The so-called Nevanlinna matrix of entire functions, cf. [1] p. 55,

(5 %)

plays an important role in the parametrization of all solutions to the moment
problem. The functions are defined as follows:

46)= 2 § 0000

B = —1+2 3 00RO

) o
Cr)=1+ zkzo P(0)Qu(2)

D(z)=z kio P (0)P(2).

The objective of this paper is to express the Nevanlinna matrix associated with
the shifted moment problem in terms of the functions (3) in the Nevanlinna
matrix associated with the original moment problem. The functions 4 and C of
the original problem are given in terms of the functions B and D of the shifted
problem. This is applied to the interrelation between Nevanlinna matrices of
indeterminate moment problems and a certain class & of entire functions,
introduced by Hamburger [5]. A two-variable analogue of this interrelation is
established and applied to the r times shifted moment problem. A one-to-one
correspondence between the set of solutions to the shifted problem and V is
derived.
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The above description of 4 and C in terms of B and D of the shifted problem
can be used to obtain results on the growth of the functions (1), (2) and (3)
associated with an indeterminate moment problem, see Berg & Pedersen [3].

1. The shifted moment problem and its associated polynomials.

Suppose that (s,),» 0 is a normalized Hamburger moment sequence with asso-
ciated polynomials (Py)x >0 and (Qy)kz 0. Put

a4 = a4y
4) bi = by
ﬁk(x) =boQk+1(x), k20
and consider the three-term recurrence relation
®) xYe=bYr, + @Y+ b Yoy, k21

The sequence (P );»o satisfies this recurrence relation with initial values
Py(x) = 1, P(x) = (x — do)/bo. Since the by’s are all strictly positive so are the bs.
Favard’s theorem then ensures the existence of a uniquely determined nor-
malized moment sequence (§,),>0 having the sequence (Fk),@o as associated
polynomials of the first kind. We denote by (0,)x > o the associated polynomials of
the second kind. These can actually be determined in terms of the P,’s and Q,’s
and we have

LEMMA 1.1. The associated polynomials of the shifted moment problem (13,‘),@0
and (Qx)x= o are given by

ﬁk(x) = boQy+1(x)

(6) ~ 1

Ou(x) = Py(x)Qu+1(x) — b_OPk+1(x)~
ProOOF. The polynomials (Q.‘k)kgo also satisfy the recurrence relation (5) with
initial values Jo(x) = 0, J,(x) = 1/b,. The two sequences (ﬁ,,),‘go and (Qy)k» 0 are
clearly linearly independent and so they form a basis of the space of solutions to
().

Now, the sequence (Py+ 1) > 0 is in fact a solution to (5) and therefore there exist
real numbers o(x), (x) such that Py, ,(x) = a(x)Py(x) + B(x)0k(x), k = 0,1,2,....
In particular P;(x) = a(x) and P,(x) = Py(x)boQ2(x) + B(x)/b;, giving us
B(x) = —bg so that

Qk(x) = Py(x)Qs+1(x) — bLoPk+l(x)-
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REMARK. The above lemma is a special case of [2], Lemma 2.5, where the
associated polynomials of the “r times” shifted moment problem are considered.

2. The Nevanlinna matrix of the shifted problem.

Using the lemma above we are now able to compute the entire functions of the
shifted problem.

PROPOSITION 2.1. The shifted moment sequence (5,), > o is indeterminate exactly
when (s,)n» o is indeterminate, and the entire functions in the Nevanlinna matrix
associated with the shifted problem, as well as the function in (1) can be expressed as
follows:

p(z) = boq(2)
A(2) = by 2(D(z) — ao(z — ao)A(2) — (z — ao)C(2) + aoB(2))
(M B(z) = —C(2) — ao A(2)

C(z) = (z — ao)A(z) — B(z)
D(z) = b2 A(2).

PROOF. Since Py(x) = boQ, + 1(x), the two moment problems are indeterminate
simultaneously,cf. [1] p. 16 and p. 19. Using Lemma 1.1 and the formulas (1) and
(3) we get

0 - 1/2
pz) = ( Z |Pk(Z)|2> = boq(2),
k=0
D)= b2 Y Qrs 1000 1(2) = b2A(),
k=0
Bo)= —1+23 00RO
k=0

= 142 T (=00 1(0) — P s O)Qs1(2)
k=0

—C(2) — apA(2).
The functions € and 4 may be calculated similarly.

ReMARK. The function §(z) can also be calculated. By definition §(z) =
(2 010(@)*)!* so that
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BR6P = 3 1~ a0)uese) — Pess(a?

= aolg(e + P — 1=~ ao) 3 QIR

—(Z — ao) Y, Ox(DP:(2).
k=0
Following the notation of Buchwalter & Cassier [4], p. 175 we obtain (z ¢ R)

4 = a)BE) +1)
.Z —Z

b3d(2)* = |z — aol*q(2)* + p(z)* — 1

_ (Z—ao)BiE,z)+ 1)
Z—z

(Z - ao)B(Z,Z-) - (Z- - aO)B(Z9 Z)
z—% )

= |z — aol?q(2)* + p(z)* +

Using the equality B(z, w) = B(w)C(z) — A(z)D(w), see [4], p. 177 we get
Im {(z — ao)(B(2)C(2) — A(z)D(2))} .

Imz

b34(z)* = Iz — aol*q(2)* + p(z)* +

For z + w we have

B(z,w) + 1 B(w)C(z) A(z)D(w) + 1
w—z w—z ’

Z Qu(2)P(w) =

and making w — z we get
Eo Ou(2)Pi(2) = B(2)C(z) — A(2)D'(2).

This implies the equality
b3d(x)* = (x — a0)*q(x)* + p(x)* — 1 — 2(x — ao)(B(x)C(x) — A(x)D'(x))

for xeR.

3. The Nevanlinna parametrization of the shifted problem.

When the sequence (s,),> o is indeterminate, we have the so-called Nevanlinna
parametrization of the set V of representing measures by means of the class £ of
Pick-functions in the upper half-plane H*:

P={fel(H")|Imf 20}
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There is a one-to-one correspondence ¢ < u, between 2 U {00} and the set V
given by

)

J duo(t) _ A@e() = ) o\ g
R

z—t  B@e(z) - D(z)’
The solutions to the shifted problem can be described in terms of those to the
original problem; we have:

PROPOSITION 3.1. The transformation ¢ — —bk/@ — ay, = @* is a homeomor-
phism of P U {00} onto itself, and we have the following one-to-one correspondence
between the sets V and V:

~ -1

PROOF. Since —1/pe? whenever ¢ e ?\{0}, ¢+ @* is easily seen to be
a homeomorphism. Using (8) and Proposition 2.1 we get

p2 | D) _ po A2)e(z) — C(2)
°lz—t  "°B)e@z) — D(z)

_ (2= ao)(A(2)(@09(2) + b) + C2)e(2)) — D(z)e(2) — Blz)(@o(z) + bg)
A(2)(@o0(2) + b3) + C(2)o(z)

o (A(z)(b 20(2)"! + ag) + C(z) !
~ET T\ BE(b2eE) T + a0) + D)

,.__(j_dg)

4. On Hamburger’s class o7 of entire functions.

The Nevanlinna matrix and the so-called Nevanlinna-extremal solutions (i.e. the
subset {u,|teR U {o0}} of V) are closely interrelated. There has been made
attempts to characterize these solutions in terms of entire functions, see [1],
p. 161 ff. and [5] p. 515 (the result is partly wrong, see [6]).

Hamburger introduced a certain class o of entire functions. An entire function
f belongs to this class if it is real, if it has infinitely many zeros (4,), ; all of which
are real and simple, and if the following relations hold

< oo foreach keN,

(/1,.)
1 S 1
f@ ,.; J'On)z — 4n)

for zeC\{A,|n=1}.
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It is proved in [1] p. 165 that any combination tB — D, teR U {0} (= B if
t = o0) belongs to the class &7, but nothing is stated about the natural question
whether the “numerator” functions t4 — C occuring in the Nevanlinna par-
ametrization (8) also belong to this class ..

PROPOSITION 4.1. For any te R U {00} the function tA — C belongs to <. In
particular A, B, C, D belong to <.

PrOOF. Using the formulas for B and D in Proposition 2.1 we get that

(10) tA(Z) — C(t) = - +bza° Pz + Bez).

0

Applying the theoremin [ 1] p. 165 to the shifted moment problem we get that the
righthand side of (10) belongs to the class &/, and so does the “numerator”
function t4 — C.

5. A class of entire functions of two variables.

We denote by o/, the class of entire functions F of two complex variables such

that
YueR: (v F(u,v))e o/
(1) YveR: (u— F(u,v))e o/

Itis possible to define four entire functions of two complex variables associated
with an indeterminate moment problem, see [4], p. 175. These functions general-
ize the functions in the Nevanlinna matrix and in terms of those they may be
written as follows, see [4], p. 177.

A(u,v) = A@)C(u) — A(u)C(v)
B(u,v) = B(v)C(u) — A(u)D(v)
C(u,v) = A(v)D(u) — Bu)C(v)
D(u,v) = B(v)D(u) — B(u)D(v)

12)

PROPOSITION 5.1. The two-variable entire functions A, B, C and D belong to the
class sf,.

Proor. The above equations (12), the fact that A(z)D(z) — B(z)C(z) = 1 and
Proposition 4.1 yield the result.

We shall now compute the two-variable functions associated with the r times
shifted moment problem. To do this we need some notation. We define 4; = 4,
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A, =(Ay)",..., A, = (A,-,)" and similarly for the other functions B, C and D. We
also put, for k = 0,

by 2(“ —a)v—a) —by 2(“ — a) ““bk_z(v — @) bk—z

_ u—a 0 -1 0
Mi(u,0) = — —1 0 0
b2 0 0 0

With this notation we can formulate:

PROPOSITION 5.2. Letr 2 1. Then,

A, A

B, B
(13) C =M_M_,....-M;M,

D, \D

PrOOF. A computation as in the proof of Proposition 2.1 (or simply (12) and
Proposition 2.1) gives

A(u,v) = by %((u — ao)(v — ao)A(u,v) — (u — ao)B(u,v) — (v — ag)C(u,v) + D(u,v))
Bu,v) = (u — ag)A(u,v) — C(u,v)

C(u,v) = (v — ao)A(u,v) — B(u,v)

D(u,v) = b2 A(u,v).

This can be written more compactly as

Ay
B,
C,
D,

OO W

Then (13) follows by induction.
By Proposition 5.1 we see:
COROLLARY 5.3. The four coordinates of the vector

A
B
C
D

Mr—er—Z.---'MlMO

belong to the class ;.



160 HENRIK L. PEDERSEN

REMARK. Proposition 5.2 generalizes Proposition 2.1 and Corollary 5.3 gen-
eralizes Proposition 4.1. I wish to thank the referee for suggesting the class .7,
and these generalizations.

REMARK. Most of the results of this paper were presented in my Masters
Thesis written under the guidence of Christian Berg, University of Copenhagen,
January 1991.
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A THEOREM OF GROTHENDIECK USING PICARD
GROUPS FOR THE ALGEBRAIST*

FREDERICK W. CALL

Abstract.

This is an application of a new algebraic reformulation of the Picard group pic(G) of a quasi-compact
subset G = X = Spec A for a commutative ring A. A torsion theoretic (algebraic) proof is given of A.
Grothendieck’s theorem that a complete intersection that is factorial in co-dimension 3 is factorial.
Our proof is along the lines of Grothendieck’s SGA2 proof, but eliminates the need for spectral
sequences and (formal) sheaf theory.

All torsion theoretic details are given in a lengthy appendix, including the proof of the long
standing conjecture that Q¢ = li_rp Qy for G quasi-compact and U open. This yields the interesting

result that restriction of an Ox-Module to a quasi-compact, generically closed subset does not require
the sheafification process.

One of A. Grothendieck’s theorems is that a complete intersection ring which is
locally a unique factorization domain (UFD) in codimension 3, is a UFD. This
conjecture of P. Samuel was proved about thirty years ago [9, Corollaire XI
3.14]. Grothendieck’s proof uses the “most sophisticated techniques of algebraic
geometry” [8, p. 3]. We provide in this paper a purely algebraic proof of this
purely algebraic theorem.

Such a proof, accessible to the pure algebraist is sorely needed. Our technique
is “merely” to translate Grothendieck’s proof into commutative algebra, using
torsion theory to finesse the material on formal schemes, and to avoid the
occasional spectral sequence. We have used this technique in [5] to find a simple
proof of the local Lichtenbaum-Hartshorne theorem. This illustrates again how
torsion theory can handle difficult algebraic geometry with relative ease. Of
course, some simplifications come by narrowing the focus of the highly complex
and general theory that [9] provides.

Many of the ideas of our proof parallel those in [9], and for comparison,
references to [9] are provided for those familiar with the algebraic geometry
language. Algebraists should find most interesting the three methods (Steps 1, 2,

* This paper was presented to the American Mathematical Society at the Manhattan, Kansas,
meeting on March 16, 1990.
Received October 14, 1992.
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and 3) of “lifting” (modulo nilpotents or a regular element) or “extending”
a finitely generated module that is locally free on just a portion of spec A4.

The difficult part of Grothendieck’s proof is the theorem that a complete
intersection (4, m) of dimension = 4 is parafactorial, i.e., depth 4 = 2 and the
Picard group Pic(U) of the punctured spectrum U = Spec A — m is trivial. This
leads to a study of a purely algebraic formulation, pic(G), where
G = X = Spec A. Our object is to define an abelian group pic(G) that agrees with
the algebraic geometers’ Pic(G, (), the group of isomorphism classes of invert-
ible O3-Modules where O; = 0|, yet is easy to manipulate and is analogous in
definition to the ring theorists’ Pic(4) (= Pic(X)), the group of isomorphism
classes of finitely generated, locally free A-modules of constant rank 1 (these are
just the (finitely generated) rank 1 projectives).

Formulations of pic(G) are being developed in the literature, e.g. [20, 19, 18, 6],
and we have provided a reworking in an extensive appendix (see Definition A-6
and the variations that follow) when G is quasi-compact. This includes the three
cases (1) when Spec A is noeetherian and G is arbitrary, (2) when A is arbitrary
and G is an intersection of quasi-compact opens, and (3) when A is a Krull
domain and G is the set of height 1 primes. We only show that pic(G) = Pic(G)for
case (2), and though our application is for A4 noetherian and G open, our pic(G) is
useful in the other cases as well. Part of our work shows that, in case (2), the
definition of M| does not require the sheafification process even though G may
not be open.

The proofs of the results in the Appendix and of the Grothendieck-Samuel
theorem will use the torsion functor ; and the localization functor Q;, as well as
some techniques from torsion theory, so we have included this needed material in
order to make the paper easier to read.

We hope this presentation will encourage other commutative ring theorists to
use torsion theory to explore algebraic geometry from the algebraic point of view.

The research for this paper was carried out at Queen’s University (Canada)
and the University of Michigan. Technical assistance in the preparation was
provided by Michigan State University. The author was a Visiting Scholar at
these three universities and thanks goes to their departments.

Thanks also to M. Hochster, E. Kani, M. Orzech, and the algebra group at
MSU for helpful discussions and patient listening. Special thanks to R. Heit-
mann who showed us how to prove the crucial Lemma A-3 (1) = (2) by another
method.

We need to discuss when a noetherian local ring is a unique factorization
domain (UFD). If a noetherian ring is already a domain, then it is a UFD if and
only if each height 1 prime is principal [15, Theorem 13.1]. Any localization of
aUFDisa UFD, and a noetherian UFD is a normal domain, i.e., noetherian and
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integrally closed [15, 13.2 and 13.3]. We refer the reader to the Appendix (A-6,
A-7, A-11) for our module theoretic formulation of pic.
The following definition should be compared with [9, XI Proposition 3.5].

DEFINITION 1. A noetherian local ring (4, m) of dimension >2 is called paraf-
actorial if depth A = 2 and pic(U) = 0 where U = spec 4 — m.

The next item is useful in an induction proof.

ProposITION 2 [9, XI Corollaire 3.10]. A noetherian local ring (A, m) of dimen-
sion = 2 is a UFD if and only if A is parafactorial and A, is a UFD for all p £ m.

PROOF. (<=) Since 4, is a normal domain for each p % m, Serre’s criterion for
normality (R;) + (S,) is satisfied by A for the cases p + m [13, Theorem 23.8].
Dim A = 2, and depth A = 2 from the parafactorial property, covers the case
p = m. The normal ring A is then a finite direct product of normal domains [13,
Exercise 9.11] and, since it is local, A must be a domain. The result (A-13) is
applicable as a normal domain is Krull [13, Theorem 12.4].

(=>) Use (A-13) again.

LEMMA 3. Let ¢: A — B be a flat homomorphism of local rings such that ;,mB is
primary to the maximal ideal ym of B. Then dim A = dim B and depth 4 =
depth B. If dim B = 2 and B is parafactorial, so is A.

ProOOF. For flat local homomorphisms we have dimension and depth for-
mulas dim B = dim 4 + dim B/;mB and depth B = depth A + depth B/ ,mB
[13, Theorem 15.1 and Corollary to Theorem 23.3]. The first parts follow from
dim B/ymB = 0 = depth B/ ,mB.

Let U = spec A — 4m and U’ = spec B — ym. We use (A-11) for our descrip-
tion of pic(U): the group of isomorphism classes [[ M]]y of finitely generated
reflexive A-modules M, locally free rank 1 on U. Then by the flatness of
B,M ® 4 B is reflexive, [[M ® B]], €pic(U’) = 0, so M ® B = B. Faithful flat-
ness (M is finitely generated) and the Ext! condition will show M is projective,
hence free over the local ring A, of rank 1 (cf.,, [9, XI Lemme 3.6]).

Recall that a regular local ring R is a noetherian local ring (R, m) such that the
number of generators of a minimal generating set for m is equal to the dimension
of R. Regular local rings are UFD’s [ 13, Theorem 20.3]. If R is regular local, so is
R, for each p e spec R[ 13, Theorem 19.3]. A noetherian local ringis regular if and
only if its m-adic completion is regular [2, Proposition 11.24].

The next definition has been updated to include completions.

DEFINITION 4. A (noetherian) local ring (4, m) is a complete intersection (c.i.) if
its m-adic completion A = R/(xy,...,x,), where R is a (complete) regular local
ring and x;,..., X, is an R-sequence.
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A (c.i.)is Gorenstein, hence Cohen-Macaulay [13, Theorems 21.3 and 18.1], so0
depth 4 = dim A.

THEOREM 5 [9, Théoréme XI 3.13 (ii)]. Any complete intersection of dimen-
sion = 4 is parafactorial.

Proor. Weinductons. Ifs = 0, wemean A is regular. Then A is regular, hence
parafactorial by Proposition 2.

For s > 0, it is sufficient to consider the complete case, Lemma 3. We now
change notation. For the induction hypothesis, for a fixed s = 0, we suppose
every (c.i.) of dimension = 4 whose completion can be written as a regular local
ringmod a regular sequence of length s is parafactorial. Let 4, be a complete (c.i.)
of dimension = 4, A; = A/tA where A = R/(x,...,x,) is complete of dimen-
sion = 5, parafactorial by the induction hypothesis, and t is a non-zero-divisor of
A in the maximal ideal m of 4. We need to show pic(U,) = 0 where we denote by
U; the punctured spectrum of A4;= A/t'’A (4; is also Cohen-Macaulay,
depth 4; = dim A; = 4, so the depth condition in the definition of parafactorial is
automatically satisfied for every i). We accomplish this in three steps.

Let U =specA —m, G =g(V(tA) —m) = {pespec A|p < some gespecA,
teq + m} < U. We have natural group homomorphisms

0 = pic(U) = pic(G) —> lim pic(U;) —=2— pic(U,)
which we will discuss each in turn.

Step (1). First note that U\G = {p|dim 4A/p = 1 and ¢ ¢ p}. This is because if
pe U\G then the principal ideal generated by ¢ in 4/p is primary to the maximal
ideal. By Krull’s principal ideal theorem [13, Theorem 13.5], dim A/p £ 1.
Secondly, since A4, is Cohen-Macaulay [13, Theorem 17.3 (iii)],
U 2 G = {pespec 4| depth 4, < 1}. Thus, we may use (A-11) for our descrip-
tion of pic, and define the group homomorphism a; by o ([[M]]y) =
[[M,]]c € pic(G) where M is a finitely generated reflexive 4-module, locally free
of rank 1 on U.

To show a, is surjective, let [[M]]s € pic(G) where M is a finitely generated
reflexive A-mdule, locally free rank 1 on G. M is actually free on all of U, since
[[M]]y, € pic(U,) where U, is the punctured spectrum of 4,,, pe U\G. Thisis true
since U, = G and M is locally free on G (of course, 4, and U, satisfy the
hypothesis of (A-11) since dim A, = 4 > 1). Since A is a regular local ring modulo
a regular sequence of length s, the same is true for 4, by earlier remarks. The
dimension of 4, = 4 and thus, by the induction hypothesis, 4, is parafactorial,
and pic(U,) = 0. We conclude that M, = A, [[M]]y e pic(U), and it follows that
oy is surjective (compare with [9, XI Proposition 3.12 and X Exemple 2.1]).

Step (2). For the groups pic(G) and pic(U;) we use (A-6). The natural group



A THEOREM OF GROTHENDIECK USING THE PICARD GROUPS FOR THE ... 165

homomorphisms, for j 2 i, n;;: pic(U;) - pic(U;) are defined by =n;;([(M;ly,) =
[M; ® A;]Ju,. These maps from an inverse system and the natural maps
pic(G) — pic(U;) factor through the m;;, hence we have a homomorphism
a,: pic(G) — lim pic(U;) given by a,([M]s) = ((M ® A;]v,)i>1. To show a, is

surjective, let ((M;]y )i» 1 € lim pic(U;). By the remarks at the end of (A-11) we can

assume the representative M; is a finitely generated A;-module and M; = Qy (M,)
(= M¥*). Furthermore, we fix isomorphisms, forj =i + 1,i 2 1, Qu(M; ® 4;) =
Qu,(M; ® A;) = M; where the first equality comes from (A-1j) and the second
from compatibility relations in the inverse limit. Set Q = Qy, for ease of notation,
and define, for j =i + 1, A-module maps ¢;;; M;—> M;® A; > O(M; ® 4;) =
M;. The obvious compositions give us an inverse system of maps between any
pair of the M;’s. M = lip M; is the module we want. To show this, we first claim

that the ¢’s satisfy the Mittag-Leffler condition which we proceed to prove (cf.,
[9,IX Théoréme 2.2]). These ¢’s fit into a large commutative diagram with many
maps.

“
M, x
= 1
(%) M, ~ OM,® A4;3) =
@ ‘;y 14 lT natlTl
> M, = OM;®4;) = QM ®A4,) =
-0 1 i1
M = QM,®4,) = QM;®4;) = M, ®A4,) = ...

In each column of isomorphisms, the top one is the chosen fixed one mentioned
earlier (thus the small triangles with the ¢’s commute by definition). The remain-
ing ones in the column are induced from these by tensoring with A; and applying
Q. The downward maps are the natural ones induced from the surjections
M @A, > M, ®A. The upward maps are induced from
M, ®A; 5 M, ® A;,,, and these are used to construct, for j > i, maps
Yji: M; > M;, i.e., the small triangles commute by the definition of the y’s. If we
can show that the squares commute (both kinds) then we can work along any
column to study the M;’s. But this is easy to establish;set N = My, N* = M, 4,
and letj =i + 1. We have a diagram

N® 4; ON*®A)® A; « N* ® 4;

(¥%) T1®t 11t T1®t
N® 4; ON*"®A)® A4 « N*® A4,

Iie

[
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The squares commute, the horizontal arrows are locally isomorphisms on U,
so when Q is applied to (**) we obtain the small squares in (*), by (A-1c).

We are ready to extract information about the M;’s and ¢’s from (*) by working
along a column. First, the ¢’s and y/’s yield, for any i and j, a long exact sequence
0-M M;,; —>> M; - R'Q(M;) » R'Q(M; ;) - ..., where we have de-
leted the subscripts on ¢ and ¥ for clarity. To obtain this sequence, let k > i + j
and set N = M,. The right exact sequence 0 - N ® A4; N ®Ai+j>N®
A; — 0 becomes exact locally at each pe U since N = M, is locally either zero or
free, and ¢ is not a zero-divisor on 4. By (A-1c), the kernel of the map marked ¢/ is
Jy-torsion (see the introduction to the Appendix for terminology). Replace
N ® A4; by its image K; and apply Q to the resulting short exact sequence to
obtain a long exact sequence. Since the class of Jy-torsion modules is closed
under the formation of injective envelopes when A is noetherian [6, Proposition
6.3 (6)] and Q Kkills this torsion class by (A-lc), it follows that
R"Q(N ® A;) —=— R"Q(K;),n = 0. Substituting the M;’s (and ¢’s and ¥/’s) yields
the quoted long exact sequence.

Now for the claimed Mittag-Leffler condition. Fixd = 1. We must show that
the images of the M;’s (i = d) in M, stabilize for all i sufficiently large. Use the
preceding long exact sequences to construct, for each j = 2, the commutative
diagrams

0 0
! 1
M, = M,
v 1
0 - My 5 M —5> M, (z2
o “ ] I
0 - Mi-iyu - M; - M;
1 !
R'Q(M;) = R'QM,)

Denote by ¢; = c;(d) the image of M;;in M, and by [; = I;(d) the image of M, in
R'Q(M,). Conclude that cj,; S¢; < My, I;_; = I; < R'Q(M,), and [;/l;_, =
cj/cj+1 by the snake lemma. It is clear that R'Q(M,) = lim Ext(m’, M,) =

—=J
H2(M,), from (A-1i) and the fact that the powers of the maximal ideal m of A4 are
cofinal in the torsion filter Fy, (see the introduction to the Appendix). By a stan-
dard change of rings formula [6, Theorem 7.2 (9)], the second local cohomology
H2(M,) = H},,(M,). By duality for the Gorenstein ring A, [6, Proposition 7.10]
or [9, V Proposition 3.5], HZ , (M,) = Ext’y, >(M,, A;)* where x is the Matlis dual
Hom,,( ,E(A4/mAy)) and n = dim A = dim 4, + 1 = 5. A quick check locally
gives that the finitely generated A;-module Ext/, 3(M,, A,) vanishes on U, since
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n — 3 = 1, hence is of finite length. Thus R*Q(M,) is also of finite length and the
I;’s stabilize, hence so do the c¢;’s, say to c(d), d = 1. This establishes the Mit-
tag-Leffler claim.

We have yet to prove that M = lim M; = lim c(d) has the required properties:

i -d

M is finitely generated as an A-module, locally free rank one on G, and
O(M ® A;) =~ M;. For the last item, apply lim to the family of short exact
sequences 0 = M;_ g = M;; — c¢(d) - 0 (for jJ>> 0) to obtain the exact se-
quence0 - M - M — ¢(d) —» 0(Mittag-Leffler is used here). The endomorphism
of M is just multiplication by ¢, a fact deduced from the diagonal map in the
diagrams (j = 2) above. All the ¢’s are locally surjective at each pe U so we have
QM) = Q(c(d)). Thus M, = Q(M,) = Q(c(d)) = Q(M/t'M) = Qu (M/t’M) for
each d. We now use [13, Theorem 8.4] to prove M is finitely generated. It is clear
from the definition of M = 1i£n c(d) that 0 = nker(M — c(d)) = nt*M so that

M is t-adically separated. Also, M/tM = c(1) = M, is finitely generated over the
(t-adically) complete ring A. Thus M is finitely generated. For local freeness on G,
let pe V(tA) — m. Then M, /t'M,, = c(d), = (M,), = A,/t°A,,d = 1. Nakayama’s
lemma and Krull’s intersection theorem nt?4, = 0 imply M, > 4,. We have
completed the proof that a, is surjective.

Step (3). Grothendieck quotes some (now) well-known theorems from alge-
braic geometry to prove the natural maps Pic(U; . ;) — Pic(U;) are isomorphisms
[9, XI Proposition 1.17], hence so is the projection a5 from the inverse limit to the
first coordinate. His argument is that the Picard group can be written as the first
Cech cohomology of a sheaf of units and that this is the same as the first
(Grothendieck) sheaf cohomology [ 10, Exercises 111 4.4 and 4.5]. Then Pic(U; 4+,)
and Pic(U;) fit into part of a long exact sequence obtained by modding out
a nilpotent ideal sheaf of order 2 [10, Exercise III 4.6]. Thus the kernel and
cokernel of Pic(U;, ) = Pic(U;) lie in first (respectively, second) cohomology
groups, which can be shifted to the local cohomology modules H2(¢'A/t'** A) and
H2(t'A/t'* 1 A), respectively. Since t'A/t'*'A =~ A/tA and depthA/tA =
dim A/tA = 4, these modules are zero, and Pic(U; ) = Pic(U;), for all i. This is
Grothendieck’s proof that a5 is surjective. If the reader accepts these ideas, then
he or she may continue to the main theorem.

However, for anyone who would like a “purely algebraic” proof of this
theorem, we provide directions.

First we need that a U-invertible module M can be determined by local data,
where U is the punctured spectrum of, say, any noetherian local ring (4, m). We
assume depth 4 = 2, M = Qy(M) = M**, and that M is U-invertible. From
(A-3), choose a finite covering of U = uD(f;) such that M, = Qp (M) =
Opir(A) = As,and leto;: M, —— A be these isomorphisms. For each i, j set
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0ij=0:® A;; My, —=— As,. We identify (M), =M, =M, =
(My )y, Then for each x; € My, we have oi(x;)’ = 0;;(x;), where we use “”to denote
an image in a further localization. Also, for i < j, r;;:= 6y;0; ! is an automo-
rphism of Ay, 75 80 corresponds to a umt in A, Iy ie.,r;e A; 1S Theser;, i <j,
satisfy in A, r, the relations rjri 'ri; = 1. The point is that M can be recon-
structed (up to isomorphism) from the local data r;e Ay, i <j. We know
M = Qy(M)can be written [6, Theorem 5.1] asa kemel of a map which is part of

the commutative diagram

0->- M- (‘BiMf.' - ®i<.iMfifj
= | ®ai x| ®a;
0> K —> @Afi - (-BAfifj

where M is (isomorphic to) the kernel of the (standard) homomorphism that
sends (x;) € @ M, to the element of ® M, whose (i, j)-coordinate is x; — x;. K is
the kernel of the twist map that sends (a;) € @A/, to (r;;a; — aj)e DA, ;. How-
ever, if for this M we have another set of ¢;’s, i.e., of the form g;c; where c;e A},
corresponds to an automorphism, then the old local data (r;;) e [1Ay, ,, is related
to the new local data (s;;) by the formula (cjc; ™ ')(s;;) = (r;;). Conversely, given any
element (r;j)€Il;<; Ay, such that rj;r, = ri in A; r p,, the kernel K of the twist
map will be trivial on each D(f;) (we mean K, is a free A;-module; for example
K,, is generated by (1,r3,...,r;,"). By (A-3), K is U-invertible. Moreover,

K = Qu(K)since each 4, and A4, is stable under Oy and Qy is left exact, (A-1e)
and (A-1a). Furthermore, K is finitely generated, by the observation in (A-11). If
we also have any other element (s;j)eIl;<;Af,,, and (c;)eIl; Ay, such that

/=1

cjc;” 'si; = rij then sj;5} = sj, and the constructed kernel L of the twist map will

be 1somorphlc to K, as the next commutative diagram shows

0->K~- ®Afi - ®Afifj
:l@c.- ::l@i<j€§
0 - L @4, - @Ay,

All the above may be nicely summarized in terms of the first cohomology
group of a Cech complex. Consider the complex of multiplicative abelian groups
with (standard) coboundary homomorphisms [14, p. 72]:

] o
1> ILAf, —> i jAf, —= WicjckAyiin —

where 6,((a;)) = (aja;™ "), 8,((a;;)) = (@ay ‘aj;). Then for each (finite) cover of
U = uD(Y;) there is a one-to-one correspondence between the elements of the
cohomology group C:=Kerd,/Imd; and those isomorphism classes
[[M]]epic(U) such that M, is a free A, -module for all i.

Next we show how to lift this data (cohomology) mod nilpotents. Note the
rather astonishing fact that if I is an ideal of a commutative ring 4, and I? = 0



A THEOREM OF GROTHENDIECK USING THE PICARD GROUPS FOR THE ... 169

then there is an exact sequence 0 > I - A* — (4/1)* — 1 of abelian groups, in
which I has as its group structure its natural additive structure, and the other two
groups are multiplicative. The first map sends ae I to the unit 1 + a. For ease of
notation, we consider lifting a module from U, to U, where U; is the punctured
spectrum of A4; = A/I', i = 1,2. Let [M]epic(U,) and pick suitable elements
fi€ A such that 6;: M, = (A,);, and U; = UD(f;A;) (hence U, = UD(f;4,)).
Then the ¢’s determine an element in the first cohomology group C, as described
above. We have a commutative diagram of abelian groups (and standard maps)
with columns that are exact and rows that are complexes.

0 0 0
| | |

(‘Bi(l/lz)f, - ®i<j(1/12)fifj - ®i<j<k(1/12)fifjfk -
| | |

4/}, - AP, - AP, -
! |

mA4/mn;, - WA/, - AN, -
!
1 1 1

A diagram chase shows that the cohomology C, of the second row at the
second term maps onto our cohomology C, (of the third row at the second term),
if the first row is exact (as abelian groups or as A-modules) at the third term.
Exactness occurs precisely when the local cohomology module H2(I/I*) = 0.

An explanation of this last remark is given in [ 17, Proposition 2.3, p. 78], or we
may see this in the following way. Let N be any module over a noetherian ring
A and first suppose the fs form a regular sequence. Then the complex
Dy(N)=D(A)®4N:0- N > ®;N;, - ®i<;Nps, =~ Ny, 5, —0 has
ith cohomology H'(D'(N)) = lim Ext'(A/(f},..., f), N) = H.(N), since (1) the
Koszul complex K.(f},..., f7) is ;1 resolution of A/(f,..., /) by free modules of
finite rank (the f;’s also form a regular sequence [13, Theorem 16.1]), (2) the
complex Hom(K.(f7,..., f), N)is chain isomorphic to K.(f{, ..., f/) ® N,and (3)
lim K.(f,..., f#)is D'(A) indexed in the reverse order. In case the f;’s do not form
—-J

an A-sequence, map the polynomial ring B = Z[ X, ..., X,] to A by sending the
indeterminate X; to f. Then we have that H.(N)= Hy,  x,N)=
H(Dy(B) ® N) = H(D,(A) ® 4 N) = H'(D;(N)), even as modules.

Return to our application. In our case, N = I/I> = tA/t*A = A/tA (in general
I'/I*! >~ AjtA) and we know H3(A/tA) =0, so we can lift. Thus, given
[[M]1] = [[K]}epic(U,) with K the kernel of a twist map defined by data
(ri)) e II(A/tA){,;, induced from M, we can construct, by the above, a kernel K’
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from some lifting (s;;) e T1(4/t*A);, 7, of (r;;), with [[K"]] € pic(U,), It remains to
show Q(K'/tK') = Q(K) = K. Thisiseasy:localizing the natural map K'/tK’ — K
at any of the f;’s will yield a surjection of rank one free modules, which must then
be an isomorphism. The conclusion follows from (A1-c). So we have that =, is
surjective, and in general each of the maps pic(U; + ;) — pic(U;)is surjective, hence
SO 1S a3.

This completes the proof that pic(U,) = 0 and the induction step.

REMARKS 6. (i) Grothendieck uses lim Pic(U ), the direct limit taken over all

open U, 2 G, instead of our pic(G).
(ii) His proof uses the Picard group of a formal scheme where we have used
lim pic(U;). These are frequently equal, in general [10, Exercise II 9.6]. The

methods of Step 2 are based on those of [9, IX §2].

(ii)) Grothendieck actually shows when a;, a,, and a5 are injective or bijective
using minimal hypothesis (see, for example, [8, Lemma 18.14]). This can be
translated to some extent as well using Q and methods similar to the above. For
example, in proving that o, o a; is injective, one uses the long exact sequence
0 - Q(M) = Q(M) = Q(M/t'M) — R*Q(M) — - - -, where the first map is multi-
plication by ¢, to show Q(M)/t'Q(M) = Q(M/t:M) for i >> 0. These ideas are left
to the reader to explore, as more complicated techniques need be developed first
(e.g., we found [1, §2] to be helpful).

Now for the main result [9, Corollaire XI 3.14].

THEOREM 7 (Grothendieck-Samuel). If A is a complete intersection and A, is
a UFD for all primes pespec A of height < 3, then A is a UFD.

Proor. We prove that each 4, is a UFD for all p e spec 4 by inducting on the
height of p. The cases ht(p) < 3 being trivial by hypothesis, assume ht(p) = 4, and
for all p" & p that 4, is a UFD. Let gespec A be minimal over pA. Then
p=qnA,A,— A,isflat, pA, is primary to gA4,. By Lemma 3,dim 4, > 4, and it
is clear that 4, is also a complete intersection. Theorem 5 gives that 4, is
parafactorial, hence so is 4, by Lemma 3. Thus A4, is a UFD from Proposition 2.

ExampLES 8. (1) The height condition in Theorem 5 and Theorem 7 cannot be
lowered. If A = k[X, Y, U, V],/(XY — UV), where m = (X, Y, U, V) and k is
afield, then A is a complete intersection of dimension 3, and A4, is regular, hence
a UFD, for ht(p) < 2 (at least one of the elements x, y, u, v € A becomes a unit in
A,). However, A is not a UFD since xy = uv (or the ideal of 4 generated by x and
u is a height one prime that is not principal), hence not parafactorial.

(2) In general, the complete intersection hypothesis cannot be replaced by
Gorenstein in Theorem 5 and Theorem 7. Let A = k[X;;],,/I, 1 £i< 3 and
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1 £j £ 3, where mis generated by all theindeterminates X;; and I is generated by
all the 2 x 2 minors of the (generic) 3 x 3 matrix [X;;]. A is Gorenstein and
ht(I) = gd(I) = (3 — 2 + 1)?> = 4[4, Corollary 8.9 and Theorem 2.5, respective-
ly]. Thus, dimA =9 —4 = 5. For p 4 mA, A, is a regular local ring (same
argument as in (1)), hence a UFD. Let J be the ideal of A generated by x,,, x5,
x3;. Then A/J = k[ Y;;],/I',1 £i<3and 1 < j < 2, where m'is generated by all
the (indeterminates) Y;; and I’ is generated by all the 2 x 2 minors of the 3 x 2
matrix [Y;]. Thus, ht(I)=gd(I)=3-2+1)2-2+1)=2 and
dimA/J =6 —2=4,ie, ht(J)=5—4=1. A/J is Cohen-Macaulay [11, The-
orem 1] means depth A/J = dim A/J = 4 > 2, and A/J is locally regular on the
punctured spectrum, so by Serre’s criterion for normality A/J is a normal domain
and J is a height one prime of the normal domain A that is not principal. Hence
A is not a UFD and not parafactorial.

(3) In general, O(G) and Q;(A4) may not agree when G is a quasi-compact (cf.
Theorem A-15). Let A = S™'Z where § = Z\(p) U(q), p and q distinct prime
numbers. Set m; = pA and m, = qA, G = {m,,m,}. Since G is discrete in the
induced topology, M(G) = M,,,1 X M,,, for any A-module M. But g(G) = X =
spec 4, so Qg(M) = Qx(M) = M. None-the-less, Pic(G) = pic(G) = 0.

Appendix.

It is in this appendix that we recall some facts from torsion theory and describe,
for any commutative ring 4, a module-theoretic formulation of the Picard group
of a generically closed, quasi-compact subset of X = Spec A4 (the structure sheafis
that induced from the natural one Oy = A on X by restriction). This formulation
uses no sheaf theory and is reasonably easy to use in practice, so we consider
a more general case as well.

For the torsion theory preliminaries, let A be any commutative ring,
G < X = spec A, with generic closure g(G) = {ge X | q < p for some p € G}. De-
noteby Fg = {I = A|I & any pe G} the torsion filter corresponding to G (we may
assume that G is generically closed, i.e., G = g(G)). G is quasi-compact if and only
if F; contains a cofinal subset of finitely generated ideals [6, Theorem 3.3].

Fg is a directed set under reverse inclusion so we can form, for any A-module
M, the A-module Pz(M):= li_rp,EFG Hom(I, M). Let Qg(M):= Ps(Pg(M)) and

T¢(M):= {xe M|Ann x eFg} = lim;.r  Hom(A/I, M), the Fg-torsion sub-

module of M. M is I g-torsion if To(M) = M and J -torsionfree if T4(M) = 0.
Note that M := M/J 4(M) is T s-torsionfree. We summarize some facts about
J and @ in the following.

PROPOSITION A-1. (a) I and Qg are left exact idempotent functors [6,
Theorem 1.3 (1)].



172 FREDERICK W. CALL

(b) There is a canonical map ¢$: M — Qg(M) whose kernel is T4(M) and
cokernel is the first cohomology R* T 4(M). Q¢(M) = {xe E(M) |3l € Fg, Ix = M}
where E(M) is the injective envelope of M [6, Theorem 1.3 (6') and (3)].

(¢) If o M — M’ is a homomorphism of A-modules, then & ® 4 A, is an isomor-
phism for each pe G if and only if keroa and coker o are I g-torsion, if and only if
Q6(®): Q(M) —— Qs(M') is an isomorphism. In particular, M, = Q4(M), for any
peG [6, Theorem 1.3 (4)].

(d) Q(A)is a commutative ring, Q(M) is a Q(A)-module, and Hom (M, Q(A)) =
Hom 4 (Q(M), Q(4)) = Homy4(Q(M), Q(A4)) for any Q = Q¢ [6, p. 10-11, Prop-
osition 4.1 (1) and (2)].

(€) If G = H then there is a unique map Qgz(M)— Qyu(M) compatible with
0% and % Thus Qy Q¢ = Qu = QQpn [6, Proposition 4.1 (2) and 4.5].

(f) Given a: M — N then N = Q¢(M) if and only if ker a and coker o are
T g-torsion, N is T g-torsionfree, and the natural map N = Hom(A4,N)—
Hom(I, N) is surjective for all I € Fg [6, Theorem 1.3 (5), Remarks (i) on p. 7, and
Proposition 1.5].

(8) If G and H are generically closed, quasi-compact subsets of spec A then
Q60u(M) = Qg~u(M). In particular, Q(M), = Qg nspec1,(M,) for any p e spec A
[6, Theorem A-6; or 19, Corollary 5.23].

(h) If A is a domain then Qg(A) = N e A, This follows easily from the descrip-
tion of Q(A) in terms of E(A) = K, the quotient field of A, given in (b) above.

(i) If A is a noetherian ring then Qg = P; for any subset G < spec A [6,
Proposition 6.3 (8)].

() If o:A—> B is a homomorphism of noetherian rings, G < spec A,
G =°p YG) < specB, and M is a B-module, then Qg(M) = Qg(M). This is
deduced by applying [6, Lemma 7.3 and Example 10.4] to part (b) above.

We first investigate the notion of invertibility on a subset of spec A for an
arbitrary commutative ring A.

DEFINITION A-2. Let G < spec A. An A-module M is called G-invertible if there
is a finitely generated submodule N < M such that for all pe G we have
A, =N, =M,

To show the needed equivalent conditions of G-invertible we use an idea of G.
Picavet [16]. Let G be a quasi-compact subset of X = spec A, M an A-module,
t an indeterminate over A and M. Set S¢ = {he€ A[t]| c(h)e Fg} where c(h) is the
ideal of A4 generated by the coefficients of the polynomial h. Let
G(M):= Sg *M[¢]. Then the natural composition A — A[t] — G(A)is a flat ring
homomorphism and G(M) = G(A4) ® , M so that G is an exact functor. If G = X,
write M(t) in place of X(M) (cf. [15, p. 17-18]). Each maximal ideal of G(A) is of
the form pG(A) where p is a (maximal) element of G [16, Lemma IV 11]. Then
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G(M),c4y) = M,(1), and G vanishes precisely on the class of 7 ;-torsion modules
since each maximal element of the quasi-compact set G is the contraction of
a maximal ideal of G(4) [16, Proposition IV 3].

We are ready for the key lemma, a generalization of [6, Theorem 8.2]. Recall
that a topological space is quasi-noetherian [12] if it is quasi-compact and has
a quasi-compact open basis (closed under finite intersections).

LEMMA A-3. Let G be a quasi-compact subset of spec A. Then the following two
conditions on the A-module M are equivalent.

(1) M is G-invertible.

(2) a) There is a complex A" - A* - M — 0 which is exact at each pe G, and

b) M, = A, forallpeG.

These imply:

(3) There is a finite covering of G = UG; by relatively open subsets G; with
Q¢,(M) = Qg,(A).

Conversely, if the G; can be chosen to be quasi-compact (e.g., if G is
quasi-noetherian) then (3) is equivalent to (1) and (2).

PrOOF. (1) <> (2) G-invertible means that 2 (b) holds and there is a complex
A*— M — 0 that is exact at each pe G. So let K = ker(A4°* — M) and apply the
exact functor G to obtain an exact sequence 0 - G(K) —» G(4)’ - G(M) - 0.
From the above remarks, G(M) is a locally free rank one G(A)-module. It follows
from the flatness of G(A) that there is a finitely generated A-submodule L € K
such that G(K/L) = G(4) ® (K/L) = G(4) ® K/G(4)® L = 0,i.e.,K, = L, for
all pe G. Use this L to construct the desired complex 2 (a).

(1)=(3) If peG, pick xe N that generates M at p, and map a rank one free
onto Ax = N < M. Since N is finitely generated and M is locally free on G, there
is a sufficiently small neighborhood G, = G n D(f) of p such that the composi-
tion A > N € M is locally an isomorphism at every g€ G,. This composition
induces the homomorphism Qg (4) —— Qg (M) by (A-1c).

(3)=(1) If peG; = G then M, = Q:(M), = Qi(A), = A4, by (A-1c) where we
use the notation Q; in place of Qg,. So we have that M is locally free on G. To
construct asuitable N = M, let x be a generator of the cyclic Q;(4)-module Q;(M).
The hypothesis that G; is quasi-compact implies that there is a finitely generated
ideal I € Fg, with Ix < M = Im(M — Q,(M)). Select a finitely generated A-sub-
module N; € M that maps onto Ix, (A-1b). This gives the diagram

N e M

by

Ix € M < Q(M).

Ateach pe G, all these maps become bijective so that N; generates M locally at
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each such p. The finitely generated submodule N = X N,, for the finite number of
modules N; so constructed, is the desired submodule.

COROLLARY A-4. If G is quasi-compact and M is G-invertible then, for each
pe G, we have Hom4(M, Qg(A4)), = Hom, (M,, Qg(4),) = A4,.

ProOF. Asin the end of the proof of [6, Theorem 8.2, p. 59-60] or [19, Lemma
5.28].

REMARK A-5. More generally, M can be locally of any (finite) constant rank on
G in (A-3) and (A-4).

We now come to our definition of the Picard group of a quasi-compact subset
pf the prime spectrum.

DEFINITION A-6. Let G be a quasi-compact subset of spec A. We shall say that
two A-modules M and M’ are G-equivalent (M ~ g M') if there is another module
L, and maps ¢: M = L and ¢": M’ — L such that for all peG, 9o ® A, M, - L,
and ¢’ ® A,: M, - L,areisomorphisms. G-equivalence is indeed an equivalence
relation since M ~ ¢ M’ if and only if Qg(M) = Qs(M’), by (A-Ic) (or, to check
transitivity, use the pushout L, ® L,/{¢}(x) — ¢5(x)| xe M’}). We use [M]; or
just [M] to denote the equivalence class.

Let pic(G) = {[M]¢|M is a G-invertible A-module}. That pic(G) is a set
follows from the mapping M — I1,.¢ M, = I14, since M is G-equivalent to its
image in the last module. The picard group of G is pic(G) with addition
[MJ¢ + [My]g =[M; ®,M,];, identity [A];, and inverse —[M]g =
[Hom(M, Qs(A))]¢. The verification of inverse requires special handling, but the
other properties are straightforward and left to the reader.

First Hom(M, Q4(A)) is locally free rank one on G, by (A-4). We can replace
G by its generic closure without loss of generality. Since M is assumed
G-invertible, there is a (finite) cover of G = UG; by sets G; such that
Qi(M) = Qi(A) (see (A-3)). We may assume that the G; are quasi-compact since
G is now quasi-noetherian. If M — Q4(A) is any A-linear homomorphism then
there is induced a homomorphism Q;(A4) = QM) — Qi(Qs(A4)) = Qi(A4), by
(A-1le). This mapping yields the commutative diagram, for each pe G,,

Hom(M, Q¢(4)), — Hom(Q:i(M), Qi(4)),
| =|
Hom(M,,, QG(A)p) — Hom(Qi(A)p’ Ql(A)p)

The right hand vertical map is an isomorphism since Q;(M) is a free
Qi(A)-module and from (A-1d); the left hand from (A-4); the bottom from
peG; < G, Qi(M) = Qi(A), and (A-1c and e). This proves Q;(Hom(M, Qs(A4))
— 04(Qi(A)) = Q«(A)is an isomorphism. Since G is quasi-noetherian, it follows
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that Hom(M, Qs(A)) is G-invertible, (A-3). The natural homomorphism
M ® ,4Hom(M, Qs(A)) = Qs(A) ~ ¢ A is locally an isomorphism at each pe G,
thus [Hom(M, Qs(A4))]¢ is an inverse of [M]¢.

We should remark that an alternative formulation of Qg(A) is
{g/he G(A)|g = Za;t’, h = Tb;t', bi(g/h) = a;/1 for all i} for any quasi-compact
G [6, Theorem A-7], but we do not exploit this representation here.

Observe that pic is natural in that given a ring homomorphism ¢: A — B and
quasi-compact subsets G < spec A, G’ < spec B, G 2 “p(G’) then there exists
a natural group homomorphism pic(G) — pic(G’) given by sending [M]; to
[M ®4Bl¢-

Here are some variations of the above definition of pic that under certain
hypotheses may be more suitable.

VARIATION A-7. The representative Qg(M)e [M]g is uniquely determined up
toisomorphism. Thus it is clear we can use isomorphism classes [[ M]] where M is
G-invertible and M = Qg(M), (A-la). The identity is then [[Qs(A)]],
[[M{1] + [[M,]] = [[Qs(M; ® M,)]], but the inverse remains
[[Hom(M,Qs(A))1], by [6, Proposition 4.1 (3)]. In this case, the group
homomorphism pic(G) — pic(G’) mentioned above sends [[M]] to

[[Qs(M ® 4 B)]].

VARIATION A-8. In theinverse, we could have replaced Qg(4)by A = 4/T (A)
by doing the following complicated maneuver: first choose a finitely generated
N < M that demonstrates M is G-invertible; then show Hom (N, A) is G-invert-
ible and G-equivalent to Hom (M, Q(A)), where we denote Q¢ by Q. For the latter,
set T =Q(A)/A, a Tg-torsion module, (A-1b). In the exact sequence
0 - Hom(N, A) » Hom(N, Q(4)) » Hom(N, T), the last term is Jg-torsion
since N is finitely generated, so the first two terms are G-equivalent. But the
middle term is isomorphic to Hom(Q(N),Q(A4)) = Hom(Q(M), Q(4)) =
Hom(M, Q(A)), (A-1c and d). Demonstrating Hom(N, A) is G-invertible is easy
now, for it amounts to proving the following: if ¢,,: M — Qs(M) is the canonical
map and Qs(M) is G-invertible, so is M. But from the quasi-compactness of G,
there is a finitely generated I € F with IN = M, from which we can construct the
necessary submodule of M.

VARIATION A-9. If T = J;(A) is bounded, i.e., if there is an ideal I € Fg such
that IT = 0, then we may use [Hom(N, A4)]; for the inverse. For then we have an
exact sequence 0 - Hom(N, T) - Hom(N, A) - Hom(N, 4) — Ext!(N, T), with
Ext'(N, T) being J4-torsion (it’s killed by I) for i = 0, 1. Thus, Hom (N, 4) and
Hom(N, A) are G-equivalent.

While this variation includes the case when A4 is a domain, it also is true that we
may use [Hom (M, Qs(A))]¢ where Qg(A) = M4y, by (A-1h). A Krull domain,
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for example, is particularly nice if G = {pespecA|ht(p) =1}, for then
Qq(4) = A.

VARIATION A-10. If A4 is noetherian, then we need only use the finitely gener-
ated M in our equivalence classes, with inverse —[M]; = [Hom(M, A)];. This
is because the natural homomorphism M ® Hom 4(M, A) —» A is an isomor-
phism locally at each pe G (for any G < spec A) when M is finitely generated and
locally free rank one on G. Of course, Hom (M, A) is finitely generated locally free
rank one, too. Our pic is then defined without any reference to Q, for any subset
G < spec A.

VARIATION A-11. If A is noetherian and G contains those primes p such that
depth A, <1 (but otherwise arbitrary) then we have the classical situation:
isomorphism classes [[ M]] of finitely generated, reflexive A-modules which are
locally free rank one on G. This happens because each representative of the
isomorphism class in (A-7) is of this form, due to the relations
Hom(N, Qg(A4)) = Hom(M, Q¢(4)),  Q¢(M) = Hom(Hom(M, Q(4)), Q6(A))
(checked locally on G and use [6, Proposition 4.1 (3)]), and 4 = Q¢(A), which we
prove in the next proposition. The addition is then [[M,]] + [[M,]] =
[[(M; ® M,)**]], the identity is [[ A]], and inverse is —[[M]] = [[M*]] where
the dualis Hom 4 ( , 4). Also, the natural group homomorphism pic(G) — pic(G’)
(with both G and G’ satisfying the depth hypothesis) sends [[M]] to
[[(M ® B)**]] where the dual is Homg( , B).

If the double dual proves awkward in an application, we note that (A-6) could
also be used, with the additional knowledge that every element in the equivalence
class [M]; is finitely generated and that Qgs(M) = M** whenever M is
G-invertible.

PROPOSITION A-12. Let A be a noetherian ring, M an A-module. Let H < G be
two generically closed subsets of spec A such that for all pe G\H either M, = 0 or
0 + M, is finitely generated and depth M, = 2. Then Qg(M) = Qu(M).

Proor. If we do not have an isomorphism locally at each pe G, choose a pe G
of smallest height where M, = Q¢(M), + Qu(M), = Qy(M,), H' = H nspec 4,
by (A-1g). By (A-1g and c), we can enlarge H' to be the punctured spectrum of 4,,
by the choice of p, so we are reduced to the case of a local ring (4, m),
U = spec A — m, 0 + M finitely generated of depth = 2, and M =+ Qy(M). But
depth M > 0implies Hom(4/m, M) = 0,s0 M = M. Inregards to (A-1b), we see,
for a non-zero-divisor aem on M, that Hom(4/m, E(M)/M) = Ext(4/m, M) =~
Hom(A/m, M/aM) = 0, since depth M = 2. Thus Qy(M)/M = Ty(E(M)/M) =
0, a contradiction.

We try our formulation of pic on a known result for Krull domains.
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Let H, = {pespecA|ht(p) = 1}. Recall that a domain A is Krull if (i)
A = Npy,Ap, (i) foreach pe Hy, A, is a principal ideal domain (i.e., 4 ,isa DVR),
and (iii)each 0 + a € A is contained in only finitely many elements of H;. Itis clear
that H, is a (quasi-)noetherian space.

PROPOSITION A-13. Let A be a Krull domain, X = spec A. Suppose G < X is
quasi-compact and contains H,. Then

(1) pic(X) < pic(G) < pic(H,).

(2) Aisa UFD ifand only if pic(H,) = 0.

(3) Ifeach element in H, is finitely generated and if A, is a UFD for each pe G
then pic(G) = pic(H,).

Proor. (1) Set H = H,. There are natural group homomorphisms pic(X) —
pic(G) — pic(H) given by restricting the equivalence relations to smaller sets. So
to prove injectivity, let [M]¢ e pic(G). If [M ]y = [A]y € pic(H) then Qx(M) =
On(A) = N,gA, = A since 4 is Krull, (A-1b). We check that the natural map
M — Qy(M) is locally an isomorphism at each pe G 2 H, using M, = A4, in the
commutative diagram

M, = 4,

‘ol Lo
0u(M), = Qu(M,) = Quld,) = Quldy)

where we have used (A-1g), and have put H': = H nspec A4, the set of height one
primes of the Krull domain 4,. Then M ~;Qu(M) = A and our maps are
injective.

(2) Now suppose pic(H) = 0and pis any height one prime. For A to bea UFD
we need to show [8, Proposition 6.1] that p is principal (i.e., free rank one). It is
easy to see from the above two defining properties (ii) and (iii) of a Krull domain
that p is H-invertible, so that pic(H) = 0 implies Qx(p) = Qu(A4) = A. But [6,
Lemma 8.9(2)] says forany I < A that Qy(I)is theintersection of all the symbolic
powers (containing I) of height one primes. In particular Q4(p) = p, hence p is
principal for each pe H and A4 is a UFD.

Conversely, if 4 is a UFD, let [[M]]epic(H) (we use (A-7) here) with
M = Qu(M). Then M embeds in IT,.y M, = I14,, a torsionfree (usual) module
over the domain 4. So M is isomorphic to a non-zero A-submodule
I < My, = K, the quotient field of A. I + 0 implies I ™! = I* £ 0, (A-4). If
04 xel !then = xI < A4 so we may assume M is isomorphic to an ideal I of
Awith I = Qg(I) = np{™. Now it is true in any domain that a symbolic power of
a principal prime p; is an ordinary power, and since there are no containment
relations among the p;’s, their intersections will agree with their products, so I is
principal, i.e., rank one free, and pic(H) = 0.

(3) If A, is a UFD for all geG, and peH is finitely generated then p is
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G-invertible and [ p]; € pic(G) maps to [p]y € pic(H). On the other hand, we have
seen earlier that each equivalence class in pic(H) has a representative
I = Qy(I) = np{™, pic H. But Oy (®;p™) = Qu(IIp}) = np{™ = I (check lo-
cally on H using A-1c)) so that pic(H) is generated by the classes of height one
primes and our map is surjective.

The reader may prove that indeed pic(H,)is just the divisor class group of A, the
group of divisorial fractional ideals modulo the subgroup of principal fractional
ideals. Also, pic(X) (= Pic(4)) is just the ideal class group of A, the invertible
fractional ideals modulo the principal’s. For these results the following are useful:
if I*40 then I** 1171, if I is not the quotient field K of A then
I =5 Qu() = I**ifand onlyif I = "', I =~ Jif and only if I = xJ for some
0+ xeK; Qy is the identity functor so M ® M* —=» A whenever M is
X-invertible (= rank one projective).

Our next goal is to show that, with sufficient hypothesis on G =€ X = spec A4,
pic(G) is isomorphic to the algebraic geometers’ Pic(G), the group of isomor-
phism classes of invertible (= locally free rank one) Oz-Modules, where (); is the
natural structure sheaf Oy on X restricted down to G. There is a discussion of this
in [19, Proposition 7.10], but a different approach (sheaf theoretic) to pic(G) is
used. Some of our ideas are from [19], but our method of proofis different in that
we first prove an important conjectured result, a generalization of [19, 5.25].

LEMMA A-14. If G is a quasi-compact subset of X = spec A then for each
A-module M we have Qg(M) = lim Q(M), where the direct limit (with the natural

restriction maps of (A-le)) is taken over all open subsets U of X containing G.
Furthermore, these isomorphisms are compatible with the restriction maps
Q6(M) - Q¢(M) for all quasi-compact G and G’ with G 2 G'.

ProoF. We need only use the quasi-compact open U 2 G in the direct limit as
they form a cofinal subset. The natural maps ¢@b: M — Quy(M) induce
@: M — lim Qy(M). We need, by (A-1f), that ker ¢ and coker ¢ are J ;-torsion.

This follows from (A-1c) since for each pe G < U, M, - Qy(M),, is an isomor-
phism, so that ¢ ® A, is an isomorphism, too.
We also need that this direct limit is 7 ;-torsionfree. Let [x] € lim Qy(M), and

I =(ay,...,a,)eF; a finitely generated ideal such that I[x]=0 (G is
quasi-compact). Then each g;x maps to zero in the direct limit, hence to zero in
some Qy (M), U; 2 G. Thus Ix = 0 in Qy(M), V = nU,. Since I € Fy < Fy and
Qv(M) is always Jy-torsionfree, x = 0 and we have proved this part.

It remains to prove that for any I € Fz, a homomorphism f: I — li_r;l Qu(M) lifts

to A. We can assume I = (ay,...,a,) is finitely generated. Map a free module 4"
onto I with kernel K < A". Since I is U-invertible, U = D(I), apply (A-3) to find
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a finitely generated L < K such that K/L is Jy-torsion (or prove this directly).
Now lift the f(a;)’s to x;’s in a common Qy(M), Vopenand G < V < U. Then the
images of a finite generating set for Lin Q\(M) will map to zero in the direct limit.
Replacing V by a sufficiently smaller open set containing G, we can assume
L maps to zero in @y (M), hence the images of K and K/L are the same in @y (M).
However, K/L is 7 y-torsion, hence -torsion, while Q, (M) is J-torsionfree.
Thus K/L (hence K) maps to zero in Q(M). Deduce from this that f factors
through some f": I - Q,(M). ButI € Fy; < Fy, so by the lifting property of Q, (M)
there is a lifting of f” to A from which is obtained the desired lifting f” of f.

K € A —» _IcA

4 I R as
K/L =~ Qy(M)" > lim Qy(M)

To show compatibility of our isomorphisms with the restriction maps, for
G = G’ quasi-compact, look at the diagram

QM) —=> lim Qy(M)

U=2G
vt
LMy
I
Qe (M) — 1im Qy(M)
V=2G'

which has commutative triangles. Since Hom(M, Q¢.(M)) = Hom(Qg(M),
Qs(M)) by (A-1d), the square commutes.

Recall that a quasi-compact, generically closed subset of spec 4 is always the
image of the (reverse) spec map “¢ of some flat ring homomorphism ¢: A — B,
and conversely. Since these subsets form a basis of the closed sets of the flat
topology [7, Theorem 2.2], we shall refer to them as the flat subsets of spec A.
A flat subset G of spec A4 is quasi-noetherian since subsets of the form G U
where U is a quasi-compact open subset of spec A4 is again quasi-compact.

For an arbitrary commutative ring A, let @ = Oy = 4 denote the natural
structure sheaf of rings on X = Spec 4, and, for an 4-module M, let M be the
0-Module canonically associated to M. Let G = Spec A. Recall that the defini-
tion of the restriction sheaf 05 := O] and the Oz-Module Mg involve direct
limits of sections over open U 2 G to define a presheaf, followed by the sheafifica-
tion process [10, p. 65 and Proposition-Definition II 1.2].

THEOREM A-15. Let G be a flat subset of X = Spec A, M an A-module. Then, in
the definition of Og and M|g, the sheafification process is not needed. More
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precisely, the presheaf assignment Gy 1— lim {M(U) |Go = U open < X} defined

on the basis of all flat relatively open subsets G, of G is, in fact, a sheaf on this basis,
with M|g(G N U) = li}_n {Q6~v,M)|Gn Uy = GN U, U, quasi-compact open

c X} for any open U < X. In particular, M(G):= M|s(G) = Q6(M) and
0(G):= 04(G) = Q;(A), and these isomorphisms commute with restrictions.

Proor. For a discussion of (pre)sheaves on a basis, see [ 14, p. 32-34]. If U, is
a quasi-compact open subset of X then, if G is flat, Go =GN U, is
a quasi-compact relatively open subset of G. By [6, Theorem 5.1; or 19, Proposi-
tion 5.16] and (A-14), the assignment G, Qg (M) defines our above stated
presheaf (on the basis of quasi-compact relatively open subsets G, of G) for the
sheaf M|;. But this presheaf is actually a sheaf on this basis, as we now show.

(1) If Go = UG;, Gy € G, and x € Qg (M) is such that x is zero in Qg (M) for
each i, then x e N,7,(Q¢,(M)) = T (Qg,(M)) = 0, (A-1b and e). This establishes
uniqueness.

(2) Let Gy = UG;, where G, and the G; are flat relatively open subsets of G, and
let {x;}, x;€ Q¢ (M), be a family of elements that agree on overlaps G;n G;. We
want to find an x € Qg (M) that will agree with the x;’s (x is unique by part (1)). We
can assume the G; are of the form G n D(f)), f;€ 4,and argue asin [6, Theorem A-2,
p. 105] using this refined cover of G, (just as in that proof, one needs to use part (1)
again to show that the chosen x agrees with the x;’s on the original cover {G;}).

The compatibility follows from the facts (a) the presheaf defines the sheaf, (b) it
is true for all quasi-compact open U < X, and (c) the last item in (A-14).

REMARKS A-16. Itis not known if M|g = Q¢(M) when G is not quasi-compact,
even if G is open in X. Nor has the case where G is not generically closed been
studied in the literature (see Example 8.3 before the Appendix). Also, there still
remains the question of whether M|g(G N U) = Qg,.u(M) when G is flat and U is
any open subset of X.

PRrOPOSITION A-17. Let G bi a flat subset of Spec A, and & an invertible
Og-module on G. Then ¥ =~ £(G)|g, and for each x = pe G we have the stalk
% = ZL(G),.

Proor. Our aim is to define the local maps of sections over a typical flat
relatively open subset Gy < G. First choose a cover of G of flat relatively open
subsets G; such that |, = O, (from the definition of an invertible sheaf). We
have a commutative diagram, since . is a sheaf,

0-» 206G - @LG) - LGingG)

(*) 1 ! !
0 - Z(Go) » DL(GoNG) » BL(GoNGinGy)
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Now the commutative diagram (use (A-15))

Z(Gy) 0(Gy) Q64

! ! !
Z(GonG) = O(GonGy) =Qgyng,(A)

yields upon application of Qg, that Qg (Z(G;)) = £(Go N G;), by (A-1g). Similar-
ly, Q¢,(£(GinG)) = L(Go N G;n Gj). From (*), (A-15), and these isomor-
phisms, we conclude that £(G)(G,) =~ 06,(Z(G)) = Z(G,). These maps will
define an isomorphism er) — & of sheaves (on a basis) if we show they are
compatible with restrictions. To see this, let G, 2 Gj,. Then the commutative
diagram

4

I

Z(G) - Z(Go)

I |
Z(G) - Z(Go)

induces

Z(G) - Z(Go)
\ !
Q6,(£(06)
I ! l
Q6,(Z(G)
! \
£(G) - Z(Go)

We have just shown the upper and lower triangles are commutative, and the
left side is (A-1e), so the right hand trapezoid is commutative, by (A-1d), whence
the sheaf isomorphism is established.

Now take stalks at x = pe G to show Z(G), = %,.

THEOREM A-18. Let G be a flat subset of X = Spec A. Then pic(G) =
Pic(G, 0;).

Proor. If & is an invertible ¢;-Module then (A-15) and (A-17) tell us that
06(Z(G)) = ZL(G). Itisalso clear that if & =~ ¥’ then #(G) =~ #'(G). Thus, if we
use (A-7), the map Pic(G) - pic(G) = {[[M11| M = Qa(M), M is G-invertible}
given by [[.#]] goes to [[Z(G)]] is well defined provided we show that .#(G) is
G-invertible. Cover G = UG;, G; = Gn D(f)), fi€ A, so that Z|g, = Og,. Then
06,(%(G)) = Z(G;) = 0(G;) = Q,(A), by (A-15)and (A-17). From (A-3), we have
that #(G) is G-invertible.

To see that the map is bijective, define a map in the reverse direction by sending
the isomorphism class [[M]] to [[M|g]] € Pic(G); of course, M is G-invertible _



182 FREDERICK W. CALL

and M = Qg4(M). M| is, indeed, an invertible sheaf since, for a suitable covering
of G = UG;, we have Q¢ (M) = Qg (A), by (A-3). Hence, the canonical homomor-
phism M — Qg (M) induces the isomorphism M lg, — QG':(JM)lci =~
QGF:("A)|Gi = /TlG', = (0g,and M| is an invertible sheaf. These maps are inverses
of each other since ¥ =~ _?F(UG)lg by (A-17), and M|4(G) = Qg(M) = M, by (A-15).

Our mappings are group homomorphisms. To see this, let [[£]],
[[Z’1] € Pic(G) and consider the morphism of preschemes to the sheafification
L Qo L. The homomorphism over the set G is then
ZL(G) ®o6) £ (G) = (£ ® £')(G). We claim this homomorphism of 4-modulus
is locally an isomorphism at each p = x € G. It induces the commutative diagram

Z(6), R, £L'(G), = (ZL(6) Qo) £'(G), = (£ ® L)(G),
1= |

2 ®o,. Z; - (£ ® L)

The vertical maps are isomorphisms from (A-17), the lower one an isomor-
phism since a presheaf and its sheafification have the same stalks [10, p. 64].
From these isomorphisms, for each pe G, we conclude Q4;(#(G) ® 4 £'(G)) =
0:(Z ® Z)G)) = (£ ® £')(G) since £ ® &' is an invertible sheaf on G.
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ON A NON-ABELIAN VARIETY OF GROUPS
WHICH ARE SYMMETRIC ALGEBRAS

ERNEST PLONKA

L

It is known that symmetric operations have nice properties and there are many
types of algebraic systems in which commutative systems play very special role.
This is the case, for example, of groups, rings and modules. From the algebraic
point of view two algebras (4; F,) and (4; F ;) are equal if the sets A(F;) and A(F,)
of all their algebraic operations (= all superpositions of fundamental operations
and the projections) coincide (cf. [2]). It may happen that not all fundamental
operations F of the algebra (4; F) are symmetric, i.e. do admit of all permutations
of their variables but (4;F) is a symmetric algebra. This means that all
non-symmetric operations from F can be presented as a superpositions of
symmetric algebraic operations of the algebra (A4;F) and the projections
Xy, X0y X)) =X 1Sk En,n=1273,....

Itis clear that the Abelian group (G;., ™!, 1) is symmetric algebra in the sense.
In [4] E. Marczewski has asked whether there are non-Abelian groups which are
symmetric algebras. Since 0-ary and 1-ary operations are symmetric the question
is whether the group operation - can be expressed as a superposition of projec-
tions and of symmetric algebraic operations, which, in the case of groups, are
symmetric words. It turned out [5] that such group exists.

In this note we find a non-Abelian variety (= equationally definable class) of
groups which have the same property.

We prove the following

THEOREM. If the group G satisfies the following identities

(1) X =1
) [x,y]} =1
3) [x2y] =1

Received February 23, 1993.
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then G is symmetric algebra. Namely we have

@ xy = w(g(g(x, y), y*), ww* (x, y), s(x, , X)),
where

5) w(x,y) = xy[x,y]

(6) q(x, y) = xy[x, yIx*y?

() s(x, y,2) = [x,y,2][z,y,x]

are symmetric operations in the group G.

IL

Let us begin with notations and auxiliary results which enable us to prove the

theorem. As usual, [x,y] = x "'y~ 'xy, and

[xl,x29--"xn] = [[xbe""sxn—l]’xn] for n>2

The following relations

®) xy = yx[x,y]

©) Doyl =[px]

(10) [xy,z] = [x,z][x, z, ylLy, z]
(11) [x,yz] = [x,z1[x, y1[x, y, 2] .

are identities in any group [cf. [1]).

LemMA 1. If (1)3) are identities in G, then the following equations

(12) [[xy}2*]1=1

(13) [[x,y), [z,ul]l =1

(14) [ysx, 2] = [x, y,2]?
(15) [y %, 3, x] = [x, ,,x]?
(16) [y, x,y,x1 = [y, x,x,y]
(17 [y, x,x,y,y1 = [y, %,x,¥]
(18) [y, x, y,x,x] = [y, %, 5, x]
(19) [y, x, x,x] = [y, x,x]
(20) [xy*yl=1

are identities in G for k = 1,2,3,...
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Proor. If we take [x,z]? instead of x into (3) and apply (2) we get (12). This
implies (13) by putting [z, u]? instead of z. Using (2), (10) and (13) we have
[y’ X, Z] = [[xa y] N la Z] = [[xa y]z’ Z]
= [xs Y, Z] [[X, Ys Z]s [x’ y]] [x’ Y, Z] = [xa Y, 2]2,

which yields (14).
From (3), (10), (12) and (14) it follows

[y, x,y,x]1 = [[x,, 1%, x1 = [x, 5,5, x]*

which gives (15).
It is known (cf. e.g. [1]) that in metabelian groups, i.e. in the groups with
identity (12), the following Jacobi identity

21 [x,5. 21y 2, x][z,x, y] = 1
holds. Thus we have )
1 =[x,y,[x y11ly, [x, y], x1[x, y, x, y]
which together with (2), (3), (9), (10), (12) and (14) gives
[x9,%y] = [y, [%y1, x17 ! = [[x 5, y1%x)* = [x,5,5,x]* = [x,,,x]

i.e. equality (16) is fulfiled.
The equalities (17), (18) and (19) follow from (2), (11) and (12), because we have

1=[y,x%y"] = [y,xx 1’0y, %% 5]
1=[y,xyx*]=[y,xyx1°0y,xy,xx]
1 = [y,x,x2] = [y, x, x1*[y, x, x, x].
Now the Jacoby identity yields
1 =[x,y y1v* y, x10y, %, y*],
which together with (12) gives (20) and lemma 1 follows.

LEMMA 2. Ifthe equations (1)~(3) are identities in the group G, then the words w,
q and s defined by the formulas (5), (6) and (7), respectively, are symmetric operations
in G.

Proor. By (2), (8) and (9) we have
w(y, x) = yx[y,x] = xy[y, x]* = xy[x, y] = w(x, )
Using this and (12) we get

q(, x) = yx[y,x]y*x? = w(y, x)y*x* = w(x, y)x2y* = q(x, y).
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To prove s is ternary symmetric operation in G observe that the cycles (2,3, 1)
and (1, 3) generate the symmeetric group S; of all permutations on three leters x,
y and z. Now from (13) we have

s(2, y, %) = [z, 5, x][x, y, 2] = s(x,y,2)
We have also by (2), (13), (14) and (21)
s(v:z, %) = [y, 2, x1[x, 2, y] = [z, y, X[z, . x][x, 2, y]
= [z,y, X1y, %, 217! = [x,5,21[z ), x] = [x, 3, 2],

which completes the proof.

HI. Proof of the theorem.

First of all we calculate g*(x, y). Using (8) we get
7*(x,y) = xy[x, yIx*y*xy[x, ylx*y?
= x’y[x,y, xIx*y*[y?, x]y[x, yIx*y?

Observe that [y, x] = [x, y*]%, because of (2) and (9). This together with (20)
gives [y%, x]y = y[y?, x]. Hence, once more from (8), we get

a*(x,y) = x*y*[x, y, x]1[x, y, x, yIx[x%, y1y*[y?, x1[x, yIx?y?
Now the equality (13), (9) and (10) yield
[x%,y10y%, %1 = [x, y10x, v, x10x, Y10y, X1y, %, 10y, X1 = [x, v, X0y, x, y1-
Therefore, in view of (1), (2), (3), (12) and (13) we get
a*(x,y) = [x, y1[x, y, xJ°[y, x, y1[x, . x, y]

Now we are going to calculate a = g(q(x, y), y*). Taking into account (1), (3), (6),
(10), (12) and (13) we get

a = xy[x, yIx*y*y*[xy[x, y1x*y%, y*1*(x, y)y®
= xyx*y*[x, yl[xy, y*14*(x, y)
It follows from (10) and (13) that
22 [x,¥*1 = [x, y1°[x, 5, ¥]
This together with (2), (10) and (13) gives
D3y, v*] = D6y 106 v*%, 01 = [%,5%1 = [x,*1* = [x, y1[x, 3, y]?

Therefore we have
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a= X3YE}’, x2]y2[x’ y]z[xa Vs y]2q2(x, .V) = x3y3[y’ X, x][xa Vs Y]zqz(x, J’),
as a consequence of (8), (9) and (13). Now using (13) and (14) we obtain
a= xsys[x’y][x’yoy][x’y,x][xayaxay:l = x3y3cl

for a suitable product ¢, of commutators. It follows from (13) and the definitions
of the operations s and w that

b = w(w(x, y), s(x, y,x)) = (xy[x, y1)*[x, y, x]*
Thus, in viewof (2), (3), (6) and (9), we get
CeyDx, yI* = (eyDx, yIxyx, y])? = (x*yLy, x10x, y1[x, y, xy[x, y1)*
= (x?y*[x, y1[x, y, x1[x, , x, y))* = x*y*[y, x][x, , x]°[x, y, x, y]*
and consequently )
b= x*y*[y,xI[x, y,x1[x, y, %, y]* = x*y*c,

for a suitable product ¢, of commutators.
In order to calculate [a, b] let us consider the commutator [x3y3c,, a], « being
x or y or else ¢,. In view of (3), (6) and (10) we have

[x*y’cy, o] = [xyeq, ad[xy, «] = [x,a][x, o, y1[y, o]

This together with (11) and (20) yields
[a,b] = [x¥*y’ci, x*y*c,] = [x*ycy, x* 10Xy ey, y*1[x%y ey, €2 ]
= [, x*1[x, y*1[x, c21[x, €2, ¥y, 2]
Now by (3) and (22) we have
0, x*1 = [0, x*1* = (L, x1°[y, %, xD* = [y, x1*[y, x,x]*
and similarly
[x "] = [ y1* 0% ¥
which together with (13) and (14) gives
[a,b] = [x, y, x]Ly, X, y1[x, ¢21[x, 2, Y1 [ys 2]
It follows from (2), (11) and (13) that
[x,c21 = [y, %, x1* = [x,5, %, x)*[[x, y, x, 1%, xT?,

which, in view of (14), (15), (16) and (18), can be rewrite as

[x,¢2] = [x, 3, X10y, %, 10y, %, %, y, x]* = [x, 3, y, x]
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Thus we get

[x,c2,¥]1 =[x, 5,5, x,¥] =[x, ¥, %, y, y] = [X, , %, y]

as it follows from (16) and (18).
Using the same arguments we have also

[y, e2] = [y, %, y12[% 35 %, y1*[[%, 3, X, ¥1%, ¥
=[x, 5, y10y, % %, y10y, %, %, y1* = [x, 3, 1.
Thus
[a,b] = [x, y, x1[y, x, y1[x, y, y, x][x, y, x, y1[x, y, y]
=[x, y,x10y, x, y,x]

as it follows from (2), (3), (14), (15) and (16).
Now we are able to calculate w(a, b). The identities (1}~(3) and (8) give

w(a, b) = ab[a,b]
= x*y°[x, y1[x, y, X10x, ¥, Y1[x, v, %, y1x*y* Ly, x10x, y, X1 [x, . x, y1*ab
= X°y°[x, y, X2 x*y*[x, y, X1[x, 3, 109> %, 3, X1 = x*yx*[x, y, y1 [y, %, . X]
= xy[x%, y1[x, y, 1Ly, %, y, x]
Since [x2, y] = [x, y]*[x, y, x] we have, by (16),
w(a, b) = xyl[y, x1[x, y,x][x, y, y1[y, %, %, y]

Thus, it is enough to prove that the last product of commutators equals 1. To do
this we use (2), (3), (10) and (11). We have

1=[y% %1 = [y, x*1°[y, x%, y1 = ([0, x1*[y, %, xD)*[[x, y1[y, X, X1, ¥]
= [, x1[x, y, x1[x, y, y10y, x, x, ¥1,
which completes the proof of the theorem.

COROLLARY. Inthe normal product Z3Z, of the cyclic group Z 3 by the group Z ,
of all its automorphisms (i.e. the group S5) all equations (1)<3) are fulfilled. This
gives another proof of a result from [5].
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COHOMOLOGIES ET EXTENSIONS DE CATEGORIES

GEORGES HOFF

0. Introduction.

Dans des travaux précédents (voir [10] et [11]), nous avons défini une notion
d’extension de catégories qui généralise celle, classique, d’extension de groupes
(exposée dans [12]). Elle fut introduite dans le but d’interpréter la cohomologie
(abelienne) des petites catégories en dimension 2. Elle a été utilisée par T. Porter
(dans [14]) pour I'étude des modules croisés dans €a¢ qu'il relie aux catégories
internes. Elle intervient aussi en cohomologie de dimension supérieure, comme
I’a montré M. Golasinski (dans [7]), en considérant les extensions n-uples. Des
cas particuliers sont utilisés dans divers ouvrages ([5] et [16] par exemple). On
verra ici qu’'elle contribue a interpréter des cohomologies non nécessairement
abéliennes et a coeflicients non nécessairement fonctoriels comme, par exemple,
celle définie par Z. Wojtkowiak (dans [17]) qui apparait naturellement en théorie
de I'obstruction concernant les limites homotopiques.

Considérant ses relations avec les catégories fibrées de Grothendieck (dans
[97), on peut aussi élargir la notion d’extension de catégories et les cohomologies
ainsi deécrites.

Baues définit, dans [3], une cohomologie abélienne des petites catégories qui
généralise la cohomologie a coefficient dans un module (i.e. un foncteur a valeurs
dans les groupes abéliens) étudiée dans [10] et [11]. Des extensions définies dans
ce cadre contribuent, entre autre, a I'¢tude de la classification des types
d’homotopie d’espaces et des classes d’homotopie d’applications (voir [1] et [2]).

Nous commencerons (section 1) par un exposé des principales propriétés des
extensions de catégories définies en [10] et [11]. Cette notion est ensuite élargie
(section 2) et I'on voit apparaitre naturellemant les cocycles. On a alors une
cohomologie (section 3) qui classifie les extensions larges.

La cohomologie est souvent associée a un coefficient, cette notion est ici
précisée (section 4) et confrontée aux extensions de catégories. Nous terminons
(section 5) par I’étude des cohomologies a coefficients en groupes.

Regu le 3. juin 1993.
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Les catégories considérées C, H, K, ... sont des petites catégories a 'exception
de la catégorie des groupes %», de la catégorie des groupes abéliens /¢, de la
catégorie des petites catégories ¥a¢ ou de catégories dont les objets sont les
groupes, €g2 ou # g2, ou les petites catégories Gcad.

Si C est une catégorie, on note C, I'ensemble de ses objets, on note C,
I'ensemble de ses morphismes. On considére C, comme une partie de C, en
identifiant chaque objet et son morphisme identique. Pour deux objets C et C’ de
C, onnote C(C, C’) 'ensemble des morphismes c € C; de source a(c) = C et de but
B(c) = C'. On note respectivement C, et C, les ensembles des couples (c,c’)e
C, x C, etdes triples (c,c’,c")eC; x C; x C; composables, i.e. tels que a(c) =

B(c') et a(c’) = B(c").

1. Extensions de categories.

Rappelons la notion que nous avons définie en [10] et [11]. On la retrouve, pour
les groupoides dans [5].

DEFINITION 1.1. Une extension de catégories (de la catégorie C par la catégorie
K) est une suite

EK ‘5 H-2C

ou i est un foncteur fidéle et C une catégorie quotient de H, le foncteur projection
étant p. De plus, pour het 'eH,ona

(*) p(h) = p(h') = 3 keK; tel que b’ = i(k)h.
La définition de catégorie quotient est celle de [13], c’est a dire que p est un

foncteur plein et bijectif sur les objets.

PROPOSITION 1.2. (a) Le foncteur composé pi envoie Ky sur C,,.

(b) Pour he H et ke K, tels que hi(k) est défini, il existe un unique "k € K, tel que
hi(k) = i(*k)h.

(c) Le foncteur i identifie K d une sous-catégorie de H.

PREUVE. (a)et(b)sont des conséquences de la condition (x) de l1a définition 1.1.
tandis que (c) est issu de la définition d’un foncteur fidéle.

PROPOSITION 1.3. La catégorie K est réunion disjointe de groupes K. indexés par
Co,.

PReUVE. La proposition 1.2.(a) nous a dit que K est réunion disjointe de
monoides. La condition (*) de la définition 1.1. dit alors que chacun de ceux-ci est
un groupe.

PROPOSITION 1.4. Pour ket k' eK, et heH;,ona
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kh=kh = k=K.

PREUVE. Comme k est élément d’une groupe, on a h = k™ 'k'h et, de par la
condition (*) de la définition 1.1.,ona k" 'k’ = l et donc k = k'.

COROLLAIRE 1.5. On a une opération de H sur K, i.e.
V(h,W)eH, et Yke K, avec B(k) = a(l),
ona "k =""k).
PREUVE. On a les relations:
(hh)k = "W k(hi')
= h(W'k) = h(" k') = (K" k)h' = "" k)hh',
ce qui implique, de par la proposition 1.4., la relation annoncée.

DEFINITION 1.6. Une section de ’extension E est la donnée, pour chaquece C,,
d’un représentant s(c) tel que ps(c) = ¢ de sorte que s(c) soit une identité quand
¢ en est une.

PROPOSITION 1.7. La donnée d’une section de I'extension E définit, pour chaque
morphisme c: C — C' de C, un homomorphisme de groupes K — K¢ qui a un
k associe *“'k. Cet homomorphisme est une identité quand c en est une.

PREUVE. On a les relations
SOkk')s(c) = s(c)kk’ = *©ks(c)k’ = Ok Ok's(c),
et, de par la proposition 1.4., il vient
SEYkK') = SOk,

On n’a pas nécessairement un foncteur C — % car les sections s ne sont pas
nécessairement des foncteurs C — H. Lorsqu'’il existe un foncteur s: C — H alors
[14] dit que I'extension est scindée et que K a une C-structure.

Nous sommes ici sur le chemin de la définition d’une cohomologie de C
a coefficients dans K. Les techniques y seraient semblables a celles de [11], mais
nous la considérerons ci-aprés dans un cadre plus général.

Mettons maintenant en évidence une propriété des extensions de catégories
qui permettra d’élargir cette notion. Pour cela, il nous faut rappeler des
définitions dues a [9] et souvent exposées (par exemple dans [8] et [15]).

DEeriNITION 1.8. Soit p: H — C un foncteur. Un morphisme h de H est dit
cocartésien au dessus de ¢ = p(h) si

Vh e H; tel que p(h') = c et a(h’) = a(h)
31k tel que p(k) = B(c) et kh = k'
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On dit que p posséde assez de morphismes cocartésiens si pour tout morphisme c:
C — C' et pour tout objet H tel que p(H) = C, il existe un morphisme de source
H cocartésien au dessus de c.

DEFINITION 1.9. Un foncteur p qui posséde assez de morphismes cocartésiens
est ce qu’on appelle une précofibration (selon [9] et [15]) ou une préopfibration
(dans le langage de [3]) au sens de Grothendieck. Les fibres de p sont alors les
catégories Hc = p~1(C) avec Ce C,,.

THEOREME 1.10. Les extensions de catégories sont les précofibrations de
Grothendieck dont les fibres sont des groupes.

PREUVE. SoitK — H —£» Cuneextension de catégories. La propriété (x)
de 1.1. nous dit que tous les morphismes de H sont cocartésiens. Comme p est
plein, donc surjectif sur les morphismes et n’ayant qu’un seul objet dans chaque
fibre K, il est clair que p posséde assez de morphismes cocartésiens.
Réciproquement, soit p: H » C une précofibration de Grothendieck dont les

fibres Hc sont des groupes. Considérons alors CLl Hc —» H -2 C.L'inclu-

sion i est un foncteur fidele. Les fibres étant des groupes, elles n’ont qu’un objet et,
par ailleurs, ayant assez de morphismes cocartésiens, le foncteur p est bijectif sur
les objets et surjectif sur les morphismes: c’est un quotient. Si on remarque alors
que tout morphisme est cocartésien, car on a assez de morphismes cocartésiens et
car les fibres sont des groupes, on a la propriété (*) de 1.1.: nous sommes bien en
présence d’une extension de catégories.

DEFINITION 1.11. Un morphisme d’extensions de E a E' est un triplet de
foncteurs I' = (1, u, v) tel que le diagramme suivant soit commutatif

EE K- H-_cC

A

E: K - H 5.

La composition des morphismes d’extensions est définie de maniére évidente. Le
morphisme I' est appelé isomorphisme d’extensions si les foncteurs 7, u et v sont
inversibles.

Les isomorphismes d’extensions I' tels que 7 et v sont des foncteurs identiques
fournissent une congruence entre les extensions de C par K. Ceci permet de
décrire, en termes d’extensions, la cohomologie évoquée a la suite de la propo-
sition 1.7.
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2. Extensions larges et cocycles.

On peut étre amené a souhaiter que les extensions de catégories aient des fibres
possédant plus d’un objet. Du point de vue de la cohomologie, il s’agit d’avoir des
foncteurs “surjectifs” p: H - C tels qu’une bonne notion de section permette de
définir des cocycles sur C, a valeurs dans une catégorie “noyau” K. Le théoréme
1.10. nous suggere la généralisation suivante.

DEFINITION 2.1. Une extension large de catégories (de la catégorie C par la
catégorie K) est une suite

EK -5 H - C

telle que
(1) le foncteur p posséde assez de morphismes cocartésiens,
(2) le foncteur i est fidéle (on pourra identifier K a la souscatégorie i(K) de H),
3) K= CI;LKC et i(Ke) = p~1(C) VCeC,.

En vertu du théoréme 1.10., on retrouve les extensions de catégories dans le cas
ou les catégories K¢ sont des groupes.

DEFINITION 2.2. Soit E:K —— H —2» C une extension large de catégories.
On appelle section de E la donnée s, pour chaque morphisme ¢: C — C’ de C et
chaque objet H tel que p(H) = C d’'un morphisme sy(c) de source H et cocartésien
au dessus de c de sorte que sg(c) soit une identité quand c en est une.

Selon la terminologie issue de [9], une section de 'extension E ust un clivage de
la précofibration p.

PROPOSITION 2.3. La donnée d’une section s de E définit

(a) pour chaque morphisme c: C — C' de C, un foncteur S(c): K¢ — K¢, qui est le
foncteur identique quand c est une identité,

(b) pour chaque (c,c')eC,, une transformation naturelle S(c,c’):. S(cc’)=>
S(c)S(c’) qui est la transformation identique quand c ou ¢’ est une identité,

(c) et pour chaque (c,c’,c")eCs,ona

S(c,¢)S(c"),S(cc’, ") = S(c)S(c’, ") S(c, c'c”): S(ec’c”) = S(c)S(c')S(c”),

ce qui se traduit par la commutativité du 2-diagramme ci-dessous.
La composition , des transformations naturelles est la composition “verticale”

définie dans [13].
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S(cc'c”)

c” > C

C’cr/ ,
cC

C” \ C
c” » C’

’

c

PREUVE. (a) Si K est un objetde Ko = H,T'objet S(c)(K) de K¢ est le but de sg(c).
Si k: K — K’ est un morphisme de K., le morphisme S(c)(k) est 'unique mor-
phisme de K¢ tel que S(c)(k)sk(c) = sx-(c)k. Depar la cocartésianité de sg(c), on
a aussi S(c)(k')S(c)(k) = S(c)(k'k) quand k'k est défini dans K.

*O o s0m) -
ky 5 (©) v S@®
K’ > S(e)(K') 1 S(c)(k'k)
k' : '
] v S@OK) |
K" sg”(¢) - S()(K") 4~

(b) Pour chaque K, la cocartésianité de sk(cc’) donne I’existence d’un unique
S(c, ¢')(K) tel que S(c, ¢')(K)sg(cc) = Sseryxy(c)sk(c’). Pour chaque k: K — K, elle
donne aussi

SELS(€)k)1S(c, e NK) = S(c, ¢')K)S(cc') (k).
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sk (cc)

K + S(cc’)(K)
J'i’*/o, ,r’/ :
< - S(ee")(K)
*S(e)(K)* » :
S(c")(K) - > S(ES(CHK) | Sec)(k)
L S(e)(k) S(©)S()(k) | V

' —» S(cc)(K')

S CC H
K’ S - ‘
'.P 1] ,t’
& : . ! ’
%, LTS K)
S(C)(K')© Vs

S(¢’ )(K ) > S(c)S(c")(K")

(c) Pour chaque objet K, on a les diagrammes commutatifs suivants:

sk(cc’c”)

> S(cc'c")(K)

sk(c'c”) S(c,c'c")(K)
sk(c”) ©
SS ’ K C
S( ’n (K) (cc )X > S(C)S(CIC”)(K)

Q(\c")(l()“’/ S(c¢’,¢")(K) / S(0)S(c,¢")(K)
35(c")S(K)

S(c")S(E")(K) > 5(c)S(c)S(c")(K)

k(cc’c”)

—» S(cc'c")(K)

\S‘K(C ") S(cc’,e")(K)
SS(CM)(K)(CC )

S(c"(K) —+ S(cc")S(c")(K)

\:S(c")(K)“” / S(c,c)S(e")(K)
55(c")S(e"K) @

S(c")S(E")(K) » 5(0)S(c")S(c")(K)
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De par la cocartésianité de sg(cc’c”), on a alors
S(c, ) S(c"XK)S(cc, ") K) = S(c)S(c', ") K)S(c, ¢ c")K),
d’ou le résultat annonce.

DEFINITION 2.4. Un tel “pseudofoncteur” S de C dans €« est appelé 2-cocycle
associé a lextension E par la section s.

PROPOSITION 2.5. Soient S et S’ des 2-cocycles associés a I'extension E par des
sections s et s’ respectivement. Pour chaque c € C, on a une équivalence naturelle
T(c): S(c) = S'(c) telle que pour chaque (c,c')eC,, on a

S§'(¢, o T(cc’) = [T(e)x T(c")]oS(c, ¢'): S(ec’) = §'(c)S'(¢),

ce qui se traduit par la commutativité du 2-diagramme suivant.

S(cc’)

CI

La composition * des transformations naturelles est la composition “horizontale”
définie dans [13].

PrREUVE. (a) Pour chaque K, le morphisme T(c)K) est 'unique tel que
T(c)(K)sg(c) = sk(c). L’unique morphisme ¢ tel que tsi(c) = sk(c) est évidemment
inverse de T(c)(K). Pour k: K — K’, on a aussi T(c)(K")S(c)(k) = S'(c)(k) T(c)(K)
de par la cocartésianité de sg(c).
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sk(c)
K . * -+ S(c)(K)
. DA
M\ . Q\?},Qé" ,,«"
k S(c')(K) I_‘_'_’_.-"'/t S(c)(K)
(©) !
K’ Sg S'(e)k) . S(O)K")
. N L
%'@ ,‘\o\&

S"(e)K') #
(b) Pour chaque objet K, on a les diagrammes commutatifs suivants:

sk(cc’)

» S(cc’')K)

Sktecy

T(cc")K)
£
& S(ec")(K)
/ S'(c,c")K)
S'S;( ')(K (C)
se)K) — DT L sosier)
sk (cc)

» S(cc')(K)

S(c,c')K)
s’ "WK (c)
“senk) —EE) > S(0)S(c")(K)
/ T(c')(K) SE@)T(c")(K)
S'SI "YK (©)
S(©)K) OO s©sK)

\S'(c’)iK)(c) / T(c")S'(c)(K)

S'(c)S’(c")(K)
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De par la cocartésianité de sg(cc’), on a alors
S'(e, YK) T(ec')(K) = T(c)S'()(K)S(e) T(c')K) S(e, ¢)K)
d’ou le résultat annoncé, compte tenu de la définition de
[T(c)* T(cH)(K) = T(c')S'(c)(K)S() T(c'NK).

Comme pour les extensions de catégories en 1.11., on peut parler de mor-
phisme d’extensions larges dont on ne considére ici que le cas particulier suivant.

DEHNITION 2.6. Deux extensions larges de catégories, E: K — H - C

et E:K —— H' £ C,sont dites congrues sil existe un foncteur inversible u:
H — H’ tel que

ui=ietpu=p.

On notera Ext (C, K) 'ensemble des classes de congruence d’extensions de C par
K.

PROPOSITION 2.7. Soient E et E’ deux extensions de C par K.

(a) SiE et E'sont congrues et si S est un 2-cocycle associé a E, alors S est aussi un
2-cocycle associé a E'.

(b) Réciproquement, si un méme 2-cocycle S est associé a E et E', alors E et E’
sont congrues.

Preuve. (a) Soit s la section qui associe S a E. En posant sy(c) = p(s,- 1) (c)),
on définit une section s’ qui associe S 4 E'. Notonsque H = u~ '(H)car HeH, =
Ko.

(b) Soient s et s’ les sections qui associent S 4 E et E' respectivement. Un
morphisme h: K — H de H s’écrit de maniére unique sous la forme ksx(p(h)) avec
keK; < H,. En posant u(h) = ksi(p(h)), on définit un foncteur u: H — H’ qui fait
de E et E’ des extensions congrues.

3. Cohomologie.
Soient Cet K = CI_l K¢ deux catégories.
€Co

DErFINITION 3.1. Un 2-cocycle de C vers K est 1a donnée S:

(a) pour chaque morphisme c: C — C’ de C, d’un foncteur S(c): K¢ — K¢ quiest
le foncteur identique quand c est une identité,

(b) pour chaque couple composable (¢, ¢') € C,, d’une transformation naturelle
S(c, ¢): S(cc’) = S(c)S(c’) qui est la transformation identique quand c ou ¢’ est une
identité, de sorte que pour chaque triple composable (c,c,c")e C5, on a

S(c, c')S(c"), Ticc', ") = S(c)S(c’, ") S(c, c'c”): S(cc'c”) = S(c)S(c)S(c").
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S(cc’'c”)

DEFINITION 3.2. Des 2-cocycles S et S’ de C vers K sont dits cohomologues si
pour chaque morphisme ce C; on a une équivalence naturelle T(c): S(c) = S'(c)
de sorte que pour chaque couple composable (c,c’)eC, ona

S(c,)s T(cc') = [T(0), T(c)1sS(c, ¢): S(cc’) = S'(c)S'(c').

S(cc’)

C" —» C

C’
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On retrouve le méme type de relations dans la 2-cohomologie non-abélienne
etudiée par les gerbes, comme en [6], ou par les bitorseurs, comme en [4].
Comme on y travaille dans ses groupoides, il se peut que I'on ait alors des
2-fléches allant dans le sens inverse.

DEFINITION 3.3. L’ensemble des classes de cohomologie de 2-cocycles de
C vers K est noté H*(C, K) et est appelé ensemble de cohomologie de dimension 2 de
C vers K.

THEOREME 3.4. Lapplication qui a chaque extension de C par K associe la classe
de cohomologie d’un de ses 2-cocycles associés définit une bijection

w: Ext (C,K) - H%(C,K).

PREUVE. (a) La proposition 2.3. montre comment a une extension E on associe
un 2-cocycle et la proposition 2.5. que la classe d’icelui dans H?(C, K) ne dépend
que de E. La proposition 2.7. nous dit qu’a deux extensions congrues on associe
un méme élément de H(C, K). L’application w est donc bien définie.

(b) Siadeux extensions E et E' on associe des 2-cocycles S et §' cohomologues,
comme dans la démonstration de la proposition 2.7. (b), on construit une
congruence entre E et E’. L’application w est donc injective.

(c) Ilreste a montrer la surjectivité de w. Soit S un 2-cocycle de C vers K, nous
allons construire une extension a la quelle S est associée. Notre modele est
’écriture unique des morphismes de H vue dans la démonstration de la proposi-
tion 2.7. (b). Soit H la catégorie dont les morphismes sont les triples (c, K, k) tels
que

ceCy, Ke(Kye)os ke (Kpe)y avee alk) = S(c)(K);
la source de (c, K, k) est K, son but est (k); la composition dans H est définie par

(¢, K", k'), K, k) = (c'c, K, k'S(c")k)S(c', c)(K)).
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S(c'c)(K)
lS(C’,C)(K)
K e lox ) S(c)(K) S(c)S(c)(K)
lk ls(c’)(k)
e Ko e S(c')(K")
(C:k:\"\ \\\if”) l kl
K)o e
(C’K’k) \\.“‘N--_:: B(kl)
C ¢ > Cr C' - C”

La définition d’un 2-cocycle permet de vérifier que cette composition est bien
associative et donc que H est bien une catégorie. Les foncteurs i: K — H: k-
(1¢, a(k), k) pour k e(K¢); et p: H— C: (¢, K, k) c font de K — H —£— C une
extension large a laquelle le 2-cocycle S est associé par la section définie par

sk(€) = (¢, K, 1s¢yx))-

4. Coefficients.
Précisons cette notion qui, souvent, définit la cohomologie.

DEFINITION 4.1. Un coefficient M: C + €« ¢ sur une catégorie C est la donnée
d’application Cy = ¥afy: C+—> M(C)et C(C,C') » €at (M(C), M(C")): c— M(c)
de sorte que M(c) est une identité quand c en est une.

Un coefficient C+ €« £ n’est pas en général un foncteur C — €.2¢ ni méme un
pseudofoncteur. Dans le cas ou M est un foncteur a valeurs dans /4, c’est un

C-module au sens de [11], le cas particulier des modules sur un groupoide est
considéré dans [16].

DEFINITION 4.2. Une extension de C par le coefficient M: C + € af est une
extension de categories

E UMmeo “oH2scC
CeCo

telle que x € M(C) si et seulement si pi(x) = C et il existe une section s telle que le
2-cocycle S associé a E par s vérifie

S(c) = M(c) VceC,.

On dit alors que S est compatible 3 M.
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Sil’on reprend la terminologie de 1.5., étendue aux extensions larges a ’aide de
1.8, on peut dire qu'alors les “opérations” de C (par M) et de H sur K sont
compatibles.

DEFINITION 4.3. Suivant 2.5., on peut parler de classes de congruence d’exten-
sions de C par M. On notera Ext (C, M) I'’ensemble de ces classes.

DEFINITION 4.4. Un 2-cocycle de C de coefficient M est un 2-cocycle de C vers
C]_l M(C) vérifiant
€Lo

S(c) = M(c) VceC,.

DErFINITION 4.5. L’ensemble des classes de cohomologie de 2-cocycles de
coefficient M est noté H2(C, M) et est appelé ensemble de cohomologie de
dimension 2 de coefficient M.

THEOREME 4.6. Lapplication qui @ chaque extension de C par le coefficient
M associe la classe de cohomologie d’un de ses 2-cocycles compatibles @ M définit
une bijection

w: Ext(C, M) - H?(C, M).
PRrREUVE. Ceci découle directement de la démonstration du théoréme 3.4.

ExeMPLES 4.8. On peut voir, a la lecture de [17] par exemple, que ceci, avec
éventuellement des coefficients contravariants (on remplace alors dans ce qui
précéde la catégorie C par la catégorie opposée C°F), recouvre nombre de
cohomologies que 'on peut trouver dans la littérature. En particulier, on re-
trouve la cohomologie a coefficients dans un module de [11].

Notre notion de coeflicient peut encore étre €largie. Montrons comment dans
une définition que nous étudierons dans la suite.

Soit cad une catégorie dont les objets sont les petites catégories munie d’un
foncteur H: ¥a¢ — 6cat identique sur les objets et soit M: C - %cas un
foncteur.

DEFINITION 4.9. Un coefficient M: C + €.a¢ est dit compatible avec le foncteur -
M si pour chaque C e Cyona M(C) = M(C) et si les diagrammes du type suivant
sont tous commutatifs.

CC,C) —M ., Geat(M(C), M(C)
M H

Cat(M(C), M(C')

Une extension de C par M est une extension de C par un coefficient M compatible
avec M.
Il est utile de revenir maintenant au cas particulier des extensions de catégories
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initiales, celles de 1.1., car elles nous permettent de donner une expression
intéressante de ce que nous avons décrit. On verra ainsi concrétement que nous
avons obtenu une généralisation de ce que I’on rencontre souvent (par exemple
dans [12], [11] ou [17]) en cohomologie.

5. Le cas des coefficients en groupes.

La catégories %+ étant une sous-catégorie de € ¢, soit M: C -» % un coefficient
en groupes sur la catégorie C.

REMARQUES 5.1. (1) 11 est clair que les extensions de C par M sont des
extensions de catégories au sens de 1.1.

(2) Dans le cas ou M est un foncteur a valeurs dans la catégorie des groupes
abéliens «/4, on retrouve exactement les extensions de C par le C-module
M définies en [11].

Quand il n’y aura pas de risque de confusion, on notera ¢ x = M(c)(x) pour
ceC, et xe M(a(c)).

THEOREME 5.2. Lensemble des 2-cocycles de C de coefficient M est en bijection
avec l'ensemble des applications

¥:.C, - CL! M(©)

telles que
(a) Y(c,c')e M(B(c)) est une identité si ¢ ou ¢’ en est une,
(b) c,c)c'~x) = Yle,c)ee x)Ple, ')~ Vxe M(al(c)),
© (e ¥(c, " Nle, c'c”) = Ylc, c)lec', c") Ve, ¢, c")eCs.

PrREUVE. Les 2-cocycles S de C de coefficient M sont tous tels que S(c) = M(c)
par définition. Les groupes M(C) ayant un seul objet, la donnée d’une transform-
ation naturelle S(c, ¢’) de M(cc’) vers M(c) M(c’) est exactement la donnée d’un
morphisme de M(f(c)), i.e. d’un élément y(c, c') de ce groupe, qui vérifie (b). On
a bien siir la propriété (a) quand S est un 2-cocycle. La relation (c) n’est autre que
la traduction de la relation de cocycle de 3.1.

THEOREME 5.3. Des 2-cocycles S et S’ de C de coefficient M sont cohomologues
si, et seulement si, les applications correspondantes s et ' sont telles qu’il existe une
application

C, > C]_l M(C)

telle que
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(a) ©(c)e M(B(c)),
(b) ¢ x = t(c)(c-x)t(c)~! Vxe M(x(c)),
© ¥'(c,c) = t(c)c TN, c)tlec) ™t Y(c,c)eC,.

PREUVE. On a encore ici S(c) = §’'(c) = M(c). La donnée d’une transformation
naturelle T(c): M(c) - M(c) est exactement la donnée d’un élément 7(c) du groupe
M(B(c)) tel que

M(c)(x) = 1(c) M(c)(x)t(c)~! VxeM(a(c)).

Larelation de cohomologie entre S et S’ de 3.2. se traduit alors par la relation (c).

Considérons maintenant une catégorie ¥¢+ dont les objets sont les groupes,
munie d’un foncteur H: %2 — %42 identique sur les objets, et un foncteur M:
C - €ge.

EXeEMPLE 5.4. Dans [17], on considére la catégorie €g2» = # g+ dont les
morphismes sont définis par

H 44(G,G') = [K(G, 1); K(G, 1)]

les classes d’homotopie libre d’applications entre espaces d’Eilenberg-MacLane
définis par les groupes G et G'. Le foncteur H est alors le foncteur naturel de 42
vers K gr.

DEFINITION 5.5. La cohomologie H*(C, M) est définie comme suit. On con-
sidére tous les coefficients M compatibles avec M et les applications de 5.2.
correspondantes. La relation d’équivalence sur ces derniéres est alors définie par
les applications

7:Cy— CEIJCOM(C)

telles que
(@) t(c)e M(B()),
(®) cox = t(c)(c x)T(c) ™ VxeM(x(c)),
© ¥'(c,c) = tle)c e NYle, ¢)elec’) ™ Ve, ¢')eCy,
quand M et M’ sont deux coefficients compatibles avec M et ou I'on note:

c-x = M(c)(x) et c,x = M'(c)(x).

THEOREME 5.6. La relation précédente détermine une congruence entre exten-
sions de C par M et on a une interprétation de H*(C, M) en termes d’extensions de
catégories.

PrEUVE. La définition 5.5. étend la relation de cohomologie aux 2-cocycles
associés a toutes les extensions de C par M avec M compatible avec M. On
reprend, mutatis mutandis, les démonstrations des théorémes 3.4. et 4.6.
adaptées aux extensions a coefficients en groupes par les théorémes 5.2 et 5.3.



COHOMOLOGIES ET EXTENSIONS DE CATEGORIES 207

ExeMpLE 5.7. Dans l'exemple 5.4., avec des coefficients contravariants, on
retrouve la cohomologie de dimension 2 de [17] et donc une interpretation de
celle-ci en termes d’extensions, ou les coefficients M compatibles avec M inter-
viennent dans la recherche de I'obstruction a un probléme posé par les limites
homotopiques.
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ON EMBEDDINGS OF PROPER SMOOTH
G-MANIFOLDS

MARJA KANKAANRINTA

By a linear Lie group we mean a Lie group isomorphic to a closed subgroup of
a general linear group. A euclidean space R" equipped with the linear action of
G via some representation ¢: G — Gl(n, R) is denoted by R"(g) and called a linear
G-space. If M is a smooth, i.e.,, a C*-differentiable manifold and the action
G x M - M is smooth, we call M a smooth G-manifold. In case the mapping
GxM->M x M, (g,x)—(gx, x), is proper, i.c., if the inverse image of every
compact set is compact, we call M a proper smooth G-manifold. This definition
of properness is equivalent to the definition used in [Pa3]. The purpose of this
paper is to prove the following result:

THEOREM. Let G be alinear Lie group and M a proper smooth G-manifold having
only finitely many orbit types. Then there exists a G-equivariant, closed smooth
embedding of M into some linear G-space.

Suppose for a moment G is an arbitrary Lie group. Let G act on itself via
multiplication on the left. This action makes G a proper smooth G-manifold
having only one orbit type. Assume there exists a G-equivariant topological
embedding f of the G-manifold G into a linear G-space R"(g). Then
f(g) = 0(g)f(e) for every ge G where e is the identity element of G. Since f is
injective it follows that also g: G — Gl(n, R) is injective. It now follows from
Proposition 5.1.2 in [Pr] that ¢ is a smooth immersion. Since the mappings
0(G) = R™(g), o(g)— 0(g) f(e), and f(G) — G, f(g)— g, are continuous, it follows
that their composition ¢(G) - G, g(g)+ ¢, is continuous. Theorem II 2.10 in
[He] finally implies that ¢(G) is closed in Gl(n, R),i.e., that G is a linear Lie group.
Thus we see that in the previous theorem it is necessary to assume G is a linear Lie
group.

The smooth embedding is constructed essentially in the same way as the
topological embedding in [Pa3] and the subanalytic embedding in [Ka]. It will

Received March 17, 1993.
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be used in a paper to appear where we will prove the real analytic version of the
theorem by using G-equivariant real analytic approximations.

If x e M we denote its isotropy subgroup by G,. We note that if G acts properly
on M, then G, is compact for every xe M. For a subgroup H of G we denote
(H) = {gHg '|ge G} and My, = {xe M|(G,) = (H)}. The set (G,) is called the
orbit type of x. Let S be a G,-invariant smooth submanifold of M containing x. If
GS is an open subset of M and there exists a G-equivariant smooth mapping
f:GS = G/G, such that S = f ~!(eG,), then we call S a slice at x and GS a tube at
x. It has been proven in [ Pa3] that if M is a proper smooth G-manifold, then there
exists a slice at every xe M.

Suppose S is a slice at x. Let go€ G, U be an open neighbourhood of g,G, in
G/G, and o: U — G be a local cross section. It follows from Proposition 2.1.2 in
[Pa3] that the mapping F: U x S — V, (u, s)— o(u)s, is a homeomorphism onto
an open neighbourhood V of g, S. In fact, F is a diffeomorphism with the inverse
mapping F~1: V> U x §, gs—(9G,, 6(9G,) ™ gs).

1. LEMMA. Assume G isa Lie group, M a smooth G-manifold, x e M such that G,
is compact and S a slice at x. Let A and B be disjoint, closed G-invariant subsets of
GS. Then there exists a G-invariant smooth mapping f: GS — [0,1] such that
flA=0and f|B=1.

Proor. We first remark that A n Sand B n S are disjoint, closed G -invariant
subsets of S. Thus there is a smooth mapping f;: S — R such that fi(y) = 0 when
yeAn Sand fi(y) = 1 when ye Bn S. By Theorem 0.3.3 in [Br] the mapping
f.:S-R, yn—-»fofx(gy)dg, is smooth. Obviously, f,(y) = 0 when ye A n S and
f>(») = 1 when ye BN S. Let f: GS — R, gs+ f5(s). Let goe G and U, ¥, ¢ and
F be as in the previous paragraph. Let p: U x S — S be the projection. Then
fIV = fyopoF~!is smooth as composite of smooth mappings. Since g, was
arbitrary, it follows that f is smooth. Clearly, f is G-invariant.

2. PROPOSITION. Let G be a Lie group, M a proper smooth G-manifold and
A and B disjoint, closed G-invariant subsets of M. Then there exists a G-invariant
smooth mapping f: M — [0,1] such that f|A=0and f|B = 1.

PRrOOF. Let {GS;}, be a cover of M by tubes. Since M/G is paracompact by
Theorem 4.3.4 in [Pa3], {GS;}{2, has locally finite refinements {W;}2; and
{V:};2 by open G-invariant sets W; and V,, respectively, such that V. « W, and
W, < GS;for every i. Then B n V; and W\ 4 are G-invariant subsets of GS;, W\ A
isopen, B n ¥; = W;\ 4 and the closure of W,\ 4 is a subset of GS; for every i. Thus,
by Lemma 1 there exists for every i a G-invariant smooth mapping
f/l: GS; - [0,1] such that f/|(GS;\(W;\A)) = 0 and f/|(B ¥;) = 1. We extend
fi to fi: M — [0, 1] by setting fi(y) = 0 when ye M\GS; and fi(y) = f/(y) when
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y€GS;. Then f; is G-invariant, and since W, = GS;, it follows that f; is smooth.
Since {supp f;};2, is locally finite, it follows that fp: M — R, x+— Y 2, fi(x), is
smooth. Clearly, fgis G-invariant and non-negative, fz| 4 = 0 and f(x) > O for
every xeB.

Let A" and B’ be closed G-invariant neighbourhoods of 4 and B, respectively,
such that A'UB = M, Bn A’ =@ and A n B’ = §. Then there exist non-nega-
tive G-invariant smooth mappings fz, f4: M — R such that fz|A =0,
f8.(x) >0 for every xeB', f,|B=0 and f,(x) >0 for every xe A". Since
fa(x) + fo(x) # O for every x e M, the mapping

e (x)
fa®) + fo(x)’

is well-defined. Since f is smooth and G-invariant, f|4 =0 and f|B = 1, the
proposition follows.

fiM—-[0,1], X

3. PROPOSITION. Assume G is a linear Lie group, M a proper smooth G-manifold
and xe M. Then there exists a slice S at x such that the tube GS admits
a G-equivariant smooth embedding in a linear G-space.

ProoF. Let S, be a relatively compact slice at x. Then, by Proposition IV 1.2
in [Br], S, only has finitely many orbit types when regarded as a G.-space by
restriction. It has been proven in [Mo] and in [Pal] that there exists a represen-
tation go: G, — Gl(n, R) for some ne N and a G,-equivariant smooth embedding
Jjo: So = R™¢go)- According to Theorem 3.1 in [Pa3], there exists a representation
0: G - Gl(p, R) for some p = n and a linear G-space RP(g) which, considered as
a linear G,-space by restriction, contains R"(g,) as an invariant linear subspace.
Therefore we can regard j, as an embedding in R?(g).

Since G is a linear Lie group, Theorem 3.2 in [Ka] implies that there exists
a representation y: G — Gl(q, R) for some ge N and a point ve R¥(y) such that
G, = G, and the mapping G/G, — RYy), gG,. > Y (g)v, is a closed smooth, in fact
a real analytic, embedding. We define

j:GSo > R e @ ),  gs (2(9)jo(s), Y(9)v).

Since j, is G,-equivariant and injective, it immediately follows that j is
G-equivariant and injective.

Let goeG and o: U — G be a local cross section at goG,. The mapping
Fy: U x Sg = V,, (u,5)— a(u)s, is a diffeomorphism onto an open neighbour-
hood V¥, of goSo. Also h: U x Sg — U X j(So), (u,s)— (u,j(s)), is a diffeomor-
phism. Since easily j(S,) is a topological slice at j(x) in the G-space j(GS,) the
mapping F: U x j(So) = V, (u, j(s)) — a(u)j(s), is a homeomorphism onto an open
neighbourhood V of j(goS,) in j(GS,). Clearly F is smooth. Then j|V, =
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FohoFy 'isasmooth homeomorphism onto V. Since g, was chosen arbitrarily it
follows that j is smooth and j~: j(GS,) = GS,, j(gs)— gs, is continuous.

The restriction j| S, is a smooth embedding. Since the mapping Gx — G/G,,
gx+—gG,, is a smooth diffeomorphism (see Proposition 1.1.5 in [Pa3] and
Theorem VI 1.2 in [Br]) and the mapping G/G, — R?* (o @ ¥), gG .+ (0(9)jo(%),
Y(g)v), is a smooth embedding it follows that the restriction j| Gx is a smooth
embedding. Let y = (y1,y,)e TGSy = T, S, @ T,Gx and let dj.(y) =0. Let
j':GSo > RP(g), gs—0(9)jo(s)y and j% GSo—RUY), gs—y(gv. Then
djit(yy) + dji(y;) = 0 and dj%(y,) + dj*(y,) = 0. Since j?|S, is a constant map-
ping, it follows that dj2(y,) = 0. Thus also dj2(y,) = 0. Since dj?| TS, @ T,Gx is
injective, it follows that y, = 0. Since dj! | T,.S, is injective, it follows that also
y1 = 0. Thus y = 0, which implies that dj, is injective. Therefore x has an open
neighbourhood W in GS, such that j| W is an immersion. Now, S = GW N S, is
aslice at x and GS = GW. Obviously, j| GS: GS —» R?* %o @ ) is a G-equivariant
smooth embedding.

We next show that for each orbit type (H;), i = 1,...,m, in M there exists
a representation g;: G — Gl(g;, R) such that every xe My, has a tube which
admits a G-equivariant smooth embedding in R%(g;). The representations g; are
constructed in Lemma 4. In Lemma 7 they are used in showing that there exists
arepresentation ¢: G — Gl(g, R) for some g € N, such that M can be covered with
finitely many open sets each of which admits a G-equivariant smooth embedding
in R%(g). Finally, the embedding of M is constructed by using Lemma 7 and
Proposition 2. Lemma 5 and Corollary 6 are needed to make the embedding of
M closed.

4. LEMMA. Suppose G is a linear Lie group and M a proper smooth G-manifold
with only finitely many orbit types. Suppose H is a compact subgroup of G. Then
there exists a representation v: G — Gl(n, R) of G for some n e N with the following
property: If xe My, there is a slice S, at x such that the tube GS, has
a G-equivariant smooth embedding in R"(v).

ProOOF. Proposition 4.4.2 in [Pa3] yields that M only has finitely many orbit
types when regarded as an H-space by restriction. Let ¢: H — O(m) be a represen-
tation for some me N such that there exists an H-equivariant smooth embedding
f: M — R™(¢). The existence of f follows from [Mo] and [Pal]. As in Proposi-
tion 3 we can consider f as an embedding in some linear G-space R?(g).

Let xe M be such that G, = H and let S, be a relatively compact slice at x. Let
¥: G- Gl(g,R) and veR%y), where geN, be such that the mapping
G/H — Rys), gH — Y (g)v, is a closed smooth embedding. Proposition 3 implies
that there exists a slice S, S, at x such that j.:GS,— RP"Yo @ y),
gs(e(g)f (s), ¥(g)v), is a G-equivariant smooth embedding. Forevery ge G, ¢S,
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is a slice at gx and G(gS,) = GS,. Thus j, embeds also G(gS,) and the lemma
follows.

5. LEMMA. Let G be a linear Lie group, H a compact subgroup of G and
M a proper smooth G-manifold. Then there exists a representation . G — Gl(k, R)
for some ke N with the following property: If xe My,, S is a slice at x and K is
a compact subset of S, then there exists a G-equivariant smooth mapping
h,: GS, — R¥y) whose restriction to GK is proper.

Proor. Let xe M be such that G, = H. The mapping f,: GS, — G/H,
gs+— gH,is smooth. Let f,| be the restriction of f, to GK, and ¢, the restriction of
the group action mapping to G x K,. Since the projection p,: G x K, — G and
the natural projection n: G — G/H are proper mappings, it follows that
file ¢, = mop, is proper. Since ¢.(G x K,) = GK, it follows that f,| is proper.
Let f: G/H — R¥(y) be a G-equivariant, closed smooth embedding in some linear
G-space R¥y). Then h, = f o f.: GS, — R¥y) is a G-equivariant smooth map-
ping whose restriction to GK, is proper.

LetgeG,S,, beaslice at gx and K, be a compact subset of S,,. Theng~'S,, is
a slice at x and g~ 'K, is a compact subset of g~'S,,. Since GS,, = G(g~'S,,)
and GK,, = G(g~'K,,) we can choose h,, = h,.

6. COROLLARY. Assume G is a linear Lie group and M a proper smooth
G-manifold having only finitely many orbit types. Let H be a compact subgroup of G.
Then there exists a representation g: G — Gl(m, R) for some me N with the follow-
ing property: If x e My, then there is a slice S, at x such that if K, is a compact
subset of S, the tube GS, has a G-equivariant smooth embedding f, in R™(g) where
the restriction f, | GK . is proper.

Proor. Let v: G - Gl(n, R) and y: G > Gl(k, R) be as in Lemmas 4 and 5,
respectively. Let xe My, S, be a slice at x as in Lemma 4 and K, be a compact
subset of S,. Then, obviously, (h,, j.): GS, = R**"(yy @ v) is the desired mapping.

7. LEMMA. Let G be a linear Lie group and M a proper smooth G-manifold
having only finitely many orbit types. Then M has covers {O;}4 -, and {O,}; -, for
some ne N, satisfying the following three conditions:

1) Every O; and O, is open and G-invariant.

2) O, < Oy for every k.

3) There exists a representation g: G — Gl(q, R) for some geN such that for
every k there is a G-equivariant smooth embedding j,: O, — R%@) whose restriction
to O is proper.

ProOF. Let (H,),...,(H,) be the orbit types of M. Let {GS,,}, be a cover of
M by such tubes that every S, has the same properties as the slice in Corollary 6.
The orbit space M/G is a paracompact space with finite covering dimension.
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Thus, by Theorem 1.8.2in [Pa2], there is an open cover {Oy; | fe B,k = 1,...,n}
refining {GS,,}{2, such that each Oy is G-invariant and Oy, N Oy = Bif B + .
Here we can assume that each B, « Nand that {Oy;| Be B,k = 1,...,n}islocally
finite and has an open G-invariant refinement {Oy;| € B,, k = 1,...,n}, where
Oyp = Oy, for every k and B.

We next choose for every k and B a tube GS; such that O;; = GS; and denote
this tube by GSy,;. We divide the family {GS;z|f€ By, k = 1,...,n} into m sub-
families {GSy;}, . . ., {GSyy} in such a way that exactly those tubes GS,, for which
(Gs,,) = (H,) belong to the family {GS},4}. By Corollary 6, there exists for each
le{l,...,m} a representation g;: G — Gl(n,, R) for some n,e N, such that every
tube GS,, admits a G-equivariant smooth embedding ji; in R™(g,). Since
O N Sip is compact and Oy5 = G(Oyp N Si) We can assume that the restriction
Jig | Oxg is proper.

The representation ¢ = g; @ - @ g,, makes R?() = R"* """ *™(3) a linear
G-space. Then jiz: GSiy = RP(@), y—(0,...,0,ji4(»),0,...,0), is a G-equivariant
smooth embedding whose restriction to Oy is proper. Finally, let

0:G—>Gl(p + 1,R), gH("g’) (1))
Since Oy Oy =@ when B+ f, it follows that ji:Jses, Oks — R (0),
¥y (jig(y), B) when ye Oy, is a G-equivariant smooth embedding. Since only
finitely many values of  can occur in any compact subset of R it follows that the
restriction ji | Jcp, Os is proper. Thus we can choose O; = | Jpep, Oip and
Oc = Upes, Ous-

PROOF OF THE THEOREM. Let {O;};_, and {O,};-, be the covers of M as in
Lemma 7. Let {W,};_, be a refinement of {O,}-, by open G-invariant sets W,
where W, = O, for every k. According to Proposition 2 there exists for every
k a G-invariant smooth mapping h,: M — [0, 1], which is identically one on W,
and zero outside O,. Let ¢o: G — Gl(g, R) be a representation such that for every
k there is a G-equivariant smooth embedding ji: 0; — R%g) whose restriction to
O, is proper. Next, for every k let j¥: M — R%g) be a mapping defined by
JE(x) = h(x) ji(x) if x € Oy and j¥(x) = 0 if x e M\ O,. Then each j§ is smooth and
G-equivariant. Let R" be a euclidean space where G acts trivially. Then the
mapping

JM->R"®RY()® @R ), x> (hy(x)s..., ha(x), jT(x), .. . J5 (%)),
is G-equivariant and smooth. It is an immersion since each j¥ is immersive in W,.
Let xe M and let (x;)2 ; be a sequence in M such that j(x;) — j(x). We know

that xe W, for some k. Thus h(x) = 1. Since h(x;) = h(x), it follows that
h(x;) > O for sufficiently large d. Thus x,;€ O, for sufficiently large d. Since
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h(xa)ji(xq) = h(x)ji(x), it now follows that ji(x,) — ji(x). Since the restriction
Jji| Oy is an embedding, it follows that x, — x. Therefore j is injective and j ! is
continuous.

Since all the restrictions jif | W, are proper also the restrictions j | W are proper
for every k. Since { W, }i -, is a closed cover of M it follows that j is proper. This
completes the proof.
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HOLOMORPHIC FUNCTIONS AND THE
(BB)-PROPERTY

SEAN DINEEN

§ 1. Introduction.

A holomorphic function on a balanced domain in a locally convex space may be
regarded as a sequence of polynomials which satisfies certain growth conditions.
Locally convex topologies on the space of all holomorphic functions are a quan-
tification of these conditions on aggregates of functions. This quantification is
frequently obtained by combining, in an appropriate fashion, estimates on spaces
of homogeneous polynomials. In this introduction we give an intuitive view of
the process and in doing so, reformulate a number of known results.

To be more specific we require some definitions. E will denote a locally convex
space over the complex numbers C, 2("E) is the space of continuous n-homogene-
ous polynomials on E and s (U) will denote the space of C-valued holomorphic
functions on the open subset U of E. The three most frequently studied topologies
ininfinite dimensional holomorphy are 7,, the compact open topology, 7, and ;.
A seminorm p on #(U) s said to be 7, continuous if there exists a compact subset
K of U such that for every V open, K = V < U, there exists ¢(V) > 0 such that

(L.1) p(f) = cV)iflly forall feA#(U).

The 1, topology on #(U) is the locally convex topology generated by the 7,
continuous semi-norms. A semi-norm p on #(U)is said to be 7; continuous if for
every increasing countable open cover of U,¥" = (V,),, there exists ¢ > 0 and
a positive integer n, such that

p(f)=cllfly, forall fin #(U)

We always have 1o, < 1, £ 75 and conditions for equality have been investigated
by various authors [1, 2, 3, 12, 13, 16]. An important special case is obtained by
taking U balanced since this leads, via the Taylor series expansion, to a Schauder
decomposition of #(U). As #("E), n arbitrary, is a complemented subspace of

Received December 8, 1992.
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#(U) for any of the above topologies we see that any equality of topologies on
H#(U) will lead to the same equality on each space of homogeneous polynomials.
When we restrict to 2("E) simplifications and refinements are possible. On the
one hand 7, = t; on Z("E) for all n. On the other hand #("E) may be identified

with the dual of ( @ E) —the completion of the space of symmetric n-tensors on
n,n,s .

E endowed with the projective n topology. This duality can be used to describe 7,
and t,, as well as two other natural topologies in 2("E) (we use the notation

&) xifor x;®...® x; (n times) and ) x; to denote x; ® x,... ® X,);
7, — the topology of uniform converéencggn the bounded subsets of E,
B - the strong topology inherited from (¥) E.

n,ms

The duality between @ E and 2("E) is given by <P, ® x> = P(x). The 7,

7, and f topologies on #("E), E metriz&l)le, are then identified as uniform
convergence on the following subsets of ® E,;

(@ )r(@a).0r( @),

respectively, where K is compact in E, B is bounded in E, (U,,),, denotes a funda-
mental sequence of convex balanced neighbourhoods of zero in E and (r,,),, is
a sequence of positive numbers, I is the convex balanced hull and I the closed
convex balanced hull.

For each positive integer m let 2("E),, denote the set of all P € Z("E) such that
[IP|ly,, < co and we endow this space with the topology of uniform convergence
on U,,. #("E),, is a Banach space and Z("E) = U P("E),,. With the above duality

#("E),, has the topology of uniform convergence on I’ ( ® Um> and
(Z(E),1,) = lim Z("E),,.

From the above description it is clear that 71, < 7, £ 8 < 1, on Z("E) for all n.

By the Hahn-Banach theorem we have 14 = 7, on 2("E) for some (and hence
for all n) if and only if E is semi-Montel (i.e. the closed bounded subsets of E are
compact).

We have 7, = f on 2("E) if and only if the sets I" ( ® B) , B bounded in E,

form a fundamental system of bounded subsets of ® E. This is the n-fold

n,r,s
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symmetric version of Grothendieck’s “Probléme des topologies” which we now
state.

For locally convex spaces E and F is every bounded subset of E @ F contained

in the closed absolutely convex hull of a set of the form B, ® B, where B, is
a bounded subset of E and B, is a bounded subset of F?

If this is the case then the pair {E, F} is said to have the (BB)-property. We shall
say that the locally convex space E has the (BB),-property if each bounded subset

of @ E is contained in I ( ® B) for some bounded subset B of E. If E has

(BB), for all n we say that E has (BB),,. With our new notation we have thatt, =
on 2("E) if and only if E has the (BB),-property. If { E, E} has the (BB)-property
then E has the (BB),-property and 1, = f on #(2E). The history of Grothen-
dieck’s problem can be divided into two distinct phases: the positive solutions of
Grothendieck ([20]), circa 1955, and the recent developments, all of which
follows from Taskinen’s fundamental 1986 paper [20]. It is no coincidence that
the Fréchet spaces for which the most interesting results have been obtained in
infinite dimensional holomorphy — Banach spaces, nuclear and Schwartz spaces
—are included in the classes for which Grothendieck obtained positive solutions
to the “probléme des topologies” and that the class of spaces which often
appeared as the critical case in infinite dimensional holomorphy — the
Fréchet-Montel spaces — should yield mixed resuits (i.e. both positive results and
counterexamples) to the “probléme des topologies”. It is our belief that the
(BB),-property will frequently appear as an essential hypothesis in topological
problems of infinite dimensional holomorphy. Taskinen and his followers have
shown by example and counterexample, that the collection of pairs of spaces with
the (BB)-property will probably not coincide with any of the usual linear collec-
tions but will contain large subcollections of interesting spaces. We shall consider
the (BB)-property more closely in the next section and confine ourselves here to
a general presentation.

If Eis a Fréchet-Montel space and E has the (BB),-property then each bounded

subset of @ E is contained in a subset of the form I < ® K> . By our previous

n,m,s n,s

remarks this implies that 7, = # on 2("E) and, moreover, since I" ( &X K) is

a compact subset of @ E it follows that @ E is itself Fréchet-Montel. Hence

n,m,s n,n,s

(2("E), 1) is reflexive and 14 = 1, on Z("E). To summarize we have the following
result.
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PROPOSITION 1. If E is a Fréchet-Montel space then E has the (BB),-property if
and only if 1y = 1, on P("E).

Taskinen [22] constructed a Fréchet-Montel space which did not have the
(BB)-property and a suitable modification by Ansemil-Taskinen [3] yielded the
first example of a Fréchet-Montel space for which 1, + 1, on #(2E). For positive
results ansmg from proposition 1 we refer to proposition 4 and § 2.

Since ® is an associative functor the following is immediate.

PROPOSITION 2. [8, proposition 8]. If & is a collection of Fréchet spaces which is
stable under the formation of completed projective tensor products and {E, F} has
the (BB)-property for any E, F € & then each E € & has the (BB),-property.

The collection of tensor-(FG) spaces introduced in [8] satisfies the hypothesis
of proposition 2. Remarks regarding the definition of this collection and
examples are given in the next section.

The collection of separable Banach spaces is stable under completed projective

tensor products. Using this fact, associativity of ® and [21, proposition 2.13]
modified for separable Banach spaces we can easily show the following.

PROPOSITION 3. If E is a separable Fréchet space, {E, F} has the (BB)-property
for every separable Banach space F, and E contains a fundamental system of
absolutely convex bounded sets 9 such that Eg has the approximation property for
all B € % then E has the (BB),,-property.

Separable Hilbertizable Fréchet spaces satisfy the hypothesis of proposition 3.
The hypothesis of proposition 3 may be weakened by using recent results from
[6].

Finally we consider the equality = 1, on 2("E). Since 1, is the barrelled
topology associated with 7o on ("E) and 7, = f = 1, it follows that 7, is also the
barrelled topology associated with f. A locally convex space is said to be
distinguished if its strong dual is barrelled. Hence for arbitrary Fréchet spaces we
have f = 1, on 2("E) if and only if @ E is distinguished. Since we require this
property for all n it is more convenient to consider the density condition [5].
A Fréchet space E is said to have the density condition if the bounded subsets of

" (= (P((*E), p)) are metrizable. If E has (BB), and the density condition then

E also has the density condition ([5]) and hence is distinguished.

Quasinormable spaces and Fréchet-Montel spaces have the density condition.
This concludes our first examination of locally convex topologies on spaces of
homogeneous polynomials. We now consider the problem of how these locally



HOLOMORPHIC FUNCTIONS AND THE (BB)-property 219

convex spaces of homogeneous polynomials are combined to provide locally
convex structures on #(U), U a balanced domain in a locally convex space E. In
later sections we shall see how to lift estimates to obtain more precise information
about s (U).

The 7, topology on #(U), U a balanced domain in a Fréchet space, is
generated by all seminorms of the form

0

(1) FUES e

n=0 K

"f (0)

where f = Z € #(U) and K is a compact subset of U.

The t,, topology on #°(U), U a balanced domain in a Fréchet space (or indeed
in any locally convex space) is generated by all seminorms which have the
following three properties

(1.3) =3 p(i‘?—f,@)
n=0 n
for all f = i J"f(O) e A(U),
(1.4) p|2("E) is 1., continuous for all n

there exists a compact subset K of U such that for every V open, K =« V < U,
there exists c(¥V) > 0 such that
(1.5) p(P) = c(V)IIPly

for all Pe #("E) and all n.

The 5 topology on #(U) is generated by all seminorms which satisfy (1.3) and
(1.4).

Ansemil-Ponte [2] used (1.2), holomorphic germs and a result of Mujica to
show that if 14 = 7, on 2("E) for all n where E is a Fréchet-Montel space then
7o = 7, on #(U), U an arbitrary balanced open subset of U. In our terminology
and using proposition 1 we may rephrase this as follows.

ProPOSITION 4. If E is a Fréchet-Montel space then 1y = 1, on #(U) for any
balanced open subset U of E if and only if E has the (BB)-property.

If 7, = 7, on 2("E) then condition (1.4) is equivalent to
(1.4) there exists a compact subset K, of E such that
p(P) £ ||P| k, for all Pe Z("E)

We may thus regard (1.4)" and (1.5) as our estimates on spaces of homogeneous
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polynomials and (1.3) plays a role in putting these estimates together to obtain
1o = 1T, on J(U). Proposition 4 solves the 7, = 7, problem as a holomorphic
problem on balanced domains and what remains is now a polynomial problem.
The combined conditions (1.3), (1.4) and (1.5) may be regarded as a refinement of
(1.1).

More precise descriptions are available for certain classes of Fréchet spaces. By
proposition 4, if E is a Fréchet-Schwartz space then the t,, topology on #(U),
U balanced on E, is generated by all seminorms which satisfy (1.2).

If E is a Banach space with unit ball Band U is a balanced open subset of E then
the 7, topology on #(U) is generated by all semi-norms of the form

()
(1. o= 3, | <20
n=0 : K+a,B
where f = Z "f(O) € #(U), K is a compact subset of U and (,), € c, ([4, 12]).

We now consxder the 7, topology on #(U). A subset B of U is called a bounded
subset of U if it is a bounded subset of E and there exists a neighbourhood V of
Oin E such that B + V < U. The natural analogue of 7, on J#(U) is the topology
of uniform convergence on the bounded subsets of U. However, it is rarely the
case that each holomorphic function on U is bounded on all the bounded subsets
of U. In this situation attention is often restricted to those holomorphic functions
which are bounded on the bounded subsets of U and one obtains a subspace of
H#(U) which is denoted by 5#,(U) (see example 10). We are interested in 5 (U) and
so motivated by (1.2) for Fréchet-Schwartz spaces and (1.6) for Banach spaces we
define a new topology on #(U). We shall say that a sequence of subsets (B,),, of
alocally convex space E, converges to a subset B if for every neighbourhood V of
0 in E there exists a positive integer ny such that B, = B + V for all n = n,,.

DerINITION 5. If U is a balanced open subset of a locally convex space E then
the 7, topology on #(U) is generated by all seminorms on 5 (U) which have the
form

0

() =3 £70

forall f = Z ”f(O)

n=0
E which converges to some compact subset of U.

€ #(U), where (B,), is a sequence of bounded subsets of

If U is an arbitrary open subset of U we let

(H(U), 1) = lim (F(E + V),75)

14
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where the projective limit is taken over all pairs (¢, V) with £ e U, V balanced in
E and { + V c U (we use the canonical identification between (V) and
H(E + V) to define 1, on H#(¢ + V)). Many of the properties of #(U), U bal-
anced, shared by 70, 7, and 7, remain true for 7, and are proved in the same way.
For instance {({2("E),1;)} -, is an &-absolute decomposition for (#(U), 15)
(C13]).

Clearly we have 1y < 1, < 17, 0n #(U),and 74 = 14, for U balanced, if and only
if E is a semi-Montel space. We have already noted that 7, = t,, for balanced
domains in Banach spaces and Fréchet-Schwartz spaces.

Our aim in this paper is to obtain a similar result for a large class of Fréchet
spaces.

For unexplained terminology, general definitions and results mentioned with-
out proof or reference we refer to [13].

§2. T-Schauder decompositions.

In § 1 we saw that a pair of locally convex spaces has the (BB)-property if every
bounded subset of their completed n-projective tensor products splits (modulo
taking the absolute convex hull). For this reason it is only to be expected that
good splittings of the component spaces should lead to examples of pairs with the
(BB)-property. A splitting of the whole space is a projection. The mere existence
of projections is not sufficient, however, as bounded sets in Fréchet spaces are
defined by estimates involving a sequence of semi-norms and it is necessary to
have further interactions between the projections and the semi-norms. The first
step in this direction was taken by Taskinen [20] who defined a class of Fréchet
spaces with an unconditional basis and a property allowing the extension of
norm estimates on subsets of the basis to their linear span in a uniform fashion.
The projections, given by the basis, led to a partition of the basis into disjoint
subsets on each of which tensor norms could be estimated and the results from
the different sections combined to obtain the (BB)-property. The technique of
using good estimates between different norms on sufficiently many projections
appears to be fundamental as in the same paper (see also [22]) the author
obtained counterexamples to the general problem by using projections. Tas-
kinen’s method has been developed to more general situations but in all cases it is
possible to see implicitly or explicitly the presence of projections.

Bonet-Diaz [7] introduced T-spaces by replacing the basis by projections and
Bonet-Diaz-Taskinen [8] went a step further and replaced projections with
a partition of the identity. Diaz-Metafune [10] (see also [9]) characterized the
standard quojections of Moscatelli type E such that { E, F} has the (BB)-property
for every Banach space F as those spaces for which E” is a product of Banach
spaces (in other words the spaces with a single twist or spaces whose second dual
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contains sufficiently many projections onto spaces with the (BB)-property (i.e.
Banach spaces)). The other major class for which there is a positive solution are
the Hilbertizable Fréchet space and here again projections are implicitly avail-
able as every closed subspace of a Hilbert space is complemented.

In infinite dimensional holomorphy the methods of Taskinen [20] and Bonet-
Diaz [7] was extended to the n-fold symmetric case in [14] and [16] to obtain
further examples of Fréchet-Montel spaces E for which 1, = 1, on #(U),
U balanced in E.

In this article we define a collection of spaces which are very similar to the
T-spaces of Bonet-Diaz [7] and adjust the method of [14] and [16] to obtain
more precise estimates for the (BB),-property. These estimates are then combined
to obtain examples of spaces of holomorphic functions with t, = t,,.

Let {E,}, denote an unconditional Schauder decomposition of the locally
convex space E. For each nlet P, denote the canonical projection, defined by the
decomposition, from E onto E, and for any subset J of N let P; = Z P;.

jeJ

DEFINITION 6. An unconditional Schauder decomposition, {E,}, of a Fréchet
space E is a T-Schauder decomposition if there exists a fundamental system of
semi-norms for E, (|| - ||x)xen such that

2.1 1Py < lIxllx forallJ = N,keN and xeE
(2.2) for every sequence a = (o );, 0 < o < 1, there exists a partition
Ju = (Jo, i)k Of N such thatif P, ;:= P, | then
1Py k() lk=1 S o | Py, k(x)ly for all xe E and all k = 2.
(2.3) ||-|lx defines the topology induced by E on P, i(E) for all « and all k.

A basic sequence of semi-norms satisfying (2.1), (2.2) and (2.3) is called
T-adaptable and a subset A4 of E is said to be T-invariant if P,;(4) = A for all
Jc N.

Definition 6 is very similar to the definition of T-decomposable space given in
[7]. The extra condition, required in order to prove lemma 7, is that each P, ; is
obtained by adding together projections from the original Schauder decomposi-
tion and condition (2.3) shows that it may be difficult to construct an example of
a T-decomposable space which does not have a T-Schauder decomposition. The
FG-spaces of [8] are obtained by replacing the decomposition and (2.1) by

a partition of the identity ) P;and tensor (FG) spaces are FG-spaces for which
j=1
1
> P

i=1

< 1for all | £ k (see the remarks following proposition 2).

k
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LeEMMA 7. If the Fréchet space E has a T-Schauder decomposition and U is
a T-invariant convex balanced open subset of E then each compact subset of U is
contained in an absolutely convex T-invariant compact subset of U.

PrOOF. Let K denote a convex balanced compact subset of U. Let
K= U Py(K). Clearly K < U and we show that K is relatively compact. Let

JeN
(va)s denote a sequence in K and for each n choose x, in K and J, = N such that
yn = P; (x,). Since K is compact, (x,), contains a convergent subsequence (which
we may suppose is the original sequence) which converges to x € K. We identify
subsets of N with pointsin 2~ in the usual way. If the set consisting of 2 elements is
given its discrete topology and 2" is given the product topology then 2V is
a compact metric space. It follows that {J,}, contains a subsequence, which we
again assume to be the original sequence, which converges to an element J of N.
If k is any positive integer then

I Py, (xn) — Pyl = 1Py, (x4) — Py ()l + 1Py, (x) — Py(x)k
S xn — Xl + 1Py, (x) — Py(x)|li
—0asn— oo.

Hence I (K) is a compact subset of E.
For any J; = N we have
PJ,(IZ) = U PJ,PJ(K) = U PJmJ(K) cK

JeN JjeN

Hence
P; (F(K)) = I(P;,(K)) = I(K)

and I(K) is a convex balanced compact T-invariant subset of E which contains K.
This completes the proof.

PrOPOSITION 8. Let (|*|x)x denote a T-adaptable set of seminorms for the
T-Schauder decomposition { E, },, of the Fréchet space E. Let K denote an absolutely
convex compact T-invariant subset of E and let Uy = {x€E; |x||, < 1}. Let q,
denote the seminorm on E with closed unit ball U; + K and let g, = || ||, fork = 2.
Then (qi)x is a T-adaptable set of seminorms for the decomposition {E,},.

Proor. We retain the same set of projections (P, ), for the new set of
semi-norms. Since K is compact the norms ||+ ||, and g, are equivalent and hence
(2.3) is satisfied by (gy)x > 1- To complete the proof we must check (2.1) for g, and
(2.2)for k = 2. For (2.1) it suffices to show that q,(P;x) < q,(x) forall / < N and
all x e E. This is equivalent to showing P,(U, + K) = U; + K. By (2.1) for ||y,
we have P;(U,) = U, and since K is T-invariant we have Py(K) < K.
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Hence PJ(UI + K) = PJ(UI) + PJ(K) c Ul + K.
For (2.2) we are required to show that

91(Py, 1(x)) = #242(P,,1(x)) for all xeE.

Since U; < U; + K it follows that g, < || ||;.
Hence

q1(Py, 1(x)) S 1P, 1)1 < o3 [Py, 1(X) 1|2 = 22q2(Ps, 1(x))
and this completes the proof.

ExaMPLE 9 (of Fréchet spaces with T-Schauder decompositions).

(a) Fréchet spaces with unconditional basis of type (T), I” and X valued Kothe
sequence spaces ([7, 8,22]). In [11] the authors show that a Kothe echelon space,
A(I,A), 1 £ p < o or p=0 and I of arbitrary cardinality, has a T-Schauder
decomposition if and only if it has a total bounded set or equivalently if and only
if 4,(I, A)3 admits a continuous norm.

(b) Banach spaces [7].

(c) Fréchet-Schwartz spaces which admit a continuous norm and a finite
dimensional decomposition ([7]).

(d) Fréchet-Montel spaces with unconditional basis (e,), which satisfy

(cQ) for all k,te N, k > t, there exists M, , > 0 such that if
le:llx < Cllells, ied, for some C > 0 and J = N, then
[xllk = CM,, lIxll, for every x e sp(e;,ie J) ([7,9]).

The above are all examples of T-decomposable spaces and the proofs given in
[7] show that they all have T-Schauder decompositions. Furthermore, the proof
of Observation 2 in [ 7] shows that the countable product of Fréchet spaces with
T-Schauder decompositions also has a T-Schauder decomposition.

Condition (2.3) implies that all except a finite number of semi-norms agree on
P, «(E). For this reason we find (see for instance the proof of proposition 3 in [7])
that in many examples the spaces P, ,(E) are finite dimensional. Finite dimen-
sionality also plays a key role in the final part of Taskinen’s proof [20, theorem
3.1and 3.3] and something similar is often necessary in the general case. Our next
example gives a natural situation in which all of the spaces P, ,(E) are infinite
dimensional Banach spaces.

ExaMmpLE 10. Let E denote an infinite dimensional Banach space. The Taylor
series decomposition of #,(E) (the entire holomorphic functions of bounded type
endowed with the topology of uniform convergence on the bounded subsets of E)
is a T-Schauder decomposition of the Fréchet space #;,(E). We have E, = 2("E)



HOLOMORPHIC FUNCTIONS AND THE (BB)-property 225

dn
and P,(f) = f( ) for all n and all fe #,(E). The topology on J#,(E) is
generated by the seminorms
= || d"f©
=¥ [“LO) k=12
n=0 n kB

where B is the unit ball of E.
Clearly (2.1) is satisfied. Let « = («,), be given. Since

O\ _ (kY (&40
n(507) () (%)

for all k, l and ne N we can choose an increasing sequence of positive integers
(mkz2 such that p,_(P) < oyp(P) for all Pe?("E) and all n2=n,. Let
Ji={0,1,...,n, — 1} and J, ={n,...,m, — 1} for k=2. Let P, (f)=
J
m. Th
!

d’f(0)
il
d Jf (0)

||Pu,k(f)uk—1 = Z

JjeJk

<o ),

JjeJk

= 0 ”Pa.k(f)nk

and (2.2) is satisfied. Since ||y ~ ||'|l; on L("E) for all n, k and [ and the
projections P, , only involve a finite number of derivatives it follows that (2.3) is
also satisfied. Hence #,(E) has a T-Schauder decomposition. We note in passing
that the norms given above for #,(E) satisfy condition (cQ) of example 9 (d)
without any restriction on k and I. A similar proof works for U balanced.

(k—1)B

kB

The proof of the following proposition was motivated by the proofs of [20,
theorems 3.1 and 3.3], [14, theorem 1] and [ 16, proposition 3]. The crucial point
in proposition 11 is to obtain symmetric tensor representations and not just tensor
representations which have previously been given in [14] and [16].

We let S denote the symmetrization (projection) from @ E onto ® E ob-

d,m,s

tained by extending

S(xl ®x2...®x,,): Z xn(1)® ®xn(d)

neSa

d'

where S, is the set of all permutations of {1,...,d}. If B is a convex balanced
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subset of E then the polarization formula [13, p. 4] and duality theory show that
for fe ® E we have

d,n,s

(2.4) 6]|pa:= inf{ Z ”xj,luB ||xj,2||B-~- ||xj,d||3;0 = Z Xj1 ® X% ,... ®xj,d}
; =

ji=1 7=
= 10ls:= inf{Z Ixl%0=3Y & xi}
j=1 j=1 d
dd
éd“!llellxd

PROPOSITION 11. Let E denote a Fréchet space with T-Schauder decomposition
{E,} and T-adaptable set of semi-norms (|| |)x>1. Let d be a positive integer,
U, = {x€E; ||x,|| £ 1}, Bbe abounded subset of ® E and ¢ > 0 be arbitrary. If

d,n,s

Bc T < ® U 1) then there exists a bounded subset A in (1 + ¢)U; such that
d,s
Bc Tl ( ® A) .
d,s
ProoF. We may suppose without loss of generality thatd > 1 and 0 < ¢ < 1.

Since B is bounded there exists an increasing sequence of positive numbers,

(ra)%, such that B< (I ( ® u U,,). By our hypothesis we may take r; = 1
n d,s

. . d2d
and, without loss generality, we may suppose r, > max ((2d ) —8—)

For each positive integer k and each z in B we have a representation

z= Z Ai,i(2) ® x;,k(2)
i=1 d
where
Y i@ <1 +eforallkeN and ze B
i=1

and x; ,(z)en U, forall i,ke N and z€ B.
Let o, = 27 *r, “*? for ke N and let (P, ;), be the decomposition for a: = (o),
given by (2.2). For the d-tuple k = (k4,..., k;) of positive integers let

A,,={i,1§i§d,ﬁ:= sup kj=k,} andlet B, ={i;1<isd k =1}

1gjsd

Let |4, =eand |By| = fFor1 <j <dlet
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rg*t1=9k ifjeA,and f >0

r ol ifjed,and f =0

(k) = et ifj¢ A, and j¢ B,

rel7r ifjeB,.
If |B;| = O then

d
'l—[1 Di(k) = (ri(‘.d—e)/e)e(ri 1yi-e - 'JE—e—d+e =1
j=

If |B,| = f > 0 then

d

H @ (k) = (rEH 1 —e)/e)e(ri‘:- lyd-e- f(r'?— 1 —}

=rz.+1—e—d+e+f—f~l =1

d
so that [] @;(k)=1 for all ke N°.
j=1
We now consider the formal sum

i 4i,1(2) @ P, 1(x;,1(2))

2y

+ 3 Y A2274ry ¢ @ (r22°P, 1(x;,(2)))

i=1k=2

+ il . kz i, Aii(2)2” Ij= 1'US< ® ( 7;_ J(k 2kjpa K, (x;, k(z)))>
i (ki1,...ka)
|kl <d

We claim that the elements of E which appear in the tensor part of the above sum
form a bounded subset of E. We consider the different cases that may arise and
adopt the following notation.

If j < g we may use (2.3) to find C, ; > O such that |- ||, £ C, ;[ ||; on P, (E)

and weletc, = sup C, ;.
1sjs4q

In cases 3,4 and 5, ke N, k = 2, and let y; ;(2) = r,2*P, i(x: x(2)).
In cases 6 to 12, k = (ky,...,k;)e N and |A,| < d and we let

1
Wik, j(2) = dr2ad (k)29 P, , (x; i(2)).

We let g denote a positive integer.
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Casel. g=1.

1Py, 1(x:, 1 D1 S Nlxi, 1D £ 1

Case 2. g > 1.

I1Pe, 1(xi,1(@)lg = Cgp1 1Py, 1(Xi,1 (@)1 S Cy

Case 3. q < k.
“}’k,i(z)”q < rzzk Py, (i, (2D 1k - 1

S 1227 P Py X k@) e

Srar

<r;?
Case 4. q = k.

1ye,i@ g = r227 | Py, o(Xi, o(2)llq
S ror2t

Case 5. q > k.

||Yk,i(z)”q = rlzkcq,h” P, q(xi,k(z))”k

q
S ry2%,r,

d+1l—e

+
Case 6. q < k; = k. We have &(k) < re ©

L dti-e
Wi i, {2l g < dr2drg e 2% || Py ilxi k@) -1
d+1-—-e

<drztrg € 227kp @D P, (x @)l

<dr2“r;+—,132'(“2)“
=""2

<1 sincer, > (2d)* > d*
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Case 1. q < k; < k. We have ®(k) < r;?

”Wl k, j(z)”q S d 121(, ”Pa kj(xl k(z))”k -1

driirg 27 2 Py (@),

lIA

1
2dy
2

1
2
2

dr3in; Y @D | (x, 0)e

IIA

< drlir @+
é drz—(d+l)
<r*
d+1-
Case 8. If g = k; = k. We have (k) < r, e
d+1—e
wi jx(@)lg < dr“r e 1 Pe, o(Xi,4(2))llq

é d2‘1r§_“+d+ 1

(Note that in this case we cannot have g = 1 since this would imply £ = 1 and
k =(1,...,1). Hence |4,| = d and this is not possible).

Case9. If 1 = q = k; < k. In this case |B;| # 0 and &;(k) = r{“f

Wi, k@l = dr“r_‘_TiZ 1Py, 1(xi, &)1

1
<2dr2474 since1 < f<d
< 2dr;2a
<1 sincer, £ (2d)*
Case 10. If 1 < k; < q < k. We have ®;(k) =r; !
L
”Wz Js k(z)”q % 12k, “Pz kj (xl k(Z))”q
< d2"r§3r{1rﬁ

1
= d2%2¢
2
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d+l-—e

Case 11. Ifk; = k < g. We have ®;(k) <1, *

+1-
Wi, jx(@)llq = dr’"'r,; ¢ © 2P @),

IA
u
~

SR
3
=

TUC, ¢ 1P x D)

!.—'
: @n
-
|
o

A

A
R
N
'y
~
NN
sl
~
£
o
=
D
=

I)-
A
+
{ond

]
R
N

'
~

[NIY

Y
~

LY
o

£

Case 12. If k; < k < q. Then &;(k) < 17!
(2l < dring 129 |y (s 2
< driing 29C, £ 1P, 1 (% D)
= drfJZ“cq
Hence the set consisting of
{Pa, 1(x;, 1(2))}3:;1 U {ra 2Py i(xi (@)} 2 1, k22,zeB

U {dru‘p;(k)zk’P a, k_,(x: @)} k= (ki,...,ka)eN4

zeB 15j<d,|Ax|<d
is a bounded subsetof E and we denote by B, its closed convex balanced hull. By
cases 1, 3, 6, 7 and 9 it follows that B, = U,.

By (2.4)
“s( K @ J(k)? ,k,(xi,,:(Z))) )
d d .L
== T |20 (024P, 1 o 4(2)
d i=1 B,
< d—dL <1 (by case (6)to(12))
S y '
Hence

s( ® r'Z!ﬁ@j(k)zk"Pa, kj(xi,k(z)))
d,j
= ; @ 07

o)
where Y [16,,4.:ll5, < 1.
1=1
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We now have the formal sum of symmetric tensors

Z 4:,1(2) ® Py 1(x:,4(2)) + Z Zz Ai(2)27 ry ® (2P, (xi 4(2))

o33 e e (5 i, © ()

1=1

| x| <d
Now
@ ool ¢} —kd.—d 1+ 8
Yl S1+e Y Y Ax@I27%r;0 < ” <e
i=1 i=1k=2 2
and
e o} d ¢ o)
Y Y |Ai,£(2)|2~£f=1k’rz_i(z ”91,1‘,.'"732)
i=1k=(ky,..., ka) I=1
|Ax|<d
< 1+e¢ <.
and

| Py, 1(x;, 1(2))”32 =1 erzkpa,k(xi,k(z))"32 <1

. =
so that this formal sum is absolutely convergent to some zq in ® E.

d,m,s

For any k = (ky,..., k;) € N* we have
Py, ®P, ,...® Pa,k,,(zo) = Z Ai,@(2) ® P, h,.(xi.t?(z))
i=1 id

= Py ky ® Pa,k;--- ® Pu.kd(z)'

Hence z = z, and

o

z=Y B; X x; where Y |1 <1+ 3¢

ji=1 d j=1

and ||x;lp, < 1 for all j.

This shows that
Bc(1+ 3e)F( X B2> = f( X0+ 38)%32)
d,s d,s

Since ¢ was arbitrary this completes the proof.
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§3. Applications to Spaces of Holomorphic Functions.

To apply propositon 11 we first need to improve inequality (1.5). This we do in
the following proposition.

PROPOSITION 12. Let U denote a balanced open subset of a Fréchet space E and
let (V}); denote a neighbourhood basis at the origin. If p is a t,, continuous semi-norm
on #(U) then there exists a compact subset K of U and a non-decreasing surjective
mapping ®&: N U {0} — N and ¢ > 0 such that

<¢3"f (0)> d"f(0)
p l =

nl
for all f € #(U) and all n.

K+Vym

PrOOF. By (1.5) there exists a compact balanced subset K of U such that for
every neighbourhood V of 0 there exists ¢(V) > 0 such that

for all f e #(U) and all n.

K+V

Choose 4 > 1 such that AK is also a compact subset of U. For each positive
integer j we can choose a positive integer n; such that c¢(1™'V;)/A" < 1 for all
n 2 n;. Then

a"f(0) 1 3"f(0)
(57|50,
- @Y || &)
= A" n! AK+V;
d"f(0)
= n! AK+V;

forall fe#(U)and all n 2 n;.

We may suppose, without loss of generality, that the sequence (n;); is strictly
increasing.
Let

1 for n<ng
P(n) = . ,
j for mjSsn<nj,jz1

Then
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dn
(229)-

for all fe#(U)and n = n,.

d"f(0)

n!

AK +V g(ny

For n < n; we have

<3"f(0)>< c(A” V) || d"£(0)
P\ = A

n!

AK+V

for all fe #(U).
If ¢ = 1 + ¢(A™'V,) this completes the proof.

THEOREM 13. Let E denote a Fréchet space with a T-Schauder decomposition
and the density condition and let U denote a convex balanced T-invariant open
subset of E. Then

(H(U),7,) = (H(U), 13).

ProoF. Let p denote a t,, continuous semi-norm on #(U) and let (|| [lo)k> 1
denote a T-adaptable set of seminorms on E. We may suppose, by proposition 12

and Lemma 7, that
e (i" 0 i (2” 0

=0 n=0

and

G.) P<J"£g(0)> <

for all f € #(U) and all n where K is an absolutely convex balanced T-invariant
compact subset of U, U; = {x€E; | x||; < 1} and ¢: N U {0} —» N is a non-de-
creasing surjective mapping.

We now consider the semi-norm p,, : = p| pg restricted to 2("E) for some fixed
n. By proposition 11, 7, =  on 2("E) and since E has the density condition
B =1, on Z("E).

Let g, denote the semi-norm on E with unit ball V:= K + Uy, and let
gk = |l pmy+x—-1 for k = 2. Since (|| |k )k > pm) 1S @ T-adaptable set of semi-norms
on E proposition 8 implies that (g, ) >  is also a T-adaptable set of seminorms on
E.

Let B = {¢p € 2("E);|¢| < p.}. We have p,(P) = |P||p for all Pe 2("E).

By (3.1)

d"f(0)

n!

K+Ugn)
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PPSIPL,
(&

Z

0

!

where we are considering P as an element of < E) .
n,n,s

00
By the Hahn-Banach theorem B ( ® V) . Since E has the density condi-

tion (® E) is distinguished and hence, as B is a bounded subset of

n,m,s

(( ® E> ) we have, by remark 1.4 of [17] (see also [19, lemma 1]), that there
n,m,s B/ B
exists a bounded subset A of X) V such that B = 4°°.

Hence p,(P) < ||P|, for all Pe #("E).
By proposition 11 there exists, for any & > 0, a bounded subset C of (1 + &)V

suchthat Ac I ( X C). Hence p,(P) < sup |P(x)| for all Pe #("E).

s xeC
Nowlet C =C,and ¢ = ¢,.
We have thus shown that for all n there exists a bounded subset C, of

(1 + &)(K + Upy) such that

p(P) £ |Plc, for all PeZ("E).

By choosing the ¢,’s sufficiently small and by noting that ¢(n) — oo as n — oo we
see that the sequence (C,), converges to the compact set K. By (3.1) we have

L (0] @ |ld*f©
(5 51

=0 n=0

n e,

and hence p is a 74 continuous seminorm on #(U). This completes the proof.

COROLLARY 14. If K is a T-invariant compact convex balanced subset of
a Fréchet space E with a T-Schauder decomposition and E has the density condition
then the 1, topology on #(K) is generated by semi-norms of the form

2 110\ & || a0
”(F 5!()>=Z f)

B,
where (B,), is a sequence of bounded subsets of E which converges to K as n — co.

Theorem 13 and corollary 14 are also true for entire functions and germs at
the origin when E is a complemented subspace of a Fréchet space with the density
condition and a T-Schauder decomposition.

By proposition 3.6 of [15] we also have the following corollary.
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COROLLARY 15. If U is a balanced open subset of a Fréchet space E with

a T-Schauder decomposition and the density condition then (3#,(U), B) is quasinorm-
able.

(B is the topology of uniform convergence on the bounded subsets of E which
lie strictly inside U).
By example 10 we have the following result.

CoRrOLLARY 16. If U is a balanced open subset of a Banach space then
(,(H#(U), B) is a quasinormable Fréchet space.

The method used in the proof of proposition 12 can also be used to prove the
following result.

PROPOSITION 17. IfK is a compact balanced subset of a Fréchet space then the T,
topology on #(K) is generated by all seminorms of the form

2 710)) & || do
”(33 fz()>=2 /0

=0 n=0|| M

K,
where (K ,), is a sequence of compact subsets of E which converges to K.

We thank the referee for clarifying our original proof of lemma 7.
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LA SOLUTION UNIQUE DE L’EQUATION
DIFFERENTIELLE DE LIOUVILLE

SHINJI YAMASHITA

Résumé.

Soit 2 un domaine hyperbolique du plan complexe C avec I'élément de la
métrique de Poincaré: Py(z) |dz|. Alors, ¢, = log P est une solution de I’équation
de Liouville: 4u = 4e** dans Q. Nous connaissons que si u satisfait I'inégalité
différentielle: Au = 4e** dans Q, alors, u < ¢, dans Q (le résultat da a L. V.
Ahlfors). Nous démontrons que u = ¢, dans Q si 4u < 4e** dans Q et de plus,
u — ¢gest bornée inférieurement dans Q. Ces faits, avec leur corollaire, étendent
le théoréme de B. Gustafsson vrai pour Q simplement connexe. Supposons que
Q2 est borné et 02 = 0(Q U Q) dans C, ou X est la frontiére de X = C. Sup-
posons que u satisfait 'inégalité: Au < 4e?* dans Q, et encore que u(z) = + o
quand z tend vers chaque point de 0Q. Alors u = ¢, dans Q. Comme une
conséquence nous obtenons le théoréme de L. A. Caffarelli et A. Friedman qui
supposent une régularité de 0Q.

1. Introduction et les résultats.

Un domaine Q du plan complexe C = {|z| < + o0} s’appelle hyperbolique si 0Q
contient au moins deux points, X étant la frontiere de X < C dans C. Nous
supposerons une fois pour toutes que Q est un domaine hyperbolique dans C.
Chaque Q a I'élément de la métrique de Poincaré: Py(z)|dz|, z € Q. Cest-a-dire, si
f est une projection analytique sur Q du disque unité ouvert D = {|z| < 1}
regardé comme le revétement universel de Q, en notation: f € Proj(£), alors,

(1.1) 1/Po(z) = (1 — [w]*)|f'(w)

pour la densité de Poincaré P, en z = f(w), weD; le c6té droit de (1.1) est
indépendant du choix particulier de f et w, pour autant que z = f(w) soit
satisfaite. Il est bien connu que Py(z) — + oo quand z tend vers un point de 0€;

Regu le 22 fevrier 1993.
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voir [J. p. 116]. La densité P, satisfait I'identité de la courbure de Gauss:
P;*Alog P, = 4 dans Q, ou, la fonction

¢q = log Py

satisfait 'équation différentielle de J. Liouville, citée dans le titre du mémoire
présent:

(EDL) Au = 4e*

dans Q, ou 4 = 40%/020z7 = 8*/0x* + 0*/dy?, z = x + iy, est I'opérateur la-
placien. Notre but est la démonstration de ce fait que ¢ est la solution unique de
(EDL) dans Q sous une certaine condition frontiére de u en termes de ¢, (le
théoréme 1), ou directement, celle de u (le théoréme 2 avec le théoréme 1). Nous
désignons par RC%(Q2) la famille des fonctions a valeurs réelles et deux fois
continiment différentiables dans Q.

THEOREME 1. Soit Q un domaine hyperbolique de C, et supposons que u e RC?(Q)
satisfait l'inégalité différentielle: Au = 4e** dans Q. Alors,u < ¢ dans Q. Encore,
supposons que ue RC*(Q) satisfait I'inégalité différentielle: Au < 4e** dans Q et
qu’il y a une constante réelle A telle que

(1.2) uzg¢o+ A4
dans Q. Alors u = ¢ dans Q.

La premiére part du théoréme 1 est due essentiellement a L. V. Ahlfors [Al,
Theorem A]. En particulier, u £ ¢, dans Q si u satisfait (EDL) dans ©;il y a deux
cas:u = ¢ggpouu < ¢gtoujours dans Q d’aprés le principe de la comparaison des
solutions de (EDL) did a V. Jergensen (voir [J, p. 115]).

On ne peut pas conclure que: u 2 ¢, dans Q de la seule condition: 4u < 4e**
(ou plus fortement: Au = 4e**)sans (1.2) dans Q. Si c’était vrai, au contraire, alors
¢ serait la seule solution de (EDL) dans Q. Mais, il y a solutions en nombre infini
de (EDL) dans chaque @, fait indiqué dans [J, p. 116]; pour les détails, voir la
section 2 du mémoire présent qui se compose des huit sections.

Nous allons démontrer, dans la section 2, que le théoréme de B. Gustafsson
[G1, p. 105, Theorem 7.3] pour Q simplement connexe est obtenu par le
théoréme 1.

Un domaine Q < C est dit admissible si Q est borné et 0Q = 0(Q2 U Q) dans C.
En particulier, pour Q admissible dQ n’a aucun point isolé.

THEOREME 2. Supposons que ueRC*(Q) satisfait 'inégalité différentielle:
Au £ 4e* dans un domaine admissible Q = C. Supposons encore que

(1.3) u(z) > + o

quand z tend vers chaque point de 0Q. Alors, u = ¢, dans €.
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Nous ne pouvons pas enlever 'admissibilité de Q dans le théoréme 2: voir X et
Dy, dans la section 5.
Une conséquence immédiate des théorémes 1 et 2 est la proposition suivante:

Supposons que ue RC*(Q) satisfait (EDL) dans Q admissible. Supposons encore
que u(z) » + oo quand z tend vers chaque point de 0Q. Alors, u = ¢q dans Q.

Le cas spécial de cette proposition sous une certaine régularité de 0Q est le
théoréme de L. A. Caffarelli et A. Friedman [CF, p. 448, Theorem 3.3]. Le
résultat de S. Richardson [R, p. 331, Theorem 2] pour Q borné et limité par une
courbe de Jordan se suit aussi.

2. Domaines du type fini, les corollaires du théoréme 1 et un théoréme de
Gustafsson.

Etant donné des constantes a > Oet b > 0, on peut réduire 'inégalité (v < ae®,
respectivement) dans Q a Au = 4e* (du < 4e?, respectivement) dans Q par la
transformation: u = (b/2)v + (1/2)log(ab/8). En particulier, (EDL) est équiva-
lente a 'équation: Av = e’ par la transformation: v = 2u + log8.

Le théoréme di a E. Picard [P1, P2], en la forme spéciale, est, alors, suivant:
Fixons des points distincts: a,,...,a,de C(n = 2). Soient f; > —1(1 S j<n)et
y > 1des constantes tellesquey + B, + ... + B, < 0(d’ou,y < n). Alors, il y a une
et seulement une solution u de (EDL) dans Q(ay, ...,a,) = C\{ay,...,a,} telle que
des limites + oo existent:

lim (u(z) — B;loglz — a;l), 1 £j < n; lim (u(z) + ylog|z|).
z—aj z—- @

Soient ay,a, € 0Q (a; + a,) et soient u; les solutions de (EDL) dans Q(a,, a,)
correspondantes aux trios des constantes donnés: (8, B9, y¥), j = 1, 2, avec
BY £ B?. Alors, la différence u, — u, n’est pas bornée dans un voisinage de a,
relatif a Q. En particulier, u, # u, considerée dans Q. Cette observation montre
qu’il y a solutions en nombre infini de (EDL) dans chaque €.

Soit 0*Q la frontiére de Q dans la sphére de Riemann: C U {o0}. Evidemment,
09 = 0*Q si et seulement si Q est borné dans C. La condition (1.2) est donc
équivalente a I'inégalité:

u(2) Z ¢ol2) + O(1)

quand z tendvers chaque point {€d*Q en ce sens quil y a deux constantes
r({) > 0 et A({) dépendantes de ¢ telles qu’on ait

u(z) 2 Palz) + A(S)
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pour chaque ze Qsujeta |z — {| < r({)oulz| > r({)selon que { F oo ou{ = oo (si
0 € 0*Q).
Soit d,(z) la distance entre ze Q2 et 0Q2:

do(z) = inf |z — w|.
wedQ
Ilest bien connu que 6, P, < 1dans Q. Suivant [Y1, Y2] nous appelons que Qest
du type fini, si 4(Q) > 0, ou
A(Q) = inf 6o(z)Po(2).
zeQ
Sinon, ou en d’autres termes, si 4(Q) = 0, nous appelons que Q est du type infini.
Un critére typique pour Q soit du type fini est que la dérivée (3/0z)(1/Pg(2)) =
—(exp(— @(2)))(0/0z)pq(z) est bornée dans 2 [Y1, Theorem 1]. Plus précisé-
ment, en posant
Q) = Sup |(0/02)(1/Pq(2))].
on a y(Q) > O et les inégalités: 1/(2y(Q)) < A(Q) < 2/(2 + y(Q)); voir [Y2, p. 116]
(0(2) = A(2) dans [Y1]). On connait que y(2) < 2 pour Q simplement connexe,
et p(2) = 1si et seulement si Q est convexe; voir [Y1, Proposition 2] pour le fait
dernier. En particulier, A(Q) = 1/4 pour Q simplement connexe et A(Q) = 1/2
pour Q convexe. Voir [G1, p. 37,(64) et (65)] aussi; notons que la fonction ¢, pour
Q2 définie dans [G1] est exactement —log P, = — ¢, si Q est simplement con-
nexe, mais ¢, est strictement plus grande que —log P, dans tout Q non simple-
ment connexe; voir [G1, p. 66, (180)]. Plus généralement, si les composantes
connexes de (C U {00})\Q sont en nombre fini et chaqune est un continu non
dégénéré dans C U {0}, ou, un ensemble fermé et connexe contenant au moins
deux points dans C U {0}, alors Q est du type fini. De plus, il y a quelques
exemples de Q du type fini avec les composantes en nombre infini de 0Q2; voir, par
exemple, [BP] et [Y2, § 8]. Spécialement, pour des domaines @ du type fini, il n’y
aaucun point isolé de 0Q. Des domaines du type fini ont beaucoup de propriétés
importantes dans la théorie des fonctions; voir, par exemple. [BP]et[Y1, Y2]. Si
Q est non borné et du type fini, alors Q n’est pas admissible. Si Q est D coupé le
long du intervalle fermé [0, 1/2] sur 'axe réel, alors Q est borné et du type fini,
mais non admissible. Nous proposerons un exemple de Q admissible mais du
type infini dans la section 6. Maintenant, si 2 est du type fini, alors

2.1 u(z) =2 —logdn(z) + 0(1)
quand z tend vers chaque point de 0*Q si et seulement si

u(z) 2 dalz) + 0(1)
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quand z tend vers chaque point de 0*Q; en d’autres termes, on a (1.2) dans Q.
Visiblement (2.1) implique (1.3) quand z tend vers chaque point de /2. Mais la
converse n’est pas vraie; voir 'exemple (ii) dans la section 5. Il y a donc une
différence délicate entre (2.1) et (1.3).

Or, le théoreme [G1, p. 105, Theorem 7.3] est exactement le suivant:

Si ue RC*(Q) satisfait (EDL) dans Q simplement connexe, alors u < ¢ dans Q.
Encore si (2.1) est vraie quand z tend vers chaque point de 0*Q, alors u = ¢q.

Gustafsson a dit de plus que son théoréme, dans la forme ci-dessus, se main-
tient aussi pour  ayant des continus non-dégénérés dans C U {c0}, en nombre
fini, comme les composantes connexes de (C U {o0})\Q2[G1, p. 106]. Nous avons
ici une extension de son théoréme a Q du type fini a I'aide du théoréme 1 et du
corollaire 1 du théoréme 1 suivant.

COROLLAIRE 1. Supposons que u € RC*(Q) satisfait (EDL) dans Q du type fini et
(2.1) est vraie quand z tend vers chaque point de 0*Q. Alors u = ¢,

Voir aussi [R, p. 330, Theorem 1] pour Q borné et simplement connexe, et
[G2]. L’équation du = ¢* s’appelle celle de Liouville dans [R].
Comme une autre conséquence du théoréme 1 nous avons le

COROLLAIRE 2. Supposons qu'une fonction f: Q — D est analytique et qu’il
y a une constante B > 0 telle que

22 If' @1 = 1f@)I*) Z BPg(2)

entout z € Q. Alors Q est simplement connexe et f est un homéomorphisme conforme
de Q sur D.

N.B.1ly a une estimation de grad ¢, dans un sous-domaine 2, d’'un domaine
Q convexe [CF, p. 440, Lemma 2.2]; mais, elle est incompléte. Nous pouvons
démontrer que

2.3) lgrad ¢o(z)] < 4(1 — A(Q))/00(2), z€&
pour @ du type fini. En effet, par [Y2, p. 116, (7.3)] on a

(1/2)|grad ¢q(2)] = Po(2) [(0/02)(1/Pal2))l < 2/6a(2) — 2Pq(2), z€L.
Parce que Pg(z) = A(R)/o(z), on a (2.3). On peut remplacer le coté droit de (2.3)
par 3/d,(z) si Q est simplement connexe, et encore par 2/dq(z) si 2 est convexe.
3. Preuve du théoréme 1.

Nous commengons par une petite modification du lemme d’Ahlfors (voir [A2, p.
13, Lemma 1-1]; notons que K(p) £ —1 1a; voir aussi [Al, Theorem AJ); pour la
démonstration, en réalité, nous suivrons argument d’Ahlfors et/ou Gustafsson.
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LEMME. Supposons que @ € RC*(Q) satisfait A® < 4e>® dans Q avec ® = ¢g +
B dans Q ou B est une constante. Supposons que ¥ € RC(Q) satisfait AV = 4e2¥
dans Q. Alors ® 2 ¥ dans Q.

En particulier, si ® = ¢qet ¥ = uavec du = 4e?*, alors, ¢ = udans Q: c’est le
résultat d’Ahlfors, cité ci-dessus.

PreUVE. Considérons f € Proj(Q2) avec (1.1). Fixons r, 0 < r < 1, et posons
G.1 gw) = &(f(wW)) + log|f' W) — [¥(f(rw)) + log(r|f"(rw))]
pour we D. Par I'inégalité: &(f(w)) = — log[(1 — |w|?)|f'(w)|]] + B on a alors:
gw) 2 —log(1 — [w’) — [¥(f(rw)) + log(r|f'rw))] + B dans D,

d’ou g(w) > + oo quand |w| — 1. Par conséquent, il y a a = o + ife D tel que
g(a, B) = g(a) < g(w) pour tout w = ¢ + ine D. Ensuite,

Ag(a) = gé&(a, ﬁ) + g'm(“, ﬁ) .2_ 0

parce que ge(a, f) 2 0 et g,y(, f) = 0.
Drautre part,on a

(32) 47'4g(w) =414, D(fW)If WI* — 47 AP (S W) f (rw))?
= exp[20(f(W)) + 2log | /W] — exp[2¥(f(rw)) + 2log(r |/ (rw))];

ici, les opérateurs laplaciens 4, 4, et 4, sont tenus par rapport a w,z = f(w), et
{ = f(rw), respectivement. Ainsi, inégalit¢ (3.2) avec 4g(a) = 0 donne que
0 =< g(a) £ g(w) pour chaque weD. Fixons we D et faisons r — 1 dans (3.1).
Alors, @(f(w)) — Y(f(w)) = 0 dans D, ou, & = ¥ dans Q.

PREUVE DU THEOREME 1. Toujours, ¢ = u si 4u = 4e** dans Q par la remar-
que aprées notre lemme. Ensuite, sous la condition (1.2), on peut appliquer notre
lemme a4 @ = u avec Au < 4e? et ¥ = ¢g,. Alors, u = .

N.B. (I)lest facile d’étendre le théoréme 1 aux surfaces S de Riemann qui sont
hyperboliques, ou, plus précisément, qui admettent D comme leur revétement
universel. Dans ce cas, du(z) dxdy 2 (ou <)4e*® dxdy est tenue en termes des
parameétres locaux z = x + iyeC.

(II) Si Q est simplement connexe, alors u 1a satisfait (EDL) si et seulement si
u =log{|y¥'l/(1 — |Y¥|?)}, o0 y: Q — D est une fonction analytique dans Q dont la
dérivée n’annule pas dans Q. C’est un résultat célébre de Liouville [L]. En effet,
v = 2u satisfait Av = 8¢” dans Q. En posant K = —4 dans [B, p. 27, Proposition
1.6] on a v = 2log{|¥'|/(1 — |¢|*)} dans Q. Pour Q simplement connexe, on
au < ¢q dans Q; c’est exactement:

(1 = W) IgWwI/(1 = lgWI?) = Po@) ™ W'EI/1 - W) = 1
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pour chaque z = f(w), feProj(Q), et g = o f: D - D. Clest aussi un résultat
direct d’une inégalité due & H. A. Schwarz et G. Pick, appliquée a g; voir [A2, p.

3]

4. Preuve du corollaire 2.

La fonction u = log[|f’|/(1 — | f]?)] satisfait (EDL) dans Q. I résulte donc du
théoréme 1 avec (2.2) que u = ¢, d’ou

11/ =1f1?) = P dans Q.

Soit g€ Proj(Q) et considérons la fonction composée h(w) = f(g(w)) dans E.
Alors,

(1 = W) [KW)/(1 — [h(W)I*) = Po(2) " | S I/(1 = I f(2)%) = 1

pour chaque we D, avec z = g(w). Donc h(w) = e(w — a)/(1 — aw),lel = 1 > |al. T1
n’est pas difficile d’observer que f est une transformation biunivoque entre € et
D.

N.B. Encore, on peut étendre le corollaire 2 aux surfaces de Riemann hyper-
boliques.

Dans le cas ou Q est du type fini dans le corollaire 2, et pour f: Q — D dont la
derivée ne s’annule pas dans ©Q, nous pouvons remplacer (2.2) par:

lim inf 30(z) | f'(2)l/(1 — 1f(2)|*) > O

quand z tend vers chaque point de 0*Q. De méme, dans le cas ot Q est admissible
dans le corollaire 2, et pour f: Q — D dont la derivée ne s’annule pas dans 2, nous
pouvons remplacer (2.2) par

If@I/A = 1@} > + oo

quand z tend vers chaque point de 0Q. Dans ce cas on doit employer le théoréme
2 démontré dans la prochaine section.

5. Preuve du théoréme 2.

Posons Q(n) = {ze C; dis(z, 2 U 0Q) < 1/n} pour les nombres naturels n. Alors,
Q(n) = Q(m) si n 2 m. Notons que tous les domaines Q(n) sont bornées, d’ou,
hyperboliques. Notons encore que Q U Q2 = () 2(n). Nous observerons que

n1

G < Q pour chaque domaine G <= C tel qu'on ait K = QU 02 pour chaque
ensemble K fermé (dans C), contenu dans G. Pour le voir, nous supposons qu’il
y a ze G\Q. Alors, nous pouvons trouver un disque fermé k = G, zek. Donc,
zek = QuUoQ, dou zedQ = o(Q U Q) = A(C\(Qu 09Q)). Ensuite, Il y a un
point de C\(Q u 02) dans k = Q U 0Q. C’est une contradiction.
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En remplagant oo par un point fixé de 2, on sait que Q est le noyau de la suite
{Q(n)} au sens de D. A. Hejhal [Hj, p. 7, et p. 10, Remark]. Il est facile d’observer
que Q est aussi le noyau de chaque sous-suite {Q(n;)} de {Q(n)}. Donc, Q(n) —» Q
au sens de Hejhal. Il résulte alors du théoréme profond [Hj, p. 8, Theorem 1, et p.
10, Remark], en termes de la densité de Poincaré, que Py, converge a P,
uniformément quand n — oo sur chaque ensemble fermé contenu dans Q.

En posant ¢, = ¢g, et en considérant la différence u — ¢, dans Q on
au(z) — ¢,(z) » + oo quand z tend vers chaque point de éQ. Il y a donc un point
beQ ou u — ¢, attend son minimum. Comme on vu dans la preuve de notre
lemme dans la section 3, on sait que lesinégalités: 0 < 4™ A(u — ¢,)(b) < e*® —
exp(2¢,(b)) donnet 'inégalité: u = ¢, dans Q. En faisant n - oo dans Q nous
obtenons que u = ¢, dans Q.

EXEMPLES. (i) Pour les contre-exemples, nous considérons, d’abord, le
demi-plan X = {z;Re z > 0}, étant non borné (donc, non admissible), pour que

¢5(z) = —log(2x), z=x+iyel.
Posons F(z) = (¢* + 1)/(¢* — 1), de sorte que F(X) = Z\{1}, et encore, posons:
u(z) = ¢ (F(2)) + log|F'()| = log[e¥/(¢?* = 1)], z=x + iyeX.

Alors, u est une solution de (EDL) dans X, et u(z) - + o0 quand z tend vers
chaque point de 0, axe imaginaire. Mais,

u(z) — ¢5(z) = log[2xe*/(e** — 1)] » — 0

quand x — + oo dans Z. Alors, I'inégalité: u = ¢, n’est pas vraie dans Z.
(ii) Le domaine D, = D\{0} n’est pas admissible (et encore, est du type infini)
et

@p,(z) = —log[2]z|log(1/|z])], ze€Ds.
Pour une constante a, 0 < o < 1, la fonction
u(z) = ¢pllz|”) + log(a|z|*~") = log[afzl*~ /(1 — [z1*%)]

satisfait I'’équation (EDL) dans Dy et u(z) > + co quand z tend vers chaque point
de dD,. Mais,

20 |z|*log(1/|z
u(2) — b, (2) = log 2 108 QD
1 — |x]
quand z — 0€0Dy. Alors, u = ¢p, dans D, est une faute. Encore on a
u(z) + log dp,(2) = log[alzl*/(1 —|z1*)] = — 0

pour z - 0€0Dy.
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6. Un exemple de Q.

Toujours, 2"*3 > 3n(n + 1)(n + 2) pourtoutn = 9. Pourn = 9,a, =1 —n" et
r, = 27", posons

4,={z|z — a,| £r,} et encore Q = D\< U A,,);
n=9

les disques 4, et 4,, sont disjoints pour n 3 m. Alors, Q est admissible. Considé-
rons les domaines annulaires:

An = {27 < |Z - anl <ap+y — Ay — rn+1}’ n % 9.
Alors, A, = Q pour n = 9, et de plus,
mod An = (27[)_1 log((an+1 — a, — rn+1)/rn) - +®

quand n — + c0. Dong, il résulte de [BP, p. 478, Corollary 1] que Q est du type
infini.

7. Une candidate de la densité P, pour 2 < R", n = 3.

n

1/2
Soient ax = (axy,...,ax,) et |x| = <Z xf) pour aeR et pour un point

j=1
x = (xq,...,X,) de l'espace euclidien R" (n = 3). L’¢lément de la métrique de
Poincaré de la balle B = {|x| < 1} est Pg(x)ds, o Pg(x)= (1 —|x|>)7?, et

n 1/2
ds = < Y dxf) . Alors, la fonction
j=1

PB(n - l/Z(n _ 2)— 1/2x)(n —-2)/2
satisfait ’équation:

(7.1) Au = yln*Din=2)

dans la balle {|x| < n'/*(n — 2)'/?}, ou 4 = Y 8*/0x} est laplacien.
i=1

Pour chaque domaine Q = R" ayant des hypersurfaces compactes, connexes,
lisses (de C*®, par exemple), et en nombre fini, comme sa frontiére 02, C. Loewner
et L. Nirenberg [LN, p. 253, Theorem 4, (a) et (b)] ont démontré qu’il y a une
solution ¢, > 0 de C* et unique de (7.1) dans Q telle que ¢qo(y) = + o0 quand
y tend vers chaque point de €. De plus, en désignant la distance de ye Q et 0Q
encore par dq(y), on a

3a(»)®~ D2 po(y) — (n(n — 2)/4)n -2/

quand y tend vers chaque point de dQ. De plus, si £ n’est pas borné, alors
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V"™ 2¢a(y) = (@) > 0

quand |y| - + oo dans ©; [LN, Theorem 4, (4.3)].

Soit Q un domaine du type spécifié par Loewner et Nirenberg et soit
Q, = {n**(n — 2)"/?x; x e Q} qui, sans aucun doute, encore satisfait la régularité
de leur sens. Posons

Po(x) = [dg,(n'(n — 2)'2x)]*"2, xeQ.

La fonction P, est alors une candidate naturelle de la densité de Poincaré de Q.
Eneffet, elle est exactement celle de Poincaré de Bsi Q = B. Encore, il y a bien une
raison pour Py, étre une candidate en termes de la courbure scalaire K(x, P,) dela
métrique Py(x)ds en x € Q. La fonction u = P§~1)/2 satisfait, en effet, 'équation
Au = n(n — 2Ju*2/®=2 dans Q. Donc, K(x, Pg) de Po(x)ds = u(x)*"~? ds en
chaque point x € Q est toujours —4; voir [LN, p. 247, Remark]. De plus, Po(x) ds
est compléte en ce sens que toute courbe a sa longueur infinie si elle tend vers 0.
La métrique Pq(x)ds est essentiellement celle de [LN, p. 246, (7)]. Il est intéres-
sant donc que

(7.2) da(x)Po(x) — 1/2

quand x tend vers chaque point de dQ, avec la constante absolue 1/2 indépan-
dante de la dimension, car,

3o, (n'3(1 — 2)'2x) = n'*(n — 2)?69(x), xeQ.
Et encore, si Q2 n’est pas borné, alors,
(7.3) Ix|?Po(x) > n™}(n — 2)~1e(R,)2 72
~ quand |x| —» + oo dans Q. En particulier, si Q est born¢, on a

0 < inf do(x)Pqo(x) et sup do(x)Py(x) < + oo.
xef xef

Retournons au cas Q < C pour un moment. Si 2 est simplement connexe, on
a A(Q2) = 1/4 et, de plus, si Q est convexe, on a A(Q) = 1/2; voir la section 2. Il est
intéressant de comparer ces faits avec (7.2). Il est connu que si Q2 de Q < C est
bornée mais Q n’est pas borné (donc oo est un point isolé de 0*Q et, d’ou Q est du
type infini) on a 2 |z| (log |z])Pa(z) — 1 quand |z] — + oo dans Q (voir la section 8).
Dongc, |z|2Pgy(z) = + oo quand |z| — + oo dans Q. Dans ce sens (7.3) montre une
difféerence entre les cas n = 2 et n > 2 pour R".

Notons finalemant que H. Yamabe [Yb] a considéré I’équation du type
analogue a (7.1) dans une variété riemannienne, de C®, mais compacte de
dimension au moins 3.
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8. Une allure de P,.
Soit oo est un point isolé de 0*Q de Q = C. Pour démontrer:

8.1) lim  (2|z|loglzl)Pa(z) = 1,

|z| » + 0,ze

nous tenons a, b de 0%, a + b, et nous considérons T(z) = (b — a)/(z — a). En
posant

oc={w;0<|w<d} et R=C\{0,1},
ou d est la distance de 0 et 0T(Q)\{0}, on a: 6 = T(R2) = R, d’ou
(8.2) 1/P,(w) < 1/Prg(w) < 1/Pgr(w)
en chaque we g. D’abord,
8.3 2 |wllog(d/|w]) = 1/P(w), weo.
D’autre part, I'inégalité de J. A. Hempel [Hm, p. 443, (4.1)] se lit:
(8.4) 1/Pg(w) = 2|w|(llog|wl| + cu), weR,
ou cy = I'(1/4)*/(4n?) = 4.376.... En combinant (8.2), (8.3), et (8.4) avec I'iden-
tite:

1/Po(2) = |z — al*/{lb — a| Prq)(w)}

pour w = T(2),zeQ,on a

2|z — allog(d|z — al/|b — al) £ 1/Po((2)

£ 2z — al(llog(Ib — al/lz — al)| + cx)
en chaque point zde T~ (o) = {|z — a| > |b — a|/d}. En conséquence, pour tout
ae 0Q fixé, on en conclut que

lim 2]z — allog|z — a|)Py(z) = 1.

|z| = + 0, zeR2

11 est facile d’observer (8.1).

Je remercie Yoshihiro Ohnita et Hiroyasu Izeki pour des conversations in-
téressantes et Shoichiro Takakuwa qui m’a appris le mémoire [LN]. Encore je
remercie Makoto Sakai qui m’a laissé voir une copie de [G1] dans son classeur
a ma demande, et aussi, Bjorn Gustafsson qui m’a envoyé une copie de [G1] en
répondant promptement a ma lettre de demande.
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APPROXIMATION BY SOLUTIONS OF
ELLIPTIC EQUATIONS ON CLOSED SUBSETS OF
EUCLIDEAN SPACE

PETER V. PARAMONOV! and JOAN VERDERA

0. Introduction.

In the last twenty years the question of how to reduce problems of qualitative
approximation by analytic or harmonic functions on unbounded closed sets to
the compact case has been often considered and different answers have been
given in a variety of particular cases. In this paper we provide a general method of
localization which applies to all instances previously dealt with and which
considerably simplyfies the available proofs.

As an example of the kind of results we are envisaging we mention Nersesjan’s
Theorem on uniform approximation by analytic functions of one complex
variable. Denoting by « continuous analytic capacity [17] we have

THEOREM 1. (Nersesjan [11]). Let F be a closed subset of the complex plane.
Then the following are equivalent:

(i) Each continuous function on F which is analytic on F° can be uniformly
approximated on F by functions which are analytic on some neighbourhood (de-
pending on the approximating function) of F.

(ii) a(D\F) = a(D\F®), for each disc D.

For compact F the above statement is just the well known Vitushkin Theorem
[17, p. 183] on rational approximation. To settle the case of unbounded closed
sets Nersesjan had to find a suitable new localization argument. Later on
Hadjiisky [6] discovered another way of localizing the problem which gave
a direct proof of (ii) = (i) without appealing to the compact case. This idea was
further exploited in [2] to deal with the analytic approximation problem on
general closed sets in I?, Lipschitz and BMO norms. Another interesting refer-
ence is [15].

! Partially supported by the grant 93-011-255 (Russian Foundation for fundamental research).
Received February 26, 1993.
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In Section 1 we give a short proof of Theorem 1 which already contains some of
the elements of our general method. To get a better insight into it we prove in
Section 2 the harmonic analog of Theorem 1 (see Section 2 for a precise state-
ment). In that proof the reader will find in action all the ingredients of our idea. In
Section 3 we present a fairly general context in which our localization method
works: we are able to deal with a homogeneous elliptic operator on R" with
constant complex coefficient, the approximation taking place in the norm of
a Banach space satisfying certain conditions.

In Section 4 we study weighted uniform analytic approximation in the plane
showing that the conditions required in Section 3 are, in some sense, sharp.

Our notational conventions will be standard. For example, C will denote
a constant, independent of the relevant variables under consideration and which
might be different in different occurencies. The open ball with center a and radius
dis denoted by B(a, 9). If Bis a ball, kB is the ball with the same center and radius
k times the radius of B.

1. Proof of Nersesjan’s Theorem.

The important partin Theorem 1 is (ii) = (i). Let us then assume that F is a closed
subset of the complex plane and that f is a continuous function on F which is
analytic on F°. Extend f continuously to the whole of C. We wish now to localize
the singularities of f by means of Vitushkin’s method. To this end take a covering
of C by discs (D;) of radius 1, which is almost disjoint, in the sense that each point
in C belongs to at most a fixed number of discs D;. Let (¢;) be a C* partition of

unity subordinated to (D)). Set f; =V, (f) = ;l—z— *(¢,;0f ). Then f; is continuous
on C, analytic on F°® and outside Dj, and [17, p. 150]
(1) If1I' = CN;lf b,

where C is an absolute constant and N; = |l¢;| + [|Ve;]. In this and in the next
section we will denote by || || the supremum norm on the set E and we will let || ||
stand for | |c. ’

Condition (i) implies that there exists C > 0 such that, setting F; = F n D;, we
have a(D\ F ;’) < Ca(2D\F)) for all discs D. Then Vitushkin’s Theorem gives (i)
with F replaced by F;. Therefore, for fixed j, there exists h;, analytic on a neigh-
bourhood of F; such that || f— hjllp, <n = ¢/(2’N;), where ¢ is a given positive
number. A well known modification argument, which we reproduce below for the
reader’s convenience, gives that in fact we can assume || f — h;|| < 5. To see this
setd; = f — h;. For some open neighbourhood U of F; on which h; is analytic we
still have ||d;||g < n. Extend d; from U to a continuous function on C, still denoted
by d;, satisfying ||d;|| < 5. Modify h; outside U in such a way that the identity
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h; = f — d;holds everywhere. Then h; is analytic on a neighbourhood of F; and
If = hill <n.

Define g; =V, (h;), so that for some absolute constant C we have by (1)
Ifi—gill =1V, (f — hy)ll £ CN;lIf — hj|l < Ce/2’. Tt is not difficult to see that
g=f—Y.(fj—g;) is analytic on some neighbourhood of F. Since

J
lf — gll < Ce, g is the desired approximant.

2. Uniform harmonic approximation.

In this section we will prove the following harmonic analog of Nersesjan’s
Theorem [5], [9].

THEOREM 2. Let F be a closed subset of R". Then the following are equivalent.

(i) Each continuous function on F which is harmonic on F°® can be uniformly
approximated on F by functions which are harmonic on neighbourhoods of F.

(ii) Cap(B\F) = Cap(B\F°), for each ball B.

Here Cap stands for the classical Wiener capacity of potential theory. For
F compact the result goes back to Deny and Keldysh [3], [8] in slightly different
formulations. For n = 3 the proof proceeds along the lines of the preceeding
section but for n = 2 a new difficulty arises owing to the fact that the fundamental

1
solution Elog |z| of the Laplacean 4 is unbounded at co. We shall therefore

concentrate on the proof of (ii) = (i) in the plane. Before starting with the details
some remarks are in order concerning Vitushkin’s localization operator for 4 in
dimension 2.

2
Let D be a disc of radius 8, p e C3(D) and set N(p) = Y, &|V/p|. Given

j=0
a continuous function f in C define V,f = log |z| ¥ (@ 4f), so that A(V,,f) =

@Af in the distributional sense. A simple computatlon [1] gives

1 1/1 1/1
VoS (2) = @(2)f(2) + D (log|ll * fAep)(z) — - <—C— *f 5<P>(Z) - <Z * f 5(0)(2),
and so

@ Vo fllp = CN(@)f s

the constant C depending only on 4. It is important to realize that we cannot
replace the left hand side of (2) by ||V, f|| because V,, f has a logarithmic singular-
ity at oo, and this fact is the only obstruction to the argument used in Section 1.

We proceed now to the proof of Theorem 2. Let F be a closed subset of the
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plane and f a continuous function on C which is harmonic on F°. Let (D;) be an
almost disjoint covering of C by open discs of radius 1 and (¢;) a C* partition of
the unity subordinated to (D;). For fixed j and given ; > 0 (to be specified later)
choose h; harmonic on a neighbourhood of F; = D; n F such that || f — h;| ;<
n; This is possible, arguing as in the preceding section, because we know that
Theorem 2 holds for the compact sets F;. Using the modification argument of
Section 1 we can furthermore suppose that h;is continuouson Cand || f — ;| <
n;- Set g; = ¥, (h;). The function f; — g; is harmonic outside D; and has a logar-
ithmic singularity at co. Thus, assuming that D; is centered at the origin,

fi2) — 9;(2) = a;log|z| + Hj(z), |z| > 1,

. . . 1
where H; is harmonic outside D; and at oo, and a; = —Q—T;J‘Acpj(f — h;)dx dy.

Hence, for some constant C; depending only on j, |la| < C;||f — hjllp, < Cjn;.
If D;  F then f; = 0,s0 we can take for granted that D;containsadisc D = C\F.
Let i be a C* function such that = 1 outside D and = 0 on 3D. Set L;(z) =
a;y(z)log|z — c|, where c is the center of D. Then L; is harmonic on a neighbour-
hood of F, |Ljllp, < Cjnj, and f; — g; — L; is harmonic outside D; and at co.
Therefore, using (2),

Ifi—gi—Lill = llf;—g;— j"z),. < V¢,(f - hj)"D, + “Lj”D,- = Cjn;.

Choose now 7; so that C;n; = ¢/2/, where ¢ has been given in advance. Set g =
f=Y.(f; — g; — L;). Itiseasy to check that g is harmonic on a neighbourhood of

J
F. Since | f — g|| < ¢ the proof is complete.

3. The main result.

The goal of this section is to describe a general setting in which our localization
method works.

We do not wish to restrict our attention to uniform approximation, so we start
by introducing a certain class of Banach spaces in whose norm the approxi-
mation will take place.

Following [12] we let V stand for a Banach space, whose norm is denoted by
Il I, which contains CZ, the set of test functions in R”, and is contained in (Cg)*,
the space of distributions. We assume that V is a topological Cg’-submodule of
(C%)*, which means that for feV and peCg

3 Kool = Co)fIl,
{f, ) denoting the action of the distribution f on the test function ¢, and

@ lefl = Co) S,
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where C(¢) is a constant independent of f.

Given a closed subset F of R" let I(F) be the closure in V of those f € V whose
support (in the sense of distributions) is disjoint from F. The Banach space
V(F) = V/I(F),endowed with the quotient norm, should be viewed as the natural
version of V on F. We will write || f| ¢ for the norm of the equivalence class in V(F)
of the distribution fe V.

We need also to introduce local versions of V and of V(F). Let ¥}, be the set of
distributions f such that ¢ f € V, ¢ € Cg. There is a natural Frechet topology in
Vioc given by the seminorms |f |, = ll¢nfls,, where B, = {|x| <m} and
¢,€CY is a fixed function taking the value 1 on some neighbourhood of B,,.
Define V,.(F) = V,./J(F), where J(F) is the closure in V}, of those distributions
in V.. whose support is disjoint from F.

We present now some examples (see also Section 4 in which a non-translation
invariant example of V is considered).

ExampLE 1. V = I#(R"), 1 £ p < 0. Clearly IZ(F), L5, and I§ (F) are the
standard spaces denotes by these symbols.

EXAMPLE 2. V = VMO(R"), the space of functions of vanishing mean oscilla-
tion. In [7] one finds an intrinsic characterization of VMO(F) involving only the
values taken by functions on F.

ExAMPLE 3. V = C™(R"), m being a non-negative integer. This is the space of
functions with bounded continuous derivatives up to order m endowed with any
of the standard norms associated to it. For example,

171 = sup 18]

lal=m
In this case C™(R"),. is just the space of functions with continuous partial
derivatives up to order m. Notice that, form = 1and F # R", C"(F)is not a space
of functions. With the help of the Whitney extension theorem, it can be identified
with a space of jets (see [ 14, Chapter VI]).

ExaMmpPLE 4. V = 1*(R"), s a non-integer positive real number. Writing s =
m + o, with m an integer and 0 < ¢ < 1, we have that fe°(R") if and only if
feC™R"), supw($)d < oo and w(0)d °—0 as 6 -0, where w(d) = sup

6>0 lal=m

sup [0°f(x) — *f(y)l. We set | f]| = [ fllcmmm + sup w(9)d7°.

x—y|<d
| lyor 0 < s < 1, 45,.(F) turns out to be the set of functions on F which locally
satisfy a little “o” Lipschitz condition of order s. For 1 < s, the remark concerning
jets made in the previous example still applies.

The approximating functions in our abstract theorem will not be necessarily
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analytic or harmonic, but instead they will be annihillated by a complex constant
coefficients homogeneous elliptic operator L of order r, as in [16].

We describe now the two basic assumptions on ¥ which make our localization
argument work.

First, the Vitushkin localization operator associated to L satisfies adequate
estimates. Let B be an open ball of radius 6, ¢ € Cg°(B), and set V,,f = @ *(¢Lf),
where @ is a fundamental solution of L and f a distribution on R”. We recall that
& can be taken of the form &(x) = &y(x) + P(x)log|x|, where Py(x) is a C®
function in R™\ {0}, homogeneous of degree r — n, and P(x) is a polynomial
which is either zero (this is the case if r < n) or homogeneous of degree r — n. We
will require that our Banach space V satisfies the estimate

©) 1Ve Nz < N(e, B)IIf1,

where N(g, B) is independent of f. The definition of | f||x, K = support of ¢,
immediately gives that (5) can be improved to

(©) IVo fllz = N(@, B flx-

Notice that (6) (or equivalently (5)) means exactly that V,, sends continuously ¥,
into V..

The proof of (5) for the examples considered above can be found in [1], [2],
[10], [12], [13], [16]. In [12] the reader will even find a proof of (5) for a wide
class of abstract Banach spaces.

Our second assumption on V is more technical. We require that for some
non-negative integer p one has

@) |0* @|lampeo,p) = a!e(R)'“', le] = p,

where &(R) = 0 as R — 0.
That (7) holds in the examples 1-4 follows from

@ 0% ()] < o Cl¥ x|~ 1D log |x]| + 1), x +0,

which is essentially equivalent to the real analyticity of ¢ outside the origin. For
instance, pis O for L= dand V = C™(C),and pis 1 for L = Jand V = I?(C). For
L= 4,V =C"(C),pis 1in the plane and p is O for all dimensions larger than 2.

Our next task will be to prove that (7) gives a sort of maximum principle for the
exterior of a ball and the norm of V. We start by discussing expansions of
potentials at co.

From (8)it follows that there exists k > 1 such that given any x + 0 we have an
0" P(x)

o!

expansion @(z) = Y. (z — %)% in the ball |z — x| < k™ !|x|, the series

laj20
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being absolutely convergent there. Consequently, given points a and x such that
|x — a| > ko for some 6 > 0, we have an expansion

dx—y= Y (_l)lalw_—_a)_

| o (y - a)a, ‘y - aI < 6’
alz0 .

the series converging in C*(B(a, 8)). Let T be a distribution with compact support
contained in B(a, d) and set f = @ * T. Then, for |[x — a| > ké
fG)=<KTo(x —y)) = ), c,0P(x —a),

la|Z0

wherec, = (— 1) (a!) "< T,(y — a)*, the series converging in C*(|x — a| > k9).

We would like to point out here that the above statement is not true for k = 1
as was claimed in [10] and [16]. The results proved there are not affected by this
missing dilation factor.

LeMMa 1. Let f be a distribution such that Lf has compact support and f(x) — 0
as |x| > oo. Then f= & * Lf.

PrROOF. f — (@ *Lf) is a tempered distribution annihillated by L. Thus
f = &=+ Lf + P for some polynomial P. To show that P = 0 set, for |x| - oo,

(@*L)(x) = Y 0" ()
laj 2k
where ¢, + 0 for some a with |a| = k. One can write [16, p. 161]
Y 0" P(x) = H(x) + Q(x)log|x|

la] =k

for some polynomial Q of degree r — n — k and some function H, C® outside the
origin and homogeneous of degree r — n — k. Clearly

©) f=H+Qlog|x| +g+P,

whereg = ) ¢,0*®. Arguing from the homogeneities of the different terms in
lal >k
(9), it is not difficult to conclude that P = 0.
LEMMA 2. Let B be an open ball and f a distribution in Vi, such that Lf = 0 on
R™\B and f(x) = O(x|™?) as x = co, where d = max{p + n —r,1}, p being the
integer appearing in condition (7). Then feV and || f|| = C| fll15.

ProOF. By Lemma 1 f = &+ Lf. Thus,forq=d —n+r=p,
f)= Y c,*P(x), xékB.

lal2q

Choose p € C¥(2B), ¢ = 1on Band Yy € C3(3B), ¥ = 1 on2B. Let us suppose first
that B is centered at the origin. Then, using the Leibnitz formula,
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ol feo| = IKLf, @(¥)x*D] = |<f Ll@(x)xPI £ Y, ol KL (@)x* 7P| =
18l=0

= i l” < (x)x)* 2 £, (o)),

181=0

where I is a differential operator of order r — |B| and in the sums above only
indexes f with o — feZ", are taken. Observe now that (3) and (4) hold with || f}|
replaced by | f ||, K being the support of ¢. Applying (3) and (4) in this sharper
form, we get

ol lcg] < Ala"CE |1 1135,
where 4 depends only on r and

C, = max C(L¢) + max C(y(x)x;),
IBl<r 15jsn
the constants in the right hand side being those appearing in (3) and (4) for the
indicated functions.
If R satisfies B(0, R) > kB, we get

I.f lamBe0, Ry = Z c,0° D <
lal2q R™B(0, R)
S Y @) Al CE | fllssole®)N L C I S35,
lal2q

provided R is large enough so that C,&(R) < 1.
It is easily proved that

1A = CUfl250,r) + If lrmseo, r)-
On the other hand

”f”zi(o,m = V:pfuzi(o,m <C "f“zi,

because of (6) applied to 2B(0, R), and so the desired estimate follows.

We are left with the task of removing the assumption that B is centered at the
origin. Let B = B(a, 6) and take o e C§(3B), ¢ = 1 on 2B. Then f = V,(f)and so
we get from (6)

(10) (bl 350,1a)+0) = C £ 135
Since Lf vanishes outside B(0, |a] + ),
(11) A1 = ClliflsBo. a1+

Combining (10) and (11) one completes the proof of the Lemma.
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We are now ready to prove our main result.

THEOREM 3. Let V be a Banach space satisfying (3), (4), (5) and (7), F a closed
subset of R" and f € Vi .. Then the following statements are equivalent.

(i) Given a positive number ¢ there exists g€ Vi, such that Lg = 0 on some
neighbourhood of F and || f — gl|r < &.

(i) Given a ball B and a positive number ¢ there exists g € V,o. such that Lg = O on
some neighbourhood of FN B and || f — gllp.5 < &.

ProoF. We only need to show that (ii) implies (i). Let (B;) be an almost disjoint
covering of R" by open balls B; of radius 1 and let (¢;) be a partition of unity
subordinated to (B;). Set N; = N(¢j,3B;). For fixed j and given n > 0 (to be
specified later) choose h;e ¥, such that Lh; = 0 on some neighbourhood of
Fi=FnB;and | f — hjllp, <n.

We claim now that h; can be modified to H;e V|, so that LH; = 0 on some
neighbourhood of F;and || f — H;|| < n. Using the definition of the normin V(F))
we find an open neighbourhood U of F;on which Lh; = Oand || f — h;||g < 7. Let
gjeVbesuchthat f — h; = g;on U and ||g;| < n. The distribution H; = f — g;
fulfills all requirements in the claim.

Set f; = V,(f) and G; = V,,(H)). If B; = F then f; = 0 and if B; = R"\F then
L(f;) = 0 on a neighbourhood of F. Hence, in what follows we will consider only
indexes j such that B; intersects 0F. For such indexes B; contains a ball
B = B(a,6) =« R"\F. Let yeC®(R") be 1 outside B and 0 on %B. Set
X =¥(x)P(x —a)and K; = Y c,0"y;, where the coefficients c, are defined by

lal<q
the expansion fj(x) — Gj(x)= Y, ¢, 0*®(x —a) and g = max{p,r —n + 1},
la| 20 .
p being the integer appearing in (7).
Since a!|¢c,| = |[{f — H;, L(g;(x)(x — «)*)>|, applying (3) we get the estimate

lcal £ Claj) IS — Hjll = Cla.j)n,

where C(a,j) is a constant depending only on o and j. Hence

IK;lls5, £ 2, Clajn 0% 1135, = Ca.jm,

lal<q

where now C(g, ) stands for a constant depending only on g and j.
On the other hand, the function f; — G; — K satisfies the hypothesis of
Lemma 2. Applying Lemma 2 and (6) we obtain

”fj - Gj - Kj” = Cj ||fj - Gj - Kj”:uij =
< GV, (f — Hpllaz, + Clg.j)n = C;Njn + C(g.))n = C(g,j)n.

Choose 1 so that C(q,j)n = &/2/, where ¢ has been given in advance, and define
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g=f—Y(fi— Gj—K;). Then || f — f] <& and Lg = 0 on some neighbour-
j
hood of F. This shows (i).

ReMARK. It is clear that Theorem 3 also gives the corresponding approxi-
mation results for classes of functions in the spirit of theorems 1 and 2. We also
would like to mention that small modifications of our arguments would prove
analogous theorems for Banach spaces V defined on subdomains of R".

4. Weighted uniform approximation.

Let w be a positive radial continuous function on the plane. Let V be the set of
continuous functions on C such that

[ fllo =suplf(2) w(z) < co.
zeC
If F = C is closed then, as it is easily seen, feV(F) if and only if || f|, r=
sup|f(z)] @(z) < 0, and the norm of V(F)is exactly || |, r. Conditions (3),(4) and

zeF

(5) clearly hold for any w. Our last result states that condition (7) with @ replaced
by 1/nz is equivalent to the fact that local analytic approximation implies global
analytic approximation.

THEOREM 4. The following statements are equivalent.

(i) Letfbe acontinuous function on a closed subset F of the plane. Iffor each disc
D and & > O there exists afunction g, analytic on some neighbourhood of F n D such
that | f — gllw.rnb < & then for each ¢ > 0 there exists a function g, analytic on
some neighbourhood of F such that || f — gll,.r < &

(i) Condition (7), with @ replaced by 1/nz, holds.

(iii) There exists a positive integer d such that iff € C(C) is analytic on C\D(0, §)
and f(z) = O(z| %) as z — oo then || f|lo £ C || f llw, B0, 35)-

(iv) There exists a positive integer q such that lim w(z)|z|™? = 0.

Proor. That (ii) = (iii) = (i) follows from Theorem 3. A simple computation
shows that (iv) = (ii). Thus we only need to prove that (i) => (iv).

If (iv) is not true then lim sup w(z)|z| "* = oo for all ¢ > 0. Set F = {zeC:
|z] 2 1}. Then the only function in V(F) which is analytic on F is the zero function,
as one can easily check using the maximum principle and the fact that w is radial.
Let now f be a continuous function on F, analytic on F° and such that it can not
be continued analytically on a neighbourhood of F. If g is analytic on a neigh-
bourhood of F and || f — gl|, r < 1 then f = g, which is impossible. Therefore
f can not be globally approximated on F, but a local approximation is possible
because || ||, is locally equivalent to the uniform norm. Thus (i) fails.
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SERIES REPRESENTATIONS OF LINEAR FUNCTIONALS

KARL KARLANDER

F. John [1] has given a series representation of the form f f(x)da(x) =Y. a,f(x,)
for Stieltjes integrals. The purpose of this paper is to prove the following
generalisation:

THEOREM. If X is a compact Hausdor{f space with a countable base then for any
continuous linear functional A on C(X) there exist sequences a, € R, x,,€ X suchthat

A(f) =Y a.f(x,) forany feC(X)

Proor. By the Riesz representation theorem this is equivalent to proving

(1) deﬂ = Z anf(xn)

where u is a bounded regular Borel measure on X, which we may assume to be
non-atomic. It is not difficult to see that there exist closed subsets E;, ,, 1 Sk <n
of X such that

(2) I”l (Ek,n N Ej,n) =0 if k =’=},
U Ein.=X, lim max|y|(E,) =0 and E,,<E;, , forsomej,
ksn k= k<n
and
@) fdp=tim Y p(Ee)f ()
n—wk<n

where y, , is any sequence such that y, ,€E,; ,. One can for example choose
a sequence E, , such that (2) holds and (3) holds for every f,, where f, is a dense
sequence in C(X), from which it follows that (3) holds for every f e C(X).

We may suppose the E, , ordered so that the E; , contained in E, ,_; come
first, then those contained in E, ,_; etc. We now construct the sequence a, in
blocks as follows: the first block is u(E, ), for n > 1 the nth block consists of

Received March 18, 1993.
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W(E, ,) for those E, , that are contained in E; ,_, followed by —u(E, ,-) and
then u(E, ,) for those E, , that are contained in E, ,_, followed by —u(E, ,_,)
etc. Choose x, such that x,eE; , where a, = + —u(E; ), and the same x is
chosen whenever E; ; occurs.

Then (1) holds. For if we sum to the end of the n first blocks we get

kZZ af(x) = kZ HEx n)f (Vi) = Jf du

From this it follows that if (1) did not hold we would have for some sequences
n(k) — oo, c(k), d(k) and ¢ > 0

Z WE; niy+ ) S Wjoniy+1) — Z WCE; ni) S (V. nity)

Jj=c(k) j=d(k)

>¢ forallk,

where c(k), d(k) are such that the expression inside the absolute value sign is the
sum of the first ¢(k) + d(k) terms of the (n(k) + 1)th block.

Let M = sup |f(x)| and ¢ = ¢/(8M + 7). Take r so large that max || (E; ,) < 6
k<n
if n > r. Let A be the set of all elements that are contained in () E; .4, for
jsdik)
infinitely many k. Since p is regular there is an open’'set B containing 4 and

a closed set C contained in A4 such that |u| (B — C) < 6, where C can be chosen to
be U E; n) for some m, k. By Urysohn’s lemma there is a continuous g such that

jzm
lgl £1fl,9 = f on C and g = 0 on the complement of B.

Choose h = r such that |u|(A — U E; ,u) and |u| (v E; ,u — A), where the
union is taken for all j < d(h), are both less than ¢ and

Pw—&mem<6mmsz)

We then have

)

Z MCE; nihy + 1)f()’j.n(h)+ ) — Z /"(Ej,n(h))f(yj‘n(h))
d(h)

c(h)

< Z ME; aiy+ DS Vjnmy+1) — Z HCE;, nwy+ )9V, neny+ 1)

c(h) c(h)

+

z ME; ny+ D9V ) nmy+1) — Z B(E, )9V, niy)
d(h)

c(h)

+

> HCE; i) S Djnt) — 2 B n)9Vonery)
d(h) d(h)
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It follows from the way the E, , were ordered and the choice of h that |u| (S) < 36
where S is the union of those E; ,4)+1 With j < c(h) that are not contained in C.

Z #(Ej, am+1)f (}’j. ny+1) — Z UE . n(h) + l)g(yj,n(h)+ 1)
c(h) c(h)

Hence

Z #(Ej,n(h)+ DS Wjonimy+1) — z W(E;, ngy+ )95, nmy + 1)

Ejnny+1ES Ejnny+1S8

< 6M.

A similar estimation of the other terms of (5) gives | u(E; g+ 1)f 0j.niy+1) —
N WE; i) f D)l < 6@BM + 7) = ¢, a contradiction which proves the the-
orem.

If we let X =[1,2], u=Lebesgue measure E,,=[(k— 1)/2" k/2"],
2"+ 1 £k 2" X, = (k — 1)/2" we obtain after a change of variables F.
John’s formula

Y (=1 /nf({lognflog2}) = log2 If(x) dx,

for all bounded Riemann integrable f, where {x} is the fractional part of x.
(It is clear that the above proof applies also to bounded Riemann integrable
functions.)
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AUTOMORPHISMS OF INDUCTIVE LIMIT
C*-ALGEBRAS

CORNEL PASNICU

Introduction.

After the remarkable results obtained in [2], [ 7] and especially in [8], the study of
C*-algebra inductive limits of finite direct sums of matrix algebras over com-
mutative C*-algebras (suggested by E. G. Effros in [5]), and also of their
automorphism groups, become obviously more attractive and important.

In this note we prove some results concerning mainly the automorphisms of
a certain class of C*-algebras which we call almost constant (see Definition 1).
These are some C*-algebra inductive limits of matrix algebras over commutative
C*-algebras, including many Goodearl algebras [10] of real rank zero [3] and, in
particular, all the Bunce-Deddens algebras [4].

The main purpose of this paper is to show that a similar type of results with
those given in [13] can be obtained for a large class of algebras. (Compare the
very recent work in a similar direction in [9]).

Let A4 = lim (C(X,, M), P, ) be an almost constant C*-algebra and con-
sider the UHF algebra B = lim (M), @y, m| M,m) © A. If moreover Ko(4) is
weakly torsion free (see Definiton 3) and A has cancellation it is shown that any
endomorphism of A4 is approximately inner with respect to the trace seminorm
(see Theorem 1 for a much more complete and general result). Necessary and
sufficient conditions for an automorphism of B to be extended to an automo-
rphism of A are given, provided that the (unique) trace of A is faithful (see
Theorem 2). A key fact in proving these results is that Bis dense in A with respect
to the trace seminorm (see Proposition 2b)). Also it is shown that the centralizer
of {® e Aut(B): & = &5 for some & € Aut(4)} in Aut(B)is trivial and if moreover
AN A" = C-1, then the centralizer of {® e Aut(A4): &(B) = B} in Aut(A)is also
trivial (see Propositions 3 and 4 for much more general situations.)

We shall present now some notations used in this paper. We shall work only
with unital C*-algebras. For a compact space X and a C*-algebra 4 we shall

Received March 17, 1992; in revised form March 1, 1993.
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consider the embedding A = C(X, A), where each element in A is seen as a con-
stant map on X and also the embedding C(X) f-> f®1,eCX)® A =
C(X,A). We denote by U(A) the unitary group of the C*-algebra 4. By
a homomorphism of C*-algebras we shall mean a unital *-homomorphism and
by an automorphism of a C*-algebra, a *-automorphism. We denote by
Hom(A4, B) the homomorphisms 4 — B and by Aut(A4) the automorphisms of 4.
By M, we mean the n x n complex matrices. Ky(A) will denote the K,-group of
the C*-algebra A and by a trace on A we shall mean a tracial state on 4. Let 4 be
a C*-algebra and let t be a trace on A. We shall denote by ||- ||, the seminorm on
A given by |lall, = t(a*a)}, aeA. When (x,),»; is a sequence in 4 and
lIx, — x]l; = O for some x € 4, we shall write T — lim x, = x.

This work was done while the author was visiting the Institute of Mathematics
of the University of Copenhagen (Denmark). The author is indebted to Erik
Christensen, George A. Elliott, Ryszard Nest and Gert K. Pedersen for their kind
hospitality and support and he is grateful to George A. Elliott for useful dis-
cussions.

Results.

We begin with some definitions:

DEerFINITION 1. We shall say that a C*-algebra A is almost constant if there is an
inductive system (C(X,, Mp), D, m) such that A = lim (C(X,, M), D, ) and:

1) each X, is a compact space

2) for any n < m, the homomorphism @, ,: C(X,, Mpw) = C(Xp, M) is
givenby:

P m(f) = diag(f o iis £ 0 G- o f o G

for any f'e C(X,, M), where ¢f,‘"m: X,, — X, are some continuous maps
(3) for any ne N we have:
lim card {i| ¢%,, is constant}-p(n) o
nsm- o p(m) -

ExaMPLES. Let 4 = lim (C(X, M,,), P,) be a Goodearl algebra [10] of real
rank zero, where X is a compact separable space which is not totally discon-
nected. Then A = lim (C(X, M), @,) is almost constant (see [ 10, Theorem 9]).
Note also that by Elliott’s remarkable classification results from [7], any
Bunce-Deddens algebra A [4] can be written as a Goodearl algebra
A = lim (C(S", M,,), D,) of real rank zero, where the multiplicity of the identity
map in each @, is 1 (use also [10]). Now it is obvious that
A = 1lim (C(S", M), ®,) is an almost constant C*-algebra.
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DEerFINITION 2. We shall say that (A4,B) is an inductive pair if A=
lim (C(X,, Mpw)), Pu, m) is an almost constant C*-algebra and B < A is the UHF
algebra B = lim (M, Dr,m| M)

DEFINITION 3. Let 4 be a C*-algebra. We shall say that K (A) is weakly torsion
freeif nx = ny = [1,]in Ky(A) for some ne N and x, ye Ky(A4), implies x = y.

The following Theorem shows that for certain C*-algebras, any two
homomorphisms between them are approximately inner equivalent in a weak
sense.

THEOREM 1. Let (A, B) be an inductive pair and et C be a C*-algebra with
aunique trace T and such that C has cancellation and K o(C) is weakly torsion free. If
@, ¥ eHom(A, C), then there exists a sequence (), in U(C) such that:

®(a) =1 — limu,Y(a)uf, acd
and
&(b) = limu, V(b)u¥, beB.
To prove this Theorem we shall need the following two Propositions:

PROPOSITION 1. Let A be a UHF algebra and B a C*-algebra with cancellation
and such that Ky(B) is weakly torsion free. If &, ¥ e Hom(A4, B), then there is
a sequence (Uy),> 1 in U(B) such that:

P(a) = limu, P(a)uf, acA.

ProoF. Denote 4 = lim (M), ?,), where each homomorphism &,: My, —
M, 1 1y is unital. Let (e{?); <; ;< pw be a system of matrix units for 4,:=
Since:

pn)*

pm)[ (D] = p()[ ()] = [15]
in Ky(B), by hypothesis it follows that:
®(ef)) = v, Y(eDoy

for some v, in U(B), n = 1. Define u,:= Y '™} ®(eP)v, P(ef?), n = 1. It is easy to
see that each u, is a unitary in B and:

D(x) = u, P(x)u¥, xeA,.
It follows that:
®(a) = limu,Y(a)u}, aeA.

REMARK 1. The statement and proof of the above Proposition is a slight
variation of a result of Effros and J. Rosenberg ([6, Theorem 3.8]); the argument
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is apparently due to Elliott. This argument has been used many times since by
various authors.

PROPOSITION 2. Let (A, B) be an inductive pair. Then:
a) A has a unique trace t.

b) B is dense in A with respect to the seminorm |- ||..
¢) If A has trivial center then B n A =C-1,.

ProOF. a) and b). Assume that A = lim(C(X, Mpm),Pnm) and
B = lim (M), Pn, mim,,,,) (= A) where:
‘pn,m(f) = dlag(f ° d)g:n’ e fo ¢:‘,,g|n)/p("»)a f € C(Xm Mp(n))
for some continuous maps ¢%,: X,, > X,, and:

. (i) .
lim card {i| ¢, is constant} p(n) -1
nsm-— o p(m)

for any ne N.
Denote A,:= C(X,, M), n = 1. Fix0 % ae A,for some n. Then, forany ke N
there is m(k) = m(k,n) > n such that:

card {i| P, is not constant} p(n)
p(m(k))

Let I,:= {i| qbﬁ,'?m(,‘) is not constant}. Define by € A, to be the element of A,
obtained replacing in @, ,,4,(a) the block ao ¢, with 0 only for i€ I,. Denote
by w: A, — A the canonical homomorphisms. It is obvious that (pmg(bx))kz1 is
a sequence in B.

<27%la| "2

Now, let ¢ be an arbitrary trace of A. Denote ,uuy = 0 © mg). We have:

| (@) — #m(k)(bk)”ff = || Py, m(@) — bi “3,,.(,(,

i . p(n)
= gk lae ¢ mall® p(mk)

o) _pm) ., L p)
< 2 . . —_
) = gy = el

< (card 1) [lall?

Hence, we have:

o (a(@) = Hm 0 (may(by)) = M At (b))

k- k— o

where A is the unique trace of the UHF algebra B. Since U ux(A;)is densein 4 in
k21
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the C*-algebra norm, it follows that A has a unique trace and Bis dense in 4 with
respect to the trace seminorm.

c) follows from the following more general fact: Let C be a C*-algebra with
trivial center and let ¢ be a trace of C. Consider a unital C*-subalgebra D of
C which is dense in C with respect to ||||,. Then D’ n C is trivial.

The proof is similar with that of [13, Corollary 3] and will be not given.

ProoF OF THEOREM 1. By Proposition 1 it follows that there is a sequence
(4n)nz 1 In U(C) such that

&o(b) = limu, P(b)uf, beB.
Since A has a unique trace denoted o (see Proposition 2a)), we have:
I®@)l. = llall, = IP@ll., aeA.

Define ¥,: A — C by Y,(a):= u,P(a)u}, ac A(n = 1). Then ¥,,D: (4, |"|l,) =
(C,|I-|l;) are linear and continuous. Since ||¥,(b) — ®(b)|.—0, beB and
(¥.(a)l. = llal, a€ A, by Proposition 2b) we deduce that ||¥,(a) — ®(a)|,. — O,
acA.

REMARK 2. Let (4, B) be an inductive pair and suppose that A4 has cancellation
and K(A) is weakly torsion free. Denote by 1 the trace of A. Then, if @ is an
endomorphism of 4, the above Theorem implies that there is a sequence (u,),> 1
in U(A) such that:

®(a) = v — limu,auf, acA
and
&(b) = limu,bu}, beB.

Note that @ isn’t approximately inner in general; indeed, e.g. by [13, Proposi-
tion 3] there are automorphisms of Bunce-Deddens algebras which don’t induce
the identity of the K;-group (see also [1, problem 10.11.5(b)] and [12]]).

Now we are interested to find necessary and sufficient conditions under which
an automorphism of the “canonical” UHF subalgebra of an almost constant
C*-algebra can be extended to an automorphism of the whole C*-algebra.

NOTATION. Let 4 be a C*-algebra with a unique trace 7, which is faithful. We
shall denote by L*(4) the completion of A with respect to the norm |- |.. The
induced norm on L*(4) will be also denoted by || ||.. If (x,),>; is a sequence in
(L*(A), || ||,) we shall denote by © — lim x, € L*(4) the corresponding limit.

THEOREM 2. Let (A, B) be an inductive pair, where A = lim (C(X,,, Mp@)), P, m)
as in Definition 1, B = im (M), Pn,m|M,,,,) and suppose that the trace T of A is
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faithful. Consider ® € Aut(B) and let (u,),> < U(B) such that ®(x) = lim u,xu},
x€B. Denote by p,: C(X,, M) — A the canonical homomorphisms. Then the
following two conditions are equivalent:

a) @ extends to an automorphism of A

b) © — limu, fu} and © — im u} fu, exist in A for any f€ ) pn(C(X,).

m=1
Moreover, when ® extends, it has a unique extension @ € Aut(A), where

&(x) = v — lim u, xu*
and
& (x) = 1 — lim u*xu,
for any x€ A.
The following rigidity result will be needed to prove the above Theorem:

LEMMA 1. Let (A, B) be an inductive pair and C a C*-algebra with a unique trace.
If &,¥ eHom(A4,C) and ®p = ¥ \gthen = V.

PRrROOF. In fact the folowing more general result is true:

Let M be a C*-algebra with a unique trace t and N a unital C*-subalgebra of
M such that N is dense in M with respect to | |,. If P is a C*-algebra with
a unique trace, , ¥ e Hom(M, P) and &|y = ¥ |y then ¢ = V.

The proof of this fact is immediate and similar with that of [ 13, Lemma 2] and
therefore will not be given.

ProOOF OF THEOREM 2. This proof is inspired by that of [13, Theorem 2].

First of all observe that the unicity of the extension (when it exists), follows
from the above Lemma.

a)=b). Consider #e Aut(4) such that 5,3 = ¢. By the proof of Theorem
1 and the above observation, we obtain:

B(x) = 7 — limu,xu*, xecA.

It follows that t — lim u, fu* = &(f)e A for any fe U #m(C(X,)). Working

m=1
with @ ! we obtain the other relations.

b) => a). Recall that by L*(4) (resp. L*(B)) we mean the completion of A4 (resp.
B) with respect to the trace norm || |, (resp. || ||,), where o = 1 is the trace of B.
Observe that by Proposition 2b) we have L%(A4) = L*(B).

If B is seen in its GNS representation in %(L*(B)) associated with g, we have:

&(x) = UxU*, xeB.
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Here U e U(%(L*(B))) and U(b):= ®(b), beB.
Since by a previous observation we have also U € U(%(L*(A))), one can define
& e Hom (A, B(L*(A)) by:

P(x) = UxU*, xeA,

where 4 is seen in its GNS representation in (L*(A)) associated with 7. It is clear
that &5 = @.

Consider an arbitrary element f'in | ) p.(C(X,,)). By a version of Kaplansky’s
m=1

Density Theorem (use a slight modification of the proof of [11, Lemma 3.11])

there is a sequence (by ), in B such that ||b, — f|l. = 0 and ||b,|| < || f|. Since

X, 1, 0 in A means x, %, 0 in B(L*(A)) when {||x,||} is bounded, we have:
&(f) = UfU* = so-lim Ub, U* = so-lim ®(b,)
= so-lim (so-lim u,b, u})
k on

It is not difficult to see that T — lim u,xu’* exists in L*(4) for any x € A (indeed,
the limit exists for all x € B, by Proposition 2b) Bis dense in 4 with respect to || - ||,
and |lu,xu¥||. = || x||, for any x € A and ne N). Hence:

v — limupbuy — v — limw, fuy | = lim Jup(be — Suzll. = b — fll

n n n

which implies that in L*(A4) one has:

7 — lim (r — lim u,b,u}) = v — lim u, fu¥.
k n n
Since 7 —limu,fu*eA by hypothesis and |x,[l, >0 in A means
X, —, 0in B(L*(A)) if {||x, |} is bounded, we can write:

@(f) = so-lim (so-lim u, b, u¥)
k

n

= so-limu,fufe A

n

But A4 is the C*-algebra generated by B and U Um(C(X,,)) and we already

knew that & belongs to Hom (4, #(L?*(A)) and <D(B) = B.Itfollows that $(4) < A
and as in the proof of a) = b) one obtains:

d(x) = 1 — limu,xu¥, xeA.
n
Repeating the above argument for &', where &~ '(x) = limu}¥xu,, x€ B,
finally we get &~ ! € Aut(A).
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The following two Propositions give, in particular, additional informations

about Aut(A4) and Aut(B), where (4, B) is an inductive pair. Their proofs are
similar with those of [13, Proposition 4 and Proposition 5] and therefore will be
not given.

PROPOSITION 3. Let A be a C*-algebra and let B be a UHF algebra which is

aunital C*-subalgebra of A. Then the centralizer of {® € Aut(B): & = (5| g for some
de Aut(A)} in Aut(B) is trivial.

PROPOSITION 4. Let A and B be as in the above Proposition. Suppose moreover

that:

a) the center of A is trivial.

b) A has a unique trace t.

c) B is dense in A with respect to the trace seminorm |- ||..

Then the centralizer of {® e Aut(A4): &(B) = B} in Aut(A) is trivial.
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WHEN DOES bvca(z, X) CONTAIN A COPY OF [,?

JUAN CARLOS FERRANDO*

Abstract.

Let X be a Banach space and let X be a g-algebra of subsets of a set Q. Denoting by bvca(E, X) the
Banach space of all X-valued countably additive measures of bounded variation defined on X en-
dowed with the variation norm, we show that if X has the Radon-Nikodym property with respect to
each element of ca*(Z), bvca(Z, X) has acopy of I, if and only if X does.

Our notation is standard (see [1] and [2]). In what follows X will be a Banach
space, Q2 aset and 2 a g-algebra of subsets of Q. We denote by ca(Z, X) the Banach
space of all X-valued countable additive measures equipped with the semivari-
ation norm. By ca(2) we denote the Banach space of all scalar countably additive
measures defined on Z provided with the variation norm, whose positive mem-
bers we denote by ca*(2). If peca*(Z)and 1 < p < co. L,(i, X) will stand for the
Banach space of all (classes of) X-valued Bochner p-integrable functions defined
on 2 equipped with their usual norms. By bvca(Z, X) we denote the Banach
space of all X-valued countably additive measures F of bounded variation
defined on X with the variation norm |F| = |F|(Q).

If ueca®(Z) we denote by bvca(Z, u, X) the linear subspace of bvca(Z, X)
formed by all those measures that are u-continuous. The linear operator
T: Ly(u, X) — bvca(Z, u, X) defined by (Tf)(E) = j g fdu (integral of Bochner) for
all Ee X, is an isometry onto if and only if X has the Radon-Nikodym property
with respect to p.

The main aim of this note is to demonstrate the theorem below. Our proof is
based upon the proofs of Lemma 4 and Theorem 2 of [4].

THEOREM. If X has the Radon-Nikodym property with respect to each

ueca*(2), then the space bvca(Z, X) contains anisomorphic copy of 1, if and only if
X does.

This result can be aligned with those given in [3] and [4], where conditions are

* This paper has been supported in part by DGICYT grant PB91-0407.
Received March 18, 1993.
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imposed on the spaces cca(Z, X) and ca(Z, X)in order to ensure that they contain
copies of I, and c,. We shall need the following lemmas.

LemMa 1 (Rosenthal, [7]). Let T be a bounded linear operator from |l into X. If
X does not contain a copy of l,, T is weakly compact.

LeMMA 2 (Mendoza, [6]). If 1 £ p < oo, then L,(u, X) contains an isomorphic
copy of 1, if and only if X does.

PrOOF OF THE THEOREM. The if part of the theorem is trivial. So we concentrate
on the converse. Suppose that bvca(X, X) contains a copy of [,. Let J denote
a canonical isomorphism from [ into bvca(Z, X) and let (e,) be the unit vector
basis of co,. We are going to define some useful linear operators (these definitions
have been taken from [4, Lemma 4]).

If X does not contain any copy of [/, then for each E in X the operator
Jg: 1, — X, defined by Jg(&) = (JENE) Véel,, is weakly compact by Lemma 1,
and therefore the series ) , Jze, is unconditionally convergent. Hence the oper-
ator T: I, — ba(2, X)defined by T¢(E) = Z,, ¢ Jre,foreachéel andeachEe X
is well-defined. It is bounded too, since if {E;, 1 < i < n} is a partition of Q by
elements of 2 and we write £":= (&4,...,£,,0,0,...,0,...), then

Y ATEEN = Y 1Y el = ¥ limy | Jg &) = lim, Y [JEHE)I|
i=1 i=1 i=1 i=1

< supy .Zl IJECE)] < sup |JE < supe 1711 1€ 110 = 111 1S 1o

Thus T¢ is of bounded variation for each £€l, and | T|| < ||J|. So setting
V.= z,, 27"|Je,|, clearly Je, e bvca(Z, v, X) for each ne N, and hence J&" << vfor
each £el, and eachne N. Now, since lim, JEE) (= TE,(E)e X)existsVE el and
VE € X, the Vitali-Hahn-Saks theorem guarantees that T¢ << v for each £el,.
Therefore T(l,,) < bvca(Z, v, X).

As Te,(E) = Jge, = Je,(E) for each E€X and each neN, then Te, = Je, for
each ne N and hence inf, | Te,|| > 0. Now a well-known theorem of Rosenthal
([17]) assures that there is some M < N with card M = N, such that the restric-
tion of T to I, (M) is an isomorphism. So the space bvca(Z, v, X) has a copy of /...
But bvca(X,v, X) is isometric to L,(v, X), since X has the Radon-Nikodym
property with respect to the positive measure v. Hence Lemma 2 applies to get the
contradiction.

COROLLARY 1. If X is such that each peca®(X) is purely atomic, then
bvca(Z, X) has a copy of 1, if and only if X does.
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ReMARK. If X has the Radon-Nikodym property with respect to each u in
ca*(X)and bvca(Z, X) has a copy L of ¢, then there clearly exists a ueca™(Z) so
that L < bvca(Z, u, X). According to a well-known theorem of Kwapien, [5],
X must contain a copy of ¢,.

COROLLARY 2. If X is a reflexive Banach space, then bvca(Z, X) does not
contain any copy of c,.

ProOF. Since X is reflexive, X has the Radon-Nikodym property and hence
does not contain any copy of ¢,. Therefore bvca(Z, X) cannot have a copy of ¢,.

PROPOSITION. Suppose that the o-algebra X is countably generated and that
bvca(Z, u, Y) is separable whenever Y is a closed separable subspace of X and
peca*(X). Then bvca(Z, X) contains a copy of 1, if and only if X does.

PrROOF. Let J be an isomorphism from [, into bvca(Z, X) and assume X has
not any copy of [,. Then define for each EeX the weakly compact linear
operator Jg as in the Theorem and denote by Z the closed linear hull of {Jze,,
neN, E e .o/}, where o/ denotes a sequence of elements of Z containing  which
generates 2. Obviously, Z is a separable Banach space.

Next we shall see that Jge, e ZVE € X. In fact, given a family & of elements of X,
denote by #* the family of all countable unions of sets of 4 and all the
complementary sets of sets of 4. Let w be the first ordinal of uncountable
cardinal. Set 2, = .o/ and for each ordinal a with 0 < o < w define 2, = {U {Zj,
B < a}}*. Note that Z; = X, VB < aand £ = U {Z,, « < w}. We shall proceed
by transfinite induction.

We know that Jge, € Z for each Ee X,. Suppose that,if0 < a < w, Jge, € Z for
each Ee X, with B < a. As 2, = {U{Z}, B < a}}*, choosing E = U {E,, ke N}
with E,eXy and f, <a for each k, then one has that Jge, = Je,(E) =

k

lim, Je,,( U Ej>eZ. On the other hand, if EeZX; with f <a, then
j=1
Joge, = .J]e,,(Q\E) = Je,(Q) — Je,(E)e Z.

Using the same notation of the Theorem, since TE(E) = Z,, ¢, Jge, for each
Eel, and Ee X, and since all Jge, € Z as we have just seen, we have TE(E) e Z for
each el and each E € X. Besides, reasoning as in the last part of the proof of the
Theorem, there exists a peca*(Z) such that T¢ << ufor each £el,,. This shows
that T is a bounded linear operator of [, into bvca(Z, u, Z). Thus Rosenthal’s
theorem implies that bvca(Z,pu,Z) has a copy of [,. But we suppose that
bvca(Z, u, Z) is separable, a contradiction.

ACKNOWLEDGMENT. The author is very grateful to the referee.
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AMENABILITY IN GROUP ALGEBRAS
AND BANACH ALGEBRAS

ANDREW KEPERT

0. Introduction.

In this paper, we will examine some aspects of the relationship between amenabil-
ity in groups and amenability in Banach algebras. While leaving specific charac-
terizations of these properties for the next section, we have the following results
from [13].

0.1. PROPOSITION. A locally compact group G is amenable if and only if L(G) is
amenable.

0.2. PROPOSITION. Suppose W and B are Banach algebras and v: U — B is
a continuous homomorphism with range dense in B. If B is amenable then B is
amenable.

0.2.1. CoROLLARY. If X is a locally compact Hausdor{f topological space, then
Co(X) is amenable.

0.2.2. CoroOLLARY. If H is a Hilbert space then X (H) is amenable.

Each of these Corollaries is proven by constructing an amenable locally
compact group G and a dense-ranged continuous homomorphism L}(G) — 2. It
is natural to ask whether any amenable Banach algebra 2 can be shown to be
amenable by a similar construction. It will be shown in Sections 2 and 3 that this
is not the case, and for certain classes of Banach algebras we will develop some
necessary and sufficient conditions for there to exist such a homomorphism.

The research presented in this paper was undertaken for the degree of Doctor
of Philosophy at the Australian National University, and I would like to thank
my supervisors Dr R. J. Loy and Dr G. A. Willis for their encouragement and
suggestions. Many thanks also to Professor B. E. Johson for his proof of
Proposition 2.3, Professors U. Haagerup and P. C. Curtis for the suggestion
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leading to the results in Section 3, and to Dr N. Grenbzk for the suggestion that
lead to the results in Section 4.

1. Notation and Preliminary Results.

Throughout, G,G,,... will denote locally compact groups, each represented
multiplicatively with unit denoted e. If H is a closed normal subgroup of G, Ty
will denote the epimorphism L!(G) — L!(G/H) as described by Reiter in [20,
3.3.2-3.5.3]. When G is Abelian, its dual group will be denoted I', and this will be
identified with @), the maximal ideal space of the group algebra L'(G). If  is
a commutative semisimple Banach algebra, the hull of a set X = U is
Z(X)={pePy: ¢(X) =0} and the kernel of a set S< &y is S(S)=
{aeW. p(a) = 0, (peS)}.

Let C,(G) be the space of continuous bounded functions on G, then M € C,(G)*
is called a mean when inf f(G) < M(f) < sup f(G) for each f e C,(G) with rng
f = R. A group G is amenable if there exists a mean M on C,(G) that is
left-invariant, that is, M(f) = M(,.f), (fe C,(G), x € G). Locally compact groups
that are Abelian or compact are amenable. There are many equivalent character-
izations to the above, including the existence of left and/or right-invariant means
on other function spaces on G, such as L*(G), UC(G), UC,(G),... and a variety of
structural conditions on G, referred to as Felner conditions. See [10] or [17] for
more on invariant means and Fglner conditions.

Let A be a Banach algebra, and let A & A (defined as in [3, Chapter 6]) be
endowed with its canonical structure as a Banach U-bimodule, given by
(@a®b)-c=a®(bc)anda-(b ® c) = (ab) ® c. Let m be the mapping A @ A — A
given by extending a ® b ab by linearity and continuity. An approximate
diagonal for A is a bounded net {d,},., € A ® A such that for each aec 4,
n(d,)a - a,and d,-a — a-d, — 0. If an approximate diagonal exists, then we say
that A is amenable. Again, there are other characterizations equivalent to this,
such as the condition that every derivation from 2 into a dual Banach U-bi-
module is inner (see [3, Theorem 43.9]), or that A has bounded approximate
identity and ker n, when considered as an ideal of the algebra A ® AP, has
a bounded approximate identity (see [8]).

We say a Banach algebra U has property (G) if there exists an amenable locally
compact group G and a continuous homomorphism v: L'(G) — 2 with range
dense in . Then as noted in the introduction, a Banach algebra with property
(G) is amenable.

We present some basic results on property (G) which will aid us in later
sections, when we will characterize property (G) for certain Banach algebras 2.

1.1. PROPOSITION. Suppose U and B are Banach algebras with property (G),
then A @ B and A ® B have property (G).
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ProOF. By hypothesis, there exist amenable locally compact groups G, and
G, and continuous homomorphisms v;: ['(G,) = A and v,: LY(G,) - B with
rngv; = A and rngv, = B. Then the continuous homomorphisms v, @ v,:
LNG) @ LNG,) > ADB and v, ® v,: LN(G,) & L}(G,) > A ® B have dense
range, so it suffices to show that LY(G,) ® L(G,) and LY(G,)® LY(G,) have
property (G). For this, note that the groups G; x G, and G, x G, x Z, are
amenable with

LY(G, x G,) = L(G,) ® LY(G,),
LNG, x Gy x Z,) = LG, x G,) ® C?
~ LNG, x G,) ® LG, x Gy),

and Tg, @ Tg,: L'(Gy x G,)® LY(Gy x G,) - LY(G,) ® L(G,) is an epimor-
phism.

1.2. PROPOSITION. Suppose G is a locally compact group and v: L}(G) » U is
a continuous homomorphism into a commutative Banach algebra, then there is
a locally compact Abelian group G’ and a continuous homomorphism v': LNG') —
with tngv = rngv'.

PrOOF. Let C be the closure of the commutator subgroup of G, then by [12,
Theorem 23.8, G/C is Abelian. We show firstly that the kernel of
Te: LNG) —» LNG/C) is ¢, the commutator ideal of L!'(G). The inclusion
F < ker T, follows from the observation that T¢ is a continuous homomorphism
into a commutative Banach algebra.

Conversely, by [20, 3.6.4], we have ker Tp = span{f— ,f: xeC, feL(G)}.
PutH = {xeG: f — .fe #,(f e L'(G))}, a closed subgroup of G, and let {e,},c4
be a bounded approximate identity for L!(G). For each x,yeG and each
feLXG),

”yxf" yen*xen*f” é ”y(xf - en*xf)“ + ”yen*x(f - en*f)"
_S_. ”xf_en*xf" + ”en” "f_en*f”
-0,
so that (e,*,e, — €, *,€,)*f =, f— . f Furthermore, (ye,*.e, —
xen*y,e,)x fe #, which is closed and translation-invariant, so that
«-1y-1f — f€ #and x~ 'y~ 'xye H. But C is the closed subgroup generated by
{x7'y"!xy:x,yeG},s0 C < H. Hence ker Tc < #.

Now, since U is commutative, ker T < ker v, and so vo Tg" 't LY(G/C) » U
defines a continuous algebra homomorphism, as required.
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2. Subalgebras of Commutative Group Algebras.

In this section we will examine closed subalgebras of commutative group alge-
bras, which we call group subalgebras, and for certain classes of these, develop
necessary and sufficient conditions for property (G).

By Proposition 1.2, a subalgebra 2 of L'(G) has property (G) if and only if there
is a locally compact Abelian group G’ and a continuous homomorphism
v: LY(G') -» L}(G) with % = tngv. Thus we can use the Theorem of Cohen, [6,
Theorem 1], which characterizes homomorphisms between commutative group
algebras. For this we define the terms coset ring, affine, piecewise affine and
proper. The coset ring of a locally compact Abelian group I', denoted #(I'), is the
Boolean ring generated by the opencosetsin I'. IfE = I',amapy: E — I"'is affine
if for any yy, y2, y3€E, Y(r17; 'v3) = Y)W () 'W(ys). If EST, a map
Y:S - I is piecewise affine if there exist disjoint Sy,...,S,e#(I') such that
§=8,v...uS,and for each 1 £ k < n,a|s, has a continuous affine extension
o E, = I'". (Here it is understood that E, is a coset containing S,.) If X and Y are
locally compact topological spaces then a map y: X — Y is proper if for any
compact C < Y, y ~}(C) is compact.

Then with v: L}(G') —» LY(G) as above, it follows from [6, Theorem 1] that
Y= {yel:v¥y) + 0}eRI) and o = v*|y is a proper piecewise affine map.
Furthermore, any such a uniquely determines a homomorphism v by the rela-
tions (1)) = f o a(y) if y€ Y and W(J)(3) = 0if y¢ .

In the paper [14], it was shown that for such a homomorphism,
Y = I''Z (rng v) and rng v = (), where

k(@) = {feLY(G): f = 0 off Y and f(y1) = f(y,) whenever a(y,) = a(y)},

which is closed. Thus we can classify the group subalgebras with property (G) as
follows.

2.1. ProposITION. If G is a locally compact Abelian group and U is a closed
subalgebra of L(G), then U has property (G) if and only if

(i) Y=I\ZA)eR(), and

(ii) thereis alocally compact Abelian group I'" and a proper piecewise affine map
oY - I'" with W = x(x).

We now consider specific classes of group subalgebras and develop necessary
and sufficient conditions for amenability and property (G). The simplest such
class consists of the closed ideals of commutative group algebras. For this, define
the discrete coset ring of a locally compact Abelian group I to be #(I',), the coset
ring of I with its discrete topology. We denote this #,(I'), and it is the Boolean
ring generated by all cosets in I'.

We will, in fact, mainly be interested in sets in
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R[(I') = {X e R(I): X is a closed subset of I'},

as these are the only sets in #,(I') that can be hulls of ideals. The fact that an ideal
has hull in £,(I') if and only if it has bounded approximate identity is vital in the
next theorem and subsequent results.

2.2. THEOREM. Let .# is a closed ideal of L(G), and put E = Z(.#). Then % is
amenable if and only if E € R.(I"), whereas £ has property (G) if and only if E € Z(I").
In either case, ¥ = #(E).

PRroOOF. The first part of this is [16, Theorem 1]. For the second, we have by
Proposition 2.1 that if # is an ideal with property (G), then Y = I'\E e #(I'), and
so Ee R(I'). Conversely, if E = Z(#) e #(I'), then E is clopen, and consequently of
synthesis, so that # = #(E). Moreover, if we define o Y — I to be the inclusion
mapping, then o is a proper piecewise affine map with k(x) = #(E), so by the
above discussion, .# has property (G).

REMARK. In the above proof, the epimorphism v: L'(G) — .# determined by
o has v(f) = xre: f. This is clearly a multiplicative projection. Then by [5,
Theorem 1], there is an idempotent measure ue M(G) with i = yp\g, so that v is
given by f+— f * u. This is a demonstration of the fact that M(G) is the multiplier
algebra of LY(G).

We now turn to another construction of closed subalgebras of L'(G) that are
amenable and yet lack property (G). Suppose U is a commutative Banach
algebra and H is a group of automorphisms of A. Put

Ay = {aeW: h(a) = a, (he H)}

certainly Ay is a closed subalgebra of A. We then have the following result,
whose proof in this generality was kindly suggested by Professor B.E. Johnson.

2.3. ProposITION. If U is a commutative amenable Banach algebra and H is
a finite group of automorphisms of N, then Wy is an amenable Banach algebra.

PrOOF. Let {d,},cs S A® A be an approximate diagonal for A, and let
H have identity 1 and cardinality N. Put K = max,.y ||h||.

The group H x H can be made into a group of automorphisms on Ay ® A
via (hy, hy)a; ® a;) = hy(a,) ® h,(a,) and then Ay ® Wy = (A ® W) x gy For

eachned, putd, = —JIVEheH(h, h)(d,). Then {d,},. is an approximate diagonal
for A with (h, h)(d,) = d,, for each he H; let M = sup,.4 || d,||. Now put
dy =e®e— [ (e®e—(h1)(d),

heH
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where this product is in the algebra U ® 2, and the term e ® e plays a purely
formal r6le as a multiplicative identity. It is clear that {d, },. , is a bounded net in
A @ A. Moreover, if (hy, h,)e H x H, then

(h1,ho)dy) = e® e — [] (e ® e — (hyh, hy)(d;)

heH

=e®e— [] (e®e~ (hhh;',1)d,) = dy,

heH

so that d” e Ay ® . Also, if ae Uy, then

la — an(d,)| = ahl_[ (e @ e — (h,1)(d,))
eH
Slla—and)l [] lle®e— (hid,)l
heH\{1}
< lla - an(d)ll (1 + KM)¥~!
-0,

so that {n(d,)},.4 is an approximate left identity for y. Finally, we have

dy= ¥ (=D¥T](h0d,),

G4ScH heS

so if we let S+ hge S be a choice function, then for each ae Uy,

ldy-a—ad/l< ¥ |hs0d,-a —a-(hs,ndl T] N0l lid;)

B4ScH heS\ths)

S Y sl lidy-a — hs @) d, |l (KM
o4ScH

=@" - DK|ld,-a — a-d, | (KM)¥"!

- 0.

Hence {d, },.4 is an approximate diagonal for 2, and so A is amenable.

So we see that if G is a locally compact Abelian group and H is a finite group of
automorphisms of L!(G), then LL(G) = LY(G)y is amenable. To determine when
LL,(G) has property (G), note that, by [6, Theorem 1], the automorphisms of L!(G)
are characterized by the piecewise affine homeomorphisms of I". Hence we can
consider H as a finite group of piecewise affine homeomorphisms I' — I'. Then

Ly(G) = {feLXG):foh=] (heH)}
= {feLYG): f is constant on each orbit H )}
So, applying Proposition 2.1, we see that L,(G) has property (G) if and only if
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there is a proper piecewise map o from Y = I'\Z(L},(G)) into some other locally
compact Abelian group such that L}(G) = x(x). However,

k(@) = {fe LYG): f(I'\Y) = 0 and f is constant on each set a~{a(y)}},

soit would seem that the partition of I' into orbits H(y) is identical to the partition
of I into sets on which a is constant. The following lemma delivers precisely this
result.

2.4. LEMMA. Let v: LY(G') —» L'(G) be a homomorphism between commutative
group algebras with Y e B(I') and a: Y — I’ as above, and let H be a finite group of
piecewise affine homeomorphisms of . If tngv = Ly(G), then Y = I and for v,
v2€l, oyy) = aly2) <> H(yy) = H(y)-

PrOOF. For each yeTI', H(y) is finite, and since LY(G)" separates points of I',

. . 1
there exists f € LY(G) with f(H(y)) = {1}. Put f = ﬁzh foh, then fe(LL(G)"
and f(y) = 1. Hence ye N\ Z(LY(G)) = Y,s0 Y = I..

Now suppose y;,7,€l" are such that H(y,) = H(y,). For each feLY(G),
v(f)€ Li(G), 50 v(f)y1) = v(f)(y2). Thus f(x(y,)) = f(*(y2)), and since A(I")
separates points, a(y,) = a(y,).

On the other hand, if H(y,) + H(y,), then H(y,) and H(y,) are finite disjoint
sets, so there exists feLY(G) with f(H(y,) = {0} and f(H(y,)) = {1}. Then

f= |17|Zuf° he(Ly(G)" = (k(@)” and f(71) + F(71), s0 aly1) + o(y2).

We now use the above to characterize property (G) in algebras L}(G) in the
case where H is a finite group of automorphisms of I'. This is a natural situation
to consider, as we then have a finite group of automorphisms on G, given by H*,
the group of adjoints of elements of H. Then Ly(G) = {feLG):foh* = f,
(h* e H*)}, which is L(G™"), a convolution algebra on the orbit hypergroup
GT = {H*(g): g € G}. The amenability of hypergroups and hypergroup algebras
is studied further in [23].

We will need a stronger characterization of the terms “coset ring” and “piece-
wise affine”. For more details of this, see [14, Section 2]. Define #(I") to be the
subset of (') of sets of the form S = Eo\({T Ex), where E,, ..., E,, are clopen
cosetsin I" and each of E,, .. ., E,, is a subcoset of infinite index in E,. Then E, is
the coset generated by S, which we denote Eo = Eq(S). Also, any member of (I')
can be represented as a finite disjoint union of elements of %,(I'), and so we can
suppose that in the definition of piecewise affine, each S, is in %(I") and each o,
has domain Eq(S;).

In the situation where k() = L}(G), we have seen that we have Y = I'. The
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following lemmas allow us to obtain further special properties of such a piecewise
affine map.

2.5. LEMMA. Suppose G is an Abelian group and E,, ..., E, are cosets in G such
that G = U'; E,, then for some 1 < k < n, E, is a subgroup of finite index in G.

Proor. Without loss, we have that for some 0 <m <n, E,,...,E,, are sub-
cosets of finite indexin Gand E,, . 4, .. ., E, are subcosets of infinite index in G. For
1 £ k < m,let Hy be the subgroup E E, ' < G, then H, is of finite index in G, and
so H = (T H, is of finite index in G. (If m = 0, put H = G.) For each k > m,
H N E, is empty or a coset of infinite index in H, so by [22, Theorem 4.3.3],
(Um+ 1 (H N E})is a proper subset of H. However, H = | )] (H n E,), so for some
k<m, HnE,#+ Q,so that H.n E, + . Hence H, = E,, and we are done.

2.5.1. COROLLARY. Suppose I'y, I, are locally compact Abelian groups and
o: I’y — I'y is a piecewise affine map. Then thereis aset S € Ro(I",) suchthat Ey(S) is
a subgroup of finite index in I'; and o|s has a continuous affine extension
oo Eo(S) = I'y. Further, if a is proper, then so is .

ProorF. By the discussion above, that is, [ 14, Lemmas 2.1 & 3.1].

2.6. LEMMA. Suppose S Ro(I') is such that Ey(S) a subgroup of finite index in
I, and H is a finite group of automorphisms of I'. Then § = (her h(S) € Ro(I) and
Eo(S) = ﬂ,,eH h(E(S)) is a subgroup of finite index in I'.

Proor. Suppose S = EO\(U'{' E,), as in the definition of #y(I'), and put
Eo = (\nen ME,). Each of {h(E,): heH} is a subgroup of finite index in I', so E,, is
a subgroup of finite index in I'. Also, § = Eo\(U,,e " U"’ (h(E) N Eo)) with each
h(Ek)mEo being empty or of infinite index in E,. Hence SeZo(I') and
Eo(8) = E,.

2.6.1. CorOLLARY. With 'y, I', and a: I'y — I’y as in Corollary 2.5.1, if H is
a finite group of automorphisms of I',, then we can obtain S with the additional
properties that h(S) = S and h(Ey(S)) = E(S), for each he H.

In the following theorem, we will use the natural generalizations of [6, The-
orem 1] and [14, Theorem A] to the situation where we have a homomorphism
between two algebras, each a finite direct sum of commutative group algebras.

Suppose we have A = LY(G,) @ -+ ® L'(G,), where G,..., G, are locally com-
pact Abelian groups. We can naturally identify @y with I'y ©w - - - w I',, the disjoint
union of the dualsof G,, ..., G,. We can also define the coset ringof I'y w---w Iy,
denoted #(I'y w---wT,),to be

{(YeTiu-ulyYnleRI) (1<k<n),

which happens to be the Boolean ring generated by all the open cosets of each of
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ry,...,I,. Similarly, for G,...,G,, locally compact Abelian groups, and
YeR(', w---wT,), wecan defineamapo: Y » I'y v+~ w T, to be piecewise
affine if we can partition Y into sets { Yj: 1 <j < m, 1 < k < n} such that for each
Jok, Yp € R(I)), oY) < Iy, and o = oy, : Yy — Iy is piecewise affine.

With such notation, it is elementary to show that a homomorphism v from
A=LYG,)® @ IL(G,) into B =LYG) @ - ®LYG,) is uniquely deter-
mined by the proper piecewise affine map v*|y, where Y = ®»x\Z(rngv). More-
over, the proof of [14, Theorem A] generalizes naturally to considering such
homomorphisms, giving the conclusion rng v = k(a). This is merely an extension
of the observation made in Section 4 of [14] regarding homomorphisms
LY(G) > LYG) @ -~ ® L'(G,).

2.7. THEOREM. Suppose H is a finite group of automorphisms of a locally
compact Abelian group I'. Then the following are equivalent:

(i) L}(G) has property (G),

(ii) the subgroup A = {yeTI: H(y) = {y}} is of finite index in I, and

(iii) Li(G) is isomorphic to a finite direct sum of group algebras.

ProOF. Supposing (i), then by Proposition 2.1 and Lemma 2.4, there is
a locally compact Abelian group G’ and a proper piecewise affine mapo: I' - I
such that the level sets of o are precisely the orbits of the action of H on I'. By
Corollary 2.6.1, there exists S € Z,(I') such that Ey(S) is a subgroup of finite index
in I', a|s has a proper continuous affine extension aq: Eo(S) — I”, and for each
heH, h(S) = S and h(E(S)) = E,(S).

Now, aoh = a, for each he H, so Ay = {ye Eq(S): ap° h(y) = ao(y), (he H)} is
a subgroup of Ey(S) with § < A,. Since Ey(S) is the coset generated by S, we have
that Ay = Eo(S), and s0 0y ° h = ag, (he H). Put £ = {y € Eo(S): ao(y) = aole)} =
ag H{ao(e)}, a subgroup of Eo(S). For each yeS, H(y) < S, so

Y eH(y) <> a(y') = a(y)
< 0o(y’) = ap(y) and y'€ S,

so H(y) = yZ n S. Thus {y e Eo(S): H(y) < yE}, a subgroup of Ex(S), contains S. It
follows that H(y) = y& for all ye E,(S). For each heH, let h: Eo(S) — Z be the
homomorphism defined by i(y) = h(y)y ™%, so that A = (),.z &~ *{e}. It remains
to be proven that = is finite, for then each h- 1{e} is of finite index in E(S), which
is in turn of finite index in I'.

By [14, Lemma 2.2], there exists y,. . ., 7x € Eo(S) such that Eq(S) = | JY yiS,
giving

E=EnE®= | N)’k(vk_lf«)ﬂs) = U nHON,

1sks 1<ksN

A

which is evidently finite.
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Now assume (ii). For each coset y4 of A, and each he H, h(yA) is the coset
h(y)A, so that H acts on I'/A. Let H(y,A),..., H(yyA) be the orbits of this action,
and for each 1 £k < N, let hy 4,..., h ,, € H be such that the cosets of A that
make up H(y,A) are {h;_j(pA): 1 <j < n .

For each 1 £k < N, H, = {heH: h(y,)ey.A} is a subgroup of H, and
A = {h(y)yx ': he H} is a subgroup of A. Furthermore, H, acts on y,A4 by
h(yA) = (7A) - (h(y)ye 1), that is, by translations by elements of A,. For
1 £j £ m, define oy j: hyj(yx)A = A/ Ay by oy j(hej(yi)A) = AA,. This is continuous
and affine, and since oz,;‘jl(lA,,) = hyj(ye)A Ay is finite, oy is also proper.

Each coset of A in I' is of the form hy j(y,)A, for some unique k and j, so we can
define a proper piecewise affine map a: I' - A/A; v - v A/Ay by “piecing to-
gether” all the ay;. For each ye T, say y = hy;(y:)A, we have H(y) = H(h (7 4) =
H(yA). Also o' (AAy) = hyj(yeAdi) = hyj(Hi(y,4). Hence

oMo} = U oa'@A)= () hy(HA) = Hpd) = H),
15jsme 1sjs=m
and as this holds for each ye I', k(a) = L}(G). Now, by the extension of Cohen’s
characterization of group algebra homomorphisms, as outlined above, a deter-
mines a homomorphism v: A(A/A,) @ - ® A(A/Ay) - A(I') with range «(x).
Also, ker v = £ (rng(«)) and since a is surjective, we have that v is a monomor-
phism. Hence Ay4(I') = k(o) = A(A/A) D - D A(A/Ay).
The last implication (iii) = (i) follows from Proposition 1.1.

So we see that the amenable algebras of the form L, (G) will usually fail to have
property (G). For instance, if I is connected, then for L}(G) to have property (G),
we must have 4 = I', and so H = {1} and L}y(G) = L'(G).

If G is a locally compact Abelian group, we always have the automorphism
n on G given by x+— x 1. (Although occasionally we have n = 1, as we will see.)
Then H = {1, n} is a finite group of automorphisms of G and L(G) = L;,,,(G), the
subalgebra of symmetric (or even) functions in L'(G). We now apply the preced-
ing theorem to this case

2.8. THEOREM. If G is a locally compact Abelian group, the following are
equivalent:

(i') Lyy(G) has property (G),

(i) G=Y,.Z, x [[sZ2 x F, for some cardinals a and b and some finite group
F, and

(iii") Li,(G) is isomorphic to a group algebra.

Proor. Suppose (i), then we have by Theorem 2.7 that A = {yel":
H(y) = {y}} is of finite index in I', say |[['/A| = N. Thenye ' =>y"eA=y" =
7~ N = 92N = ¢, so that I"is of bounded order. Thus, by [12, Theorem A.25], there
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is an algebraic isomorphism : Fz,,,—>z,-5,2,,i, where I is an index set and
{n;:iel} is a bounded set of integers greater than 2. Then {yeI": y> = e} = Aisof
finite index, so F=y '(},-,Z,) is a finite subgroup of I' with
(T/F)y = Y p=2Z,.

Let A, be a compact open subgroup of I', which we can assume to contain F. If
we now apply the argument of the above paragraph to A,, we obtain that
Ao = F x [].2Z,, for some cardinal a. By continuing with an argument similar to
thatusedin [12,25.29], or by a straightforward application of Zorn’s Lemma, we
can obtain a complement to A,, which will be isomorphic to ), Z, for some
cardinal b, giving G = F x Y, Z, x [ [+ Z>.

For the implication (ii") = (iii'), we show that for G =) ,Z, x [[,Z, x F,
Ly,(G) is isomorphic to a group algebra. Let H =) ,Z, x [[sZ,, so that
H?® = {e}and G = H x F.Let ¥: L(G) » L*(H) ® I'(F) be the natural isomor-
phism. It is easily verified that W(LL,(G)) = L'(H) ® I.,.(F). Now, IL_(F) is
a finite-dimensional commutative semisimple Banach algebra, so I}, (F) =
C" ~ 1'(Z,,), where m = dim(l},,(F)). Consequently L!,..(G) = L'(H) ® I(Z,,) =
LYH x Z,).

The final implication (iii') = (i) is trivial.

In light of the conclusion (iii') in Theorem 2.8, it is natural to ask whether we
can reach the same conclusion in Theorem 2.7. We will give an example of an
Abelian group G with a finite group of automorphisms H such that I};(G) has
property (G), but is not isomorphic to a group algebra.

Let U and V be as constructed in [15, p. 616-7]. That is, U is a countably
infinite torsion-free Abelian group and V is a non-isomorphic subgroup that is of
index2in U. Let ¥ = U, a connected compact Abelian group, then £ = Ann (V)
is a two-element group, say = = {e, £},and ¥/Z = Vis also compact and connec-
ted. Put G = U x Z,,sothatI' = ¥ x Z,, and define n € Aut(I') by 5(v,0) = (v,0)
and n(v, 1) = (v&, 1). Then n? = 1,50 H = {1,n} is a finite group of automorphisms
of G which clearly satisfies the criterion (ii) in Theorem 2.7. It then follows that
15(G) is isomorphic to a finite direct sum of groups algebras, and by applying the
construction in the proof of Theorem 2.7, we obtain [3(G) = I*(U) @ I*(V), which
has maximal ideal space ¥ v V/E.

Suppose [{(U) @ I'(V) is isomorphic to a group algebra L'(G’), so that there
exists a piecewise affine homeomorphism o: V' w ¥/Z — I". Thus I has two
connected components, which are necessarily affinely homeomorphic. It follows
that ¥ and ¥/ are topologically isomorphic, and so U and V are isomorphic.
(Contradiction.)

Many thanks to Dr Laci Kovacs for suggesting the group U used in this
example.
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3. A Non-commutative Amenable Banach Algebra Without Property (G).

In this section we examine some amenable Banach algebras which we show to
lack property (G) by methods entirely different to those in Section 2. For the
results presented in this section, I am indebted to a suggestion of U. Haagerup,
and its communication through P.C. Curtis and George Willis.

3.1. LemMA. Suppose U and B are unital Banach algebras and .# is a closed left
ideal of W with a left approximate identity {e,} 4, boundedby M > 0.Ifv: £ - B
is a continuous homomorphism with tngv B~ & O, then there is a unique
homomorphism 7: W — B extending v. Moreover, V(e)= e = lim,.,v(e,),
W(F) = W), and |7]| = M ||v]|.

PrOOF. Suppose a€.# is such that v(@)e B!, then any homomorphism
#: A — B extending v must satisfy #(x) = v(xa)[v(a)] !, (x e A). Define ¥ to be
exactly this. Then v is a continuous linear extension of v with v(e) = e.

For each ne 4, and each xe U,

v(xe,) — ¥(x) = v(x(esa — Q) [V(@)] "' -0

so  ¥(x) = lim,.,v(xe,). Hence #A)<v(F), |5l EM|v|, and e = V(e
lim,. 4 v(e,). Also, if x, ye U, then yae £, so v(xya) = lim,., v(xe,ya). However,
v(xya) = ¥(xy)v(a) and lim,, v(xe,ya) = [lim,.,v(xe,)]v(ya) = ¥(x)¥(y)v(a), and
since v(a)e A~ 1, we have that ¥(xy) = ¥(x)¥(y), as desired.

3.2. PROPOSITION. Suppose W is a Banach algebra with unit e, G is a locally
compact group, and v: L\(G) - U is a continuous homomorphism. If rngvn
A~ + O, then v has a unique extension to a homomorphism v: M(G) — U. Further,
Il = vl and V(LY(G)) = ¥(I'(G)) = ¥(M(G)).

ProoOF. Let 4 be the set of compact neighbourhoods of e€ G, and order 4 by
2. For each U € 4, take ey € Cgo(G) with support within U and |ley| = 1. Then
{ev}uea is a bounded approximate identity for L'(G), a closed ideal of M(G).
Hence, by Lemma 3.1, v has a unique extension to a homomorphism
¥: M(G) —» A, with e = ¥(J,) = limy, v(ey), |7]| = ||v|, and v(L'(G)) = ¥(M(G)).

Since 7(I'(G)) < #(M(G)), it remains to be proven that v(L'(G)) < 7('(G)). For
this it suffices to prove that v(Cgo(G)) < 711 (G)).

For this we can use a portion of the proof of existence and uniqueness of Haar
measure, as givenin[12,15.5-6]. (Asis donein [24, Lemma 2.1].) This states that
for f e Cgo(G) and ¢ > 0, there exists U e 4 such that if ge Cgo(G) is zero off
U with ||g|| = 1, then there exists hel}(G) with ||h|| < | f]| and || f — h*g| <.
Take Ve Awith V < U,and | v(ey) — e|| < &. Then ey € Cqo(G)is zero off U, so we
can take hel'(G) with || f — h*ey|| < & Then
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V() = ¥ = V(S — h*ey)ll + [F()(v(ev) — )|
S VLS = h*evll + 91 1Al v(ey) — el
<|vlle+ IvIlLf e
Hence v(f) e 7(11(G)).

In the following, Z/() is the centre of A, that is, Z(A) = {aeW: ab = ba,
(beWy.

3.3. THEOREM. Suppose W is a unital Banach algebra with property (G). Then
span{ab — ba: a,be A} N Z(A) = {0}.

PrOOF. Let G be an amenable locally compact group and v: LY(G) - U be
a dense-ranged homomorphism. Then U~ is open, s0 mgvn A + G and we
can apply Lemma 3.2 to obtain an extension V: M(G) — A with ||7]| = ||v|,
A = F(I'(G)) and #(4,) = e. Then

spafi{ab — ba: a,be W} = span {a¥(f) — ¥(f)a: ae, f €I'(G)}
= span {av(d,) — ¥(6,)a: ae W, axe G}
= span {¥(0,-1)av(d,) — a:ae W, xeG}.

Thus it suffices to show that for each ze Z(), there is an element of A* that
annihilates each 7(J,-1)av(d,) — a, but not z.

Take ze Z (). Let y € U* be such that Y(z) + 0 and ||y|| < 1. Foreachae ¥,
define the function Y, on G by ¥, (x) = Y(¥(.-1)av(d,)), (x€G). Then
SUPxec Wa(X)| < (V]2 llall, 50 Y, € 1%(G). Define ¥: A — 1°(G) by ¥(a) = Y,. Then
¥ is linear with |¥| < ||v|%. If aerngv, say a = v(f), then for each xeG,
Va(x) = Y ov(0,-1 % f % 5,), so Y, € Cy(G). Hence ¥ (rngv) = Cy(G), a closed sub-
algebra of [°(G), and since ¥ is continuous, ¥(A) = C,(G).

Now, if ae U and x, y € G, then

y(lP(a))(x) = ‘/’a(yx) = l/](6(6::‘ ‘)ﬁ(éy‘l)ai(éy)ﬁ(éx)) = W(ﬁ(ay")aﬁ(éy))(x)a
so that if M is a left-invariant mean on C,(G), then
Mo ¥(a) = M(,¥(a)) = Mo ¥(¥(5,-1)av(d,))

Hence Mo ¥eU* annihilates each ¥(6,-1)av(d,) — a. But y,(x) = Y(¥(0-1)
z¥(0,)) = Y(¥(6,-1)7(6,)z) = Y(z) is the constant function (z). Hence
Mo ¥(z) = y(z) # 0.

Suppose H is a separable Hilbert space, n is an integer greater than 2, and
H,,..., H, are orthogonal closed infinite-dimensional subspaces with H; + --- +
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H,=H. For each 1 £k=<n, let S, be a linear isometry H — H,. Then
Si,....8,€BH)and I = S¥S; == 8*S, = S8;8F + -+ + S,S*. Let @, be the
C*-algebra generated by S, ..., S,, which we call the Cuntz algebra on n gener-
ators. This algebra was introduced in [ 7], where it is shown not to depend on the
actual isometries S;,..., S, chosen, but only on n. In [21], it is shown that the
Cuntz algebras are amenable. However,

(STS1 — 8181 + = + (S¥S, — $,5%) = (n — DI e Z(0),

so we see that ¢, cannot have property (G).

This seems related to other properties of the Cuntz algebras related to amena-
bility. In particularly, the Cuntz algebras are amenable, but not strongly amen-
able. (Strong amenability is a property of C*-algebras defined in [13]. The Cuntz
algebras were shown to not be strongly amenable in [21].)

Suppose U is a C*-subalgebra of B(H), and v: L(G) — A is a homomorphism
with tngvAA~! + @. By Proposition 3.2, we have a homomorphism
I'(G) - A, which gives a continuous representation 7m: G — B(H) with
n(x) < ||v|, for each xe G. (cf. [18, p. 77].) Then by [18, Corollary 17.6], = is
equivalent to a unitary representation, that is, there is an isomorphism ¥: H - H
such that n": x+— ¥ ~'n(x)¥ is a continuous representation of G such that each
n'(x) is unitary. Then, by [13, Proposition 7.8], A’ = n(I}(G)) is a strongly
amenable Banach algebra. Moreover n(I}(G)) = ¥ n(I{(G)¥ = ¥ 'UAVY.
Now, if strong amenability was preserved by such a transformation, then we
could conclude that U is strongly amenable. Unfortunately, this avenue is not
open to us.

4. Other Constructions Preserving Amenability.

Having demonstrated that property (G) falls short of providing a characteriz-
ation of amenability, it is natural to ask whether other stability properties of
amenability can be used to provide a “constructive” characterization of amena-
bility in Banach algebras.

For this, define a Banach algebra U to have property (G') if there are closed
subalgebras {0} = Wy = A, = -+- = A, = Usuch thatforeach 1 <k < n, A, _,
is a closed ideal of A, and A, /A, _, has property (G). A repeated application of
[13, Proposition 5.1] demonstrates the amenability of such 2. It is also a simple
matter to show, using the fact that each U, factorizes, that each U, is an ideal of
A

Furthermore, algebras such as L'(G)*, where G is a nondiscrete locally com-
pact Abelian group, are easily shown to have property (G') while lacking prop-
erty (G). (To show the latter, consider LY(G)* as the closed subalgebra
LYG) + CJ, of M(G). This can be shown to lack property (G) by a simple
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application of Cohen’s characterization of homomorphisms LY(G,) = M(G,), [6,
Theorem 1].)

Unfortunately, examples we have already seen are sufficient to show that
property (G’) is not necessary for amenability. For instance, if n = 2, then the
Cuntz algebra ¢, is simple — it has no nontrivial ideals, closed or otherwise. Hence
the above chain of ideals could only be {0} = Ay = A, = @, and since O, lacks
property (G), it lacks property (G'). Also, if H is a group of automorphisms of R"
with 2 £ |H| < oo, then by [14, Corollary 1.6.2], L},(R") has no subalgebra with
property (G), and so LL(R") cannot have property (G').

This last example can also be used to show that similar attempts to use other
constructions that preserve amenability will also fail. In particular, it is possible
to show that if {2}, is a net of amenable closed subalgebras of A with union
densein U, and the approximate diagonals of the 2, have a common bound, then
A is amenable. (This is similar to the construction in [19, Proposition 1.12]. It
can be shown to be equivalent.) Thus we can define a property (G*) to be that of
having such a net of closed subalgebras, each having property (G). As already
noted, this cannot occur in L}(R"). It can also be shown, by quite different
methods, that the Cuntz algebras and many of the closed ideals of commutative
group algebras also lack this property. (In fact, the author’s PhD thesis presented
acharacterization of property (G®) in suchideals: .# < L'(G)has property (G®) f
and only if X = Z(#)e # (') and XE < X, where Z is the component of the
identity in I'.)

Given the examples Li(G), it seems that we will need to consider other
constructions, if we are to achieve the goal of obtaining such a characterization of
amenability. An obvious place to start is to consider allowing the use of Proposi-
tion 2.3, as this is the result that gives us the amenability of the algebras L}(G).
However, this is of little use in the non-commutative case, as it provides no
guarantee of the amenability of 2y, when 2 is not commutative. It is not known
to the author whether a noncommutative version of Proposition 2.3 does hold.

5. Dense-ranged Homomorphisms of Amenable Banach Algebras.

We are left with the prospect that we cannot characterize amenability of Banach
algebras in terms of amenable group algebras. The question arises as to whether
there is some other “canonical” class o/ of amenable Banach algebras which we
could use in place of the amenable group algebras in the definition of property
(G), to arrive at a characterization of property (G). That is:

5.1. QuesTION. Is there some class &/ of amenable Banach algebras such that
for each amenable Banach algebra U, there is a Be./ and a dense-ranged
continuous homomorphism v: B - A?
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Evidently, setting &/ to be the class of all amenable Banach algebras will
suffice, but we seek a class considerably smaller. By enlarging .o slightly, we can
ensure that &/ is closed under taking quotients by closed ideals. Then the above
question is equivalent to the one where “homomorphism” is replaced by “mono-
morphism”.

5.2. DEFINITION. Let U be a Banach algebra. A Banach subalgebra of U is
a subalgebra B of A, with its own norm by which it is a Banach algebra, such that
the injection B —, A is continuous.

With this definition, Question 5.1 is asking for a class of amenable Banach
algebras &/ such that each amenable Banach algebra U has a dense Banach
subalgebra B that is (isomorphic to) a member of .«/. In any such class o, we
must include each amenable Banach algebra 2 which has no dense amenable
Banach subalgebras. Define a Banach algebra 2 to be minimal-amenable if it has
this property, or equivalently, if every dense-ranged homomorphism from an
amenable Banach algebra into  is onto.

5.3. QuesTION. Which amenable Banach algebras are minimal-amenable?

The only examples known to the author of minimal-amenable Banach alge-
bras are those which are finite-dimensional, and those of the form C(X), where
X is a compact F-space. (See [9] for definitions, and [1, Theorem A] for the
relevant result.) These examples are not particularly illuminating, in that they are
also minimal, in that they have no proper dense Banach subalgebras. Also, for
such X, C(X) is either finite-dimensional or nonseparable, and so we ask:

5.4. QUESTION. Are there minimal-amenable Banach algebras that are not
minimal?

5.5. QUESTION. Are there infinite-dimensional separable minimal-amenable
Banach algebras?

A possible answer to each of these questions would be that commutative group
algebras are minimal-amenable. The result of [14] can be used to show that if
A has property (G), then any dense-ranged homomorphism % — L!(G)is onto, so
that any proper dense amenable Banach subalgebra of L'(G) must lack property
(G). It is interesting to note that two standard sources of proper dense Banach
subalgebras of group algebras can never yield an amenable algebra. The first of
these, Segal algebras, defined as in [20, Section 6.2] lack bounded approximate
identities, due to [4, Theorem 1.2]. The second construction is that of Beurling
algebras, defined to be L'(G, w), for some submultiplicative weight w: G — R*, as
in[20, Section 6.3]. By [11, Theorem 0], such an algebra is amenable if and only if
x - w(x)w(x ') is bounded. However, since L!(G, w) is assumed to be contained
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within L'(G), w is bounded below, and hence w is also bounded above. However,
this implies L'(G, w) = LY(G).

We should note that the term “minimal” (or “minimal-amenable”, etc) is only
supposed to indicate the lack of a certain type of dense subalgebra, and as such,
only refers to an ordering (by inclusion) of such dense subalgebras. It is tempting
to lift this to an order on the category of Banach algebras (or the category of
amenable Banach algebras, etc). Such an order would be defined by
A < B if there is a dense-ranged monomorphism A — B. However, it is possible
to have non-isomorphic Banach algebras U, B with A < B < A. We give an
example where both A and B have property (G).

Define dense Banach subalgebras U, W,, A5, B,, B, of Co(Z x R) by

A, =B, = AZ x R)
A, = {f€Co(Z x R): f(n,-)e A(R) (n€2)}
A, =B, = Co(Z x R).

Each of these has carrier space Z x R and U; <A, <A;. Also, B; =~ B, @ B,
and B, =~ B, ® B,, so that if we define

QI=QII®Q[2®QI3 and ‘68:231@%2
then %;%1®$1@82§Q{5$1@%2®%2§§B.

Suppose A = B, so that there is an isomorphism v: A — B. Now, each of A,
A,, Ay, B, B, has carrier space Z x R, and so v*|4,, is a homeomorphism

w(ZxRwExR)=»(Z x Ru(Z x R)w(Z x R).

Consider a coset E; = {n} x R < &g, then B|;, = A(R), and so W, ,, = A(R).
However, if «(E,) S @y, then A, , = Co(R). Hence «(E) is either one of the
lines in @y, or one of the lines in Py,. Similarly, if E, = {m} x R < &g, then
(E;) € Py, Hence v(UA; @A) =B, and v(A;) =B,. For r=1,2, put
Y, =07 !(Py) < Py, Then since the monomorphism viy,:UA; —» B, is
a homomorphism of group algebras, aly, is piecewise affine. Thus Y; e #(Z x R)
is piecewise-affinely homeomorphic to Z x R. By considering the structure of an
element of Z(Z x R), it is easily shown that Y, = (Z x R)\Y; e Z(Z x R) is also
piecewise-affinely homeomorphic to Z x R. Thus B,|y, = A(Z x R), and so
A, = A(Z x R). This is clearly not the case.
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ON THE LOCATION OF ZEROS OF SOLUTIONS OF
J"+ A(z)f = 0 WHERE A(z) IS ENTIRE

SHENGIJIAN WU

Abstract.

We investigate the distribution of zero-sequence of solutions of /" + Af = 0, where A4 is polynomial
or transcendental entire, near some rays. Results are obtained concerning the rays near which the
exponent of convergence of zeros of the solutions attains its maximal value.

1. Introduction and main results.

Since 1982 there have been many papers on the oscillation theory of the solutions
of the differential equation

(1.1 ff+A@)f =0,

where A(z) is an entire function. In this paper we shall investigate the distribution

of zeros of solutions of (1.1). We first consider the case where A(z) in (1.1) is

apolynomial of degree n = 1. It follows from the Wiman-Valiron theory that any
2

" ;’ [2, Th. 1]. The first

general reslt on the exponent of convergence of the zero-sequence of the solutions

is the following theorem which was due to Bank and Laine.

nontrivial solution of (1.1) is an entire function of order

THEOREM A [2, Th. 1). Let A(z) be a polynomial of degree n = 1. If f, and f, are
two linearly independent solutions of (1.1), then at least one of f1,f, has the property
n+2

that the exponent of convergence of its zero-sequence is

By generalizing a result of Hellerstein, Shen and Williamson [10], Gundersen
[5, Th. 1] proved a stronger result that the conclusion of Theorem A still holds if
the zero-sequence is replaced by the nonreal one.

In order to state our results, we need give some definitions.

Received April 16, 1993.
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Let g(z) be an entire function in the plane and let argz = 6 R be a ray. We
denote, for each ¢ > 0, the exponent of convergence of zero-sequence of g(z) in the
angular region Q0 —¢,0+ ¢)={z|0 —¢ < argz < 0 + ¢,|z| > 0} by 44.(9),
and by A¢(g) = lim 44 .(g9). We also denote the order of growth of g(z) by o(g). We

4
are interested in the distribution of those rays for which 4(g) = a(g). Our first
result that concerns the case where A in (1.1) is a polynomial is the following:

THEOREM 1. Let A(z) be a polynomial of degree n = 1 and let f, and f, be two
linearly independent solutions of (1.1). If for some real number 6,

—— loglog |[E(ré®)) n+2

(1.2 ,152 logr 2
where E = f, f,, then there exist 0, and 0, with 6, <0, <0, such that
2n n+2
0, —0,= p—— and g (E) = A,(E) = -
n+

. . 2 . L
Since E is of order 2 [2, Le., A], a routine application of the Phrag-

men-Lindelof principle implies that there certainly exists 6 such that (1.2) holds.
Thus we have the following:

COROLLARY 1. Let A(z) be a polynomial of degree n = 1, and let f, and f, be two
linearly independent solutions of (1.1). Then there exist tworaysargz = 0,0, with
2n n+2

0,—0,= "t such that max (4q,(f1), 4e,(f2)) = max(4e,(f1), 4e,(f2)) = 7 -
Since nz_f 2 < nforn = 1, Corollary 1 implies Gundersen’s result (Theorem
1in [5]).

We next turn to the case where A4 in (1.1) is a transcendental entire function of
finite order. It is well known that any non-trivial solution of (1.1) is an entire
function of infinite order. Let f; and f, be two linearly independent solutions of
(1.1)and let E = f, f,. Then A(E) = + oo is equivalent to o(E) = + oo [2, Le. B],
where A(E) denotes the exponent of convergence of zero-sequence of E. Unlike
the case of polynomial, when A is transcendental, the distribution of the rays
argz = 0 for which A4(E) = + oo largely depends on the growth of E itself along
the rays. If we denote for any a < f,

Q(a, ) = {zla < argz < B, |z| > O};
(o, B,r) = {z|zeQ(x, B, || <1};

and for an entire function g(z) in the plane,
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M@, Q(, f),9) = sup |g(re®),

as0<p

we may state our next result in the following form.

THEOREM 2. Let A(z) be a transcendental entire function of finite order in the
plane and let f,, f, be two linearly independent solutions of (1.1). Set E = f, f,. Then
Ag(E) = + o0, if and only if

—— loglog M(r, (0 —&,0 + &), E)

(1.3) lim
oo logr

+

for any ¢ > 0.
Especially, if

— logl :

(1.9)
oo logr

then we have A¢(E) = + oo.

Although Theorem 2 provides no information concerning the distribution of
zeros of solutions of (1.1) in terms of the entire function A(z), it is possible to get
some further results in some cases. We next consider some applications of
Theorem 2. Our starting point is the following theorem due to Bank, Laine and
Langley.

THEOREM B [3, Th. 1]. Let A(z) be a transcendental entire function of finite
order p with the following property: there exists a set H = R of measure zero, such
that for each real number 6 € R\ H, either

(1.5) @) r N|A(re’®)| - oo as r - + oo, for each N > 0,
or
(16) (i) f FIA()e®| dr < + oo,
0
or

(iii) there exist positive real numbers K and b, and a nonnegative real number
n (all possibly depending on ), such that (n + 2)/2 < p, and

(1.7) |A(re’®)| < Kr* forall r2=b.
Then if f, and f, are linearly independent solutions of
"+ Af =0,
we have

max (A(f1), A(f2)) = + oo.
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By using Theorem 2, we can prove

THEOREM 3. Suppose that A(z) satisfies the conditions of Theorem B. If f, andf,
are linearly independent solutions of f" + Af = 0 and Q(«, ) is an angular region

T
with f — a > —; such that there exists a ray arg z = 0 e(a, ) with

i0
(18) Tm loglog|A(re )|
ro oo logr

E

then there exists at least one ray argz = 0, €(a, f) such that

max (Ag,(f1), 4g,(f2)) = + 0.

From the Phragment-Lindelof principle, those 6’s such that (1.8) holds always
form a union of intervals. Thus we have the following:

COROLLARY 2. Under the assumption of Theorem B, if p = 6(A) > 1 and f, and
f> are two linearly independent solutions of f” + Af = 0, then there exist at least

two rays argz = 04,0, with0 < 6, — 0; < % such that

max {4g,(f1), 29,(f2)} = max{4g,(f1), 20,(f2)} = + 00

Especially, if p > 1, then at least one of f,; and f, has the property that the
exponent of convergence of its nonreal zero-sequence is infinite.

Recently there have also been some results concerning (1.1) with
A= Z Q;exp(jP)(— o < g < m < 4 00), where Q; and P are polynomials (see
[1] and [9]). In this direction, we have the following result.

COROLLARY 3. Let J = 1, and let Py,..., P; be nonconstant polynomials whose
degrees are d,, ..., d, respectively, and suppose that for i % j,

deg(P; — P;) = max(d;, d;).
Set

A(z) = i Bj(z)e"®
i=1

where, each j, Bj(z) is an entire function, not identically zero, of order strictly less
thand;. If f, andf, are linearly independent solutions of f” + (A + Q)f = 0, where

2
Q(z) is a polynomial whose degree m satisfies m < 6(A) = max(d;), then there
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exists at least one ray argz = 0 in every angular region Q(«, p) of opening larger

than such that

n
o(A)
max (4e(f1), 4e(f2)) = + 0.
If J = 1 in Corollary 3, we can prove a stronger result. For a polynomial
P@)=(x+iyz"+ ...+ aq
with x, y real, we define, for each real 6,
o(P,0) = xcosnfl — ysinné.
Then we can state our result as follows.

THEOREM 4. Suppose that A(z) = B(z)e"® % 0, where B(z) is an entire function
of order strictly less than the degree of the polynomial P(z). If f, and f, are two
linearly independent solutions of f" + (A + Q)f = 0, where Q(z) is a polynomial

m+ 2
with degree m satisfies

> < o(A), then for any 0 satisfying 6(P, 6) = 0 we have

max(4e(f1), 26(/f2)) = + 0.

2. Preliminaries.

We shall assume that the reader is familiar with the standard notation of
Nevenlinna theory (see [4] or [6]). Our proofs require the Nevanlinna character-

istic for an angle (see [4], [14]): f 0 < B —a < 2m and k = and ¢g(z) is

7
p—a
meromorphic on the angular domain (e, ff), we denote

k (/1 t* . oo dt
Agplr,g) = ;J <F - W) {log* lg(te™)] + log* g(te"”)|}———;

1 t

B
By(r,g) = %k‘ f log™ |g(re®)| sin k(0 — «)db,

bF\ .
Cylng)=2 3 (—I—-Lﬁ"—> sin k(B — ;

1<|by|<r |bvlk
DaB(r’g) = Aaﬂ(r’ g) + Baﬁ(rs g)a
Saﬁ(r’g) = Aaﬂ(r’ f) + Baﬂ(r9 g) + Cuﬁ(r’ g)’

where |b,| = |b,|e?* (v = 1,2,...,) are the poles of g(z) in Q(«, f), counting multi-
plicities. If we only consider the distinct poles of g, we denote the corresponding
angular counting function by C(r, ).
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For a positive function ¢(r), r €(0, 00), the order of ¢(r) is defined by

Tm log () )
oo lOGT

Especially the order of S,4(r, g) is denoted by a,4(g).

3. Lemmas required for the proof of Theorem 1.

LEMMA 1. Suppose that g(z) (& const) is meromorphic in the plane and that Q(a, )
is an angular domain, where 0 <  — a < 2mn. Then
(i) [4, Chap. 1] for any complex number a +

1
(3.1) Sap (r, - a> = S,4(r, g) + &(r, a),

where &(r,a) = O(1) (r —» oo);
(i) [4, P. 138] foranyr <R

’ k R +
(32 Ay (r,—g—) <K {(5) J log” T(19) 4y . 1o
g .t R

r

R
r +log—+1},
—r r

and
gl 4k gl
(3‘3) Ba (r’—>§-—m<r’_—>’
\"g)= 7 g
where k = ; T . and K is a positive constant not depending on r and R.

LemMMA 2 [13, 7, P. 193]. Suppose that Q(a, B) and Q(!', B') are two angular
domains such that o < o < ' < B and that g(z) is analytic on Q(«, B). If

(34) m log lOg M(ra Q(d,ﬁ), g)
logr

r— o

, o T
=p(9(aaﬂ)’g)> /3——oc 5

then we have for every a with at most one exception

(35) m lOg n(Q(aa ﬁ, r), g= a)
oo logr

Z p(Q, B),9),

where n(Q(a, B,r), g = a) denotes the roots of the equation g(z) = a, counting
multiplicities, in the sector Q(a, B, ).

LEMMA 3 [11, Chap. 74]. Let A(z) = a,z" + ... + ay be a polynomial with

. 2k
a, = |a,| " + 0(0 < a, < 2n). Define 6, = %’—I—for k=0,1,...,n+ 1, and
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fixe > 0.If f is a solution to f" + Af = 0, only finitely many of the zeros of f lie
n+1

outside | ) Q0 — &,0, + ¢). If for some k, f has infinitely many zeros in
k=0

Q(6, — &,0, + ¢), then

(3.6) QO —eb+en, f=0=( +ou»mr"?/"”("—§ 2

4. Proof of Theorem 1.

Let f; and f, be two linearly independent solutions of f” + Af = 0, where A4 is
a polynomial of degree n = 1. Suppose that
—— loglog|E(re”) n+2

4.1 li
“.1) ,‘f?o logr 27

where e Rand E = f f,. It follows from the Phragmen-Lindel6f principle that
there exists an interval [0}, 6,] containing 6, such that for all 6 € [, 6,] we have

i0
2 Tm loglog|E(re*)| _n+ 2‘
oo logr 2

By using Lemma 3, we need only to prove that there exist two rays argz = 64,
. 2 2
0, with 0,.€(8 1, 8,) such that 4 (E) = Ag,(E) = — ; and 6, — 0, < — : 5

this is not true, then there must exist an angular domain Q(6,, ,) satisfying the
following properties:

2n
0, — 0 > ——;
(a) 0, 1> S
(b) there exists a ray argz = 05 € (64, 8,) such that (4.2) holds for 65;

© AoE) < 52 for all 0 [8,,0,].

If

From (c), the definition of 4¢(E) and the fact that finitely many zeros of f only
lie outside of the critical sectors described in Lemma 3, we deduce that

_ — E=0 2
@3) T logn(Q(0, + ¢,0, — &,7), ) < n+
oo logr 2

for every ¢ > 0.
In order to obtain a contradiction, we choose a fixed gy > 0 such that

2
02""91—680>'n_‘7‘t‘“

12 and 05 €(0, + 3¢o, 0, — 3¢o). From this choice of g, we

have
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—— loglog M(r, Q(0, + 3&o,0, — 3¢&), E)

4.4) lim
o logr
+ + i63)
> Tim log™ log™ |E(re'®?|
oo logr
n+2 i

> .
2 0, — 6, — 4g,
By using Lemma 2, we have for all ae C with at most one exception

4.5) T logn(Q(O: + 260,60, — 2601, E=a) _n+2
. logr 2

Taking a fixed a € C such that (4.5) holds, we deduce from (4.5) that there exists
a sequence (r,) of real numbers with r, -» + oco(n — o) such that for every ¢ > 0
we have

n+2

n(Q(Ol + 280’ 92 - 280’ rn)’E = a) g r,2

—&

for all sufficiently large n.
Suppose that a, = |a,|€“*(v = 1,2,...) are the roots of E = a, counting multi-
plicities, in (0; + &9, 0, — &o). To compute gy, 1, g, -, (E), We first observe that

0y + 2¢9 < a, < 6, — 2¢, implies for k = 72———(57:_:2_8(; the inequalities
key < k(o, — 0, — &¢) < m — ke,

hence

4.6) sin k(a, — 6, — &9) = sin(key).

Moreover, we write a sum below as a Stieltjes-integral:

1 laf )« 1 la, "
Z( la, (2r,.)2“> 2 la [ Z(2rn>2"

™ dn(t 1 (m
=L ’:‘f) ) L ¢ dn()

where a short-hand notation n(t) = n(Q(6; + 2¢0,0, — 2¢0,t), E = a) will be
used. Application of Lemma 1 (i), the formula (4.6) and the partial integration of
the above Stieltjes-integrals now results in
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1
(47) S01+so,92—eo(2rm E) = SG, +e0,0, g9 <2rm E — a) + 0(1)

g C0,+eo,02—eo<2rm > + 0(1)

E—a

1 la,[* .
21 |Z| , (la—'k-——W>smk(a,,—01—so)+0(l)

I

2 y ( L llaft >sin(ka)+0(1)
1<|ay|<rn 'avlk (zrn)Zk 0

01 +2e0<ay<02—2g0

> 2sin(keo) {k J " t'f(f)k dt + n(,:")
1

n

(r,)(ry) k ™1
— ) + )" f 1 t* n(t)dt} + 0(1)

> (1 - 5‘~) o) ) + 01)

n

Therefore we have

m lOgSO,+£0,02—£o(raE) > n-+ 2 _

> k — 2
oo logr = 2 ¢

n+?2

As ¢ can be arbitrary small, 6, 4,0, ., (E) is at least —k>0.

On the other hand, in [2, P. 354], Bank and Laine proved that

4.8) E*=¢? ((%)2 + 2(?) - 4A)_1,

where ¢ # 0 is the Wronskian of f; and f.
By using Lemma 1 (i) in which we set R = 2r and the fact that E is of finite
order, we deduce that

’

E
Dg‘ +£0,0, —&o <r, E) = 0(1),

E/I EI E//
D0,+80.02—£0 (ra ——E_> = D0,+so,92—so ('3‘5) + D9,+£0,62——50 (r’—ET> + 0(1)

= 0(1)
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and

SO, +20,02— &0 (ra A) = 0(1)

Thus we have

- 1
(49) S0‘+50,92_80(r, E) = 0<C01+50v92‘30 (r,g) + 0(1)).

(4.7) and (4.9) show that the order of C—,,,“o,oz_so (r, %) is at least L ; 2

k>o0.
Therefore, by Lemma 3, there must be a critical ray argz=

0,e(0, + 9,0, — &) with infinitely many zeros around that ray. Hence, by

Lemma 3 again, we know that the order of n(Q(f, + &,0, — ¢,1), E =0) is

n+2
2

. This contradicts (4.3), proving theorem 1.

5. Discussion of Theorem 1.

REMARK 1. Theorem 1 is sharp. In fact, consider the equation

(5.1 f" —zf=0.

According to a result of Hille [11, chap. 7.4], there exist three pairwise indepen-

dent solutions fi(z) (k = 1,2,3) to (5.1) such that for z¢9<“—+32—'ﬁ

“‘8,

n + 2kn

3 + s) and |z| sufficiently large

2 = (1 + o()(—2)~*exp(Gef(— 1)+ tizH(1 + o(1))
n+2k+ D w42k +2n

Itis seen that f;(z) > Oin Q( - 8) as |z| tends

e
3 ’ 3

infinity and A(f,) =3 Thus, as Hille observed, Ao(fy) =3 only when

0=fi32k—n. Therefore  Ag(fifi+1) =3 only for 0=fi32ﬁf_ and

7+ 2k + Dx

—s

REMARK 2. Let 6, be as defined in Lemma 3 and let f; and f, be two linearly
independent solutions of (1.1). It follows from Lemma 3 that we have in fact
n+2

>

proved that there exists an integer k such that Ao (f1 /2) = 4o, , ,(f1/2) =
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It is also easily seen from the proof of Theorem 1 that if 4y (f; f2) = 1;—2 for

n+ 2

2 and the

some 6, €R, then we can find 6,eR such that 1o(f;f,) =

2n
. f0 .
magnitude of Q(6,,6,) or 2(0,,6,) is —

REMARK 3. When A(z) = EE-; is rational with n = di(A4) = degree P — de-

gree Q = 1in(1.1), using our methods with obvious modifications we can prove
that the conclusion of Theorem 1 remains true provided that E = f f, is tran-
scendental [8, Th. 1].

6. Lemmas required for the proofs of Theorem 2—4.

To prove Theorem 2 and Theorem 3, we need some estimates, restricted in an
angle, for the logarithmic derivative of an entire function. The first lemma in this
section is due to A. Mokhon’ko.

LEMMA 4 [12]. Let z=rexp(ip), ro+1<r and a <@ <f, where
0 < B < a < 2m. If g(z) is meromorphic in the angular region Q(a, ) and a,4(g) is
finite, then there exist K, > 0 and M; > 0 depending only on g and Q(a, ), and not
depending on z, such that

g'(2)]

(1 9

< K Mi(sink(p — o)) 2

forallz¢ D, wherek =

and D, is an R-set, that is, a countable union of discs

whose radii have finite sum.

"

As an application we may estimate the growth of %— where g is regular in an
angle.

LEMMA 5. Letz = rexp(igp),ro + l <randa < ¢ < f,where0 <  — a < 2m.
If g(z) is regular in Qa, f)N (12| = ro) and o,4(g) is finite, then for every

— a . .
€€ (0, B 3 ) except for a set of ¢ with linear measure zero, there exist K > 0 and

M > 0 depending only on g, & and Q(a, f), and not depending on z such that

9@

(62) 4)

< KrM(sin k(g — a)sinky(p — o — )2
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n

for all zeQ(a+ ¢ B —¢) outside an R-set D, where k= " and
n
ky=——""7—.
O Bp—a—2e

PROOF. Since 6,4(g)is finite, it follows from Lemma 2<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>