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Expository papers

Aequationes Mathematicae launches a systematic program of expository papers. We will endeavour to
publish at least one in every volume.

The existence of Room squares

R. C. Mullin and W. D. Wallis

Abstract

The authors give a condensed proof of the existence of Room squares for positive odd sides except
3 and 5. Some areas of current research on Room squares are also discussed.

1. Introduction

A Room square of side 2n+1 is a 2n+1 by 2n+1 array of cells and a set S of
2n+2 objects called symbols which satisfy the following conditions:

(1) Every cell of the array is either empty or contains an unordered pair of
distinct symbols from S.

(ii) Each symbol occurs in every row and column of the array.

(iii) Every unordered pair of symbols occurs precisely once in the array.

At the Fourth Southeastern Conference on Combinatorics, Graph Theory and
Computing [56], one of the authors, W. D. Wallis, announced the existence of a
Room square of side 257. This was sufficient to establish the existence of Room
squares of side v for all odd positive v with the exception of v=3 and v=5, for which
values no such squares exist. The fact that this square alone was needed to complete
the solution to the existence problem was the culmination of the work of several
researchers.

The search for Room squares has assumed many guises. Mathematicians have
tackled the problem algebraically (in terms of Room quasigroups, see [5]), graph
theoretically (in terms of orthogonal one-factorizations, see [47]), as well as combi-
natorially.

In this article, using hindsight, the authors extract a condensed version of the
proof of the existence of Room squares from the large volume of literature on the
subject. (See bibliography.)

AMS (1970) subject classification : Primary 05B30. Secondary 20N05, 05C99.

Received September 19, 1974.
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2. The starter-adder approach

Let G be a finite Abelian group of odd order 2n+ 1. By a starter in G we mean a set

X= {(xl, yl) (xza y2)""’ (xn’ yn)}’

of unordered pairs of elements of G such that:
(i) the elements x;, y1, X5, V3, ..., Xn, ¥, comprise all the non-zero elements of G ;
and
(ii) the differences + (x;—y;),i=1, 2,..., n, comprise all the non-zero elements of
G (generating each precisely once).
By an adder for X we mean a set A (X) of n distinct non-zero elements a,, a,, ..., a,
from G such that the elements {x;+a;, y;+a;},i=1, 2,..., n, are all distinct and com-
prise all the non-zero elements of G.

The following theorem is implicit in [43] and explicit in [28].

THEOREM 1. If a finite Abelian group of order 2n+ 1 admits a starter and adder,
then there exists a Room square of order 2n+1.

3. Fermat primes

The members of the sequence of integers F,=2>"+1; n=0, 1, 2,..., are called
Fermat numbers and any primes of the sequence are Fermat primes. The first five
members of the sequence, 3, 5, 17, 257, and 65537, are known to be prime but no
other Fermat primes are yet known. Fermat primes are of interest in the theory of
Room squares because of their appearance as exceptional cases in the Mullin-Nemeth
construction [29], given in the following:

THEOREM 2. If v=p" is a prime power not equal to 9 or a Fermat prime, then
the additive group of the Galois field GF (p") admits a starter and adder.

Although this theorem produces Room squares for most prime power sides, the
fact that it fails for Fermat primes caused complications in the solution of the general
existence problem for a considerable time. The fact that there existed a starter and
adder in .Z,, the cyclic group of order 9 was established, see [43], [59], before
Theorem 2, and although 15 is clearly not a prime power it is important to note that
a Room square of side 15 based on Z; 5 was found in [37] and [43].

Although chronologicaily the following result appeared rather late, we cite it here
as the most logical place in our development.

THEOREM 3. (Chong and Chan [7].) If p is a Fermat prime greater than or
equal to 17, then Z, admits a starter and adder.
In view of this result we have established the existence of Room squares of side v
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for all prime powers v except 3 and 5. At this point it is evident that a ‘multiplication’
theorem for Room squares is desirable. Although an early construction [5] given for
such a theorem proved incorrect [27], a proper construction was supplied by Stanton
and Horton [41].

THEOREM 4. If there exist Room squares of side v, and v,, then there exists a
Room square of side v,v,.

Note that this theorem would be sufficient to complete the existence problem if
squares of side 3 and 5 had existed. At this point we have established the existence of
Room squares for all positive odd sides v except possibly some of those divisible by 3
or 5. This difficulty is overcome by W. D. Wallis [47] in the following:

THEOREM 5. Given any odd positive integer n and a Room square of side v>n,
then there exists a Room square of side nv.

This theorem will be used in the special cases of =3 and n=35. It is probably evi-
dent that the above theorems are sufficient to cover all cases in the existence problem,
but the authors have encountered ‘proofs’ suggested by others to cover all cases which
in fact left gaps. Therefore we prove

THEOREM 6. Let v be an odd positive integer different from 3 or 5. Then there
exists a Room square of side v.

Proof. It is trivial that there is a Room square of side 1. Any positive integer v
may be written in the form 3°5°z where (15, n)=1 and a and b are uniquely deter-
mined. Let m(v)=a+b. Our proof proceeds by induction on m(v). Clearly by the
initial remarks of this proof and Theorems 2, 3, and 4 establish the fact that if m (v)=0
there is a square of side v. If m(v)=1 and v>5 then there exists a square of side v by
Theorem 5. Note that the restriction v> 5 excludes the two values of v such that m (v)
=1 for which no square of side v exists, namely 3 or 5. Now consider those values of
v for which m(v)=2. Such a value can be written in the form sn where m(n)=0 and
s=3°5" and a+b=2. But as pointed out squares of side 9 and 15 were shown to exist
in [43] and a square of side 25 exists by Theorem 2. Hence a square of side v exists for
all odd positive v for which m(v)=2. The rest follows easily by induction since if
m(v) >3, then v=nt where n is 3 or 5 and m(¢)>2, and therefore ¢ >9. Hence we can
apply Theorem 5 to obtain a square of side v. []

4. Other aspects of the Room square problem

A Room square on the set of symbols {0, 1, 2, ..., v} is standardized with respect
to 0) if cell (7, i) of the array contains the unordered pair {0, i}. (Since the property of
being a Room square is invariant under row and column permutations, any Room
square can in effect be standardized with respect to any of its symbols.)
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We can also associate with any standardized Room square of side 2n+1 a matrix
of order 2n+ 1, which is obtained by defining 4= (a; ;) where

a; ;=1 if cell (i, j)is not empty,
a; ;=0 otherwise.

A standardized square is skew if the associated matrix A satisfies
A+AT=J+1,

where A" is the transpose of 4 and I and J are the identity and all ones matrices
respectively of order 2n+1.

Although the existence problem for Room squares is solved, the corresponding
problem for skew squares is far from complete although it is known [55] that skew
squares exist for all but a finite number of positive odd orders. It is not yet known
whether a skew Room square of side 9 exists. The results of Theorems 2 and 3 are
skew squares, and the product of two skew squares as in Theorem 4 is skew. Apart
from side 9, the first side for which the problem lies open is 39.

Another aspect of the problem subject to much current activity is that of sets of
pairwise orthogonal symmetric Latin squares. A pair (R, C) of Latin squares on the
symbols 1, 2,..., v is an orthogonal symmetric pair if it satisfies:

(i) R and C are both symmetric;

(ii) R and C both have the ith diagonal entry i;

(iii) If R and C have (i, j) entries ¢ and o respectively where i < j, then there are
no numbers k and / for which k</and R and C have (k, /) entries ¢ and ¢
respectively except for i =k and j=1.

It is known that a standardized Room square is equivalent to a pair of orthogonal
symmetric Latin squares [11]. The problem here is for any v to find as large a set as
possible of pairwise orthogonal symmetric Latin squares of side v. In many instances
(v—1)/2 such squares have been found but there is no proof yet known to the authors
that this is best possible. Gross (see for example [15]) has recently obtained many
results concerning pairwise orthogonal symmetric squares, yet the problem remains
open.

Another aspect of the Room square problem worthy of consideration is the
balanced Room square problem. If the unordered pairs in a Room square are assigned
an order, then one can form 2v sets of symbols, namely the first elements of each pair
in a given row can constitute a set of elements, as can the second elements. If these
subsets constitute a balanced incomplete block design the ordered Room square is
said to be balanced. Balanced squares are particularly important for applications.
It is known that balanced squares can only exist for sides congruent to 3 mod4. The
reader is referred to [4] and [39] for more on this interesting topic.
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We close with a historical comment. Although Room squares were brought to the
attention of modern researchers in a brief note by T. G. Room [38] in 1955, they were
first introduced by Howell in 1897 for use in the bridge tournaments under the name
Howell rotations. This fact was first pointed out to the authors by B. Wolk and
N. S. Mendelsohn of the University of Manitoba.
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Research papers

Uber das Carnotsche Skalarprodukt in schwach normierten
Vektorriumen

S. Golab

Das Problem, wann ein normierter linearer Raum (ein Banachscher Raum) ein
Skalarprodukt zulaBt, entstand im J. 1934 [1] und seit dieser Zeit erschien eine lange
Reihe von Arbeiten die mit diesem Problem verbunden sind (J. von Neumann, B. D.
Roberts, S. Kakutani, G. Birkhoff, P. Jordan-J. von Neumann, M. Fréchet, R. S.
Phillips, F. A. Ficken, R. C. James, M. M. Day, E. R. Lorch, I. J. Schoenberg, H.
Rubin-M. H. Stone, S. Kurepa, J. Aczél, D. A. Senechalle, S. Gotab-H. Swiatak).

Die vorliegende Note soll einen weiteren Beitrag zu diesem Problem bilden.

Die Mehrheit von Autoren bedient sich der Benennung des linearen normierten
Raumes (linear normed space) im Sinne eines Vektorraumes (tiber dem Korper R
bzw C) der mit einer Norm |x| ausgestattet ist, welche den folgenden drei Axiomen
gentigt

I x#£0=|x|>0
I Joux| =]a |x|

I |x+y[<|x]+]yl.

In dieser Note betrachten wir einen Vektorraum V iiber dem Korper R, wobei
drei folgende Axiome iiber die Norm |x| vorausgesetzt werden:

1) x>0

2) |x|=0=>x=0

3) |ox|=a|x| fir alle «>0.

In diesem Falle werden wir sagen, daB V schwach normiert ist. Wir setzen
weder die Symmetrie der Norm |x| (die aus II folgt), noch die Konvexitit III,
voraus.

In einem Vektorraum, der a priori mit keinem Skalarprodukt ausgestattet ist,
kann das letzte mit Hilfe der folgenden (weiter Carnotschen genannten) Formel
definiert werden

@ (%, ) {IxI2+y12~ |y —x| |x—y|} (1)

AMS subject classifications: Primary 46CO05, 46C10. Secondary 39A30.
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Da die Norm |x| im allgemeinen nicht symmetrisch ist, konnte man auch eine
andere (nicht dquivalente) Definition annehmen und zwar

@*(x, ) EH X2+ y12 =y —x]*}. (1)

Bemerken wir, daBl ¢ immer symmetrisch ist, wihrend by ¢* dies nicht der Fall ist.
Es entsteht die Frage fiir welche zusitzliche Voraussetzung iiber ¢ (und mittelbar
iber die Norm) der Raum V zu einem euklidischen wird. Es gibt in dieser Richtung
mehrere Moglichkeiten.
Eine von diesen Méglichkeiten ist eben Gegenstand der vorliegenden Note.
Bekanntlich ist die Homogenitiit in den abstrakten euklidischen Rdumen (nach
der Terminologie von R. C. James [2]) eine der Eigenschaften des Skalarproduktes:

@ (ax, y)=ag(x, y). @
Im AnschluB auf die Homogenitét (2) kann der folgende Satz ausgesprochen werden.

SATZ 1. Ist der Vektorraum V schwach normiert und ist das Carnotsche Skalar-
produkt (1) in bezug auf die erste Verdinderliche x homogen, d.h. ist (2) fiir jedes aeR
und fiir jedes Paar von Vektoren x, y, die zu einer V, gehoren, erfiillt, so ist die Norm
der V, eine euklidische.

Im folgenden wollen wir aber die Forderung (2) abschwéchen. Die Abschwédchung
kann auf zweierlei Weise erreicht werden. Entweder kann man

(o) (Vx, ): 0 (ax, y)=a@ (x, y), (3a2)
fordern, oder aber

(3x, y) (Va): ¢ (ax, y) =0 (x, ). (3b)

Je nachdem (3a) oder (3b) vorausgesetzt wird, bekommen wir unten zwei verschiedene
Sitze. Es zeigt sich aber, daB bei den Abschwichungen (3a) bzw (3b) der Homogenitét
etwas anderes zusitzlich iber die Norm |x| vorausgesetzt werden muB.

SATZ 2. Besitzt das Carnotsche Skalarprodukt (1) die Eigenschaft (2) fiir a=—1,
d.h.

o(=x,y)=—0¢(x,y) fiiralle x,yeV, 4

und ist auferdem die Norm |x| stetig in V,, so diktiert die Norm |x| in V, eine euklidische
Metrik.

In einem endlich-dimensionalen schwach normierten Raum kann man sinnvoll
iiber die Stetigkeit der Norm sprechen.
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Beweis. Aus (1) bekommen wir

@ (=% y)=3{l=xI*+|y* =y +x|:|—y—x|}
was mit (1) verglichen
| =X+ 131> =y +xl| =y —x|= = x>~ | y>+ |y — x| |x—y|
ergibt, woraus, falls y=x hier eingesetzt wird,
| =X1%+1x1> = 2x| - | = 2x] = — |x]|2 — | x|> + 16| - |6]

oder
| —x|®+3]x|2—|2x| |- 2x|=0

folgt. Das Axiom 3) ergibt ferner

|—x|*—4|x| |- x| +3|x|>=0
oder
[l=x|=3]x(]-[I—x|—|x[]=0.

| —x|=3]x| fiihrt aber zu einem Widerspruch (fiir x#0) und so bleibt | — x| =|x|, was
besagt, daB die Norm symmetrisch sein muB. In diesem Falle kann man schreiben

{ @ (x, y)=3{Ix*+ |y =y —x|?}
(=%, y)=4{IxI*+1y* =y +x|3}

und beide obigen Relationen ergeben wegen (4) die Identitit

|y+x12+1y—x*=2{|x|*+|y/?}, %)
d.h. die bekannte Jordan-v. Neumann Relation. Die allgemeine Losung der Gleichung
(5) bekommt man nach [3] in der folgenden Form

Ix|=\/3F(x, y), (6)

Wo F(x, ) eine biadditive und symmetrische Funktion bedeutet. Bei der Voraus-
setzung der Stetigkeit der Norm |x| erhilt man also die Euklidizitit der Norm, womit
der Satz 2 bewiesen ist.

SATZ 3. Wenn es ein Paar (x,, y,) von zwei linear unabhdingigen Vektoren gibt mit
der Eigenschaft

@ (axo, Byo) =0 (xo0s Byo) fiir alle «, BeR (M
und falls

¢ (6, x)=0 ®)
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fiir jedes xeV,, wo V, den zweidimensionalen Vektorraum bedeutet, der durch x, und y,
aufgespannt ist, so ist die Norm |x| in V, eine euklidische Norm.

Beweis. Aus (1) bekommen wir
@ (0, x)=1{101*+|x|*—|x—0|-|0—x|} =1 [IxI*— x| | - x[]
da |0] nach 3) gleich Null ist. Laut Voraussetzung (8) haben wir also
|x|2=|x| |—x|=0 fiir jedes xeV,

oder |x|=|—x]|, was besagt, daB die Norm |x| symmetrisch ist. Statt (1) kénnen wir
also die Formel (1*) benutzen. (7) mit f=1 nimmt dann die folgende Gestalt an,
wenn das Axiom 3) beriicksichtigt wird

o2 0|2 + | yol? — loxg — yol > =0 {|x0|* + | yol* = | ¥o — X0l *} ©)
(9) kann nun infolge der folgenden kurzen Bezeichnungen
A xol2,  w iy’ vEyo—x0l>  (2>0,u>0) (10)
folgendermaBen umgeschrieben werden
laxg—yol?=Aa? +(v—pu—A) a+pu. (11)

Setzen wir jetzt in (9) — By, statt y, ein (S. (7)) und niitzen noch einmal das Axiom 3)
aus, das jetzt auf Grund der bewiesenen Symmetrie der Norm folgendermaBen
geschrieben werden kann
lowx| = || |x], 12)

so ergibt sich

o4+ B —|axo+ Byol* = ad-+af?pu—o|Byo+ Xol*
oder \

|owxo + Byol? = Aa® + pp* — ad—aff pu+a|xo+ Byol*. (13)

Der Reihe nach setzen wir in (11) f statt (— 1/a) ein und wenden noch einmal (12) an.
Wir erhalten dann

1 A A+pu—v
B‘;l"o"‘ﬁ)’olz'

AR
X0+ Byol? =A+pp*+(A+u—v) B. (14)

oder
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Einsetzen von (14) in (13) ergibt endlich

laxo + Byol? = Ao* + pup* —ad— o+ ad+oaup* +of (A+p—v)
oder
loxo + Byol? =A%+ (A+p—v) af +pp?. (15)

In der Formel (15) ist zundchst «#0 und f#0 vorauszusetzen, aber man bestdtigt
ohne Schwierigkeit, daB die Formel (15) ihre Giiltigkeit auch fir =0 bzw =0
behilt. In dieser Weise erhalten wir endlich

|oxo + Byol =</ Aa® + (A+p—v) aB+up* (4, n>0) (16)

fiir alle o, B, was besagt, daB fiir alle Vektoren x der V, die von der Norm |x| auf-
geprigte Metrik eine euklidische ist, w.z.b.w.

Bemerkung. Man kénnte sich im Satz 3 von der Voraussetzung (8) losmachen,
aber man miiBte statt (7) eine stirkere Annahme machen und zwar, daB es eine
endliche Anzahl von Paaren (x;, y;) linear unabhéngigen Vektorer in ¥V, gibt, fir
welche

¢(axi’yi)=a¢(xiayi) (i=1a2""’N) (7*)
erfiillt ist.

Der Verfasser ist den Referenten fiir Literaturangaben und einem von ihnen fiir
den kurzen Beweis van Satz 1 und fiir den Hinweis dankbar, dass in diesem Satze die
Voraussetzung (4) statt (2) gentigt.
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Note on the differentiability of solutions of class C”

of a functional equation with respect to a parameter

S. Czerwik

1. In this paper we are concerned with the functional equation

¢(x’t)=H(x’¢[f(x)’ t]’t)’ (1)

where ¢ (x, t) is an unknown function and f (x), H (x, y, t) are known real functions
of real variables and ¢ is a real parameter.

In paper [3] J. Matkowski has proved under assumptions which guarantee the
existence and uniqueness of*solutions ¢,eC" of equations

(p,,(x)=H,,(x, Dn [f,,(x)]), n=0,1,2,..., (2)

that ¢, tends to ¢, with derivatives up to order r, uniformly on every compact set.
We shall prove that under some assumptions, solution ¢ (x, ¢) of equation (1) is
of class C? with respect to the parameter ¢. For the linear equation

¢[f(x)’ t]=g(x, t) (P(x’ t)+F(x’ t)

this problem has been investigated in [1].

2. Let I be an interval and let 0el. We will assume the following hypotheses:

(I) feC"[I] and 0<f (x)/x<1 for xel, x#0.

We denote by Q a domain fulfilling the conditions:

(i) 2= R?, (0, 0)eQ; for every xel the set Q.= {y:(x, y)eQ} is a nonempty open
interval;

(ii) for every xel and teT, where T is an open interval, we have

H(f (x), 2 (x) t)=Q,.

(II) H is of class C" in Q and 0'*/H/dx'dy’, 0<i+j<r are continuous in Qx T
and H(0, 0, #)=0 for teT.
(IIl) HeC™*?[@x T], p>0.

AMS Primary Subject Classification: 39A15
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(IV) We assume

I (x)I<1, |x|<e, &>0, (3)
[f,(o)]'%g(0,0, t)<1, teT, 4)
[f'(o)]k‘ziy{(o, 0,0)#1, k=1,2,..,r—1, teT. (5)

By A[I,T] we denote the class of functions ¢:7x7T— R such that for xel,
teT o[ f(x),t]eQ, and ¢ (0, t)=0.

THEOREM 1. Suppose that hypotheses (1), (11), (IV) are fulfilled. Then equation
(1) for every teT has exactly one solution pe A[I, T]1 C"[I]. Moreover, there exists
an interval J <1 containing 0 such that (0'p/0x') (x, t), i=0,..., r are continuous in
JxT.

Here (0'p/0x") (x, t) denotes the ith derivative of the function ¢ at the point (x,1)
and (9'/0x") (@[ f (x), ]) denotes the ith derivative of the function o[ f (x), t].

This theorem is an immediate consequence of Theorem 1 in [3] and the details of
calculations are omitted here.

3. We shall prove the following

THEOREM 2. Let hypotheses (1), (II), (IV) be fulfilled. Then equation (1) has
for every teT exactly one solution peA[I, T|nC"[I]. Moreover, there exist the
derivatives (0" 'p|0x"0t") (x, t), i=1,2,..., p and they are continuous in J x T, where
J is an interval containing 0 and J 1.

Proof. The proof will be by induction with respect to i. On account of Theorem 1,
there exists exactly one function ¢(x,t) satisfying equation (1) and such that
(0'¢/ox") (x,1),i=0, 1,..., r are continuous in J x T.

a) First we shall show that the derivative (0"*!¢/0x"dt) (x, t) exists and is con-
tinuous in J x T.

Let us write (7 is fixed)

1
‘//(x, t h)gil [(P(X, t+h)-<p(x, h)] .
Since ¢ is the solution of equation (1), we obtain

ot )= H (5 0L ) 11 4R~ H (s 07 (0,01 (6)
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We easily obtain the relation (cf. also [4], p. 66, Hadamard’s Lemma)

H(x’ q)[f(x), t+h]’ t+h)_H(x’ ¢[f(X), t]’ t)

=H (o[ f(x); t+h]—@[f(x), 1])+Hyh

where

H1=H1 (x, t, h)=

1

=[5 o Lr (9, A s (o7 (M=o (3, D). ) s,

H2=H2(x, t, h)':
1

- j e oL (), A3 (017 (), 04 K=o L (), 1), 145k} ds.

Consequently, (6) may also be written in the form

‘//(x’ L h)=H1"//[f(x)’ f hJ+H2-

The function ¥ fulfils the condition

40,4 )= [0 (0, 1+ H) =0 (0, K)]=, (0-0)=0.

17

™

(8)

Now we shall prove that lim,_,, (0"/0x") (x, t, h)exists. The function (0"y/0x") (x, t, h)

fulfils the equation

T et W=7 T Hy ZE L ()1 K H W

r 'H1 o
+ 5 (7) 5 ) S L Gt A2 ),
where
Wew <df ﬂﬂu)
dx’ " dx" ox ox~1

©)

is a polynomial in the variables df/dx,..., d"fldx", dy/ox,..., 0" 'y/ox"~! whose

coefficients are real constants.
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We put
r (r\ 0'H, ot
H s by h = i ’ ta h -~ r—1i > t9 * s
=3 () o m D et o,
o'H o
Hy(x,t, h)=—2(x, 1, h), a(x,1, h)=—'ﬁ (x,, h).
ox" ox"

Hence by (9) we obtain
afx, t, )=[f"(x)]""Hy o[ f(x), t, K]+ H; (x, 1, h)+H,(x,t, h). (10)

In view of (III), (4) and (5) there exists an interval T, =<t+1,, t+1,><T such that
teT; and

lM@WMWWMU@ﬂ%&QWWMQ,M@w% (1)

The functions Hy and H, are continuous in Q x 7}. If h=0, let a(x, t) be the continu-
ous solution of the equation

&(x, 1)=[f" (X)) Hy (x, 1, 0) &[ £ (x), {1+ Hy (x, 1, 0) + Ha (x, 1, 0). (12)

According to the Theorem 2.7 in [2] this solution exists and is unique. We shall prove
that the function a(x, ¢, &), defined for #=0 being equal & (x, t), is continuous also for
h=0. We see that equation (12) is the limit case of (10). Theorem 2 in [1] applied to
equation (10) yields the continuity of a(x, f, h) also for h=0, i.e. continuity of
(0"y/ox") (x, t, h) for h=0, and consequently

iy

lim — (x, t, h)=a(x, ).
lim == (x, 1, =3 (x, 1)

Hence the existence of the derivative (3"*¢/dx"0t) (x, t) follows. Next, from (10),
passing to the limit as 4 — 0, we obtain

r+1 1

Fa O 0=L T T oo lr 1,0 T2 (60, 0+

+Hj;(x,1,0)+H, (x, t,0) (13)

whence, again in view of Theorem 2 in [1], it follows that the function (0"*'plox"ot)
(x, t) is continuous in Jx T, which completes the proof of the first case.
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b) Now we assume that for k, 1 <k <p, the derivative (0" **¢/0x"0¥) (x, t) exists
and is continuous in Jx 7. Then differentiating (13) k—1 times we obtain

r+k r+k

T e =L W 5 0L W) S (/)4 Ha ), (1)
where

e 5 (57 S (0 00 21,00 s 0 00| LT+

i=1
ak-—l k—1

0" "H,
+ak1(xt0)+ % (x,1,0).

akl

Equation (14) is a linear equation with respect to the function «(x, )=
=(0""*p/0x"dt*) (x, t) and coeflicients occurring in it are of class C?~* From
Theorem 6 in [1] follows that o has the derivatives (0'¢/ot’) (x, t), i=1,2,...,p—k,
continuousinJ x T, and consequently the derivatives (8" *'p/0x"0t") (x, t),i=1,2,...,p
exist and are continuous in J x T, which completes the proof.

Remark. Theorems 1 and 2 are also true for the equation

O(X, tyyeens 1) =H (X, @[ f(X), t1s-ees tyls tiseves Bn)-
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Funktionalungleichungen und Iterationsverfahren

Hans-Joachim Kornstaedt

Abstract

This paper is concerned with a class of iterative processes of the form ux,1 = Tux (k =0, 1. ...) for
solving nonlinear operator equations u = Tu or Fu =0. By studying the relationship between a linear
functional inequality ¢(A4k) B(h) + y(k) < p(h) and estimates for the iteration operator T a general
semilocal convergence theorem is obtained. The theorem contains as special cases theorems for var-
ious iterative methods. Numerical examples illustrate the accuracy of the error estimates for the
approximation u.

1. Einleitung

Zur Ldsung von nichtlinearen Operatorgleichungen u=7Tu oder Fu=0 im metri-
schen Raum werden héufig iterative Verfahren der Gestalt ., =Tu,, uoeD(T)
verwendet. Fiir solche Verfahren wird ein allgemeiner semilokaler Konvergenzsatz
hergeleitet (Abschnitt 2): Durch Bedingungen an die Ausgangsndherung u, werden die
Konvergenz des Verfahrens und die Existenz einer Losung u* der Gleichung u=Tu
gesichert. Gleichzeitig werden Schranken fiir die Fehler o(u*, u)(k=0,1,2,...)
angegeben. Dabei spielen Losungen einer linearen Funktionalungleichung vom Typ

o (Ah) B(h)+y(h)<e(h)

in einer geeigneten Parametermenge H eine wesentliche Rolle. Solche Funktional-
ungleichungen werden in Abschnitt 3 auf ihre fiir die Konvergenztheorie dieser Arbeit
wichtigen Eigenschaften hin untersucht. Fiir f(4)=1 enthdlt der allgemeine Konver-
genzsatz das bekannte auf Kantorowitsch zuriickgehende Majorantenprinzip und
insbesondere einen allgemeinen Satz von Rheinboldt. Fiir den Fall f(h)# 1 werden in
den folgenden Abschnitten einerseits eine Reihe von bekannten Konvergenzsitzen
(u.a. der Fixpunktsatz fiir kontrahierende Abbildungen und der Satz von Kanto-
rowitsch fiir das Newton-Verfahren) in die allgemeine Theorie des Abschnitts 2
eingeordnet, und andererseits werden durch Anwendung des allgemeinen Satzes neue
Konvergenzsitze gewonnen oder auch bekannte Ergebnisse durch Abschwdchung der
Konvergenzbedingungen bzw. durch Verschérfung der Fehlerschranken verbessert.
Im folgenden bezeichne R, (n>1) stets die Menge der reellen n-tupel mit der
gewdhnlichen (komponentenweise) Halbordung und R, die Menge der nichtnegativen
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n-tupel, speziell sei R=R; und R* =R; . Von einer mit {u,} bezeichneten Folge werde
stets angenommen, daB & die Menge N={0, 1, 2,...} durchliuft.

2. Ein allgemeiner Konvergenzsatz

Es sei (R, g) ein vollstindiger metrischer Raum. Mit S(u, r)={veR:o(u, v)<r}
werde eine Kugel in R bezeichnet.

LEMMA 2.1. Zu einer Folge {u,} = R gebe es Folgen {r,}, {s} <R* mit

(s 1, W)<S, Fepr+sc<re  (k=0, 1,2,...) (2.1)
und lim, ., , r,=0. Dann existiert lim,_, , u, = u* und mit S, =S (u, 1) gilt:
u*ESk+1CSkC"'CS1CS° (k=0, l, 2,...). (2.2)

Beweis. 1.) Ausues,,, folgt o(u, ) <o(uy 1)+ 0 (s 1, ) <Fiyy +8,<ry, d.h.
ueS, (k=0,1,2,...). 2.) Wegen u,, ,€S,,,<=S, fir alle k, /eN und limr, =0 ist {u}
Cauchyfolge in R. Es existiert also limu, =u*, und da Sy fiir jedes k abgeschlossen ist,
so gilt auch u*eS;.

Bemerkungen. 1. Setzt man im Lemma s,=1,,, —1, und, falls lim#,=t*< + o0
existiert, r,=t*—1, (k=0, 1, 2,...), so erhilt man als Spezialfall das, in dieser Form
von Rheinboldt [20], [22] angegebene Majorantenprinzip.

2. Im Fall R=R", u,=Y72g s, (k=1,2,..) mit 5,>0 fir alle /eN, u,=0,
re=1/p, (k=0, 1, 2,...) enthilt das Lemma das allgemeine Konvergenzkriterium von
Pringsheim fiir unendliche Reihen mit positiven Gliedern (vergl. [16], S. 317).

Zur Konstruktion von Folgen {s,} und {r,} mit den geforderten Eigenschaften
wird mit einer Parameterfolge {/,} einer geeigneten Menge H der lineare Ansatz

se=y(h)é und r,= o (hy) & (2.3)
gemacht.

SATZ2.2. (V1) Zu einer Folge {u,} = R gebe es Folgen {£,} cR*, {h} = H, ferner
Abbildungen A: H— H und B, y: H>R™* mit

Q(”k+1’uk)<7'(hk) Ses Cer1<B(M) &,y herr=Ah,  (k=0, 1,2,..). (24)
(V2) ¢:H—R" sei Losung der Funktionalungleichung
@(4h) B(h)+y(h)<@(h) in H. (2.9)

(V3) Fiir jedes he H sei lim,_, , o (A*h) [[25 B(4*h)=O0.
Dann existiert limy _, ,uy=u* und es gelten die Fehlerabschdtzungen

Q" u)<o (k) & . (k=0,1,2,..). (26
e(u*, w )< (A4 k) & 1;[0 B (A%h,) (2.7)
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Beweis. Die durch (2.3) definierten Folgen {r,} und {s,} erfiillen die Vorausset-
zungen des Lemmas. ‘

Zur Berechnung der Schranke r,= ¢ (/) & ist wegen (2.4) hdufig die Kenntnis von
U, +1, d.h. die Ausfiihrung eines weiteren Iterationsschrittes (oder doch die Berechnung
von wesentlichen GréBen dazu) nétig, so daB die folgenden Abschitzungen, die sich in
einfacher Weise mit Hilfe von (2.4) und (2.5) aus (2.6) ergeben, von Nutzen sind.

ZUSATZ 2.2. {w} erfiille (V1), (V2) und (V3). Dann gelten die Abschitzungen

e (“*, Us 1)< @ (Ahy) B (hy) & (2.8)
Q (“*, s 1) <[ (m)—v (h)] & (2.9)

Falls ¢ die Funktionalgleichungen (2.5) erfiillt, stimmen die beiden Schranken iiberein.
Bemerkungen. 1. Es sei H halbgeordnet; A, § und ¢ seien isoton auf H. Dann
diirfenin (V1) anstelle der Gleichungen h, ,; = Ah, die Ungleichungen A, .., < Ah, (k=0,
1,2,...) gesetzt werden.
2. Es sei H halbgeordnet; A4, B, y und ¢ seien isoton auf H. Dann bleiben alle
Fehlerschranken (2.6)-(2.9) giiltig, wenn man {£,} durch {&} mit & <& und {i}
durch {h,} = H mit h,<h, ersetzt.

} (k=0,1,2,...).

SPEZIALFALL 2.2.1. (V1.1) Zu {u} <R gebe es eine Folge {i}<[0, hy]=R*
und Abbildungen b, c: [0, hy] > R* mit

(s, w)<c(h) b, he <b(h)h; (p=1) (k=0,1,2,...) (2.10)

(V2.1) ¢:[0, hy] > R™ sei eine beschrinkte, isotone Losung der Funktional-
ungleichung

@ (b(h) k") b(h) "~ +c(h)< o (h) (2.11)

(V3.1) Es sei b(h)< K fiir alle he[0, ho] und Kh§ ™ '=L<1.
Dann existiert lim,_ ,u,=u* und es gelten die Fehlerabschitzungen (2.6)-(2.9),
insbesondere

Q(u*ouk+1)<q’(5k+l)ﬁk+l mit Ek+1=hoLl+p+pz+m+pk- (2.12)

Beweis. Die Aussagen ergeben sich aus Satz 2.2 durch die folgende Spezialisierung:
H=[0, hy], &=h (k=0, 1, 2,...), Ah=>b(h) h*, B(h)=b(h) k"', y(h)=c(h). Wegen
o(A*h)<@(hy) und B(A*R)<L<1 fiir alle k ist (V3) erfiillt und mit 4**'hy<
ho LY +P+P* -+ und B(A*ho)< L (keN) folgt aus (2.7) schlieBlich (2.12).

Der spezielle Ansatz (2.3) enthélt auch das Majorantenprinzip, falls die Majoran-
tenfolge durch ein m-stufiges Verfahren erzeugt wird:

SPEZIALFALL 2.2.2. (V1.2) Zu {u,} <R gebe es eine Menge J=R™, eine Folge
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{t,} =J und eine Abbildung y:J™— J (m>1, fest) mit

Q(uk+1, uk)<tk+1—tk (k=0, 1, 2,...) und
tk+l=lp(tk3 tk—l""’ tk~m+1) (k=m_1, m,-..). (2.13)

(V2.2) Es existiere lim#,=¢*< + oo.
Dann existiert limu, =u* mit

o(u*, m)<t*—1t, (k=0,1,2,..). (2.14)

Beweis. Die Aussagen ergeben sich aus Satz 2.2 durch die folgenden Spezia-
lisierungen: &=1, h=(tiim-1s tiom-ns--s t)  (k=0,1,2, ), H={h}cJm,
Ah=0(h), KV, KD, " D) B(h)=1, y(h)=06(4h)—6 (h), 6(h)=h" mit
h=(h",..., K). ¢ (h)=K—5(h), KeR I6st die Funktionalgleichung ¢ (Ah)+ 5(Ah)—
0(h)=@(h) in H. Nach (V2.2) existiert limd(4*h)=06*(h)=t* firr alle heH.
@ (h)=0*(h)—6(h) erfiillt (V3) und es gilt o (h)=1*—1,.

Bemerkungen. 1. Zur Majorisierung eines Iterationsverfahrens (im Banachraum)

us1=Tu, (k=0,1,2,...) mit T:DcR—R, uyeD,<=D (2.15)
benutzt z.B. Kantorowitsch [14] eine Funktion y:[#,, '] - R* (m=1) mit
IT" (Wl <y'(z) firalle weDy,te[ty,t’] mit |u—uyl<t—1t, (2.16)

und der Anfangsbedingung || Tuq, — uoll <Y (1) —to.
2. Rheinboldt [22] dagegen kann (2.16) durch eine ableitungsfreie Bedingung
ersetzen und verwendet (m=2) y(s, 1)=s+y(s—1¢, 5, t) mit

o(TTu, Tu)<y (e(Tu, u), ¢(Tu, uy), ¢(u, uy)) fiir alle ue Dy mit TueD, (2.17)

und den Anfangsbedingungen #,=0, ¢, > o(Tu,, u,).

3. Von Dennis [6] wird das Majorantenprinzip (m = 1) mit Hilfe von Abschitzungen
der Form (2.16) auf eine groBe Klasse von ,,Newton-dhnlichen*‘ Verfahren angewendet.

4. Cavanagh (vergl. [20], S.429) konstruiert Majorantenfolgen {f,} mit Hilfe
eines Systems von Folgen {{}cR*, {h}cHCcR, mit @(u,q, )<E Epog=
=Y (& M) s =+ & (k=1,2,..), t;=&, to=0. Fir & =B(h)e, hyy=Ah,
erhilt man das Verfahren direkt als Spezialfall von Satz 2.2.

Im folgenden Satz werden die Bedingungen an die Folge {1} auf einen die Folge
erzeugenden Operator 7 und die Ausgangsndherung u, iibertragen.

SATZ 2.3. Es sei T:DcR— R ein Operator im vollstindigen metrischen Raum
(R, 0)- (V') Es gebe DycD, uyeD,, eine Menge H und Abbildungen A:H — H,
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B,y:H—-RY, h:Rx Dy x {uo}— H und &: Rx Do % {ug} > R*, so dap mit

h(TTu, Tu, ug)=Ah(Tu, u, uy) (2.18)

die Abschiitzungen .
o(Tu, u)< y(h(Tu, u, ug)) E(Tu, u, uy), (2.19)
E(TTu, Tu, uy) < B(h(Tu, u, ug)) &(Tu, u, up) (2.20)

fiir alle ue Dy mit Tue D, gelten.

(V2), (V3) seien erfillt.

(V4) Das Iterationsverfahren u ., =Tu,, ug€ D, sei unbeschrinkt ausfithrbar mit
{u} = Dy.

Dann existiert limu, =u* und mit hy=h(Tu, uy, uo) und & =& (Tuy, u,, u) gelten die
Fehlerabschdtzungen (2.6)—(2.9). Falls T stetig ist, u*€D, so ist u* =Tu*.

Beweis. Da {u,} in D, verlduft, erfiillen {£,} und {/,} die Voraussetzungen des
Satzes 2.2. Aus der Stetigkeit von T folgt die Fixpunkteigenschaft von u*.

Bemerkungen. 1. Durch Induktion 148t sich leicht zeigen, daB (V4) erfillt ist,
wenn neben (V1'), (V2), (V3) eine der folgenden Bedingungen gilt:

(V4") Es sei TDy< Dy,

(V4"") Es sei S(Tuq, @(Ahy) B(ho) &)= U fiir eine Menge Uc R mit der Eigen-
schaft, daB aus ue D, und Tue U stets Tue D, folgt.

2. Alle Bemerkungen zu Satz 2.2 gelten sinngeméB auch fiir Satz 2.3. Insbesondere
enthilt Satz 2.3 den Satz von Rheinboldt [22].

3. Losungen der Funktionalungleichung ¢ (A44) B(h)+y(h)<¢(h)

Aufgrund des linearen Ansatzes (2.3) sind in Konvergenzsatz 2.2 nur lineare
Funktionalungleichungen des Typs

@ (4h) B(h)+y(W)<e(h) (1)

zu l6sen. H ist dabei eine (beliebige) Menge, und A:H—H, B, y:H—R" sind
gegebene Abbildungen. Unter anderen, z.T. dhnlichen Voraussetzungen sind solche
Funktionalgleichungen bereits von einer Reihe von Autoren untersucht worden.
Anstelle eines ausfiihrlichen Literaturverzeichnisses sei auf die umfassende Mono-
graphie von Kuczma [18], Chap. II hingewiesen. In diesem Abschnitt werden einige
Ergebnisse zusammengestellt, die fiir die in dieser Arbeit entwickelte Konvergenz-
theorie von Interesse sind. @ bzw. &' bezeichne die Menge aller Funktionen
¢:H—- R bzw. R*. Durch

o<y <p(h)<y(h) firalle heH (3.2)

wird in @ eine Halbordnung definiert. Der durch Go(h)=q@(Ah) f(h) definierte
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Operator G: P — @ ist linear und isoton. Weiter bezeichnen [ = {ped™:Gop+y< o)}
bzw. G={ped*:Gop+y=0} die Losungsmengen der Funktionalungleichung bzw.
der Funktionalgleichung und U°={pe®*:Gp <o} bzw. G°={ped*:Gp=0} die
Losungsmengen der zugehorigen homogenen Gleichungen. SchlieBlich erfiillt Qped
genau dann die Konvergenzbedingung (V3), wenn gpeR={pe®:lim,_,, G (h)=0
fiir alle he H} gilt.

Aus der Linearitdt ergeben sich die folgenden einfachen Ei genschaften von U
und ®:

(1) pell, p°cU’ 1eR* =+ 1p°cl

(2) ¢iel, L,eR* (i=1,2), 41+ 2, > 1= 1,0, + ,0,€ll

(3) 9e®, p°c B AeR, Yy=0+10°>0=>yec®

(4) €6, L,eR(i=1,2), li+A,=1, Yy =20, +1,0,>0=>ye G

Die Aussagen bleiben richtig, wenn man U bzw. & durch AN K bzw. G K
ersetzt.

Aus Yyell bzw. Ye® lassen sich mit Hilfe des folgenden Satzes Ldsungen
eelln K bzw. G N K] konstruieren.

SATZ 3.1. (1) Es sei yel, und es existiere lim,_ G =y*<y. Dann ist
o=y —y*ellnK.

(2) Es sei ye®, und es existiere lim,_, , G4 = t,b*é,tﬁ. Dann ist o=_"_,(y —y*)
e®GNK.

Beweis. In beiden Fillen ist y*e °, so daB ¢ die F unktionalungleichung bzw.
-gleichung erfiillt. Es gilt lim, , , G*( —y*) =y * —y* =0.

SPEZIALFALLE. (3.1.1) Es sei B(h)=1, y(h)=0(Ah)—56(h)>0 mit 5: H—R*
und es existiere lim, ., ., 6 (4"4) = 6* (h) (=5 (h)). Dannist = 5e® und lim,_, , G*5 = 5*,
so daBl ¢ =6*-6e® N K ist.

(3.1.2) Essei f(h)<L<1, y(h)<Kund ¢(h)=K/(1—L) (he H). Dann ist el und

k—1

K
lim G*p (h) < I lim [] I*=0, fiirjedes he H,

koo 1-L s a=0

also pell N K.
(3.1.3) Essei f(R)<1, B(AR)<B(h), y(4h)< y(h)und g (k)= (R)/[1 — B(AY] (he H).
Dann ist ¢l und
. k ¢ Y (h) . k-t Y
lim G*¢ (h)<——=—= lim [] B(h)=0 fiirjedes heH,
k- l_ﬂ(h)k-mo n=0
also pelUn K.
Fiir die Fehlerschranken (2.6)-(2.9) ist 9l optimal, wenn o<y fiir alle vel
gilt. Notwendige Bedingung dafiir ist p€ ®, denn es gilt
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SATZ 3.2. Essei oel(nR) und y=Go+y. Dann ist yeU(NK]) mit Yy <. Y=o
gilt genau dann, wenn pe G (N K).

Beweis. Esist ell, d.h. y =G +y<¢. Da G isoton ist, folgt G <Go, also auch
GY+y<Gp+7y, also yell und Yy=¢ gilt nur, wenn bereits pe ®. Die Aussagen
bleiben richtig, wenn man 2 bzw. & durch UN K bzw. G N K ersetzt.

Stellt man an ¢ neben e ® noch die Bedingung (V3), so ist ¢ sogar eindeutig
bestimmt :

SATZ 3.3. ® N K enthdlt hochstens ein Element. Fiir pe ® N K gilt die Darstellung

© k—1
<p(h)="ZOV(A"h) HOB(A"’I) (heH). (3.3)

= a=

Beweis. (1) Es seien y, o & n &. Dann gilt y —@=G(y—¢) und es folgt

¥ (h)— o (h)=lim G*¢ (h)— lim G*¢ (h)=0 (heH).

k—= o k— o0

(2) Aus der Funktionalgleichung (3.1) ergibt sich

o (A 1h) B(AR)+y(AR) = (4*H)  (k=0,1,2,...)

k-1
und daher gilt (nach Multiplikation mit &, (k)= [] B(A4"h))
n=0

59N B+ B by D=0 ) (m=0,1,2,..)
mit
@A™ 'h) by (D)=G""'@(h)>0 fir m—oco (heH).

Bemerkung. Unter den Voraussetzungen der Spezialfille (3.1.1)~(3.1.3) konnen
Existenzaussagen direkt durch Abschitzen der Reihe (3.3) gewonnen werden.

Hinreichende Bedingungen fiir die Existenz und Eindeutigkeit von Losungen der
Funktionalgleichung (3.1) erhilt man auch mit dem Fixpunktsatz fiir kontrahierende
Abbildungen:

SATZ 3.4. Es sei HcR" kompakt, und A, B, vy seien stetig auf H mit p(h)<L<1
fiir alle he H. Dann gilt fiir jede Funktion ¢, : Das Intervall {0, o> ={yeC (H):0<
W (K< @o(h), (he H)} enthiilt genau eine Lisung der Funktionalgleichung (3.1).

Beweis. Mit ||| =max,.y4|@(h)| wird & zu einem Halbordnungs-Banachraum.
Der Operator G, definiert durch Gp = G + 7 ist stetig und bildet das Intervall 0, @o)
in sich ab: G0, ¢o» =<7, Gpo+7) =<0, po». SchlieBlich ist G lipschitzbeschrinkt
durch L<1:
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1Go— Gyl =1:1a;<ﬁ(h) lo (Ah)—y (4h)| SL;fnii lo ()= (h)|
<L1hna1;cl<p (W) =¥ (W) =Llo—-y]|.

Bemerkungen. 1. Die Bedingung W # 0 ist z.B. in den Fillen (3.1.1)~(3.1.3) erfiillt.

2. Falls keine Losung der Funktionalgleichung (3.1) bekannt ist, kann (fur
moglichst scharfe Fehlerschranken) die Auswertung der Reihe (3.3) (einschlieBlich
einer Restgliedabschdtzung) durch das Iterationsverfahren

O+1=Go+y  (k=0,1,2,...), p,ell (3.4)

ersetzt werden, welches nach Satz 3.2 eine Folge {¢,} <l mit

Pr+1 SO P < Qg (k=0, 1a--~) (3‘5)
liefert.

Die folgende, in geschlossener Form ldsbare Funktionalgleichung (3.6) tritt in
Konvergenzsitzen fiir das Newton-Verfahren und dessen Verschidrfungen mehrfach
auf.

SATZ 3.5. Es sei H=[0, 1] und y: H— R eine beliebige Funktion mit y(h)<?2 fiir
alle he H. Dann hat die Funktionalgleichung

([1 =y (W) +hy* (h)] h> 1=y (h)+hy* (h)
[1—2hy (h)]? 1—2hy (h)

+y(h)=0 (h) (3.6)
die Losungen

2
O

Beweis. Unter Beachtung von [1—2hy(h)]*—4[1—1y(h)+hy*(h)] h=1—4h be-
stdtigt man die Aussage durch Einsetzen.

4. Der Fixpunktsatz fiir kontrahierende Abbildungen

In dem einfachsten Spezialfall des Satzes 2.3, nimlich HcR*, Ah=h, B(h)=L<1,
7(h)=1und h(v, u, uo)=const., &(v, u, uy)=g(v, u) hat die Funktionalgleichung (2.5)
die Gestalt ¢(h) L+1=g(h). Ihre Losung @(h)=1/(1—L) erfillt (V3) und man
erhdlt (vergl. Rheinboldt [22]):

SATZ 4.1. Es sei T:D<=R— R ein Operator im vollstindigen, metrischen Raum
R, 0). Es gebe eine Teilmenge Dy <D und uy,eD,, so da
o€

o(TTu, Tu)<Lo(Tu,u) mit L<1 firalle ueD, mit TueD, (4.1)
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erfiillt ist und S=S (Tug, L/[1—L] o(Tuy, uo))=D, gilt. Dann ist das Iterations-
verfahren u,.,=Tu,, uqeD, (k=0,1,2,...) unbeschrinkt ausfithrbar. Es existiert
limu,=u*eS und es gelten die Fehlerabschdtzungen
: k
lu* —ugs 1| S lugsy — il und lu* — gy | < — llug —uoli -
1-L 1-L
(4.2)

Bemerkung. Ersetzt man (4.1) durch die Bedingung
o(Tv, Tu)<Lo(v,u) mit L<1 fiiralle v,ueD,, (4.3)

so ergibt sich aus Satz 4.1 der Kontraktionssatz, denn es ist 7 stetig, also gilt u* =Tu*.
Dariiberhinaus ist »* in D, eindeutig bestimmt.

5. Konvergenzsiitze fiir das Newton-Verfahren mit Verschiirfungen

Der Operator F: D(F)= R— R im Banachraum (R, |- ||) besitze in einer konvexen
Menge U< D(F) beschréiinkte Fréchet-Ableitungen F*”(u) (ue U, v=1,2,...,n+1). Es
sei I'(u)={F'(u)}~", falls die Inverse existiert. Zur Losung der Operatorgleichung
Fu=0 wird fiir festes n>1 ein Iterationsverfahren

ey =T =8 (g, Ty, Foy Fry oy ), ugeD  (k=0,1,2,...) (5.1)

mit F,=Fu, F’=FY () (v=1,2,...,n) und I',=I () betrachtet. Dabei ist g ein
gegebenes Polynom in den angegebenen Argumenten und D= {ueU:TI (u) existiert
und ist beschrankt}.

5.1. Ein allgemeiner Satz von Collatz
Als Spezialfall von Satz 2.2.1 ergibt sich

SATZ 5.1 (Collatz). 1. Fiir das Verfahren (5.1) gebe es Abschdtzfunktionen
b, &:R* xR - R*, die in beiden Argumenten isoton sind, und eine Konstante p>1, so
dafp mit hy=\|F,|| und B,=|T,) gilt:

Nt s1— | SE(Bes ) by und by <B(B, ) B, (k=0,1,2,...) (5.2

2. Zu ugeD existiere eine Zahl B> By, so da mit c(h)=¢&(B, h), b(h)=b(B, h),
K=b(hy), L=Kh5™" und n=2M,Boc(ho) hy mit M,>}\F"(u)| fir alle ueU gilt:
2

L<i, O<n<li—L und L4+——

——— <1, 53
1—n Bo(B—Bo) G3)

3. Mit einer isotonen Losung ¢ der Funktionalungleichung (2.11) in H=[0, ho] sei
S =5 (vy, @ (Lho) Lho)< U.
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Dann ist das Verfahren (5.1) unbeschrinkt in S ausfiihrbar, die Folge {u,} kon-
vergiert gegen eine Losung u* der Gleichung Fu=0 und es gilt die Fehlerabschitzung
(2.12).

Beweis. Auf Einzelheiten des Beweises sei hier nicht eingegangen, da er im
wesentlichen wie bei Collatz [4], [5] verlduft: Es wird bewiesen, daB die Folge {u,}
existiert und U nicht verldBt. Dabei gilt stets B, <B und A, <h,. {u} erfiillt daher
(VI.1)~(V3.1).

Bemerkung. Die Collatz’sche Formulierung des Satzes entsteht, wenn man in
(2.12) [unter Beriicksichtigung von c(f,,;)<c(h,)] als Losung der Funktional-
ungleichung (2.11) speziell ¢, (h)=c(h)/[1—b(h) h*~!] einsetzt:

1+p+p2+.tpk

lu* — w1l <c(ho) ho (k=0,1,2,...). (5.4)

Die hier gewdhlte Form hat den Vorteil, daB auch Losungen @< @, von (2.11) und
damit Verschirfungen der Fehlerabschdtzungen zugelassen werden, wie Iterierte
des Verfahrens (3.4) oder etwa in geschlossener Form angebbare Losungen der
Funktionalgleichung.

5.2. Sdtze fiir das Verfahren von E. Schrider
Eine spezielle Klasse von Verfahren (5.1), die auf E. Schréder zuriickgehen, wird
z.B. bei Collatz [4], [5] und Ehrmann [8], [9] ausfiihrlich beschrieben:

Uep1=Tu, upeD (k=0,1,2,...) mit
Tu=u+d(u) und d(u)=d,(u) definiert durch

d,(u)=—T (u) Fu-—ugv”%['(u) F®w)ds_,(u), (v=2,3,...,n)

(5.5)

dy(u)=—T (u) Fu

Obwohl diese Verfahren einerseits in (5.1) enthalten sind, andererseits in dieser
speziellen Gestalt schon in einer Reihe von Arbeiten [1], [4], [8], [9], fiir n=2 z.B.
in [7], [13], [19], [23] untersucht worden sind, lassen sich doch durch Anwendung
des allgemeinen Konvergenzsatzes fiir n>>2 Abschwichungen bzw. Vereinfachungen
der Voraussetzungen und Verschérfungen der Fehlerabschéitzungen erreichen.

Aufgrund der rekursiven Definition des Iterationsoperators T empfiehlt es sich die
folgenden isotonen Funktionen p, g, r,: R, >R*undP,Q, R,: R, - R, zu definieren:
Fiir h=(h®, k', ..., h"*D)eR} sei

p(h)=p,(h) mit

(=14 Y Py () ®,  p, (W)=1 (56)
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qv(h)—qv 1(’l)sv 1 (B)+py-1 (h) K™, q,(h)=0, und (57)

s, (h)= Z h Z () PiZT(h), s (R)=0 i

()= 3, Wk (h) (58)

P(h)=(p™" (h)) mit p‘"""(h)=g<#liV>p FUR) fr oy (5.9)
0 fir u<v

Q (h)=diag(q"~" (h)) (5.10)

R, (h)-—--diag{[1 (h)]”} (v, u=2,3,...,n,n+1) (5.11)

SATZ 5.2. Mit den Definitionen der Tabellen 1.1, 1.2, 11.1 oder 11.2 gelte fiir ein

useD:

Es sei hoe H und mit einer isotonen Losung ¢ der Funktionalungleichung o (Ah) B(h)+
Y(W)<@(h) in H sei S=S (vy, ¢(Aho) p(ho) o)< U.

Dann ist das Iterationsverfahren (5.5), ausgehend von u,, unbeschréinkt in S aus-
fiihrbar, die Folge {u,} konvergiert gegen eine Losung u* der Gleichung Fu=0 und es
gelten die Fehlerabschdtzungen (2.6)—(2.9) mit hy, &, aus der entsprechenden Tabelle.

Tabellen:
L1 1.2
H - {h eRY: r,(h)<1 und } {heR,f:r,,+l(h)<1 und }
- g(h)<[1—ry(W)]? q(h)P(Mh<[1—r, ,(W)]*h
Ah = | Ry(h) Q(h)h Ry+1(h) Q(h) P(h) h
B(m)=| a(h)/[1-ry(h)] q(W)/[1=r,e1(B)]
()= | p(h) p(h)
ék = Hrka” ”Fka”
e = | (M, &7 (v=23,.,n+1) | Al (k=1,2,..)
mv, v—1 _
h"?{M,.fl,oof'a} (v=2,3,...,n)
mit M, ,=1/v! sup, | F @) und m, o=1/v! |[oF|
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Tabellen ( Fortsetzung)

I1.1 11.2
H = | {heR;:q(h)<1} {heR, :q(h) P(h) h<h}
Ah = | Q(h)h Q(h) P(h) h
Bh)="| q(h) q(h)
y(=| p(h) p(h)
S = | BlA 7 B|Fl
he = | BME™) (v=23,...n+1) | dh_, (k=1,2,..)
Bm £yt _
hO}{BM,,flf'{)} (v=2,3,....,n)
L M ZIVFOWI _ .
mit B> | ()| } firalle weUcD und m,=1/v! |F|

Beweis. Der Satz ergibt sich als Spezialfall von Satz 2.3 (L1, IL.1) bzw. Satz 2.2
(L2, 11.2):

In allen 4 Fillen sind 4, § und y isoton auf H und es gilt 4h<h fiir alle he H,
insbesondere gilt also f(A4h)<p(h) und y(4h)< y(h). Jede isotone Losung der Funk-
tionalungleichung ¢ (4h) B(h)+ y(h)< ¢ (h) exfiillt wegen ¢ (A*h)< @(h) (k=0,1,2,...)
und f(h)<1 fiir alle ~e H auch (V3).

Der weitere Beweis soll hier nur im Fall I.1 angedeutet werden. Einzelheiten (und
auch die Beweise der iibrigen Fille) konnen [17] entnommen werden. Es werden
Funktionen

M,:D->R* (v=2,3,..,n+1), ¢&D->R*, h:DoR}
durch o

Mv(u)=;{! sup IT(u) F® (),  &(u)=|I(u) Ful,

h(w)=(M,(u) & () (v=2,3,...,n+1)
definiert.

Mit Hilfe der Taylorformel und dem bekannten Satz von Banach iiber die Existenz
einer Inversen zeigt man, daB fiir alle ue Do = {ue D: h(u)e H} mit Tue U die Ungleich-
ungen h(Tu)< R, (h()) Q(h(u)) h(u) und &(Tu)<q(h(w)/[1—ry(h(u))] &(u) richtig
sind und Tue D, gilt. Damit ist (V1) erfiillt, wenn man Bemerkung 1 zu Satz 2.2 be-
riicksichtigt und wegen S < U gilt schlieBlich auch (V4”).

Bemerkungen. 1. Da A, B, y und ¢ auf H isoton sind, diirfen in der Bedingung
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S<U und in den Fehlerschranken (2.6)-(2.9) die Folgen {&}, {#} durch Folgen
{&} und {h} < H mit &, <&, h,<h, ersetzt werden.

2. Fir n>2 scheinen Losungen der Funktionalgleichungen (2.5) nicht ,,in ge-
schlossener Form** bekannt zu sein. Daher wird man (in allen 4 Féllen) die (isotone)
Losung @o(h)=y(h)/[1—B(h)] der Funktionalungleichung oder auch, falls 4, die
Ungleichung f(4,)<1 nur schwach erfiillt, die ersten Iterierten ¢, aus dem Verfahren
(3.4) verwenden.

3. Fur n>2 kann die Abschitzung (2.8) verschérft werden, wenn man

“u*‘ukﬁ'lllsq)(hk-l-l) ék+1<(p(Ahk) Ek+1 (k=0’ 1’ 29--') (5-12)
benutzt und &, in den 4 betrachteten Fillen wie folgt definiert (k=0):
" 1
L: §=— (M, 0, Ms 0,..., M, 5.13
1 1—2M2,0|Id,,]|q( 2,0, M3,0 +1,0) ( )
5 1 .
L2: &=y g (my, o, my q,..., m, o, M,41,0) (5.14)
1- Zz vmv,O ”dn”v_l
IL1: & =B§(M,, Ms,..., M,,,) (5.15)
IL2: & =B§(my, my,...,m, M,,,) (5.16)

Dabei ist analog zu (5.7)
n v
q(KZ’ KS, crey Kn+1)=Kn+1 ||dn”"+l+ ”dn—dn—ln Zz Kv Zl "dn”a_1 “dn—luv_a

(5.17)
mit d,=d, (uy) (v=n,n—1).

4. 1.2 und II.2 haben gegeniiber 1.1, IL.1 fiir #>2 den Vorteil, daB die Normen der
Frechetschen Ableitungen F"(u) (v=2, 3,..., n) nur an einer Stelle u=u, abgeschitzt
zu werden brauchen. Dies fiihrt hiufig zu schirferen Fehlerschranken. Die Kon-
vergenzbedingungen dagegen fallen i.a. schirfer aus.

SPEZIALFALLE. (5.2.1) Fiir n=1 geht (5.5) in das Newton-Verfahren iiber. Es
ist dann p(h)=P(h)=1, q(k)=Q(h)=h, r,(h)=2h und R,(h)=1/[1-2kH]>.

(5.2.1.1) Im Fall .1 ist Satz 5.2 mit dem bekannten Satz von Kantorowitsch [14]
identisch: Es ist H=[0, 4] und die Funktionalgleichung (2.5) geht iiber in

’ ((i‘—%ﬁz) 1‘—%7# 1=¢ () (5.18)

mit der isotonen Losung ¢ (h)=2/[1+ /1 —4h] (Satz 3.5 mit y(h)=1).
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Fiir die ,,a-priori**-Abschitzung (2.7) ergibt sich (vergl. Ostrowski [21]):

. .
6% =t <0 (45 ko) Eo [T B(Aho)=e~2 20T ¢ (k20,1,2,...) (5.19)
=0 sinh 2%t :
mit
1
o oo 20

(5:2.1.2) ImFall IL.1 (U< D) st Satz 5.2 mit dem Satz von Mysowskich (siehe [14])
identisch. Es ist H =[0, 1) und die Funktionalgleichung (2.5) geht iiber in

e(h*) h+1=09(h) (5.20)

mit der isotonen Losung ¢(h)=Y 7., A2 7! (vergl. (3.3)).
Mit der Losung @(h)=1/[1—h] der Funktionalungleichung folgt aus (2.7) die

,»,a-priori‘‘-Abschitzung:
. 2k+1 -1

uu*—ukﬂusl—‘l?k—“ & (k=0,1,2,..). (5.21)
— o

(5.2.2) Fiirn=2ist(5.5)auch unter dem Namen Tschebyscheff-Verfahren bekannt.
Mit h=(f, g)'eR; ist

p()=1+f,  qW=Q+f)f*+(1+f) g,
rn()=2(1+f)f, rs()=Q+f)f*+3(1+f) ¢,

r=(y *77). Q(h)=(qgh) #00)
1

TR 0
R, (n)=| 1=+ (4] . (v=2,3)
R N0k

Die Grenzlinien der ,,Konvergenzbereiche‘* H sind in Abb. 1 dargestellt.

(5.2.2.1) Der Fall L1 enthilt unter den einschrinkenden Voraussetzungen
U=S (ug, %5*¢0), ho<(%, 15) Ergebnisse von Déring [7], wenn man die (grobe)
Losung ¢ (h)=15* der Funktionalungleichung (2.5) benutzt.

(5.2.2.2) Der Fall 1.2 enthélt mit ¢ (k)=y(h)/[1—B(k)] und U=S (4o, ¢ (ho) &)
Ergebnisse von Shafiyev [23].

(5.2.3) Im Fall F®(u)=F®(u)=---=F®*V(4)=0 fiir alle uc U, der z.B. bei der
nichtlinearen Behandlung von Matrizen-Eigenwertaufgaben auftritt (vergl. z.B. [5]),
erhdlt man mit A= (h,0,...,0)'eR; :

p()=p(W)=p,(h) mit p,(W)=1+h5}_;(h) (v=2,3,...,n), py(h)=1
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und analog
() =4()=1-p()+5* () b, ry(R)=Fo (W) =25 (h).

Im Fall I.1 wird H=[0, ], es gilt p(h)<2 fiir alle he H und die Funktional-
gleichung (2.5) reduziert sich auf

G(h)h gty
(P<[1_ 7 (/,)]2> Iy (h)+P(h)—(P(h)- (5.22)

Sie besitzt nach Satz 3.5 (y(h)=p(h)) die isotone Losung @(h)=2/[1+ V1=4h 1 —4h].
(5.13) schlieBlich geht iiber in

& M I3
=, oy 1 el (Il + 1) (5.23)

Falls man zusdtzlich F, berechnet, kann man statt (5.23) auch

[Tl
1=2M;, ¢ l|d, |

Aty

IF 4 (5.24)

1

benutzen.

0 025 05 1(y/5%1)
Abb. 1

5.3. Sitze fiir ein Verfahren von Kleinmichel
Mit den allgemeinen Bezeichnungen dieses Abschnitts fiir n=2 werde anstelle des
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Verfahrens (5.1) das von Kleinmichel [15] vorgeschlagene Iterationsverfahren

uk+1=Tuk, uoeD~ (k=0, 1, 2,..-)
mit Tu=u—I(u—3I (u) Fu) Fu - (5.25)
und D= {ueD:I'(u—%I(u) Fu) existiert und ist beschrénkt}

betrachtet. Die Anwendung des allgemeinen Satzes 2.3 fithrt auf

SATZ 5.3. Esgilt Satz 5.2 fiir das Verfahren (5.25) mit den Definitionen der Tabellen
III oder IV (anstelle von 1.1 1.2, I1.1 oder 11.2), wenn man D durch D ersetzt.

Tabelle I1I
={h=(f,g)’eRz+:f<%, 4—4%%72(1~6f+8f2)}
Ah=-—— 3f(lfi(h)fﬂ () g)
B (A )—1—3f-(f y(R)+[3+7* (h)] 2)
v(h)=1—_1f

€k= ||Fka|| s hk=(M2,k§k, M3,kélf)’

1
mit M,, = sup ICFD () (v=2,3)
ViueU

Tabelle IV

H ={heR":Kh*<1}
Ah=Kh?, B(h)=Khr*, y(h)=1
& =h=B|F/

. B2 (u)]
mit . 2
1 firalle ueUcD und K=(M,B)*+iM;B

M,> - IF V()

Beweis. Der Beweis verlduft mit den Abschitzfunktionen 4, f, y im Prinzip wie
der des Satzes 5.2. Fiir Einzelheiten sei wieder auf [17] verwiesen.
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Bemerkungen. 1. Wie in den Fillen L1, 1.2, I1.1 und I1.2 sind 4, B, y isoton auf H
und es gilt Ah<h und B(h)<1 fiir alle he H.

> Im Fall III werden von Kleinmichel [15] mit U=S (uo, 1), q(h) =
=313+ J1+25g/12f ?)=>1 und o (h)=2q(h)/[1+ J1—4fg(h)] die schérferen Kon-
vergenzbedingungen

hoEHK={h=(f’ g)'GR;r :fs;},g<-;—§(l—6f+8f2)} und  r=@k(ho) &o

angegeben.

@k (h) 16st die Funktionalungleichung (2.5) in Hy. Sie stellt aber nur in der ,,Nidhe
von g=0 (vergl. Bemerkung 4) eine gute Néherung fiir die Losung der Funktional-
gleichung dar. Sonst ist etwa ¢ (h)=y(h)/[1- B(h)] eine wesentlich bessere Néherung,
wie ein Vergleich der Funktion bestitigt. Die Grenzlinien der ,,Konvergenzbereiche**
H und Hy sind in Abb. 2 dargestellt.

\

|

0 025 05 075 10
Abb. 2

3. Der Fall IV ist ein Spezialfall des Satzes 2.2.1 mit b(h)=K und L=Kh?. Die
zugehorige Funktionalgleichung ¢ (Kh*) Kh*+1=¢(h) hat die Losung

p(h)= Y (KW,
v=0

4. Falls F® (4)=0 fiir alle ue U gilt, (vergl. Spezialfall (5.2.3)) ist g=0 und die
Funktionalgleichung (2.5) im Fall III reduziert sich auf

K K 1 1 '
¢<(1—3h)’) TRt ® in H=[0.4], (5.26)

0
tone Losung ¢ (h)=2/[1+ J1-4h].

wenn man h= (h) mit k identifiziert. Sie besitzt nach Satz 3.5 (y(h)=1/[1—A]) die iso-
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5.4. Beispiele

Die Anwendung der Fehlerabschitzungen dieses Abschnitts soll an einfachen
Beispielen demonstriert werden.

5.4.1. Es werde das nichtlineare Gleichungssystem

x\ _[3x*y+)y*—1\_ (0
Fu_F(y)~<x4+xy3—1 >_(0>
in R=R, mit [lu|| =max (|x|, | y|) fir u=<;>eR2 betrachtet (vergl. [14]).

" 1 . 1 /=27 297 .
5.4.1.1. Fir uo—(%) existiert FO—%( 377 -—162) und mit dem Verfahren

(5.5) (=1, 2, 3) ergeben sich die Naherungen u, ,=u,+d,(u,):

_(0.993 013 101 _(0.992 782 965 _{0.992 780 311
1.1710.306 841 339/’ 1.2710.306 459 261/’ 1.3710.306 440 912/

Die Existenz einer Losung * und die Konvergenz der Folgen {y, ,} (n=1, 2, 3)
folgen aus Satz 5.2:

Fiir n=3 ist der Fall 1.2 am einfachsten anwendbar, denn es darf U=R, gesetzt
werden. Mit

91 2718 1953 594
So

Ta4350 0T 1ws 0T s “0= 1145

my, oo 6.288 667 27-1072

ho=| ms o2 |={ 1.19708795-1073 |,

M, & 9.645 503 68-10~°

p(ho)=1.072 482 271, q(ho)=1.340 601 1891073, r,(h,)=0.139 068 015,
/1 3p (ho) 6172 (ho)
P(ho)=| 0 1 4p (ho)
0 0 1

gilt ry(ho)<1 und gq(hg) P(hy) ho<(1—r4(hy))? ho, also hyeH. Damit sind alle
Voraussetzungen von Satz 5.2 (I1.2) erfiillt.
Man erhilt mit o () =p(h)/[1—B(h)], B(h)=q(h)/[1—r,(h)] die Fehlerschranken:

( 29) lu* —uy 5 <[@(ho)—p(ho)] {0 <4.44-107°
nach (2.9)) und

lu*—uy 31l <@ (Aho) & <o (ho) & <3.32:107¢
(nach (5.12), (5.14)).
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Der exakte Fehler ist [[u*—u; 3| <4.7-1077.
Fiir n=2 wihlt man U= {(x, »):0.9<x<1, 0.3<y<4}. Mit

ho= (;\’Z Z’é%) L e()=pWL-BM],  BB=a(B)[L-rs(#)]

sind die Voraussetzungen hoe H, S < U des Satzes 5.2 (1.2) erfilllt.
Man erhilt die Schranken

3.17-10™* (nach (2.9))
lu*—u, ol <] 1.01-107* (nach (5.12), (5.14))
1.89-107 % (exakter Fehler)

Fiir n=1 liefert der Spezialfall (5.2.1.1) die Schranke flu*—uy 4| <1.92¢ 1073
(nach (2.9)) gegeniiber dem exakten Fehler lu* —uy ]| <4.01-107%

5.4.1.2. Das Verfahren (5.25) fithrt ausgehend von uo= (;)ef) auf

- 0.992 783 127
1710.306 449 493 )

Mit U= {(x, y)eR,:0.9<x<1,03<y<},
2718 1953

=y(h)/J1-B(h =0.026 491 9942 M, o=—— M, o=——
o (h) 7 ( )L B ()], o 26 491 9942, 2,05 145’ 3,051145

sind alle Voraussetzungen des Satzes 5.3 (III) erfiillt. Es existiert daher eine Losung
u*e U mit ||u* —u, <0.0285 (nach (2.6)) und [u* —u|| <2.277-10™* (nach (2.9)).
Mit U= (1o, 0.0306) erhilt man nach dem Satz von Kleinmichel die Schranken

llu* — 1, <0.03056 und [u*—uyfl < 1.657-1073.
Die exakten Fehler sind
llu* — 1ol <0.0269 und [[u*—u|l <0.905-107 3.

5.4.2. Die Matrix-Eigenwertaufgabe Ax=ABx (4=(a,.), B=(b,.), x=(x(,)) Eigen-
vektor, 1 Eigenwert) werde in bekannter Weise als Operatorgleichung

Fu=<(A—xB) y) (0<r<s, rfest)
y(r)-'1

im Banachraum R,,, der Elemente u=<‘; ), yeR,, xeR mit |ul| =max,(|y@) [x])

geschrieben (vergl. [4], [5]). Es tritt dann der Spezialfall (5.2.3) ein und das Verfahren
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(5.5) ist von der besonders einfachen Gestalt u, ., ,=u, ,+d, , mit

Z, Zyy
dk,1=<C:’1)=—Fka’ dk,v=(C:, )

=dl¢, 1+I-vk <Ck,v—1gzk,v—l) (v=2’ 3’ cens n)_ (5'27)

Es sei
s=r=IO,B=E,cxa,={1 fir o=1,

Y(o+t—1) fir 6=2,3,..,10," L2 10}‘

Fiir uy=(11.78, 3.84, 2.76, 2.18, 1.81, 1.55, 1.36, 1.21, 1.10, 1, 2.43)’ existiert I'y und es
ist £,=4.809 397 191 07282...-1073, M, ,<5.401 832, also hy<%. Daher ist nach
Satz 5.2 (Spezialfall (5.2.3)) die Konvergenz des Verfahrens (5.27) fiir jedes n>1
gesichert. Man erhilt fiir [|u*—u, ,|| die Schranken:

n nach (2.9) | nach (5.23) | nach (5.24) | exakt

1.4-107* - 1.3-107% 2.9-107°
7.0-107° 1.7-1077 1.5-10°8 3.6-1071°
3.8:1077 2.1-1071 1.1-107 2.2-10713
2.0-1078 1.3-107'* | 5.9-107!3 1.3-1071¢

B W N =

Bemerkungen. Die Konvergenzbedingungen des Satzes 5.1 sind erst nach
,-rekursiver Rechnung‘‘ analog zu (5.12), (5.23) erfiillbar. Fiir s=2, und s=3 finden
sich Beispiele mit giinstigeren Schranken in [17].

5.4.3. Die Betrachtung der Gleichung Fu=u>—10=0 im Banachraum (R, |-|)
ermdglicht mit geringem Aufwand einen Vergleich der Fehlerabschitzungen des
Satzes 5.2 fiir n=2 mit einigen anderen Schranken. Ausgehend von u,=2 fiihrt das
Verfahren (5.5) fiir n=2 auf u, =2.1527 und u, =2.154 434 688 394 .... Wenn man nur
GroBen beriicksichtigt, die bis zur Berechnung von u, aufgetreten sind, erhilt man die
folgenden Abschitzungen:

10 Ju* —uy | < 10° [u* —u,| < Lit. quelle U

3.25 73.62 I.1

5 52}(nach (5.12)) 16, 60}nach (2.7) | Satz 5.2 12 [2, 13/6]
3.65 29.3 Collatz [4] (Ade [1]) | [2, 13/6]
3.96 71.2 Shafiyev [23] 5 (0, 0.1846)
4.28 1344 Déring [7] S(2,0.26)
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Dabei ist in Satz 5.2 @ (h)=y(h)/[ 1 — B(h)] verwendet worden. LaBt man auch GroBen
zu, die bis zur Berechnung von u, aufgetreten sind, so ergeben sich z.B. nach Satz
5.2 (1.1) die Schranken |u*—u|<1.660- 1073 (2.6) und |u*—u,|<2.33 1079 (2.9).
Déring [7] gibt als beste Schranke 2.92-107° an. Die exakten Fehler sind

lu*—u,|<1.657-107% und |u*—u,|<1.64-107°.
6. Ein Satz fiir eine Verallgemeinerung des Iterationsverfahrens von Schulz

Es sei (R, |- ||) ein Banachraum von linearen Abbildungen eines linearen Raumes
in sich. Zur Bestimmung der Inversen X eines Operators Pe R fiihrt die Anwendung des
Verfahrens (5.5) auf die Gleichung P— X ~' =0 auf die Iterationsvorschrift

Xk+1=Xk+Xk Z (E_PXk)v, XoeR (k=0, 1, 2,...) (6.1)
v=1

(vergl. [10], [25]). Fiir n=1 erhdlt man daraus das Verfahren von Schulz [26].
Schmidt und Leder [25] haben gezeigt, daB dieses Verfahren unter der Voraussetzung
|E—PX,l <1 konvergiert und von der Ordnung n+1 ist. Eine Fehlerabschitzung
wird im folgenden durch Anwendung von Satz 2.3 hergeleitet. Diese stimmt fiir
n=1 bzw. n=2 mit den von Albrecht [2] bzw. Forster [10] angegebenen Abschétz-
ungen iiberein.

SATZ 6.1. Fiir Xo€R mit |E—PX,| <1 konvergiert das Verfahren (6.1) fiir jede
feste ganze Zahl n> 1 gegen den inversen Operator P ~1 des gegebenen Operators PeR.
Es gelten die Fehlerabschiitzungen

IE—PX,"

P loXy lS—
u ST >

1Xes: =X (k=0,1,2,...) (6.2)

mit |E—PX,|| < [|[E—PX,| V"
Beweis. Fiir den durch

TX=X+X Y (E-PX)
v=1

definierten Iterationsoperator T': R— R gelten, wie man durch elementare Umfor-
mungen nachweist, die Identitdten
n+1

E-PTX=(E-TX)""" und TTX-TX=(TX-X) ) (E-PX)"
v=1

fiir alle XeR. Mit Dy={XeR:|[E—PX| <1} und H=[0, 1),

A:H->H, B, y:H-R*,  &:Dy-»R*, h:Dy—H
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definiert durch
n+1

Ah=m""", B (k)= ‘;1 R, y(h)=1, &(X)=ITX-X|, h(X)=IE-PX]|
folgen daraus die Abschétzungen
ETX)<B(h(X)) E(X) und h(TX)<Ah(X) fiiralle XeD,,

d.h. (V1) ist erfillt. ¢ (h)=1/(1—h") lost die Funktionalgleichung

n+1

oK) Y B"+1=g(h) in H. (6.3)

o erfiillt auBerdem (V3), denn es ist lim,_, ,, A*4 =0 fiir alle 7 H und daher §(4*h)<1
fiir alle k>k,. Mit TD, < D, gilt schlieBlich auch (V4').

7. Ein Satz von Ulm fiir die Regula falsi

Es sei (R, || - |) ein Banachraum. Der Operator F: D(F)< R — R besitze in U< D(F)
eine Steigung, d.h. zu jedem Paar (u, v)eUx U existiere ein linearer Operator
OF (u, v): R— R mit 6F (u, v) (u—v)=Fu— Fv.

Mit D={(u, v)eUx U: {6F (u, v)} ™' existiert und ist beschrinkt} lautet die
Regula falsi zur Losung der Gleichung Fu=0

Up g =U— {OF (Uy_1, w)} ' Fuyy, (ug,u_y)eD (k=0,1,2,...)  (7.1)

(vergl. Schmidt [24]).
Als Spezialfall von Satz 2.2 ergibt sich mit

Tabelle V

H={h=(f,g) eR}:g<1, f<(1—/g)?}

1 , _ 1 _
Ah:(—lf_g—)z (fg. 1), ﬁ(h)“T:—g’ y(h)=1

2
@ (k)= (7.2)
1+ f—g+/(1+f—g)*—4f
Ee=lts 1 — el
K llugs s —ull ) . K,
h=(_ % mit Ky = k=0,1,2,... 7.3
* (Kk||“k+1““k—1" Kl 1—g ( ) ( )

und [|[{6F (u_y, uo} ™' [6F (u, v)—0OF (v, w)]l| <K, llu—w]| fiiralle wu,v,weU.
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SATZ 7.1 (Ulm). Mit den Definitionen der Tabelle V gelte fiir (uo, u-,)€D: Es sei
hoe H und S=S (u;, [@(ho)—1] &)= U. Dann ist das Verfahren, ausgehend von u,,
u_,, unbeschrinkt ausfilhrbar und konvergiert gegen eine Losung u* der Gleichung
Fu=0 und es gelten die Fehlerabschiitzungen (2.6)~(2.9).

Beweis. Die wesentlichen Abschdtzungen fiir den Beweis findet man bei Ulm
[27] oder auch bei Hofmann [12], welche beide das Majorantenprinzip benutzen.
@(h) ist Losung der Funktionalgleichung (2.5). Es gilt AHcH und A’HcH,=
={(f,g)eH:f<g<%} mit AH, < H,.

Da ¢ auf H, beschrinkt ist und p(h) <% fiir alle he H, gilt, ist auch (V3) erfiillt.

8. Siitze von Burmeister fiir inversionsfreie Verfahren

Es sei (R, |*||]) ein Banachraum. Der Operator F:D(F)=R— R sei in einer
konvexen Menge Uc D(F) Fréchet-differenzierbar. Mit L(R) werde die Menge der
linearen Operatoren von R in sich bezeichnet. Um die Bestimmung des inversen
Operators zu vermeiden, kann das Newton-Verfahren (5.5) (n=1) bzw. die Regula
falsi (7.1) mit dem Verfahren von Schulz (6.1) (n=1) kombiniert werden (vergl.
Helfrich [11], Ulm [28], Schmidt-Leder [25]):

U 1=t~ Xp 11 Fi Xps1 =X +H(E-XF) X (k=0, 1,2,...) (8.1)
uoeU, XoeL(R) '
Upy 1 =U— Xir 1 Fis Xir1=Xi+ (E— X, 0F (uy— 1, i) X
(k=0,1,2,...) (8.2)

u_y, ugeU, XoeL(R)

Fiir das Verfahren (8.2) wird zusitzlich vorausgesetzt, da8 F in U eine Steigung
besitzt.

Die folgenden Sitze von Burmeister [3] fiir diese Verfahren ordnen sich ebenfalls
in die Konvergenztheorie dieser Arbeit ein.

Tabelle VI
H={h=(e, f) eRj:e<1,2f<(1—-€*)*}

_ e+ f B ) ) B
Ah_<(1+ez+f)2(-}f+e2)f>’ B(h)y=(1+e*+f) (3f+e*), y(h)=1

(= ’
T e Ju—ey—7

E—X,F,
Ee= Nl —ull hk=<1'g "X;)fkl ||k£k>

mit |F'(u)—F (v)|<K|lu—v|| fiiralle u,velU.
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SATZ 8.1. Mit den Definitionen der Tabelle V1 gelte fiir uye U, Xoe L(R): Es sei
hoeH und S (uy, [@(ho)—1]&o)<U. Dann ist das Verfahren (8.1) unbeschrinkt
ausfiihrbar. Es konvergiert gegen eine Losung u* der Gleichung X Fu=0 und fiir u*
gelten die Fehlerabschditzungen (2.6)—(2.9). ’

SATZ 8.2. Es gilt Satz 8.1 fiir das Verfahren (8.2) (ausgehend von u_y, uyeU,
Xo,€L(R)), wenn man Tabelle VI durch Tabelle VII ersetzt.

Tabelle VII

H={h=(e, f, g)'eR§:e2+2\/}—‘+g<1}

d
Ah=<fd(1+d)2>, B(h)=d(1+d), y(h)=1
f(+d)
mit d=e*+f+g

(h)= 2
O g Jl—e—gy—4f

|E—XOF (ty—1, “k)”
Ee=llugs 1 —uill he=| K[ Xpq oIl lotgs g — el
K1 X1l Nluge— el

- ISF (uy 0) = F ) _ ., )
it I|5F(u,u)—F'(u)||}<I"l“—”” fiir alle u,veU.

Beweise. Siehe Burmeister [3]. Es gilt AH< H und ¢ ist in beiden Fillen Losung
der zugehorigen Funktionalgleichung (2.5) und erfiillt (V3).

Diese Arbeit enthilt in wesentlich verallgemeinerter Fassung Teile der von der
Fakultit fiir Natur- und Geisteswissenschaften der Technischen Universitédt Clausthal
genehmigten Dissertation [17] des Verfassers.
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Continuous solutions of a homogeneous functional equation

Morris Newman and Mark Sheingorn

0. Introduction

In this paper we consider the problem of finding continuous solutions of the
homogeneous functional equation

kz,lf(akx)=0, 0<a1<---<an.

Here f:R— R, R the real numbers. This problem is a generalization of a problem
suggested by Erwin Just; namely, to find a real-valued continuous f such that
f (x)+f (2x)+f (3x)=0 for all real x.

In the case when loga, loga,,..., loga, are all rational multiples of a fixed real
number this equation reduces to one of a type considered by J. Kordylewski and
M. Kuczma, and may be found in Kuczma’s book [2], p. 266. However this is a trivial
case both for us and for Kordylewski and Kuczma, and their results do not apply to
the general case.

It is not hard to see that finding continuous solutions of this equation is equivalent
to finding continuous solutions of the finite difference equation

L g(y+a)=0, yeR,
such that
lim g(»)=0.

y—>—®©
Here o, =loga. If the a, are all rational multiples of a fixed real number, this may be
reduced to a classical linear difference equation with constant coefficients. These have
been considered in detail (see Gelfond, [1] for example) but usually for values of y
of the form az+ f, where a, f are fixed reals and z is an integer, rather than for all
real y. A more general non-homogeneous equation of this type was also considered by
S. Pincherle in 1888, but without the boundary condition [5, 6].

AMS Primary Subject Classifications: 30A20, 30A08; Secondary Subject Classification: 39A15.
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In section 1 we give a sufficient condition for the first equation to have a continu-
ous solution (Theorem 2). This allows us to treat the case n=3 completely. In section 2
we prove a partial converse to Theorem 2. In section 3 we use results concerning the
density of zeros of certain sums of exponentials to analyse the case n=4 completely.
In section 4 these techniques are applied to yield a wide class of equations with n>4
which have continuous solutions. We conclude by indicating that if n>4, no simple
complete solution (in the sense of Corollary 1 and Theorem 4) seems possible.

We remark that our techniques are entirely applicable with minor changes to the
more general equation

k§1 ¢ f(ax)=0,

where ¢y, ¢,,..., ¢, are arbitrary reals, and a;, a,, ..., g, are as before.
The authors wish to thank the referees for many useful comments, including the
difference equation formulation.

1. The problem under consideration is whether the functional equation
Y f(ax)=0, O<a;<a,<--<a,, (1)
k=1

has solutions which are continuous for all real values of x. There is no loss of generality
in assuming that
al = 1 ’

since f (x) may be replaced by f (x/a,).
When n=2, (1) becomes

f @)+ (@)=0, a=a,>1, )

which has only the solution f (x)=0, since

1@==1(2)=1(5)== 115,

Replace ¢ by 27, and take the limit as ¢ goes to co. This gives f (x)=f (0), which in turn
implies f (x)=0.
The example

_( loglx]
f(x)—cos(n loga>
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is most revealing. f (x) is continuous for all real values of x except x=0, and satisfies
the functional equation (2).
When n>2, (1) may or may not have solutions. Thus the equation

f(x)+f (ax)+-+f (@ 'x)=0, a>1,
implies that
f(ax)+f (@ x)+ - +f (a"x)=0,

so that by subtraction we find that
f(x)=f(a'x),

which has only the solution f (x)=constant, so that f (x)=0.
We set

ar=loga,, 1<i<gn
so that

O=0y <oy <+ <y,
There is no loss of generality in assuming that
A= 1 H

which may be accomplished by choosing the logarithms to the base a,.
We now prove

THEOREM 1. Suppose that the equation

él W =0 3)

has a root w such that |w|> 1. Then (1) has a solution which is continuous for all real x.
Proof. We seek a solution of (1) of the form

f(x)=e° log|x| .

Then f (x) is continuous for all real x, except possibly at x=0. If Re (c)=a, then f (x)
is continuous at 0 (and has the value 0 there) if and only if >0. Put w=e". Then a>0
if and only if |w|> 1. Furthermore, f (x) satisfies (1) if and only if w satisfies (3). This
completes the proof.
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The real part (or the imaginary part) of the solution described above is a real
solution which is continuous for all real x.
In order to apply Theorem 1, we need the following:

LEMMA 1. Let o, be as above, and put

g(w)= 2, w*.
k=1
Then a w, exists such that
g(wo)=0.

Proof. g(w) is an entire function of w only if the o, are all integers; otherwise, it is
not even single-valued. Lemma 1 means that there is a branch of g and a complex
number w, such that g (w,)=0. We begin by choosing a branch which is analytic in the
complex plane C with (— oo, 0] deleted, which we denote by K. The branch is defined
by setting w*=¢"'"*", and choosing the principal branch of logw, which is 0 when
w=1, and may be defined by the condition that

—n<Im(logw)<=.

Assume this done and call the branch g(w), we K. Since @, =0, we may find an ¢>0
such that g(w) does not vanish in the set
{z:]z]<e}nK

(in fact, e=1/n will suffice).
g may be approximated uniformly on compact subsets by (proper branches of) the
functions

S (W)= 3 et @

where p;,,, 4;,, are non-negative integers, p1,/q1m =0, Pam/q2m=1, and p;,/q;. converges
monotonically to «; from below as m — oo, for each i. Furthermore we may assume
that

%—1+0  Pim
L____.'g___

<a;, foralli>2 (5)
9im

and also that

qim> 1.
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To uniformize f,,, set

W=tqm9 qm=q1mq2m"' Gnm>

and put

"n n
P (t)=fm (W)= Z tI’lm‘]m/‘lim — Z tﬂim ,
i=1 i=1
where

Bim="Pimdm/dim 1S @ nON-negative integer.

Since ¢,,(¢) is a polynomial it has zeros; and therefore so does fm(w). In fact the
zeros of f,, are the zeros of ¢, raised to the power g,

Now the zeros of f,,(w) are bounded (independently of m): for, if w is a zero of £,
with |w|> 1 then, by (5),

n—1

z Wpim/‘lim

i=

|W|an/qnm= <(n__1) lwlﬂn—l,m/‘ln—l,m,

so that

le(pn. mlGn, m) = (Pn-1, m/dn-1,m) <n-—1.
Then (5) implies that
le(an-un—n)/Z <n-1,
or

lw| < (n_ 1)2(an—an— )t

Let w, be a limit point of these zeros of f,, (w). If woeK then by uniform conver-
gence on compact subsets this limit point must be a zero of g. If all limit points lie on
(— o0, —&] we proceed as follows. Select one of these limit points w,. Without loss of
generality assume that wy, is the limit of a sequence of zeros of the f,, all of which lie in
the upper half plane. Consider the branch of the logarithm given by

- 3
~—22<Im(logw)<—27—r.

Accordingly adjust the branches of g and the f,,. These new branches agree with the
old ones in the upper half plane. So the new f,’s have a limit point of zeros
wo€(— 0, —&], but now wy is in the interior of the domain of analyticity of (the new
branch of) g, and so g(w,)=0 by uniform convergence on compact subsets. This
completes the proof of Lemma 1.
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Theorem 1 requires that a zero of g be located outside the unit circle. In this
connection we prove

LEMMA 2. Suppose that g has a zero in {z:|z|<1}. Then it has a zero in {z:|z| > 1}.
Remark. This lemma shows that either all the zeros of g lie on the unit circle, or
there is one outside the unit circle.

Proof of Lemma 2. To prove this lemma we must analyze the zeros of the functions
f given by (4) in some detail. Suppose then that g has a zero w, such that [wy|<1.
Then Hurwitz’s theorem implies that wy, is a limit point of the zeros of the f,,. Let {A,,}
be a subsequence of { f,,} such that z,, is a zero of 4,, and the sequence {z,,} converges

to wy. To simplify the notation and avoid double subscripts, let us assume that 4, = f,,.
Since |wy| <1, there is an ry <1 such that

|zl <ro, if m>mo=my(ry). (6)

Because of (6), ¢,, must have g,, zeros #, t,,..., t

, t,,, such that

|tj|<r(§/qma l<]<qm

But the product of the roots of ¢,, is +1. Thus if #;, t,,..., 75, are all the roots of
@ We have

I= TT 1 T Il

1<k<gm IGm<k<Pnm

<ro [] Itl-
Am <k <Pnm

So if

|tol= max [t],
Am<Kk<Ppm

t, must satisfy

lt0I>r(;1/l, I=Bnm_qm'
But that means that f,, has a root 1, satisfying

[Tl > g ™"

Since

Bram = GmP um| Gnm »
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-1
qm/l=<pnm_1) .
Gom

Hence for sufficiently large m, there is a fixed positive ¢ such that

we have

|Tul>1+¢,

since ro<1 and p,,/qum — %> 1.
Thus for sufficiently large m each f,, has a zero in the annulus

{z:1+e<]z|<n}.

This implies there is a limit point there which will be a zero of g. This completes the
proof of Lemma 2.

Lemmas 1 and 2 now imply

THEOREM 2. The functional equation (1) has continuous solutions whenever the
roots of the function y x-, w*™ do not all lie on the unit circle.
This is sufficient to solve the case n=3 completely. In fact, we have

COROLLARY 1. The equation

f(x)+f (ax)+f (bx)=0, l<a<b, 7

has a non-trivial solution which is continuous for all real values of x if and only if b #a.
Proof. Suppose first that b#a”. The associated function in this case is

gw)=1+w+w*, a=logb.

Suppose that g (w) has a root { on the unit circle. Then |1 +{|=|{|=1, which implies
that { must be a primitive cube root of 1. Since 1+{+ ¢*=0and 1+ {+{*=0, (=%
¢==2=1, and so o must be an integer. In fact, «=2(mod 3).

Now suppose that g(w) has all its roots on the unit circle. Then the roots of g(w)
coincide with the roots of

wig(1/w)=1+w*"1+w*

whose roots are the reciprocals, and hence the conjugates, of the roots of g(w). This is
only possible if the polynomials g (w) and w*g(1/w) are identical, which implies that
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«=2, b=a’. It follows that not all the roots of g(w) lic on the unit circle and so
Theorem 2 implies that (7) has a non-trivial solution which is continuous for all real x.

Now suppose that b=a®. We have already seen that in this case no non-tr1v1al
solution exists. This completes the proof.

COROLLARY 2. If the a, appearing in (1) satisfy
a=a¥, 3<k<n,

where the e are integers, then (1) will have non-trivial solutions if and only if the
polynomial

gW)=1+w+w 4w

has a root which is not a root of unity: equivalently, if and only if g (w) has some factor
irreducible over the rationals which is not a cyclotomic polynomial.

Proof. This follows from a theorem of Kronecker to the effect that an algebraic
integer which with all its conjugates lies on the unit circle must be a root of unity.

2. Is the sufficiency condition of Theorem 2 also necessary? In general we do not
know. However the following partial converse is true.

THEOREM 3. Let the equation (1) have g(w)=Y %, W™ as its associated func-
tion. If the o, are rational, and g (w) has all its roots on the unit circle, then no non-trivial
continuous solution of (1) exists.

Proof. Let g be the least positive integer such that ga, is an integer, 1 <k <n. We
see by the uniformizing transformation

w=t1

and Kronecker’s theorem that the roots of g(w)=¢ () are roots of unity. Further-
more, ¢ (¢) is a monic integral polynomial in 7. Thus there is a monic integral poly-
nomial p(¢) such that for appropriate positive integers m, k,

@) p()=("-1),

and hence
g(w) p(w''t)=(wma—1)".

Now multiplying ¢ (¢) by ¢* (s an integer) corresponds to substituting a3x for x
in equation (1). Thus multiplying ¢ (¢) by b w* (b, s integers) corresponds to substitut-
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ing a5x for x in (1) and multiplying the result by b. Multiplying by the sum of a
number of such terms corresponds to adding the resulting equations above. This means
that after a sequence of such substitutions, multiplications by integers and additions,
equation (1) may be transformed into the equation associated with (tm—1)=
=(w™1—1)t. But that equation is

3 o (8) riamo=o

which has only the trivial solution f=0, as may be seen by induction on k. This
concludes the proof.

We include an example which is a small piece of evidence in favor of necessity in
general.

EXAMPLE. Let o> 1. The function
l4+z+22 422 =(1+42) (1+2)
has all its roots on the unit circle. This function arises from the equation
f (x)+f (a2x)+f (asx) +f (a2a5%) =0, (8)

where we have 1<a,<a;. Put

g(x)=f (x)+f (az%).
Then (8) becomes
g(x)+g(asx)=0,

which has only the continuous solution g=0. Thus
f (x)+f (a:%)=0,
which has only the continuous solution f=0.
3. The purpose of this section is to prove the following result:
THEOREM 4. Let 1 <a, <ay<a,. Then there exists a continuous functionf:R— R

satisfying
f (x)+f (a3%)+f (a:%) +f (a4x)=0 (®)

if and only if a,#a,a;.
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At the end of section 1 we showed that if a, =a,a, then (8) cannot have a continu-
ous solution. Thus by Theorem 2 it will suffice to show that if P(w)=1+ " + %" + ¢™¥
has all roots on the imaginary axis, then a, =asa,. (Here o;=log,, a;, i=3,4.) To see
this, put e”=z in Theorem 2.

Assume all roots of P (w) are on the imaginary axis. We must show that =03+ 1.
Let wo=i6, be a root of P(w). Then wy= --i, is also a root:

0=P(— i00)= 1 +e_i6°+e_ia390+e—ia490 .
So,

0=eia490+ei(a4—1)00+ei(¢4“13) 00+ 1 .

But of course,
0=¢'*400 4 piaado 4 yifo | | (9)
Therefore,
i@ 1) 00 yilas=az) 60 _ yizabo 4 ,if0

This simplifies to:
(=T (2 +0)=0,

where we have put £ =¢"°, Put
Q(w)=(e®™ =" DY 1) (e®" +¢").

Then every root of P(w) is also a root of Q (w). We shall show this is impossible unless
Q(w) is identically 0, which can only happen if a, —a;—1=0.
Assume that Q(w) is not identically 0. All the roots of Q(w) are imaginary. Let

P* (W)=éia4w+eia3w+eiw+ 1 ,
Q* (W)= (ei(a4—a3— l)w_ 1) (eia3w+ew) .

The roots of P*(w) and Q* (w) are all real, and each root of P* (w) is a root of Q* (w).
P*(w) is of class [«,/2] and Q* (w) is of class [(a,-,)/2], as defined in [4], p. 479.
M. Krein and B. Ja. Levin [3] have shown the following:

THEOREM. Let f be a function of class [A]. Let n(t)=the number of roots of f in
the rectangle |Imz|<h, Rez<t. Then n(t)=(4/n) t+w(t) where w(t) is bounded as
t— co. (Here h is a positive number such that all the roots of f lie in {z:|Imz| <h}. Such
a number exists for functions of class [4] ([3])).
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Letting np.(t)=number of zeros of P* in the interval (0, t) and defining ng.(t)
similarly we get:

nps (1 o
lim o )=—4
P | 2n

and

noe(t) o,—1 «
fim 72221 %
t— 0 t 27'[ 2715

But we have already shown that ng.(¢) >np.(t). This contradiction forces Q (w) to be
identically 0, so that o, —ot3 —1=0.

4. Tn this section we discuss the cases n>4. The structure of the proof of Theorem 4 is
as follows: Starting with the functional equation, we obtain an associated function P
(of the variable ¢, for convenience). If the functional equation fails to have a continu-
ous solution, P(¢) has all its roots on the unit circle. But then E*P(1/¢) has the same
roots as P(¢), and thus Q (¢)=P(&)—&*P(1/¢), which is of lesser class than P (&), has
zeros where P () does. But this is impossible unless Q (¢)=0. Thus last fact implies the
condition oy =03+ 1;ie. P(E)=1+¢+E7+ £1*es which does have all its roots on the
unit circle. We were able to show previously that the functional equation that this P
arises from,

[ (x)+f (a2x)+f (a3x)+f (aa3x)=0,

cannot have a continuous solution; i.e. this particular P(¢) is really an exceptional
case.

Except for the last statement, everything in the proof for n=4 goes through for
n>4. As examples we give two theorems (we continue to assume that a; =1).

THEOREM 5 (n=>5). The functional equation

Mo

f(ax)=0

1

i
will have a non-trivial continuous solution except possibly when it has the form

as

f(x)+f(azx)+f<a—:)+f(a§x)=0.
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Here the associated function is
Ps(§) =1+ 4§71 4¢3,

THEOREM 6 (n=6). The functional equation

™Moe

f(ax)=0

1

]

i

will have a non-trivial continuous solution except possibly when it has the form

709+ f @) a0+ (8 x) (21 (@)=,
3 2
Here the associated function is

Po(E)=14 ¢ g erammqeramlppoa

Now in the case n=4 the exceptional P did arise from a functional equation with
no non-trivial continuous solutions, but this is not necessarily true for n>4, even if
we assume that the exponents are integers. For brevity, put

P5(£)=1+§+£u+€2a—1+é2a’
Po(&)=14+¢+E+07 P14,

where «, B, y are integers such that «>1, f>1, y>2p. Then the following may be
shown to be true:
(i) If a is odd, Ps(¢) has a root strictly between —1 and 0.
(ii) If « is even, Ps (&) has all its roots on the unit circle if and only if a=2, 4.
(iii) If B is odd and 7 is even, P (&) has a root strictly between —1 and 0.
(iv) If B=2, or y=2f+1, then all the roots of P¢(&) are on the unit circle.
(v) If B=3, y=9 then P4 (&) has a root not on the unit circle.
Thus the pattern with respect to the exceptional P is quite complicated.
The authors would like to thank D. J. Newman and M. Knopp for many helpful
comments.
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Nonlinear eigenvalue problems with monotonically

compact operators

Theodore Laetsch

1. Introduction

In this paper we discuss the positive solutions of the equation
u=AAu, (1.1)

where >0 and A is an isotonic, forced (that is, A0>0) operator on a subset D of the
positive cone K of a partially ordered real normed linear space E [14]. We are
principally interested in the existence and dependence on A of minimum positive fixed
points of AA4; that is, solutions u®(4) of (1.1) such that, for any other solution
u=AAueD, we have u® (1) <u.

Our discussion of the nonlinear eigenvalue problem (1.1) differs from most others
(e.g., [4:7;9;14;22;23; 25] and the references given in these works) in that we do
not assume that 4 is compact, and we explicitly assume that 4 is forced rather than
that 4 is unforced (40=0) as is often done. Of course, once one knows that (1.1) has
a minimum positive solution u°(4) for a given 4, then the search for other positive
fixed points of A4 can be accomplished by seeking the positive fixed points of the
unforced operator A9 defined by Ah=A4[u°(A)+h]—u°(4); however, this intro-
duces a nonlinear dependence on A. The forced case of (1.1) for nonlinear elliptic
boundary value problems has been studied in [12; 13; 27], where other references
are given; a nonlinear integral equation which can be reduced to (1.1) with a forced
operator A has been studied by Pimbley [20]; see Example 5-3.4.

In Section 2 we introduce the basic definitions and notation. In particular, we
introduce the concept of monotonic compactness, or m-compactness, and the related
concept of om-compactness. A continuous, compact, isotonic operator is m-compact,
but the class of m-compact, isotonic operators is much broader than the class of
continuous, compact, isotonic operators. For example, in a partially ordered reflexive
Banach space with a normal cone, every continuous operator is both m-compact
and om-compact.

Section 3 describes the minimum positive fixed points for the more general equa-
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tion u=A,u, where the operators 4, are om-compact, forced, and isotonic on their
domain D, and increase as the parameter A increases. Most of the results are analogous
to the results of Keller and Cohen [13] for the minimum positive eigenfunctions of
nonlinear elliptic boundary value problems. :

In a future paper [17], we will consider operators which satisfy an algebraic
convexity property instead of the analytic property of monotonic compactness, and
we show that many of the results of this paper can be extended to such operators.

In Section 4 of this paper, we discuss briefly some generalizations of the theory of
Section 3. Examples which illustrate applications of the results are given in Section 5;
further examples are presented in [17].

Similar problems have recently been treated by Amann [3].

This paper was completed in part while the author held a National Research
Council Postdoctoral Resident Research Associateship sponsored by the Air Force
Systems Command at the Aerospace Research Laboratories of Wright-Patterson Air
Force Base, and supported in part by NSF Grant GP-33652.

2. Definitions and notation

Let E be a partially ordered real normed space ordered by a positive cone K[14;
195 26]; K is assumed to have the following properties: K+ K< K, aK<K for all
scalars «>0, KN (—K)={0}, and K is closed. We use the usual notation of linear
algebra for the linear sum S, +S,, difference S, — S, and scalar multiple aS; of subsets
Sy and S, of E; the set theoretic difference is denoted by S,\S,= {xeS;:x¢S,}. If
x and y belong to E and y—xeK, then we write x<y or y=x. The cone K is called
normal if for any two sequences {x,} and {y,} in K such that x, <y, for all n and
lim,_, , y,=0, we have lim,_,, x,=0 (for equivalent conditions, see [14, §1.2; 19,
§2.1; 26, §V.3]).

A set S is o-convex (this is called full in [19] and K-saturated in [26]) if, whenever
ueS, ve S, and u< x<v, then xeS. For any set S, the o-convex hull [S] of Sis the set

[S1=(S+K)n(S—K)
={zeE:3u, veSau<z<0};

S is o-convex if and only if S=[S7]. For two points u, v in E, we set [u, v]= [{u, v}].
Thus, if u<v, then
[u, v]={zeE:u<z<v}.

Let S, =S, < E. We say that S, is o-bounded (in S,) if there exist u, v(u, veS,) such
that S, < [u, v]. The set S, is bounded in S, if it is contained in a closed bounded sub-
set of S,. If K is normal, then every o-bounded set in K is bounded [19, Prop. 2.1.4];
if in addition S, is o-convex and S, is o-bounded in S,, then S is bounded in S,.
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Let E, and E, be partially ordered normed spaces with positive cones K, and K,
respectively. We consider an operator 4: D — E, on a subset DS E;. If A(DnK,)sK,,
then A is positive on D.

The operator A is isotonic from above (or below) relative to D at ue D if ve D and
v>u (or v<u) imply Av>Au (or Av< Au). It is isotonic (or monotonic or increasing)
on D if it is isotonic from above relative to D at each point of D. Strict isotonicity
is defined in an obvious way by replacing Av=> Au by Av> Au.

We say that A is uniformly (o-)bounded on D if A(D)is (o-)bounded; (0-)bounded
in D if A is uniformly (o-)bounded on every subset of D which is (o-)bounded in D;
compact (or completely continuous) on D if A is continuous on D and the image of
every closed bounded subset of D is relatively compact; (o)m-compact on D if, for
every monotonic (i.e., increasing or decreasing) sequence {u,} in D which is (e-)-
bounded in D, the sequence {Au,} is convergent, and if the monotonic sequence {u,}
converges to ve D, then {Au,} converges to Av.

If 0Oe D, then A is forced if A0>0 and unforced if A0=0.

Since any relatively compact monotonic sequence is convergent [14, p. 40], if 4
is isotonic and compact on D, then it is m-compact on D. If K, is normal and A4 is
isotonic on D, then A is (o)m-compact on D if and only if, for every monotonic
sequence {u,} which is (o-)bounded in D, the sequence {Au,} is weakly convergent, and
if {u,} is strongly convergent to ve D, then {Au,} converges weakly to Av; this is true
since weakly convergent monotonic sequences in a partially ordered space with a
normal cone are convergent [26, Theorem V.4.3].

Let D<K,. If K, is normal, if D is o-convex, and 4 is m-compact on D, then 4 is
om-compact on D. If every monotonic (o-)bounded sequence in K, is convergent,
then 4 is (o)m-compact on D if and only if for every convergent monotonic sequence
{u,} which has a limit in D, 4 (lim,, u,)=lim,_, , Au,. The same conclusion holds
if A is isotonic and either every o-bounded monotonic sequence in K, converges or
every bounded monotonic sequence in K, converges and 4 is bounded in D. These
conditions on the convergence of (o-)bounded monotonic sequences hold in partially
ordered spaces E which are reflexive and have a normal positive cone [26, p. 224].
Thus, for example, any continuous isotonic operator on the cone of nonnegative
functions on the Lebesgue spaces L? (Q) (1 <p < + o0) is m-compact and om-compact.
Since on these spaces every positive linear operator is continuous [14, p. 64], we see
that every positive linear operator on L?(Q) (1<p<+o0) is m-compact and om-
compact.

Example 5-4 exhibits an operator which is om-compact but not m-compact.

If T'is a linear operator on K; — K, which is positive (thatis, T(K;) = K;), we define
(cf. [6], [26, p. 266], and [24, §10]):

IT | =sup {| Tull/|ul :ueK}}, Ki={uekK,:|u|<1},
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and, if ||T'|| < + o0, we say that T'is bounded in K, or K,-bounded and define the spectral
radius (relative to K )

spr[T]=lim | T"|'""
and the reciprocal spectral radius po[T]={spr[T]} "

The norm || T'|| defined above coincides with the usual definition of the norm of T
considered as a mapping of K; — K| into FE, if the norm on K, — K| is taken to be the
gauge of the set K{ —K/. If E,=K,—K;,, and K, is complete, then E, is complete
(that is, a Banach space) [24, (10.1)], and the original topology on E; coincides with
the topology induced by the gauge of K{—K; [19, p. 194], so that in this case
spr[T] as defined above coincides with the usual definition of spectral radius.

If E=E,=E,=K—K, and T:E— E is compact, then again spr [T] as defined
above coincides with the usual spectral radius of T [6, pp. 64-65; 24, p. 281].

Now let E=E,=E,, K=K,;=K,, and let K be complete. For 0<A<pu,[T], the
resolvent of a K-bounded operator 7,

R(A)=[I-1T]'= i 2T,

exists on K— K (for more details, see [24, p. 278]), is a positive linear operator, and
satisfies the resolvent equations

R(2;)—R(4)=(42—4;) TR(;) R(4;)=0 (2.3)
and
23R(A2) =41 R(A41)= (12— 41) R(42) R(4,)=>0 (2.4)

for 0<A; <A, <po[T]-
3. Fixed points of om-compact operators

The following is a fundamental result on the existence of a fixed point of an isotonic,
om-compact operator (cf. [16, Lemma 4-3]). The proof is immediate from the defi-
nition of an om-compact operator. By the remarks of Section 2, this lemma includes
parts (b), (c), and (d) of Theorem 4.1 of [14]. Amann [2] has proved a corresponding
result for semilinear second order elliptic partial differential equations; see Example
5-1.1 below.

LEMMA 3-1. Let A:D— E be isotonic and om-compact on a set DSE. Let D
satisfy the following condition: If {u,} is a convergent monotonic sequence in D which
is o-bounded in D, and if Au,eD for all n, then lim,_, , Au, (which exists since A is
om-compact on D) belongs to D. Suppose there exist uy and vy in D such that uy,< Au,
< Avy<v, and

A([ug, vo]n D)= D.
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Then A has a fixed point u in D and each of the sequences {A"uo} and {A"vo} converges
monotonically to fixed points u® and v° of A in D such that for alln>1,

Uy < A"uy <u® <u<v° < A"y <.

Remark 3-1.1. This lemma and most of the results which follow remain valid if 4
is assumed to be the sum of an isotonic, om-compact operator and an isotonic,
condensing operator [3]. This is a genuine generalization, for any contraction operator
is condensing but not necessarily om-compact, while on a reflexive space with a
normal positive cone any continuous isotonic operator is om-compact but not neces-
sarily condensing. However, we are mainly interested in applications to families of
operators of the form {c+14:43>0} (see Theorem 3-4 below), and for 1> 1, 14 may
not be condensing, although 4 is. Thus we continue to consider only order-monoto-
nically compact operators.

We now consider a family {4,:4eJ} of forced, isotonic, om-compact operators
having a common domain D<K, where K is a complete positive cone in a partially
ordered normed space E; J denotes a subinterval of [0, + o). We assume that 4,
and D satisfy the following conditions: 0e D; for all AeJ,

A,([0, u] D)= D G.1)

whenever both u and 4,u belong to D; and if {u,} =D and {4,} £J are both convergent
increasing sequences or both convergent decreasing sequences such that {u,} is
o-bounded in D, v,=A;u,eD for all n, and v=lim,_ v, exists, then veD. The
assumption (3.1) is satisfied if 4,0€ D and either D or 4 (D) is o-convex; however, in
Section 5, we shall see several examples for which (3.1) is satisfied although neither D
nor A,(D) is o-convex. By the minimum positive fixed point of 4, we mean a fixed
point 4 (A)eD of 4, such that, for any other fixed point u=A,ueD of 4,, u> u® (1)
We denote by A the set of AeJ such that 4, has a positive fixed point in D; in Theorems
3-2 to 3-5, we assume that A#0.

We omit the proofs of the following theorems; the proofs are not difficult, they
are usually immediate consequences of Lemma 3-1, and they are given in detail in
[16, Chapter 1.4]. (See [13] for similar results for nonlinear elliptic partial differential
equations.)

THEOREM 3-1. For each Ae A, the sequence {A30:n=1,2,...} converges to the
minimum positive fixed point u® (1) of A,. If there exists a family {B,:AeJ} of operators
on D such that B,u> A,u for all A\eJ and ue D, then

A= {AeJ: B, has a fixed point in D}.

We say that a family {u,:4eJ} of elements of K is a (strictly) increasing family if
the mapping 4 — u; is (strictly) isotonic on J; the family of operators {4;:Ael}is a
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(strictly) increasing family if, for each ue D, u>0, the family {4,u:AeJ} is a (strictly)
increasing family.

THEOREM 3-2. Let {A,:4eJ} be a (strictly) increasing family. Then the set A
is an interval, with inf A=infJ, and the minimum positive fixed points {u®(A):1eA}
form a (strictly) increasing family. If AyeJ and %o < A€ A, then the sequence {A5u° (Ao):n
=1,2,...} is an increasing sequence which converges to u° (). If the mapping 3. — Au
is continuous from the left at Aoe A (infJ, supJ] uniformly with respect to ue[0,
u®(A)] 0 D, then the mapping A—u®(A) is continuous from the left at A,.

The mapping 4 — u° (1) may not be continuous from the right at all points of 4, as
is shown by the infinitely differentiable operator 4;:[0, +c0) given by Au=21
exp[—5/(1+u)]; this example also shows that for Ao<Aed, {45 u°(4)} does not
necessarily converge to u°(4,). See also [18].

THEOREM 3-3. Let {A,:AeJ} be as in Theorem 3-2, and in addition, for all
Ao€J and all we D, let the mapping A — A,u be continuous from the left at A, uniformly
with respect to ue[0, w]nD. If A contains the nonempty interval (inf(A), A,) and
either the family {u°(1):Ae(inf(A), A¢)} is o-bounded in D or this family is bounded in
D and A,, is m-compact, then AgeA and lim,_,,; _u°(A) exists and equals u®(2,).
Either sup(A)=sup(J), or sup(A)eA, or the family {u°(1):1€A} is not o-bounded in
D. If A, is m-compact on D for all AeJ, and D is contained in and closed relative to
K? for some pe(0, +o0], then either A*=sup(A)eA, or A*=sup(J), or lim,_, ;._
14 ()l =p.

We comment briefly on the proof of the last assertion of Theorem 3-3: Suppose
A* <sup(J) and lim, , ;._ [u®(2)| either does not exist or is less than p. Then there
exists an increasing sequence {1,} converging to A* such that, for some number
>0, sup{|u’(4,)ll}=0<p. Since D is closed relative to K?, DAK’ is a closed,
bounded subset of D, and, since A,. is m-compact, {4;.u°(1,)} converges to, say, w.
Because of the uniform continuity of the mapping 4 — 4,u with respect to u, {1°(4,)}
converges to w, and thus 4,.w=w and A*eA. (The uniform continuity of the map
J.— A,u on o-bounded subsets of D implies the om-compactness of the map (4, u) —
— A,u on J x D with the order defined by (4, u)<(y, v) if A<y and u<v.)

If A, has the form A,u=c+AAu, where ceK, A is isotonic and om-compact on D,
and either ¢>0, A1>0, and A is positive on D, or ¢=0, A>0, and 4 is forced, then the
uniform continuity assumptions on the mappings A — 4,u of Theorems 3-2 and 3-3
are satisfied. If ;e 4 and 0 <A<, then

0<u®(A)—c=24u® (1)< 24u° (4),

and thus we have the following description of the fixed points of 4; as A—>0+:



Vol. 13,1975 Nonlinear eigenvalue problems with monotonically compact operators 67

THEOREM 3-4. Let A,=c+AA, A=0, as just described. Then A is an interval
(possibly unbounded) with inf(A)=0, and inf {u®(2):0<ieA}=c (that is, {u°(2):0
<AeA} order-converges to ¢ as A~ 0+ [5, page 244)). If every o-bounded set in K is
bounded, then lim,_,¢ 4 u®(4)=c.

THEOREM 3-5. Let {u,} be a sequence of fixed points of A ,=c+AA in D corre-
sponding to values A= 2,>0 converging to 0. Then either {u,} order-converges to c or
{u,} is not o-bounded in D. Let D be contained in and closed relative to K? for some
pe(0, +00], let A be bounded in D, and suppose that there exist positive numbers &
and & such that, for every 1€(0, 8), A,=c+A1A has at most one fixed point in (c+K*)
A D; let K be normal. If none of the u, is the minimum positive fixed point of ¢+ 1,4,
then lim,_, ., || =p.

Remark 3-5.1. The om-compactness of 4 is used in Theorems 3-4 and 3-5 only to
assure that for all sufficiently small AeA, the operators c+44 have the minimum
positive fixed points referred to in the theorems, and that the mapping A —u°(4) is
isotonic (Theorems 3-1 and 3-2).

We conclude this section with the following existence and uniqueness theorem
(cf. [11; 30, §4.6; 3]):

THEOREM 3-6. Let A;=c+AA as above, and suppose that there exists a K-
bounded positive linear operator T on K— K such that for all u, ve D with v=u, we have

Av—Au<T(v—u). (32)

Let R(A)=[I—AT]™" be the resolvent of T for 0<A<uo[T]. If A is such that 0<1
<uo[T], R(A) [c+440]eD, and c+AAR(A) [c+A40]eD, then A;=c+iA has a
unique positive fixed point in D. In fact, u®(A) is the only fixed point of A, in D for all
1e(0, po [T N A.

Remark 3-6.1. The conditions R(1) [c+440]eD and c+214R(4) [c+440]eD
are satisfied if D=K.

Remark 3-6.2. The uniqueness assertion of the last sentence of Theorem 3-6
remains valid without the assumption that 4 is om-compact if 4, has a minimum
positive fixed point u° (1) for the values of 4 in question.

The following example of an operator 4:[0, +o)— (0, + o0) shows that, without
further restrictions on A, we cannot improve the upper limit p, [T] of Theorem 3-6
for the values of A for which 4, has a unique positive fixed point. Choose a positive
number r, and define Au=e* for 0<u<rand Au=¢" (u+1—r)foruz>r. Let Tu=¢€"u.
Then (3.2) holds for all v>u>0, and po [T]=e¢"". If r=1, A, = AA has infinitely many
positive fixed points corresponding to A= p, [T]=e"',andifr>1, A4 has two positive
fixed points for all Ae(uo [T], e™*). See also [11].
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4. Generalizations

We now indicate some ways in which the preceding results can be generalized;
these generalizations were omitted from Section 3 in the interest of simplicity.

Most of the results of Section 3 remain valid if we assume merely that E is a partial-
ly ordered linear space (not necessarily provided with a norm or a topology) and we
modify the definition of om-compactness of an (isotonic) operator 4 on D to read: If
{u,} is a monotonic sequence which is o-bounded in D, then sup, {Au,} and inf, {4u,}
exist, and if sup,{u,} and inf,{u,} exist in D, then A (sup,{u,})=sup,{Au,} and
A (inf, {u,})=inf, {4u,}. In this case, the assertions concerning the existence of limits
and continuity made in Section 3 should be interpreted in terms of order convergence
[5, page 244] or the order topology on E [19, Section 3.1].

A closely related fact is that many of the results of Sections 3 can be carried over to
ordered topological vector spaces [19; 26, Chapter V] in place of normed spaces.
(For the appropriate definition of the spectral radius of a linear operator, see [24,
pages 277-278].)

5. Examples

The following examples present illustrations, possible applications, and counter-
examples for the theory developed above. In all examples, the space E is a function
space (including the special case E=R"). We use the following standard notations:
C™(£2)denotes the set of uniformly continuous functions on a bounded open connect-
ed set Q< R" which have uniformly continuous derivatives of all orders less than or
equal to m, with the norm

lula= Y sup{|D’u(x)|:xeQ};
Bl<m
for 0<a<1, C™*(f2) is the set of functions in C™(£2) which have uniformly Hélder
continuous (exponent «) derivatives of all orders less than or equal to m, with the
norm

lullm, o= llull,n+ max sup
Blsm

{ID"u (I»;)_—flfu Oy e Q}

We will usually omit the subscripts on the symbols ||ull,, and |lu],, ,. L?(R) is the
Lebesgue space of p-th power integrable functions (1 <p< +00) on a measurable set
Q, with the usual norm.

The letter K will always denote the cone of never negative functions in the space E
under consideration (or, in the case of L?(Q), the functions which are almost every-
where nonnegative). If Q is an interval of the real line, K, is the subset of K consisting
of never decreasing functions.
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EXAMPLES 5-1. An immediate application of our results is to well-known
problems which can be formulated in terms of compact operators. We describe two
such examples:

Example 5-1.1. Nonlinear second order elliptic boundary value problems can be
expressed in terms of compact operators (see, for example, Amann’s papers [1;2]).
It follows that the results of Section 3 of this paper contain, with somewhat more
precision and greater generality, all the corresponding results of Keller and Cohen
[13]. For convenience, we describe the situation precisely here, referring to the papers
of Amann cited above for proofs (see especially the proof of [2, Proposition 3.3]).

Let Q be a bounded open connected set in #n-dimensional space with boundary 02,
let L be a uniformly elliptic operator defined on Q:

Lu(x)= —ay;(x) D;Dju(x)+b;(x) Du (x)+e(x)u(x),

where repeated subscripts are to be summed from 1 to », and let B, (1=0or 1) be the
boundary operators defined on 02 by

Bou(x)=u(x)
Byu(x)=Po (x) u(x)+Bi(x) Du(x).

For a fixed choice of 1, we seek a solution ue C?(£2) of the boundary value problem

Lu(x)=f(u(x), x, 1), x€Q,
Bu(x)=¢,(x, /1),x x€dQ, (5.1)

under the following assumptions:

For 1<i<n and 1<j<n, the coefficients a;;, b;, and ¢ belong to C*(2), c=0on
0, 00eC?* p,eCh*(0Q) for 0Ki<n, c and B, are not both identically zero, f,>0
on 89, and f;(x) v;(x)>0 for all xeQ, where {v;(x),..., v,(x)} is the normal vector
to 0Q at xe0Q.

We assume given a positive number r < + 00, a nonempty interval J< [0, +00], a
function feC([0, r)x£2xJ), and functions ¢,eC(02xJ), and define f;(w, x)=
=f(w,x,4) and @, ;(x)=¢,(x,); for each AeJ, f,eC*([0,r'] x£2) for every
r'e(0,r) and ¢, ,eC2~"*(8Q). For every xeQ and yedQ,

0<¢, (3, A)<P, (3, )
and

0<f(w, x, )< f (W, x, 1)

whenever 0<w<w <r, AeJ, A'’eJ, and A<A’; furthermore, for each AelJ, either
£:(0, x) is not identically zero for xef, or ¢, ;(x) is not identically zero for xe0Q.
Under these conditions, the boundary value problem (5.1) can be formulated as

an operator equation in C(£2),
u=Au, (5.2)
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with an increasing family {4,;} of compact, isotonic, forced operators on the set
D=C*(R2)nK'cK=C(Q).

The operator A; is constructed as follows: Let I'; denote the operator which
assigns to each veC* (f2) the unique solution u=TI,;v of the linear boundary value
problem

Lu=v in @, Bu=¢,, on 0Q.

Then I', is well-defined and compact as a mapping from C* ({2) with the C(2)
topology to C***(2) with the C({2) topology. For every ueK"=C(f2), let £ (u) be
the function defined by f; (4) (x)=f («(x), x, 4); f; is a bounded, continuous operator
(in the C(£2) topology) from D=C*(2)n K to C* (£2). Thus the composition 4, =
=T, f;: D — K is on isotonic, forced, compact operator on D, and the family {4,:eJ}
is increasing by the maximum principle. The set D satisfies the assumptions laid down
following Lemma 3.1.

Using the C(£2) topology is convenient if we wish to use arguments in which the
normality of the positive cone K is important. If this is not required, it may be more
convenient to consider 4, in a space of smoother functions; for example, Rabinowitz
[22] uses the spaces C* ().

The assumption that f; (w, x) is an increasing function of w can be weakened
(cf. [2]): It suffices to assume that there exists a sufficiently smooth function £>0 on
£ such that for all 1eJ and xef,

(W', x)=f(w, x)= —k(x) (W —w) (5.3)
whenever 0<w<w’ <r. Then the function

g (w, x)=fo(w, x) +k(x) w

is an increasing function of w with the same smoothness properties as f;, the operator
Lu(x)=Lu(x)+k (x) u(x) has the same smoothness properties as L, and the problem
(5.1) is equivalent to

Lu(x)=g,(u(x),x), xe@,

Bu(x)=¢, ;(x), xe0Q,

to which the preceding arguments can be applied.
For the Neumann or mixed problems (1=1), one may also consider nonlinear
boundary conditions °
Biu(x)=¢;,,(u(x), x), x€0Q,

where ¢, ,eC*-*([0, r'] x 0Q) for all r'€(0, r). For isotonicity, we assume that the
first derivative of ¢, ;(w, x) with respect to w is uniformly bounded below (for all
AeJ) by a constant —k, with k>0. Then , (w, x)=¢; ;(w, x)+«w is an increasing
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function of w, and the desired solutions u are solutions of the problem

Lu(x)=g,(u(x),x), xeQ,

Bu(x)=v,(u(x), ), xedQ, (5:4)

where Bu=B,u+xu. If one assumes a;;eC**({2) and b,eC'**({2), one may define
compact operators 4, on D such that (5.2) and (5.4) are equivalent (cf. [2, Proposi-
tion 3.3]).

It follows from the preceding remarks that Amann’s Theorem 1 [2] is essentially
a special case of Lemma 3-1 above (but his Theorem 3, which does not assume the
one-sided Lipschitz condition (5.3), is, for this problem, more general).

Example 5-1.2. Integral equations with weakly singular kernels,

u(x)= j K(x 9) £, (@(), y) dy,

where Q is a bounded open subset of R" and

K
0<K (x 4 ) S—%
lx—yl
for some constants x >0 and ae (0, n), and all xef2, yeQ, have an obvious formulation

as operator equations in C(2). If feC([0, r) x £2), the operator is compact on K'<
=C(Q) (e.g., see [21, §X.3]).

EXAMPLE 5-2. (Cf. Chandra and Fleishman [8].) Let 7 be a given positive
number. Consider the integral operator

A (x)= j G(x, ) fu(y). ) dy, 0<x<x,

where G: [0, 7] x [0, 7] - [0, + o) is a measurable bounded kernel which is continu-
ous and isotonic in its first variable, and f:[0, r)x [0, t] = [0, +o0) is piecewise
continuous and isotonic in its first variable and integrable in its second variable (that
is, [ f (w, t) dt < + oo for each we[O0, r)). Suppose that 40 (x)=[5 G(x,y) £(0,y) dy
is strictly isotonic in x€ [0, ]. Then 4, is a well-defined operator on KicC[o,]; it
is forced and isotonic relative to the order induced by the normal cone K and
maps K7 into the set D= K, = C[0, 7] of strictly increasing functions in K;. More-
over, it is easily verified, using the Lebesgue monotone convergence theorem, that
A, is m-compact on D=K ({0} U D,). Thus the theory of Section 3 may be applied
to the family {A4,:4>0}. If fand G are defined for all 7€(0, 7o), then we may also
consider the family {4,:te(0, 7]} as 7 varies.
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In particular, if there exist numbers 1>0, pe(0, r), and 7€(0, 7,] such that

Q>/1fG(1,y)f(e, y)dy,
0

then it follows from Lemma 3-1 that the integral equation u=A44u has a solution
ue[14.0, AA.,p] N D; the iterations of Lemma 3-1 yield a solution of this equation
[8, Theorem 1].

Similarly, Lemma 3-1 may be applied to Examples 1 and 2 of [8], which give
functions uye D and vy = A pe D such that uy < 4,u, < A,v,<v,, and hence proves the
existence of more than one nonnegative solution of certain differential equations.

EXAMPLE 5-3. The theory of Section 3, which requires only monotonic com-
pactness rather than compactness, covers more general situations than considered
in Example 5-1. For example, whenever differential or integral equations can be
formulated in terms of continuous, bounded, isotonic operators in L,(R), the opera-
tors are m-compact and Section 3 is applicable. We consider some examples of integral
equations in C(f2).

Examples 5-3.1. Compactness is often lost when the region of integration in
an integral equation becomes unbounded. Let us consider, for example, the case of one
real variable. Let N(x, y, w) be measurable and never negative on Rx R x [0, r),
for some positive number r< + o, and increasing and continuous in w for all (x, y)e
R x R. Suppose that for every xeR and any function ue L® (R), with 0<u< |u| , <r,
N(x, y, u(y)) is an integrable function of y and [ N(x, y, u(y)) dy is a continuous
function of x. Then the operator A defined in the space C,(R)=C(R)nL®(R) of
bounded continuous functions on R by

Au(x)= f N (x, 7, u(»)) dy

is easily seen to be m-compact on K"< C,(R) by the Lebesgue monotone convergence
theorem and Dini’s theorem. The m-compactness condition will be satisfied, for
example, if N(x, y, w)=G(x, y) f (w, ), where 0< fe C([0, r) x R), fe C, ([0, r'] x R)
for every r'e(0, r), f (w, y) is increasing in w for every yeR, 0<GeC(Rx R), and
{2, G(x, y) dy is uniformly convergent.

Example 5-3.2. An example with a ‘discontinuous’ kernel is

u(x)=A f & F (u (1), 1) dt. (5.5)
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This operator is in general not compact on C, (R), since the linear equation

0

¢ (x)=7e" f e "¢ (t)di=AI'p(x)

x -

has the solutions ¢, (x)=e® % and ¢,e C,(R) for A=1+in, where 7 is an arbitrary
real number. Thus the eigenvalues of the linear operator I" form a continuum, and I
is therefore not compact.

If we take f (w, y) to be the linear function (of w) w+e” I the equation can be
solved explicitly. The integral Equation (5.5) can be reduced by the substitution
u(x)=v(x)—e"!to

v(x)=e "4 2e f e fo(t)dt
x

thus the bounded solutions of (5.5) are [28, §57, Ex. 1]

A
2—76 x, x>0,
u(x; A)=
2 (1-4)x X
— e —e x<0,
2—A
for 0<A<]1, and, for A=1,
e *+c, x=0,
u(x’l)_{2+c—-e", x<0,

where ¢ is an arbitrary nonnegative constant.

Note that there are an infinite number of solutions corresponding to A=1 which
have the form u°(x; 1)+¢ (x), where u° is the minimum positive solution and ¢ isa
positive eigenfunction of the homogeneous linear equation.

If in the latter example we limit ourselves to the space Cyo (R) of functions in
C,(R) satisfying lim |, ,, u(x)=0, the solution for A=1 is unique.

Example 5-3.3. As another example, our results can be applied to the problem of
finding bounded positive solutions of the differential equation

u” (x)—a*u(x)+Af (u(x), x)=0, — 0 <x< 0

which can be formulated as the problem of solving the operator equation (for a>0)

A

w(x)=Adu ()= j e £ (u(y), ) dy.

= oo

See [28, §57, Ex. 2] for a discussion of a special case of this equation.
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Example 5-3.4. The operator

Au(x)= f u(y) u(y—x)dy

has been considered by Pimbley [20]. As an operator on K< C[0, 1], it is m-compact
and om-compact, but not compact; it is positively convex [ 17] but not convex. To see
that 4 is not compact on K, consider the bounded sequence {u,} given by u,(x)=
=cos?® (nnx). We calculate

Auy, (x) =% (1= x)+4v,(x) +w, (x),

where v,(x)=(1—x) cos(2nnx) and lim,_, , w,(x)=0 uniformly for xe[0, 1]. Thus
{Au,} contains a convergent subsequence if and only if {v,} contains a convergent
subsequence. However, for n>m,

-9
10s = vl >J|v 2157 >0,

so {v,} does not contain a convergent subsequence, and therefore 4 is not compact on
K. The same argument shows that A4 is not compact on K< L?(0, 1) for 1<p<2. The
m-compactness of 4 in C[0, 1] follows from the Lebesgue monotone convergence
theorem and the continuity in the mean of the Lebesgue integral [29, page 397] (cf.

[10, p. 159]).
The results of Section 3 apply to the equation u=1+A4u considered by Pimbley.

EXAMPLE 5-4. We give an example of an operator (in a complete space with a
normal cone) which is om-compact but not m-compact. The example shows that the
last conclusion of Theorem 3-3 is not necessarily true if A, is om-compact but not
m-compact. '

For N=1 or 2, and ueC[0, 1], define

JPINS | [ L

O], x=0.

lim [1+ j L« ()]th] [u(0)]",

It is easily verified that
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and hence AM is a forced, isotonic, convex, positive operator mapping K< C[0, 1]
into K. We consider C[0, 1] with the ordering induced by the positive cone

Ko={ueK:u(0)=0}.

With this ordering, 4™ is om-compact on K:

If {u,} is a monotonic sequence in K, which is order-bounded above by we K,
then {u,} converges monotonically to a function u<w on [0, 1] with u(0)=0. For
0<x<1, Au,(x) converges (by the Lebesgue monotone convergence theorem) to

v(x)Ex[l +j Lu g?]N dt],

which is a positive, continuous function of x for x>0, bounded above by Aw{x). Since
lim, .o+ Aw(x)=[w(0)]" =0, we have lim,_ ¢ v(x)=0=lim,_, ,, A4, (x) =v(0). Thus
Au,, converges to ve Ky, and if u, » ue K, then 4u, - Au=veK, uniformly on [0, 1].

To see that A™ is not m-compact on K,, we investigate the nonlinear eigenvalue
problem for the operator family A{Y=214®™. The equation u=24™u, which is
equivalent to the differential equation

xu' —u+u=0,

u()=4,
has solutions for each AeA=(0, 1):
Ax
(A x)= —5—3-, 0<x<l,
u* (% x) 1—A2+ 4% *

for N=2, and
W (A; x)=Ax*"1,  0<x<l,

for N=1. For =1, the only solution of u=14"™u is the constant 1, which is not in
K,. Thus: A is the open interval (0, 1); the family {u°(4): €A} is bounded (but not
o-bounded) in K ; and, with A*=sup(4)=1, lim,_, ;. u° (1) does not exist in C [0, 1].
It follows from the last sentence of Theorem 3-3 that the operator A is not m-compact
on K,; this can be seen directly by considering the bounded sequence {u,(x)}=
={u®(1—k™*; x)}, for which {4u,} does not converge in C[0, 1].
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Uniqueness theorems for the representation ¢(f(x)g()) +#(»)

Anders Lundberg and Che Tat Ng

1. Introduction

The functional equation

o (f(x)g(M)+h()=y ((x) m(y)+n(y)) (1.1

occurs in various contexts. For instance, in the extension and uniqueness problem for
solutions of the generalized distributivity equation (cf. [6], Section 7). It also occurs
in the theory of measurement as a uniqueness problem for certain scales. In this
context, it is already solved by Aczél, Djokovi¢, Pfanzagl [3], but under more restric-
tive conditions than we will assume here. We will give the solutions of (1.1) under the
conditions (i) to (vi) below:
(i) ¢.1, 8 h, ¥, 1, m, and n are real valued and continuous,

(ii) (x, y) ranges over a rectangle Ix J, where I and J are real, proper intervals,

(iii) ¢ and ¥ are philandering,

(iv) f and / are non-constant,

(v) (g, h) and (m, n) are non-constant,

(vi) g and m have no zeroes in J.

‘Philandering’ is here used in the sense ‘nowhere constant’; i.e. not constant on any
proper interval (cf. [7], Definition 4.2 or MR 45: 761).

We will use the abbreviation c.s.m. to denote that a function is continuous and
strictly monotonic.

The sentence ‘F is a function of G’ will mean: ‘There exists a function H such that
F=H-G".

Our condition (vi) is not as strong as it seems to be, since a zero of g must also be
a zero of m and vice versa. In fact, if g(»,)=0, then the left member of (1.1) is in-
dependent of x, hence also the right member. This implies m(y,)=0, since ¥ is
philandering and / non-constant. So (vi) merely means that we restrict our study to
any of the common non-zero intervals of g and m.

It seems natural to divide the treatment of (1.1) into six cases, depending on the
relationship between g and 4 and between m and .
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This work was supported in part by National Research Council of Canada grants A2972 and A8212.
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DEFINITION 1.1. An n-tuple of real valued functions (fi,..., f;) is said to be
affinely dependent if (f;,..., f,, 1) is linearly dependent. Otherwise, (f}, ..., f;) is said

to be affinely independent.

The six cases are described as follows:

Case Condition

AN L AW N =

g and m are both constant,

(g, k) as well as (m, n) is affinely independent,
g is constant; (m, n) is affinely independent,

g is constant; 7 is a linear function of m,

h is a linear function of g; (m, n) is affinely independent,

h is a linear function of g and n a linear function of m.

Remark: Notations and symbols used in different theorems are independent.

2. A basic equation

In cases 1 to 3, we will reduce (1.1) to the equation

D (u+v)=F(u) G(v)+H(v).

(2.1)

This equation can be reduced to the Cauchy equation, which is shown in [1], pp. 148-
150. More details are discussed in [2], pp. 20-22. We only need the solution for
continuous functions. The treatments in [1] and [2] give rise to the following

LEMMA 2.1. If (2.1) is satisfied by real valued, continuous functions ®, F, G, and H
when u and v range over real, proper intervals, then the solution (®, F, G, H) must be
representable in one of the following four forms, where o, a, b, ¢, and d are appropriate

constants:

Solution @ () F(u) G(v) H()

I abt+c au+d b abv—bd+c
II abe* +c ae™ +d be® —bde™ +¢
I a arbitrary 0 a

v a b arbitrary a—bG(v)
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3. Treatment of case 1
In this section we will prove the following

THEOREM 3.1. Let (¢, f, g h, ¥, I, m, n) satisfy Equation (1.1) under assump-
tions (i) to (vi). Assume also that (g, h) as well as (m, n) is affinely independent. Then,
there are constants a, b, ¢, and d such that

¥ (at+b)=¢(1)
I=cf+d

a
m=-_g¢ (3.1)

d
n=ah—?— g+b.
c

The proof is based on reduction to monotonic functions. We will use two lemmas
from [5]. The first one is

LEMMA 3.2. Let {g,,}T and {g2,}7 be two sequences of continuous functions on
a real interval I, and suppose g1,—> &, 20— &, uniformly as n— . Assume further that
G1n(8) <824 (s) and fogi,=f°8an where [ is continuous. Then, f is constant on g(I).

The second one is Lemma A2 of the Appendix.

Proof of Theorem 3.1. We first show that f'and / must be c.s.m. functions of each
other. They must have the same constancy intervals, since ¢ and ¥ are philandering
and g and m non-zero. Hence, it is sufficient to treat the case when Huneke’s mountain
climbing theorem (cf. [4]) can be applied in accordance with Lemma 4.4 of [8].
Suppose for instance, that f(x;)=f(x,) and [ (x;)<I(x;). Applying the lemma
mentioned, we choose two continuous functions &; and &, such that &, (0)=¢,(0),
fo&y =fot,, and [o&; (1)<, (t) when 0<t<1. Suppose for instance that m(y)>0,
which is no essential restriction, since m does not change sign. Then, we have

1E (1) m(p)+n(»)<1(E (1)) m()+n(y)
1(&,(0)) m()+n(»)=1(£:(0)) m(y) +n(y) 0<t<l,yel.
Y(IE ) m()+r ()= (&) m(y)+n(¥))

Applying Lemma 3.2 to arbitrary compact subintervals of J, we see that y is constant
in (Io&, (0)-m+n) (J), which is a proper interval, since (m, n) is affinely independent.
This contradicts the philandering of y. Thus, f (x;)=f (x;) must imply /(x;)=/ (x2)-
The converse is proved similarly, and hence f and / are c.s.m. functions of each other.
Now, put

F)=t,  1x)=k(), (3.2)
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where k is c.s.m. From

¢ (tg(n)+h(») =y (k(t) m(y)+n(y)), (3.3)
we can prove the existence of a c.s.m. function y such that
x(g(n)+h(»)=k(t) m(y)+n(y). (3.4)

This proof is given in the appendix. Since y is differentiable a.e. and since, for every ¢,
tg(»y)+h(y) ranges over a proper interval ((g, /) being affinely independent), k must
be differentiable. Hence, y is also differentiable. Differentiating (3.4) with respect to ¢
gives

2 (g () +h(y))-g(y)=k'(t)m(y). 3.5)

Since g and m are continuous and nowhere zero, and since yrstg(y)+h(p) is
non-constant for every ¢, y” and k" must be continuous. We will show that they are both
either constant or c¢.s.m.

If any of ' and -k’ has a constancy interval, so has also the other. Let K be a
maximal constancy interval of k’. Then ' is constant in the interval

{tg(¥)+h(y) | tek, yel},

again because y+—tg(y)+h(y) is non-constant. By this fact, we easily see that K
could be extended if K were a proper subset of f(I). Hence K= f(I). Thus, x’ and k'’
are either constant or philandering.
The case when y’ and k' are constant, i.e. y and k linear functions, gives immediate-
ly (3.1) if we use x(¢)=at+b and k(t)=ct +d together with (3.2), (3.3), and (3.4).
Now, suppose that y" and k" are philandering. We will show that they are even
c.s.m. It is sufficient to show that k” is strictly monotonic. If k" (#; )=k’ (¢,), we get

X (tg(¥)+h(¥)=1"(t28(¥)+h(y)).

The mountain climbing technique again, together with Lemma 3.2, implies that y’
has a constancy interval if #, #¢,. Hence k" must be strictly monotonic and so also .
We may suppose that k£’ and y’ are positive.

Writing (3.5) in logarithmic form, we obtain

m(y)
g(y)

From this, we easily see that m(y)/g(y) is non-constant and that g(y) and 4 (y) are
both functions of m(y)/g (»). Thus from (3.6) we obtain (2.1) if we put

Ink'(t)+In =lny (tg(»)+h(y)). (3.6)

m(y)

Ink'(t)=u, In m=

v,
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& — the inverse of Iny’, F=the inverse of Ink’, G(v)=g(»), and H(v)=h(y).
Consider the solutions of (2.1), given in Lemma 2.1. Solutions I and III imply that g
is constant, which contradicts our assumptions. IV implies that @ is constant, which
contradicts the fact that @ is the inverse of a c.s.m. function. Finally, solution II
implies an affine dependency between g and # (and between m and n), which also
violates the assumption of Theorem 3.1. Hence, x' and k' cannot be strictly monotonic,
and so the solutions (3.1) of (1.1) are the only possible. This completes the proof.

4. Treatment of cases 2, 3
In this section we shall prove the following non-existence theorems.

THEOREM 4.1. There is no solution (¢, f, g, h, ¥, I, m, n) of equation (1.1) under
the assumptions (i) to (vi) such that g is constant and (m, n) is affinely independent.

Proof. We let
g = constant = f§ (4.1)

and follow the argument used in the proof of Theorem 3.1 up to Equation (3.4).
Hence we may let

f(x)=t, I=kof, (4.2)
where k is c.s.m. and obtain from (1.1)
1 (Bt+h(y)=k(t) m(y)+n(y), (4.3)

where  is c.s.m. The non-constancy of k in (4.3) implies that m, n are functions of A,
and hence we may let

pi=u,  k(uf)=K()
h(y)=:, m=Moh, n=Goh} (44)
and obtain from (4.3)

x(u+v)=K(u) M(v)+G(v) (4.5)

which is our basic equation studied in Section 2. We get from Lemma 2.1 that (M, N)
can only be affinely dependent, which in turn shows that (m, n) is affinely dependent.

THEOREM 4.2. There is no solution (¢, f, g h, ¥, I, m, n) of Equation (1.1) under
the assumptions (i) to (vi) such that h is a linear function of g, (m, n) is affinely inde-
pendent.

Proof. We again follow the argument used in the proof of Theorem 3.1 up to
Equation (3.4) and let

f(x)=t, I=kof (4.6)
to get

1(tg(») +h(»)=k () m(y)+n(y), (4.7)
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where k and x are c.s.m. Since 4 is a linear function of g we may let

h=Ag+u, s=t+21 } (4.8)

1z+m)=0(2), k(s—2)=K(s),
where A, p are constants and rewrite (4.7) as
0(sg(»))=K(s) m(y)+n(y). (4.9)
It follows from (4.9) that m, n are functions of g and we may put

m=Mo-g, n=Gog, g(y)=u (4.10)
to write (4.9) as
0 (su)=K(s) M(u)+G(u). (4.11)

The variable s cannot be zero, otherwise (M, N) will be affinely dependent and so is
(m, n) which contradicts our hypothesis. The variable u cannot be zero as g never
vanishes. We may confine ourselves to the case where both s and u are always positive;
other cases can be treated similarly. We let

Ins=p, Inu=gq (4.12)
and rewrite (4.11) as

0(Exp(p+q))=K(Exp(p)) M (Exp(q))+N(Exp(q)). (4.13)

It follows from Lemma 2.1 that (MoExp, NoExp) is affinely dependent, and so is
(m, n). This is again a contradiction to our hypothesis.

5. Treatment of cases 4, 5, 6

THEOREM 5.1. Let (¢, f, g, h, ¥, I, m, n) satisfy Equation (1.1) under the assump-
tions (i) to (vi). Assume that g and m are both constant. Then there exist constants a, b,
¢, d, e such that :
g=a, ¢@)=y(ct+d+e) } 5.1)
I=(calb) f+(d|b), m=b, n=ch+e ’

Proof. This special case is the subject of [8].

THEOREM 5.2. Let (¢,f,8 h ¥, 1, m, n) satisfy Equation (1.1) under the
assumptions (i) to (vi). Assume also that g is constant and n is a linear function of m.
Then there exist constants a, b, c, o, B, y such that

g=a,  ¢(t)=y (ab Exp(ct)+y)
I=a Expeo(cof )—p (5.2)
m=>b Expo(ch), n=bpExpo(ch)+y.
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Proof. We let

=a, of=F, n=pm+y
Y(z+y)=2(2), I+B=L } (53)
and rewrite (1.1) as
¢ (F(x)+h(¥))=®(L(x) m(»))- (54)

The functions appearing in (5.4) are continuous and non-constant with ¢ and &
philandering. The function L never vanishes, otherwise @ will not be philandering.
We consider the case where L and m are both positive valued; other cases can be
treated in a similar way. Hence we can rewrite (5.4) as

¢ (F(x)+h(y))=®Exp(InL(x) +Inem(y))
and apply Theorem 5.1 to get

¢ (t)=P-Exp(ct+A4+B)
InoL=cF+4 (5.5)
Inom=ch+B,

where A, B, c are constants. This proves that in the case L>0, m>0 the solution is
described by (5.2) with a>0, b>0.

THEOREM 5.3. Let (¢, 1, & h, ¥, I, m, n) satisfy Equation (1.1) under the assump-
tions (i) to (vi). Assume that h is a linear function of g, n is a linear function of m and
write

h=ag+p
n=ym+9,

(5.6)

where a, B, y, 0 are constants. Then
(1) f+a and 1+ are continuous maps of I into R having common zeroes. We denote
by Z the zeroes of them, and let {I .} be the component intervals of \Z, which is openin I.
(2) There exist constants ¢#0, a;>0, b>0 such that

o (sgn(f |,i+oz)-sgn(g)~aibt°+ﬁ)=t//(sgn(l l,i+y)-sgn(m)~t+6) } (5.7)
|f | +al=aill |, +y15  lgl=blml".
(3) The constants c, a; satisfy the following constraints.
(3a) If Z#0, then ¢>0 and o (B)=y(9).
(3b) We classify {i} into four families
Cov=1{i|f|+a>0,1|,+y>0}
Co_={i| f|n+a>0,1];,+y<0}
C_p={i| f|n+a<0,1];,+y>0}
C__={i| f | +2<0,1|;,+y<0}.



84 Anders Lundberg and Che Tat Ng AEQ. MATH.

The constants a; are the same when the i’s belong to the same class C. Let us write

Ay y=a; for ieC,,
A, _=a; for ieC,_
A_,=a; for ieC_,
A__=a; for ieC__

Furthermore, if none of the four classes of the C’s is empty so that the four A’s all exist,
then they satisfy
Ai A=A, _-A_,.
Proof. We set

f+a=F, [+y=L
$(z+B)=2(2), w(w+6)=~p(w)} (5.8)
and rewrite (1.1) as
@ (F(x) g (1))=Y (L(x) m(y)). (5.9)

The functions appearing in (5.9) are continuous and non-constant with ®, ¥ phi-
landering and g, m non-vanishing on J. Hence F and L must have the same zeroes on 7,
and this proves (1). We may now confine our discussion on I;x J for (5.9), where F
and L have no zero; and we may assume for convenience that F | 10 L |1, 8 m are all
positive valued. We can rewrite (5.9) as

®-Exp(InoF |, (x)+lnog(y))=¥oExp(InoL |r, (x) +Inem(y))

and apply Theorem 5.1 to get

PoExp(cs+A4;+B)=Y-Exp(s)
ln°F|1i=C ll‘loL |11+Ai
Ineg=clnom+B

which will in turn give (5.7) with a;=Exp 4;, b=Exp B. This proves (2).

If Z#9 it follows from the second equation of (5.7) that ¢>0; and from the first
equation of (5.7) that ¢ (8)=y (5). The consistency of the first equation of (5.7) for
different i’s and the philandering of ¢ give the asserted dependence of the constants
a;’s as in (3). This completes the proof of our theorem.

EXAMPLE 5.4. An example to Theorem 5.3 is given as follows:

I=J=the reals R
¢ (r)=1| teR
f(x)=sin’x x=0

—sin?x  x<0
g(y)=exp(2y) yeR
h(y)=0 YER
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y(t)=t* teR

I(x)=sinx xeR
m(y)=exp(y) yeR
n(y)=0 yeR

Then (@, 1, & h, ¥, I, m, n) satisfy Equation (1.1) and the assumptions (i) to (vi).
Equation (5.6) is satisfied with a=pf=y=06=0. The set Z appearing in Theorem
5.3.1 consists of integral multiples of n; and I;=(im, (i+1) n) for each integer i.
The remaining parts (2) and (3) are fulfilled with c=2,a;=1all i, b=1, Cy 4=
={0,2,4,..}, C._={1,3,5,..}, C_,={-2 —4,-6,..} C__={-1, -3 =5
A=A, =A_,=A__=1

Appendix

Under the assumptions of Theorem 3.1, we will now show that G and H are
functions of each other, where

G(t, y)=tg(»)+h(»)
H(t,y)=k(t) m(y)+n(y)

from which the existence of the c.s.m. function g, satisfying (3.4), follows. Because of
symmetry, it is sufficient to show that H is a function of G. We first show

LEMMA Al. In the interior of f (I)x J, H is locally a c.s.m. function of G.

Proof. Since ¥ is philandering, H is constant on every connected component
of a level curve of G. These level curves are continuous functions: y—? (i.e. (», t)eL,
(y,t')eL=>t=t', where L is a level curve). Therefore, every point in Int(f(I)xJ)
has a neighbourhood where all level curves are connected. In such a neighbourhood, H
is obviously a function of G, which proves the lemma.

We also need the following

LEMMA A2. Let N be a one-sided neighbourhood (punctured or not) of a real
number o, let two real valued functions g, and g, be continuous in N, and suppose g, (s)
<g,(s) when seN, s#a. Assume that

a=lim supg, (s)=1lim supg, (s) (A1)

as s tends to a in N, and that g, (N') and g, (N') are left neighbourhoods of a. If a function
f is left continuous at a, and
f(g(5))=r(g2(5)); seN (A2)
then
fw)=f(a) forevery ucgi(N)ug:(N). (A3)
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If g,(N) and g,(N) are right neighbourhoods of a, and f is right continuous at a, then
(A3) holds if lim sup is replaced by lim inf in (Al).

Proof. Given in [5] (Lemma 4.3).

Now, to prove our assertion, suppose P, Qelnt(f(I)xJ) and G(P)=G(Q). We
will show that H(P)=H(Q). For points on the boundary é( f(I)x J), this equality
then follows from the subsequent Lemma A4.

Join P and Q by a continuous curve I', running entirely in the interior of f (I )x J.
Since G and H are locally functions of each other GoI" and HoI' must have the same
constancy intervals. Therefore, we may assume that they are philandering, for other-
wise we can identify all points of every constancy interval, according to Lemma 3.1
of [8]. This identification does not destroy the property of G and H being locally
continuous functions of each other. Suppose, in order to obtain a contradiction, that
H(P)# H(Q). Using the mountain climbing technique again, we may suppose that
there are two continuous functions &, and &, such that

Golol,=Golo¢, (A4)

Hol'o¢(0)=H-I'¢,(0) (A5)
and
HoT ol (t)<HoIo&,(t);0<t<d.

Since H, as a local function of G, is c.s.m., we may suppose, for instance, that
Holo& (0)SHoTo& (t)<HoIo&y(t); 0<t<d. (A6)

From (3.3),i.e. o G=y o H, and (A4), we obtain
YoHoTl ol =yoHoI&,. (A7)

Now, (AS5), (A6), and (A7), together with Lemma A2, imply the existence of a
constancy interval of y. This contradicts the assumption that i is philandering. Thus
H(P)=H(Q), which was to be proved.

DEFINITION A3. A locally connected subset S of R" is said to be a body if Int S
is nonempty, connected and S<IntS.

LEMMA A4. Let S be a body in R" and let G, H:S — R be continuous. If H | IntS
is a function of G I,n, s> then H is a function of G.
Proof. Suppose
G(x)=G(y) implies H(x)=H(y), (A8)

holds for every x, yeIntS. We will show that (A8) is true if x or y is a boundary
point. Let a€dS and belntS be arbitrary such that G(a)=G(b). Suppose first that
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every neighbourhood of a contains a point x such that G(x)> G (a) and every neigh-
bourhood of b contains a point y such that G(y)> G (b). Then there exist sequences
{x,}, {¥a} in IntS such that x,—a, y, —b as n— oo and that G(x,)=G(y,) for all .
Hence by (A8) we get H(x,)=H(y,) for all n, and by continuity of H that H(a)=
=H(b). '

We obtain the same conclusion if in the above paragraph > is replaced by <.
We also get the same conclusion if G(x)= G (a) for values of xeInt S arbitrarily close
to a.

Now, suppose G(x)>G(a) in some punctured neighbourhood of a and G(y)
<G (b) in some neighbourhood of b. Then, since IntS is connected, there is a point
b'elntS such that G(b')=G(b)=G(a) and G(y)> G(b') for values of yelntS
arbitrarily close to b’. It follows from the above argument that H (b')=H(a), and
from G(b’)=G(b) in IntS that H(b")=H(b). Thus H(a)=H (b).

The case G(x)<G(a), G(y)=G(b) is similar.

Since S is locally connected, the proof is similar, mutatis mutandis, if a, bare both
in 0S.

The authors are indebted to a referee who eliminated an error in this lemma.
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Extremal tests for scalar functiqns of several real variables at

degenerate critical points

J. M. Cushing

1. Introduction

It is, of course, well known to students of calculus that the extremal nature of
a function f at a critical point is decided if the so-called discriminant (or Hessian)
given by the expression 4= fxf, —fexf,y evaluated at the critical point is nonzero. It
is also known through simple examples that, in the so-called degenerate case when
A=0 at the point, f may have either an extremum or a saddle point. Consequently,
the extremal nature of £ in this case is indeterminate from a knowledge of the second
derivatives at the point in question alone and higher order partial derivatives at the
point must be considered. (It is interesting that during the last century a certain
confusion existed concerning the degenerate case, even apparently in the minds of
some renowned mathematicians. For a short account of this history of the degenerate
case see [1].) Systematic, yet straightforward and simple methods by which to take
into account the higher order derivatives seem, however, difficult to come by. In
fact, the only method known to the author which offers an essentially complete ac-
count of this case is due to Freedman [2]. (His techniques are concerned with the
solution of the equation f (x, y)=0 for x=x(») but implicitly yield information about
extrema as well. He also considers cases other than the degenerate case. Also in a
recent paper [3] Butler and Freedman consider the case when the lowest order terms
of f are cubic or higher; as stated below, we do not consider this case here.) The
purpose of this note is to present a complete method for determining the extremal
nature of f on the basis of its derivatives at the point in question under the two
assumptions that (i) f possesses the necessary number of partial derivatives and (it)
the lowest order terms in its Taylor expansion with remainder at the point are qua-
dratic. Under these conditions we will show how the extremal nature of f may be
decided in the degenerate case through a sequence of tests each involving a dis-
criminant and each having a degenerate case, whose occurence, however, can be
followed by the next test of the sequence. Fach test has the same format as the
standard discriminant test using 4, which itself may be considered as simply the first
test of the sequence. Although they accomplish more or less the same ends, the details
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of our method are for the most part significantly different from those presented by
Freedman in [2]. (A few particulars do overlap, however.) In addition, our method
seems to be conceptually more concise in that it involves one simple algorithmic
principle while Freedman’s method consists of a rather long list of technical cases,
some of which may loop back upon themselves. (No discussion is given in [2] con-
cerning this looping back nor the possibility of this indefinitely happening; such a
possibility is briefly discussed, but not characterized, in [3] for the case, not con-
sidered here, that the lowest order terms in f are cubic or higher.)

In Theorem 1 we describe our method as a sequence of discriminant tests. Theorem
2 contains specific information about the existence and behavior of the implicitly
defined functions f'(x, y)=0 in the case of a saddle point, as derived from our tests.
Theorem 3 characterizes those analytic functions for which the sequence of tests
terminates after a finite number of steps, or equivalently those for which the sequence
is indefinitely inconclusive. Finally, Theorem 4 is a stronger version of Theorems |
and 2 for the case when f'is analytic.

2. Main results

Let f'be a real valued function of real variables x, y which is defined and possesses
at least three continuous partial derivatives in some neighborhood N of a critical
point which we assume, without loss of generality, to be the origin. There is also
no loss in generality in assuming (0, 0)=0. The function f is said to have a proper
relative minimum (maximum) at the origin if f(x,»)>0 (<0) in some deleted
neighborhood of the origin and, in either case, is said to have a proper relative extrem-
um there. If the values of f(x, y) change sign in every neighborhood of the origin,
then we say that f has a saddle point at the origin. Finally, if f(x, y)>0 (<0) in
some neighborhood and f'(x, y) =0 somewhere in every neighborhood of the origin,
then f has an improper relative minimum (maximum) at the origin. Under assumption
(ii) above, the vanishing of both £, and J,y at the origin would imply 4= fxi>0
and the fact that f has a saddle point. Since we are only interested in the degenerate
case, we may assume without loss of generality that f,,#0 at the origin. Let i!jla; =
0'*Ifjox'y’ at x=y=0. Then, for our purposes, without any loss of generality, we
may assume in everything done below that the function f has the form f(x, y)=
x> +ay;xy +a9,y* +0(r?) in N where r=(x?+y?)"/2,

To motivate briefly our method we consider Peano’s well-known example (see
[11) £ (x, »)=(x—py*) (x—g)*), where p, g are constants, which is an illustration
of the possibility of f having, at a degenerate critical point, either an extremum
(p=9) or a saddle point (p+#gq). Although the nature of f at the origin is for this
example quite easy to determine by inspection, one way of looking at Peano’s example
is to view f as a quadratic form, not in x and y, but in x and p2. This quadratic
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form has discriminant (p—g)* and, hence, is indefinite if and only if p#¢ and semi-
definite if and only if p=g. For a general function f with a degenerate critical point
at the origin, our method takes a hint from this example and, after changing variables
so as to complete the square on its second order terms, investigates the x2, xy?, and
y* terms (in the new variables) as a quadratic form. If this form is semi-definite
the process in repeated, only this time to consider the x2, xy*, and ¥ terms; etc.
To make this process precise we make the following

DEFINITION. A function f as described above is said to be one-fold degenerate
at the origin if 4, =a*, —4ay, =0 and n-fold degenerate for n>2 if the following three
conditions are met:

(i) f possesses 2n continuous partial derivatives in N;

(ii) its Taylor expansion with remainder has the form f (x, y)=x>+a;,xy" +
g2, y*" +m(x, y)+o(r?") where m(x, y) consists of all other terms of order three
through 2n and has the form

m(x,y)= 2 axy+ ) a;x'y’; 1)
i+j=3,.,n+1 i+j=n+2,..,2n
i#0,1 i#0

(iii) 4,=a},—4a92,=0.

Since 4, =4 we see that the classical degenerate case 4=0 in the standard ex-
tremal test corresponds to f being one-fold degenerate.

It is not difficult to see that if f'is n-fold degenerate for some n>1 while possessing
2n+2 continuous partial derivatives in N and if we make the change of variables

3?=x+(01n/2)}’", y=Yy, (2)
then the function f takes the form

f(x, J7)=x2+dl PR A a2l 4 ans J4m(%, 7)+o (F"*2)

| LEgm (K 3
a;= 2 (—"11../2)'c (i>akj+n(i—k) @)

k=i

(here [p] is the largest integer less than p) where /i has the form (1) with n replaced
by n+1. This is done to complete the square on the term x% +ay ,Xy" +ag 2,*" Which
is possible since 4,=0.

Although the form of the function fin the definition above looks rather formidable,
it is nonetheless exactly the type which arises from an arbitrary function after n
degenerate extremum tests, beginning with the familiar classical discriminant test,
as described in the following theorem.
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THEOREM 1. Suppose that the function [ is n-fold degenerate at the origin for
some n=1 and possesses 2n+2 continuous partial derivatives in N. Suppose the change
of variables (2) is made.

(i) If dg 241 #0, then f has a saddle point at the origin.
(ii) Suppose dg4,.1=0. Then
(a) f has a proper relative minimum if Apsy=ds 1 —4dga,4,<0;
(b) f has a saddle point if 4, ,>0;
(c) the extremal nature of f is undecided if A,41=0, but in this event f is
(n+1)-fold degenerate.

Notice that in the degenerate and inconclusive case (c), the fact that f is then
(n+1)-fold degenerate allows one to reapply the theorem with n replaced by n+1
provided f has enough continuous partial derivatives (viz., 2n +4). Thus, this
theorem provides a systematic manner in which to continue investigating the nature
of the critical point (on the basis of higher order partial derivatives at the origin)
in the event of any number of degenerate cases. The possibility of indefinitely
obtaining the degenerate case is discussed and characterized (for analytic functions)
below.

Proof of Theorem 1. From (3), £(0, P)=d025417"" " +0(7*"*1) and hence, if
do24+1#0 then f(0, 7) changes sign with 7 near the origin. This proves (i). Let
%=7""1 cosd, j=Fsinf (where 7, O are polar coordinates in the %, 7 plane) in (3).
Because 77 has the form (1) with » replaced by n+1, this yields

f=F*""2[Q(cos8, sin"*18)+0(1)]

where O (s, t)=s2+d1,,+1st+d02,,+2t2. If 4,,,<0, then the quadratic form Qis
positive definite and, hence, there is a constant g such that Q(cosd, sin"*19)>¢>0
for all 0<f<2n. Thus, for all 7#0 small enough, f (%,7)>0 and (a) is proved.
Suppose now that 4,,,>0. We will first show that there exist values 8, and 0_
for which Q(cosd, sin"*'0)>0 and <0 respectively. Clearly, we may take 8, =0.
Since Q(s, 1)=(s—rt) (s—r_t) for ry =(1/2) (-4, nt1E/4,41) We see that Q<0
for all s, ¢ lying in an infinite sector S formed by the distinct lines s=r_ ¢ and s=r_¢.
Inasmuch as for any n>1 the curve s=cos®, ¢ =sin"*! 0, 0<0<n forms a continuous
closed curve connecting (1, 0) and (—1,0) in the upper half plane #>0, it must
intersect S for some _. Now clearly, for all 70 sufficiently small, f(% 7)>0 at
0=0, and f (%, 5)<0 at §=0_; this proves (b). From (3) and the definition above,
it is obvious that if dg,,,,=4,,,=0 then fis (n+1)-fold degenerate. The examples
f=x2+xy" 24y 4 and f=(x—y"*2) (x—2y"*?) which have a relative proper
minimum and a saddle point respectively and which both have 4,,,=0 proves (¢). []

As is well known (see for example [4, §53]) the positivity of 4 =4, has a certain
geometric significance relating to the two implicitly defined curves f(x,»)=0;
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namely, these curves have unequal tangents of slopes (1/2) (—ay; * J4;). In the
degenerate case this feature is also present in an extended form which we describe
in the next theorem. First we point out that if f'is n-fold degenerate and the hypotheses
of Theorem 1 part (i) and (b) hold, then the relation f (x, y)=0 defines, for y suf-
ficiently small, two distinct functions x; =(—ay,/2) y"+r:y" "' +y" uy (y) where
ry=(1/2) (—dy y+1£/4,+1) and u, are continuous functions in a neighborhood of
y=0 satisfying u, (0)=0. A proof of this fact can be constructed by setting t=x/y"*!
and repeating verbatim the proof of the one-fold degenerate case as given, for example,
by Goursat [4, p. 111]. It is not difficult to see what this fact says about a function
£ upon which the test described in Theorem 1 has been applied m—12>0 times with
degenerate results and an mth time with case (b) as a result. The function has, of
course, a saddle point by Theorem 1, but moreover, the relation f(x, )=0 (in its
original variables) defines, in some neighborhood of y=0, two m+1 continuously
differentiable functions x, intersecting at y=0 which have equal derivatives of all
orders 1<i<m (given by —%ila,;) and distinct (m+1)st derivatives (given by
(m+1)!r.) at y=0. More specifically, if we follow the m changes of variables given
by (2) which were performed in the process of performing the m—1 degenerate tests
described by Theorem 1 then the two intersecting arcs become, in the original vari-
ables

xe= L (=aw/2) Y aray 4y e ). 4)

As far as saddle points are concerned, the remaining possibility is that Theorem 1
has been applied m— 1 times with degenerate results and an mth time with the result
that dg,m+,70. In this event, as pointed out by Goursat for one-fold degenerate
critical points [4, p. 113] the relation f (x, y)=0 may define in a neighborhood of
the origin either a cusp or again two intersecting curves with no other peculiarities.
It can easily be shown that in this case the two branches have m equal derivatives
(in the case of a cusp, one-sided derivatives) at y=0. Thus, we have

THEOREM 2. Suppose f is any function with a degenerate critical point at the
origin to which the test described in Theorem 1 has been applied m—120 times with
degenerate results and an mth time with the result that f has a saddle point at the
origin: (2) if do ym+1 #0 then f (x, y)=0 defines either a cusp or two intersecting curves
x4 =x4 (¥) with m equal derivatives (one sided, in the case of a cusp) at y=0; or
(b) if doym+1=0 and A,.,,>0 then f(x,y)=0 defines two m+1 continuously dif-
ferentiable functions x. () given by (4) which have m equal derivatives and different
(m+1)st derivatives at y=0.

(The results in this theorem are also proved in [2], if one looks hard enough,
but not in the algorithmic format above.)
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3. Further results

A natural question arises concerning the repeated application of Theorem 1: are
there functions for which the repeated use of Theorem 1 always results in the de-
generate case (c) and, hence, for which no decision about the extremal nature of
the function can be made on the basis of this procedure? We will denote such func-
tions infinitely degenerate. That infinitely degenerate functions exist can easily be
observed by noting that, with the exception of part (c), Theorem 1 results in either
a saddle point or a proper extremum for f; hence, any function possessing continuous
partial derivatives of all orders which has an improper extremum at the origin is
necessarily infinitely degenerate. For example, the function x? is infinitely degenerate.
But then 50 is x(x—exp(—y~?)), which shows that an infinitely degenerate function
may have a saddle point as well as an extremum. (The function x(x—exp (— y7?))
is infinitely degenerate because its Taylor expansion with remainder, of any order,
is identical to that of x2.) It is interesting, however, that within the class of functions
analytic in N the set of infinitely degenerate functions is exactly the set of functions
with improper extrema at the origin. This fact is contained in the next theorem.

THEOREM 3. Suppose f is analytic in N (and as always is quadratic in lowest
terms at the origin). Then f is infinitely degenerate if and only if it can be written as
f (6, y)=(x=35 dy')* g(x, y) where g is a function analytic in N with g(0, 0)=1.
Thus, f is infinitely degenerate if and only if it has an improper minimum at the origin.
As a result, for analytic functions whose lowest order terms are quadratic, saddle points
and proper extrema are always found by our procedure within some finite number of
applications of Theorem 1.

Note that if f is analytic, its lowest order terms being quadratic, and infinitely
degenerate (i.e., if f has an improper extremum at the origin) then f'(x, y)=0 defines
a single analytic function x=) 7 d;y* near y=0. Here the d; are the coefficients
generated by repeated use of the change of variables (2): d, = —3%ay, dy=—1%d,,,
etc. In proving Theorem 3 we will also obtain stronger results than those contained
in Theorem 2 for analytic f; namely we can show that the cases (a) or (b) in Theorem
3 distinguish respectively the cases that £ (x, y)=0 defines a cusp or two intersecting,
analytic arcs at the origin. Thus, we will prove

THEOREM 4. Suppose f is analytic at the origin (its lowest order terms being
quadratic) and has a saddle point there. Then there exists an integer m=1 such that
the first m—120 extremal tests described in Theorem 1 fail, but such that at the mth
test either Qg 41 #0 0F dg 301 =0 and A,,,,>0. Furthermore,

() if o 2m+1#0 then f (x, y)=0 defines a cusp at the origin consisting of two arcs
both analytic only for either small y >0 (if Gy 3n 41 <0) or else small y <0 (if 4y 3,4 1>0)
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and both terminating at the origin with m equal one-sided derivatives c;, 1 <i<m, at
y=0. On the other hand,

(b) if Ao 2m+1 =0 and 4,1 >0, then [ (x, y)=0 defines two analytic arcs for small
| | which intersect one another at the origin and possess m equal derivatives ¢;, 1 <i<m,
but unequal (m+1)st derivatives at y=0.

The proofs of Theorems 3 and 4 depend on a theorem from the theory of functions
of several complex variables (the Weierstrass preparation theorem [5, p. 68]) from
which we may conclude, since fis analytic, that f (x, y)=[x*+a(y) x +b(»)] g (x, »)
where g(x, y) is analytic at the origin with g(0, 0)=1 and where a and b are analytic
functions of y. The following facts are easily established (the proofs are omitted for
brevity): the function f is infinitely degenerate at the origin if and only if x*+a(y)x
+b(y) is; and x> +a(y) x+b(y) is infinitely degenerate at the origin if and only
if a(y)=4b(y) for all y in their common domain of definition.

Proof of Theorem 3. If f has an improper extremum at the origin, then as already
pointed out f necessarily is infinitely degenerate; suppose conversely that fis infinitely
degenerate. Then by the remarks above f (x, y)= [y +4a( »))? g(x, y) where g(0,0)=
1, and it becomes clear that f has an improper relative minimum at the origin. ]

Proof of Theorem 4. We can say immediately from Theorem 3 that if f has a
saddle point at the origin then necessarily the sequence of extremal tests terminates
at some finite step. Thus, either case (a) or (b) of Theorem 4 holds; the assertion
of (b) follows immediately from the proof of Theorem 2. (We need only note in
addition that the analyticity of f implies that the functions u4 (y) are analytic at
y=0, as well known implicit function theorems tell us [4, p. 399].) For part (a)
we observe that the given hypotheses on f together with the remarks made above
can readily be shown to yield

ren={iratyare § (5% e acon. o)

where a(y)=Y 7 a;y' and b(y)=Y.7 b;y". Since the right hand side vanishes for small
|x|, |¥] if and only if the bracketed expression vanishes the implicitly defined curves
are identical for these two expressions. Now the condition dj,,.;7#0 means that
upon setting X =0 at the mth test (that is, in the original variables, x +% Yittay'=0)
the resulting power series in § has 7*"*! as its lowest order term. From (5) this
condition is precisely doyns1=b2ns1—% Y ons @jdzp+1-;#0. Since 7>"*! is an odd
power of 7, it is clear that f(x, y) vanishes only for small =y >0 if dy;,+1 <0 or
only for small y<0 if dg,,+,>0. In fact the branches are found by setting the
bracketed term in (5) equal to zero and solving for x. []

Remark. All of the above results can be extended in a straightforward manner
to functions f of n>3 variables x;,...x, provided the sum of the second order terms
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is a semi-definite quadratic form of deficiency one; i.e., in canonical variables,
=Y1""ext+o(r?), e;=const.>0. If the deficiency d is two or more, then the
method fails in that the behavior of the quadratic form in the variables x,, ..., x,_,,
X2_4+1,---» X2 does not determine that of f near the origin. This can be shown by
the following two examples (with n=3): f=(x; +x,x3)? +x3+(3) x5 and f=x>+
x3 +X3—4x,x,x; which have a proper minimum and a saddle point at the origin
respectively, while the quadratic forms (in x,, x3, and x3) given by x? +x% +(3) x¥
and x? +x3 +x3 are both positive definite.

EXAMPLE. To illustrate the repeated use of Theorem 1 consider the polynomial
f=x*=2xy+y*—2xp* +2y* +y* —y° +xy°. Since 4, =0, the origin is a degenerate
critical point. To apply Theorem 1 with n=1 we make the change of variables (2)
with ¢; =1 and obtain %> —2%y* +j*— 7% +%5° +77. Inasmuch as dy;=0 and 4,=
di,—4dy,=(—2)*—4(1)=0, f is two-fold degenerate. To apply the theorem again
with n=2 we make a second change of variables given by (2) (after replacing the
coordinates X, y with x, y for simplicity to avoid complicating the notation): %=
x—y?, y=y. This yields ¥ —7°+%5°+57+7° and dys=0, Ad,=d,—4dys=0—
4(—1)=4>0. From part (b) of Theorem 1 we find that this polynomial has a saddle
point at the origin. Furthermore, by Theorem 4, f(x, y)=0 defines two analytic
functions of the form x, =y+y*+y*+y%u, (y) and x_=y+y*—p*+p3u_(y) for
|¥| sufficiently small.
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On regular bipartite-preserving supergraphs

Gary Chartrand and Curtiss E. Wall

Abstract

For a graph G with chromatic number x(G)=>2 and maximum degree 4(G), there exists an
r-regular graph H, for every r > 4(G), such that G is an induced subgraph of H and x(H) = x(G).
In the case where G is bipartite, the minimum order of such a graph H is determined.

1. Introduction

Given a graph G with maximum degree 4 (G), it is not difficult to verify that
there exists a supergraph H of G (i.e., G is a subgraph of H ) such that H is r-regular,
where r=A4(G), and G is an induced subgraph of H. In fact, Erdds and Kelly [2, 3]
have determined the minimum order of such a graph H.

If a graph G under consideration has some specified property P, then, ordinarily,
an r-regular supergraph H containing G as an induced subgraph need not also possess
property P. It is the object of this paper to study the above problem with the specified
property being the chromatic number x(G) of the graph H. In particular, we show
that if G is a graph with y(G)=n>2, then there exists an r-regular graph H, for
every r>4(G), such that G is an induced subgraph of H and x (H)=n. Furthermore,
in the special case where G is bipartite (i.e., x(G)=2), we determine the minimum
order of such a graph H.

2. Preliminary definitions

For basic graph theory terminology and notation, we follow [1]. The definitions
of a few pertinent terms are presented here, however.

The chromatic number y(G) of a graph G is the minimum number of colors which
may be assigned to the vertices of G so that adjacent vertices receive different colors.
If x(G)=n(>2), then the vertex set of G can be partitioned as V,uV,u... LV,
such that every edge of G joins a vertex of some V; to a vertex of some V;, i#j.
The sets V; are referred to as color classes. In this case, we write G=G(Vy, Vas-oos Vi)
to indicate the color classes. If x(G)=2, then G is a bipartite graph.
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A subgraph G of a graph H is called an induced subgraph of H if every two vertices
of G which are adjacent in H are also adjacent in G.

Finally, a graph G is regular of degree r or r-regular if every vertex of G has
degree r.

3. The main results

First, we show that every graph G is an induced subgraph of a regular graph
H having the same chromatic number as G. We denote the minimum degree of G
by 8(G).

THEOREM 1. Let G be a graph with y(G)=n>2, and let r be a positive integer
such that r > A(G). Then there exists an r-regular graph H containing G as an induced
subgraph such that y(H)=n.

Proof. Let G=G(Vy, Vs,..., V,). If G is r-regular, we take H=G. Otherwise,
consider another copy G’ of G, where G'=G'(V{, V,,..., ¥,) and V/ is a copy of
V, for i=1,2,...,n. Define H, as the (disjoint) union of G and G’ together with
all edges of the type vv’ (where v is in G and v’ is the corresponding vertex in G')
whenever the degree of v is less than r. Hence, 8(G)+1=06(H,)<A4(H;)<r. If H,
is r-regular, we take H= H,. If H, is not r-regular, then we may construct H, from
two copies of H,, as before. We may then continue this procedure until obtaining
the r-regular graph H,, where k=r—J5(G). Since G is an induced subgraph of H,
we take H to be the graph H,, giving the desired result.

The preceding proof gives the order of an r-regular graph H containing G as
an induced subgraph as 2*p, where p is the order of G and k=r—9(G). This is,
undoubtedly, far above the minimum order of such a graph H. We now consider
this problem in the case of bipartite graphs.

If G=G(V,, V,) is a bipartite graph, then we employ the symbol §;=6;(G),
i=1, 2, to denote the minimum degree in G' among the vertices of V;. We are now
prepared to present our next result, which is reminiscent of the aforementioned
theorem of Erdos and Kelly.

THEOREM 2. Let G=G(V,, V,) be a bipartite graph with p vertices and q(>1)
edges, where |Vy|=m and |V,|=n. If r is a positive integer such that r>A(G), then the
minimum order of an r-regular bipartite graph containing G as an induced subgraph is
2k, where k is the least positive integer satisfying the following inequalities:

(1) kzn+r—06y;

(2) kzm+r—3,;

(3) k>p—[a/rT;

4) K*— (p+r)k+ (mn+rn+rm—q)=0.
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Proof. Suppose H=H(W,, W,) is an r-regular bipartite graph containing G as
induced subgraph, where V; € W, and V,< W,. Since H is regular of positive degree,
it follows that |W,|=|W,]|.

Let v, be a vertex of V; whose degree (in G) is &,. Since v, has degree r in H and
G is an induced subgraph of H, the vertex v, is adjacent with r —4, vertices in W, — V,.
Hence, |W,—V,|=|W,|—|V,|=r—4,. Similarly, | W; — Vil =|W,|—|Vi|=r—4,.Thus
|Wy|=m+r—238, and |W,|=n+r—0;.

Since every edge of H which is incident with a vertex of V; and which is not an
edge of G must be incident with a vertex of W;— V,, it follows that r|V;|—q<
<r(|W,l—|V,l). Hence, rp—q<r|W,| or, equivalently, |W,|=p—[q/r].

The total number of edges joining ¥; and W,—V, is rm—gq. Therefore, there is
a vertex v, of W,—V, incident with no more than (rm—gq)/(|W2|— V,|) such edges.
Hence v, is joined to at least r— (rm—q)/(|W,|—n) vertices of Wy —V;. Therefore,
r—(rm—q)[(|W,| —n)<|Wj|—|Vy|, which implies that W2 =(p+r)|Wil+ (mn+
+rn+rm—q)=0.

Hence, if we denote the order of H by 2k (where, then, k=|W;|=| W,|), then we
have shown that k& must satisfy the inequalities (1)-(4).

It remains to show that there exists an r-regular bipartite graph G* containing G
as an induced subgraph and having order 2k, where k is the least positive integer
satisfying the inequalities (1)-(4).

Let Vy={X{, X2,.--» X} and Vy={y1, ¥2,..., u}, Where degex;>degsx;+1 for
i=1,2,...,m—1 and deggy;>degey; . forj=1,2,...,n—1.

We describe the vertex set of G*. Let V=V, if k—m=0, and let V=V;u
U{ty, Uz, .oy U} if k—m>0, where VUV, and {uy, Uy, ..., Uy—p} are disjoint.
Similarly, we let V=V, if k—n=0, and let V' =V,U{vy, v3,..., Ok} if k—1>0,
where V,UV,0{uy, Uz, ..., Uy -} and {vy, v3,..., 0} are disjoint.

Next we describe the edge set of G*. Since G is to be an induced subgraph of G*,
the edge set of G* must, of course, contain the edge set of G. Now k—m=0 and
k—n=0 if and only if 6, =8,=r, i.e., if and only if G is r-regular. Hence, if G is
r-regular, then G* is isomorphic to G and the order of G* is 2k. It follows readily
that k =m=n is the smallest integer satisfying (1)~(4).

We assume henceforth that G is not r-regular. Thus, at least one of ; and 6, is
less than r. Without loss of generality, we assume that d, <r, i.e., V) #0. Let t be the
least positive integer, 1 <t<m, such that degx,<r. We join x, to the vertices vy,
Ugy.-vs Un,, Where ny=r—degx,. If x,.y exists (i.e., if #<m), then we join it to
Uyt 15+++> Ungy Where ny=2r—degx, —degx,.4 and where the subscripts n; +1,..., n,
are expressed modulo k —n. We continue in this manner, joining each x;, t<i<m, to
the appropriate r—degx; vertices of V¥ —V,. We note that, for each such i, there are
sufficiently many vertices in V,*— ¥, since r—degx;<r—4; <k —n, the last inequality
following because k satisfies (1). Denote the graph constructed thus far by H.
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We claim that no vertex of H has degree exceeding r; only the vertices of V,'—V,
need be checked. The number of edges joining ¥; and V, —V, is

M=

(r—degx;).

i

1

We verify that this sum does not exceed r(k—n), which will yield the desired result
because then the average of the degrees of vertices in V)" —V, is at most r and, by
construction, max; ; |degy;—degy;| <1 sono vertex of V) —V, has degree exceeding .
Since k satisfies (3), it follows that k>p—g/r. This implies that rk>r(m+n)—gq;
hence, rm —q<r(k—n). However, this last inequality states that

(r—degx;)<r(k—n).

s

i=1

By construction; every vertex of V; has degree r in H. If k=m, then, since k
satisfies (2), it follows that m>m+r—0J, and thus §,=r. Hence, every vertex in V,
has degree r. Each of the m vertices in ¥, has degree r, so H has mr edges, nr of which
are incident with vertices in V,. Thus there are mr—nr edges of H incident with
vertices in V,* — V,, which has k —n vertices. Now, (mr—nr)[(k—n)=r so the average
of the degrees in H of the vertices of ¥, is r. Hence every vertex in V;* has degree
exactly r.

We now assume that k>m. Relabel v;, i=1, 2,..., k—n, as y, ;. Let s be the least
positive integer, 1<s<k, such that degyy,<r. We join y, to the vertices uy, u,,...,
Uy, where my=r—degyy,. If s<k, then we join y,,; tO ty, 41,..., Un, Where
m,=2r—degyy,—degyy,+1, and where the subscripts m, +1,..., m, are interpreted
modulo k—m. We proceed in this manner, joining each y; for which degg,y;<r to
the appropriate r—degyy; vertices of V{*—V,;. This completes the construction
of G*.

For each i such that 1<i<n, there are sufficiently many vertices in ¥;* — ¥, which
can be joined to y; since r —deggy; <r—deggy;<r—0, <k—m. The number of edges
of H joining ¥, and V, =V, is

M=

(r—degx;)=rm—q.

1

i

The number of edges which must be added to H to assure each vertex of ¥;* has
degree r in G* is r(k—n)—rm+q. By the construction, the maximum number of
edges which need be added to any vertex of ¥, is {(rm—gq)/(k—n)}. Since k satisfies
(4), it follows that {(rm—gq)/(k—n)}<k—m; hence, there are sufficiently many
vertices in V{*— ¥V, to accomplish this.



Vol. 13, 1975 On regular bipartite-preserving supergraphs 101

The number of edges which must be added to H to assure each vertex of V¥ has
degree r is r (k—m)—rn +q, and this is equal to r (k—n)—rm+q. Thus, G* is r-regular,
and the proof is complete.

We note, in closing that examples can be given to show that each of the inequalities
(1)-(4) is needed.
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The dual of the cone of all convex functions on a vector space

J. H. B. Kemperman

1. Introduction

Let Q denote the field of rational numbers. Consider a linear vector space G over

0 and let X be a fixed Q-convex subset of G. A function g: X — R is said to be convex
if the inequality

g((y+2)2)<(g(»)+g(2)/2 (L.1)

holds for each choice of the elements y and z in X. The class of all such convex
functions will be denoted by C. One may regard C as a convex cone in the linear
space IT consisting of all functions g: X — R.

Let = denote the class of functions f: X — R having a finite support {xeX: f (x)#
0}. The dual C° of C will be defined as the class of all feX with the property that

fred=Y f(x)g(x)=0 forall geC. (1.2)

xeX

Clearly C° is a convex cone in the linear space X. Since all the constant functions
are in C one has ¥ ,.x f (x)=0 for each feC°.

In view of (1.1), the dual cone C° certainly contains all functions f,, . of the
special form

£y, (x)=1 if x=y,
=1 if x=z, (1.3)
=-2 if x=(y+2)/2,
=0, otherwise,

(except that f, ,(x)=0 for all xeX in case y=z); here, y and z are fixed elements
in X. Let

A={f,, . yeX, zeX}

be the collection of all these special elements in C°. Also note that C itself may
be regarded as the dual of 4, i.e. Cc=A°
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The major result of the present paper (Theorem 1) says that the dual cone C°=4°°
of C is precisely the convex cone in X generated by all these special elements f, ..
In other words, the second dual A4°° of A coincides with the convex cone A in
X which is spanned by 4. Equivalently (see Section 3), Ac happens to be closed
relative to the coarsest topology in X with the property that {f, g> is continuous in
f for each fixed gell. The proof of Theorem 1 is given in Section 5.

The proof implicitely contains an effective (but probably inefficient) algorithm
for deciding whether or not a given feZ can be written as a finite nonnegative linear
combination of elements f, .. In view of Theorem 1 such a representation is possible
if and only if it is impossible to find a convex function g: X - R (measurable or not)
such that ), xf (x) g(x)<0.

Theorem 1 says that 4°°=A.. Besides 4 there are many other interesting subsets
D of X for which one would like to know exactly the second dual D°°. Very much
simpler is the situation where instead one is interested in the iterated orthogonal
complement D** of D. Namely (see Section 2), this set D+ always coincides with
the linear span D, of D. Naturally, it may still be very hard to decide whether or
not a given feX belongs to D;.

The proof of Theorem 1, as given in Section 5, employs, among other things,
a well-known result of Blackwell [2] concerning dilatations, (compare Section 6).
A generalization (Theorem 2) of Blackwell’s result is presented in Section 7. It
greatly simplifies the proof of Theorem 1 and, moreover, has a clear interest of its own.

2. Functional equations

Let X be a fixed set. By IT we shall denote the collection of all functions g: X — R.
One may regard IT as the (unrestricted) direct product

= ® R,

xeX
with R, as a copy of R). Let X denote the corresponding direct sum
X
= @ R,.

xeX
An element feX may be interpreted as a function f: X' — R having a finite support
{xeX: f(x)#0}. Both X and IT are linear vector spaces (over R). A natural basis
for X is given by {e,: xe X} where ¢,€Z is defined by

6.(£)=0 if EeX, E#x;
=1 if &é=x.
Thus feX can be written as

f=2 f(x)e. 1)

xeX
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It is sometimes useful to identify feZ with the signed measure y, on X defined by
py(E)y=Y f(x) foreach EcX.

xeE

The linear spaces X and IT are in duality (see [4], p. 48, [8] p. 138) by means
of the natural inner product (bilinear form)

g =xZX f(x)g(x)=| g dus, (2.2)

(feX and gell), which separates points both in Z and in II. If ¢:Z—>Ris a linear
functional on X then, by (2.1),

¢(f)=xezxf(x) ¢ (e)=<f.2>>

where gell is defined by g(x)=¢(e,) for all xeX. Thus IT is the algebraic dual of
7. On the other hand, if X is infinite then there exist many linear functionals { on
IT not of the form (2.2).
If A<= X we define
At={gell: {f,gy=0 forall fed}. (23)

Thus A* is the linear manifold in IT consisting of all solutions g: X — R of the ‘func-
tional equation’

Y f(x)g(x)=0 forall feA. (2.4)

xeX

Similarly, if B<II we define
B'={feX:{f,gy=0 forall geB}. (2.5)
One has AcA** and At =4

LEMMA 1. Let A be an arbitrary subset of X and let Ay, denote the linear manifold
in X spanned by A. Then
All = AL . (2.6)

Proof. Clearly A,cA*‘. Let f,eX be such that fo¢A;. We must prove that
fog At

There exists a linear functional ¢:% — R which vanishes on A (and thus on 4)
while ¢ (fo)#0. Since IT is the algebraic dual of Z, there exists a unique goe Il such
that ¢ (f)={f; go) for all feZ. Moreover, goe 4" and < fo, &0> #0 thus fo¢ A
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Remark. For subsets B of IT the set B** may be much larger than B,. For
example, let B=B; consist of all functions g: X — R of finite support. Then B*= {0}
thus B+ =1II# B as soon as X is infinite.

As an application of Lemma 1, let X be a subset of an additively written abelian
group G and let n be a fixed positive integer. Let further Q, denote the collection
of all generalized polynomials on X of degree <n— 1. More precisely, Q, consists of
all functions g: X — R such that

)@= £ (-1 () ste it

vanishes for all &, & in G such that ¢ +jheX for j=0, 1, ..., n. In other words, O0,=
(P,)* where P, denotes the subset of X consisting of all functions 4; ,: X — R of the
special form

Ag,,,(x)=(_1)n—f<’;) iEx=E4jh  (j=0,1,...,n); @7)

=0, otherwise.

LEMMA 2. Let feX be given. Then in order that
x;( f(x)g(x)=0 forall geQ, (2.8)
it is necessary and sufficient that f admits a representation of the form
f (X)=¢,Z; B(& k) A n(x). (2.9)

Proof. Apply Lemma 1 with 4=P,. Naturally, it is understood that the (real)
coefficient B(¢, #) in (2.9) is equal to zero for all but finitely many pairs (¢, k).
Moreover, in (2.7) and (2.9) one only allows pairs (¢, #)eG x G such that &+jheX
for j=0, 1,..., n.

As an application of Lemma 2 take X=G. It is known (see [9]) that in this case
4y,4,,...4, g=0 for all geQ" and each choice of the elements A, ..., h, in G. After-
wards, we obtain from Lemma 2 the stronger property that the linear functional
g:—(4,,4,,...4,,8) (o) on IT can be expressed as a finite linear combination of the
special linear functionals {47 ,, 8> =(4g); (¢). For instance, if n=2 then one such
expression would be

24,,4,,8 (&0)=428 (&) +A;32g (fo)“dfz—h,g (&o+2hy).
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If u, ve G exist with A, =u—v and h, =u+v then another expression would be

Ahxdhzg(éo)=Aﬁg(fo)“4ig(fo +u).
3. Inequalities

Let X, ¥ and IT be as in Section 2. If 4 < Z we define the dual A° of 4 by means of
A°={gell: {f,g>>0 forall fed}. (3.1)

Thus A° is the convex cone in IT consisting of all functions g: X — R such that

Y f(x)g(x)=0 forall feAd. (32)

xeX

Similarly, if B<IT we define
B°={feX:{f,gy>0 forall geB}. (3.3)

One has 4= A and 4°=4°°.

By analogy with Lemma 1, one might hope that the second dual 4°° of A4 coincides
with the convex cone A. generated by A. Equivalently, one might hope that each
fo€Z with fy¢Ac can be separated from Ac¢ by a linear functional ¢:X— R in the
sense that ¢ () >0 for all fe A¢ while ¢ (fo)<0. Unfortunately, this need not always
be true; compare the well-known counter-example in [3] p. 53 (problem 4).

In fact (see [3] p. 73; [8] p. 119) the required separation property holds if and
only if the convex cone A is closed relative to the weak topology induced by the
bilinear functional { f, g> on X x II. Thus a net {f,} in 2 converges to foelZ if and
only if lim, < f,,, 8> =< fo, g for all gell.

By the way, a linear manifold in Z is always closed. After all, it can be represented
as an intersection of a suitable collection of hyperplanes { feZ: { f, g0 =0}; compare
Lemma 1 and its proof.

In general it is very difficult to see whether or not a given convex cone in Z is
closed. Consequently, if one wants to show that a given set AcZ satisfies 4°°=Ac
then one is usually more or less forced to present a direct proof that each fe4°°
can be expressed as a finite linear combination with nonnegative coefficients of
elements in 4.

4. The dual of the class of all convex functions
Let Q denote the field of rational numbers. From now on we shall take X as a

Q-convex subset of a vector space G having Q as its field of scalars; thus if y, ze X
and 0<a <1 is rational then (1 —a) y +ozeX.
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Let further C denote the subset of II which consists of all convex functions
g:X— R. Thus a function g: X — R belongs to C if and only if

g(x)<3(g(x+h)+g(x—h)), - (41)

for all xe X and heG such that x+heX. Equivalently, we have C=A4° where 4 is the
subset of X defined by
A={A} ,: & E+h, E+2heX}. (4.2)
Here,
47, (x)=1 if x=¢&
=2 if x=¢+4h; (4.3)
=1 if x=E&+2h;
=0, otherwise.

(provided h#0; moreover, 43 ,(x)=0). The following is the main result of the present
paper.

THEOREM 1. The dual C°= A°° of C coincides with the convex cone A generated
by A. In other words, if feX is such that

Y f(x)g(x)=0 forall geC (4.4)
xeX
then f admits at least one representation as a linear combination
f=¢Zh B(S h) 4g (4.5)

of elements in A with nonnegative coefficients and all but finitely many equal to zero.

It would be interesting to know how far Theorem 1 carries over to a situation
where 4, as in (4.2), is replaced by a collection of the form {D, ,: (G, he Y} where
Dy, is of the form

{D¢,n 8>= 'ZO a;g(E+T;h).
f=

Here, the coefficients a;e R and the mappings T;: Y —G are given.

Let us briefly consider the situation that G is a fopological abelian group. Then
one would often be more interested in the class C* of all continuous and convex
functions g: X — R and its dual (C*)° which could be much larger than C°.

Let us only consider the special case that Go R while X is an interval. Let feX
be given. In order that fe(C*)° one must have Y f(x)g(x)=0 for all continuous
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convex functions g: X — R. It is sufficient to restrict g to the piecewise linear functions
a+bx+)Y c;j(d;—x), (c;=0) or even to the functions g (x)=a+bx; g(x)= (d—x).
In this way one arrives at the known result that fe(C*)° if and only if

Y S(x)=0; ) f(x)x=0, (4.6)
and moreover

Y f(x)(z—x), =0 forall zeR with f(z)>0. (4.7)

See [7] p. 405 for certain generalizations.

Suppose feZ satisfies (4.6) and (4.7), thus fe(C*)°. In the important special case
G=Q each convex function g: X — R is automatically continuous on X thus C=C*
and feC°. But in general there still might exist a discontinuous convex function
g:X— R such that ) f(x) g(x)<O0. In fact, by Theorem 1, this happens if and only
if /' does not admit a representation (4.5) with nonnegative coefficients.

For example, let f,€X be of the special form

fo(x)=—1 if x=0;
=a if x=p; (4.8)
=p if x=-—a;
=0, otherwise.

Here, 0<a<1 and f=1—a. It is well-known that < f,, g> =0 for all geC*, that is,
foe(C*)°.

Consider first the case that « is a rational number. It is well-known (see [6] p.
72) that then f,eC°, hence, f, must admit a representation (4.5) with nonnegative
coefficients. In fact, such a representation is implicitely contained in every of the many
known proofs that f,e C°® (when a is rational). One such representation would be

N-1

f0=ﬁ._zliA2—a+(i—1)h,h+a ) (N_i)Az—a+(i—1)h,h' (4.9)

i=n+1

Here, n and N are positive integers such that a=n/N thus 1<n<N. Further
h=1/N.

Next, consider the case where « is irrational. Thus « and f=1—a are rationally
independent. Extending {a, 8} to a (Hamel) basis of R over Q, one easily constructs
an additive function g: R— R having prescribed values g(«) and g(B); (g(x+y)=
g(x)+g(»)). Thus one can attain that g («)/x>g(B)/B. But then 4%g=0 for all heR
(thus ge C) while < f,, g)> <0, showing that f,¢ C°.
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5. Proof of theorem 1.

Let feX be fixed such that (4.4) holds. We must show that f admits a representa-
tion (4.5) with nonnegative coefficients. One may assume that f#0. Taking g(x)= +1
in (4.4) we see that

%, f(x)=0. (5.1)
One may as well assume that
Y f)=+1; ¥ f(x)=-1. (52)
(x>0 f(x)<0

Case (i). There is only one element xoeX with f(x,)<0; thus f(x,)=—1. We
further assume that f (x) takes only rational values.

Let the positive integer N be a common denominator for the rational values f(x).
Then (4.4) amounts.to a relation of the form

1 N
N Zlg(xj)—g(xo)>0 forall geC. (5.3)
i=

Here {x¢, Xy,..., Xy} is a given collection of not necessarily different elements in X.
One must show that there exist nonnegative numbers f(&, #) [all but finitely many
equal to zero; B (&, h)>0 only when ¢ and & +2h are in X] such that

}Vz £(0) =8 (v0)= T B, ) 4 (©) (54)

is an identity (valid for all geIT).
If g:G— R is a Q-linear function on G then (5.3) holds with the equality sign;

thus g(x,)=g(X) where '
X=(x;+---+xy)/N. (5.5)

But the Q-linear functions on G separate points, hence, x,=X.

It is easy to prove the assertion (5.4) by induction with respect to N. One proof
would use the representation (4.9) (of foeX defined by (4.8) with a=n/N) together
with the identity

Y #G)-Ne@={ £ eC-ne 4] ¥ s)-me(a)]
j=1 j=1 j=n+1
~ +{ng(7) +mg ()~ Ng (9}
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Here m and n denote positive integers with m +n=N, (such as m=1 and n=N—1).
Further §=(x;+--- +x,)/n and Z=(x,,, 4 +xy)/m thus X=(n/N)j+(m/N) Z.
The use of (4.9) can even be avoided by taking m=n=2"" and N=2*; (this is no
loss of generality as may be seen by taking some of the x; equal to X).

Another proof by induction can be read off from the identity

3 80)-Ne (=] T, e~ (V-1 00
LN =2)8(5) 8 (o) = (V= 80} (V=1) {8+ (9)-26 ().

Here, u=(x; 4+ +xy_{)/(N—1) and v=((N—2) £+xy)/(N—1)); thus (u+v)/2=%.

Case (ii). There is only a single element x,eX with f(x,)<0, thus f(xo)=—1,
and at least one of the numbers f (x)>0 is irrational. In this case, the assumption
(4.4) takes the form

n

Y a;g(x;)—g(x0)=0 forall geC.

i=1

Here, x;e X, a;>0, further Z'}=1 a;=1 while at least one of the numbers o; is irra-
tional. In fact, all we shall need (just as in case (i)) is that for each Q-linear function
g:G — R we have the equality

g (xo)=j§1 g (x;)-

Let {z;, z,..., zy} be a set of rationally independent elements in G which con-
tains {xo, X{,..., X,} in its rational span. This set in turn can be extended to a (Hamel)
basis {z,} of G over Q. Thus each element xe G admits a unique representation as a
linear combination

x=) g,(x)z, suchthat g, (x)eQ,
Y

while all but finitely many coefficients are equal to zero. It is clear that each function
g,(x) on G is a Q-linear function, thus,

gy(xo)=z1 ;g,(x;) forall 7y.
i=

Put g;(x;)=¢; ;fori=1,..., N;j=0, 1,..., n. Then the {; ; are rational numbers such
that

n

fi,o=z a;ié,; for i=1,...,N. (5.6)

Jj=1
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Moreover,

M=

xj=.
i

éi'jzi fOl‘ ]=O, 1, e R (5.7)

n
-

Consider the compact and convex polyhedral subset S of R" consisting of all non-
negative vectors (g4, ..., ,) which satisfy

n

6,‘, 0= Z O'jé,',j for i= 1, ey N (5.8)
ji=1
and .
ji=1

In other words ¢;>0 and } { 6;X;=X, where X;eR"*! is defined by X,;=(¢; ...,
Enp 1), (I<jgn).

Consider for the moment an extreme point (a3, ..., o)) of S and let I be the non-
empty subset of {1,2,..., n} such that ¢} >0 for jel, o} =0 for j¢I.

We claim that the vectors {X, jeI} are linearly independent. For, otherwise, there
would exist numbers #; (1<j<n) not all zero such that ;=0 for j¢I and Y ¢,X;=0.
But then both ¢j=07 +¢t; and ¢;=07 —¢t; (1<j<n) would define a point of S as
soon as ¢ is sufficiently small and the point (c7,..., o)) would not be an extreme
point of S.

Afterwards, using that &; ;€ Q and further Cramer’s rule for solving a system of
linear equations, it follows that afeQ for all j=1,..., n.

Let (64,1,..., 04, ,) (h=1,..., H) be the finitely many extreme points of S, hence,
0y, ; is rational for all 4 and j. In view of (5.6) the point (a,..., «,) belongs to S,
therefore, it admits at least one representation as a convex linear combination of
the extreme points of S. That is, there exist numbers g, >0 such that Z,,’L 1 0,=1and

1=

o.=

J QhO',,,j fOI‘ j=1,..., n.
h

i

1

This in turn implies the identity
n H n
%, s C)-6(0)= 3, o 3, o )-s )]
< j=

Jj=1

which is valid for all gell. Therefore, it suffices to prove, for each fixed A, with
1<h< H, that the functional

% (3= (x0)

on IT admits a representation as in (5.4) with nonnegative coefficients. And this does
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follow from the result already established in (i), since oy,;=>0 is rational with
Sh_y oy, ;=1 (see (5.9)) and, moreover, xo=Y; o4, ;X; (see (5.7) and (5.8)).

Case (iii). There are two or more elements xeX with f(x)<0. Let xy,..., Xp,
denote the elements xe X with f (x)<0 and put f (x;)= —p; thus ;>0 (i=1,...,m).
Let further yy,..., v, be the elements xeX with f(x)>0 and put f(y;)=g; thus
q;>0 (j=1,..., n). Hence, in view of (5.2),

=1

p:>0, ¥, pi=1; ¢;>0, .21 g;=1. (5.10)
1 J=

The assumption (4.4) can now be written as

.Zl pig (x)< Zl q;8(y;), valid forall geC. (5.11)
i= j=

It suffices to prove that there exist nonnegative real numbers «; ; (i=1,..., m;
j=1,...,n) such that ) ;_, a; ;=1 (i=1,..., m), that further

g (M)*’jél %, j8 (J’j) (5.12)

holds for each Q-linear function g:G— R (i=1,..., m) and that finally

qJ:Zl piai’j (5.13)

for j=1,..., n. For, afterwards, one obtains the identity
ZX f(x)g(x)= -21 q,8(y:)— 21 pig (x:)
X€ j= i=
-5 o[ £ ms00-sc0]

In view of the things established in case (ii), this would imply the existence of the
required representation (4.5).

In fact, the existence of the numbers a; ;>0 as above is an easy consequence of
certain known results concerning dilatations; see Section 6 for further explanations.
Another proof is presented in Section 7.

6. Dilatations

Let Y be a locally convex topological vector space over the reals (such as Y= RY)
and let C*=C*(Y) denote the collection of all continuous convex functions g: Y — R.
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Thus each ge C* satisfies

g < i “jxj><j§:1 o8 (x;) (6.1)

whenever x;eY, a;>0and ) ; « ;=1; thus the o; need not be rational.
If uy and p, are probability measures on Y of finite support then p, is called
a dilatation of yu, if

fgdulsfgduz forall geC*. (6.2)

Let the measure y; have a support {xi,..., x,,} with corresponding masses =1y
({x:})=0(i=1,..., m) and let u, have a support {y;,..., y,} with masses q;=u2({»;})
20 (j=1,...,n); further ) ; p;=1 and ) ; g;=1. Then (6.2) can be written as

M=

pig(x)< Y q;8(y;), validforeach geC*. (6.3)
Jj=1

i=1

It follows from a result due to Blackwell [1], [2] (see [6], [10], [11] and [12] for
related results) that property (6.3) is equivalent to the existence of mn nonnegative
numbers «;; (i=1,...,m; j=1,..., n) such that

M=

1

o ;=1; x;= z ®%iiYis 4;= Z Pi%;j, (6.4)
Jj j=1 i=1
(for i=1,...,m and j=1,...,n; the sufficiency is immediate by (6.1)). We may
visualize (6.4) as a Markov transformation (or ‘dilatation’) of the mass distribution
14 into the mass distribution u,. Here, the mass p; at x; is spread out over the points
Y1;---» Yo by placing a mass p,;; at the point y; and this happens in such a way
that the original centre of gravity x; is preserved (this for each i=1, ..., m).

End of the proof of Theorem 1. We are now in a position to prove the assertions
involving (5.12) and (5.13). Thus let X be a Q-convex subset of the Q-linear space
G and let C denote the collection of all convex functions g: X — R. Further the p,;>0,
¢;>0, x;€ X and y;e X are assumed to satisfy (5.10) and (5.11).

Let {z,...,zy} be a set of rationally independent elements in G containing the
x; and y; in its rational span. Thus there exist rational numbers &, and N such
that

N N
xi=k; SikZik (i=1, ooy m); yj:kzl NjxZx (j=1, ooy n).

One can extend {zy,...,zy} to a basis {z,} of G over Q. Thus each xeG can be
uniquely written as a finite linear combination x=), g, (x) x, with g.:G—->Q as a
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Q-linear function. Note that ge(x;)=Ey and g (y)=nu (i=1,...m; j=1,..,n,
k=1,..., N).

Let C* denote the class of all continuous convex functions h:RV— R. Let
h(uy, ..., uy) be such a function and define g: X — R by means of g(x)=h(g(x),--3
gy (x)). Then geC and it follows from (5.11) that

ii pih(gy (Xi),---s 8N (xi))Sjizl q;h(gi(¥;) > 8N (ry)-

In other words, the inequality

M=

pih (5;'1, cens éiN)S .21 CIjh ('1]1» evs 'le)
i=

i=1

holds for all ke C*. It follows from the above result due to Blackwell (applied with
Y=R") that there exist nonnegative numbers a;; (i=1,...,m; j=1,..., n) satisfying

n

Di®ij=4d;; Z “ij=1
1 ji=1

M=

i

and further

(fn, cers 'fiN)= _Zl aij("jl’ ooy ﬂjN),
j=
that is,

(i=1,...,m;j=1,..,n5k=1,.., N).
It remains to verify (5.12). Thus let g:G—>R be a Q-linear function. Since &;;
and 7, are rational we have

N N N n
g(xi)=g( Z 5ikzk)= z éikg(zk)= Z g(zk) Z ;M jk
k=1 k=1 k=1 j=1

n N n N
= 2 & Z ﬂjkg(zk)= Z ai,-g<2 ﬂjkzk)= Z O‘ijg()’j)~
ji=1 k=1 =1 k=1 j

This completes the proof of Theorem 1.
7. A generalization of Blackwell’s theorem

Met m and n be fixed positive integers and put I= {1,....,m}, J={1,..., n}. In
the present section, I' will denote a given collection of pairs (¢, ) with ¢ as a func-
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tion ¢:/— R and ¥ as a function y:J— R. We further assume that the collection
I' has the following three properties.
(i) If (¢, ¥)el and A>0 is a scalar then (A, Ap)er.
(ii) If (¢y, ¥, )el (r=1,2) then (¢, +¢,, ¥, +,)er.
(iii) If (¢,, ¥, )€l (r=1, 2) then (max (¢, ¢,), max (y;, Y,))erl.

Thus I' is a convex cone which is invariant under a maximum operation.

THEOREM 2. Let p;>0 (i=1,...,m) and q;>0 (j=1,...,n) be given positive
numbers. Then the following properties (1) and (1) are equivalent.
(I) One has

_ZIPi¢(i)< ZJ a (j) forall pairs (¢, Y)er . (7.1)
ie je
(II) There exist real numbers a; ;>0 (iel and jeJ) such that
q;=>, p, ; forall jelJ, (7.2)
iel
and further
¢(1)< Y o W (j) forall (¢,¥)el, all iel. (7.3)
JjedJ

Remark 1. As an immediate corollary, this theorem yields the result involving
(5-12) and (5.13) which was needed at the end of the proof of Theorem 1. For, apply
Theorem 2 with I' as the collection I'={(¢,, ¥,): geC} where ¢,(i)=g(x;) and
Ve(j)=g(»;). Clearly, this collection I' has the above properties (i), (ii) and (iii). We
conclude from (5.7) and Theorem 2 that the numbers a; ;>0 can be found so as to
satisfy (7.2) and

g(x)< ZJ , ;g(y;) forall geC,iel. (7.4)
je

Since C contains all the constant functions we have Y jes o;;=1. Restricting g to
the Q-linear functions one obtains (5.8).

Remark 2. Blackwell’s result (6.4) follows in exactly the same way, namely, by
letting I' = {(¢g, ¥,): g€ C*}. Observe that the continuous linear functions g: Y — R
(which belong to C*) do separate points in Y. Consequently, property (7.4) (with
C replaced by C*) is in fact equivalent to

Y o ;=1; Y o ;y;=x;, forall iel.
jeJ JelJ
Remark 3. Theorem 2 is closely related to a very general theory due to Cartier,

Fell, Meyer and Strassen. See especially Theorem 53 on p. 246 in: P. A. Meyer,
Probability and Potentials, Blaisdell 1966. Our proof below is much more elementary.
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Proof of Theorem 2. That (II) implies (I) follows immediately by multiplying (7.3)
by p;>0 and summing over i.

Conversely, suppose (I) holds. Let A denote the compact and convex subset
of R™ which consists of all nonnegative matrices (a; ;;i€l,jeJ ) which satisfy
Y icr P, j=4q; for all jeJ, hence, a;, j <q;lpi<oo.

Let us write I' as

I'={(¢s ¥o): 0€So},

with S, as an index set. For each subset S of So, consider the compact and convex
subset Ag of A defined by

As={(x; )eA: ¢, ()<Y o, W, (j) forall iel, all ceS}.
jelJ

We have to prove that A, is non-empty. Since As, is the intersection of all the
(compact) sets Ag with S finite, and since further Agn Ag = As s (finite intersection
property), it suffices to prove that 4s is non-empty for each finite subset S of S.

Let S be a fixed finite subset of S;. Our problem is now to show that there exist
numbers «; ;>0 (iel, jeJ) satisfying

Z pi%i, j=4dj» (7.5)
for j=1,...,n, and further

—; o, Yo ()< — ¢, (i), (7.6)

for i=1,..., m and all e S. Here and in the sequel, unspecified summations will be
over all iel, or all jeJ or all €S.

Since an equality such as (7.5) can be replaced by a pair of inequalities, this
problem is precisely a linear programming type of problem of the form By<b, y=0
where B is a matrix and y and b are vectors. As is well-known, see for instance [5],
such a vector y>0 exists if and only if '

x>0 and xB>0 imply xb>0, (7.7)

(where x is a vector; the necessity of (7.7) is obvious).

In the present situation (7.5), (7.6), let £, ; denote the component of the vector
x which is associated with the inequality (7.6); in particular &, ;>0. Let further ;
denote the component of x which is associated to the equality (7.5); it can be any
real number (as can be seen by first representing (7.5) as a pair of inequalities).
The condition (7.7) to be verified says in the present case that the inequality

2z 4= L L #0(1) £, 20 (1.8)
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must be a consequence of the inequalities
Pinj—z !//a (]) éa,i>0a (79)

(all iel, jeJ), together with the inequality &, ;>0 (all o€S, iel).
Consider the pair (¢, ') defined by

1
¢’ (i)=max — Y ¢, (i) &, 4;
hel ’;" : (7.10)
Y’ (j)=max o Y, ()&
h o

hel

In view of ¢, ;>0 and the properties (i), (ii), (i) of I' we have that (¢, y')er.
It follows from the assumption (7.1) that

¥ o (V<L 4’ ().

Next, by (7.9), we have for each jeJ that

1
;Z Vo (j) & i<n; forall iel,

consequently ¥'(j)<n; where we used the definition (7.10) of y’(j). Moreover,
again by (7.10), )", ¢, (i) &, ,<pud’ (i), hence,

Z Y ¢, (i) éa,isz ¢’ (i)<2 q;¥’ (j)<z qn;,
i o i J J
yielding the required result (7.8).
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Conservation criteria, canonical transformations,
and integral invariants in the field theory of Carathéodory

for multiple integral variational problems
Hanno Rund

1. Introduction

In any attempt to construct a potentially useful Hamilton-Jacobi theory for mul-
tiple integral problems in the calculus of variations one is severely hampered by the
fact that the canonical equations consist of systems of first order partial differential
equations in which the derivatives appear essentially as divergences. This is in sharp
contrast to the single integral theory, in which the canonical equations are represented
by a system of relatively simple first order ordinary differential equations. Moreover,
there exists a hierarchy of distinct field theories, each of which possesses its own
peculiar canonical formalism and therefore gives rise to a distinctive Hamilton-J acobi
theory. This implies that a particular field theory must be selected even before one
endeavours to come to grips with the aforementioned difficulty.

Amongst the various field theories the one proposed by Weyl ([9], [10]) is ana-
lytically the most accessible, which probably accounts for the fact that it has been
used almost exclusively in applications to physical field theories. However, perhaps
because of its analytical simplicity, the theory of Weyl is also somewhat inflexible,
and therefore it does not seem feasible to construct satisfactory counterparts of many
basic concepts which dominate the Hamilton-Jacobi theory of single integral varia-
tional problems. On the other hand, although the field theory of Carathéodory ([2])
is considerably more difficult conceptually, it is far more penetrating than that of Weyl,
and, in fact, its much richer analytical apparatus offers a somewhat greater degree of
flexibility, particularly as far as the canonical formalism is concerned.

It is the object of this paper to present, within the framework of the field theory of
Carathéodory, a systematic development of field-theoretic concepts which are of
particular relevance to physical applications. We shall begin with a brief resumé of
an appropriate canonical formalism for m-fold integral problems in the calculus of
variations which had been proposed previously ([6]), in terms of which the geodesic
fields of Carathéodory may readily be defined. This suggests the introduction of a
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set of m 1-forms in the canonical momenta; it is shown in Section 2 that a necessary
and sufficient condition in order that a family of extremals constitute a geodesic field
is that these 1-forms be exact, which is equivalent to the requirement that three sets
of generalized Lagrange brackets vanish. As a result of the fact that the canonical
equations involve divergences, it is not possible to deduce from these equations an
explicit expression which describes the evolution relative to the m independent vari-
ables of an arbitrary function of the canonical momenta (in contrast to the situation
which obtains when m=1). Therefore, guided by the known results of Noether’s
theorem, special classes of functions are singled out whose divergences may indeed be
specified explicitly by means of the canonical equations, which gives rise directly to
criteria for conservation laws. This leads in an inevitable manner to the definition of
generalized Poisson brackets. The form of the latter is somewhat surprising: the
presence of a numerical factor precludes the skew-symmetry property usually asso-
ciated with such brackets. This appears to be an unavoidable phenomenon which,
however, does not detract from the usefulness of these brackets, as is evident, for
instance, from the fact that the generalized Lagrange and Poisson brackets are related
precisely as the classical theory would lead one to expect. In Section 4 the relationship
between the canonical momenta at neighbouring points on an extremal is briefly
examined, which in turn suggests a natural definition of generalized canonical trans-
formations. On closer scrutiny, however, it is found that such transformations are
subject to unexpected restrictions: in particular, it is shown that homogeneous canon-
ical transformations are merely extended point transformations unless m=1. In the
concluding section an m-form is constructed, by means of which it is shown that the
divergences of certain Lagrange brackets vanish on the members of an arbitrary family
of extremals, which generalizes a classical theorem due to Lagrange for the case m=1.
Subject to the imposition of an additional condition (which is a natural one within
the context of any physical field theory), this phenomenon gives rise to an integral
invariant.

It is still an open question as to whether or not the field theory proposed below is
susceptible to an appropriate process of quantization.

As usual, the m independent variables are denoted by ¢, while the n dependent
functions are represented by x’. [Here, and in the sequel, Latin and Greek indices
range from 1 to » and from 1 to m respectively; the summation convention is operative
in respect of both sets of indices.] A set of n equations of the type x/ = x/ (#*) represents
a subspace C,, of the configuration space R, ., of the variables (¢, x7); it will hence-
forth be supposed that the functions x/(z*) are of class C2, and we shall write %/ =
=0x’/0r* It is supposed that we are given a Lagrangian L(%, xJ, I) which is assumed
to be of class C? in all its arguments, together with a closed, simply-connected region
G in the domain R,, of the variables 7*. The fundamental integral of the underlying
problem in the calculus of variations is
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1«;J=J°Laaxax9d(0, (L.1)

where we have used the notation
d(t)y=dt' A+ ndt™. (1.2)

The Euler-Lagrange equations associated with this problem are expressed in the
form

E,(L)=0, (1.3)

where the Euler-Lagrange vector is defined as

d (0L oL
E; (L)=a‘t—a<é;£>—é;j’ (1.4)

in which the operator d/dt* denotes ‘total’ differentiation along C,, in the sense that,
for any class C! function f (1%, X/, %),

ar of of i of ox}
_—= . x . T e
e ot ox' " ok o
A vector X=(X* X7) defined at a point P of C,, is said to be transversal to C,, if

it satisfies the condition

oL .
—HX*+— X'=0, 1.5

o«

where Hy denotes the Hamiltonian complex:
oL .
Hé=—Lé;+— Xp. 1.6
B B axi B ( )

It may be shown that ([7]) the set of all vectors transversal to C,, at P constitutes an
n-dimensional linear space 7,,(P), whose orthogonal complement in R,, ,, is denoted
by T,,(P). The canonical momenta at P are defined to be the m elements of a basis

a® =(n§, n) of T, (P) subject to certain restrictions, which are represented in the
form

oL
¢.= —1pe e E) 1.7
7 P o ()
and
n5=—D"'piHy, (1.8)
where

p;=1t,,+7tj5€£, (1.9)
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and
D=det(pp), (1.10)

it being supposed throughout that D 0. The conditions (1.7) and ( 1.8) do not deter-
mine the vectors n{*) uniquely (unless m = 1), which entails certain definite advantages.
Moreover, it is assumed that the nm relations (1.7) can be solved for the nm derivatives
xJ:

=@l (t5 x", 15, ), (1.11)

which is possible if and only if a certain determinant involving L together with its
first and second order derivatives with respect to x" does not vanish. [This assumption
implies that parameter-invariant problems are excluded from our considerations (cf.
[5], [6] for the substantiation of these remarks).] By means of (1.11) it is then possible
to construct a Hamiltonian function by writing

H* (1%, x7, m§, n5)=—L (% x’, I (£, x", 75, nt))+det {rs+n5¢) (£, X", 75, %)},
(1.12)

and it is easily verified that ([6]) the relations (1.8) are equivalent to the single condi-
tion
H* (1", x’, nj, n3)=0. (1.13)
The cofactors of pj in the determinant D are denoted by P” :
p:Ps=Ddy, (1.14)

and it is readily shown that the derivatives of H* satisfy the following identities:

oH* oL  OH* 0L  OH* oH*

_ = — pb

A ) - Gy A a L ‘zPaﬁ.j‘ L.15
" o o om omy (L15)

Having disposed of these preliminaries, let us now consider an n-parameter family
of subspaces C,, (") defined by the equations

X =xI(t%, u"), (1.16)
in which the 4" denote the m parameters, it being supposed that

ox’

det (5;7'>=0’ (1.17)
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to that the family (1.16) covers a finite region F of R,, ,, simply; henceforth our atten-
tion will be restricted to F. We shall assume also that the canonical momenta are
given as the components of a vector field n*(#°, 4") on F subject to the conditions (1.7)
and (1.8), so that we may write

mh=ng(f,u"), n=nj(,u"), (1.18)

Because of (1.7), (1.14), and the second member of (1.15) we can express the Euler-
Lagrange vector (1.4) in the form

*

d )
Ej(L)=(;t—B(P£nj)+W. (1.19)

Also, it follows directly from the definition (1.6) that

dH; oL
dr* ot

+E;(L) %, (1.20)

which, by virtue of (1.8), (1.14), and the first member of (1.15), may be expressed as

d oH* )
— (Ptn® =—E;(L)x. 1.21
dtp( an£)+ ot 1( ) € ( )
This is combined with (1.19) to yield
OH* d oH* d )
——+ - (Pin? 4 — (Pt} XI=0, 1.22
{ ata dtﬂ anﬁ)}+{ax1 +dtﬂ( an.l)} x8 ( )

this being an identity which is valid on any subspace C,,(u").

If, in particular, the subspaces C,,(u") are extremals of the integral (1.1), i.e., if
they satisfy the Euler-Lagrange equations (1.3), it follows from (1.19) and (1.21) that
they satisfy the canonical equations

oH* d oH*
B %)
73;?’ d_t—ﬁ(Panj = '—ExT, (1.23)

d a
&?3 (P ale ) ==
to which the third and fourth members of (1.15) must be adjoined. It is immediately
evident from the identity (1.22) that the first member of (1.23) is a direct consequence
of the second.

The family (1.16) of subspaces C,, (") is said to constitute a geodesic field (in the
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sense of Carathéodory) if there exist m functions S*(¢4, x) such that the canonical
momenta are the gradients of S%:

LS oS
nﬂ=ét—ﬁ, nj:b;’ (1.24)

where, in view of (1.13), it is necessary to stipulate that these so-called characteristic
functions are solutions of the generalized Hamilton-Jacobi equation:

. 08" 0S*
H*( ¢, x/, —, —. ]=0. 1.25
( oo 6x’> (1.25)
We shall put
. 08* 08" .
Cﬂ=5?‘ +a—x‘j ng, (126)
and
A=det(cp), (1.27)

while the cofactor of ¢j in 4 is denoted by C%:
Ciep=405. (1.28)

It is easily seen that ([5], p. 241), because of the structure of (1.26), the divergences
of the cofactors vanish identically on any subspace C,,(u"):

dcCy
—f-o, 1.29
dta ( )

by means of which it may be shown that the members C,,(u") of any geodesic field
are in fact extremal subspaces. In view of (1.24), (1.9), (1.10), (1.13), (1.26), and (1.27)
we have

cg=ps, Cz=P;, D=A=L (1.30)

for a geodesic field. Thus (1.29) allows us to write the canonical equations (1.23)
associated with these fields in the form
podme_ _OH" pdnj _ OH*

cap = " Prgp T e (131)

It should be stressed, however, that an arbitrary field (1.16) of extremals does not
necessarily constitute a geodesic field. We shall return to this point presently.
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We shall conclude this section with a few remarks of a general nature, which will
serve to shed some light on the geometrical significance of the canonical momenta.
The tangent plane ¢,,(P) at any point P of a class C 2 subspace C,,: X/ =x7(t*) of Rpysp
is spanned by the m vectors ~

M, = (M, MJ)=(8, %), (1.32)

which we shall call the natural basis of t,(P). Sometimes one also requires the so-
called canonical basis of P(a)=P’iM(ﬂ) of t,,(P), whose components may be repre-
sented in the form

oH* 0H*
), (1.33)

P(a)=(P5’ nglj; =(5E’ Et?
J

in which we have used (1.32) together with the third and fourth members of (1.15).
For many purposes it is also necessary to introduce the quantities defined by

Pi=—h (1.34)

where hj denotes the cofactor of H # in the determinant h=det(H} ), which is assumed
to be non-vanishing. It is readily verified that the n vectors

X = (X, 61)= (=P}, 81), (1.35)

defined at the point P of C,,, are transversal to C,, in the sense of (1.5); moreover, it
may be shown that the (n+m) vectors My, X constitute a linearly independent
system ([7]). Hence we can regard the vectors (1.35) as a basis of the transversal plane
T,(P) of C,, at P. Moreover, by construction, the canonical momenta n® at P repre-
sent a basis of the orthogonal complement T,,(P) in R,,, of T,(P), so that

n(“)°x(,,)=0, (1.36)
which is obviously consistent with (1.7) and (1.8) by virtue of (1.34) and (1.35). We
shall call =® the canonical basis of T, (P), at the same time noting that, because of
(1.33), (19), and (1.14),

Py © = Pjni+ Psiin}=Psp; =D}, (1.37)

which indicates that, apart from the factor D™, the canonical basis of T,,(P) is con-
jugate to the canonical basis of t,,(P). One would therefore be inclined to seek another
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basis of T,,(P) which is conjugate to the natural basis M, of #,,(P). In fact, this basis
is given by

QP =Pin®@=(Q% 0= (P!, Pin), ~(1.38)
since
M, QP =6;00 +%]Q%=Plni+ Plnt%i=Pipi=DoF, (1.39)

as required. Because of this property we shall call the m vectors Q) the natural basis
of T,(P).

2. The m fundamental 1-forms

It was remarked in the previous section that an arbitrary family of extremal sub-
spaces does not necessarily constitute a geodesic field. In order to explore this situation
a little more closely, let us consider once more a family (1.16) of subspaces C,,(u"),
together with the canonical momenta as represented by (1.18). We now construct the
following m 1-forms on this family:

o*=njdt’ +n%dx’, (2.1)

which we shall call the fundamental 1-forms since our subsequent analysis will be based
almost entirely on them. Clearly

do* =dnj A di* + dnf A dx

(7% 4029 4\ n a4 (%5 a7 i\ A (P a4 % g
——— A PR S u
ar “ o ar O T oy or U T ok

on; on’ ox’ onj on%ox’ onfox’ (2.2)
=(-" dEad+( 0 T ) dut A di
<0t o aﬂ) +<0u" o o auh o ) "

This expression suggests that we introduce the following sets of generalized Lagrange
brackets for any pair of independent parameters v and w:

ot*ony ot on? ox’ on ox’ on?
W= T L e OO O 2.3
ol = o ~awan "= o an "aw a0 (2:3)

which usually appear in the combination

{v, w}*=[[v, w]]*+[v, w]*. (24
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Indeed, since
Lo0m;  ,0my Omg Om

[, el =8y i —ot S=TE -0

Por o or o’
together with similar identities invol\}ing derivatives with respect to u", it follows that
the 2-forms (2.2) may be expressed as
do®= =3 {1, 3% dt? ndt®+ {tP, u"}* dt? A du— % {u, ¥} duP nduF. (2.5)
Thus, in order that dw*=0, it is necessary and sufficient that
(tf, 142=0, (%, u"}*=0, {u", u*}*=0, (2.6)
which, when written out in full, are equivalent to

ong Om; ox’ on  0x’ on}

e e O7 TN T TN -0, 2.7

orr ot +at” o or orf (2.7)
ong ox! on®  ox’ on? ong .
oo o oo —our LT (28)
ox! on%  ox' on® .
o 6—u£—517‘ 514_:'E [u", u*]*=0. (2.9)
In passing we note that

a a a a a a
at [, u"]*= 7 [u", u"*+ P [#, u"] (2.10)

identically, so that, whenever (2.9) is satisfied, we have
a a 6 a
o L5 W T = [ ' (2.11)

which clearly indicates that (2.8) does not entail additional integrability conditions.
From the converse of Poincaré’s Lemma it follows that when the conditions (2.6)
are satisfied (i.e., dw*=0), there exists, at least locally, a set of m 0-forms a*(¢*, u")
such that
dc* oc"

w“=da“=T dtf + — du" (2.12)
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which, when compared with (2.1), yields

.. ,0x' 00 L0x' do°
nﬂ+niﬁ=6_t7’ T o= ot (2.13)
Moreover, since it is assumed that our family (1.16) satisfies the condition (1.17), we
may solve (1.16) for u"=U"(¢#, x’), which, when substituted in (1.16), gives rise to
the identities
xI=xI (8, Ut(¢8, x¥)) (2.14)

in the independent variables t#, x*, so that

ox! ox’ ou" ox* oU"
=_-_+____’ E:—vv— —, (2.15)
ot ou" o T out ox’

We may now construct the m functions S*(¢t#, x')=g*(t#, U"((¢*, x%)), for which

0S* 9¢* 0¢*0U*  8S* do*oU"
ot o af T oo e (2.16)
otr ot ou” ot ox’  ou" ox’

On eliminating the derivatives of ¢* with the aid of (2.13), we obtain

os” <axf ox’ aU") as*  ox*oU”

=nttnt |+ =
4 ot* " out ot ox’ "* out ox

57;3 - J
and because of (2.15) these relations reduce to (1.24).

The conditions (2.6) therefore ensure the existence of m functions S*(¢#, x/) such
that the canonical momenta can be represented as gradients in the form (1.24). How-
ever, it does not follow that any family (1.16) of subspaces C,,(u") satisfying (2.6)
constitutes a geodesic field. For, in order that the canonical momenta as given by
(1.24) be such as to ensure consistency with (1.13), it is necessary that the functions
S*(¢*, x7), which are obtained by quadratures, satisfy the Hamilton-Jacobi equation
(1.25). Since this is not necessarily implied by (2.6), we now impose an additional
condition, namely that the members C,, (") of the family (1.16) be extremal subspaces.

Since the validity of (1.24) clearly implies that of (1.30), we infer that dP*/dr*=0
under the circumstances considered here, and thus our additional requirement entails
that the subspaces C, (") satisfy the canonical equations in the form (1.31), or

,ont  OH* on®  OH*

b " ar Tigp= g (2.17)
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where it is to be understood that in the present context the operator 0/0t?, as applied
to n%, 7, and x’, refers to a given C, (1), i.e., to fixed values of u”". Now let us multiply

(2.7) by P? after which we apply (2. 17) together with the third and fourth members
of (1.15). This yields

0H* ony OH* On0H* 0H™ ox’
s et et o st T e
ony orf or ot ony 9x’ Ot

or

0 Ca a
a—té {H* (ta, xl, ﬂ:ﬂ, nj)}=0 .
Similarly, multiplication of (2.8) by P’ gives

0 e j a
ﬁ {H*(t ’ x13 nﬂ’ nj)}=0’

from which it is inferred that H*(¢%, xJ, g, 1) is constant. Without loss of generality
the latter may be taken to be zero, since any additive constant may be absorbed in the
Lagrangian L and hence also in H*. Thus our additional stipulation implies that the
condition (1.13) and hence also the Hamilton-Jacobi Equation (1.25) is satisfied. The
results of our analysis may thus be summarized in the following

THEOREM: In order that a family (1.16) of extremal subspaces constitute a geo-
desic field, it is necessary and sufficient that the m fundamental 1-forms w* as defined
by (2.1) be exact, or equivalently, that the conditions (2.6) be satisfied.

By means of the functions S*(z*, x7) associated with a given geodesic field, an
m-parameter family of n-dimensional subspaces is defined by the equations

S%(¢8, x)=1°, (2.18)

in which the Z* denote the parameters. This family, together with the extremals of the
geodesic field, constitutes a complete figure in the terminology of Carathéodory. The
above theorem possesses a converse in the following sense: any set of solutions
S%(t#, x") of the Hamilton-Jacobi equation (1.25) gives rise to a complete figure ([8]).
For any displacement (dt?, dx’) tangential to the manifolds (2.18) we have, by
(1.24) and (2.1),
0S*

os*
5—‘, dt ”+a—7 dx’ =n3dt? + njdx’ = 0" (2.19)

However, we now recall that at any point P of an extremal subspace the canonical
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momenta ©‘® constitute a basis of the orthogonal complement 7, (P) of the trans-
versal plane T,(P) at P. It therefore follows from (2.19) that the tangent plane at P
of the member of the family (2.18) which passes through P must coincide with 7,,( P):
hence the transversal planes represent envelopes of the manifolds (2.18). Indeed, it
may be shown that the integrability conditions of the system of m total differential
equations w*=0 are satisfied under the hypotheses of the theorem above.

3. Conservation laws and Poisson brackets

In any prospective application of the above analysis to the theory of physical
fields one would be inclined to investigate specific properties of the canonical equa-
tions (1.23) which could conceivably lead to conclusions pertaining to conservation
laws, i.e., to integrals of (1.23) or quantities whose divergences vanish as a result of
these equations. In contrast to the single integral case, nothing can be said about
derivatives of an arbitrary function F(z*, x/, g, n5) of the canonical variables: this is
due to the fact that the canonical equations do not yield derivatives of rj and 5 but
merely divergence-type combinations thereof. It is therefore necessary to single out
certain classes of functions of 7, n7 whose structure is such that definitive conclusions
concerning their evolution as functions of #* may be reached. A review of the known
theory suggests that non-trivial functions of the required type must obviously occur
in the famous theorem of Noether ([4]), which we shall now enunciate as follows:

Let the fundamental integral (1.1) be invariant under an infinitesimal r-parameter
group of transformations of the type

P=*+ (0, x") w',  H=x 1 (1 XM v, (3.1)
in which w* denotes the r parameters and ¢% ¢/ are given class C! functions of the

variables 7%, x". [Here s=1, ... , , and the summation convention applies to this index
also.] Then

dy
S —0 3.2
o (32)
on any extremal C,,, where
oL .
b= —HPC+ 200, 3.3
Xs BQS axﬁ CS ( )

Because (3.2) entails the vanishing of a divergence, Noether’s theorem is generally
interpreted in terms of conservation laws, and accordingly the quantities (3.3) ex-
emplify the types of functions that we are seeking for our present purposes. By means
of (1.7), (1.8), (1.14), and (1.38) we can express (2.2) in the form
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1=000+00, (34)

which is a representation of the ‘conserved’ quantities (3.3) in terms of the elements
of the natural basis (1.38) of T, (P) at each point P of the extremal C,,.

This conclusion suggests the following general approach. Let F=F(¢*, x") denote
an arbitrary differentiable vector field defined on some subspace C,, of R, ;,. At each
point P of C,, we can decompose F by means of the bases (1.32) and (1.35) as follows:

F=D"'FM,+F"Xy, (3.5)

where D~ F* represents the components of the projections of F onto t.(P). But from
(1.38) and (1.36) we have

X(h)'Qp=0, (3.6)
so that (3.5) and (1.39) yield

FF=F-Q®, (3.7)
which is of the form displayed by (3.4). From (1.38) it follows that we can express F* as
FP=P!(n*-F)=PL0%, (3.8)

where 0* represents expressions of the type
0 =nsf?+ i, 3.9)

and we shall now endeavor to evaluate the divergence of F* on C,,.
From (3.8) and (3.9) we have

dF* dpt . 00 80* . 00*dni 00*drn’
et )+ Pt R
aif = ap AT (a:” o5 Y ong a T omt a

). (3.10)

But (3.9) gives
06* 00" .
=81t =0, (3.11)

g &
onj on;

5o that, with the aid of the third and fourth members of (1.15), we may write (3.10)
in the form

dF? _d
dt*  di

oH* 60"‘+8H* 00*
ong ot on ox’”

d .
P £+ (PER) -+ (312)

This relation holds on any subspace C,,; however, on an extremal subspace we
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may apply the canonical equations (1.23), in which case (3.12) becomes

dF*  oH* oH* OH™ 60 OH™ 00*

B T S 3.13
i ol ot ony or * on ox’ (3.13)
However, from (3.11) we obtain by contraction:
00 . 00"
P, S, 3.14
mf ong mf on} (3.14)
so that (3.13) reduces to
de_ 00" 0H* 1 00° 0H* 00* 0H* 1 00 oH* (3.15)
di? \ot* onf mon of oxi on% mon? ox7 ) '

The expressions in brackets on the right-hand side clearly suggest the following
definitions of two types of generalized Poisson brackets of any pair of differentiable
functions F(¢%, x*, n§, n%), G(¢%, x/, n}, nl):

0F 0G 1 0F G ’
F,G))f=— ——— — — 3.16
( ) ot ony m ony ot? (3.16)

(F, G) _O0F 0G 1 0F 0G (3.17)
»TE oxd ont m o ox?’ )
together with

{F, G}a=((F’ G))a+(Fs G),- (3.18)
In terms of this notation (3.15) becomes

dFf
F:{e , H*),, (3.19)

which is the required expression for the divergence of F? on the extremal C,,. This is the
generalization of the well known classical formula of the single integral theory ac-
cording to which the derivative of any differentiable function F of the canonical
variables with respect to the single independent variable ¢ along an extremal curve is
given by

—=—+(F, H), (3.20)

where H denotes the classical Hamiltonian.
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From (3.19) we infer that a set of quantities F # which may be represented in the
form (3.7), is conserved in the sense that its divergence is zero on an extremal, whenever
the sum {6% H*}, of the corresponding generalized Poisson bracket vanishes iden-
tically. ,

The above definitions of the generalized Poisson brackets appear to represent
natural extensions of the classical concept of a Poisson bracket, except, perhaps, for
the presence of the factor m~! in the second term on the right-hand sides of (3.16) and
(3.17), in consequence of which the skew-symmetry property usually associated with
a Poisson bracket is destroyed. However, this phenomenon cannot be avoided: it will
be seen below that it occurs inevitably whenever the generalized Poisson bracket
appears.

From the definitions (3.16)-(3.18) it is immediately evident that

1 on*oH* oH*  oH*
* H¥y=—— =0 ==, 3.21
e B a= = o ot o o (3:21)
together with
1 on%0H* oH*  oH*
* H¥ )= —— — o =—0 — 3.22
(> B m on® ox" I axh ox’ (3.22)

Now let us identify f# in (3.9) with =% (for some fixed value of &), at the same time
putting f /=0. The resulting functions F % in (3.8) then become P’7?, and the general
formula (3.19) yields

d
Et_p (Pgﬂ:)={7'€5, H*}a° (323)
Similarly, on identifying f7 in (3.9) with 81 (for some fixed value of k), and putting
f#=0, we obtain
d o a
70 (PEn3)={n5, H*},. (3.24)
These are simply the canonical equations (1 .23) in Poisson bracket form, for, in view of
(3.21) and (3.22) they reduce directly to (1.23).
Let us now turn to the relationships which exist between the Poisson brackets and
the Lagrange brackets as defined by (2.3) and (2.4). To this end we shall suppose that

the N=(m+1) (m+n) canonical variables (¢*, x’, ng, n7) are given as differentiable
functions of N parameters u”:

r=r ), x'=x'(u?), nz=n;"), =5 (ut). (3.25)

[Here upper case Latin indices A4, B, ...range from 1 to N, and the summation con-
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vention is operative in respect of these indices.] It is assumed that the functional
determinant of the system (3.25) is non-vanishing, so that each u* can be expressed
in terms of the canonical variables: u4=u4 (x4, mg, 73). Since the canonical variables
are to be regarded as entirely independent in this context, this gives rise to identities
such as

ou® or* ouPox’ ouP ony ou® on;

Am A cT A ac =d¢, 3.26
of ot o auc+an,, ouC " on% ou duc =% (3.26)
and
ou” ox" 5 ou* onh ou? ox" 0 ou* onh 051 ot (3.27)
T < 4—0;, 7 < ai—VU, — 5=V, —_—= p , C. .
ox out 7 oxd guA on® out o out” = €

We shall now evaluate the products of various types of Lagrange and Poisson brackets.
For instance, according to (3.17) and (2.3) a direct expansion gives

(u?, u®), [u4, u“) =a_“A ai: ﬁ'f gf_z_i“_ ai 6l _aﬁ
ox’ ou” on} ou® ox’ out on’ * ou’
1 ou” ox" ou® onf 1 out onb ou® ox"
T on® ouA oxd 0uS " m on o ox7 uC
_ouPonf 1, ou” ox’

Rl I il 3.28
67r ou€ +m * ox* ou€ (3.28)

where, in the last step, we have applied (3.27). Similarly it is found that

(", u®), [[u*, u])" =0 ((u » ) [[u’, uTY =0,
6u onf 1 _,ou®or (3.29)
c /1 B :
((u*, u”), [[u, ]]ﬁ m 9% o ouC”
The identities (3.28) and (3.29) may be combined in accordance with (2.4) and (3.18)
to yield

{u?, uP}, {ut, u€}f =

ou® on’, au ont 1 (6uB ox’  ou® 6t’1> (330)

+ —ect=a =
on? ou® an,l ou® ox’ ou€ " at* ou®
In particular, if we now contract over « and f, we may apply (3.26), and thus obtain

{u?, u®}, {u?, u€}* =8¢, (3.31)

which is the geheralization of the well known classical identity which displays the rela-
tionship between Lagrange and Poisson brackets.
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The formula (3.31) contains several useful identities as special cases. For instance,
the following Lagrange bracket identities result directly from (2.3) and (2.4):

(£, 07 =0, {r,¥"=0, {r,)*=060] {f, =0, |
(x" =0, " afF=0, {x e} =685, (3.32)
{nff, ne}*=0, (nf, n;1*=0, {nf, n2}*=0.

Let us now put ut=n%, u®=1% u=1¢" in (3.31), after which we invoke the fourth
member of (3.32), taking into account the skew-symmetry of the Lagrange brackets.
This gives

87 = {5, 17}, {ml, 1= — {m}, 17}, 0207 =—{m}, "},

In this manner the following Poisson bracket identities are found:

(, ), =008, {x" nl),=8%L, }
. N . 3.33
{nvs t }a= —6}" {nk’ xh}az _625 ( )

all others being zero, where it is to be noted that two sets of such identities are required
as a result of the lack of skew-symmetry of the Poisson brackets.

4. Canonical transformations

One of the most profound conclusions of the classical Hamilton-Jacobi theory of
single integral variational problems is embodied in the fact that the evolution of the
canonical variables relative to the single independent variable ¢ may be interpreted in
terms of successive applications of infinitesimal canonical transformations. It is there-
fore natural to enquire as to whether this phenomenon possesses an analogue for
multiple integral field theories. In order to find an answer to this question, let us con-
sider on some given extremal subspace C,, two neighbouring points P(t%, x7), Q(t*+ 7%
x7 +nf), with n’ = %}1#, where t* represents m arbitrary small constants. The canonical
momenta at P and Q are denoted by (n}, n}), (75, 7}), it being recalled that these are
respectively basis elements of the planes T,,(P) and 7,,(Q). Since this defining property,
together with the condition (1.13), is not sufficient to completely specify the transition
from (nj, n) to (7, ), we shall suppose that our extremal C,, is imbedded in a
geodesic field with characteristic functions S* (¢, x"), so that we may assume that the
relations (1.24) are satisfied on C,,. This does not entail any loss of generality, since
it has been shown that any extremal may always be imbedded globally in a geodesic
field ([1]). Thus at the point P of C,, the 1-forms (2.1) may be represented as

w®=njdt? + 15 dx’=dS*, 4.1)
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while similarly at Q
o =7y di’ + 7} d7’ =dS*, 4.2)

where §%=8*(tf +1#, x"+4"). Hence, neglecting higher powers of 7?, it is readily
established that
B — = dd*, (4.3)

where, with the aid of (1.11), we have written
% (£, x", m§, n5)=[nj +n5pf (£, x", n§, m;)] <°. (4.4)

Therefore, if in analogy with the classical theory we regard (4.3) as the defining equa-
tions of a canonical transformation, we may infer that the transition from a point P
to a neighbouring point Q on any extremal is governed by an infinitesimal canonical
trasisformation.

Although this conclusion is the obvious counterpart of the classical theorem stated
above, it is not a particularly satisfactory one. This becomes evident as soon as one
begins to analyze the above definition of canonical transformation from a somewhat
more general point of view. In order to substantiate this remark, let us consider a
system of N=(m+ 1) (n+m) transformation equations of the type

=0t X" i, m), =% (X" 1, n), (4.5)
Ty =15 (£, x", 5, ), wi=m;(t5 x" i, mf), (4.6)

which are assumed to be of class C? with non-vanishing functional determinant. In
accordance with the construction above, this transformation is said to be canonical if
there exist m functions Y*(¢%, x", 3, m;) such that

- =d¥*. (4.7)

By virtue of Poincaré’s Lemma and its converse, a necessary and sufficient condi-
tion that (4.7) be satisfied is that
do*—dw*=0, (4.8)
where
d@*=dry A di® +dij ndxl. (4.9)

Each of the 1-forms which appear on the right-hand side of (4.9) are expanded in
terms of the differentials dt®, dx", dn}, dn; by means of (4.5) and (4.6), which gives
rise to an expression of the type
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. an,,az"+an,ax
ot otY ot or
=3 ([[7, 11+ 17, 1) dEAdE +-- =3 {0, £} dEEAdP +---,  (4.10)

)thdﬂ

where + --- denotes nine other 2-forms in the remaining differentials of 7%, x*, n5, nj,
and where the Lagrange brackets are defined as in (2.3) and (2.4) relative to the vari-
ables 7%, %/, 7j, @;. When (4.10) is substituted in (4.8), it is seen that the validity of
(4.8) is equivalent to the relations

{t, ni}* =067}, {xﬁ, e} =85y, (4.11)
all other Lagrange brackets of this type being zero, and accordingly these are necessary
and sufficient conditions in order that the transformation (4.5), (4.6) be canonical.

Now, by expansion of d%/ and 47} it is easily verified that

07§ 0%
P —dit; P det [, if P+ dx" [x", n}]*

dz!

o HE AR AL
identically, and similarly

Mo _ gz 20 — v T AT+ T AT

ot " onl
+dn [, 71T +dm, [ [, m]T"

These identities were added, after which the conditions (4.11) are applied. It is thus
found that

di’

oms _omy _0f° 0%

dt’ P —5+dx’ ot —dm, o —d7 a——=dx"{x g} =d5dx*
ox oy ax" ox* . ox
=5p(a?df a d1+a—7.dn}'+a ldn,),

and accordingly it may be inferred that

ome _ ox*  om; _ ox* or’ ox* ox! ox*
Mo _or ., s, 8 =—8, Siip=—05 . (412
ot~ %o omt Pax Pomt fomd lomf 'om (412)

k k

The last two relations of this set entail some unexpected conclusions. Let us contract
over o and f in the last member, which gives
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ox’ ox*

—=_m —
A =A°

on; on}

(4.13)

while a contraction over o and A in the same relation yields

% axt
mo = (4.14)
om;,  0m;
On comparing (4.13) with (4.14), we see that

ox!
1) =0,
(m ) on}
so that either m=1, or
ox!
—=0, 4.15
ont ( )
Similarly, the third member of (1.12) indicates that either m=1, or

or*

—=0. 4.16

P (4.16)
The process described in the last paragraph may be repeated three times with

appropriate choice of variables. Excluding the single integral case (m=1), one thus
obtains the following sets of relations:

aia at-a a-f a'j
9o, Yoo, oo, oo (4.17)
on; ony on; omy,

LOF om0t omp 0% omp 0% om (4.18)

*or omy  ‘ox' emy  tof omy  Cox' omd’

ory  ont  om;  om om0 omy _ oxt

~t A B A kT A:B A _ & Z-a e Ye 778 0 419
ot ot ox* off on; oi* on; oif (4.19)

-

T /B B R S )
otk ox!’  ox ox on; ‘ox!’ omf Cox!
The reasoning which leads from (4.11) to (4.17)-(4.20) may be reversed: hence the
relations (4.17)—(4.20) represent necessary and sufficient conditions in order that the
transformations (4.5), (4.6) be canonical. However, it is quite obvious that these condi-
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tions are extremely restrictive. From (4.17) it is evident that 77 %/ are independent of
%, 75, so that (4.5) reduces to the form

P o), =0t ). (4.21)
Thus the derivatives 8¢%/87%, 0x*/0t?, 0t*|0%’, 0x*/0x/ can be expressed either as func

tions (7%, %/) only, or of (¢%, x") only. Accordingly it is possible to integrate the third
and fourth members of (4.19) and (4.20) to yield respectively

ot ox"
=", 6”+nh6 +x5 (% %Y, (4.22)
and
W L O aax" wrih =
7'Cj=7t5 a—;+nh 5‘)%;+Xj(tl’ x'), (4.23)

where y3, 13 are certain functions whose significance will become evident almost im-
mediately. From (4.22), (4.23), and the definition (2.1) it follows that

0} —npdt”+n“dx’
ot , of ox ox" 5
(a— di ”+é— dx’ )+n,, (5{5 dl”+5— dx’>+x,,dtﬁ+x d%
so that
@ — o =ypdi’ +yjdx. (4.24)

Because of (4.21) the right-hand side can now be expressed as a 1-form in dt®, dx":
and hence a comparison with the defining condition (4. 7) indicates that the functions
W= which appear in (4.7) can be dependent only on t°, x". Let us denote by P, x’)
the transform of ¥2. Then it follows from (4.7) and (4.24) that the functions xj, xj
are given by

o7 oP*

X;': at.ﬁ > X:=5}7 . (425)

We may summarize our conclusions in the following

THEOREM: If m+#1, the only transformations of the type (4.5), (4.6) which are
canonical in the sense that the conditions

0" —*=d¥P*
are satisfied, are of the form
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=*(t5 x"), #=x(¢x"),
e L0 ox* op* w0 ox* op"
R T A F AR A R
where ¥* is a function of t*, x" only.

In analogy with the classical theory it would seem reasonable to define a homoge-
neous canonical transformation as one for which d%*=0. However, under these circum-
stances it follows from (4.25) that y3=0, xj=0, and the relations (4.22), (4.23) merely
state that the canonical momenta n® transform as covariant vectors under the coor-
dinate transformation (4.21) of the configuration space R, ;,. A homogeneous canonical
transformation is therefore nothing but an extended point transformation.

It should be emphasized that these conclusions are valid solely for m#1; in fact,
it is quite evident from the above analysis that canonical transformations in the theory
of multiple integral variational problems — at least as defined here — lack the overall
significance which they enjoy in the theory of single integral problems in the calculus
of variations. Moreover, alternative definitions of such transformations lead to similar
disappointing conclusions. For instance, if instead of subjecting (4.5), (4.6) to the
conditions (4.7), one stipulates that the transformation be such as to ensure the in-
variance of the canonical equations (1.23) (which represents one of the most impor-
tant properties of canonical transformations when m=1), a long and complicated
calculation again leads to the relations (4.17), whose implications are obviously unduly
restrictive.

5. The integral invariant

Let us suppose once more that we are given an n-parameter family (1.16) of sub-
spaces C,,(u") satisfying the condition (1.17), together with a canonical momentum
field (1.18) which is subject as before to the relations (1.7) and (1.8.) For the purposes
of our subsequent analysis we now introduce a set of (m—1)-forms 6, as defined by

(m—1)!0,=¢,,, .4, A A AdE™, (5.1)

in which ... denotes the m-dimensional permutation symbol. For future reference
we observe that the exterior derivatives of these forms vanish identically:

d9,=0, (5.2)
while
dtP A0, =5%d(t) (5.3)

in terms of the notation (1.2), this being an immediate consequence of the defini-
tion (5.1).
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Let us now construct the following m-form:
Q=(1—m) Dd(t)+Plw* A6y, (5.4)

where we recall that D, P?, and »* are defined respectively by (1.10), (1.14), and (2.1).
Now, using (1.9) and (5.3), it is seen that

Plw* A 0p=Ph (nidt"+ njfd?c" YA,
J

ox ox
=P¢ <n°;+7z‘} Et?) dt”/\0p+P£7t;a? du® A0,

(5.5)
B pa g2 ] o ') oy
=PPPdt* A Oy + Pin——; du" AOy=mDd (1)+ Ponj — du" A B,
ou Ju
so that (5.4) can be expressed in the form
5 ox’ o,
Q=Dd(t)+PaTC; p'du /\GB. (5.6)
u

By way of motivation we note that, for a displacement (dt*, dx’) tangential to a given
subspace C,,(u"), for which du"=0, we have Q=Dd(t), and thus, by virtue of (1.13),

Q=Ld(1), (5.7)

so that Q is simply the integrand of the fundamental integral (1.1) under these circum-
stances.

The general form (5.7) of Q suggests that we introduce a set of 1-forms uf defined
by

B_ o =1pdif 1 PPr® ox’
w=m Ddt +Paﬂj57ldu . (5.8)
for we may then write
Q=pfAO, (5.9)

in consequence of (5.3). In passing we note that the 1-forms pf and @* are related
according to
P =Plw*—(1—m™"') Ddt*. (5.10)

The principal results of this section depend significantly on the explicit form of the
exterior derivative of ©, whose evaluation is simplified considerably when the expres-
sion (5.9) is used, for in view of (5.2) and (5.9) we immediately have

dQ=dyu® A 0,. 5.11
B
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The exterior derivative of the 1-form (5.8) is given by

oD oD
dpf =m™! o dtAdt?+m™! P du® A dt?
u

+a P”“a‘dtd+aP"“ajd du”
_— A [ [
or\" " aut W g (o gy ) ' A
and hence, with the aid of (5.1) and (5.3), the relation (5.11) becomes
oD ox’ 0*x’
= B o h
_[5171 o (P) = Pl :ldu Ad (1)

0 ox’
o (P” “;)du”/\du"/\()ﬂ.

The first expression on the right-hand side may be simplified as follows. Let us sub-
stitute from (1.16) and (1.18) in (1.13), after which we differentiate with respect to
u", obtaining

(5.12)

OH* ox’ OH* an,, 0H* onj
ox7 out 67z,, ou" an ou'

By means of the third and fourth members of (1.15) this can be written as

OH* ox’ 0 oxlN L, %X
WW‘-'_P" P nﬂ+njaﬁ — Py - o =0,

or, if we use (1.9) and (1.14),

0’x! oD OH* ox’

B, o ST
™ il ouh | o) o (5:13)
When this result is substituted in (5.12), the latter becomes
oH* o . Jox’ o [, 0
dQ= _[W%? P”n ] P du" A d(t)——~ (Pﬁ 3_> du" Adu* A0, (5.14)

Also,

9 (g o 0¥ ax’ o *x’
= (pﬁ a—)d A= o (Por)) du® A du*+ Pl oy du i, (5.15)
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where the second term on the right-hand side vanishes identically by virtue of the
symmetry of the second derivatives of x/. This suggests that we define the generalized
Lagrange brackets of the second kind as follows:

ox’ Bl B ox! @ «
P W W g”j " odF ot Pg”i ) (5.16)

so that we may write (5.15) in the form

ox’
o (anj w) du" A du* =3L,*, du® A du*. (5.17)

When this is substituted in (5.14), we finally obtain

oH* 0 ox’
dQ=—|:—a;7+W Pin’ ]wdu"/\d(t)—%Lh”k du"adu*a0s.  (5.18)

This is the explicit expression for the exterior derivative of the m-form (5.4) which
we have been seeking. Let us now assume that the family of subspaces C,.(u") consists
of extremals, in which case we may apply the canonical equations (1.23), so that (5.18)
reduces to

dQ=—1L} du" A du* A bg. (5.19)

However, since d(dQ)=0, it then follows that
0 B « h k 0 B 1 h Kk
0_—"'6‘51 (Lh k) dt N du A du A0ﬂ+a——l (Lh k) du A du /\du /\0‘;. (5.20)
u
Here it should be noted that, by virtue of the structure of (5.16), we have
d B l h k

" (LyFy) du’ Adu” A du*=0

identically, and hence (5.20) is simply equivalent to
0 B h k
a7 (L) du” Adu*Ad(t)=0,

where we have again made use of (5.3). We therefore conclude that on any n-parameter
family of extremals
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0
67 (Lhﬂk)=0. (5.21)

This is the generalization of a classical theorem of the single integral theory (originally
due to Lagrange) according to which the Lagrange brackets are constant along each
curve of any congruence of extremals.

It should be remarked that this generalization involves primarily the generalized
Lagrange brackets of the second kind, and not those defined by (2.3). Because of
(5.16), these two types of brackets are related according to

Lhﬂk = Pg [“h, uk]a + n;

ox’ oP®  ox’ opPt
(x = ) (5.22)

out qu* u* ou”

so that the vanishing of one type does not in general imply the vanishing of the other.
Thus, even when the family C,,(#") of extremals constitutes a geodesic field, in which
case (2.9) is satisfied, it does not follow that the Lagrange brackets of the second
kind vanish. We shall return to this remark presently.

Now, in order to be able to give a geometrical interpretation to the relation (5.21),
we have to single out certain variables. From amongst the m independent variables
we select #™ (for instance, for the case m=4 we would regard ¢* as a time coordinate,
and ¢!, ¢2, £3 as spatial coordinates), while from amongst the n parameters u" we select
u', u?, to be denoted respectively by u and v. In the configuration space S,,,, of the
variables (¢% »") let us now consider the subspace S,,,, defined by the equations
u?=a-, u"=a", where @, a" are arbitrary constants. (Here, and in the sequel,
it is necessary to suppose that n>>3.) On S,,, , the (m+ 1)-form (5.19) reduces to

dQ=—L{ dundvng,. (5.23)

At this stage it is necessary to impose an additional assumption (which is a very
natural one within the context of any physical field theory), namely that on S,,,, ,

L5-0 as t“+oo, (a'=1,...,m—1), (5.24)

for all values of u, v, and #™. Under these circumstances it may be shown as usual
([51, p- 296) that

F
P f Ly d(1)=0, (5.25)

Rm-1

where R,,_; denotes the entire domain of the variables ', and where

d(t)=d' A...Adt™ 1, (5.26)
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The equation ¢™=T=const. defines an (m+1)-dimensional hypersurface H, .y
of S,.,. Let g be a closed, simply-connected region with smooth boundary in the
domain of the variables (u, v). The subset Z of H,,,, defined by the condition (u, v)eg
has dimension (m+ 1), its m-dimensional boundary being denoted by 8Z. (The set Z
may equivalently be defined as the intersection in S+ 2 of the sets H,,,; and g x R,,_1.)
Moreover, since dt™=0 on H,,,, it follows from the definition (5.1) that on H,, 4

0,=0,..., 0,_1=0, 0,=(=1)"*"1d(t") (5.27)
in the notation (5.26). Thus on Z the (m+1)-form (5.23) becomes
dQ=(=1)"L du ndvnd(t’). (5.28)

Let us now construct the (m+ 1)-fold integral

fdQ=(—1)"‘fL{"2 dundond(r), (5.29)

z

where it should be borne in mind that the integrand on the right-hand side is a func-
tion of (¢% "), and in particular therefore also of ™, which assumes the constant
value T on Z. Thus it would appear at first sight that the value of the integral (5.29)
depends on 7. However, it we now invoke (5.25), we see that, to the contrary,

0
— | dQ=0. 5.30
= (5:0)

z

Hence the integral (5.29) is a constant, whose value depends solely on the choice of
the region g of S,.

Also, using (5.27), (5.26) and (2.1), we observe that the fundamental m-form (5:4)
assumes the following form on H,,.:

Q=(=1)"*! Proiad(f)=(=1)"*! PIn§dx/ adt' A~ ndt™™ !, (5.31)

and thus, by virtue of (5.24), an application of Stokes’ theorem yields

fﬂ=(—1)"‘+1 J-P;"nj dxj/\dt‘/\n-/\dt""‘:fdQ. (5.32)
z

oz oZ

It therefore follows from (5.30) that the integral on the left-hand side is an integral in-
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variant in the sense that it is a constant whose value is independent of the preferred
variable t™. An equivalent formulation of this conclusion is the statement that the
value of the integral (5.32) is the same for all hypersurfaces ¢™=const. on which the
set Z is defined once the region g in the domain of the parameters (1, v) has been
fixed.

By way of comparison let us briefly consider the single integral theory, in which
m=1. Putting the sole surviving independent variable :™=t¢, we see that H,,,, re-
duces to the hypersurface # =T =const of S5 on which dr =0. Since P;=1 identically
when m=1, it then follows from (5.31) that

Q=w=n;dx’ (5.33)

on Z, where the n; are the classical canonical momenta 0L/0%’ by virtue or (1.7),
while 0Z is simply a closed curve on H,, of which we assume that it may be represented
parametrically in the form u=u(t), v=v(t). Moreover, for m=1, the family (1.16)
becomes an n-parameter congruence of extremal curves in R, ., from which a 2-
parameter subset is selected in terms of (1.16):

xI=xI(t,u,v,a...,a". (5.34)
Hence the image in R,,,, of Z is the closed curve ¢ on the hyperplane ¢= T defined by
x'=xI(T, u(z), v(7), @, ..., a"), (5.35)

and our conclusion concerning (5.32) is tantamount to the statement that the value of

the line integral
f o= f n; dx’ (5.36)

remains constant for all values of ¢. This, of course, is the classical integral invariant of
the single integral theory.

It has been remarked by E. Cartan ([3], p. 78) that the existence of a single relative
integral invariant such as (5.36), generated by a I-form w, gives rise immediately to
a sequence of higher order relative and absolute integral invariants, these being gen-
erated respectively by the forms

o A(do), (do)’, p=1,..,n.

The question therefore arises as to whether this is true also for the multiple integral
theory discussed above. In this connection we observe that, in view of (5.1), (5.4), and
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(5.18), products such as QA Q, or dQ A Q, involve the terms 6, A 0, which in turn
entail exterior products of 2(m— 1) differentials d¢*. These products, however, vanish
identically unless m<2. It is therefore inferred that it is not possible to construct in-
tegral invariants of higher order for arbitrary values of m by means of the fundamental
m-form Q.

In conclusion the following phenomenon should be noted. It was observed above
that the generalized Lagrange brackets (5.16) of the second kind are not necessarily
zero when the family C,, (") of subspaces constitutes a geodesic field. It would there-
fore appear in view of (5.32) and (5.29) that the integral invariant (5.32) need not vanish
when constructed on a geodesic field. This is in sharp contrast to the corresponding
state of affairs in the geodesic field theory of Weyl [9]. In the case of the latter - in
which an entirely different canonical formalism must be used — it may be shown that
the Lagrange brackets, whose vanishing partly characterizes a geodesic field, also
occur in the integral invariant, which is therefore zero for such fields. In this sense,
therefore, the geodesic field theory of Weyl is more closely analogous to the classical
single integral theory than the field theory of Carathéodory.
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Zur Bestimmung von E,[x"**"]

H. Brass

Abstract

Remark on the estimation of E,[x"*2™].
Let be

Ei[f]:= inf  sup |f(x) —p@)|
peP, xe[—1,1]
(Pn: set of all polynomials of degree n).
Riess-Johnson [4] proved

nm—l

Enlx""] = Samt = 1)1

[1+0®1)], =reven A3)

This degree of approximation is realized by expansion in Chebyshev polynomials and by interpolation
at Chebyshev nodes.

The purpose of this paper is to give a more precise estimation by constructing the polynomial of
best approximation on a finite set. This construction is easily done and one obtains the result, that
the term O (n~1) in (3) may be replaced by $(m—1) Bm+2) i1 + 0 (n7?).

Es sei gesetzt
E,[f]:=inf sup ; If (x)—p(x)l.

peP, xe[—1,

(2, Menge der Polynome vom Gradn).
Das Ziel dieser Note ist der Beweis von

SATZ. Ist m fest und durchliuft n die geraden Zahlen, so gilt

et g [ ()]

Die angegebene Approximationsgiite wird erreicht mit denjenigen peZ,, die
f (x)=x"*2™ eingeschrankt auf

i 0,1,..., n+2 @)
x,:=cos — v=0,1,...,n
n+2
am besten approximieren.

Riess-Johnson [4] haben
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bewiesen und gezeigt, daB diese Approximationsgiite sowohl durch Entwicklung nach
Tschebyscheff-Polynomen wie auch durch Interpolation iiber Tschebyscheff-Knoten
erreicht werden kann. Beide Approximationsvorschriften ergeben nicht das genauere
Resultat (1), wie man aus den Ergebnissen von Riess-Johnson [4] (im Fall der
Interpolation auch aus (9)) ablesen kann. Die Konstruktionsvorschrift des Satzes
ist also im hier behandelten Fall — wie auch vielfach sonst — den beiden obengenannten
Konstruktionsvorschriften vorzuziehen, zumal auch ihre praktische Behandlung keine
groBeren Schwierigkeiten bietet.

Beweis. T, bzw. U, bezeichnen im Folgenden die Tschebyscheff-Polynome erster
bzw. zweiter Art. J[ f] bezeichne das Interpolationspolynom von f beziiglich der
Stiitzstellen (2), k seinen Hauptkoeffizienten.

Ist f gerade, so ist

k
p 3=J[f]—274;7 T2

ein Polynom vom Gradn, fiir das

k
f(x,)—p(x,)=(-1) ¥ v=0,1,..., n+2

gilt; somit ist p das in Rede stehende Polynom, und aus dem de la Vallée Poussinschen
Satz (vgl. z.B. Meinardus [3] S. 80) folgt

B, [/1> pes- @

Die Bestimmung von J[x"*2™] stiitzt sich auf die bekannte Entwicklung (vgl. z.B.
Fox-Parker [2] S. 52)

" 1 n/2-tm n+2m
x"*? Tonram-1 ;0< v >Tn+2m—2v(x) (5)

wo der letzte Summand zu halbieren ist.
Wegen

2(1=x*) Ups1 () Upot () =T 2, (%) = T 24, (%) (6)

ist J[Tps24r]=J [Tps2-r)=Thns2-, fir jedes re[0, n+2]. Also gilt, falls 2m<n+4
ist
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: L fmm Rk om
J[x +2m]=2n+_._.2m_l{zo< T;,+4—2m+2v+ Z ( v T;l+2m—2v . (7)

v v=m—1

Hieraus bestimmt man k und hat wegen (4)

B0 e () ®)

m—1

Um E,[x"*?™] auch in der umgekehrten Richtung abschitzen zu kénnen, stellt man
x"+2m_ p(x) mittels (5), (7), (6) in der folgenden Form dar

ot | 202 U () 5, (") Ve @) Do

1 m—2
=2n+2m_1{—2sin(n+2)¢ ) <n+v2m> sin(2m—2v—2) ¢
v=0

+<nr:21 ) cos (n+2) (p}

wo x=cos @ gesetzt ist. Nun gilt bekanntlich

lacosy+b sin|//|<\/a2+b2, also

4t 2m 1 n+2m\ ;=5
sup |x"+2 _p(x)|<W_-—1<m_1>\/l+0(n 2)

1 n+2m _
=2n+2m—1(m )(1+0(” 2))

Diese Beziehung ergibt zusammen mit (8) leicht die Behauptung des Satzes.

Zwei Bemerkungen seien noch hinzugefiigt.

Erstens: Mit der hier benutzten Methode kann man den Fehler bei der Inter-
polation iiber Tschebyscheff-Knoten (d.h. Nullstellen von T,,,) in der Form dar-

stellen
T, n+2m n+2m .
2n+2tnz—1 {( m—1 ) +2 Z ( ) T2m—2v—2} . (9)

Hieraus liest man die Aussage von Riess/Johnson iiber die GroBenordnung des
Interpolationsfehlers direkt ab.

Zweitens: Wiahrend die Verschirfung von (3) zu (1) einfach zu erreichen war,
diirfte eine weitere Verscharfung von (1) nur mit Hilfe ganz spezieller, auf die Struktur
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der Funktion f(x)=x"*?™ zugeschnittener Verfahren mdoglich sein. Bernstein [1]
(S. 24) hat ein solches Verfahren angegeben und auch (3) schon ausgesprochen.
Mit Hilfe seiner Grundidee 148t sich — allerdings unter grolem Aufwand — beweisen:

nmt (m—1)(3m+2) 1
E n+2m = 1 .
n[x ] 2n+2m—1(m_1)![ 2 n+
(m—1) (27m* —19m* —34m—48) 1 1
"5+0 3]
24 n n
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An identy for fixed points of permutations

Jay R. Goldman

Let S, be the set of all permutations of {1, 2,..., n} and for €S, let f (w) denote
the number of fixed points of n. We shall prove that

l min (k, n)
~ Y f@= Y Sk, M
- meSn i=1

where S(k, i), the Stirling number of the second kind, counts the number of partitions
of a k-set into i disjoint blocks. For the case k <n this identity is given by Carlitz and
Scoville as a problem in [1]. In this case the right hand sides equals By, the kth Bell
number, [2].
When k=1, we can interpret this identity as saying that the average number of
fixed points per permutation is one. This probabilistic idea leads to a complete proof.
Every permutation with p fixed points contributes a factor of p* to (1) and there

are (Z) D,_, permutations of S, with p fixed points where (;) counts the choice of

points to be fixed and D; denotes the number of permutations of an i-set with no
fixed points. Substituting this into (1) we get

gpk (Z) Dn_p/n!=mij§1’ ” S(k, i). (2)

We shall prove this latter identity.

Suppose we choose a permutation of S, at random, i.e. we put a probability
measure on S, where each permutation gets probability 1/n!. Now f (n) is a random
variable with distribution

P{f(7r)=p}=(;> D,_,/n!, p<n.

From this we see that the left hand side of (2) is just the kth moment E(f*). We now
compute this moment in another way to get the right hand side of (2).

AMS Primary Subject Classification: 05A15. Secondary Subject Classifications : 05A19, 05A20.
This research was supported by the Air Force Office of Scientific Research under grant
AFOSR 73-2436.
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Let the random variables f;, i=1,..., n, be given by

=

Then we have f=Y{_, f; and we shall compute E((f; +f,+ - +f,)*) by expanding
the product. To keep track of terms in the expansion we label the parentheses; thus
we compute

E[(fi+ Lot +1) Gfitfat 4 1) i+ ot + )] 3)

Now a term of the product, which consists of choosing a term from each paren-
thesis, induces a partition on the set P ={(4, (5, ..., (,} of parentheses, by putting two
parentheses in the same block if the corresponding factors in the chosen term have the
same subscript. Conversely there are S (k, i) partitions of P into i blocks and to each
of these partitions there are (n);=n(n—1)...(n—i+1) terms of the product which
induce this partition because the factors of different blocks must have distinct sub-
scripts chosen from {1, 2,..., n}. If a term Jifj,---fj, has i distinct subscripts then

E(f;, .- f;)=P{f;,=1,..., fi,=1}
=(n—1i)!/n!
_
(n);

since these are (n—i)! permutations satisfying the conditions. Combining the above
results, those terms in the expansion of (3) which have 7 distinct subscripts contribute
S(k, i) (n);(1/(n);)=S(k, i) to the sum. If k<n then i cannot exceed k, the number
of elements to be partitioned and if k >n then i cannot exceed n, since there can be at
most n distinct subscripts; hence the expansion of (3) yields Y /i*" S(k, ).

1 ifiis a fixed point of 7,
0 otherwise
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Problems and solutions

This section publishes problems and solutions believed to be new and interesting. Problems
are designated by P1, P2,..., solutions by P1S1, P1S2, ..., and remarks by P1R1, PIR2,....
Correspondence regarding this section should be sent to the Problems Editor, Prof. M. A.
McKiernan, Faculty of Mathematics, University of Waterloo, Ont., Canada. In case several
similar solutions are received, the solutions may be edited with credits given the individual
contributors.

P112S1 - L. SonneBoRN and J. RATZ

The answer is negative: There are countable subfields of R having property (2), i.e., with iso-
morphisms f: K->K* which are also homeomorphisms. Let Ko be the ficid of rational numbers.
For any positive integer #, let K» be the subfield of R generated by Kn_1\Jexp Kn_1VIn K. 1.
Then K := U 7~ K is a countable subfield of R satisfying (2), for we have exp K=K*.
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Works on functional equations IV

This is a continuation of a bibliography, the first three parts of which have been published in
Aequationes Math. I (1968), 152-191, 3 (1969), 271-312, and 7 (1971), 270-319 and of the biblio-
graphy in J. Aczél’s book, Lectures on Functional Equations and Their Applications (Academic Press,
New York-London, 1966), pp. 383-496. For explanations and classification see Aequationes Math. /
(1968), 152155 and 190-191.

The following new sections have been added to the classification.

8.3 Equations for Operators

8.31 Classification of Equations

8.32 Homomorphisms, Derivations

8.33 Centralizers

8.34 Reynolds Operators, Averaging Operators, Smoothing Operators
8.35 Baxter’s Equations

8.36 Trigonometric and other Operators

With the evolution of the theories of (algebraic) varieties and of universal algebra, works on
‘unusual’ algebraic identities, which were included in previous parts of this bibliography, will not be
included in this fourth and further parts. — Just as in previous parts of this bibliography or in Aczél’s
book, functional equations with not more ‘free’ variables than the number of variables (places) oc-
curing in the unknown function with most variables in the equation, are not included in this part
either. For such equations, see M. Kuczma’s book, Functional Equations in a Single Variable. Polish
Scientific Publishers, Warszawa, 1968.
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Graphs from projective planes
T. D. Parsons

Let G(q) be the graph whose vertices are the points of the finite projective plane
PG(2, q), and where two vertices are adjacent if they are distinct and orthogonal. The
structure of G(q) is studied, and its automorphism group is determined. Certain sub-
graphs of the graphs G(gq) yield three infinite families of connected graphs of girth 3,
and two infinite families of connected graphs of girth 5, whose automorphism groups
are transitive on ordered pairs of adjacent points. Special cases are the Petersen graph,
a 28-point cubic 3-transitive graph of girth 7 due to H. S. M. Coxeter, and a 36-point
quintic 2-transitive graph of girth 5. The automorphism groups of these last three
graphs are shown to be the projective orthogonal groups PO;(5), PO;(7), and a
semidirect product PO;(9)# Z,.

Received August 8, 1973.

Solutions of bounded variation of a linear homogeneous functional equation in the
indeterminate case

Marek Cezary Zdun

In this paper solutions of bounded variation of the functional equation
o[f()]=2g(x) 0 (x) 1)

in the indeterminate case are investigated.

A function g is said to be of finite variation in J, or shortly ge B,V [J], iff for every
finite and closed interval P =J we have Varg | P<oo.

A function g is said to be of bounded variation in J, or shortly ge BV[J], iff there
exists a constant M (g) < oo such that for every finite and closed interval P = J we have
Var g | P<M(g).

We assume the following hypotheses in all the theorems below

(i) fis continuous and strictly increasing in an interval J = (a, b) and a< f (x)<x
for xeJ (we admit a= — o0);

(ii) geBV[J] and lim,_,,+ g(x)=1, inf{g(x): xeJ}>O0.

Let us put

G,,(x)=n_]:[:g[f‘(x)], xeJ, n=1,2...,



198 Short communications AEQ. MATH.

where f* denotes the i-th iterate of the function f.
We have the following theorems:

THEOREM 1. If there exists xo€J such that the product %o g[ fi(x,)] con-
verges, then equation (1) has exactly a one-parameter family of solutions e B,V [J]
and such that there exists a finite limit lim, _, .+ ¢(x). These solutions are given by the

ormula
f n

[ ¢ [/ (%)]

¢ (x)= , for xelJ.

s

1

]

THEOREM 2. Ifthere exists an xo€J such that lim, , ,, G,(x,) =0, then equation (1)
has a solution e ByV [J] and such that there exists a finite limit lim,_, ,+ ¢ (x) depending
on an arbitrary function.

THEOREM 3. Suppose that there exists an xo€J such that Y ;" G,(x,)< o0

n=1

Then equation (1) has a solution ¢ BV [J] depending on an arbitrary function.

THEOREM 4. If lim,_,, G,(xo)=0and Y ;2| G,(xo)= o0 for an x, from J, then
there exists at most a one-parameter family of solutions of equation (1) in class BV [J].
If a function ¢ satisfies equation (1) and e BV [J] then ¢ is given by the formula

G,
go(x)=;11im—Lx°) for xeJ, neR.

G,(x)’

Moreover an example is given showing that in above case a solution from BV [J]
need not exist.

Sufficient conditions for the existence of a solution of (1) in BV [J] are contained
in the following theorem:

THEOREM 5. If there exists a finite limit, lim,., ,, G,(x,), for an x, from J, and
Yor1 Gu(xo) Varg | (a, x,y<oo, where x,=f"(x,), then equation (1) has a one-
parameter family of solutions pe BV [J].

Received October 26, 1973.

A theorem on interpolation in Haar subspaces
T. A. Kilgore and E. W. Cheney

Let X denote the space of continuous real functions on the interval [ — 1, 1], with
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norm x| =max|x(¢)|. Let Y be an n-dimensional Haar subspace containing con-
stants, with n>3. For any n points (‘nodes’), -1t <t,<---<t,<1, there exist
elements y,, ..., y, in Y with the property Yi(t;)=40;;. The formula Lx=Y x(t;)y; de-
fines a (generalized) Lagrange interpolation process. The linear operator L: X — Y
has norm |L||=| ¥ |y |, and the function Y |yl is the ‘Lebesgue Function’ of
L. It has been conjectured that, for some choice of the nodes, the Lebesgue function
will exhibit n+ 1 local maxima of equal amplitude, and that this choice of nodes makes
[IL|l @ minimum. We outline a proof that such a choice of nodes exists.

Let to=~—1, t,,y=+1, and let 4, denote the maximum of the Lebesgue function
on [t; t;,,] for 0<i<n. Let K denote the simplex in R" defined by the inequalities
-1t <, <<, 1.

A crucial step in the proof establishes the existence of continuous maps M;:K— K
(1<i<n) with the properties (a) M, moves only ¢; in the n-tuple T=(z,,..., ,); (b)
A(M{(T))=2;_,(M(T)). The node vector sought is a fixed point of the map M=
=M;oM,o---o M,, and conversely.

The remainder of the proof is devoted to showing that M has a fixed point in K,
despite the fact that K is not compact (and the Brouwer Theorem is not directly ap-
plicable).

A second theorem establishes the existence of symmetric nodes (ti=—t,_i4y) if
the subspace Y has the property that y(—¢) belongs to ¥ whenever »(¢) does.

Received March 25, 1974.

Sharply 2- and 3-transitive groups with kernels of finite index
William Kerby

Sharply 2-transitive permutation groups are completely determined by near-
domains in the sense that every such group is isomorphic to a group of transformations
of the form x — a+mx, m #0, on a near-domain. The kernel of a near-domain Fis the
multiplicative group f={keF*:(a+b)k=ak+bk, for all a, beF }. The kernel of F
leads in a natural way to the concept of kernels as subgroups of the stabilizers
G,={xeG: a(a)=a} of the sharply 2-transitive group G associated with F. The
following theorem is proved:

If G is a sharply 2-transitive group and the kernels are of finite index in the
stabilizers G, then G is isomorphic to the group of transformations x —a+mx, m#0
on a skewfield, or G is finite. If G is sharply 3-transitive and the kernels are of finite
index in the stabilizers G, ,, then G is the group PGL (2, K) for a commutative field X,
or G is finite.

Received April 22, 1974.
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A construction method for generalized Room squares
I. F. Blake and J. J. Stiffler

A Room square of side (—1) is an (n—1) x (n—1) array of cells which are either
empty or contain an unordered pair of distinct objects from a set .S of n objects such
that each row and each column of the array contains each element of S exactly once
and each unordered pair of elements of S appears exactly once. It is known that Room
squares of all odd sides, except 3 or 5, exist. The concept of a Room square can be
generalized as follows. A generalized Room square of order n and degree k is an
(Z: :) X(Z:i) array of cells of which each cell is either empty or contains an
unordered k-tuple of a set S, |S|=n, such that each row and each column of the array
contains each element of S exactly once and the array contains each unordered
k-tuple of S exactly once. A generalized Room square of order n and degree 2 is simply
a Room square of side (n—1).

The purpose of this paper is to present a method for constructing generalized Room
squares of order n and degree 3 which has been successful for all orders » less than
fifty having the necessary properties. A method is first developed to generate all un-
ordered triples on the set S=GF(q)u {00} where GF(q) is the finite field of order
g and oo a distinguished element satisfying the usual arithmetic properties. The
method utilizes the doubly transitive affine group of transformations on GF(q). For
generalized Room squares of order » and degree 3 we must have 3 I n which, for our
construction method implies 3 | (¢+1). The method by which all unordered triples on
S are generated is used to construct the generalized Room squares. The success of the
method depends upon the existence of a certain set of triples, and it has not yet been
proven that such a set always exists. In all cases tried, however, the set was readily
found. It is conjectured that it-always exists.

Received June 10, 1974.
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Expository papers

On multiplication and factorization of polynomials,
I. Lexicographic orderings and extreme aggregates of terms

A. M. Ostrowski

Contents

Introduction 201
§1 (Sec. 1-7) Definition of orderings of products of powers 203
§2 (Sec. 8-12) Weight functions 206
§3 (Sec. 13-16) Comparability of ordered PP 208
§4 (Sec. 17-22) Proof of the Theorem I 210
§5 (Sec. 23-32) Structure of sequences of weight functions 213
§6 (Sec. 33-42) Extreme aggregates of terms 217
§7 (Sec. 43-46) Convex bodies and polyhedrons 222
§8 (Sec. 47-52) The baric polyhedron 225
Introduction

In the discussion of multiplication of polynomials the concepts of the highest and
lowest terms of a polynomial are, in different connections, fundamental. It is therefore
of interest to try, as a generalization, the definition of a general mapping, A4, of a
polynomial into an ‘extreme aggregate’ of its terms, by some few postulates (Sec. 33).

The classical definition of the highest terms is usually given using the so-called
Lexicographic Principle which is one way of establishing an ordering in the set of pro-
ducts of powers of independent variables. We discuss, therefore, in the first part of this
paper all possible orderings Q of products of powers satisfying a simple set of postu-
lates (Sec. 1, 2). In this connection the classical Lexicographic Principle is recognized
as a special case of a very general principle.

It is then not difficult to establish a one-to-one correspondence between all order-
ings of the type Q and all mappings of the type A (Sec. 34-38, Theorem III). Then the
problem arises to discuss all realizations of postulates defining Q. This is done in-

AMS (1970) subject classification: Primary 13-02, 13B25. Secondary 06A75.

The preparation of this paper (part I and part II) was first carried out under the contract of the
Mathematical Institute, University of Basel, with the European Research Office of the US Army.
Further work on this paper was done at the Faculty of Mathematics of the University of Waterloo,
Canada, under the sponsorship of the National Research Council of Canada and the Swiss National
Science Foundation.
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troducing convenient ‘weight functions’ and applying the Lexicographic Principle to
a sequence of weight functions (sec. 8-32).

In this way, however, the same aggregates of extreme terms can be obtained for
infinitely many choices of weight functions. In order to obtain a complete picture of all
possibilities we introduce the baric polyhedron of a polynomial, which is uniquely deter-
mined by this polynomial. We show that all possible choices of aggregates correspond
to different linear boundary components of the baric polyhedron (Sec. 47-52).

The second part of this paper will bring different applications of the concepts in-
troduced here to some irreducibility problems.

A list of introduced technical terms and notations will be given at the end of part
II.

It may be finally observed that the concept of the baric polyhedrons and its ap-
plications to the irreducibility problem have been the subject of a talk given at the
meeting of the German Mathematical Society on September 23, 1921, in Jena. A short
summary of this talk was published in the ‘Jahresbericht der Deutschen Mathematiker-
vereinigung’, 30, 2nd part, 1922, pp.98-99. Since this summary may be of interest to
the reader, we reproduce it here in the original. As the reader will observe, in this
summary in particular was announced a complete solution of the reducibility problem
for four terms polynomials which however could not be carried through rigorously
and appears to require completely new methods, in the case of a baric quadrangle.

- 1. A. Ostrowski: Uber die Bedeutung der Theorie der konvexen Polyeder fiir die
formale Algebra (Bericht).

Die vielseitigen Anwendungen, die das Prinzip der lexikographischen Anordnung
in der Algebra findet, legen den Gedanken nahe, allgemein nach allen moglichen Arten
zu fragen, gewisse Gliederaggregate in Polynomen so auszuzeichnen, daB diese Aus-
zeichnung bei Multiplikation invariant bleibt, d. h. daB die ausgezeichneten Gliederag-
gregate sich bei Multiplikation ‘reproduzieren, sich also dhnlich verhalten wie die
héchsten Glieder von Polynomen bei einer festen Anordnung der Variabeln. Es wird
also dabei jedem Polynom P(x,,..., x,) ein Gliederaggregat P aus P so zugeordnet
gedacht, daB PP, =P P, ist. Alle solche Zuordnungen erhlt man, wenn man ein
System von Gewichtsbestimmungen G, G,,..., G, einfiihrt und zunichst alle Glieder
von P auszeichnet, die in bezug auf G, die ‘schwersten’ sind, unter den so ausgezeich-
neten alle diejenigen, die in bezug auf G, die schwersten sind usw. Eine Ubersicht iiber
alle bei einem Polynom méglichen Fille erhilt man erst mit Hilfe einer geometrischen
Konstruktion. Ordnet man jedem Potenzprodukt x7'x72...x™ den Punkt des n-dimen-
sionalen Raumes mit den Koordinaten my,..., m, zu und bildet das kleinste konvexe
Polyeder, das alle den einzelnen Gliedern eines Polynoms P auf diese Weise zugeord-
neten Punkte enthilt, — das ‘Gewichtspolyeder’ von P - so kann man an den linearen
Begrenzungsmannigfaltigkeiten des Gewichtspolyeders das Verhalten von P gegen-
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iiber einem beliebigen System von Gewichtsbestimmungen unmittelbar ablesen. Dem
Produkte von zwei Polynomen entspricht die Summe ihrer Gewichtspolyeder im Sinne
von Minkowski. Daraus ergeben sich Kriterien fiir die absolute Irreduzibilitit, die
nur von den Gewichtseigenschaften eines Polynoms abhédngen, also nur von den
Exponenten, dagegen nicht von den Koeffizienten. Die entwickelte Methode gestattet
insbesondere bei allen Polynomen mit 2, 3, 4 Gliedern alle Typen der reduziblen
Polynome aufzustellen.

Die ganze Art der Fragestellung hangt mit der Newton-Puiseuxschen Methode zur
Reihenentwicklung algebraischer Funktionen zusammen. —

§1. Definition of orderings of products of powers

1. We consider in what follows m>1 independent variables x,,..., x,, and the
products of powers (in the following denoted as PP) of these variables:

P:=x}'..xym (1)

with rational integers a,, which can be positive, negative or zero. The set of these PP
will be denoted by R[x,..., x,]. Such PP will be called rational, and rational PP with
o, >0 will be called integer.

In the following, P, Py, P,, P53, P, are arbitrary PP unless specified to the contrary.

2. We consider a set, 2, of binary relations between PP, denoted by ~, > and <
(read respectively: is equivalent to; is higher than; is lower than) and satisfying the
following postulates:

I. There exists the complete disjunction:
either Py~ P, or P> P, or P{<P,.
II. We have always P; ~ P, and from P, ~ P, follows P, ~ P,, while from P, > P,

follows P, < P, and vice versa, from P, <P, follows P, > P,.

III. From P;> P, and P,z P, follows P, > P,; from P; ~ P, and P, > P, follows
P> P,.

IV. From P, > P, follows P3P, > P, P,.

Such a set Q defines a regular ordering of PP,

3. Observations:

A. TII remains obviously true if all > signs throughout III are replaced with
< signs. This follows from II.

B. The transitivity holds also for equivalence relation:

Ir (Py~Py) A(Py~ P3)=(Py~ P;).
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Indeed, if we had P, > P; it would follow from III, since P;~P,, that P, > P,, and
similarly we can disprove P, < P,.

C. The invariance assertion IV holds not only for the relation > but also for the
relations < and ~:

v (P1~P2)=(P3P1~P3P2),(P1<P2)=>(P3P1<P3P2).

Indeed, the last assertion IV’ follows from II replacing in IV the > signs by the
< signs; as to the first relation IV’, in the case that P~ P,, both P;P,> P;P, and
P3P, <P, P, are impossible, as these relations can be now multiplied by 1/£;.

D. By repeated application of IV and IV’ we obtain:

From (P;> P,, P;>P,) or (P;~P,, P;> P,) or (P> P,, Py~ P,) follows P, P,
> P, P,. From (P~ P,, Py~ P,) follows P, P~ P,P,.

4. It is easy to see, by repeated application of D, that our relations can be ‘raised
into any positive integer power p’. More precisely: Let p be a positive integer. Then we
have

P{>P; or P{~P§{ or PP'<P! 2)
according as

P1>P2 or P1~P2 or P1<P2- (3)

We assumed here p as positive. If we replace p with the negative number — p,
P>0, we have to interchange > sign with <sign: From any of the relations (3) follows
the corresponding relation in

1/PY<1/P3, 1/P{~1/P},  1/PY>1/P} (p>0). (4)

5. We could define the ordering directly for the field of integer PP. We have then
to add to the postulates I-1V the postulate

(P3P1>P3P2)=(P1>P2),

since the invariance with respect to division is then no longer contained in IV. Then,
obviously, III" and IV’ are valid again.

But then, any rational PP, that is (1) with partly negative «,, can be written as
P =P,/P, with integer PP, P; and P,. We can then define for integer PP:P,,...,P,:
P,/P,Z P4/P,, according as P, P, P, P,.

It follows at once from IV and IV’ that this definition does not depend on the
special choice of P, P,, P;, P,. We see now easily that all postulates I-1V, III’, IV’
remain valid in the field of rational PP.
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6. Our considerations can be further generalized, and this generalization will later
allow to simplify different arguments.

We consider now the PP (1) admitting there arbitrary rational exponents «,. We
will speak in this case of algebraic products of powers (algebraic PP). The set of these
PP will be denoted by [x,..., x,.].

No difficulty will arise due to the different values of a fractional power since we
can assume in our considerations that all x, and their powers are positive.

In order to define our relations for the algebraic PP,

Pyi=xPxim,  Pyi=xht xPm 5)
denote by M the smallest common denominator of all o, and B,. If P, and P, are ra-
tional PP we take M as 1. Then we define: We have P,> P, or P,~P, or P, <P,
according as P{> P} or PY ~ P¥ or P¥ < PM.

It follows from the above definition: Let the positive integer N be such that both
P and PY are rational PP. Then we have any of the three relations P, Z P, according as
the corresponding relation holds between Py and P3.

Indeed, under our assumption we have N = pM with positive integer p. But then it
follows from the Sec. 4 that from any of the relations between P and P} follows the
corresponding relation between P! and PY.

7. We see now easily that all postulates I-IV, III', IV’ are satisfied for our ordering
in the field of algebraic PP. More generally it is easily seen that for any positive ra-
tional p, from any of the relations (3) between algebraic PP, P, and P,, follow the
corresponding relations in (2) and (4).

From now on we will consider generally the algebraic PP unless otherwise speci-
fied. Further, all exponents which will occur in the following, will be assumed to be
rational numbers unless otherwise specified.

Any ordering of algebraic PP satisfying the postulates I-1V will be called a regular
ordering.

The definition of 2 by the postulates I-IV does not imply directly the expressions
(1) of the PP. 1t is therefore invariant if we apply a ‘multiplicative reversible trans-
formation’ (m-r-transformation) with rational a,,:

X, =Yy e (u=1,..., m; |det(a,,)|>0).
Then each PP (1) assumes the shape
A

of an algebraic PP from [y;,..., y,,].  induces an ordering of the PP in [y,,..., V],



206 A. M. Ostrowski AEQ. MATH.

which shall be, of course, formally different from the ordering we obtain replacing in
(1) each x, by the corresponding y,. ‘

The discussion of all possible regular orderings in [xy,..., x,,] can be interpreted
in a different way if we consider, together with the PP (1) the set of linear forms

S(u): =01y + -+ + o,
with indeterminates uy, ..., u,,. We will call (1) and S(u) associated. Then to the product
of two PP is associated the sum of their associated linear forms. Our problem is then
equivalent to the problem of characterizing all ‘regular’ orderings in the set of all linear
forms S(u) with rational coefficients.
§2. Weight functions
8. If a real function W(P), defined in [x,,..., x,,] has the property that
W(PPy)=W(P)+ W(P,), (6)

it will be called a weight function. If we put then

w,i=W(x,) (u=1,...,m) @)

we obtain

W (x3... x5 ) = w0+ + W0y, (8)

We can obviously define by (8) any weight function choosing wy, ..., w,, as arbitrary
real numbers.
The classical examples of the weight functions are given by the dimension:

the degree in x,:

the classical weight in the theory of symmetric functions:

wi=1,w,=2,..., w,=m.

9. The coefficients w, in (8) can be arbitrary real numbers. If all w, in (8) are ra-
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tional, W(P) is called a rational weight function. It is easy to see that any weight func-
tion can be represented as a linear combination of rational weight functions. More
precisely: :

If r is the maximal number of the w, in (8) which are linearly independent with respect
to rational numbers, then W(P) in (8) can be represented in the form

W (P)= 3, wOwe (P) ©)

where w'® are linearly independent real numbers and W@ (P) are r rational weight
functions which are linearly independent as linear forms in the o,,.
The number r will be called the rank of the weight function W(P).

10. It follows now that if W(P)=0 then for all W@ in (9) we have also W@(P)=
0. We can therefore find m—r PP, PV, ..., P™~" 5o that any PP with W(P)=0
can be written in the form Pt .. P~ "% with rational exponents u,, and conversely
for any such PP, W vanishes.

It follows further that if a rational weight function W*(P) has the property that it
vanishes whenever W(P)vanishes, then W*(P)isalinear combination of the W@ (P).

The rational weight functions with this property will be called belonging to W(P).
Obviously the set of all rational weight functions belonging to W(P) is uniquely
determined by W(P).

11. We consider now an ordered sequence of weight functions
m
W (x3.xim) =Y wla, (k=1,...,k). (10)
n=1

Using the sequence (10), a regular ordering Q of PP can be ‘induced’ by the
‘Principle of Lexicographic Ordering’, postulating that Py~ P, if W, (P,)=W,(P,)
(k=1,..., k), and that P;> P, if for the smallest x for which W,(P,)# W, (P,), we
have W, (P;)> W, (P,), that is if

Iko: W (P)=W,(Py) (k<ko); Wi (Py1)> Wy, (Py). (11)
It follows then that P; < P, whenever
Akeo: Wi (P)=W,(Py) (k<ko); Wi (P1)<Wi,(P2)- (12)

The properties I, II, III follow then immediately. The same holds for the property
IV, if we take into account that

W, (PPy)— W, (PP;)= W, (Py)— W(P,). (13)
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Observe finally that the weight functions and the ordering defined above by means
of weight functions are invariant if we apply an m — r-transformation of coordinates.

12. The sequence (10) of weight functions allows certain transformations which
do not change the ordering Q.

A. Any weight function in (10) can be multiplied by any positive constant.

B. Any weight function W,(P) in (10) can be replaced with

Wi (P):=W,(P)+ Zk aWE(P)  (k>0), (14)

with arbitrary ¢, where each W,*(P) is a rational weight function belonging to W,(P).
C. A weight function which is =0 can be dropped from the sequence (10), if we do
not change the order of the remaining elements of (10), reducing in this way k to k— 1.
Using these observations we can reduce the sequence (10) in such a way that each
time when we choose for each W, (P) a rational function W% (P) belonging to it,
the x functions W (P) are linearly independent. Then the sequence (10) is called
regular. Obviously, for a regular sequence (10) the sum of the ranks of all weight
functions in (10) is <m. This sum is =m if and only if the only PP which is equivalent
to 1 is 1. In particular, for a regular sequence (10), always k <m. The number k is the
‘length’ of (10). The maximum number of linearly independent rational weight
functions belonging to the W, of (10) taken together, is called the rank of the sequence

(10).

THEOREM 1. Any regular ordering of algebraic PP can be obtained by the lexico-
graphic principle from a regular ordered sequence of weight functions.
The proof of Theorem I will be given in §4.

§3. Comparability of ordered PP

13. We say that P; is comparable with P,, in notation P,cP,, if there exist an
e=+1 and two positive rational numbers A and u such that

PSP P 2P*, e=+1, Aapu>0. (15)

From this definition follows obviously that PcP (reflexivity) and that if P,cP,,
then also P,cP; (symmetry). Further, we see that if P, cP, then also P, cP; !. Indeed,
fora P, ! we obtain the relations corresponding to (15) replacing ¢ by —e&. Similarly,
using the symmetry, it is seen at once that from P, cP, follows P icp,.

Further it follows from our definition that if P;cP, and P,~1 then also Py~1.

We can now see that if P,cP, and both P,, P, are 21 then ¢ in (15) can be chosen
as 1. This is quite obvious if P, or P, is ~1. We can therefore assume that both P,
and P, are > 1. But then the first relation (15) with = — 1 would give P, <1.
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Further, it is easy to see that the comparability relation is transitive. Observe final-
ly that we have always for a rational «#0, PcP®

14. From the point of view of comparability, the set of all PP is now decomposed
into comparability classes, where all PP in a comparability class are comparable, while
the PP of two different comparability classes are never comparable.

In particular, the comparability class containing 1 will be denoted by U. U con-
sists of all PP which are equivalent to 1. If U contains only 1, it is called trivial, other-
wise nontrivial.

LEMMA 1. Assume Cy and C, two different comparability classes. Dencte by P,,
Qy two PP from Cy, which are both > 1, and by P,, Q, two PP from C, which are also
> 1. Then, if 0, > Q,, we have also P;> P,.

— In this case we will say that the class C, is higher than the class C,, in notation
C, > C,. This relationship is obviously transitive.

Proof. Since P, and Q, are comparable and both 1 it follows for a convenient
positive rational A

P,<03<0%.
As Q,eC, we have by (15) Qf < P¥ for a convenient positive rational 4 and therefore
finally P, <P{. If we had then P, <P, it would follow P, cP,. Therefore P, is cer-
tainly > P,. Our lemma is proved.

It follows now in particular that in the notations of our lemma we even have, for
any positive rational d:

P,<P! (9 rational, >0). (16)
We express this, writing P, < P,, P, > P,.
Observe that if there exists a comparability class C+# U then always C > U. Indeed,

in this case C must contain a P which is not equivalent to 1 and can therefore be
assumed > 1.

15. LEMMA 2. Assume k+1>1 comparability classes
Co<Ci<--<Cy.
Choose in each C, an arbitrary P, (k=0, 1,..., k). Form, for any rational p,, the PP:
P*:=Pphoph  pbe, 17)

Then, if By is #0, we have P*eC, and P* is >1 or <1 according as Pf* is >1 or <1.
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Proof. We can assume without loss of generality that

1) all P,>1;

2) Bi>0;

3) all B, #0;

4) k=1.

Indeed, we can always replace a P, by P, ', P* by P*~! and leave out those C,
for which g,=0. Put

B
gi=—,
2p

Then, by assumptions, we obtain P, *< P, < Py (k<k),

k
B:=7% IBd,
k=0

Pt Pl pplel (=0, 1, ..., k—1).

Multiplying all these relations:
P*
PP < pEB—F0
k Pf" k >

and it follows now at once, as f,>0,

Pfk/z <P*<P,3ﬂk/2 ,

which proves our assertion.

16. Assume now a set Co<C; <---<C, of k+1 different comparability classes.
We take Co,=U if U is nontrivial. Otherwise we assume C,> U. Take from each of the
C, in our set an element P, #1 (k=0,..., k). Then obviously the relation

Phe.. . Pi=1 (18)

is impossible unless all g, are=0.
Indeed, to prove this, we can assume, without loss of generality that already B, #0.
But then Pf=Py % ... P, "%~ is an element of C, > C, _, and this contradicts Lemma 2.
Since, however, a relation of the type (18) is always possible for k>m it follows
that, for our set, k <m. We see that the total number of the comparability classes is
<m+1, and if in particular U is nontrivial, even <m.

§4. Proof of the Theorem I

17. We prove first the Theorem I in the special case that U is trivial and that,
besides U, there is only one comparability class C, so that all x, are comparable. We
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can further assume that all x, are > 1, since each x, can be replaced with X, ! as an
m~r-transformation. Finally we can assume that m>1, as for m=1 obviously
W(P):=ua, satisfies the requirements of Theorem I.

By assumption there exist for every k, 1 <k <m, two positive rational numbers A
and u, such that

xh<x, <xt,
where obviously A<y, as x; >1. For no rational ¢, x{ can be ~ to x,, as otherwise
U would contain the element x,x; °# 1. By Dedekind’s axiom, the A are separated from

the u by a number y, such that for A <y, <u we have always x} <x, <x% For k=1 we
put y, :=1. Then the following lemma holds.

18. LEMMA 3. Assume the hypotheses of the preceding section, 17, and use the

notation y, for the constants defined in that section. Let o, be integers with A:=
Yoy |l >0. Put for the P given by (1)

L(P):= Zl POl +

Let u and v be two rational numbers satisfying u<L(P)<v. Then
xi<P<xi.
Proof. We can assume that Y v_, || >0, as otherwise P = x** and our assertion is
evident. It suffices to prove the first inequality, as then the second one follows, replac-

ing each a, with —a,. Choose a positive rational number ¢ <(L(P)—u)/4 and then
gy :=1 and for each x> 1 a rational o, such that

M= <0, <Y (0 >0);  y <0, <Y +8(x, <0); 6, =0(x, =0). (19)
Then, if we put u; : =) v_, «,0,, obviously u; <L(P) and

L(P)—u;= Y o (te—0)— Y o (0,—7)<Ae<L(P)—u,

>0 <0

and therefore u; >u. On the other hand, it follows from Sec. 18 that, for x>1,
x7*<x and hence x}'<P. But now, as u<u, and x,>1, the first inequality of
Lemma 3 follows, and this lemma is proved.

19. From the Lemma 3 it follows immediately that the y, (k=1,..., m) are linearly
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independent with respect to rational numbers. Indeed, if we had a relation with integer

By:
Zl ﬂxyx=09 Zl IBK|>0’

it would follow, putting P*:=x%'"...x%" L(P*)=0 and therefore, by Lemma 3, for
any positive rational p:

P*<x?, P* l<xP,

But then P* is not comparable to x; and must belong to U, while U is assumed trivial.

Further it follows, if L(P)>0, choosing a rational p with 0<p<L(P), P>x7>1,
and similarly, if L(P) <0, P <1. Hence, if for two PP, P,, P,, we have L(P,)Z L(P,),
it follows correspondingly P; 2 P,. We see that the requirements of the Theorem I are
satisfied if we take' W(P):=L(P). Theorem I is proved in the special case of Sec. 17.

20. We consider now the general case. If m=1, then, for U trivial, we have just a
special case of what has been already proved above. If, on the other hand, U is non-
trivial, then every P =x%' belongs to U and we have no ordering at all. Here we can
choose W(P)=0.

We can therefore proceed by induction and assume that Theorem I has already
been proved for all smaller values of m.

21. Let Co<Cy<---<C, be the ordered sequence of all comparability classes,
where however U has to be excluded, if it is trivial. Then we can assume that s>1,
as otherwise this would be the case of Sec. 17, and in this case Theorem I is already
proved.

We consider in particular C,, and observe that if P, A P,eC, then P, P, is either 1
or lies in Cy. Indeed, for any P >1 from C, we have for arbitrary positive rational p:

P P<P AP,<P?, P ?’<P P,<P?

so that P, P, belongs to a class <C;y, and therefore if P, P,# 1, then P, P,eC,.

Consider the set T of all linear forms associated with the elements of C, as in Sec.
7. Then it follows that T is obtained from a ‘module’ by dropping the element 0. Let
L,,..., L, be the maximal number of linearly independent forms from T chosen in an
arbitrary way. Then any form LeT can be written as

t
L=3Y oL,
=1

with rational g,.
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Denote generally the PP associated with L, by P,. Then it follows that there does
not exist any relation of the form

) t
Pét phe=1, Y 18>0,
=1
with integer ., while every element of C,, can be written as P$'... P% with rational g,.

22. By a convenient m — r-transformation, as defined in Sec. 7, we can transform
the Py,..., P, respectively into x4, ..., x,. We can therefore assume from the beginning
that C,, is identical with [xy,..., x,], save 1 if U is trivial. But then to the general P (1)
from [x,..., x,,] correspond a P from [x,41,..., X,,] anda P’ from [x,,..., x,], so that

P=P'P, P'=x}..x¥, P=xM.x,

where P’ is either 1 or an element of C,, and P is either 1 or belongs to the same com-
parability class C> C, as P. Obviously (P,/P,)=P,/P,.

From Lemma 2 it follows now that P >1 or P <1 accordingly as P>1 or P <1,
and, more generally, that P, > P, or P, <P, accordingly as P, > P, or P, < P,. De-
note the ordering of the P, that is, that of [x,,1,..., X,.] given by Q, by the symbol £2.
Denote further by W(P') the weight function which generates the ordering in
[Xi,..., x,] and the existence of which has been proved in Sec. 19, unless W(P’)=0,
that is, Co = U,. By hypothesis {2 can be generated by a regular sequence of weight func-
tions, Wy(P),..., W,(P). Put now W, (P):=W(P) (x=1,...,k) and W,,,(P):=
W(P’). Then obviously the sequence

Wy(P),..., Wis1(P) (20)
generates Q. Further (20) is regular. Indeed, the rational weight functions belonging
to Wy, (P) depend only on ay, ..., &, while the rational weight functions belonging

to the W, (P) with k<k are independent of ay,..., «,.
Theorem I is proved.

§5. Structure of sequences of weight functions

23. We assume now that the ordering Q in [x,..., x,,] is generated by the se-
quence, of rank r,

Wy(P), ..., W(P). (1)

About (21) we assume that it is irreducible, that is to say, that none of the W, (P)is a
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linear combination of the rational weight functions belonging to Wy (P),..., W,_;(P).
Then I assert that there exists a sequence of r rational weight functions

R (P),...,R.(P) (22)

and a sequence of positive integers

F<r,<--<n=r (23)
so that generally
W, (P)=Y wOR,(P) (k=1,...,k). (24)
=1

Here the set of the linear forms (22) is linearly independent and the following sets of
constants are, each of them, linearly independent with respect to rational numbers:

1 . +1 . . -1+1
Wi, Wi wEtD s w e L w (25)

24. In order to define the sequence (22) and the representations (24) we begin by
forming a basis R;,..., R,, for the rational weight functions belonging to W;. It fol-
lows from what has been said about (9) that the corresponding w{” are linearly in-
dependent.

We consider further the set of all rational weight functions belonging to W or to
W,, and establish a basis for this set taking care to conserve the basis elements R, ...,
R,, already found. In this way we obtain additional basis elements R, (r; <t<r,).
Observe that here certainly r,>r; as (21) is assumed irreducible. We have
obtained a representation (24) with x=2. But here it is easily seen that the
coefficients of the ‘new’ R,, namely wy'*", ..., wy?, are linearly independent. For
otherwise, eliminating one of these coefficients we would obtain the corresponding
representation of W, with at the most r,— r; — 1 additional basis elements while, by
our construction, r, is the rank of the linear set formed from the rational weight func-
tions belonging to W, or to W,.

Proceeding in the same way further our assertion becomes evident.

25. If we assume that the sequence (21) is not only irreducible but even regular,
as defined in Sec. 12, then obviously in (24) for each W, the first Ry,..., R, _, are
missing, and we obtain

We=Y wPR, (re—1<t<r 1<k<k). (26)
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26. Write now the R, in (22) as linear forms in the o,

m
R.=Y c,o, (1<t<r).
p=1

Since the R, are linearly independent we can, if r <m, introduce m —k further linear
forms with rational coefficients,

m
R,= Z Couy
n=1

with r<v<m so that the determinant |c,,| does not vanish. If we now apply the
m-r-transformation

x, =y yme (p=1...m) (27)
then the PP (1) becomes

ay am __ 1,B1 B
b ...x,,,"‘—y'; oV

where

We can now assume, without loss of generality, that the above transformation has
been already carried out and the new variables are again denoted by x,..., x,,. Then
we have generally R, =o, (t=1,..., r), and hence

W (P)=Y wla, (111, 1<K<K), (28)
T

in the case of the irreducible sequence (21). In the case of a regular sequence, we have

W (P)=Y wQa, (re-;<t<r; 1<x<k). (29)

27. THEOREM II. Let the ordering Q in [xy, ..., X,,] be generated by an irreducible
sequence of weight functions of the length k and the rank r:

Wi,..., Wi, (30)
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and assume that
U=Cy<C;<---<C,, 520 (31)

is the complete sequence of comparability classes corresponding to Q. Then

k=s, (32)
C,={P:W(P)=0(k<k—0), Wy_,+1(P)#0} (0=0,...,5). (33)

28. In order to prove Theorem II we introduce and discuss certain sets of PP, con-
nected with the sequence (30). Define the sets U, of PP by

U :={P:W(P)=-=W(P)=0} (k=1,....,k), Up:=[xy,..., Xm]s Uprr:=0.
. (34)
Put further
D.:=U,_—U, (k=1,..,k+1). (35)
Obviously D, is characterized by
D= {P: W (P)=-=W,_(P)=0, W, (P)#0} (k=1,....k), (36)

while D, ;= U,. Further, obviously, if Pe D, then also P “leD,.

29. Tt is easy to see that all PP lying in the same D, are comparable. Indeed, as-
sume PA QeD,. If k=k+1, then D, ,,= U, and we have

Wi(P)= = W,(P)= W, (Q)= = W,(Q)=0.
But then P A Q are both comparable to 1 and we see that

D, ., =U,=U=C,.
This proves in particular also the assertion of (33) for ¢=0.

If, on the other hand, k<k+1, we can assume without loss of generality, that
P AQ>1. But then we have

WI(P)=“'= K—I(P)=W1(Q)= = x—l(Q)=0’ WK(P)A WK(Q)>0

Thence it is clear that we can find positive rational numbers A and u so that P*<Q<P*
and therefore P and Q are comparable.
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30. We are now going to show that if

1<PeD,,. 1<QeD,, 0<i<k,
then

P<Q. (37
Indeed, it follows from the assumptions about P and Q that
Wy(P)=+=W,_;(P)=W1(Q)="-=W,_,(Q)=0, Wi(P)=0<W,(Q).

This signifies that P is lower than any rational positive power of Q.
It follows therefore that each D, is identical with exactly one of the comparability

classes C,. Since [Xy, ..., X,,]= kL] D, we obtain in this way all C,. It follows now
(32) and further
Ce=Dy_yy1  (0<K<K). (38)

From (38) and (36}, now (33) follows immediately and Theorem II is proved.

32. Observe that U=C, is characterized by r linear homogeneous equations be-
tween the exponents o, so that the dimension of U is m— r. More generally, the di-
mension of each U, is m— r,, and further the dimension of D, is

(m_rx—l)—(m—rx)"—‘rn_ Fe—1-

Therefore by (38) the dimension of the general C, IS Fy—y+1— Fi—x-

§6. Extreme aggregates of terms

33. We consider now the set of all polynomials in x;, ..., x,, with coefficients from
an arbitrary field K. However, we generalize the concept of a polynomial defining an
‘algebraic’ polynomial as the sum of the terms F': =Y ¢, P, where c, are non-vanishing
constants from K and P, algebraic PP. (Observe that even if the field K is of prime
characteristic p, this p still could occur in the denominators of the exponents of the
algebraic PP.) Then we will say in particular that any term ¢, P, and the corresponding
PP, P,, are ‘contained in F’ and write it ¢,P,€F, P,eF. If we write the polynomial F
in the form Z ¢,P,, the PP, P,, are assumed to be distinct PP. If, in particular, all PP
in F are rational (integer) we call F rational (integer). From now on by polynomial
we mean an algebraic polynomial, unless otherwise specified.
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We now consider a mapping, A, of each polynomial F upon a certain aggregate of
its terms, F, and assume that A has the following properties:

A. There is no PP, contained both in F and F—F.

B. If F#0 then F'is also #0.

C. For any couple of polynomials F;, F,, we have

E=F1F2~ (39)

We will then call F extreme aggregate of F.

From our postulates it follows obviously that for any PP: ¢cP =cP (ceK).

For monomial polynomials, F, obviously F=F. We will generally denote a poly-
nomial which is not a monomial, i.e. contains at least two different PP, as proper
polynomials.

34. In the following P, P,, P,, P, will denote general algebraic PP, unless otherwise
specified.

Using our mapping A we will now define an ordering Q of PP, induced by A, and
prove that Q is a regular ordering.

If P,, P, are two PP it follows from the above postulates that P, + P, is either

P, +P, or P, or P,, and this is a complete disjunction. If P, + P, =P; + P, we will say
that P, and P, are equivalent, in notation Py~ P,, P,~ P;.

If P, + P,= P, we will say that P, is higher than P, and P, lower than P,, in nota-
tion P, >P, and P, < P;. And similarly if P, + P,=P,.

The ordering Q defined in this way satisfies obviously the postulates I and II of
Sec. 2.

Before proving that the postulates III and IV are also satisfied, we make some
general observations on the ordering Q.

35. We assume in this section that F contains the terms ¢; Py + ¢, P,, P; # P,. Then
in the product G :=(P, + P,) F, P, P, has exactly the coefficient ¢, + ¢,.

a) If Py~ P, and ¢, P, is contained in F then ¢, P, is also contained in F.

Indeed, if c, P, were missing in F, under our hypotheses G=(P; + P,) F would
contain P, P, with a coefficient ¢, while, if P, P, occurs at all in G, it must have the
same coefficient ¢, +¢, as in G.

b) If P,> P, then c, P, is not contained in F.

Indeed, otherwise in G= P, F, P, P, would have the coefficient ¢, which is again
#cy+c,.

c) If both ¢; P; and ¢, P, occur in F then Py~ P,.

Indeed, otherwise we have either P, > P, or P,> P, and one of the terms ¢, Py,
¢, P, would be missing in F, in virtue of b).
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d) If ¢, P, is contained in F but ¢, P, is not, then P;>P,.
Indeed, P, ~ P, would contradict a) and P; < P, would contradict b). We see that
A is uniquely defined by the ordering Q induced by it.

36. We prove now that Q satisfies the postulate IV of Sec. 2. Indeed, we have ob-
viously

P1P3+P2P3=(P1+P2)P3.

But if P, > P, the right hand expression is = Py P,. Therefore by our definition the
PP, P, P,, is > P, P,. This is the assertion of the postulate IV.
To prove the postulate IIT consider the identity

F:=(P1+P2)(P2+P3)=P1P2+P1P3+P2P3+P22-

If P, > P,, P,> P;, we have F = P, P, and it follows from d) that P, P,> P, P, and
multiplying, in virtue of IV, by 1/P,, P; > P; follows.

If P,>P,, P,~P; we have F=P P,+ P, P, and it follows again from d) that
P,P,> P,P,, P,> P,. If finally P, ~ P,, P,> P; we have F=P,P,+ P} and it fol-
lows from d) that P; P,> P, P3, P, > P;.

III is proved. Further, the observations 4, B, C, D made in Sec. 3 remain valid as
they follow from the postulates I-IV.

We see that Q is a regular ordering of PP.

37. If ¢; Acy, #0 we will say that ¢, P, is higher than (>) or equivalent to (~) or
lower than (<) c, P, according as P; > P, or P;~ P, or P; <P,. Using this notation
we can now formulate the

THEOREM III. To a mapping A as defined in Sec. 33 corresponds a regular
ordering Q of PP such that F is always the aggregate of all highest terms of F in the sense
of Q. Any regular ordering Q can be induced by a mapping A which is uniquely deter-
mined by Q.

38. Most assertions of this Theorem follow immediately from the Sec. 34-36.

We have now only to prove that any given Q is induced indeed by the A obtained
if we define as F the aggregate of the highest terms of F. Indeed, the properties 4 and
B of Sec. 33 hold, obviously, and we have now to prove that the property C also holds.

We denote the highest terms of F; by a,Q, and all other terms by b, T,. Similarly
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the highest terms of F, may be a;Q; and all other terms b;, T,. We can then write

F,=F+) bT,, Fy:=Y a0,

K

F2=F2+Z b;:T”,", F2:=; a;fQ';’_,
u
where the sums over v and u could also be empty, and

V(K, Kl’ V): Q;NQ;I’ Q;>Tvl s
V(Aa Ala H): QI}CNQ,)I.U Q,}I.>T;;I .
Then we have

F\F,=F\F,+) a b”QKT"+Z a;b,0iT,+ > BT, T, ,
K, b v,

Z al,c an }._

Observe that the product F;F, does not vanish and all its remaining terms are
equivalent, by IV’ of Sec. 3.

On the other hand, if Q’, Q”, Q'Q" are PP contained respectively in F;, F,, F|F,
we obviously have by virtue of IV, IV’

V(i A, v): Q'Q">Q T AQT ATT)

and F|F, is indeed the aggregate of the highest terms in F,F,. The property C is
proved.

39. The number of the weight functions in a regular sequence — the length of this
sequence — defining a regular ordering Q depends only on Q. If this number is 1 we
will call the ordering 2 and the mapping A induced by Q monobaric.

While there are obviously orderings which are not monobaric it is important for
algebraic discussions to prove that as long as we have to do with a fixed finite set of PP
it is quite sufficient to consider only monobaric orderings and mappings.

Let S be a finite set of different PP. A given ordering Q induces the order relation
between the elements of S, which we can call the projection of Q on S and denote by
the symbol Q. If we consider then the set S* of all polynomials formed with the PP
from the set S (with arbitrary coefficients from K) Q induces for each of the poly-
nomials from S* a mapping which will be denoted by A5. We are going to prove now

THEOREM 1V. If a regular ordering Q and the corresponding mapping A project
upon a finite set of PP, S, and upon the corresponding set S* the ordering Qg and the
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mapping Ag, there exists a monobaric ordering Q' such that if the corresponding map-
ping is denoted by A’ we have

Qs=0Qg; Ag=Ag. (40)
40. Proof. Since the relations P, > P,, P, < P,, P; ~ P, can be written as
Pi/P,>1, P/Py>1, P{/P,~1,

it is sufficient to consider the effect of Q upon those of the quotients of the PP from S
which are 2 1. Denote the sequence of these quotients by Q, (v=1,..., N).
To the ordering Q may correspond a regular sequence of weight functions, of
length d,
Wi, Wy, Wy (41)

It is sufficient to show that, if d > 1, the sequence (41) can be replaced with a sequence

containing less than d terms and corresponding to an ordering with the same effect on
the Q, (v=1,..., N).

41. Reordering, if necessary, the Q, we can assume that for non-negative N,
and N,:

Wi(Q)A ... AW1(Qy,)>0, wi(Q,)=0 (v>Ny);
Wo(On )N - AW5(Qn, 4n8,)>0,  Wy(0,)=0 (v>N,;+N,).

If N; =0 we can obviously drop W,(P) and reduce d. If N, >0 we can obviously
find a positive ¢, so small that, putting

W*(P):=Wy(P)+eW,(P),
we have

W*(P)>0, (P=QiA...AQp,+n,)-

But then we can replace both weight functions W, W, by W*(P) and reduce again
d by 1. Theorem 1V is proved.

42. We assign generally to c¢P, c#0, ceK, the weight of P:
W(cP):=W(P).

A polynomial in which all terms have the same weight is called isobaric. We assign
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to each isobaric polynomial F the weight of any of its terms,
W(F):=W(P) (PeF).

If a polynomial F is not isobaric it can be decomposed into isobaric aggregates of
terms,

F=¢o+¢;+ -+,

where each ¢, is isobaric and
W(9o)>W(p1)>-->W(py).

Then we define as W(F) for a not isobaric polynomial F the maximum weight of all of
its terms:

W(F):=W(¢o).

The above decomposition will be called simply the decomposition into isobaric ag-
gregates, where the single aggregates are always ordered according to decreasing
weights. The isobaric aggregate ¢, will then be called the leading aggregate of F.
Obviously

W(F)=W(po)>W(F—@,)-

§7. Convex bodies and polyhedrons

43. In our discussion we will have to work with certain convex polyhedrons and
remind first the reader of some properties of convex bodies and polyhedrons in the
m-dimensional space, which will be used later.

We usually denote the general point of the m-dimensional space R™ by 4 and its
coordinates by ay,..., .

A bounded and closed set of points, C, is called a convex body, if it has the con-
vexity property, that is if with two arbitrary points 4, A, of C all points of the recti-
linear segment {A4;, 4,) also belong to C. The dimension of C, dimC, is the smallest
integer d such that C lies in a linear d-dimensional manifold.

If d=0, C consists of one point only.

A direction n in the R™ is defined by m real numbers wy, ..., w,, wf +.+w2>0,
with the condition that 5 remains the same if wy,..., w,, are multiplied by the same
positive factor. If we multiply all w, with — 1 we obtain the opposite direction to n, —n.
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An (m—1)-dimensional plane normal to the direction 7 is the set of points A4 satis-
fying an equation

L,(4):= Z‘ wa,=d, (42)
=
where the real d can be arbitrarily chosen. If we define d by

d:=MaxL,(4),
AeC
the plane (42) is called the support plane of C in the direction n. It will be denoted by
E,. It is uniquely determined by the direction 5. A convex body is uniquely determined
by the set of all of its supporting planes.
The set of all points of E, common with C will be denoted by C,,

C,:=E,nC.
C, is again a convex body and, unless C,=C, we always have
dimC, < dimC.

The single sets C, will be called linear boundary components of C.
If dim C =d >0, the total boundary of C (from the m-dimensional ‘point of view’),
0C, is the union of all C,:

oc:=1C,.
n

If dim C, =0 the point C, will be called a summit of C.
A linear boundary component of a C, is always also a linear boundary com-
ponent of C.

44, Assume C to be a d-dimensional convex body. If there exists only a finite
number of different linear boundary components of C, C is called a convex polyhedron.
To an m-dimensional convex polyhedron C there always exists a finite set of different
directions #y,..., 7 such that we have

nv?

that each C, here has the dimension m—1 and that different C,, have in common at
the most a linear boundary component of a dimension <m—1. These n_ are uniquely
determined.
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If we have a finite set of points Ay, ..., Ay, then the ‘smallest’ convex polyhedron
which contains all A4, is the set of all points representable in the form

N
A=Y t,A, (A Aty20,t 4 +ity=1).
v=1

This polyhedron will be denoted by <{A4,,..., Ax>.
All summits of (4,,..., Ay belong to the set of the points {4, ..., Ay}. A convex
polyhedron has a finite number of summits S,,..., Sy and can be always formed as

<S19-'~9 SN)‘

45. If C’, C" are two convex bodies in R™ then, if A’ runs through all points of C’
and A" through all points of C”, the sum A’+ 4" runs through all points of a convex
body which is denoted by C’'+C".

If A'=(al, ..., oap), A"=(0, ..., a,) and n=(wy, ..., w,,) is a direction in R™ then we
have for the corresponding supporting planes to C’ and C”,

L,(A)—-d'<0, L,(4")—d"<0
and adding
L,(A4'+A4")—(d'+d")<0,

where the equality holds if and only if 4" and A" lie in the corresponding C,, C,. It
follows, for any direction #, that L,(4)=d’+d" is a supporting plane for C'+ C” and

(c'+c"),=C,+C,. (43)

It is easy to see that if both C’' and C” are polyhedrons, C'+ C” is also a poly-
hedron. Indeed, in this case there are only a finite number of different ones among the
terms C,+C, on the right in (43).

46. Consider in particular the case m=2, of a two-dimensional plane. Then convex
polyhedrons become convex polygons. If in particular a convex polygon is a segment
{Py, P,>, it has to be considered as consisting of two segments of equal length but
opposite directions,

—_—

P,P,UP,P,.

We provide now our convex two-dimensional polygons with the orientation, going
along the boundary in the positive sense with respect to the inside. Then it follows from
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the formula (43) that the oriented sides of the polygon C’'+ C” can only have the
directions occurring in the sides of C’ and of C”. We obtain then C’'+C”, decom-
posing C and C’ into the single oriented sides and reordering these sides in the sense
of increasing angle with a fixed direction.

It follows now, that if a triangle T is the sum of two convex polygons T;, T,, none
of which reduces to a single point, then both T, and 7, must be also triangles, similar
to T. Generally, adding two convexe polyhedrons C’, C”, all one dimensional linear
boundary components of C' and C"” pass, by parallel translation, unchanged into
c'+C".

§8. The baric polyhedron

47. The problem of characterizing all mappings A in the sense of §6 finds its
complete solution in the results of §6. However, in this way we do not obtain a total
view of all possible extreme aggregates in, a given polynomial. Such a view can be
obtained using the baric polyhedrons we are going to introduce now.

Assume an algebraic polynomial F given in the form F=)}_,c,P, where all c,
are #0 and € K, while the P, are distinct algebraic PP of the form (1). To any PP,
(1), corresponds a ‘representative point’, 4, of R™ with coordinates «,,..., «,. The
same point is, by definition, the representative point of cP with a constant ¢#0
from K. To n terms of F correspond in this way n different points 4,,..., 4,. If we
form with these points, in the sense of Sec. 44, the polyhedron,

CF :=<A1,..., An>,

this polyhedron will be called the baric polyhedron of the polynomial F.
If for a direction # the linear boundary component (Cy), contains the representa-
tive points of some terms cP of F we say that these terms ‘/ie on’ (Cy), and write this as

cPe(Cp),, Pe(Cy),.
48. We are now going to prove:
THEOREM V. Let F be an algebraic polynomial. To any mapping A in the sense
of §6 there exists a direction n such that F consists of all terms of F lying on (Cp)ye

If, for a given direction n, F* is the sum of all terms of F lying on (Cg),, there exists
a monobaric mapping A for which F*=F. More generally:
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THEOREM V*. Consider a finite number of algebraic polynomials F,, ..., Fy and
the corresponding baric polyhedrons Cp =: C, (v=1,..., N). Then to any mapping A
corresponds a direction n such that, for v running through 1,..., N, F, consists of all
terms of F, lying on (C,),.

Conversely, if we take an arbitrary direction n and denote, for v=1,..., N, the sum
of terms of the F, lying on (C,), by F¥, then there exists a monobaric mapping A for
which

F,=Ff (v=1,..,N).

49. Proof of Theorem V*. Assume a general mapping A as defined in §6. Then the
mapping F,— F, (v=1,..., N) can, by virtue of Theorem 1V, also be achieved by a
monobaric mapping and we can therefore assume A to be monobaric. Let the corre-
sponding weight function be

W(P):=woly+ -+ + Wy,

and denote by 7 the direction (wy,..., w,,), so that W(P)=L,(4). Then there exist N
constants g, such that each F, is characterized by

W(P)=g,(PeF,), W(P)<g,(PeF,—F) (v=1,..,N). (44)

This signifies, however, that for v=1,..., N each plane L,(4)— g,=0 represents a
supporting plane in the direction 5 to C,, and that in particular F, consists of all terms
of F, lying on (C,),.

Consider now an arbitrary direction 5 :=(wy,..., w,). We define then for each
v=1,..., N, F¥ as in Theorem V* and write the equation of the supporting plane in
the direction 7 to C, in the form L,(4)— g,=0. This signifies that introducing the
weight function W(P):=L,(A4) we have the relations

W(P)=g, (PeF¥), W(P)<g,(PeF,—F}) (v=1,..,N).

Comparing this with (44) we see that we have indeed F' = F* for the monobaric mapping
A defined by the weight function W(P). Theorem V* is proved.

50. We are going to prove now that to the product of polynomials corresponds the
sum of their baric polyhedrons:

THEOREM V1. If F, G are two algebraic polynomials in x,, ..., x,, we have

CFG = CF + CG . (45)
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The formulation of this theorem was conceived starting from Gustave Dumas’
theorems on the addition of Newton’s Diagrams in the case of the algebraic functions
of one variable and of polynomials with p-adic coefficients (Gustave Dumas, Sur les
fonctions & caractére algébraique dans le voisinage d’un point donné. Thése, Paris,
1904; Gustave Dumas, Sur quelques cas d’irréductibilité des polyndmes a coefficients
rationnels, J. Math. Pures Appl. (2) 2 (1906), S. 191-258.). The reader may be reminded
that for a polynomial f'(x, ) the Newton Diagram corresponding to x= oo is obtained
from the Baric Polygon of f, taking the upper part of this polygon between the support
lines parallel to the y-axis, after reflection in the x-axis.

Proof. Take a direction n and consider the weight function

W,(P):=L,(4),
where A is the representative point of PP, P. Let the supporting planes of C and Cgq

in the direction #n be

L —'_f;7=0, L —g"=0’

n

where f, and g, are real numbers. Then, as we have seen in Sec. 45, the support plane
of Cp+Cy is

L,—(/,+8,)=0. (46)
If we use now the monobaric mapping A defined by W,(P) we have for arbitrary
PP, P from F and Q from G:

=0 (PeF)
W"(P)_f"{<0 (pZF_F),

=0 (0€G)
Wa(Q)= &, { <0 (QeG-G).

Adding the corresponding relations it follows

0 (PeF, Qel)

W"(PQ)'(ﬁ'+gﬂ){:o (PeF—F)v(QeG-G)). “7

51. Take now an arbitrary PP, S, from FG. Then

1) if SeFG, S can be written as PQ with P from F and Q from G and it follows
from (47)

W,(S)—(f,+8,)=0 (SeFG);
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if on the other hand

2) SeFG—FG then S can be written as PQ, PeF, QeG, where either P lies in
F—For Q lies in G—G. It follows then from (47)

Wy(S)=(fy+8&)<0 (SeFG-FG).

Since the same relations must hold for the supporting plane of Cj in the direction
n we see that Crg and Cp+ C; have the same supporting plane (46) in every direction
and that these polyhedrons are therefore identical. Theorem V is proved.

52. Among all extreme aggregates of terms contained in a polynomial F we con-
sider in particular those aggregates which consist of one term only. They correspond
to the summits of Cy and will be called S terms of F.

Consider now a polynomial F, an S term, P*, of F and assume that Fis a product,

F=GH,

of two polynomials G, H. Consider further all weight functions W(P) such that P* is
the highest term of F with respect to W(P).

Then it is easy to see that there is exactly one S term of G and one S term of H
which are respectively the highest terms in G and H with respect to these weight func-
tions W(P).

Indeed, taking one of the weight functions W(P) and the corresponding mapping
A we have P*=GH so that G and A are both monomials. Further, there exists only
one couple of terms of G and H such that their product is exactly P*. Therefore, G
must be the same for all of our W(P) and the same holds for A.

The corresponding result helds obviously also for a product of more than two
polynomials. We can speak in this connection of the S terms of the factors correspond-
ing to an S term of the product.

CH-6926 Certenago/Montagnola, Ti.,
Schweiz (Switzerland)
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Research papers

k-1
On the functional equation f(x)= Y f((x +j)/k) over finite rings
j=0

L. J. Dickey, H.-H. Kairies, and H. S. Shank

§1. Introduction

Functional equations of the type
m-—1 Kt x +]
=0 k

have been considered by Artin, Kuwagaki, Anastassiadis, Dennler, Kairies and others.
Anastassiadis [1] has shown that under certain conditions the Bernoulli polynomials
B,, arise as unique solution of (1). Artin, [2], p. 34, used (1) to characterize the Gam-
ma function by means of the Gauss multiplication theorem.

In these cases the principal solution (in Norlund’s sense) of the difference equation

Jx+1)—f(x)=mxm"! )

has been characterized by means of its corresponding multiplication theorem (1) -
see [6], p. 21, 44, 53.

Dennler [3] proved that cotangent functions are the only meromorphic solutions
of (1) when m=0. In the context considered by all of the above writers, f was assumed
to have real or complex domain and codomain.

In this note it is our intention to discuss solutions of (1) wherem=0andf:Z, — z,
Z, being the ring of integers modulo n. As far as we are aware, no one else has con-
sidered solutions of (1) over algebraic structures other than the reals or the complexes.

§2. Theorem and proof

Let neN, n>2 and &, aeZ,\{0}. We define U and aU by

U={x€Z, |3peN: x=k?},
aU={x€Z, | ueU: x=au)}.

AMS (1970) Subject Classifications: Secondary 39A15, 39A40.
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Further define 1= A(n, k) to be the number of distinct sets of the form aU. We remark
that if n is a prime, then U is a subgroup of the multiplicative group of Z, and A(n, k)
is the index of U in this group. If (1, k)=1, the collection of sets {aU | a€Z,\{0}}
partitions the non-zero elements of Z, into exactly A sets, which we will call a,U,
a,U,...,a,U.

In the following we use the symbols i, j, k, m, n to represent simultaneously ele-
ments of Z and of Z,,.

THEOREM: Let (n, k)=(n, k—1)=1 and k <n. Then the functional equation

r0=3 (%), rzem, ()

has exactly A(n, k) independent solutions f; and the general solution of (3) is given by

An, k)

f= 3 wafi, wel,
i=1
A method for constructing the f; is presented in the proof.

Proof:: Since (n, k)=1 there is a unique multiplicative inverse for & in Z,. Hence
equation (3) is equivalent to the system

r0-7 )+f( )+ 7 )

s (s Qe (1)

................. (4)
f(n-1)= f( )+f(0)+ +f< 2)

k—1
f(0)= f(0)+f< )+ +f< )
By elementary row operations we obtain an equivalent system
flkx+1)—f(kx)=f(x+1)-f(x), 1<x<n-1
0 _k— 1 J (5)
-2/

For each solution f of (5) there exists a (dy, d,, ..., d;) €Z} such that

f(x+1)—f(x)=d; forall xeaq;U, 1<j<A
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Conversely choose any (dy, d,, ..., d;) eZ%; we show now that there is a unique func-
tion f satisfying
f(x+1)=f(x)=d;, xea;U

=27 (0) ;

The last equation of (6) can be put in the form

0- 2/ (})-z[r0+ % vemen-rom)]

and, since (n, k—1)=1, this gives

k=1 (j-k)/k

FO== 1 T8 (mt)=7 ().

Thus f(x), 1<x<n, is uniquely determined by (6).

It is obvious that in this procedure different elements of Z,f lead to different func-
tions f. Clearly f'is a solution of (3). Hence (3) has exactly n* solutions.

Now define f;:Z, - Z,, 1 <i <A to be the solution of (6) with d;=4,;, 1< j<A.

We prove that {f3, f3,..., f;} spans the solution set of (3): Let f be any solution
of (3), defined by (6) withd;=o;. Then h:=f—3}_| a;f; too is a solution of (3). Using
the definition of f; we get

h(x+1)—h(x)=0, 1<x<n—1,

hence h(x)=h(1) for all xeZ,. Since (k—1) h(1)=0, we have h(x)=0 for all xeZ,,

that is: f=Y1_, o f;.
Fmally we show that {f},f,...,f3} is independent. Suppose there exists (f;,

Ba,---» B,) €Z} such that 2 -1 Bif; is the zero function. Then
A

2 AL GHD=£(0]=0

for all xeZ,. Select any set a;U and let x; eq;U. By the definition of f; we have

[i(xi+1) = fi(x:) =0y
Thus

A A
b= X, Bidu= 3, BiLf; (et )= £ (x)]=0.
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§3. Example for n=9, k=5

In this case we get U={1,5,7,8,4,2}, a;U=1U and a,U=3U={3, 6}.A Hence
A=1(9, 5)=2.
System (6) becomes for f;, 1 <j<2:
d:

1 =fi(2)=fi(1)=13(6)— £;(5)=1;(8)— fi(7)
=£i(0)=£;(8)=1£(5)— £i(4)=1£;(3) — f(2),
8;2=11(4)—f(3)=1(T)— f5(6),

0 =/i(2)+fi(4)+1i(6) +1i(8)-

Representing f; in the form [f;(1), f;(2), ..., f;(9)] we finally obtain

oy

f,=[6,7,8,8,0,1,1,2,3] and f,=[8,8,8,0,0,0,1,1,1].

Thus the general solution of the functional equation
4 x+j X
f(x)= 'Zo f 5 ) S Lo—Zy
j=

is given by f=a,[6,7,8,8,0, 1, 1,2,3]+a,[8,8,8,0,0,0, 1, 1, 1].
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On an exponential-cosine operator-valued functional equation

A. B. Buche

1. Introduction

Let Z be a Banach space, and let Z(Z') denote the family of bounded linear operators
on Z. Let R* =[0, o0), and let I denote the identity operator on Z. A one-parameter
family of operators {7'(¢), teR*}, T:R" > (%), T(0)=1, is said to be a semigroup
of operators on Z, if

T(s+t)=T(s)T(t), s,teR", (1)

(cf. Hille and Phillips [4]). Let {C(t), teR*}, C:R* > B(Z'), C(0)=1, be a one-
parameter family of operators satisfying the functional equation

C(t+s)+C(t —s5)=2C(¢) C(s), s,teR", s<t. ()

Then the family {C(¢)} is called a regular cosine-operator (Kurepa [6], Sova [7]). In
this paper we investigate the properties of a family of operators, which is a generaliza-
tion of the above two types and reduces to them as particular cases under some condi-
tions. The generalization is called an exponential-cosine operator family, and is a one-
parameter family of operators

{S(t),teR*}, S:R*->B(X), S(0)=1,
such that
S(s+1)—28(s) S(t)={S(25)—2S%*(s)} S(t—s), s,teR",s<t. 3)

It can be easily verified that the operators satisfying eq. (1) or (2) also satisfy (3). In
this paper we will show that under natural conditions a solution of (3) can be obtained
as a product of an operator semigroup and a regular cosine operator.

Towards this objective we introduce two infinitesimal generators. The first in-
finitesimal generator is defined in the same way as for operator semigroups (cf. Hille
and Phillips [4]), and may be described as the operator-derivative of S(¢) of first order
with respect to ¢ at £ =0. The second infinitesimal generator, which is defined, may be
described as the operator-derivative of S(¢) of second order with respect to ¢ at £ =0.
It is felt that these two infinitesimal generators, if they exist, completely describe the
exponential-cosine operator family.

 AMS (719;(w)i‘Subject Classifications: Primary 39A40, 47D99.
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In Section 2, we have investigated the connections between boundedness and con-
tinuity in ¢ of the family {S(¢)}. In Section 3, we have discussed some properties of the
two infinitesimal generators and derived, under certain conditions, a second order
differential equation associated with the defining functional equation. In Section 4,
we obtain a solution of the defining functional equation in the uniform operator
topology. In Section 5, we have included some examples of the exponential-cosine
operator. One of these examples is related to the scalar case. For a detailed survey of
functional equations in the scalar case, see Aczél [1].

2. Boundedness and continuity properties

For operator semigroups {7'(¢)} satisfying eq. (1) it is well-known that under some
conditions there exist constants M, >0 and a such that || 7(¢)l| < M, -exp(at), teR™,
(cf. Hille and Phillips [4]). Similarly for the regular cosine operator functions {C(?)},
it has been established that there exist constants M, >0 and § such that [|C(¢)| <M,
exp(pt). We now obtain a similar property for ||S(z)].

PROPOSITION 1. Let the family {S(t), teR*}, S:R* > Z(Z), S(0)=1, satisfy
the eq. (3). If log|S(¢)||l is bounded on the interval (0, ty) for each t,>0, then
lim sup,, , t~ " log||S(2)] < co.

Proof. By hypothesis, there exists w >0, such that log ||S ()|l <wt, for 0<1z <t,.
Clearly then supg<,<s2 10glS(2t)| <wt,. Putting t=2s in the eq. (3), we get
S(35)=2S5(s) S(25s)+(S(25)—2S?(s)) S(s), and hence for 0<s<?,/2, we have
1S (3s) <2 exp (3wt,) +exp (3wty) +2 exp (3wty) < 5 exp (3w, ). By induction one can
establish that, for 0<s<1o/2, |S(ns)| <3""! exp(nwt,). (In fact assuming that the
above inequality holds for positive integers m—1 and m, we have from eq. (3)
for 0<s<1y/2,

IS (m+1)sll <1125 (s)- S (ms)l| + 1S (25)—=28*(s)]| 1S ((m~—1)s)I
<2exp(wty) 3™ exp(mwt,y)+(exp (2wty)
+2 exp(2wty)) 32 exp((m—1) wty)
<3™exp((m+1) wty)).

Now for any real £ >0, select a non-negative integer s, such that n < 2t/t, <n+1.
Then
IS (I <208 (t —nto/2)] 1S (nto/2)l
+1S (2t —nto)—28%(t —nto/2)Il 1S ((nte)2)— (t —nto/2))I
<2 exp(wty) 3"' exp(nwty)+3 exp(Rwt,) 3" 'exp(nwt,)
<3"*1 exp((n+2) wty).
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Hence log|S(¢t)|<(n+1)log3+(n+2) wty,t >ty Thus for n>2,
t " logl|S(2)l < (n+2) (log3 +wty)/t <4 (log3 +wty)/to,

from which it follows that lim sup,., ¢! -log||S(¢)]| <4 (log3 + wt,)/t,.

COROLLARY 1. Under the conditions of Proposition 1, there exist constants
M >0 and y such that | S(t)| <M exp(yt), for all teR™.

In the theory of operator semigroups the continuity with respect to the real par-
ameter ¢ in the uniform operator topology follows from that in the neighbourhood
of t =0. A similar property holds for the family {S(¢)} under discussion and is given
by the next proposition.

PROPOSITION 2. Let {S(t),teR"}, S:R* > AB(Z), S(0)=1, be a one-param-

eter family of operators satisfying (3). If
(i) S(¢) S(s)=S(s) S(¢), for all s,teR*,

(ii) there exists a >0, such that the family {S(t)} is continuous (from the right) for
0<t <9 in the uniform operator topology,
then the family {S(t)} is continuous at all t e R™ in the uniform operator topology.

Proof. First of all, we will prove that the continuity from the right at ¢ for 0<¢ <¢
implies continuity from the right at any ¢ >0.

Now the continuity from the right at 1 =0 implies the existence of a real ' >0 such
that {S(¢); 0<t<t'} is bounded. It would then follow from Proposition 1 that
{S(t), 0<t<t,} is uniformly bounded for any finite real #,>0. Let M >1 be such
that supo<,<, 1S (£)I <M.

Now from (3), we have from condition (i), by putting ¢ =2s and thens=1/3, S(t)=
=38(#/3) S(2¢/3)—2S3(#/3), and a similar expression for S(¢ +#4). Hence for >0,
S(t+h)—S@)=3{S((t +h)/3)— S(t/3)}-S(2t/3)+3S((¢ + h)/3) {S((2t +2h)/3) —
SQ[3)} = 2{S((t +B)J3) = S(UI3)} - {S*(t +h)/3)+ S((¢ + )J3) S(3)+S2(1]3)}.
We assume ¢, to be sufficiently larger than ¢ and larger than 2¢ for a fixed ¢ >0. Let
to>36/2. Then for 0<¢ <t +h<36/2, and for a given ¢>0, we can, in view of con-
dition (ii), choose ©>0, such that |S((t+h)/3)—S(t/3)l<e/12(M+M?), and
IS % ((2t +2h)[3)— S (2¢/3)| <&/12(M +M?), for 0<h <1< (35/2)—1, (the choice of <
may depend upon #/3 and 2¢/3, each of which is less than &). Then [|S(¢ +4)—S(¢))l
<(6M +6M?) g/12(M + M?*)<e. Thus the continuity in ¢ from the right of S(¢) for
0<t <¢ implies that for 0<¢ <34/2. Thus, by induction, {S(¢)} will be continuous
from the right at all # >0. Now from eq. (3),

S(t+h)—-2S(t)+S(t—h)
=2S(h) S(¢)+(S(2h) — 2S*(h)) S(t — h) —2S(t) + S(t— h)
=2(S(h)—1)S(t) +(SQh)—1)S(t—h)—-2(S(h)+1) (S(h)—1)S(t—h)
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Hence for 0<t—h<t<t+h<ty,, and h < 2t/3, we have
IS(t+h) —2S(t) + S(t— h)l < @M + M +2M + 2M?) ¢/12 (M +M?*)<g/2.

Hence lim,_o{S(t +h)—2S(¢)+S(t —h)}=0, in the uniform operator topology
for any finite z. Hence S(z)=1lim, o {S(t+h)+S(t—h)}/2, teR*; or

limo {S(t) = S(t— h)}
= —limyo {S(t+ h) — 25 (t) + S (t— h) —(S(t +h)— S(1))}
=limyo {S(t +h)— S (1)} =O0.

Hence {S(¢)} is also continuous from the left at any finite ¢ >0.

3. The infinitesimal generators and the associated differential equations

In the theory of operator semigroups, the concept of infinitesimal generator plays a
central role (Hille and Phillips [4]). A single infinitesimal generator fully characterizes
the operator semigroup, which is an exponential type of operator family. In case of
cosine operators (Kurepa [5], [6], and Sova [7]), the (first) infinitesimal generator as
defined for semigroups is identically zero, and it is the second generator which charac-
terizes the family. In what follows we assume that {S(¢)} is a uniformly continuous
in ¢t family of operators. We now define

Ay=(S(h)=I)h, h>0, (4)
B,=(S(2h)—2S(h)+I)/h*, h>0. (5)
The first infinitesimal generator A is defined by

h=0
and the second infinitesimal generator B is defined by

B=l1imB,, (7

h—0

whenever the respective limits on the right hand side of (6) and (7) exist in the uniform
operator topology.
Sova [7] defines the second generator by

B'=1im2(S (h)—=1)/H*. (8)

A connection between B and B’ is given by the following
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PROPOSITION 3. Let {S(t), teR*}, S:R* > B(X), S(0)=1, satisfy (3). If B’
as defined by (8) exists in the uniform operator topology, then so does B, and B=B'.

Proof. If B’ exists, then lim,_o(S(2h)—1)/h*=lim,o(S(h)—1)/(h*/4). Hence
B’ =lim;,_o[{(S(2h)—I)/h*} —2{(S (h)—1)/h*}] =1lim,_o (S (2h)—2S (k) +1)/h*>=B.

As already mentioned, for a regular cosine operator 4 =0. This fact is mentioned
by Sova [7], but may also be proved simply in the uniform operator topology, whether
or not the family {S(7)} satisfies (3).

PROPOSITION 4. Let {S(t), teR*}, S:R* > #(Z), S(0)=1, be a one-param-
eter family of operators, such that the linear operator B':% — %, as defined by (8)
exists in the uniform operator topology. Then A=0.

Proof. By hypothesis of the Proposition, given ¢>0, 36 >0, such that for 0 </ <4,
I(S(h)—=1)/K*|| <(IB'll +€)/2. Hence [(S(h)—1I)/hl<h(|B’| +¢)j2, for 0<h<3.
Letting & — 0, we have lim sup,_,o|(S(#)—1I)/A| =0. Hence 4 exists, and 4 =0.

PROBLEM. If 4=0 and B exists, then one might expect that B’ also exists, and
B'=B. We do not know any direct simple proof of this assertion, and it is deduced
indirectly in the course of this paper.

In the theory of operator semigroups and cosine operator functions, the investiga-
tion is facilitated by passage to differential and integral equations, from which, under
certain conditions, the solution of the original equation, in some operator topology,
can be deduced. Using similar methods, we construct, in this section, a second order
differential equation corresponding to (3), and use it to obtain a solution of (3) in the
uniform operator topology.

THEOREM 1. Let the family {S(t),teR"}, S:R* - B(Z), S(0)=1, be uniformly
continuous in t, and satisfy (3). Assume that the derivative d*S(t)/dt? exists in the uni-
form operator topology, for each t € R* . If the infinitesimal generators A and B as defined
by (6) and (7), exist in the uniform operator topology, then

(d*S(t)/dt*)=2A(dS(t)/dt)+(B—24%) S(t), teR*. 9)

Proof. Given a real h>0, it follows from (3), that {S(z+2h)—2S(¢t +h)+
+ S()}h* =2S(h) = I) (S(t+h) — S(2))/h* + {(S (2h) — 28 (h) +1)/h*}S (t) —
—2{(S(h)—1))*/h*} S(t), for all teR*. Taking limits as A— 0, on both sides, we
obtain (9) in view of definitions (6) and (7) and the properties of #(Z').

Note. The assumption about the existence of d2S(t)/dt? is necessary, since that,
in view of uniform continuity and hence boundedness in ¢, enables us to assert that the
value of dS(z)/dt? coincides with lim_o {S(t +2h)—2S (¢ +h)+S(¢)}/h>.

We now state a lemma.
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LEMMA. If A and B commute, so do any two of the operators A, B, T(t), C(t),
teR*. .

The proof of the lemma is easy and follows from the known representations of
operator semigroups and cosine operator functions in uniform operator topology
(Hille and Phillips [4], Kurepa [6], Sova [7]).

We now construct a solution of (9).

THEOREM 2. Let the family {S(t)} satisfy the hypotheses of Theorem 1. Let A
and B commute. Then (9) has the solution S(t)=T(t)-C(t), where {T(t):teR*},
T:R* - B(X), T(0)=1, is a uniformly continuous in t semigroup of operators with A
as the infinitesimal generator and {C(t), teR*}, C:R* - B(%), C(0)=1, is a uniform-
Ly continuous in t cosine operator function with B— A* as the second generator.

Proof. From the theory of operator semigroups and the cosine operator functions,
it follows that (dT'(t)/dt)=AT(t), and (d*C(t)/dt*)=(B—A*)C(t),1eR*. Consider
S(t)=T(t) C(¢). Then

{dS(¢)/dt}={dT(¢)/dt} C(t)+ T(t){dC(t)/dt}
=AT(t)C(t)+ T(t) {dC(t)/dt}.
Then
{d*S(t)/dt*} = A{dS(t)/dt} + AT (t)- {dC(t)/dt} +T(t) {d*C (t)/dt*}
= AT (t) C(t) +2AT(¢) {dC(t)/dt} + T(t) (B— A*) C(t)
=242T(t) C(t)+2AT(t) {dC(t)/dt} + T(t). (B—24%) C(¢).

Thus (9) is satisfied, as Band 7'(¢), teR", will commute since 4 and B commute.

4. Solution of the defining functional equation
In this section we shall obtain a unique solution of (3) and (9).

THEOREM 3. Let the family {S(t)} satisfy the hypotheses of Theorem 1. Further
let A and B commute. Then S(t)=T(t) C(t)=C(t) T(t) is a solution of (3), where
{T(2)}, {C(t)} are as given by Theorem 2.

Proof. Let S(¢t)=T(t)C(t), teR*. Then for O<s<t, S(s+¢)—2S(s)S(t)
= T(s+t) C(s+t) —2T(s) C(s) T(¢t) C(t) = T(s+t) C(s+t) — 2T(s) T(t) C(s)
x C(t), for the operators of families {7'(¢)} and {C(¢)} commute in view of the fact
that their generators 4 and B— 4% commute. Thus

S(s+1)—2S(s) S(t)=T(s+t){C(s+t)—2C(s)- C(2)}

=—T(s+t)C(t—s5)=—T(2s) T(t—s) C(t—s)
=—T(2s) S(t—s).
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Thus {T(¢) C(t)} satisfies the eq. (3), since
S(25)—252(s)= T(2s)- C(25)—2T*(s) C*(s)= T (2s) {C(25)—2C*(s)} = — T((2s).

We have so far established that the representation S(¢)=T'(¢). C(t) is a solution
of (3) as well as (9). Further, under certain conditions, (3)leads to (9). To complete
the cycle, we proceed to show that (9) leads to the representation S(¢)=T(¢) C(¢).

THEOREM 4. Let {S(t), teR"}, satisfy the hypotheses of Theorem 1. If A and B
commute, then S(t)=T(t) C(t), t e R*, where the families {T(t)}, {C(t)} are as given
by Theorem 3.

Proof. Let E(t)=T(t)C(t), teR". Now (dE(t)/dt)=AT(t) C(t)+T(t)x
x (dC(t)/dt), teR*. By a result of Sova [7], dC(t)/dt vanishes at ¢ =0. Thus
(dE(t)/dt) is A at t =0, since T(0)=C(0)=(E(0)=1). Thus we have

S(1)—E(f)= f f (@ (S (6)—E (0))/do?) do dx

- f f {24(dS (0)/do) +(B—242) § (o) —
00 24 (dE (0)/do)—(B—24%) E(0)} do dr,

since {E(t)} satisfies (9). Thus

S(t)—E(t)=2Af{S(r)—E(1:)} dr+(B—2A2)ff{S(a)—E(a)} dodz.  (10)

Hence repeating the process

s(t)—E(t)=zAszf (S(e0)—E (z,)} de, de+

t T

+24 (B—24%) f f f {S(1)—E (1)} dr, dr, di+

+(B—24%) j f {S(¢)—E(0)} do dt
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=(B+24%) j j {S(t;)—E ()} dry dr+

+2A(B—2A2)fff{S(rz)—-E(rz)} dt, dt, dt. (11)

Since {S ()} is uniformly continuous in 7 >0, and S(0)=1, there exists a #,>0, such
that || S(¢)| is bounded in [0, ¢,]. Thus by the Proposition 1, ||S(¢)| is bounded on
each finite interval of ¢. Fixing ¢ >0, we have || S ()| < My, for 0< 1< ¢, for some M, >0.
Similarly || 7(z) C(z)| <M,, for 0<t<¢, for some M,>0. Thus |[S(7)—E(7)|<
<M;+M,=M,say, 0< t<t. Further since 4 and B are bounded linear operators, 3
a constant K >0, such that |24| <K, |B—2A4?||<K. Then, from the relation (10),
IS(1)—E(¢)| <K Mt +K Mt*/2=KM (t +t*/2). Similarly, from the relation (11),
1S(t)—E(t)Il <(K*+K) Mt?)2+K>*M¢3/3).
By induction we find that, continuing the process # times after (10),

ISE)—E@)I <MK +1)" " (n+ 1))+ ("2 /(n+2)!)}. (12)
(If this formula were valid, then continuing the process once more,

ISE)—E@ISM{(K+1)""P K+(K+1)""1} "2/ (n+2)! +
+M(K+1)" 1 K" 3 (n+ 3N <S M (K +1)" 2 {(" 2 (n+2)1) + (" 3 /(n+3)!)}

which can be obtained from (12) by replacing n by n+1). Now since K>0 and 7 >0
are fixed real numbers, the right hand side of the inequality (12) can be made arbitrari-
ly close to zero by taking » sufficiently large. Hence |S(¢)— E(¢)|| =0, for all e R*.
This establishes the result. '

5. Examples of the exponential-cosine operator

We now consider a few examples to illustrate the general concept.
(i) Let Z be a Banach space, we define {S(7)} by

S(t)f=(exp(az)) (cosh(Bt))f, [feZ,teR",

where «, f§ are real or complex numbers. It is easy to check that S(0)=1, and (3) is
satisfied. Further, in this case 4 =«, and B= % +a?.

(ii) In [2], an example of a pair of operator-valued funct10nal equations was
discussed. In the notations of that paper, the family {S(z)} had the representation
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{V(t)+w(t)}/2, where {V(¢)} and {W(t)} are semigroups of operators of class
—(Cy), such that V(¢)- W(s)=W(s) V(t), for all 5, te R*. We find that in this case,

S(s+1)—28(s) S(t)=
={(V(s+)+W(s+2))2}=(V()+ W (1)) (V(s)+ W(s)))2=
=—=(V(E)W(s)+V(s) W@))2=—=W(s) V(s) (V(t—s)+W(t—s5))2=
=—W(s) V(s)S(t—s), s<t.

Further by putting t =5, we have S(25)—2S2(s)= — W (s) V(s). Thus (3) is satisfied.
If A, and 4, denote the (bounded) infinitesimal generators of the families {¥(¢)} and
{W(t)} respectively, then the first and second infinitesimal generators will be respec-
tively (4, +4,)/2 and (47 + 43)/2. The second infinitesimal generator of the associat-
ed regular cosine operator function will be given by ((4; — 4,)/2)%. (We note that this
generator has a square root, namely, (4; —4,)/2.)
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The genus of nearly complete graphs—case 6

Jonathan L. Gross

Abstract

The genus of a complete graph equals the least integer greater than or equal to (E—3V +6)/6,
where E and ¥V are the numbers of edges and vertices of the graph. This paper extends the class of
graphs known to have this property, concentrating on graphs whose number of vertices is congruent
to 6 modulo 12.

0. Introduction

The Ringel-Youngs equation states that the genus of a complete graph equals the
least integer greater than or equal to the number (E—3V +6)/6, where E and V are its
numbers of edges and faces, a number called the ‘Euler lower bound’ for reasons soon
explained. It follows that for every positive integer n, there is a nonvacuous (obviously
finite) set of numbers p such that the removal of any set of p or fewer than p edges from
the complete graph K, yields a connected graph whose genus equals its Euler lower
bound. The maximum of such numbers p is designated by NC (n).

A graph on n vertices whose edge-complement in the complete graph K, has
NC (n) or fewer edges is called nearly complete.

This paper summarizes what is known about the function NC (n) and derives the
inequality

NC (n)=8

for every integer n such that n=6 modulo 12 and n>42. A thorough reading of
J. W.T. Youngs [8] is prerequisite to the understanding of this derivation. Under-
standing [8] depends, in turn, on reading G. Ringel and Youngs [6] and Youngs [7].

The main purpose of presenting these results is to introduce the concept of nearly
complete graphs and to demonstrate the difficulty in calculating values of the function
NC (n).
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1. The Euler lower bound

For any imbedding of a graph K that triangulates a surface (a ‘triéngular
imbedding’), the number E of edges is related to the number F of faces by the equation

2E=13F.
Substituting the solution 2E/3 for F into the Euler polyhedral formula
V—E+F=2-2g(K)

where V' is the number of vertices and g (K') the genus of K leads to the equation

E-3V+6
g(K) ==

An arbitrary imbedding of any connected graph with no self-adjacencies or
multiple adjacencies satisfies the edge-face inequality

2E>3F.

Substituting the upper bound 2E/3 for F into the Euler formula establishes the
inequality

g(K)>[ 6

E -3V + 6"|
The partial brackets are used to signify the ceiling function of the quantity inside, that
is [x] is the least integer greater than or equal to x. The right-hand side of the inequality
is called the Euler lower bound for the genus of K.

For the complete graph K,, the inequality assumes the form

(n—-13) (n—4)"|.

g(K,) >|- o

The right-hand side of this latter inequality is designated I (n), because it is closely
related to the Heawood map-coloring number H (n).

The connectivity requirement mandates the special values NC (1)=0, NC (2)=0,
NC (3)=1, and NC (4)=2.

For n>35, an obvious lower bound on NC (n) is the maximum integer k such that

[(n—312(n—4)_1;‘|=1(n)
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which is denoted 2 (n). The following table gives the value of m () for each residue
class of n modulo 12.

residue 0 1 2 3 4 5 6 7 8 9 10 11
mm) 5 2 0 5 5 0 2 5 3 2 2 3

G. Ringel [5] obtained Case 5 of the Ringel-Youngs equation by constructing a
triangular imbedding of K ,,, s —K, and attaching a handle (see also Youngs [8]).
It follows that if n=5 modulo 12 and 7> 17, then NC (n) is at least as large as the
maximum integer k such that

[(L—ELL“‘)_’E‘}I(@A

thatis, NC (n)> 6. Because of the connectivity requirement, it is necessary to designate
NC (5)=3.

Using Kuratowski’s theorem, it is easy to establish that NC (6)=2 and NC (7)=5.
R. Duke and G. Haggard [2] have proved that certain 8-vertex, 24-edge graphs have
genus 2, from which it follows that NC (8)=3.

The remainder of this paper is concerned with NC (n) for n=6 modulo 12,
n>42. The values of NC (18) and NC (30) are presently unknown.

2. The special case n=42

Figure 1 illustrates the five 3-edge graphs. For convenience of reference, they are
labeled 4, B, C, D, and E. It is shown in this section that the complement in K, of
each of them has genus 7 (42)— 1, which implies that NC (42) is at least as large as the
maximum integer k such that

[(n—3iz(n_4)‘ﬂ=’(”)‘l

that is, NC (42)>38.

AN L]

Figure 1. The five 3-edge graphs.
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The graph imbedding derived, in accordance with the instructions in [8], from the
current graph in Figure 19 of Youngs [8], is a triangular imbedding of K,,— 4 in the
surface of genus I (42)—1.

If the edge (0, 1) is deleted from that imbedding of K,,— A and the edge (x, z) is
drawn as a diagonal of the resulting quadrilateral, then the triangular imbedding
obtained is of K,,— B in the surface of genus I (42)— 1. It is convenient to invent the
notation )
-0, 1)+(x, z)
for that modification.

An imbedding of K,,— C is obtained by applying the modification

—(2’ 4)+(x’ y)

to the above imbedding of K,, — B.
An imbedding of K,,— D is obtained from the above imbedding of K,,—B by
applying the modification sequence

—(1,38)+(x, »)
—(1, x)+( 2).

Obtaining an imbedding of K,,— E is a lot trickier. It is achieved by applying the
modification sequence
—(27,30)+(0, 1)
—(17, 18)+ (27, 30)
—(19, x)+(17,18)
to the imbedding of K, —B.

3. The general case n=6 modulo 12

Youngs [8] gives a current graph that yields a triangular imbedding of K5, ¢—4,
s=4. Imbeddings of the complements of graphs B, C, and D are obtained as in Section
2. An imbedding of K, ,,, ¢— E, s >4, is achieved only with the help of a new solution
to the chord problem (see Youngs [8]).

To imbed K,,,,¢— B triangularly (and, therefore, minimally) in the surface of
genus [ (12s+6)—1, apply the modification

—(1,95)+(x, 2)

to the imbedding of Kj,,.¢—A4.
Imbed K, ,,, ¢— C by the modification
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—(2,65+4)+(x, y)

on the imbedding of K,,,,c— B.
An imbedding of K;,;, ¢— D is created by the modification sequence

—(1,65+2)+(x,»)
_(1’ x)+(y’ Z)

on the imbedding of K, ,,, ¢ — B.

The construction of a triangular imbedding of K ,,, ¢—E is begun by replacing
two currents on the predetermined part of the Youngs solution [8] to Case 6 of the
Heawood problem. In Figure 23, replace currents 6s+ 1 and 4 by currents 6s— 5 and 1,
respectively. This moves current source y from the vertex below current source x over
to the immediate right of the current source z. The resulting zigzag problem is identical
to the one solved by Youngs, but the current redistribution does produce a new chord

problem as follows.
~ S T
Points P=0,1,...,25—2,...,35+1,...,4s

Chords r=1,..., 2s.

The key to the solution of this chord problem is found in the repetitive pattern shown
in Figure 2.

2s-2 2s

. )

O 4s
Figure 2. Main pattern in the solution to the revised chord problem.

Figure 3 shows the endplay for various residue classes of s modulo 4. Interpretation
of this endplay for small values of s is not difficult. The result is a new triangular
imbedding of K, ,,, ¢ —A4.

A triangular imbedding of K, ,,, ¢ — E is now obtained by applying the modification
sequence

—(0, 35+4)+(x, 2)

—(9, 125)+(0, 35+4)
—(6,9s+5)+(9, 125)
—(x, 35+10)+(6, 9s+5)

to the new triangular imbedding of K, ,,, ¢— 4.
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s=4¢t s+3 s+6
)
P S
)
s-1 s-4 s$-7
s=41t+l s+3 $+6
RV
)
s-| s-4 s-7

s-| s-4 s-7
8:=41+3 843 8+6
325
®
s-1 s-4 8-7

Jonathan L. Gross

s=0 MODULO 4

s=| MODULO 4

s =2 MODULO 4

s=3 MODULO 4

AEQ. MATH.
3s-3 3s
|
L
X
3s+3  3s+
3s-3 3s
|
X
3s+3 3stl
3s-3 3s
e
IG 2
X
3s+3 3s+l
3s-3 3s
|
4
X
3s+3 3s+f

Figure 3. Endplay according to residue class in the solution to the revised chord problem.

4. Current events

The theory of current graphs given by Ringel and Youngs [6] and by Youngs [7, 8]
is specialized to what is needed for the Heawood map-coloring problem.
J. L. Gross and S. R. Alpert have announced [3] and presented full details [4] of a
general theory, permitting arbitrarily many rotation circuits and vortices of arbitrary
order. Alpert and Gross [1] continue this theory.

Ringel has written us that his student M. Jungermann has constructed an imbedding
of K;,54,—K, in I (125+2)—1, for all integers s> 1. (This was previously unsolved
for even s, but known for odd s.) A brief computation like that for residue class 5 now
implies that for n=2 modulo 12 and n>14, NC (n)>6.
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Continuous replicative functions

Michael F. Yoder

1. Introduction

Knuth ([1], vol. 1, p. 42) proposes the problem of examining the class of functions

which satisfy
1= 1

'y f(x+lf>=a,.f(nX)+b.. (1)
Nk=0 n
for all positive integers n and all real x, a, and b, being independent of x.

A great many well-known functions satisfy an equation (1), such as the psi func-
tion, the Bernoulli polynomials, some trigonometric functions and others (see [1],
vol. 1, p. 42, problems 39, 40).

The only functions f of interest here shall be those which are continuous, or at
least piecewise continuous, partly for aesthetic reasons, but also because in such a
case integral formulae involving f can be derived ([2], [3]).

The problem considered here is that of finding all continuous functions f which
satisfy the functional equation (1) for some a,, b,; f is regarded as a complex-valued
function on the real line, and {a,}, {b,} are complex sequences.

In Section 2, ways of generating replicative functions from other replicative func-
tions are outlined, and relations among the {a,} and {b,} are determined. Next it is
assumed f is periodic!), and the Fourier series for f is determined in Section 3; in
Section 4 all aperiodic functions are found which are replicative. Finally, in Section 5
a very powerful method of generating replicative functions is exhibited.

2. Preliminary definitions and results

DEFINITION.2) A function f:R— C is (a,, b,)-replicative if for all integer n>1
and xeR, the equation (1) holds. If all b,=0, we may abbreviate this to say f'is a,-
replicative.

Remarks. (1) Either f=c is constant, whence f is (a,, c—ca,)-replicative for
arbitrary {a,}, or {a,}, {b,} are uniquely determined by f.

AMS (1970) Subject Classification: Primary 39A30.

1) ‘periodic’ is always taken to mean of period 1.

2) The normal definition of ‘replicative function’ is equivalent in my terminology to being
‘1/n-replicative’.
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(2) If fis (a,, b,)-replicative, f+c is (a,, b, +c— ca,)-replicative.

(3) Let f be (a,, b,)-replicative and g be (a,, b,)-replicative. Then ¢, f+c,g is
(a,, ¢1b,+c,b,)-replicative.

(4) If 1 is (a,, b,)-replicative, df/dx is na,-replicative; and if f is a,-replicative,
{3 f (u) du is (a,/n, b,)-replicative for some {b,,}.

(5) If fis (a,, b,)-replicative, then so is g (x)=f (x— [x]) where [x] is the greatest
integer less than or equal to x. To prove this note that both a,g(nx)+b, and
1/n Y26 g (x +k/n) are periodic with period 1/n, hence it suffices to prove (1) with f
replaced by g for 0<x<1/n. In such a case 0<nx<1 and 0<x+k/n<1 for all
0<k<n, so the equation is equivalent to

E"il f(x +§)=anf (nx)+b,

k=0

which is true by assumption.

In view of the first remark, f may be assumed to be nonconstant without loss of
generality.

THEOREM 1. If fis (a,, b,)-replicative (and nonconstant ), then a,,,=a,a,. Fur-
thermore at least one of the following two cases always holds:

1. a,=1 for all n and the b, satisfy b,,,=b,,+b,.

2. There exists ceC such that b,=c(a,—1); in this case f+c is a,replicative.

Proof. We have

k=0 mn
1 m-—1 n-—-1 ] k
==y - +-4+—
m k;o n jgo f (x n mn)
1 mt k
=) <a,,f(n<x+~—>)+b,,)
mg=o0 mn

a, ! k
=b,+ ;of<nx+a>

m g

1 mn—1 k
am”f(mnx)-i-bmn:*‘ Z f<x+>
mn

=b,+a,(a, f(mnx)+b,)
=a,a, f (mnx)+(a,b,+b,).
Since f'is not a constant, a,,,=a,4a, and b,,,=a,b,, +b,. By symmetry, b,,,=a,b,+b,;

hence
(an_l) bm=(am—1) bn'
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If some a,, 5 1, then

b
b,=—" (a,—1)=c(a,—1)
a,—1

for all n, as desired, and by remark (2) above f+c is a,-replicative. If all a,=1, then
bu.=a,b,,+b,=b,+b,.
3. The periodic solutions

In view of the fifth remark, any solution to (1) can be made into a periodic solution;
if the original f was continuous, the new g will also be continuous except perhaps for a
jump at every integer. Hence g has a Fourier expansion which converges (C, 1) at
every point to 3(g(x*)+g(x7)); this is always equal to g (x) except possibly when x
is an integer.

With this in mind, some definitions are in order. Let

2rimx

On(x)=e

1
freo=| flgdx
]

so that

<(pm’ (pn> = 511"! .
Let

P(ai 0= 3 ag,(x) (C1)
0 (ay; x)=n§1 a9 (x) (C1)

provided only that the series P, Q are Cesaro-summable. Also define % (a,) as the
vector space (over C) of all continuous a,-replicative functions, and #(a,) as the
subspace of % (a,) containing all functions of period 1.

We are now almost ready to investigate the consequences of restricting fto be
continuous; before proceeding, however, one minor point must be cleared up.

THEOREM 2. Let f be continuous and (1, b,)-replicative. Then b,=0 for all n.
Proof. We have

L (s @)

Nk=0



254 Michael F. Yoder AEQ. MATH.

Now f is Riemann integrable on [0, 1], hence the left side of (2) approaches
j(l, f (u) du as n— oo, therefore b, must approach a limit also. But if some b,,50, then
from Theorem 1

bmz =2bm, bma = 3bm, ceey bmk=kbm

which diverges as k — oo. Hence all b,=0.

Theorems 1 and 2 imply that without loss of generality we may assume all continu-
ous f to be a,-replicative if they are (a,, b,)-replicative.

THEOREM 3. Let {a,} be a totally multiplicative sequences). If fe?(«,), then
fis a linear combination of P(a,; x) and Q (a,; x) except possibly when all a,=1; in this
case 2 (1) is just the space of constant functions. Thus #(a,) has dimension <2. Con-
versely, any linear combination of P(a,; x) and Q(a,; x) which is continuous is a
a,-replicative.

Proof. We have

g oo k
;lkgof(x+;l—>=a,,f(nx),

In—l k * *

L3 () ot ) 02 0.

Rk=0 n

So, by periodicity,

Sy, ( +’f> ot ( +§)=an £ (nx) 0% (%)

Rrk=0
1

e s

jf(u) O () du =2 f FWetwde

S|

<¢mm f>"‘an <(pm’ f> .

In particular
@mfd=0,{¢1, [
p-mfr=a,{op_1, [
{Pos [ =a,{P0s [ >

so if any a,#1, {@q, f >=0. If all a,=1, we know (¢, /) is arbitrary since 1 is 1-

3) i.e. amp=apa, for all m, n>1.
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replicative. So if a,#1,
f()=L@1, f> P(ay; x)+{9_1, 1> Q(a; x).
For the converse, note
wl_ mil P(a,,; x+f)=1 ot i a, g2min(x+k/m)
m m

. 1m=-1 .
a, e2mnx (_ Z eka(n/m))

Il
Ms ibs 10Ms
{
3
=
o
[N
a
3
=
=

m k=0

£

2min(mx)

a,a, e

3
I
-

=a,P(a,; mx)

where all sums are (C, 1). Thus P(a,; x)is a,-replicative, and similarly Q (a,; x) s also,
whence the converse follows immediately.

Unfortunately, given a particular totally multiplicative sequence {a,}, there seems
to be no effective way of determining whether 2 (a,) is the null space, or of dimension
one, or of dimension two (obviously the latter is true if and only if P(a,; x) is continu-
ous, since Q(a,; x)=P(a,; —x)). However a few specialized results can be proven.

COROLLARY 3.1. If fe#(a,) is not a constant, then all of the following hold:

X la* <o, ®)

a,—»0 as n-o0,
la, /<1 forall n#1.

Note that the second follows from the first, and the third from the second upon
considering Theorem 1. To prove (3), take fe#(a,) and assume f=c, +¢,P(a,; x)
+¢,0(a,; x) where ¢, ¢, are not both zero. (In general ¢,=0, but if all a,=1it
might be nonzero). Then

S r=leol* +(lesl? +leal?) ; la,|* <o

since fis bounded on [0, 1]; as |¢;| +]|c,|* >0, the inequality (3) follows. This clearly
shows that (1) consists of just constant functions.
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COROLLARY 3.2. If
Y la) <o, then dimZ(a,)=2.
n=1

This is clear, since the sums Y y— 1 a,¢ 1, (x) will converge uniformly to P(a,; x) and

0Of(a,; x).

COROLLARY 3.3. Assume dimP(a,)=1 where a,#1. Then % (a,) consists en-
tirely of either even or odd functions, i.e. all elements are multiples of P (a,; x)+ Q (a,; x).

Proof. If dim# (a,)=1, all functions in #(a,) are multiples of some f(x)=
=c,P(a,; x)+c,0(a,; x). But f (—x)=c;0(a,; x)+c,P(a,; x) is also a,-replicative
and is continuous if fis, so we must have f(—x)=cf(x); then obviously ¢*=1, so
c¢=+1 and fis either even or odd, as desired.

COROLLARY 3.4. Let s=0g+it. Then

(@) if o< —1,dimZ (n*)=2

(b) if o= —1 and s#0, dimP (n°)=0

(c) if s=0, Z(n®) is the space of constant functions.

Proof. Part (a) follows directly from 3.2 above; and (b) and (c) taken together
merely state that for 6> — 1, neither R(n*; x)=4%(P(n°; x) +Q (n°; x)) nor S(n°; x)=
=1/2i(Pn’; x)— Q (r®; x)) is continuous (this follows from 3.3).

If 6> —1, Corollary 3.1 tells us that dim# (n°)=0, since ) |n°|*=c0. So we only
need consider the case —1 <6< —1. We have then, if R is continuous,

R(#’;0)= 3 n°(C,¢)
n=1
for every e>0 (see [4], Theorem 253, p. 360). But if ) »n* is summable (C, ¢), then
(see [4], Theorem 76, p. 131) ) n*~° is summable (C, 0), i.e. is convergent; if 6 # — 1

we may take e=(o +1)/2 to reach a contradiction. If 6= —1, then

n ' =R(n*;0)(C, 1)

aek:

but the left-hand sum is not summable (C, 1) (see [4], Sec. 6.11, p. 139).
So R is discontinuous; next suppose 0 <x<1 and consider

2sinnx Y, (nx)*sin2nnx=x° Y n’(cos(2n—1) nx—cos(2n+1) nx)
n=1 n=1

=x’(cosx—1)+x° i (n—1y—=n°) (1—cos(2n—1) nx).
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The latter series is absolutely convergent, since

0<1—cos(2n—1)nx=2sin*(n—1) nx<2nn?x?
and forlarge n
(n=1y—n*=—s(n—1)*"1+0(n*"3).
Hence

2sinnx ) (nx) sin2nnx=—sx* Y (n—%)*"'(1—cos2(n—1%) nx)+0(x**2)
n=1 n=2
and so

ind s ©x X
xSt1 n®sin2nnx=— x((n—=3) x> (1=cos(2n—1) nx)+0(x**2).
5 asinzmmx= = S 4) 0 (1mcos (2n-1) m)+0 ()

The right-hand series and the corresponding Riemann integral
f u* ™! (1—cos 2nu) du

0

are both absolutely convergent, therefore

x=0* n=1

d s
lim x**' Y »* sin27rnx=—;fus'l(l—COSZnu) du
n
0

Integrating by parts yields

[eo]

d s
lim x**' Y #°sin2nnx =f u® sin2nudu=(2n)"*"' I (1 +s5) cosg;éO.
x=0+ n=1

0

Therefore S behaves like a nonzero constant multiplied by x ™ *~! around 0, and so
is discontinuous at 0. This completes the proof of Corollary 3.4.

4. Aperiodic solutions

Let Af (x)=f (x+1)—f (x). Then subtracting

121 k
=Y fx+- )=a.f (nx)
k=0 n
from
ln—l

1 k
;kg,of(x'*‘;l"‘ )=anf(”x+1)

n
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we find

Af (x)=na, 4f (nx) )

Thus if any a,=0, then Af (x)=0 and f is periodic. We assume here that f is
aperiodic, so that Af is not identically zero. Then a,,#0, so that by replacing x in (5)
by mx/n and then using (5) with n replaced by m we obtain

Af(%x>= "“';Af(x). (6)

ma
We then derive

THEOREM 4. Assume 2 (a,)#%(a,). Then there is an s=o-+it such that
a,=n’ for all n; and also either 6<—1 or s=—1. Conversely, if o< —1, then
dim% (n*)=4, and dim% (n~*)=1 so that for these cases #(a,)# % (a,).

Proof. By (6), if fe#(a,)—%(a,) then a,#0 for all n; if we could also have
Af (1)=A4f (—1)=0 then (6) and continuity would imply 4f (x)=0 for all x. We may
therefore take 4f (1)#0 without loss of generality, so Af (x)#0 for x>0; hence there
exists a continuous function / on (0, 00) such that exp (h(x))=Af (x).

Equation (5) then implies

exp (h(x)—h(nx))=na,
h(x)—h(nx) =Inna,+2nm,i, m.eZ.

But 4 is continuous, so m, must be a constant (depending perhaps on n), and we may
therefore define
h(x)—h(nx)=4,Inn.

Then in particular, A (x)—h (mnk) = (h(x)—h(mx))+ (h(mx)—h(mnx))

Omnlnmn=4,Inm+4,Inn
and by induction
O Inm*=k 8,, Inm
Ok =0y

Let p>2; if p is a power of 2, then by the above argument 6,=4,. If not, then
Q=Inp/In2 isirrational, hence there are infinitely many continued fraction convergents
to Q; denote them by 4;/k;. Then

1

h; Inp
’___ <l

k; In2
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hence
In2 .
|h;In2—k;Inp|<—>0, i-owo,
so that
exp(h;In2—k;Inp)=2"p M1, i-w.
So
h(1)—h(2"p~4)-0
or

hié,In2—k;0,Inp—0.
If 6, =0, this implies 0,=0; otherwise

h 8,Inp

—=0.
k; 9,1In2

But h;/k; - Inp/In2, whence dp/d,=1 and 6,=4,.
So in either case 6,=46,; since all §,’s are the same we may let §,=1+s to derive

na,=exp (h(x)—h(nx))=n**
h(x)—h(nx) =(1+s)lnn
a,=n’.

ERER

Af (x)=x"5"1 Af (1) for x>0,

Now, by (6)

and by continuity

similarly
Af (x)=|x|"*"1 Af (=1) for x<O.

But Afis continuous, so we must have either 6 < —1 or s= —1 and Af (1)=4f (= 1);in
all other cases f would be periodic.

For the converse, note that for s=—1, f=x—1e%(n*)—2(n*); for 6 < —1, the
same is true of the functions e,, e, defined by

e (x)=0 (x<1)
de;(x)=x"°  (x>0)
e (x)=0 (x=0)

dey(x)=|x|"* (x<0).

It is easy to see that all aperiodic solutions are linear combinations of these with
periodic solutions, and the statement about the dimensionality of U (n®) is verified.



260 Michael F. Yoder AEQ. MATH.
5. Miscellaneous results

If the condition that f is continuous is replaced with the milder one that f have
only isolated discontinuities, significant deductions can still be made about the
character of f. Let #"(a,) be the space of a,-replicative functions with this property;
then we have

THEOREM 5. If fe¥ (a,), and all a,#0, then f has discontinuities only at in-
tegers. (This holds even when f is considered as defined over C).

Proof. By (1), if f has a discontinuity at x, it has one at one of x/n, x/n+1/n,
..., X[n+(n—1)/n. If x is not a real rational, this immediately implies that there are an
infinity of discontinuities within a closed disc of radius 1 +|x| about the origin upon
considering n=p,, p,,... where the p; are distinct primes. If x=p/q in lowest terms,
g#1, then one of

p p+q p+(g—1)g
2 2w 2

9 4 q

is a discontinuity with a larger denominator, so the same applies.

THEOREM 6. Let {a,} satisfy au,=a,a,. If Y ,-, a, e *™ " is summable (A)
to a finite limit except at isolated points, then it defines an a,-replicative function f,
provided that we allow f (x)= o0 at these points.

Proof. The proof is trivial and is left as an exercise to the reader. Note that if F
is any method of summation which satisfies

2 (ay+b,)=) a,+} b, (F)
,ann=czan (F)

if b,,,=a, (m a fixed positive integer), b,,,,,=0 for 0<k <m, then
Y b,=Y a, (F)
then Theorem 6 is true with A4 replaced by F.
COROLLARY 6.1. The functions
P(ns; x)= il ns e2m'nx (A)

Q(ns; x)= ;1 ns e—Zninx (A)
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which are defined (when x is not an integer) for all seC, are n’-replicative.
See [4], Sections 5.12, 6.10, and 6.11 for verification.
An interesting unresolved problem is to determine for which sequences {b,} there
exists an f, continuous except at the integers, such that fis (1, b,)-replicative. The ob-
vious possibility b,=Inn actually occurs; the psi function defined by

¥ (%)= — lim (m; ! —lnn)

=00 X+m
is (1, Inn)-replicative (see [5], p. 330).
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F-Expansions of rationals

M. S. Waterman

The ergodic theorem has been used to deduce results about the F-expansions of
almost all x in (0, 1)". A simple lemma from measure theory yields some corresponding
statements about the expansions of the rationals, a set of measure zero.

§1. Introduction

There have been several papers dealing with the ergodic properties of F-expansiosn
of n-dimensional reals ([3, 8, 10, 11]). For x€(0, 1)", we have

x=’3£rgF(al (x)+F (ay (x)+-++F (a,(x))...)).

Under certain conditions (see [11]) we have the shift T ergodic and there exists a
measure pu~ A, n-dimensional Lebesgue measure, such that T is ergodic and measure
preserving with respect to u. The individual ergodic theorem yields, for feL, (u),

%mil (T (x))~»| fdu for aa. x.

In particular, if f=1Iy,, where B(a)={x:[F~*(x)]=a}, then

m—1

— Y Ipy(T(x))»u(B(a)) for aa. x.

m i=o

Thus ergodic theory yields a statement concerning the distribution of digits in
the expansion of almost all x. Much information of a similar character can be
derived.

This paper is an attempt to utilize these ergodic theory results to deduce related re-
sults concerning the rationals, a set of Lebesgue measure zero. Our results are known
for one-dimensional continued fractions [5, p. 328] but do not appear to have been
deduced for the general case. In this connection, see [2] for a computational treatment
of one- and two-dimensional continued fractions.

AMS (1970) Subject Classifications: Primary 10K 10, 10F20, 10A30. Secondary 10F25, 28A70.
This research was partially supported by National Science Foundation Grant GP-28313#1.
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§2. One-dimensional F-expansions

Our proof is based on a measure theoretic lemma and follows Knuth [5]. We define
v(E) to be the cardinality of the set E. The lemma is proved for n-dimensions for use
in §3.

LEMMA 1. Let A,,={0/m, 1/m,..., (m—1)/m}". Let R and S be countable unions
of disjoint rectangles in [0,1]", RnS=¢, and A(RUS)=1. Then

v(4,,nR)

lim —~" = (R). (1)

m-— oo

Proof. Now R=J;2, R; and S=|J{2, S; where each R; and S; is of the form
E=>]_1 I, I, an interval. Now

,T:I1 (mA(I)-1)<v(En A,,,)<II:]1 (mA(I)+1). @)

Choose N such that 2(R)<A(Ry)+e and A(S)<(Sy)+e, where Ry=Ji~ R; and
Sy=UY, ;. Let Uy=(RUS)' U U;>y(R;US;), where the prime ' denotes comple-
ment. Define 7,,= v (Ry N 4,)s $n= "V (Sy N Ap), un="(Uy N 4,,). Note that r,, +5,, + 1y
=m". We easily have

T S
—< =1-——. 3
n mn mn ( )
From (2) we can show
N2" r
A(Ry)—— <
m m
and obtain

N2 N2
AR)—e—— < " <AR) + .
m m m

Thus, from (3) we obtain lim,., r,/m"=lim ., (r,+u4,)/m"=A(R) and (1)
therefore holds. ‘

For our discussion of F-expansions we refer to [10] and [11]. In this section we
deal one-dimensional F-expansions. In n-dimensions some measure theoretic diffi-
culties arise. Let F be a function defining such an F-expansion. Then we define
T(x)=F'(x)—[F*(x)] and a,(x)=[F " (T*~*(x))] where x&(0, 1). Define

B,=B(ky, k;, ..., k,)={x€(0, 1): a;(x)=k;, i=1,..., v}.
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Condition (A) or (B) of Rényi [7] assumes F either decreasing or increasing and in
these cases each B, is an interval. The addition of another condition allows Rényi
to show there exists a measure p such that u is invariant with respect to T and
C 'A(E)<u(E)<CA(E) for all measurable sets E and some constant C depending
on F only. This, of course, implies /4 and u are equivalent. Finally let C;(a,,..., a,)=
=Ubs,,...bx B(b1>--- bys ay,..., @) which is the set of all points xe(0, 1) such that
@iy (X)=ay,..., @ (X)=ay.

THEOREM 1. Suppose F satisfies condition (A) or (B). Then

lim v(Ci(ay,...,a)N A,,)

m=— oo m

=4(Cc(ay, ..., a))=A(T " *B(ay, ..., a))). 4)

Proof. Let R=Cy(ay, ..., a;) and S equal the union of all B, , not included in R.
Both R and S are unions of disjoint intervals, RN S=¢. Also U= {x:a;(x) is undefined
for some 1 <i<k +1} is countable and therefore A (U)=0. The requirements of Lemma
1 are satisfied and (4) follows.

COROLLARY 1. If F satisfies condition (A) or (B) and the assumptions of
Kuzmin’s Theorem [10], then

lim tim (GG @A) o a)). (5)

k=0 m— oo m

where  is the invariant measure associated with the transformation T(x)=F ~!(x)
S[F W)

Proof. Theorem 2 of [10] states A(T~*B(ay,..., a))) - u(B(ay, ..., a;)).

The previous results relate the number of xe 4,, with digits a; ., (x)=a;i=1,...,1,

to the measure of B(ay,..., @;). The next Theorem considers the average value of a
function of the digits. It is possible to prove a more general theorem here.

THEOREM 2. Let F be as in Corollary 1. Suppose g is real valued and Y.lg(a)l
x |A1(B(a))|<co where the summation is over all values a such that a=a;(x) for some
x€(0, 1): Then

lim — 3 g(am(X))=§g(a)/1(T“"B(a)), (6)

1
m-o0o M Xe€Am

where the first summation in (6) is over xe A,, such that a,, , (x) is defined.
Proof. Let u be the invariant measure associated with 7. From C “'A(E)<u(E)
SCA(E) and p(T*E)=p(E), we have the following equivalent inequalities:
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Yalg (@)l u(B(a))<oo, Yalg(a)l 2(B(a))<oo, and },lg(a)l (T~ *(B(a))< co. Since

LS gan()=Ye(@ GO,

1 xeAm

the result follows from Theorem 1.

COROLLARY 2. If F satisfies the assumptions of Corollary 1 and Theorem 2,
then

im lim 5 g0 ()= £(a) 1 (B(a),

k=0 m>o M xedpy

Proof. Since A(T *(B(a)))<CA(B(a)) by an argument of Rényi [7] and
Y g(a) CA(B(a))< 0, the Bounded Convergence Theorem gives us

lim 3 g (a) A(T™*(B(a)))= 2 g(a) lim (T (B(a))= 2 g(a) n(B(a)).

k= a

The last equality is by Theorem 2 of [10].
As an application take F such that all a;>1 and g(m)=log(m) satisfies the
hypothesis of Theorem 2. Then

Lt
and

m—1 ; 1/m
lim lim ( IT st (i)> = lim exp {J log (a4 (x)) du (x)}
k=0 m—>o \i=0 m k-

—exp { j togay (x) dﬂ(x)}.

Since T(x)=1/x—[1/x] on (0, 1) is the shift for the digits of continued fractions,
our results hold for continued fraction expansions of rationals. Theorem 1 and
Corollary 1 are known in the case of continued fractions [5, p. 328]. Another example
is g-adic expansions where g is an integer greater than 1 and T(x)=gx—[¢gx].

§3. The Jacobi-Perron algorithm

The Jacobi-Perron algorithm can be used to expand almost all xe(0, 1)". The F
is defined by

F(x)=F (X1, Xg9 .0y %) = (1 X1 ..,""-1).

X, X, Xn
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Associated with this F we have

s (e 22D
o (1E}-E)

a,(x)=a,(T""'(x)).

and

The convergence result is

x=1im F (a; (x)+F (---+F (a,(x))...)).
v— o0
F. Schweiger has examined measure theoretic properties of the Jacobi-Perron
algorithm. Among other results, he has shown there exists 1~ 4 such that u(T'E)=
=u(E) for all measurable Ec (0, 1)". In [8, 10, 11] there are references and a dis-
cussion of these and related topics.

The problem here is to establish results for the Jacobi-Perron algorithm corre-
sponding to those of §2. Certain measure theoretic difficulties exist in the proof of
those results for general F-expansions in n-dimensions but they can be overcome in
certain cases. The notation of the next theorem is the n-dimensional analogue of that
in §2.

THEOREM 3. Let F and T be the transformations associated with the Jacobi-
Perron algorithm. Then

lim V(Ck (ala ; al) r\Am)
m= o m

=).(T"*B(ay, ..., @)). (7)

Proof. Cy(ay,...,a))=Us,, .. b. B(by, bs,..., by, ay,..., @) where the By, are
convex polytopes in (0, 1)". It is this property of the Jacobi-Perron algorithm which
allows us to write R and S defined below as countable unions of rectangles and apply
Lemma 1. We delete U = {x:a;(x) is undefined for some i=1,..., k +7}. W is a count-
able set of hyperplanes and hence A (1[)=0. Thus R=C,(ay, ..., @;) can be obtained as
a countable union of rectangles as can S equal the union of all B, , not included in R.
Equation (2) follows from Lemma I.

The remaining Corollaries and Theorem of §2 hold for the Jacobi-Perron algorithm.
[10] contains the results necessary in these proofs. For example, we have

A(T™'B(a))=u(B(a))+0(c"),

where ¢=(1—1/(n+1)")"/". See [4].). Thus Corollary 1 follows.
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§4. Remarks

These methods can easily be extended to include f-expansions [7] and Cantor’s
series [9]. Most ergodic properties of expansions of reals will yield a corresponding
statement about the expansion of k/m, 0<k <m.

The invariant measure u for the Jacobi-Perron algorithm is unknown if n>1.
Corollary 1 would provide a foundation for a numerical approximation of this in-
variant measure. See [2] for a related treatment.

Consider any sequence b,,— + o0. Then if we define A4,,= {0/b,,, 1/b,, ..., [6]/bwm}"™
Lemma 1 holds. Therefore, Theorems 1 and 3 are valid for expansions of numbers
like k/¥/m, and, in this sense, algebraic numbers have expansions such that the digit
a occurs with frequency p(B(a)). Thus, Corollary 1 holds for any such sequence. We
are indebted to Professor T.S. Pitcher for this observation. See [1, p. 9] for some
remarks of Professor Leon Bernstein regarding these matters.

Questions related to our work have been treated in a thesis by David B. Preston
[6]- He notes that Theorem 2 holds in the case of 1-dimensional continued fractions
with g(a; (x),..., a,(x))= 0\ -1 (x)/Qy (x). Finally we wish to gratefully acknowledge
several useful comments and suggestions by the referees.
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Sur les solutions d’une équation fonctionnelle, IT

Zenon Moszner

Dans la premiere partie de cette note [4], dans laquelle on a resous un probléme
de M. S. Gotab [2], fut donnée une classe des solutions ¢ de I’équation fonctionnelle

dlo(x, x,¥), z, u] =¢ (2, xz, xu+yz) )

ou¢:I'x Cx C— I, I désigne un ensemble arbitraire et C forme un corps commutatif
par rapport aux opérations +, -. A présent nous donnerons la solution générale de
[*équation (1). Cette solution nous donne dans le cas général la réponse négative au
probléme qui fut posé a la fin de la premiére partie de cette note.

On voit facilement que si la fonction ¢ («, x, y) est une solution de I’équation (1)
dans ce cas la fonction ¢ (o, 1, y) est une solution de 1’équation de translation

¢Lo(x 1, y), L ul=¢(x 1, y+u) @

sur 'ensemble I' x {1} x C. 1l en résulte d’aprés p. ex. [3] que la fonction ¢ (a, 1, y)
doit étre de la forme

¢ (@ 1, y)=g: " [g(g(2)+7] ®)
pour g («)el, ou
a) g(ax): I > T est une solution de I’équation

2(g(®)=g(«) Q)
telle qu’il existe une décomposition de I’ensemble g(I')

g(r)=kL¥(Fk

en ensembles I', non-vides, disjoints et tels que pour chaque k de K il existe un sous-
groupe C, du groupe additif C dont ’indice est égal & la puissance de I',

CIC=T,,

b) g est une bijection arbitraire de I'; & 'ensemble C/C, des classes d’équivalence
(& gauche ou a droit) du groupe C par rapport au groupe C,.

AMS (1970) Subject Classification: Primary 39A30.

Regu le 5.9.1973, et dans une forme altérée, le 14.3.1974
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On peut construire la solution générale de I’équation (1) de la maniére suivante:

o Je( 1,k (x)+y/x) pour x#0 et g(a)el,,
qb(oc,x,y)—{f(a) pour x=0, ‘ )

1) ¢(a, 1,y) est une solution de I’équation (2), de la forme (3), pour laquelle
’ensemble E des fibres transitives (c’est-a-dire des ensembles I', dans a)), qui n’ont
qu’un point, n’est pas vide,

2) Iy et g(«) ont le sens comme dans a),

3) h, pour chaque k de K, est un homomorphisme de (C\{0}, -) dans (C/C;, +),
ol + ici désigne I’addition das C/C, induit par ’addition dans C, c’est-a-dire

i (x+y) =hy (x) +hi () (6)
et /i, (x) est une fonction de I'ensemble C\{0} a 'ensemble C telle que
h(x)eh(x)  (AxeC\{0}), (™)
4) f:T>E ®)
est une fonction pour laquelle
f@)=a sur f(I),
f(f@)=f(x) (Axel) ©)
f(@(1,)=f(a) (Aael, AyeC), (10)

c’est-a-dire

et pour laquelle

c’est-a-dire qui est stable sur ’'ensemble g~ (I',) pour chaque & de K.

Remarquons que la valeur de ¢ («, 1, 2, (x)+»/x) ne dépend pas du choix de la
fonction £, (x) remplissant (7). En effet si nous avons w, et w, de 4, (x), dans ce cas
wy +¥/x et w, +y/x appartiennent a la méme classe d’équivalence de C par rapport au
C, et il résulte de (3) que

d’(“, 19 Lt +y/x)=¢(oz, la wy +y/x) (11)

Vérifions que la fonction donnée par la formule (5) satisfait a I ’équation (1).
Si x -z#0 nous avons d’apres (5)

¢[o (@ x, ), 2z, ul = [$ (@, 1, b (x) +/x), 2, u]
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pour g(x)el’;,. Nous avons d’aprés (3):

¢ (@ 1, h(x) +y/x)e T,
et de 1a d’aprés (4):

g (e, 1, by (x)+y/x)) = (2, 1, b (x)+y/x)eTy.
Il en résulte d’apres (5), (2), (6) et (11) que

d’ [¢ (0(, 1’ hk(x) +y/x)’ z, u] =¢ [¢(“’ 1’ i’k(x) +y/x)! 1, ﬁk(z)+u/z]
=¢[a, 1, by (x)+h (2) +y/x +ulz]
=¢[a, 1, b (xz)+y/x+u/z]
=¢ (o, xz, xu+zy)

puisque

b (x) 4y (2) €y (%) + i (2) = i (x-2)
et
by (x-2)eh, (x z).
Si x=0, z#0 nous avons d’apres (5) et (8) et pour g(f(«))el
¢ [¢(a, 0, y)’ Z, u]=¢ [f(a)’ 1, ﬁk(z)+u/z] =f(0£)=¢(d, 0, yZ).

Si x#0, z=0 nous avons d’aprés (5) et (10):
¢Lo (2 x, ), 0, u]l =f [ (&, 1, b (x) +y/x)]=1 () = ¢ (&, 0, xu).
Si enfin x=y=0 nous avons d’aprés (5) et (9):
¢[¢(x 0,), 0, u] =/ (f (0))=f(2)=¢(x, 0, 0).

A présent nous allons démontrer que chaque solution de I’équation (1) peut étre
donnée par la formule (5).

Remarquons d’abord que pour la solution de ’équation (1) les formules (2) et (3)
ont lieu. De 1a d’aprés (1) et (3) nous avons pour x#0:

¢ (2, x, )= [¢(x 1, y/x), x, 0]=¢[g; ' {g(g(2)) +y/x}, x, 0].

En prenant en considération la notation

Y (W, x)ii——f-gk {¢ [gk—l (W), x, 0]}, (12)



272 Zenon Moszner
définie sur (C/C,) x C, nous recevons:

¢ (o x, y)=g¢ ' {¥i[ge (e (@) +/x, x]}.
D’aprés (1) et (12) on peut facilement vérifier que

Vi {Vi L8 (g (@) +y/x, x]+u/z, 2} =, [gi (g (@) +¥/x +ulz, xz]

pour x-z#0. En posant ici z=1, A (x)=y,(C;, x) et prenant y telle que

gi(g (@) +y/x=C,
nous recevons

Vi LA (x) +u, 1= [C+u, x].
D’aprés (3) et (12) nous avons

lpk(W’ 1)= w.
etdela (16) nous donne:
h(x)+u=y, [C.+u, x].

Il en résulte d’aprés (14) et (15) que

h(x-z)=h(x)+h(2),

donc la fonction £, satisfait & la condition 3).
D’apreés (13), (17) et (3) nous avons

¢ (o, x, y) =g * [he(x)+&i(g () +y/x]
=g '[g(g (@) +h (x) +y/x]= (. 1, by (x) +y/x),

AEQ. MATH.

(13)

(14)

(15)
(16)

(17)

(18)

ol / (x) désigne une fonction arbitraire remplissant (7), donc pour x#0 la fonction
¢ a la forme de la premiére formule dans (5). Le raisonnement & partir de la

formule (12) jusqu’ici est une modification des concidérations dans la note [1].

En posant x=0 et z=1 dans (1) nous recevons

qS[qS(oc,O,y), 1,u]=¢(oc,0,y) (Ay,ueC).

(19)
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Il en résulte d’aprés (1) et (5) que pour z#0

¢(%,0,y2)=¢[¢(2, 0, 5),z, u] =¢ [¢ (2, 0, ¥), 1, & (2) +u/z]
=¢(aa Oa y)'

La fonction ¢ (, 0, y) ne dépend pas de la variable y et en posant
S (@)% (e 0,0)
¢ (2, 0, p)=f (o),

nous recevons

C’est-a-dire la deuxiéme partie de la formule (5).
D’apreés (19) nous avons que
f(@): T ->E.

En posant x=y=u=z=0 dans (1) nous recevons (9) et en posant x=1, u=z=0
dans (1) nous avons (10, c’est-a-dire la fonction f(«) satisfait aux conditions 4),
c.q.f.d.
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A fundamental functional equation for vector lattices

Ih-ching Hsu

1. Introduction

The theory of vector lattices was initiated by F. Riesz, L. Kantorovich, and
H. Freudenthal in the late thirties; because of its importance for functional analysis,
it was rapidly developed by other authors [1]. Basically, a vector lattice is a real
vector space with a lattice structure in which vector translations and scalar multi-
plication by positive reals are isotone in the sense that they preserve the partial order.
More precisely, a real vector space V with a partial order < is called an ordered
vector space if x<y implies x +z<y+z and Ax< 1y for all zin V and all scalars 1> 0.
An ordered vector space ¥ is a vector lattice (or linear lattice or lattice ordered vector
space or Riesz space) if sup(x, y) and inf(x, y) exist for each pair (x, y) in V'x V.
(for definitions see, for example, [2])

Since a semi-lattice can be defined as a set with a binary operator which is idem-
potent, commutative and associative, it should not be too surprising to characterize
vector lattices by certain functional equations, whose solutions carry the properties
of idempotence, commutativity, associativity, homogeneity etc. The purpose of this
note is to introduce one such fundamental functional equation. It might be worth
noting that a detailed treatment of different types of functional equations relating to
generalized commutativity, associativity, homogeneity etc. can be found in [3].

2. Main Results

LEMMA. Let V be a real vector space. A function F:VxV—V satisfies
F(y,y)=y,yinV, and the functional equation

u+F[x, A\F(y, z)]=F[u+Ay, F(u+2z, u+x)] (A)
SJorall x,y,zand uin V and all scalars }.>0 if and only if F has the following properties:
Commutativity:
F(y,z)=F(z,y) forall y,z (1)
Associativity:
F[x,F(y,z)]=F[F(x,y),z] forall x,y, and z )

AMS (1970) Subject Classifications: Primary 46A40, 39A40. Secondary 06A65, 39A30.
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Positive Homogeneity:

AF(y,2)=F(Ay, 4z) forall y,z andall >0 )
Additive Homogeneity:
u+F(x,y)=F(u+x,u+y) forall x,y and u. 4)

Proof. Necessity: Let F be a solution to Eq. (A) with the idempotence property
F(y,y)=y,forallyin V.
From Eq. (A), with u replaced by the zero vector, A by 1, it follows that

Flx, F(y,2)]=F[y, F(z x)] (i)
forall x, yand zin V.

The commutativity of F can be proved through the idempotence of F and a series
of applications of (i). The details follow

F(y,z)=F[F(y, z), F(y, 2)]
=F{y, F[z, F(y,2)]}, by (i),
=F[y, F(»,2)], by (i)
=F(z,y), by (i),

where F[z, F(y, z)]=F[y, F(z, z)]=F(y, z), by (i) and the idempotence;
Fly, F(y,z)]=F|[z, F(y, y)]=F(z, y) by (i) and the idempotence.
From (i) and the commutativity it follows that

F[x’ F(z,y)]=F[x3 F(y’ Z)]=F[Z, F(x,y)]=F[F(x, y)s Z]‘

Thus the associativity of F is proved.
With u replaced by the zero vector, x by Az, Eq. (A) yields

FlAz, AF(y, z)|=F[Ay, F(Az, Az)|=F(4y, iz). (ii)

To establish the positive homogeneity of F, in Eq. (A) replace u by the zero vector,
x by AF(y, z), and obtain

AF(y, 2)=F[AF(, 2), 2F(y, 2)]
=F{y, F[Az, AF (y, z)]}
=F[y, F(Ay, 2z)], by (ii)
=F(Jz, Ay), by (i) and the idempotence.
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To prove that F is also additive homogeneous, in Eq. (A) replace A by 1, z by y, and
obtain
u+F(x,y)=u+F[x, F(y, y)]
=F[u+y, Fu+y,u+x)]
=F(u+x,u+y), by (i) and the idempotence.

Sufficiency: A function F:V x V' — V with properties (1) through (4) clearly satis-
fies Eq. (A). From properties (3) and (4) it follows that F(2y, 2y)=2F(y, y) and
y+F(y,y)=F(2y,2y). Thus F(y, y)=y for each y in V. This completes the proof
of the lemma.

THEOREM. If V is a real vector space and there exists a function F:V x V>V
satisfying F(x, x)=x and u+F[x, AF(y, z)]=F[u+Ay, F(u+Az, u+x)] for all x, y, z
and uin V and all scalars >0, then V is a vector lattice relative to the partial ordering
defined by setting x <y whenever F(x, y)=y. Conversely, if V is a vector lattice, then
the function F:V x V—V defined by F(x, y)=sup{x, y} satisfies F(x, x)=x and the
above mentioned functional equation.

Proof. Set x< y whenever F(x, y)=y. We prove that this defines a partial ordering
on V. Since F(x, x)=x, hence x<x. If x< y and y<x, then, by property (1) in the
lemma, y=F(x, y)=F(y, x)=x. To show that x< y and y <z implies x<z, consider
F(x, z). Since F(x,y)=y and F(y,z)=z, hence, by property (2) in the lemma,
F(x,z)=F[x, F(y, z)]=F[F(x, y), zZ]=F(y, z)=z, and therefore, x<z.

The vector space V is a (partially) ordered vector space, because x < y immediately
implies x +u< y+u and Ax< 2y for all u in ¥ and all scalars >0, by properties (3)
and (4) in the lemma.

We prove now that F(x, y) is the supremum of x and y. From F[F(x, y), y]
=F[x, F(y,y)]=F(x, ) it follows that F(x, y)>y. Similarly F(x,y)>x. Hence
F(x, y) is an upper bound of x and y. Let z be another upper bound, so F(x, z)=z
and F(y, z)=z. ThenF[z, F(x,y)]=F[F(x,z), y]=F(z, y) =z, therefore, 2> F(x, ).
This shows that F(x, y) is the least upper bound of x and y, i.e., F(x, y)=sup {x, y}.
It is well-known (cf. [, p. 293]) and easy to prove that now inf{x, y} exists and is
equal to —sup {—x, —y}.

Conversely, suppose that V' is a vector space. It is well-known [1, p. 8, p. 348] that
the function F:V x V-V defined by F(x, y)=sup {x, y} satisfies the properties (1)
through (4) stated in the lemma, by which F in turn satisfies F(x, x)=x and the equa-
tion u+F[x, AF(y, z)]=F[u+2y, F(u+2z, u+x)].
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An asymptotic formula in the theory of compositions

Z. Star

1. Introduction

A composition of n into s parts is a partition in which the order of the parts is taken
into account. For example, the compositions of 4 into two partsare (3, 1).(1, 3), (2, 2).

In this paper, compositions in which no part is to exceed r will be discussed. In the
above example there is only one composition of 4 into two parts with no part exceed-
ing 2, namely (2, 2). Let c(n, 5, r) be the number of compositions of 7 into s parts
with no part exceeding r, and let c(s, r) be the maximum of ¢(n, s, r) over n for fixed
sand r.

In [6] it is shown that a fairly wide class of occupancies may be enumerated by
means of the c(n, s, r) and Basu [2] has obtained the result that

© _1 n+r
for a f satisfying
11 2\
—<-<|—] <I1.
2 B \r+t

The estimate obtained in this paper is for the asymptotic distribution of ¢(n, s, r)
about its peak c(s, r), as s approaches infinity, and is uniform in n, s, and r. The
method used is similar to that of Szekeres [7].

The following two results, both trivially obtainable from the generating function
f@)=(@+22+--+2")*=31" | c(n, s, r)z", will be needed in the proof of Theorem 1.
It will be assumed throughout the paper that r>2. These results are:

c(n, s, r)y=c(n—1,s,r)+c(n—1,s—1,r)—c(n—r—1,s—1,r) (1)
and
c(n, s,ry=c(s(r +1)—n, s, r). ()

For further details of compositions the reader is referred to the work of P. A. Mac-

Mahon ([3], [4], [5])-
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THEOREM 1. For given s>2 and r, the solution ny, of the equation c(ny, s, r)=
(s, r), is no=s(r +1)/2if s(r +1) is even, and ny=(s(r +1)—1)/2 if s(r +1) is odd.

Proof. For fixed r, let k(n, s)=c(n, s, r). The case when r +1 is even will be proven.
For odd r +1 the proof is similar.

We begin by proving that if 2<s<n<s(r +1)/2 then

k(n, s)—k(n—1, s)>0. (3)
The proof is by induction on s. When s=2 the left hand side of (3) is
k(n,2)—k(n—1,2)=k(n—1,1)—k(n—r—1,1)

by (1). But k(n—1, 1) is greater than zero since n—1>1, and k(n—r —1, 1) equals
zero since n< r +1. Hence (3) is true when s=2. Now suppose that (3) is true for any
given s greater than 1.

By (1) once more,

k(n,s+1)—=k(n—1,s+1)=k(n—1,s)—k(n—r—1,s)

and the right hand side is greater than zero provided s<n—1<s(r +1)/2, that is,
provided s+1<n<s(r +1)/2+1.

Consider now, values of n such that s(r +1)/2+2<n<(s+1)(r +1)/2. Put n=
=s(r+1)/2+n,, where 2<n, <(r +1)/2.

Then

1 +1
k(n,s+1)—k(n—1, s+1)=l§<s(2+ )+n1—1, s)—k(s(r2 )+n1—r—1, s)

1 1
=k <s(r2+ )-—nl +1,s>—k<s(r2+ )+n1——r—1, s>

by (2).
That is,
k(n,s+1)—k(n—1, s+1)=k(N, s)—k(N —q, 5)
where '
+1
N=s(r2 )-—n1+1 and g=r+2-2n,.

But s<N<s(r +1)/2 and ¢>0 so that, by the induction hypothesis, the right hand
side is greater than zero. This proves (3). The theorem now follows immediately from

(3) by using (2).
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2. The asymptotic formula

In this section, the ¢, will denote positive constants independent of n, r or s, but
possibly dependent upon some preassigned constant such as the number of terms in a
given expansion. The same will be true for the positive constant L, where g(x)=
=0(/(x)) is used throughout in the sense that |g(x)| <L|h(x)|. In deriving the asym-
ptotic formula, in view of (2) it suffices to consider only those values of n which do
not exceed s(r +1)/2. By applying Cauchy’s theorem to the generating function f(z)
and choosing a path which passes near to a suitable saddle point in the direction of
steepest descent, we obtain

THEOREM 2. For given K and B let n=4%(s—k) (r +1) where 0<k<Ks®, and
0< B <. Then uniformly in n, r and s as s approaches infinity

1 6 \Y2 s hyo(r)+hy ((r)K?
, S, — - Pp— 1_|_ 4 i
¢(ms,7) \/n (1'2—1> s”z[ K}

(m—1)

Py (r) K m
j;() 1,1( ) +0<1+k2 )]'

+ e 4

Sm— 1 sm

where h, ;(r) is a rational function of r of 0(1). In particular,

=3(r*+1) =3(r+1)
hy 0= S 7 3 Iy L1
20(r*—1) ’ 2(r-1)
= (13r*—134r% +13) _9(r*+1)
20T 207 -1 P UTR o)
_9(I‘+l)2
228 (r—1)%

Proof. By Cauchy’s theorem ¢(n, s, r)=(2ni)™! [, f(z)z™ "' dz where U is the
unit circle with centre 0, and f(z) is the generating function. Hence

.ro )
sin — sin
2

1 2
70 g\
2 2

c(n,s, r)=2’; f exp, s log +3ik(r+1)0 :do.
T
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Dissect the integral into

rois-n n -n
Ii+I1,—-1;,= f + - f , Wwhere max(f,})<u<iy,
—r-lsT8  pmismr —p-igmp

then using the expansion ([1], formula 4.3.71, p. 75)

sinz\ & (—=1)2*B,,-z*
log<ﬁ>= (V22 e,
z

t=1 2t'(2t) !

where B,, is the 2-th Bernoulli number, we have

(4)

r-is-n . m—1 t
I.= e—s(r2—1)02/24 {1+ k2q
1 t=Zl q;o pq,t
—r-1ig—n
+y (r, s, 0)+0(s"‘r4"'94"'+k2'”r2'”02"')} do (%)
where t—q

In2(t+1
Poe= Y, a,,80°D,  g=1,0,..,1—1,
=1

pt,t=at92t’ a,, l,t=0(r2t+2’)’ at=0(r2t)

and y is an odd function of 6.
But

o0
x2(t+l) e~x2 dx:O(s(l/z—u) (2t+21-1) exp(_sl—zu))’
st/2-p !
and ¢t +1=0,1,2,...,(¢ >1), so that
0

q

r-ls-s

a ’I,ts102(t+l)e—s(r2-l)92/24 d0=0 (s~ 2HE=D+(u=D I+ (1= exp (—s'"2)).

We may therefore replace the limits of integration in (5) by — oo and oo respectively,

provided s>¢,. This, together with the result

13....2n—1) |n

o]
x2" e dx =
= > 7 ,
2n+ lan a
0
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gives the general form of the theorem, the contribution of 1/s* coming from the term
Ya=0k*p, . in (5).
In particular, for m=3,

[ *—1)s0*
[.= —s(r2=1)0%/24 ) { _ (r K2 1)? 92
1 J e 72880 +3k%(r+1)

N —(7‘6—1)st96+(r4—1)2 s20° K2 (r+1)*(r*—1) s6°
181440 16588800 23040
k4 1 4 64
n (r;;4) :|+0(S3r12012+k6r606)} do,

provided s>c,, giving the result explicitly to the second remainder term.
It remains to prove that the contributions of I, and I, are negligible.

ro 0
L3 smi n- n/r n
[,]< exp | s{ log —log e d0=< '[ +| |=1,+15.
r"Ys'F - - r-is=r  n/r
2 2 !
n/r
r © (_l)t BZ,'(th—l)Bh
I,= do 6
= [ e(s3 2 (20)! ©)
by (4), /
< e—s(r2—1)01/24 do’

since all the coefficients in (6) are negative.

Hence
n/r
I,< f e (P DSITHIZA 10 -0 (exp (— cy5t T 24).
r-is-u
Also,

1- 0
Is= exp(s % log STcosr —logry | do,
1—cosf
z/r
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and

1—cosrf
max | ————- ), n/r<l<=n
1—cos@

occurs at §=mn/r, so that using the same expansion as in (6),

T

15<f e TN g 0 (exp (—c4s)).

/r

Hence, both |I,| and |I;] are O(exp (—css' ~2#)).
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On extending solutions of a functional equation

Karol Baron

Adopting the usual conventions, by 25, where & and S are arbitrary sets, we
shall denote the set of all functions from S into 2 with the Tychonoff topology in
the case where 2" is a topological space and by A, g, the diagonal of a family of
transformations {g,: se S} (cf. [1], Ch. 2, §3).

The aim of this paper is to prove the following theorems (cf. [2], th. 3).

THEOREM 1. Let X, Y, S and UcX be arbitrary sets, h:Xx Y5> Y and
fs:X— X, seS, arbitrary functions. If f,(U) < U for every se S and
(i) for every xeX there exists a positive integer k such that for every sy,..., ;€S

fooofu(x)el,

then for every solution ¢o:U— Y of the functional equation
@ (x)="h(x, A @£ (x) (1)
sSe
there exists exactly one solution ¢: X — Y of this equation such that

P(x)=¢o(x), xel. (2)

Moreover, if X and Y are topological spaces, U is open, h, fo S€S, and @, are
continuous functions and

(ii) for every open set V, Uc VX, N{f, ' (V): seS} is open,
then @ is also continuous.

THEOREM 2. Let X be a closed and convex subset of a finite dimensional Banach
space normed by |- ||, Uc X an open set (in X) and Y, S and h: X x YS — Y,fi: X—- X,
S€S, arbitrary sets and functions, respectively. If f,(U)<U for every seS and
{ f;: s€S} is a locally equicontinuous Sfamily such that

sup {|| fi(x)—¢ll: seS}<|x—¢&|, xeX,x#E (3)

holds for a certain {e U then for every solution ¢o:U— Y of equation (1) there exists
a solution ¢ : X —Y of this equation such that condition (2) is fulfilled.

AMS (1970) Subject Classification: Primary 39A15.
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Moreover, if Y is a topological space and h is a continuous function, then for every
continuous solution ¢o:U— Y of the equation (1) there exists a continuous solution
©:X - Y of this equation such that (2) holds.

Proof of Theorem 1. We define the sequence of sets

Up=U, Ur1=N{fs"(U):seS}, k=0,1,2,.... 4
As a direct consequence of the above definition we get
f‘s(Uk'l'l)CUk’ SGS, k=0, l, 2,.... (5)

Then, because f,(U,)<= U, for every seS, it follows that Uyc f; ' (U,) for every
seS and in view of (4), U, < U;. By induction

UcUy, k=0,1,2,.... (6)
Moreover,
X=U{U:k=0,1,2,...} 7

in a point of hypothesis (i).
Now, we define the sequence of functions {¢,}, ¢,:U,— Y, k=0, 1,2,..., by the
formula

Prr1 (x)=h(x, Asq’k°fs(x))’ xeUgy, k=0,1,2,..., (8)

where ¢o: Uy — Y is the given solution of (1). It follows from property (5) that this
definition is correct. We shall show that

Ore1(X)=0(x), xeU, k=0,1,2,.... 9)

This relation is obvious for k=0, since @, is a solution of equation (1) in U,. Sup-
posing (9) for a k>0 and applying (6), (8) and (5), we have for every xe U, ,,

Pr+2 (x)=h(x, As Prr1o i (x))=h(x, As @0 f5 (X)) =Pps1 (%),
thus (9) is valid for every k=0, 1, 2,.... Recalling (6), (7) and (9) we may define
the function ¢:X— Y by
o(x)=¢r(x), xeU,k=0,1,2,.... (10)

It is clear that ¢ fulfils equation (1) in X and that it yields the unique extension of
@, to a solution of (1) in all X.
Now, if X and Y are topological spaces, U is open, 4, f,, s€ S, and ¢, are continuous
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functions and hypothesis (ii) is satisfied, then the sets U,, k=0, 1, 2, ..., defined by
(4) are open sets in view of (6) and ¢,: U, — Y, k=0, 1,2, ..., given by the formula (8)
are continuous functions. Therefore, the function ¢:X — Y defined by (10) is con-
tinuous. Thus Theorem 1 is proved.

Remarks. (1) The hypothesis (i) in Theorem 1 cannot be replaced by

(iii) for every xeX there exists a positive integer k such that for every s€S,
fi(x)eU)

Indeed, let ¢,:(—1, 1) > R be a solution of the equation

e(x)=to[fi(x)]+20[f(x)]+x,

where
1 for x=-1 0 for x=-1
fix)=¢sx for —l<x<1, fo(x)=1]sx for —l<x<l, se(0, 1),
0 for x=1 —1 for x=1

(the existence of such a solution follows for example from Theorem 2.10 of mono-
graph [3]) and suppose that this solution may be extended to a solution
@:[—1, 1] R of this equation. Then ¢ (0)=0 and

o(~D)=dp (1)1
o(1)=20(~1)+1.

Thus, although hypothesis (iii) is satisfied the solution ¢, cannot be extended to a
solution ¢:[—1,1]>R.
(2) The hypothesis
(iv) X is a metric space with a metric ¢, U= X is an open set and f,: X — X, se€S,
Sulfils
e(fi(x), ©)<v(e(x, &), xeX,seS, (11)

with a e U and a continuous and increasing function y: [0, 0) - [0, o) such that

y(t)<t, te(0, ), (12)
guarantees that (i) is satisfied.
In fact, for every xe X, k=0, 1, 2,..., and s, ..., 5, from S

o(foyoro £ (%), E)<y* (e (x, £)),

as well as
lim y*(£)=0, te[0, )
k= o0

(cf. [3], Th. 0.4).

1) Here, and in remark 2 below, the upper indexes denote functional iterates.



288 Karol Baron

(3) The hypothesis (ii) is fulfilled whenever

(v) fs, €S, are continuous self-mappings of a topological space X, U= X and for
every open set V, UcV X, the family {X\f, ' (V):s€S} is locally finite (cf. [1],
p. 193, Th. 1).

(4) The condition

IAx)=El<y(Ix=&ll),  xeX, ses,

where y: [0, c0) - [0, o0) fulfils (12), implies (3).

Proof of Theorem 2. Let V be a maximal (in the inclusion sense) open set such
that U=V X, f,(V)cV for every seS and there exists a solution ¢: ¥ — Y (being
continuous whenever Y is a topological space and ¢, is a continuous function) of
equation (1) which satisfies (2) (we use here the Kuratowski-Zorn Lemma). It is
enough to show that V'=X. Suppose for the indirect proof that V# X and let us
choose an x€dV N dB, where B is the greatest open ball centered at ¢ and contained
in V. In view of the condition (3) and the local equicontinuity of {f;: seS} there
exists a neighbourhood W of % such that f,(W)<B for every se€S. Thus we may
define the function @: V U W — Y by

P(x)=h(x, A @ f,(x)), xeVUW.
seS
This function fulfils equation (1) and the condition

P(xX)=0o(x), xeU

(and, of course, it is a continuous function whenever 4, f, for seS, and ¢ are con-
tinuous functions). This ends the proof.

I would like to thank Professor M. Kuczma for several helpful discussions
concerning the results contained in this paper.
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Modular Hadamard matrices and related designs, I1I

O. Marrero

Abstract

This paper continues the investigations presented in two previous papers on the same subject by
the author and A. T. Butson. Modular Hadamard matrices having n odd and A=—1 (mod#n) are
studied for a few values of the parameters # and A. Also, some results are obtained for the two related
combinatorial designs. These results include: a discussion on the known techniques for constructing
pseudo (v, k, 1)-designs; the fact that the existence of one of the two related designs always implies the
existence of the other; and some information about the column sunis of the incidence matrix of each
of the two ‘maximal’ cases of (m, v, ky, Ay, k,, A2, f, A3)-designs.

1. Introduction

Modular Hadamard matrices (or H (n,4) matrices) and their related combinatorial
designs were introduced in [1]. (The reader is referred to [1] and [2] for all the
pertinent definitions and notation not explained in the present paper.) A part of the
work presented in [1] and [2] was motivated by the study of some classes of modular
Hadamard matrices having the parameter » odd and h=1 (modn). If & is odd and
h and n are relatively prime, then a necessary condition for the existence of an H (n, h)
matrix is that # be odd and / be a quadratic residue of n [1, Theorem 2.2]. This work
was initiated with the study of some classes of H(n, ) matrices having n odd and
h=—1 (modn). When h>1 is odd, then —1 is not a quadratic residue of n if n=3
(mod4). These observations yield a nonexistence result, part of Theorem 2.3. The
modular Hadamard matrices studied here lead to the same types of combinatorial
designs as did the classes of matrices studied in [1] and [2].

Section 3 is concerned with pseudo (v, k, 1)-designs. There are exactly four known
techniques for constructing a pseudo (v, &, 1)-design from a given (v', k', A')-design.
For each one of these four techniques, there is a known necessary and sufficient
condition which ensures that a given pseudo (v, k, A)-design can be obtained from
some (v', k', 1’)-design by one of the aforementioned techniques; this information is
collected for summary in Theorem 3.1. Also, it is shown that the transpose of the
incidence matrix of a primary pseudo (v, k, 4)-design leads to (after an appropriate
permutation of its rows) the incidence matrix of an (m', v, kY, AL, ky, A5, f7, AY)-
design. Finally, it is observed that neither of the two necessary conditions in Theorem
3.1in [1] is sufficient for the existence of a pseudo (v, k, 1)-design.

AMS (1970) Subject Classifications: Primary 05B20, 05B30. Secondary 05B05, 62K 10.
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Section 4 is concerned with the column sums of the incidence matrices of the two
possible ‘maximal’ cases of (m, v, ky, Ay, k3, 4,, f, A3)-designs, m=v and m=v+1
[cf. 1, Theorem 4.1]. The theorems presented in this section do not definitively
determine the structure of these incidence matrices; however, it is hoped that these
results will be helpful in the future study of such matrices.

The paper is concluded with a few simple examples of classes of (m, v, ky, 4, k,
A2, f, A3)-designs.

2. H(n, h) matrices having 7= —1 (mod~) and n odd

An h by h matrix H with entries +1 is called a modular Hadamard matrix if the
inner product of each two distinct row vectors is a multiple of a fixed (positive)
integer n; that is, each two distinct row vectors are ‘orthogonal modulo ».” Such a
matrix will be referred to as an H(n, h) matrix, with parameters n and 4. With this
notation, an ordinary Hadamard matrix of order 4 will be an H (0, /) matrix.

An H(n, h) matrix is said to be in ‘standard form’ provided that its first row
consists entirely of +1’s. Let H, be a (1, —1)-matrix having the first row consisting
of all +1’s. For each i, j=2,..., & let k; denote the number of +1’s in the ith row,
and let 1;; denote the number of times the ith and jth rows have a +1 in the same
column, i #j. Then necessary and sufficient conditions that H be an H (n, h) matrix are

2k;=h (modn) 2.1)
4A;;=h (modn)
[1, Theorem 2.1].
In this section H(4q+1, &) matrices are studied for /=2n—1 and 3n—1. When
n=4q+3, H(4q +3, h) matrices are shown not to exist for =an—1 and a even; also,
H(4q +3, h) matrices are studied for h=3n—1.

THEOREM 2.1. If an H(4q +1,8q +1) matrix exists, then 32¢* +16q +1 must be a
square. Moreover, if 32q +16q + 1= D?, then the existence of any one of the following
one is equivalent to the existence of any of the other two: an H(4q +1, 8q + 1) matrix, a
pseudo (8q +1, 2q, q)-design, and an (8q+1, (8¢ +1—D)/2, (8¢ +1—D)/2—q)-design.

Let H be an H(n, h) matrix in standard form and havingn=4g+1 and h=2n—1

=8¢ +1. In this case, the only solution (having 2k;<#) of the Congruences (2.1) is
k;=2q and A;;=q. Hence, if 4 is the matrix obtained from H by removing the first
row of all +1’s and changing each —1 to 0, then

AAT=ql+qJ, and
AJgg+1,1=247 54,1
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Thus, 4 is the incidence matrix of a pseudo (8¢ +1, 2g, g)-design. The result is now a
consequence of Theorems 3.3 and 3.4 in [1].

THEOREM 2.2. The existence of an H(4q +1, 12q +2) matrix is equivalent to the
existence of an (m', v', k', Ay, kb, A3, [, Ay)-design, where m'=12q+1, v'=12q+2,
ki=2q, \i=q, khy=6q+1, Ay=59+1, f'=f (where f is some fixed integer, 0< f
<12g+1), and 25=q.

Let H be an H(n,h) matrix in standard form and having n=4g+1 and
h=3n—1=12¢q +2. Following the same procedure as in the proof of Theorem 2.1,
one is led to a (0, 1)-matrix B of the form

B— [Mf,12q+2 ]

N12q+1—f,12q+2

where
MMT qJ
T__

BB _[qJ NNT]’

MMT=ql+qJ,
6g+1 Hi2 v Hi12g41-f
NNT = Hay 6g +1 e M212g41-5

Hi2g+1-1,1 Mi2g+1-f,2 - 6g +1

each y,, is either g or 5¢+1, and f'is a fixed integer, 0< f<12g+1. Then, using an
argument similar to that which precedes Theorem 3.4 in [2], one may show that
each y,, may be assumed to be 5¢ +1 (without loss of generality).

THEOREM 2.3. If n=4q+3, h=an—1, and a is even, then H(n, h) matrices
cannot exist (because h is not a quadratic residue of n). The only H(4q+3, 129 +8)
matrices are the H(0, 12q+8) matrices (because the only pertinent solution of the
Congruences (2.1) is k;=6q +4 and 1,;=3q +2).

It is well known that a necessary condition for the existence of an H (0, #) matrix
(an ordinary Hadamard matrix of order /) having 4> 3 is that /=4t for some positive
integer ¢; moreover, it is a well known conjecture, unresolved to this writing, that
this condition is also sufficient. If >3, then a necessary condition for the existence
of an H(n, h) matrix is that =4t (modn) for some integer ¢ [1, Theorem 2.2]; but
this condition is not sufficient (because, for example, H (3, 11) matrices do not exist
[2, Theorem 2.10]):

COROLLARY 2.1. The condition that h=4t (modn) for some integer t is not
sufficient to ensure the existence of an H (n, h) matrix having h>=3.
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3. Pseudo (v, k, 1)-designs

Let X={xy,..., x,}, and let X;,..., X,_; be subsets of X. The subsets Xi,...,
X,_, are said to form a pseudo (v, k, A)-design if each X; (1<j<v—1) has k elements;
each two distinct X;, X; (1<i, j<v—1) intersect in A elements; and 0<i<k<v—1.

A pseudo (v, k, A)-design is called primary or nonprimary according to whether
its parameters satisfy vA#k?* or vA=k?, respectively. A nonprimary pseudo (v, k, A)-
design is equivalent to a (v', k', A")-design [1, Theorem 3.5].

The incidence matrix of a pseudo (v, k, A)-design can be obtained from the
incidence matrix A4 of a given (v', k', A")-design by any one of the following four
techniques:

1. a column of +1’s is adjoined to 4;

2. a column of 0’s is adjoined to 4;

3. a row is discarded from 4; or

4. a row is discarded from 4 and then the k¥’ columns of 4 whichhad a +1 in the
discarded row are complemented (0’s and +1’s are interchanged in these columns).

These four are the only known techniques for the construction of pseudo (v, k, 1)
designs. For each one of the above techniques there is an arithmetical condition on
the parameters v, k, A which is necessary and sufficient for a given primary pseudo
(v, k, A)-design to be obtained from a (v', k’, ')-design by one of the aforementioned
techniques. This is the content of:

THEOREM 3.1. The incidence matrix of a given primary pseudo (v, k, A)-design
can be obtained from the incidence matrix of some (v', k', A')-design by the ith
(1<i<4) technique above if and only if the parameters v, k, A satisfy the respective ith
condition below:

1. (k=1)(k=2)=(-1)(v-2);

2. k(k—1)=A(v-2);

3. k(k—1)=A(v—1); 0r

4. k=2A.

This theorem is essentially proven in [1]; for i=1, it is Theorem 3.8 in [1]; for
i=3, it is the result in [1, Theorem 3.9]; for i=4, it is a consequence of [1, Theorem
3.4]; and for i=2, it follows from the fact that the parameters v, &k, A of a pseudo
(v, k, A)-design satisfy k (k—1)=A(v—2) if and only if the parameters o, k, 1 of the
complementary design (its incidence matrix is obtained from the incidence matrix of
the given design by replacing each 0 by +1 and each +1 by 0) satisfy (k—1) (k—2)=
A-1)(5-2).

A primary pseudo (v, k, 1)-design is said to be of type i (1<i<4) if its parameters
satisfy the ith equation in the statement of Theorem 3.1. It is not difficult to construct
examples of pseudo (v, &, 1)-designs of each of these four types that are not of any of
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the other three types. For example, a pseudo (8, 5, 3)-design is of type 1 only; a
pseudo (6, 4, 3)-design is of type 2 only; a pseudo (11, 5, 2)-design is of type 3 only;
and a pseudo (13, 6, 3)-design is of type 4 only. It is possible for a pseudo (v, k, 4)-
design to be of more than one type; for example, a pseudo (5, 4, 3)-design is of both
type 1 and type 3. ‘

The condition that the parameters v, k, A satisfy the ith (1 <i<4) equation in the
statement of Theorem 3.1 is not sufficient to ensure the existence of a pseudo
(v, k, 2)-design, since none of these conditions is sufficient to ensure the existence of a
(v', k', A")-design with the appropriate parameters v’, k', A’. However, it is known
[1, Theorem 3.7] that each primary pseudo (v, k, 1)-design with A=1 can be
obtained from some (v’, k', A')-design (including ‘degenerate’ cases such as
A'=0) by one of the four techniques mentioned in the second paragraph of this
section.

The transpose of the incidence matrix of a primary pseudo (v, k, )-design leads to
(after an appropriate permutation of its rows) the incidence matrix of an (', v', k7,

1» K2, A3, ', 25)-design, which is the other combinatorial design introduced in [1].
This result is stated in the next theorem, which has also been obtained independently
by Woodall [3, pp. 682-684] (the terminology used by Woodall is not the same as
that used here). The argument given by this author is essentially the same as that
given by Woodall, and therefore no details of the proof of the next theorem will be
presented in this paper.

THEOREM 3.2. The existence of a primary pseudo (v, k, A)-design implies the
existence of an (m’, v', k', A, ky, Xy, f', A3)-design, where m'=v, v'=v—1, ki =k,,
M=ki—k+A, ky=k,, My=k,—k+A, Ay=kr,/(v—f)=k,r|f, where k, and k, are
the two distinct column sums of the incidence matrix A of the primary pseudo (v, k, 1)-
design, ry +r,=k, and f' =fis the number of columns of A having sum k,.

As a consequence of Theorem 4.1 in [1] one now has:

COROLLARY 3.1. A necessary condition for the existence of a primary pseudo
(v, k, A)-design is that (kir,|(v—f))* = (kori[f)*> (ky —k+2) (ky—k + 1), where these
parameters are as in the statement of Theorem 3.2.

The following two conditions are necessary for the existence of pseudo (v, &, 1)-
designs [1, Theorem 3.1]:

if v is even, then vt—(v—1) k? must be a square; and

3.1
if vis odd, then (k— 1) [vt— (v—1) k*] must be a square, 3.1)

where f=k+A(v—2). However, it can be shown that neither pseudo (54, 14, 4)-
designs (their existence is equivalent to the existence of (53, 13, 3)-designs) nor
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pseudo (73, 16, 4)-designs (in this case there is no integral solution for p in Equation
(3.8) in [1]) can exist. This yields:

COROLLARY 3.2. Neither of the two necessary conditions in (3.1) is sufficient for
the existence of a pseudo (v, k, A)-design.

4. (m, v, kq, Ay, Ky, Ay, f, A3)-designs

An (m, v, ky, Ay, Ky Ay, f, A3)-design must have m<v if A3 <A 4,, or m<v+1 if
43>, [1, Theorem 4.1]. This section is concerned with the column sums of the
incidence matrices of each of the two possible ‘maximal’ cases, m=v and m=v+1.
In both cases an equation is obtained involving the sum s; of the jth column of the
incidence matrix 4 of the design and the sum s; of the jth column in the ‘top part’
of A; also, some information is obtained on the parameter 4,.

Throughout this section, the incidence matrix 4 of an (m, v, ky, Ay, ky, 45, f, A3)-
design will be assumed to have the form

A=[Mf"’ ]
Nm—f,v

MM  A3J
A NNT|

where
AAT=[
and
MMT=(k1_).1) I+11J,
NNT=(k2—/12) I+22J.

Also, the jth column sums of 4 and M will be denoted by s; and s}, respectively.

THEOREM 4.1. For each j (1<j<v) the parameters s; and s; associated with an
(m=v, v, ky, A4, k3, A3, f, A3)-design are related by the following equation, provided that
si#1:

sj=sj—{[ka+(@0—1=1) )4 = (v—f) 23}
xs3/{lks +(f—1) 413 —f 4445}
—{lks+ (= 1) 4] [k + (0—f—1) 2] =f A3 (v—1)}
x (ky—=A){ ks +(f=1) 4] A3 —=fA4ds} (f=1)(s;—1).
If ;=1 and v=f, then the design must be a (v'=v, k'=1, A'=0)-design. Finally, if
s;=1and v#f, then 23>0 and

As={lks +(f=1) A ] [kz +(v—=f=1) 21/ f (0= f )} /2.
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Let 4 be the incidence matrix of an (m, v, ky, Ay, ky, A, f, A3)-design having
m=v, and let B be the matrix obtained from 4 by adjoining a last row of all 0’s
except for a +1 in the jth position, 1 <j<wv. It follows that BBT is singular, and there-
fore det BB” =0. But also, it is possible to compute det BBT directly and obtain

det BBT = (k; — A, ™! (ky—4,)"~ /1D,
where
D={[k,+(v—f=1) .14 — (v—1) A3} (/- 1)s; (s5=1)/(ky —4y)
+H{lk+(f=1) A JAs=f 245} (f—1) (s;—=53) (5= 1)/(ky — 4;)
+ ki + (/= DA ko +(0—f=1) 2,123 (v—1). (4.1)

Because k; >4, and &, >,12, it follows that D=0. This yields an equation relating s;
and s;, whenever s;# 1. If s;=1, then it follows from (4.1) that

B f(o—f)=[k, +(f=1) 4] [k +(v—f—1) A,].

Now, if v=f, then the design under consideration is a (v', k', A’)-design, where
v'=v, k'=k;=s;=1, and 1'=1,=0. And, if v#f, then 1, must be positive (it will
be seen in Section 5 that it is possible to have a class of (m', v, kY, Ay, kb, Ay, f7, AY)-
designs having 13=0), and

As={lki+ (/= 1) L] [ky +(0—f=1) L,1/f (v =f )}

The above result easily yields the following corollary, where the number of
distinct column sums in M is assumed to be exactly one (so that M is the incidence
matrix of a (&', o', r’, k', A")-design), and this one column sum is different from 1.

COROLLARY 4.1. If M is the incidence matrix of a (b’ =v, v' =f,r' =k,, k' =s#1,
A'=Ay)-design, then the number of distinct column sums of A is exactly one.

When m=v+1, the other ‘maximal’ case, a similar relationship between s; and
s; can be obtained; in fact, this relationship is simpler in this case.

THEOREM 4.2. An (m=v+1, v, ky, Ay, ky, Ay, f, A3)-design must have either

si=Lk,+(v=f) da+fA3]s}/f A3, or
s;=1, for 1<j<uv.

Moreover, A5 is always positive and

Ay={lk1 + 4 (S = D)] k2 + A4, (0=f))/ (0 +1 1) f}112.

Let 4 be the incidence matrix of an (m, v, ky, 4y, ky, 4,, f, A3)-design having
m=v+1 (and, as a consequence of Theorem 4.1 in [1], A2>4,4,). It follows that
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AAT is singular, so that det 44T =0. But one may compute det 44T directly to obtain

detAAT=(k1—/11)f—1(kz—ﬂ-z)v—f {ki(ky—2A3) +(v+1-1)
X (ky—21) A +(f—1) (k3= 22) Ay +(v+1=1) f (A2, — 23)}.

Now, because k; >4, and k, > 1,, it follows that

Ay={lki +4: (f= D] [z + 4, (0= ) (0 +1 =)}/ (4.2)

and, hence, such a design must have 1;>0.

Let B be the matrix obtained from A by adjoining a last row of all 0’s except for a
+1 in the jth position, 1 <j<v. Then, as before, det BB" =0, and one can compute
det BBT directly to obtain

detBBT=(k,— A ) ™' (k,—2,)" /D,
where
D={[ky+(0=1) 22] 4= (0 +1=1)23} (f=1) 5 (s; = D)/(ks — ;)
+{lks +(f=1) A JAs—=f A3} (F=1) (55—s57) (s;=1)/(ky—44)
+{[ki+(f=1) 2] Tha+(0—=1) A]=f 5 (v+1=1)}. (43)

It is possible to simplify D, and this will be done presently. First, it follows from
Equation (4.2) that the third term on the right hand side of (4.3) is 0. Next, (4.2) is
used to substitute for A3 in the first term on the right hand side of (4.3). Now, using
the facts that D must be 0, k, >4,, and f>1 (one always has f > 1; however, for the
case under present consideration, it is possible to show that f>1), one obtains that
either

sj=[ko+(—f) Ay +fA3] sj/f A3, or

s;=1.
5. Some examples of classes of (1, v, ky, A, k5, 4,, f, A5)-designs

In [1] and [2] there is no specific mention of any class of examples of (m, v, ky,
A1y ks Ay, fy A3)-designs. Some simple examples will be presented here mainly to
exhibit some infinite classes of these designs, and not so much to present novel
construction techniques for combinatorial designs. Only (v, k, A)-designs will be used
in the following examples; however, other well known combinatorial designs could
also be used (e.g., the group divisible designs having two groups).

EXAMPLE 5.1. If A4 is the incidence matrix of a (v, k', A")-design, then 4 is also
the incidence matrix of an (m, v, ky, A, ky, Ay, f, A3)-design, where m=v=f=1v',
kl =k2=kl, and A‘l =Az =As =).,.
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EXAMPLE 5.2. Let A4 be the incidence matrix of a (v', k', A")-design. For a
fixed integer f* (1<f'<v’) let B be the matrix obtained from 4 by complementing
(interchange 0’s and + 1’s) the first f’ rows of A. Then B is the incidence matrix of an
(m, v, ky, Ay, ky, Ay, f, Ay)-design, where m=v=1', ki=v'—=k', Aly=v"=-2k'+1,
ky=k',2,=X,f=f",and A;=k'—2".

EXAMPLE 5.3. Let 4 be the incidence matrix of a (v', k', A')-design. Permute
the rows of 4, if necessary, so that the first column has all +1’s in the first X’ positions.
Let 4’ denote the matrix thus obtained. Next, complement the £’ by v’ — 1 submatrix
of A’ consisting of the first k' rows, except the first column. If B denotes the matrix
thus obtained from A4, then B is the incidence matrix of an (m, v, ky, Ay, kay g, f, As)-
design, where m=v=0', k;=v'—k'+1, Ay =v'=2k'+1'+1, ky=k', 1,=X, =K,
and A;=k"— 1.

EXAMPLE 5.4. Let A be the incidence matrix of a (v', k', A")-design, and let 6
denote the matrix having all entries equal to 0. If

A 0
5 4

then B is the incidence matrix of an (m, v, k1, Ay, k5, A5, f, A3)-design, where m=p=2v’,
kl =k2 =k’, 11 =).2=/1’,f=l7,, and A3 =0.

EXAMPLE 5.5. Let 4 be the incidence matrix of a (v, k', A')-design, and let 4
denote the complement (interchange 0’s and +1’s) of 4. If 6 is as in the above
example and

0 A

then Bis the incidence matrix of an (m, v, ky, Ay, k3, 45, f, A 3)-design, where m=v=2v’,
ky=k', =X, ky=v"—k', 2,=0"=2k'+ X, f=0', and A;=0.
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Orthogonal designs II

Anthony V. Geramita and
Jennifer Seberry Wallis

Abstract

Orthogonal designs are a natural generalization of the Baumert-Hall arrays which have been used
to construct Hadamard matrices. We continue our investigation of these designs and show that
orthogonal designs of type (1, k) and order n exist for every k<<n when n=2t+2.3 and n=2t+2.5
(where t is a positive integer). We also find orthogonal designs that exist in every order 2n and others
that exist in every order 4n.

Coupled with some results of earlier work, this means that the weighing matrix conjecture ‘For
every order n =0 (mod4) there is, for each k < n, a square {0, 1, — 1} matrix W= W (n, k) satisfying
WW?t =kl is resolved in the affirmative for all orders # — 20¥1.3, p=2t+1.5 (¢ a positive integer).

The fact that the matrices we find are skew-symmetric for all k < n when n = 0(mod 8) and because
of other considerations we pose three other conjectures about weighing matrices having additional
structure and resolve these conjectures affirmatively in a few cases.

In an appendix we give a table of the known results for orders < 64.

§0. Introduction

An orthogonal design of order n and type (sy, 5, ..., 5;) (5;>0) on the commuting
variables x;, x,,..., x, is an n x n matrix 4 with entries from {0, £xy,..., £x,} such
that

1
AA'=Y (sxP)1,.
i=1

Alternatively, the rows of 4 are formally orthogonal and each row has precisely s,
entries of the type +x;.

In [2], where this was first defined and many examples and properties of such
designs were investigated, we mentioned that

1
AtA: Z (sixiz) In
i=1

and so our alternative description of 4 applies equally well to the columns of 4. We
also showed in [2] that /<g(n), where ¢ (n) (Radon’s function) is defined by

0(n)=8c+2¢
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when
n=2%b, bodd, a=4c+d 0<d<4.

In [2] we also showed that if there is an orthogonal design or order n and type
(a, b) then

(i) n=2(mod4)=>b/a=c? for some rational number c

(ii) n=4¢, t odd=>b/a is a sum of <three rational squares.

DEFINITION. A weighing matrix of weight k and order n, is a square {0, 1, —1}
matrix, 4, of order n satisfying
AA*=KI,.

In [2] we showed that the existence of an orthogonal design of order »n and type
(84..., 5;) is equivalent to the existence of weighing matrices 4,..., 4,, of order n,
where A; has weight s; and the matrices, {4,}|-,, satisfy the matrix equation

XY'+YX'=0

in pairs. In particular, the existence of an orthogonal design of order » and type (1, k)
is equivalent to the existence of a skew-symmetric weighing matrix of weight k and
order n.

It is conjectured that:

(I) for n=0(mod4) there is a weighing matrix of weight k and order n for every
k<n.

(IT) for n=0(mod8) there is a skew-symmetric weighing matrix of order n for
every k<n (equivalently there is an orthogonal design of type (1, k) in order n for
every k<n).

(IT) for n=4(mod8) there is a skew-symmetric weighing matrix of order n for
every k<n, where k is the sum of <three squares of integers (equivalently, there is
an orthogonal design of type (1, k) in order n for every k<n which is the sum of
<three squares of integers. In other words, the necessary condition, given above in
(ii), for the existence of an orthogonal design of type (1, k) in order 1, n=4(mod8),
is also sufficient).

(IV) for n=2(mod4) there is a skew-symmetric weighing matrix for every weight
k<n—1 when k is a square (equivalently, the necessary condition given above for the
existence of an orthogonal design of type (1, k) in order n (see (i) above), is also suffi-
cient.) ‘

Conjecture (I) is an extension of the Hadamard conjecture (i.e. for every n=0
(mod4) there is a {1, — 1} matrix, H, of order n satisfying HH'=nl,), while (II) and
(IIT) generalize the conjecture that for every n=0(mod 4) there is a Hadamard matrix,
H, of order n with the property that H=1I,+ S where S= —S".
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Conjecture (I) was established in [4] for ne {4, 8, 12,..., 32, 40} and in [1] for
n=2'. Conjecture (II) was established in [2, Theorem 17] for n=2" (¢>3), while
Conjecture III was established in [2] for n=4, 12. Conjecture IV was established in
[2] for n=6, 10, 14.

In this paper we establish conjectures (II) and (IIT) (and as a consequence (1))
for n=2"%1-3,n=2'*1-5 ¢ a positive integer. We also establish conjecture (1) for
n=28 separately. In addition, for every order n=0(mod4) we give ‘segments’ on
which the conjecture is true. These segments grow with ».

Let R be the back diagonal matrix. Then an orthogonal design or weighing matrix
is said to be constructed from two circulant matrices A and B if it is of the form

A B
Bt _At

and to be of Goethals-Seidel type if it is of the form

A BR CR DR
—BR A D'R —-C'R
—-CR —-D'R A B'R
—DR C'R —B'R A

where A, B, C, D are circulant matrices.

§1. Known results and new applications

In this section we would like to list some of the results from [2] that we shall use
and also give some new applications of them.

PROPOSITION 1. [2, Corollary to Construction 22]. If there is an orthogonal
design of type (1, 1) in order n then there is an orthogonal design of type (1,1,L1)in
order 2n and of type (1, 1, 2, 1, 1, 21) in order 4n.

The following is an easy corollary and was not mentioned in [2]. We shall use it
extensively in this paper.

COROLLARY. If there are orthogonal designs of type (1, k), 1<k<l, in order n
then there are orthogonal designs of type (1, m) in order 2n for 1 <m<2I+1. In partic-
ular, if there are orthogonal designs of type (1, k), 1<k<n-—1, in order n then there
are orthogonal designs of type (1,m),1<m<2'n—1, in order 2'n, t a positive
integer.
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PROPOSITION 2. [2, Corollary to Proposition 6]. If there is an orthogonal
design of order n and type (sy,...,s,) then there are orthogonal designs of type
(81515 --.5 &s5,) in order 2n, where ;=1 or 2.

We can now establish

THEOREM 3. Let n be any number of the form 2'-3, t a positive integer. Then

(a) If t=1, then conjecture IV is true.

(b) If t=2, then conjectures I and III are true.

(c) If t=3, then conjecture II (and consequently conjecture I) is true.

Proof. As we mentioned in the introduction, (a) was verified in [2] while (b) was
verified in [1] and [2]. Thus we need only consider (c).

From (b) we have orthogonal designs of type (1, k) in order 12 for 1 <k <11, k#7.
Proposition 1 then gives designs of type (1, m) in order 24 for 1 <m<23, m# 14, 15.
From (a) we have a design of type (1, 4) in order 6 and so by Proposition 1 a design
of type (1, 1, 2, 4, 4, 8) in order 24. By setting the variables in this design equal to each
other, or to zero,.we obtain designs of type (1, 14), (1, 15) in order 24. Thus, conjec-
ture II (and I) are true for n=24. Now the corollary to Proposition 1 gives the full
result.

THEOREM 4. (a) There are orthogonal designs of type (1, 1) and (1, 4) in order
2n for every integer n>=3.

(b) There is an orthogonal design of type (1, 9) in order 2n for every integer n>6
(except possibly for n=9, 11).

(c) There is an orthogonal design of type (1, 1, 1, 4) in every order 4n, n>2.

(d) There are orthogonal designs of type (1,1, 2,8) and (1, 1, 1, 9) in every order
4n,n>=3.

Proof. The proofs of these statements all follow the same pattern. They will follow
from the observation that if 4 and B are orthogonal designs of type (s, ..., 5,) having
A

orders n and m respectively, then [O

(;:I is an orthogonal design of the same type

having order n+m.

(a) In [2] we showed that orthogonal designs of type (1, 1) and (1, 4) exist in
orders 6, 8 and 10. Since every even integer >6 is a non-negative linear combination
of these three integers the result will follow from our remark above.

(b) In [2] we showed that an orthogonal design of type (1, 9) exists for orders
12, 14, 16. Since there is an orthogonal design of type (1, 4) in order 10, we have, by
Proposition 1, an orthogonal design of type (1, 1, 4, 4) in order 20. Thus, there is an
orthogonal design of type (1, 9) in order 20. Now observe that every even integer
2n, n>12, is a non-negative linear combination of 12, 14, 16 and 20 to finish off the
proof here.
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(c) We have, in [2], exhibited a design of type (1,1, 1, 4) in orders 8 and 12.
Since every integer 4n, n>2, is a non-negative linear combination of these two inte-
gers we are finished with this part.

(d) In [2] we exhibited designs of type (1,1,2,8) and (1, 1, 1,9) in orders 12
and 16. If we can exhibit designs of this type in order 20 we will be done. We construct
four circulant matrices 4, B, C, D such that AA*+ BB+ CC ‘+ DD'=klIs where k is,
in the firstinstance x7 4 x3 + x2 + 9x2,and in the second instance k = X2 4xi+ 2x3 4+ 8x2.
We then use these matrices in the Goethals-Seidel array:

k (1,1,1,9) (1,1,2,8)

1st Row of A x; 0x, —x, 0 x 0xy —x, 0
1st Row of B X, 0x4 —x, 0 X, 0x4 —x, 0
1st Row of C X3 —x4 00 x, x3 0x4 x, 0
1st Row of D X4 X4 X, 00 —x3 0 x4 x, 0

Remark. (1) We strongly suspect that there are designs of type (1,9) in orders 18
and 22.

(2) Our method of proof shows that any orthogonal design that appears in orders
12 and 16 also appears in order 4n, n>6. Thus, in addition to the designs mentioned
above there are designs of type (1, 1, 5, 5),(1,2,2,4), (1,2,3,6) and (2,2,2,2) in
every order 4n, n=3,4,n>6. [See [2] for the description of these designs in orders
12 and 16].

COROLLARY 1. There are orthogonal designs of type (1, k) in order 4n,n>3,
Jor 1<k<11, k#7.

Proof. From (c) and (d) above we have designs of type (1, 1,2, 8) and (I, 1, 1, 4)
in all the orders 4n, n>3. Now set the variables in these designs equal to each other
or to zero to obtain the statement in this Corollary.

COROLLARY 2. There is an orthogonal design of type (1,k) in every order
8n,n>3, for ke{l,..., 23}.

Proof. By using Proposition 1 and the designs of type (1, 1) and (1, 4) in order
2n, n>3, we obtain designs of type (1, 1,2, 1, 1, 2)and (1, 1, 2, 4, 4, 8) in every order
8n, n>3. These two designs give designs of type (1, k) for 1<k<19. By Corollary 1
we have designs of type (1, 10) and (1, 11) in order 4n, n>3 and an application of
Proposition 1 then gives designs of type (1, 1, 10, 10) and (1, 1,11, 11) in order
8n, n>3 and so the proof is complete.
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COROLLARY 3. There is an orthogonal design of type (1, k) in order 8n,n=6,
7,8,10 or n>12 for ke{l,..., 23, 27,..., 30, 36,..., 39}.

Proof. For 1<k<23 we appeal to Corollary 2. By Theorem 4, part (b), we have a
design of type (1, 9) in order 2n, n=6, 7, 8, 10, n>12 and so by Proposition 1 we have
a design of type (1,1, 2,9, 9, 18) in these orders. Setting the variables in this design
equal to each other, or to zero will then prove the corollary.

§2. Golay sequences and orthogonal designs

Let X={[ayy,..., a1,], [@215--» @3n]s---> [Gm1>---» Gma]} be m sequences of integers
of length n.

DEFINITION. (1) The non-periodic auto-correlation function of the family of
sequences X (denoted Ny) is a function from the set of integers {1, 2,...,n—1} to Z

(the integers) where

. n_j
Ny (J')=.Z1 (al,ial,i+j+a2,ia2,i+j+"' + 0, iO, 1))
5

Note that if the following collection of m matrices of order n is formed

(a1 agp - ay, dz1 Gz ... Qg Amt Qmz -+ Gmp
aiy Ai,n-1 (31 a2,n-1 .. A, n-1
O .. ’ O '. o O .. ’
L air L a1 _| L am1 _|

then Ny (j) is simply the sum of the inner products of rows 1 and j+1 of these matri-
ces.

(2) The periodic auto-correlation function of the family of sequences X (denoted
Py) is a function from the set of integers {1, 2,...,n—1} to Z where

n
Py (j)= 21 (@4,i81,i4 102,082, 14 j 4 + 8, 1, i1 )
i

where we assume the second subscript is actually chosen from the complete set of
residues mod (n), {1, 2,..., n}.

We can interpret the function Py in the following way: Form the m circulent
matrices which have first rows respectively, [ay; ay,... a1,], [@3; @2z... G2n],--.s
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[@n1 @z ... @yy), then Py () is the sum of the inner products of rows 1 and J+1of
these matrices.

LEMMA 5. Let X be a family of sequences as above, then
Py(J)=Nx(j)+Nx(n—j), j=1,...,n—1.

COROLLARY. If Ny(j)=0for all j=1,...,n—1 then Px(j)=0 for all j=1,...,
n—1.
Note. Py(j) may equal O for all j=1,...,n—1 even though the Nx(j) are not.

DEFINITION. If X={[a,,...,a,], [b;,....,b,]} are two sequences where
a;, b;e{l, —1} and Ny(j)=0 for j=1,...,n—1 then the sequences in X are called
Golay complementary sequences of length n.

We note that if X is as above and 4 is the circulant formed by [aj,..., a,] and B

the circulant formed by [b,..., b,] then
AA'+BB'=Y (a} +b}) I,.

Consequently, such matrices may be used in the Goethals-Seidel array to obtain
Hadamard matrices.

EXAMPLE. X={[1, —1], [1, 1] are Golay complementary sequences of length 2.

By results of R. J. Turyn [3], Golay complementary sequences exist having length
r for

r=2%-10-26°, a,b,c
non-negative integers.

Since our interest is in orthogonal designs we shall not be restricted to sequences
with entries only + 1, but shall allow 0’s also. One very simple remark is in order. If
we have a collection of sequences, X, (each having length n) such that Ny (j)=0,
Jj=1,..., n—1, then we may augment each sequence at the beginning with k zeroes and
at the end with / zeroes so that the resulting collection, (say X), of sequences having
length k+n+1 still has N;(j)=0, j=1,..., k+n+I—1. More interesting is the fol-
lowing result of Turyn.

PROPOSITION 6. Let X={[ay,...,a,], [b,..., b,]} be Golay complementary
sequences. Then the sequences in

X' a;+b, a,+b, a,—b, a,—b,
= STy | IRy

satisfy
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@) Ny (j)=0, 1<j<n—1.

(ii) exactly half of the (a;+b,/2 are equal to 0 and exactly half of the (a;—b;)/2
equal 0, all others= +1.

Thus, if we let X={g,, h,} represent Golay complementary sequences of length r
we obtain a new pair of sequences of length r, which we denote g/, 4, each having
exactly r/2 non-zero members which can be chosen from {1, —1} and such that if
X' ={gl, K} then Ny.(j)=0, 1<j<r—1.

Some more notation will be necessary. If g, denotes a sequence of integers of
length r then by xg, we mean the sequence of length r obtained from g, by multiplying
each member of g, by x. We let 0, denote a sequence consisting of r zeroes and |g,|
denote the sum of the absolute values of the elements of g,.

THEOREM 7. Let r be any number of the form 2°-10°-26°, a, b, ¢ non-negative
integers, and let n be any integer >r. Then

(i) There are orthogonal designs of order 4n and types (1, 1, 2r) and (1, 1, r).

If, in addition n is odd, then

(ii) there are orthogonal designs of order 4n and types (1,4,r) and (1, 4, 2r).

Proof. (i) Letrbeasabove and let X={g,, h,} be Golay complementary sequences
of length r. Consider the four circulant matrices 4;,i=1, 2, 3, 4 of order n having first
rows respectively

[xl (_)n-l]’ [x2 6n—l:l H [Gn—r x3gr] ’ [(_)n—r x3hr] .
If
Y= {[xla 6:1—-1]’ [xz’ 6n—1:|9 [6"_,, x3g,], [6n—n x3hr:|}

then N;(Y)=0, 1<j<n—1 and so we have

AAi=(x}+x3+2r x3)1,.

™M

i=1

Thus, the 4; may be used in the Goethals-Seidel array to give an orthogonal design
of order 4~ and type (1, 1, 2r).

If we now replace g, and #, by g, and /; (as in Proposition 6) we obtain an ortho-
gonal design of order 4n and type (1, 1, r).

(ii) Let n be odd, n>r and consider the sequences of length 7 in

Y= {[xl’ 63, x2’ "xz, (_)s]’ [0, Gs, xzs xz: 6_;]}

(where s=(n—3)/2). We claim that Py(j)=0, 1<j<n—1. This is easy to see since
the circulant matrix formed by the first sequence in Y has the form x,I,+ U, where
U= —U" (note that this is the only place we use the fact that » is odd).
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Now letg,, , be Golay complementary sequences of length r and let X = [0,-,x18.],
[0.-,, x3h,]. We thus use the sequences in X and ¥, as in (i), to obtain orthogonal
designs of order 4n and types (1, 4, 2r) and (1, 4, r).

THEOREM 8. Let X= {0y, oy, a3, &} be a collection of four {0, 1, — 1}-sequences
of length n for which Py (j)=0, 1<j<n— 1. Suppose further that the circulant matrices
generated by a, a,, a3 are skew-symmetric. Then, (i) there is an orthogonal design of
order 4n and type (1, 1, 1, oty |+ |oty| + ots| + oty ).

If, in addition, Nx(j)=0, 1<j<n—1, then (ii) this design exists in every order
4(n+2k), k>0.

Proof. In order that the hypothesis on «;, a,, a; be satisfied we must have

oy = [O’ Agsees an—l] = [O’ gn—l]’
0€2= [0, bl""’ bn_1]= [O, hn—l]
a3=[0, ¢y, ..., n-1]=[0, fi-1]

where a; ;= —a,_yy_;, by 4 ;= —bm-1)-j» €C14;= —Ctn-1y—j» 0<j<n—1. Form four
circulant matrices, 4;, i=1, 2, 3, 4, whose first rows are, respectively,

[x1 Xagu-1], [x2 Xahu_1], [x3 Xaly—y], [x404].

Now 4;=x,1,+B;,i=1,2,3 and B,= — B!; thus,

M

3
Adi=(x]+x7+x}) 1,+ Y. BB +A4,A,.
i=1

]
-

Since Py (j)=0, we thus obtain
3
'21 BB+ Ay Ay =(loy| +1ota| +lota] +org]) x3-1,,.

We may thus use these matrices, 4, in the Goethals-Seidel array to obtain the first
part of the theorem.

The final assertion of the theorem follows from the observation we made earlier,
that a collection of sequences whose non-periodic auto-correlation function was iden-
tically zero could be augmented, front or back (or both) by zero sequences to obtain
longer sequences with the same property. If, in our case, we add sequences of equal
length to the front and back of the given sequences then we preserve their skew-symme-
tric character. These remarks, coupled with the proof of (i) will then constitute a proof
of (ii).
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Remarks. (a) We would have an analogous theorem if only «; (or only a, and ay)
generated a skew-symmetric circulant.

(b) There is a completely analogous theorem if there are only two sequences of
length 7 and the first has the skew-symmetric character described above. We just use

the array [_f;' ﬁt] , mentioned in the introduction, in place of the Goethals-Seidel

array. To facilitate the references we shall explicitly state:

COROLLARY. Let X={ay, a,} be two {0, 1, — 1} sequences of length n for which
Py(j)=0,1<j<n—1. Suppose that the circulant matrix generated by o, is skew-
symmetric. Then, there is an orthogonal design of order 2n and type (1, fotg | + oty ))-

If, in addition, Nx (j)=0, 1< j<n—1, then this design exists in every order 2 (n+ 2k),
k=0.

We now give some examples illustrating the use of Theorem 8 and its
corollary.

These examples then give the following:

PROPOSITION 9. The following orthogonal designs exist in the orders stated:
i) (1, 1, 20) in order 28
ii) (1, 1, 1, 25) in order 28
iii) (1, 24) in orders 4(7+2k), k>0
iv) (1, 1, 16) in orders 4 (5+2k), k=0
v) (1, 13) in order 20
vi) (1, 14) in order 20
vii) (1, 1, 18) in order 20
viii) (1, 1, 1, 16) in orders 4(7+2k), k=0
ix) (1, 1, 32) in orders 4(9+2k), k=0
x) (1, 16) in order 22.
Proof. Use the sequences in Table 1 as indicated in Theorem 8 or its corollary.

§3. Some applications

THEOREM 10. Let n=2"-5,t>0.

(a) If t=1 then conjecture IV is true.

(b) If t=2 then conjectures III and I are true.

(c) If t=3 then conjectures II and I are true.

Proof. (a) As mentioned in the introduction, this was established in [2].

(b) Corollary 1 to Theorem 4 gives designs of type (1, k) in order 20 for 1 <k <11,
k#7. By Theorem 7 (ii), there is an orthogonal design of type (1,4, 2-4) in order 20
which gives (1, k) for k=12. Proposition 9 then gives (1, k) in order 20 for k=13,
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14, 16, 17, 18, 19. Since 7 and 15 are not the sum of <three squares this proves con-
jecture III for 20 and also conjecture I.

(c) From Propositions 1 and 2 and from (b) of this Theorem we obtain designs of
type (1, k) in order 40 for 1<k<39, k#15, 30, 31. By Corollary 2 to Theorem 4 we
have the result for k= 15. If we can find orthogonal designs of type (1, 30) and (1, 31)
in order 40 then the proof of (c) will be completed by repeated application of the
corollary to Proposition 1.

To do this we need the following well-known fact:

LEMMA 11. Let X, Y be two back-circulant matrices of order n, n odd. Suppose
that the circulant matrices generated by the first rows of X and Y respectively are sym-
metric, then XY'=YX".

We recall that there is an orthogonal design of order 8 and type (1,1, 1, 1, 1, 1, 1, 1),
(see [5] for this classical design derived from the Cayley Numbers) on the variables
Y1 -+, V5. We shall substitute a circulant matrix for y; and back-circulants for y,, ..., yg;
where if A4; is thé matrix being substituted for y; we have:

Ay with first row x4 0 0 0 0
A, with first row X, 0 0 0 0
A, with first row 0 X, X, X, X,
Ay with first row —x, Xy X, X, X,

As=Ag with first row X, —X, X, X, —X,
A,=Ag with first row X, X, —X, —X X,.

If X, Ye{4,,..., Ag} then XY*=YX* by Lemma 11 or by the fact that if X is
circulant and Y is back-cuculant then XY*'=YX".
This then gives an orthogonal design of order 40 and type (1, 30) since

Moo

At (x1 +30x2)1

]

i=1

We use the same procedure to obtain a design of order 40 and type (1, 31). This time,
let

A, have first row b 0 Xy —X, 0
A, have first row 0 0 X, X, 0
Ay=A,= =4 s have first row —x, X, X, X, X,
A¢=A,=Ag have firstrow 0 X, —X; —X3 X,.

PROPOSITION 12. (a) Conjecture IV is true for n=2-1.
(b) For n=4-7 conjectures III and I are true.
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(c) For n=8-7, there is an orthogonal design of type (1, k) for 1<k<55, except
possibly for k=46, 47.

Proof. (a) was established in [2].

(b) We first establish conjecture III. This will then yield a proof of conjecture I
for 28 (although this was already done in [4]). As in the proof of Theorem 10 (b) we
have orthogonal designs of type (1, k), 1 <k<12, k#7. From Proposition 9 we obtain
orthogonal designs in order 28 of type (1, k) for k=16, 17, 18, 20, 21, 24, 25, 26, 27.

Now in [2] we found circulant matrices

i) Ay, A, of order 7 such that

AAi= (Xf +4x§) I,

M

i=1

ii) By, B, of order 7 such that

BiBi=(yi +9y3) I

e

1]
-

iii) Cy, C, of order 7 such that
2
Z C,C: = 13[7 .
i=1

Hence, if we use 4,, 4,, By, B, in the Goethals-Seidel array we obtain a design of
type (1,1, 4,9) in order 28, Using B,, B,, B,, B, in the Goethals-Seidel array gives
a design of type (1, 1,9, 9) in order 28, while if we use B;, B, y5C;, y;C, we obtain
an orthogonal design of type (1, 9, 13). These last three yield designs of type (I, k)
(not already listed) for k=13, 14, 19, 22. Since 7, 15 and 23 are not the sum of <three
squares this proves conjecture III for n=28.

(c¢) Corollary 3 to Theorem 4 gives designs of type (1, k) in order 56 ke {1,...,23,
27,...,30, 36, ..., 39}. Using Proposition 1 and the designs we found in (b) above we
can fill in k=24,25,32,...,35,40,...,45,48,..., 55. Using Proposition 2 and the
design of type (1, 26) in order 28 we have the result for k=26 in order 56. The only
gaps left are for k=31, 46, 47. The design of type (1,9, 13) in order 28 yields (by
Proposition 2) a design of type (1, 18, 13) in order 56. This gives us (1, 31) in order 56.
We have been unable to find designs of type (1, k) in order 56 for k =46, 47.

With the results of these last two sections we can now sharpen the corollaries to
Theorem 4.

PROPOSITION 13. There are orthogonal designs of order 4n, n odd and type
(1, k) when

(a) n=3, ke{l,...,6,8,...,11}.

(b) n=5, ke{l,...,6,8,..., 14,16, 17}.
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(c) n=7, ke{l,...,6,8,..., 14,16, 17, 18, 20, 24}

(d) n=9, ke{l,...,6,8,...,14,16, 17, 18, 20, 21, 24, 32, 33}.

(e) n=>11, ke{l,...,6,8,..., 14, 16,..., 21, 24, 32, 33},

The other corollaries admit of generalization in the same fashion. For the reader’s
benefit and for future reference we give, in an appendix, the status of our conjectures
for small n.

Appendix

In the table given below we shall use the following ideas. If the conjecture is not
applicable to that order we write N.A.; if the conjecture is verified for that order we
shall put T in the table. If there are still values to test we shall list them. We shall not
deal with conjecture IV in this table.

The first few numbers which are not the sum of <three squares are:

7,15, 23, 28, 31, 39, 47, 55, 60, 92, 112.

Order 1 11 11
4 T N.A. T
8 T T N.A.
12 T N.A. T
16 T T N.A.
20 T N.A. T
24 T T N.A.
28 T N.A. T
32 T T ~ N.A.
36 23,31 N.A. 19, 22, 25, 26, 27, 29, 30, 34
40 T T N.A.
44 23, 29, 31, 35, 41 N.A. 22, 25,27, 29, 30, 34,
35, 37, 38, 40, 41, 42
48 T T N.A.
52 26-31, 35-38, 40-47, N.A. 25, 26, 27, 30, 34-38,
49, 50 40-46, 48-50
56 47 46, 47 N.A.
60 29-31, 35-58 N.A. 29, 30, 34-38, 40-46,
48-54, 56-58

64 T T N.A.
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Order v Order v

2 T 26 16

6 T 30 16,25
10 T 34 16,25
14 T 38 25,36
18 9,16 42 25,36
22 9
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Short communications

Autoaddition formulae and algebraic groups

Christopher L. Morgan

The notion of an autoaddition formula is defined for continuous functions from
open subsets of a topological group G to algebraic varieties as follows:

DEFINITION (Autoaddition Formula). Let U, V, and W be non-empty open
subsets of G, and let X be an algebraic variety of £. Let f be a continuous function
from W to X, and let F be a #-rational function from X x X to X which is defined at
each point of £ (U) x f (V).

If W contains U, ¥, and UV, and if

f@)=F(f(u), f(v)),
for all (4, v) in U x V, we say that:
[f;F,UxV,X]

is an autoaddition formula for fon Ux V.

This definition is essentially the same as the one given in a previous paper by the
author, entitled Addition Formulae for Field-Valued Continuous Functions on T. opolog-
ical Groups (to appear in Aequationes Mathematicae).

The major result obtained is a classification of all functions which have such an
autoaddition formula:

THEOREM 5 (Structure of Autoaddition Formulae). Let U and V be neighborhoods
of e in G such that U=V ™" and UV is connected. Let [ f; F, Ux V, X] be an auto-
addition formula. Then there is an abelian variety A over £ ; a commutative linear
group K over £; a linear group M over £; a £-rational function o from KxAx M to X;
#-rational functions « in Z*(A4, K) and p in Z*(M, K); local homomorphisms A, in
Z'(G, A) and 2 in Z' (G, M); and a continuous function Ay in C* (G, K) defined on
a neighborhood of e in G such that



316 Short communications

f =Q(AK1 )“Ay )'M)
01 (M) = (g, Aq) 1t (Apss Ang)-

Furthermore, A, and 4y, have dense images.
If G is commutative, then M is trivial.

Note. The terminology used in the statement of this theorem involves a local
group cohomology theory which is described in Section 6 of the paper.

The method is to relate an algebraic group to each autoaddition formula and then
to use Chevalley’s theorem on the classification of algebraic groups to classify the
autoaddition formulae.

Received September 23, 1973.

The intersection numbers of a complex

A. K. Dewdney

With certain families of sets, one associates the intersection graph which displays
at a glance, so to speak, all the intersections among sets in the family. This notion is
generalized to n-dimensional complexes as follows: Let S be a finite set and let
F={S;:ieI} be a family of distinct non-empty subsets of S. The nth intersection
complex of F, denoted by Q,(F) is the complex whose vertices are the sets S; and
whose simplexes are the collections {S;,, S;,,..., S; } of distinct sets S; for which
=0 Si,#0, m<n. The intersection graph of Fis just Q, (F). The nth intersection
number of K, denoted by w, (K), is the minimum cardinality of a set S for which there
exists a family F such that K=Q,(F). An (n+2)-hedron is an n-complex having n+2
vertices and n+2 n-simplexes.

An elementary result on intersection numbers says that if G is a connected graph
with at least four vertices, then w, (G)=¢(G) if and only if G contains no triangles,
where ¢ (G ) is the number of edges in G. A complex K is taut if every two vertices have
distinct stars. A subcomplex L of K is isolated if no vertex of L lies in a simplex of
K-L. Denoting the number of principal simplexes of K by a(K), the above graph-theo-
retic result is generalized as follows:

THEOREM. If K is a taut n-complex, then w,(K)=o(K) if and only if K contains
no (n+2)-hedra when n>1 and K contains no non-isolated (n+2)-hedra when n=1.

Received November 21, 1973.
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The generalized Cauchy equation for operator—valued functions

A. B. Buche and H. L. Vasudeva

Let X denote a Banach space and let #(X) denote the family of bounded linear
operators on X. Let {S(r);7eR"}, S:R* - #(X) be a one-parameter family of
operators and let H: % (X)x % (X)— #(X) be a function. The family {S (¢)} is said
to be a generalized Cauchy system if it satisfies the generalized Cauchy equation
S (s+t)=H (S (s), S(r)),s,te R*. Let ¢ and ¥ be real-valued functions defined on
R™ such that (i) lim,_,q. ¢ (t)=0, (ii) ¢ is a non-negative strictly monotone increasing
continuous function on R™ — {0}, (iii) ¥ is a non-negative function, bounded on each
compact set of R, (iv) [[H (S (s,), S (£))=H (S (s2), S (1) <o (IS (51)= S (s)I).
Y (IS (£)), $1, 5, 1€ R*. Then, in the uniform operator topology, the Lebesgue
measurability of S on R* — {0} implies continuity of S on R* — {0}.

Received February 11, 1974.

Pairs of edge-disjoint Hamiltonian circuits

Branko Griinbaum and Joseph Malkevitch

Several authors have conjectured that there exists a pair of edge-disjoint Ham-
iltonian circuits in every 4-valent 4-connected graph, or at least in each planar graph
of this kind. A negative answer to the general conjecture follows from a recent result
of G. H. J. Meredith; the planar variant was recently refuted by Pierre Martin. We
provide simpler counterexamples to both versions of the conjecture. One of our
methods may also be used to establish that every 3-connected, 3-valent, cyclically-4-
connected planar graph has a simple circuit that contains at least 2 of the vertices,
while for some such graphs (with arbitrarily many vertices) no simple circuit con-
tains more than 1$ of the vertices.

Received March 25, 1974.

Matrix summability and a generalized Gibbs phenomenon
J. A. Fridy

Consider a real-valued function sequence f = { /i} that converges to ¢ on a deleted
neighborhood of «. If there is a subsequence { /i ()} and a number sequence x such
that lim;x;=o and either

lim; fi.;) (x;)>lim sup,,, @ (x) or lim; fi ;) (x;) <lim inf, ., ¢ (x),
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then fis said to display the Gibbs phenomenon at . If 4 is a (real) summability matrix,
then Af denotes the function sequence given by (Af ), (x)=Y i% o a@u fi (x). If Af displays
the Gibbs phenomenon whenever f does, then A is said to be GP-preserving. By re-
placing f, (x) with f; (x;) = F,_ ;, the Gibbs phenomenon is viewed as a property of the
matrix F, and GP-preserving properties are determined by properties of the matrix
product AF.

THEOREM. If A is GP-preserving and {k(j)};-o is any infinite set of column
indices, then

lim, (sup;|d,, k() >0,

and

o0
lim sup,| Y @, x| >0.
j=0

THEOREM. If A is a nonnegative regular matrix, then A is GP-preserving for
nonnegative function sequences if and only if, for any set {k(j)};-o of column indices,

lim sup, ;|@, x| >0.

THEOREM. Let T be a lower triangular matrix with a nonvanishing principal
diagonal sequence; if T is stronger than ordinary convergence, then T is not GP-pre-
serving.

THEOREM. Suppose that A is a matrix (other than the identity matrix) belonging
to one of the following classes: Norlund means, Norlund-type means, Euler-Knopp
means, or Taylor means; than A is not GP-preserving.

THEOREM. The Norlund matrix corresponding to the nonnegative sequence p is
GP-preserving for nonnegative function sequences if and only if Zk Dy is convergent; the
corresponding Norlund-type matrix is GP-preserving for nonnegative function sequences

if and only if lim, (p./Y n=o Px) #O.

THEOREM. If \|// is a function of bounded variation on [0, 1] such that
fo[1—2)]7"* |dy(¢)I<oo, then the corresponding Hausdorff matrix H, satisfies
lim,, (max, {H, [n, k]})=0, so H, is not GP-preserving.

Received April 19, 1974.
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On a theorem by Kronecker
A. M. Ostrowski

(Dedicated to Olga Taussky-Todd)

Let
m; X mi+my
Fi:= Y aPx™*(i=1,2), FiFy:= Y ¢xmtm=4
pu=0 A=0

S:=aPa  (O<pi+p,<my+m,).

Then by Kronecker’s theorem, for a convenient r = r(ug, 1),
r
S+ Y K,S7¢=0,
e=1

where each K, is homogeneous of dimension ¢ in the c; with integer coefficients.

The article contains a simple proof of this theorem and beyond that the precise
determination of r in function of u,, u,, further the proof of a bound for r given without
proof by Macaulay and depending only on m, and m,, and finally the discussion of
cases, where Macaulay’s bound is exact.

Received June 6, 1974.

The construction of orthogonal k-skeins and latin k-cubes

Trevor Evans

A k-skein is the k-dimensional analogue of a quasigroup. In the finite case it con-
sists of aset N={1, 2, ..., n} and a k-ary operation a: N* - N such that, in an equation
a(xy, Xp, ...r X)=Xy41, if any k of the x; are given then the remaining element is
uniquely determined as an element of N. The operation table of a finite k-skein is a
latin k-cube, i.e. a k-dimensional cubical array {1, 2,..., n} with n* cells, each occupied
by one of {1, 2, ..., n}, such that in each line of cells parallel to an edge of the cube
each element in {1, 2, ..., n} occurs exactly once. A k-set of finite k-skeins (or latin
k-cubes) ay, a,, ..., a, of order n is said to be orthogonal if the k equations

a;i(x1, X3, ooy X)=a;(x7, X5, .y xp), i=1,2, ..., k imply that x;=x},i=1,2, ...,

k. In other words, if k orthogonal latin k-cubes are superimposed, then in the re-
sulting n* cells, each k-tuple of elements from {1, 2, ..., n} occurs exactly once.
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THEOREM 1. Let {ay, a,, ..., a;}, {by, b,, ..., b,,} be sets of orthogonal I-skeins
and m-skeins on {1, 2, ..., n}, and let k=1+m— 1. The set of k-skeins, cijpi=1,..,1;
J=1,...,m, where c;;(xy, X2, ..., Xi)=@;(Xy, X35 ..., %11, b;(Xp, X141, -.e5 X)) cOB-
tains mi™~* k-sets of orthogonal k-skeins.

COROLLARY. For any order n#2, 6, and any k>2, there exists a k-set of ortho-
gonal k-skeins.

Other methods of constructing orthogonal sets of k-skeins are also described.

We note that Arkin [1] has recently constructed three orthogonal latin cubes of
order 10 (or rather four such, every three of which are orthogonal) and in [2] Arkin
and Straus extend this to the construction for k>2 of a k-set of orthogonal latin
k-cubes for every order n#2, 6.

A g-set of orthogonal latin k-cubes is a set of ¢ latin cubes, every k of which are
orthogonal. For each g and k, a variety (equational class) is described (in terms of its
operations and identities) such that a certain specified g of the operations in each
algebra form a g-set of orthogonal k-skeins. Conversely, each orthogonal g-set of
k-skeins arises in this way.

THEOREM 2. For each q, k, there is a variety such that its finite algebras are all
g-sets of orthogonal latin k-cubes.

COROLLARY. If g-sets of latin k-cubes of orders n,, n, exist, then so does a q-set
of lutin k-cubes of order nn,.

REFERENCES
[1]1 ARkIN, J., A4 solution to the classical problem of finding systems of three mutually orthogonal
numbers in a cube formed by three superimposed 10 x 10 x 10 cubes, Fibonacci Quart. 11 (1973),

485-489. Also Sugaku Seminar 13 (1974), 90 -94.
[2] ARrkIN, J. and STRAUS, E. G., Latin k-cubes, Fibonacci Quart. 12 (1974), 288-292.
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