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Introduction

$ 1. General discussion

Let p be an odd prime number. The object of this paper is to show that the zeroes of
the p-adic L-functions of Kubota-Leopoldt are equal to the eigenvalues of certain
“arithmetically-defined”” operators acting on finite-dimensional Q,-vector spaces.
These Q,-vector spaces were defined by Iwasawa in terms of limits of certain
components of the ideal class groups of towers of cyclotomic number fields. The
connection between Iwasawa’s vector spaces and the p-adic L-function was
conjectured by him (the “main conjecture” for the prime p over the field Q, cf.
Chap. 1, §1).

As the reader will see, if we take into account what is already known, — and
much is known, thanks to the work of Kummer, Stickelberger, Iwasawa, Ferrero-
Washington, — our problem can be reduced to the construction of enough
classfields of abelian extensions of Q, while keeping close tabs on the action of
Galois on the classfields. Broadly speaking, the problem we face comes under the
rubric of explicit classfield theory (for abelian extensions of Q).

But a wrong impression might arise from the label “explicit classfield theory”.
First, we may ask in what sense is our construction explicit? We obtain our
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classfields as splitting fields of certain finite subgroups of specific quotients of the
jacobians of modular curves. By virtue of what we understand about these finite
subgroups, we manage to show that our classfields are ‘large enough’, and that the
Galois action is as predicted by the main conjecture. Beyond that, we have little
explicit control. For example, our method sheds no light on whether Iwasawa’s
arithmetically-defined operators are semi-simple; a nontrivial question in the
event of a multiple zero of some Kubota-Leopoldt p-adic L-function (of which
no example is known).

Second, in what sense is it really classfield theory? We do not construct abelian
extensions of a given abelian number field F, directly. Rather, we construct a
“Tate-twisted” ideal class group of F*, the maximal totally real subfield of F. This
we could state less precisely by saying that we produce abelian everywhere
unramified extensions of cyclotomic extensions of F, which are in the minus part, in
the sense that the natural action of complex conjugation on their Galois group is by
multiplication by — 1.

To analyse 4(F)~, the p-primary component of the minus part of the ideal class
group of F, we use Iwasawa theory. We pass to the field extension F,, of F generated
by all p-power roots of unity; the “Tate-twisted” ideal class groups we construct at
finite layers, when brought to this field, are untwisted. We then descend. In a simple
case like F = Q(e*™?) we can recover A(F)~ as the Galois invariants of 4(F,)).In
general, the situation is more complicated. But if the degree of Fover Q is prime to
p, and if x is an odd character of Gal (F/Q), we use the ‘‘main conjecture” and some
key ideas of Greenberg to prove a formula for the order of the y-part, A(F)*.
Specifically, this order is the maximal power of p dividing B, (y )¢, where B, (x ')
denotes the k-th generalized Bernoulli number and g is the degree over Q, of the
field extension generated by the values of y (cf. Chap. 1, §10). This formula was
originally conjectured by Iwasawa and Leopoldt; it may be viewed as a refinement
of the theorem of Kummer-Herbrand-Ribet [56].

Since the “Tate-twisted” ideal class group of F* is, by a theorem of Tate,
isomorphic to K,(0r+), one might ask for some direct link between our con-
struction and algebraic K,; we haven’t found any. Nevertheless, as was already
known, the “main conjecture” implies the “Birch-Tate conjecture” which gives a
formula for the odd part of the order of K,(0,-) in terms of the value of the
Dedekind zeta-function of F* at — 1. Specifically, this order is a power of 2
times w,(F) - |{{(—1)|, where w,(F) is defined as the largest positive
integer N such that Gal (F({,)/F) has exponent 2. Combining our results whith
those of [5], [11], [63] one also obtains partial results (i.e., lower bounds) for the
order of K,,(0F+) (n=1, odd).

Our method does not construct abelian extensions of F*. As is known from
the work of Kummer and Iwasawa, the p-part of the ideal class group of F* is
majorized by the minus part of the p-part of the ideal class group of F*(e?™"?). The
class number of F* tends to be small, difficult to calculate, and as yet there is no
systematic method known for constructing the corresponding extensions.
Nevertheless, Greenberg has shown that the ‘“main conjecture” implies the ‘“Gras
conjecture” which we now describe.

Let F* be of degree prime to p over Q, with Galois group G, and let B(F*)
denote the p-primary component of the quotient of the group of global units by
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circular units of F*. Then A(F*) and B(F"), viewed as Z,[G]-modules have
isomorphic Jordan-Holder series.

It is interesting to note that the three conjectures we have just discussed (the
conjectures of Iwasawa-Leopoldt, of Birch-Tate and of Gras) are assertions about
number fields of finite degree, and yet our proof, via the ‘“‘main conjecture” of
Iwasawa theory, involves passage to cyclotomic extensions of infinite degree.

In a beautiful paper [56] Ken Ribet established the converse to the Kummer-
Herbrand theorem, using modular curves. This connection between modular
curves and the arithmetic of cyclotomic fields was developed further in [67], and
provides the starting point for the theory presented here. It may come as a surprise
that modular curves can be brought to bear on Iwasawa theory with such
effectiveness. Here is one way of viewing the intrinsic connection between the two
subjects. Iwasawa theory is concerned with (everywhere unramified) abelian
extensions of cyclotomic fields, i.e., metabelian extensions of Q. The Galois groups
of such extensions tend to admit representations in (the upper triangular subgroup
of) GL,(R) where R is a suitable finite commutative ring, of order a power of p. It is
then natural to search for these representations in (finite pieces of) the p-adic
cohomology of modular curves, which are canonical models for the group GL,q.
This search would be more in accordance with the prevailing philosophy if the
representations sought were over a field of characteristic 0 rather than over finite
rings, and if they were irreducible. Of course, neither is the case, and moreover, the
utility of the representations sought lies precisely in the fact that they are not
completely reducible. The technique we refine in this paper to use to control these
“triangular” representations is the theory of the Eisenstein ideal initiated in [47],
and further developed in [67]. That our search has been successful promotes the
hope that a similar theory exists for other reductive groups over Q.

$ 2. Iwasawa’s conjecture

We review the basic construction of Iwasawa theory in the case where the base field
F is Q(e?™'/7), the case of interest in a number of classical questions. For a more
complete review, see Chap. 1, §2.

Let F,=Q(e?*"""")and F,, = F,. Recall that Gal(F,,/Q)=Z}=F* x I’

where I' is the subgroup in Z} consisting of units congruent to 1 mod p. Choose a
topological generator y of I'.

Let L, be the p-Hilbert Class Field of F,. Let H,= Gal(L,/F,) viewed as
Gal (F,/Q)-module via the natural action.

Let H,= lim H, and V'=H_,®, Q,. There is a natural action of the Galois
group Gal (F,/Q) on V. Equivalently, we have commuting actions of F} and of I
on V.

Letw: Fj — Z} denote the Teichmiiller character, i.e., the unique character such
that w(a) =a mod p.

If i is an odd integer modulo p — 1, let V' denote the w'-eigensubspace of V.
Define HY similarly. Since F} and I' commute, the operator y preserves the
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subspaces V', It is a theorem of Iwasawa that V' and hence also V' is finite-
dimensional. Let A,(w',T) denote the characteristic polynomial of the operator
y —1 acting on V1,

For each nonzero even integer j modulo p — 1, Kubota and Leopoldt have
defined power series G ,(w’,T) in Z [ T]. If ueZ,, denotes the chosen generator y of
I' but viewed as p-adic unit, then the p-adic analytic function of s, L,(w’,s) is
G,(o’,u* —1). The following interpolation property holds for k=1,2,3,...:

L)1 —k)=—-B (0’ /k if j£k modp—1

where B, () is the k-th generalized Bernoulli number.

The p-adic analytic functions L,(w’,s) (the Kubota-Leopoldt p-adic L-function
attached to the character w’), and the power series G,(w’,T) are uniquely
determined by the above interpolation property.

The ““main conjecture’ for powers of the Teichmiiller character (‘“‘Iwasawa’s
conjecture”) then asserts that the ideal in Z,[T"] generated by /,(«',T) is equal to
the ideal generated by G ,(w' ~i T, provided iis an odd number, not congruent to 1
modp — 1.

Equivalently, the zeroes of the Iwasawa characteristic polynomial A p(w‘, T) are
equal to the zeroes of G,(w' ~*, T), counted with multiplicity, in the closed unit disc.

As for the excluded case i=1, it is known that V! is trivial, and hence
hy(0,T)=1.

$ 3. An outline of the proof of *‘Iwasawa’s conjecture”

The proof of the “main conjecture” for powers of the Teichmiiller character is
significantly easier than the proof in general. It may be of help to outline the main
steps of our proof, in this case.

Let, then, y = »’ where i is an odd integer not congruent to 1 modp — 1. Call
these characters admissible characters.

The first major simplification in proving the theorem is to observe that we need
only prove that 4,(y,T) is divisible by G,(x ™ ', T) provided that we prove this for
every admissible y. This follows from an easy application of the analytic class
number formula (cf. Chap. 1, §6). Roughly speaking the class number formula
gives the asymptotic behaviour of the order of the minus part of H, as n— oo and
if []h,(x,T) were strictly larger than [[G,(x ', T) (i.e., if the quotient were

divilsible by a nonunit power series) thisxwould be contradicted.

The second simplification we make is the introduction of Fitting ideals (cf.
appendix). If A isa commutative ring, and M a module of finite presentation over A,
the Fitting ideal F,(M) is an ideal in A4 which is a delicate measure of the ““size” of
the A-module M. In the case where A=Z,[T] and HY is given a A-module
structure by the rule y - x=(1+T) - x, then Iwasawa’s conjecture follows from
the formula:

Fy(HY) = (G,(0' ", T)). M
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As indicated above, to prove this it will be sufficient to show that

FAHD) = (G,(w! 7',T)) (@)
for all odd i1 modp — 1.
What we actually do, and this is also sufficient, is to construct a sequence

of unramified p-abelian extensions L{’ of F,, for each admissible y and for
n=0,1,... with the property that

F(Gal(LY/F )= (Gy(x o, T), w' - (1+T)" —1) (€)

and such that Gal (L{"/F,)) is a quotient of H' if y = w'. The extension L% will not,
in general, be an abelian extension of F,, only of F,.

By expressing the information in terms of Fitting ideals, we are not obliged to
consider the connection between our construction of L and L& *V; still less are we
obliged to pass to a limit as # goes to 0. As the reader will see, this is a very useful
simplification as it appears to be a non-trivial matter to determine what coherence
there is in the constructions of LY’ for varying n.

The use of Fitting ideals has one other advantage, of crucial importance to the
success of our method, about which we will comment later on.

In order to produce the unramified extensions Lgt")/ F,, and to demonstrate that
they have the requisite properties there are five principal “structures’ which need to
be examined:

(@) “Good” quotient abelian varieties B, of the jacobian of X (p").

(b) The Hecke algebra T in the Endomorphism ring of B,.

(c) The cuspidal subgroups Ci"’c:B,,((_)). These are finite abelian p-groups,
stable under the action of T™ and of Gal(Q/Q).

(d) The Eisenstein ideal I", defined to be the annihilator in T™ of C{".

(€) The kernel of the Eisenstein ideal E\’ = B,(Q)[/{"] in B,(Q). By con-
struction we have

0-CP— B, QU1 ~>MP 0 @

where M is defined to make the sequence exact.

The field LY is then defined to be the splitting field of E = B,(Q)[I"]
over F.

The ““‘good” quotients B, have the property that they achieve good reduction
everywhere over the field Q((,»)* where {,. is a primitive p"-th root of 1. This relies
on a deep result, originally proved by Langlands [44] using representation theory,
which has, more recently, been given an algebraic geometric proof by Katz [36].
There are no finite flat subgroup schemes isomorphic to u, in the Néron model
B,z 1,1+ - The fibre of B, in characteristic p is isogenous to the product of two copies
of the jacobian of the Igusa curve (in characteristic p) of level p". The standard
Hecke operators (7, for / # p, U,, {a) for integers a prime to p, modulo p") generate
asubalgebra T™ of the endomorphism ring of B,,, which is a commutative separable
algebra, and such that the Tate module tensored with Q, Ta(B,)®Q, is a free
T™® Q module of rank 2.

One can describe B, as follows. Let 4, =J,(p)/Jo(p), the quotient of the
jacobian of X, (p) by the jacobian of X, (p). Then 4,(Q) contains a maximal finite
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subgroup N stable under the Hecke operators and under the action of Gal(Q/Q)
having the further properties that it is annihilated by a power of 1¢” and it possesses,
as Gal(Q/Q( ») ")-module, a Jordan-Holder decomposition whose successive
quotients are isomorphic to |u,. Then B, is the quotient of 4, by the subgroup N.
The construction of B, in this case (n=0) was already given in [67], though the
result (3) for n =0 was not obtained there.

There is a mapping of the group ring Z[Z/p"Z)*/(+ 1)] to T™ induced
by [a]~<a). The ring Z,[(Z/p"Z)*/(+ 1)] breaks canonically into a product
of (p—1)/2 local rings corresponding to projection operaters e, where y:
(Z/pZ)* - Z} runs through the even powers of the Teichmiiller character. Each of
these local rmgs is canonically isomorphic to Z,[I'/I'?""] =Z LTI +T) " —1)
the isomorphism being determined by y+~ (1 + 7).

The p-primary component of the subgroup of B,(Q) generated by the image of
the “zero-cusps™ on J,(p") is a finite Z,[(Z/p"Z)*/(+ 1)]-module. Call C™ the
isomorphic image of this group under the operator Uy ™' - (U, — p). If y is an odd
power of the Teichmiiller character, let C” denote the image of C™ under the
projection operator e, where y = y "'~ '. We may view C% as a Z,[T]-module,
via the ring-isomorphism 1.

In Chap.4, we study the structure of the cuspidal group C{". Briefly, by
reduction to characteristic p, and a re-examination of the theory of Kubert-Lang
adapted to Igusa curves in characteristic p, we show that the annihilator of the
Z,[T]-module C{ is the ideal generated by G,(x 'w,u”'(1+T)"' —1) and
A+7)y —1.

We show that the finite flat group schemes generated by the groups C\” and M"”
of (4)over Z[{,.]* are étale and of multiplicative type, respectively. This is done by a
careful study of the structure of the fibre in characteristic p of a good model of the
modular curve. It then follows that the exact sequence (4), viewed as Galois
modules over Q,({,»)*, or as finite flat group schemes over Z [£,-1%, splits
canonically; the connected component of the group scheme E) 42,1c,.)¢ Drojects
isomorphically to M and the inverse of that isomorphism yields the splitting.

The 1somorphxsm between M and the connected component of EY is
important: firstly, it shows by a standard argument that the splitting field of E;"’ is
unramified at p over some cyclotomic field.

Secondly, and crucially, it enables us to show that M = M is not too small.
Let Z denote the contravariant Tate module of the connected component of the
I'P-adic component of the p-divisible group associated to B, over Z,[{,]*. Then if
T denotes the I"-adic completion of the Hecke algebra, M is isomorphic to the
Pontrjagin dual of Z/I - Z; M =Hom(Z/I{ %, Q,/Z,). We prove that Z is a
faithful T{’-module. It is at this point that the Fitting ideal theory becomes
indispensable. Since & is faithful, we have that:

Fro(Hom(M, Q,/Z,))= I =T ©)

which implies, by a fairly easy argument using the structure of C{" as Z,[T]-
module that

Fz i (Hom(M, Q,/Z,)=(G,(x 'w,u A1+ T) ' = 1)< Z,[T].
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Let us pause to consider this step. The T{"-module & is the least accessible
object in our theory. We know the important fact that it is faithful, by having
proved that Z®Q is a free T{” @ Q-module of rank 1. Beyond that the algebraic
geometry of modular curves seems to put no further constraints on the isomorphy-
type of 2 as T{-module. In fact, we do not expect any easy general description of its
isomorphy-type. In the special case where & is free, (5) becomes an equality:

Fro (Hom (M, Q,/Z,)) = 1.

The aid afforded us by Fitting ideal theory is that it shows us that, even if & is
not free, the Fitting ideal of Hom (M, Q,/Z,) is contained in 1", and consequently
M is at least as large as we expect. But, as the reader will see, the larger M is, the
larger L is. To sum up, our ignorance of the isomorphy-type of Z' doesn’t matter.

Early in our study of Iwasawa’s conjecture, this obstacle (the fact that we knew
very little about &) seemed difficult to surmount. We were then concentrating on
the first case of our construction (n = 0) where the difficulty still presents itself in
full force. At the time, we did not see the relevance of the Fitting ideal theory;
nevertheless we surmised that the isomorphy-type of & didn’t matter, and we
reduced our problem to a question concerning modules over commutative rings.
This question was promptly answered by John Tate, who pointed us in the direction
of the theory of Fitting ideals. It gives us pleasure to record our gratitude to him for
this; and to David Eisenbud, and David Buchsbaum for their patient help in
explaining to us that theory.

We continue with our outline of the proof. If G = Gal (L{"/F,.), then we have a
pairing,

G™ x M™ — C™ (6)

defined by (g, x)— gx — X where X is any lifting of x to E{".

And now we must deal with a confusing, but crucial, aspect of the structure of
the pairing (6). The groups M{ and C{ admit two natural, and distinct, Z,[T7]-
module structures. The first such structure comes from the natural action of Galois
on these groups; the second comes from the induced action of the diamond
operators on the jacobian of the modular curve X, (p"). Call these structures the
arithmetic and the geometric Z,,[ T]-module structure, respectively. Although these
structures are distinct, they are related by simple laws (twists) and we refer to both
structures, connected by such laws, as yoked bimodule structures.

The Galois group G possesses in its own right a natural arithmetic Z,[T]-
module structure. The pairing (6) may be used to induce a geometric Z,[ 7]-module
structure on G{” so as to make (6) a pairing of yoked bimodules.

We now use Fitting ideal theory again, together with the fact that, viewed with
its geometric Z,[T]-module structure C" =Z,[T]/(G,(x 'o,T"), 1+ T)"—1)
where (1+T")=u""'(1+T)"", to prove that The Fitting ideal of G{”, given its
geometric Z,[7,]-module structure, is contained in (G,(x~ Lo, T, A+ T)”"—1).

Using the law which yokes the geometric and arithmetic Z,[7]-module
structures of G we get the sought-for assertion concerning the Fitting ideal of G}”,
giving its arithmetic Z,[7]-module structure, and hence Iwasawa’s conjecture.
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§ 4. Complications arising from the consideration of more general characters

The ““main conjecture” requires us to deal with a general abelian field F, rather than
just F=Q({,). Instead of X, (p"), we must consider X, (ap") for a general integer a
prime to p. For various reasons, we cannot work with a single tame character at a
time. In place of a power of the Teichmiiller character, we consider a local ring
direct factor of the semi-local ring Z, [Z/ap” Z)*), which we call a component m. We
can decompose the p-divisible groups associated to J, (ap"), and to the “good”
quotient abelian varieties we construct, into a product, where the factors arein 1:1
correspondence with the components.

As it turns out, we needn’t consider all components: only pseudo-primitive ones
(cf. Chap.1, §3). Although this general context necessitates significant modifi-
cations in the definitions, one can still define the cuspidal group C® attached to a
pseudo-primitive component m, the Eisenstein ideal I, and the kernel of the
Eisenstein ideal E®.

Two major new problems do however arise in this more general context. For
powers of the Teichmiiller character (and, indeed, for any component possessing a
tame character of the form y’'- w* where y’ is unramified at p, and the greatest
common divisor of k and p —1 is > 1) we may depend upon the fine structure
theory of finite flat group schemes to enable us to pass from information about the
Galois representation associated to our finite flat group schemes C®, M®, E® to
information concerning their fibre in characteristic p, and conversely. However for
certain troublesome components, the theory of finite flat group schemes is no aid.

Second, among these ““‘troublesome components” there are some for which an
even more serious problem is encountered: if the component m possesses a tame
character of the form y'- w* where k= —1 mod p—1 and y'(p) =1, then one
cannot distinguish C” and M™ by their Galois actions. This leads to some rather
subtle considerations discussed at length in Chap. 5.

We are not able to complete our construction for all these components but
fortunately what we lack is compensated for by the theorem of Ferrero and
Greenberg. In fact the zeroes of the p-adic L-functions which elude our methods are
precisely the so-called trivial zeroes studied in the papers [22] and [18]. This
together with the analytic class number formula, and for certain components also
the theorem of Ferrero and Washington on the vanishing of the u-invariant, are the
only results we need from “‘classical” number theory. In particular we make no use
of Stickelberger’s theorem in this paper.

§ 5. An open question

Let F/Q be an imaginary abelian extension and let G denote its Galois group. Can
one give a simple description of the Fitting ideal of the minus part of the ideal class
group as a module over Z[G]?

$6. The framework of the paper

In Chap. 1, we describe the conjectures and their applications. In §9 of Chap. 1 we
reduce the problem to that of constructing unramified extensions with specified
properties.
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In Chap.2, we study the geometry of the modular curves, particularly in
characteristic p. We would expect the reader to find it convenient to use Chap. 2 asa
reference. The forthcoming book [36] might be consulted for a systematic treatment
of the general theory of the reduction of good models for modular curves.

In Chap. 3, we study the “good” quotient abelian varieties of the jacobians of
modular curves, and the Hecke algebra.

In Chap. 4, we study the cuspidal groups.

Our actual construction is given in Chap. 5.

The reader may profit by consulting [9] and [43] which are excellent expository
accounts of the results and techniques used in this paper.
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§$8. Errata

Each of us would also like to take this opportunity to correct some errors in our
earlier papers [47], [67].

1. Erata for [47]

1. Page 125, Corollary 16.3: The proof for this corollary is not given, and should
have been. Briefly, one makes use of the fact that J; is ordinary, and that the Weil
pairing induces a self-duality between its multiplicative-type and its étale parts.
These hints, together with what has been explicity proved in § 16 easily leads one to
a proof.

2. Page 105, line 18: I am grateful to Gerd Faltings for pointing out to me that
the middle equality on that line is not evident; indeed it just doesn’t follow from
lines 13 and 14. To show that 4 + B=0, one must proceed differently. I am
thankful to Dan Kubert for helping me out with the correct argument, which I
briefly sketch below.

Note that24 = (f), the divisor of the function fdefined at the top of page 108. If
f™ denotes the composition of fwith w, then 2B = (f™).S0:24+2B=(f" f*). We
must show that f- f* is a square in the rational function field of X,(N)%. Or
equivalently, and here we use that N =9 mod 16, in the rational function field of
X, (M.

Now we have the defining expression for fin terms of Siegel functions:
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f=constant) - ] 59,
ae(/p2)*

where yx(a)=(a/p) is the Legendre symbol. Here I am using the obvious
modification of Kubert-Lang’s notation for Siegel functions, i.e., (a,b) in Z/pZ
x Z/pZ rather than in 1/pZ/Z x 1/pZ]Z [39].
To compute /™ we use a result of Kubert and Lang (§ 4 of [39]) which applied to
our case gives:
f* = (constant) - [] g*9,.

ae(Z/pZ)*
beZ/pZ

Now let = denote “‘mod squares”:

f.fw= l_[ gO,n : 1_[ ga",b= H ga‘b

ae(Z/pZ)* ae(Z/pZ)* (a,b)eZ/pZ x Z|pZ
be(Z/pZ) (a,b) % (0.0)

and the latter product of Siegel functions is one.

3. Page 100, line 7 bot.. The formula for the action of 7; on X, (N) quoted here is
incorrect. The correct formula is, of course, well known (cf., e.g., [67], §2), and the
argument on the next page in which the formula is used is unaffected by the
correction.

(B.M.)
1I. Erata for [67]

Hida has pointed out that the formulas for U, in Theorem 5.3 are not correct as they
stand. They should state:

On Pic®(¢W), U,=<n, *>(Frob,+ Y. W,).
{*1

On Pic®(¢§"), U, = Ver,.

The proof is correct except for the formula giving the conjugation of Frob, and
Ver, by W. They should read:

W1 (Frob,)W=TFrob, - <{n; 1>, W~ (Ver,)W=Ver, -{n,>.
p p j4 p P p
(AW.)

Chapter 0. Notation and preliminaries

If Kis a field, K denotes an algebraic closure. If Kis alocal or global field, 0 (K) is its
ring of integers.

If Y is a scheme over a base S and 7T—S any base change, Y, denotes the
pullback of Y to T. If T'= Spec 4, we may also denote this scheme by Y. By Y(T)
we mean the T-rational points of the S-scheme Y, and again, if 7= Spec 4, we may
also denote this set by Y(A4).

If A, is a group scheme and N an integer, A[N],;is the kernel of multiplication
by N in 4, viewed as group scheme over T.
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A finite flat group scheme G over S is said to be of multiplicative-type if its
Cartier dual is étale; it is called ordinary for every geometric point s of S, the fibre G,
is a product of a multiplicative-type group scheme and an étale group scheme.

Proposition. Let K be a finite extension of Q, of ramification index not divisible
by p—1. Let ¢: G, —> G, be a morphism of ordinary finite flat group schemes over
O(K) such that the induced map

<P(I?)3 G, (I_Q -G, (K)
is injective. Then if k is the residue field of O(K), the induced mapping

p(k):  Gy(k)—G,(k)
is also injective.

Remark: Although this is all we shall use, much more is true: Under the same
hypotheses on K, and G, G,, any injection ¢: G, — G,, extends to a closed
immersion of G, to G,.

If we drop the hypotheses that G; and G, are ordinary, but require that the
ramification index of K be less than p — 1, these results remain true by the work of
Oort-Tate ([52]; for groups of order p); of Raynaud ([55]; for groups of type
(p,p,...,p); and of Fontaine ([20]; for arbitrary groups).

Before we give the proof of this proposition, recall the following consequences
of the theory of Oort-Tate [52]:

Any finite flat group scheme G of order p over ¢ (k) is isomorphic to a group
scheme of the form G, , for a, b elements of O (K) such thata-b=w,- 1 where w, is
equal to p times a unit. [52], §2; especially Theorem 2). The pair (a, b) is uniquely
determined by the isomorphism class of G up to multiplication by (p — 1)-st powers
of units in O(K), i.e. G,, = G, , ifandonlyifa’=u?"'-a,b=u?""- b’ for some
ueO(K)*. ok

The group schemes G,, and G, , are isomorphic over K (i.e. they have
isomorphic Galois representations) if and only if

a=r""t-q b=rr"1p
for some reK*.
The group scheme G, , is of multiplicative type if and only if b is a unit in 0 (K);
it is étale if and only if a is a unit.

Lemma 1. Let G, G’ be finite flat group scheme of order p over O (K), where G is étale
and G' is of multiplicative type. Suppose that the ramification index of K over Q, is not
divisible by p — 1. Then there are no nontrivial homomorphisms over K from G to G'.

Proof. Let G=G,,; G' =G, , where a and b are units in O(K). Let v be the
valuation of K, normalized so that if = is a uniformizer then v(rn) =1.

By our hypothesis, v(p) & 0mod (p — 1). But if there were a nontrivial homo-
morphism (hence isomorphism) from G, to G/x then b=r?"' - b’ for some re K*
and v(p)=vB)=(p—1) - v(F)+v(")=(p—1) v(r) yields a contradiction.
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We now return to the proposition.

Replacing K by a finite unramified extension, we may suppose that the étale
quotients G¢, G§ are constant group schemes, and the connected components
G, G are the Cartier duals of constant group schemes. By our hypotheses on K,
there are no nontrivial mappings between constant group schemes over K and
Cartier duals of constant group schemes (in either direction). It follows that the
inverse image of G, under ¢ is Gf, and consequently induces an injection of étale
quotients

1k

q,ét: G]ét ., th ,
proving the proposition.

In this paper we shall often be given p-divisible group schemes g such that for
some finite field extension K of Q,, the “‘base change” Iy is 1somorphlc to the
generic fibre of a p-division group scheme over O (K). By a theorem of Tate, this
group scheme over 0(K) is uniquely determined (up to a canonical isomorphism)
by I'x. We shall call it I}y, and refer to it as the prolongation of Iy over the base
0 (K). By the uniqueness theorem, one has that prolongations ‘‘commute with base
change”.

Given a finite flat group scheme G over K it is not necessarily the case that it
admits at most one prolongation to a finite flat group scheme over 0 (K).

Corollary to the Proposition. Let K be as in the proposition and let i)y Iy — I'/y be an
injection of p-divisible group schemes over K. Suppose that I and I'x have ordinary
prolongations over O (K). Then the unigue homomorphism

i Loy = Lo
which extends iy, ([64] Theorem 4) induces an injection on k-valued points:
i(k): I'(k) >TI'k).

Remark. The morphism i is, in fact, a closed immersion.
For use in Chap. 4 we include the following result.

Lemma. Let K be a finite extension field of Q, and O = O(K).

Let ¥, be the Néron model of an abelian scheme A x. Suppose ¥, has semi-stable
reduction.

Let G x< A be a finite subgroup scheme, and G, the Zariski-closure of G x in
No. Suppose that the splitting field of the action of Gal (K/K) on G(K) is an
unramified extension of K.

Then G, is a finite flate (étale) group scheme.

Proof. The Néron model commutes with unramified base change; schematic closure
commutes with flat base change. Therefore we may suppose the Galois action on
Gk trivial. Let 4, denote the constant group scheme G(K) over O. Since
M0O)—- H(K) is a bijection, we have a morphism u: ¥, — 4, such that u is an
isomorphism of % onto G . Therefore u factors through the schematic closure
G . Since ¥, is finite, s0 is G p.
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$ 1. Introduction

The object of this chapter is to recall the classical Iwasawa theory, to state the
“Main Conjecture for Q”’, and to show how all the arithmetic results obtained in
this paper may be deduced from one result (the Theorem of §9) concerning the
Fitting ideals of the Galois groups of a sequence of field extensions to be
constructed in Chap. 5. For various technical reasons, it is important for us to work
with components rather than with characters (this notion is explained in § 3) and so
we devote some space to the translation.

$ 2. Iwasawa theory in terms of characters

Throughout the paper, p will be a fixed odd prime. A p-adic Dirichlet character will
be understood to take values in (_)p. If y denotes such a character, then *“y”” will refer
to the primitive character associated to y. We sometimes also use the letter y to
denote the homomorphism from Gal (Q/Q) to Q} associated to such a Dirichlet
character by class field theory. We let 0, < Q, denote the ring extension of Z,
generated by the values of y, and K|, the field of fractions of ¢, . In what follows,
unless otherwise specified, y will always refer to a p-adic character whose conductor
is not divisible by p?. Such a character is said to be of the first kind.
Let p,v be the group of p'-th roots of unity and set

Q) = U Q).

Let Q,,/Q denote the cyclotomic Z -extension, i.e., the unique Z -extension of Q.
Thus Q,, is a subfield of Q (#,») of index (p —1). Let Q, = Q,, be the subfield of
degree p’ over Q.

Let F be a finite abelian extension of Q, and let £, = FQ_. We will assume
throughout that FnQ_ = Q. (Note that any y of the first kind is attached by class
field theory to a field F for which Fn Q. = Q). Let F,= FQ, so that F/Fis cyclic
of degree p”. Let 4, denote the p-primary component of the ideal class group of
F, and H, the Galois group of the p-Hilbert class field of F, (over F). Then class

field theory yields isomorphisms (via the mapping induced from y ' as in [7],
VII, §5);
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A— H,, ®

compatible with the actions of Gal (F/Q) on domain and range. Here the action of
Gal (F/Q) on H, is given by conjugation; viz. if he H, and o € Gal (F/Q), let 6 be any
lift of o to an automorphism of the p-Hilbert class field of F,, and then he=Ghé ™.

The inclusion of the divisor group of F, in the divisor group of F,, ; induces a
map i,: A,— A4, , . This map i, is not necessarily injective. However if 4, denotes
the subgroup of 4, on which complex conjugation acts like — 1 then the restriction
of i, to A, is injective (c.f. [32]). The isomorphism of (1) is such that the diagrams

Ayyy ——— H,\y 4, —— H,
l Norm lRes J iy ‘[ transfer
4, —— H, Aoy — H,y,y
are commutative. Set
szﬂrgAv, szliﬂHv.

Both 4, and H,, are Z,-modules which admit a continuous action of Gal(F_/Q).
To mark their dependence on F we may write A,(F), A, (F), and H,(F), H, (F).

Because FNnQ,=Q the group Gal(F,/Q) has a mnatural product
decomposition

Gal (F,,/Q)— Gal(F,/Q) x I' 2

where I' = Gal(F,/F,). If U is any Z,module with a continuous action of
Gal(F,/Q) on it we may view U as a module over the complete group ring,

Z,[I']=4mZ,[r/T,]

where I',= Gal(F_/F,), and possessing a commuting action of Gal (F,/Q). If
x: Gal(F/Q) —» 0} is a p-adic character, we define the y-part of U to be the
0,[I']-module obtained from U by change of scalars:

Uu,=U ® o0,
Z,[Gal(F/Q)]

For a given x we let A=A, denote the topological ring @,[I']. There is a non-
canonical isomorphism @, [I']—— @,[T], an isomorphism being given by picking
a topological generator y for I' and mapping y — 1 + 7. We make an arbitrary
choice of y, which we fix from now on, and we denote this isomorphism by a,. We
use it to identify O, [I']-modules with A-modules.

Let ~ denote the relation on A-modules of finite type given by pseudo-
isomorphism. Thus if 4 and B are A-modules we say A ~ B if there exists a
A-homomorphism from 4 to B with finite kernel and cokernel. For torsion
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A-modules, ~ is an equivalence relation. Iwasawa has proven that
Hom(4,,Q,/Z,),-' and H , are finite-type torsion A-modules and are pseudo-
isomorphic for each x: Gal (F/Q) — 0% (cf. [32]). Here H¥ , is the A-module with
the same underlying group structure as H,, , but on which Gal (F,,/Q) acts by the
rule gh* =g 1h.

By the structure theory of finite-type torsion A-modules (c.f. [62]), there is a
pseudo-isomorphism

H, ~A/h)®D...® A/(h,)

for some integer r, where each h;eA. Moreover, the ideal (k, ... 4,) is an invariant
of H, ,. We may pick a unique generator of this ideal of the form

By T) = - hy(T)

where A, (T) is a distinguished polynomial and 7 is a uniformizing parameter in ¢),.
In the theory of A-modules, 4, is called the y-invariant and A, = deg(h,(T)) the
J-invariant of the A-module H,, ,. We call h,(x, T) the Iwasawa polynomial of
H, ,. One checks easily that the Iwasawa polynomial for Hom(4,,Q,/Z,),
generates the same ideal in O,[T] as i, (x" ', (1+T)" ' —1).

Proposition 1. (i) (Iwasawa) For each odd character y, H,, ,andHom (4 ,,Q,/Z,),
have no finite A-submodule.

(ii) ( Ferrero-Washington) For each character y, H,, , and Hom(4,,Q,/Z,),
are both of finite type as Z,-modules. Equivalently, u, =0 for each y.

The proof of the first statement for Hom(4,,,Q,/Z,), may be found in [32]
or [24] and of the second in [19]. A similar proof can be given for H,, ,. We make
use of (ii) in the proof of our main theorem [in §9] only for a restricted class of
characters (cf. Chap. 5, §4, Lemma1).

Although the module H,, , depends upon the original field F we observe that
the Iwasawa polynomial %,(y, T) depends only upon x. For, suppose that F’ is
another abelian extension of Q, containing F, and such that F'nQ_=Q. By
restriction, y defines a character of Gal (F'/Q) and the natural restriction map from
H, ,(F)toH, (F)is easily seen to be a pseudo-isomorphism. (Here we are also
identifying Gal (F. / F}) and Gal (F,/F,) by restriction.) This follows from the fact
that in a cyclotomic Z -extension only finitely many primes lie above any prime of
Q.

If we make use of the result of Ferrero and Washington, then the Iwasawa
polynomial has a simpler description. To each of the modules H,, , we consider the

I'-representation space
Vi (F)= Hw,x(F)Q;)KX-

Again, if F’is an abelian extension of Q, containing F, and such that F'nQ, =Q,
then the natural map V,(F') - V,(F) is an isomorphism of I"-modules. Hence we

' Ifyel, acd,, feHom(4,, Q,/Z,) then we define (y - ) (@) =/(y ' a)
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write V, for V,(F). The dimension of the vector space V) is just the A-invariant of
H, ,. Using the fixed topological generator y of I', we find that the Iwasawa
polynomial 4,(y, T) is just the characteristic polynomial of the endomorphism y-I
acting on the K, -vector space V:

hy(x, 1y =det (¢ I — (3 — D)) €0, [1].

(If we did not assume the result of Ferrero-Washington we would still have that
h,(T) was the characteristic polynomial of y — 1.)

Although we will not use it in the rest of this paper there is another approach to
Iwasawa theory which we present here. Let M, be the maximal abelian p-extension
of F, which is unramified except possibly at the primes of F, lying above p. Let

M, =) M, and let X = Gal(M_/F,). To show its dependence on F we may
v=0

write X (F). Then X is a compact Z,module with a continuous action of
Gal(F,/Q), this action being given by conjugation defined in a manner analogous
to that for H,. If M is a A-module, let tors (M)=M denote the submodule of
A-torsion elements.

Proposition 2. ([8], Theorem 1.8).
X ~Ar® tors(X, )
where 6, =1 if x is an odd character and 6, = 0 otherwise.

If y is an even character, we may consider the Iwasawa polynomial f,(y, T') for
X, ,- This polynomial is independent of F in the same sense that 4,(x, T) was. As
previously, if we assume the result of Ferrero and Washington, then this is the
characteristic polynomial of y-I acting on W, (F) where

Wy(F) =X, ,(F) C;<)Kx.

We will now show how this polynomial is related to 4,(x, T).

Given a character y of the first kind it is easy to check that there is an Fsuch that
W, =W, (F)and F contains a primitive pth root of unity. We choose such an Fand
we note that then F,, contains Q (u,-). Set

Ta (ﬂp“) = Hom (Qp/Zl,w ﬂp“’) .
Then Ta(u,-) is a free Z,-module of rank 1, the action of Gal (F,/Q) on it being
given by the cyclotomic character,
e: Gal(F,/Q) -~ Z}

We write ¢ = w - k where w and « are characters of Gal (F/Q) and I' respectively,
which induce characters on Gal (F,,/Q) via the natural product decomposition (2).
Consider the u-dual of 4,

Hom (Aco’ ”p"") = Hom (Aoo9 Qp/Zp) ® Ta (ﬂp‘”)

with its naturally induced Gal (F,/Q)-action: that is if o e Hom (4, u,-), x € 4,

and g e Gal(F,,/Q), then (g¢) (2) = g (@ (g™ ®)).
The following theorem is a result from Kummer theory proved by Iwasawa. As

before x is a p-adic character: Gal (F/Q) — Q;
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Proposition3. [f y is an even character, then there is an isomorphism of O [I']-
modules

Xoo,x — Hom(Aao9/‘p‘”)x .

We note that we have assumed that p > 2. For p = 2 the proposition is not true as it
stands, see [24], Proposition 2.

By computing the characteristic polynomial of Hom(4,,u,), in terms
of the polynomial for Hom(4,,,Q,/Z,),, a simple calculation gives that the
0,[T]-ideals generated by f,(x, T) and by h,(wx ™', u(1 + T) ™' — 1) are the same.
Here u=x(y), where y is our chosen topological generator of I'.

§ 3. Characters versus components

Let Z [G] be the integral group ring of a finite abelian group G of order n. Fix p a
prime number, and set R=Z,[G]=Z,®Z[G]. Then R is a complete semi-local
ring, thus a product of local rings. If #is prime to p, Ris an étale Z,-algebra, a finite
product of discrete valuation rings. In general, if R denotes the 1ntegra1 closure of R
in its total quotient ring, then R is a subring of finite index in R. If nis a power of p,
then R is a local ring. If G, denotes the p-primary component of G, and G, the
product of all -primary components for /# p, then G=G, x G, and

R=1Z,[G,1®Z,G,].

There is a natural bijective correspondence between any of the sets in the
following list:

the connected components of Spec R

the maximal ideals of R

the irreducible idempotents of the ring R

the Q,-conjugacy classes of Q*-valued characters of G,.. (x and y are in the
same class if y =y’ for some aeGal (Qp/Qp))

We shall call the set of connected components of Spec R: I, and refer to the
elements of that set as components.

For each mell we have R,, the completion of R with respect to the
corresponding maximal ideal, and e, the corresponding irreducible idempotent.

We have
R = H Rm
mell

where the idempotent e, is the projection operator of R onto the factor R, viewed
as subring of R. The projection R — R, is flat. The Q,-conjugacy class of characters
associated to m is represented by the restriction to G, of the composite map
R-R, - Q for any homomorphism of R,, to Q

Call z the set of irreducible components of Spec R and refer to elements of X~ as
the sheets. If o is a sheet, let R, denote the quotient of R by the ideal of definition of
0. We have that the normalization of R is
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R=T]R,
geX

but the projection R — R, is not necessarily flat. There is a natural bijective
correspondence between the irreducible components of Spec R and Q ,-conjugacy
classes of Q*-valued characters of G. Each R,® Q B is a field and the conjugacy class
of Q*-valued characters of G corresponding to ¢ is obtained by the restriction to G
of the composite mappings R — R,®Q, - Q,, one for each embedding of R, ®Q,
in Q

If ¥ is a Q*-Valued character of G, we say that y belongs to the sheet o if its
Q,-conjugacy class corresponds o. Every sheet is contained in a unique component,
giving us a surjection £ —IT and an isomorphism R,®Q, — [[ R,®Q,.

gem

In each component, we may single out a sheet, which we shall call the basic sheet,
as follows: let x’ be a character of G, in the Q,-conjugacy class of characters
of G, corresponding to the component m. The basic sheet of m then corresponds
to the Q,-conjugacy class of the character y of G obtained from y' by composition
with the projection G — G, . Thus the basic sheet of m corresponds to the unique
equivalence class of Q¥-valued characters of G belonging to m which are of order
prime to p. These will be called basic characters belonging to m.

Fix an integer a prime to p and, for n =1, set G™ = (Z/ap"Z)* and
R™ =17,[G™]. We have the natural projections

—» RtD _y ROY s o5y R

and we let R denote the projective limit. Since (G"), = (G"),, for any n > 1, the
components of G™ are in one-one correspondence with the components of GV, If
m is any such component, we have the projective system

—>->R$",'+1)—-»R,(:)—»“'——»R,("l)

whose limit we denote R{®). By definition, the reduced conductor of any component
is the conductor of any character of order prime to p (i.e., any basic character)
belonging to m. The reduced conductor of any component is a divisor of ap. A
primitive component is one whose reduced conductor is exactly ap.

We shall say that a component m is a-primitive if its reduced conductor is either
aor ap. We say that it is pseudo-primitive if there is some character belonging to m
whose conductor is a or ap. Note that if m is pseudo-primitive of reduced conductor
ap/r then r is of necessity a square-free integer such that every prime ¢ dividing r
is either equal to p or congruent to 1 mod p, and (r,ap/r)=1.

Say that a component m is even (resp. odd) if every character belonging to m is
even (resp. odd).

Let Z, ,= lim Z/ap"Z viewed as (compact) topological ring. Let Q, , denote

the kernel of the natural surjection
Z* ,—~ (ZjpaZ)*. 6y

Thus Q, , is a compact topological group (the group of 1-units in Z} ).
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It is well known that Q, , is free pro-p-group on one generator, and any 1-unit
uel} , such that u % 1 mod ap* may be taken as topological generator. Explicitly,
for such a choice u, we have an isomorphism of topological groups

+
Z, o .

z—
The natural projection Z¥ —Z%,=7Z% induces an isomorphism
Q,,— 2,; and we identify Q,, (all a=1) via these isomorphisms,

denoting Q, ; by Q.
One checks that (1) induces an isomorphism from the torsion subgroup of
Z% , onto (Z/paZ)* and consequently there is a unique product decomposition

Z*  ~(ZlpaZ)* x Q. Q)

p,.a —

This induces an isomorphism of topological rings.
Z,[23.] — Z,[Z/paZ)*] [0] 3)

where we have used the convention that if 4 is a commutative topological ring then
A[Z} ] = lim A[Z/p"aZ)*]
and "
A[Q] = lim A[Q/Q].

In the notation of the previous discussion (3) becomes the isomorphism of
topological rings.

R™— RV[Q] )

and for each component m there is an induced isomorphism

R — RY[Q] (5)
and also, for every n>1, B
RY — RY [Q/r']. (6)

Where no confusion can arise we identify the above rings by the above
isomorphisms.

Examples. (1) a=1: then RV =Z,[F*] and R =Z,[Z*]. The components
are in one-one correspondence with the integers j modulo p-1 where the j-th
component R™ — R{!) is the projection Z,[F}]—Z, induced by x - w’(x) where
x€F} and  is the Teichmiiller character (w(x) = xmodulo p). We then have

R = 7, [].
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(2) To give a numerical example, consider p = 3, a= 7. The reader will easily check
that in this case there are four components, and only one of them is a primitive
component. Each component has two sheets. Belonging to the basic sheet, there is
precisely one character of G’; belonging to any non-basic sheet there are precisely
two.

§ 4. Twisting and yokes
Consider the natural mapping

£.00 Gal@Q/Q) ~ Zf, = lim (Z/ap"Z)*

characterized by the property that {%.® = (£ for every ap"-th root { of 1 in Q, for
each n. We refer to

e=g,,: Gal Q/Q)~ z

as the (p-) cyclotomic character. We let o denote the natural projection Z* , — Z* so
that we have a commutative diagram

Gal (Q/Q) z,

Z*
p
Now consider the twist automorphism
10 Z,[Z} ] =R > R™

defined by sending the element [g]eZ,[Z} ] associated to geZ¥ , to a(g) - [g].
This twist automorphism 7 takes even components to odd ones and vice versa.
The reason for the terminology ‘twisting’ is as follows. Suppose M is both an
R™-module and a Gal (Q/Q)-module such that its Galois action is obtained from
its R structure by composition with a homomorphism 4: Z,[Gal (Q/Q)] — R*.
Then giving the Tate-twisted module M (1) = M R) Ta* (u,-) an R'™ structure by

ZV . .
its action on the first factor, we obtain its Galois-module structure from it via th.

Definition. If k €Z, the k-twisted yoke p,: Z,[Gal(Q/Q)] - R is the unique
continuous ring homomorphism such that

Pi(8) =€) - [¢,,4(8)]-
Thus tp, = py 4. Define the conjugate k-twisted yoke

P Z,[Gal(Q/Q)]~ R

by the formula p,(g) = s_"_(g) “[e,,4(8)]7 . If mis a component, we denote by n, =1,
and i, =1 . Z,[Gal(Q/Q)] - R the composition of p, and p, respectively with
projection to the factor R{®.
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We shall be concerned with R{-modules (for some component m) which are
also endowed with a commuting action of Gal(Q/Q). We refer to these as
bimodules.

Of the “twisted yokes” introduced above, the important ones for us will be 4,
M-y Z,[Gal(Q/Q]—- R{®. For example, fj_, is a surjective homomorphism
characterized by the formula

M-y =1"1- 1"

where / is any rational prime number not dividing ap, ¢, is any Frobenius element
in Gal (Q/Q) associated to /, and [/],, refers to the image in R{® of the element
(1in Z,[Z% ]. _

We shall say that a bimodule is (17_,)-yoked if its Gal(Q/Q) structure is
obtained from its R structure via the homomorphism #_,. Note that, since
fi-, is a surjective ring homomorphism, a Z,[Gal(Q/Q)] module admits a
“yoked bimodule structure” if and only if ker#_, is contained in its annihilator
ideal, and, in that case, the yoked bimodule structure is uniquely determined by the
Gal (Q/Q)-structure.

$ 5. Stickelberger elements

Let k=1 be an integer and let Bk(x) be the k® Bernoulli polynomial (cf. [41],
Chap. 2). In particular, B,(x)=x —1 and B,(x)=x? — x+1. For xeR let {(x)
denote the real number = xmodZ with 0 <<{x) <1. We now introduce the
Stickelberger elements. For any positive integer N, consider

N
SN = (N1 3 Bk<< >) 11" €QUZ/NZ)*].
M=
More generally, for any integer b, form the element

B(EN =) L Bk(<b >) (171 €QZ/NZ)"].
(t, N) 1
Also, for use in Chap. 4, it is convenient to have notation for a minor modification
of these elements. For any a = Xa;[x;]€Q [Z/NZ)*] we write & for Za;[x;] .
Similarly, for an ideal a of the ring Z [(Z/NZ)*] we write a for the ideal of elements
& such that o ea. In particular, we have

84(b; N) = (V< k) - Z B(< >> (1.
(tN) 1

Note that 9,(b; N) depends only on b mod N and that [u] 3,(b; N) = 9,(u~'b; N).
Also of course 9,(N)=93,(1; N). The kt Stickelberger ideals we define to be the
ideals

S(N)=Z[Z/ND*] n ¥, $(b;N) - Z[(Z/NZ)*],

bel
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and
SN =Z(Z/ND)*] n Y, 9,(b;N)-Z[(Z/NZ)*].

beZ

If we restrict b to integers prime to p, we get ideals,

Si(N)=Z[Z/ND*I n Y S(b;N)-Z(Z/NZ)*],
bel
(b,p)=1

and S (N) defined similarly. The classical theorem of Stickelberger (cf. [61]) enables
one to show that the elements of 2S,(N) annihilate the ideal class group of
Q (&2*/V). We will not use this theorem in the present paper.

Let ¢ be an integer prime to 2kN and to the denominators of the k" Bernoulli
polynomial. For such a choice of c the element

S B; N)=(1 =+ [c] 1) (b5 N)

lies in Z [Z/NZ)*] (cf. [41] Theorem 2.1).

Now let N = ap" with (@, p) =1 and n = 1 and note that we have a compatibility
9y (b;ap"* 1) > 9, (b; ap™) under themap R™* Y — R™. Wemay therefore pass to a
limit to obtain an element

8y (biap®) = lim 8, (b;ap") € R

As usual, we set 9, (ap) =9, .(1; ap™).
Proposition 1. If t: R — R s the twist automorphism of § 4, then

T_l ) 'gk,c(apw) = '9k+ 1,c(apw) .
This proposition is proved by showing that
(. S, (ap™) = 41, (ap") mod p"
for each n. For the details, see Theorem 2.1 (ii) of [41].

For the remainder of this section we specialize to the case k=2. We will
therefore write 3 (b; N) for 9,(b; N), 3.(b; N) for 9, .(b; N), etc. We still assume
that N=ap" with (a,p)=1and n=>1.

If m is any component of R™ (cf. §3), let S,, (V) and S, (N) denote the ideals in
R® which are generated by the images of S(N) and S’(N) respectively. There is a
surjection of ideals

Sn(ap"**) > S;.(ap™)
induced by the natural projection R"*Y — R™. We let Sy, (ap™) S R{™ be the ideal
given by the projective limit as n— oo.
Welet §,.(b; N) be the image of § (b; N)in R® ®Q,.If mis not associated to the

basic character w? then there is a smoothing number ¢ for which (1 — ¢? [c]) projects
to a unit u,(n) in RY. In this case we find that

8,.(b; N)=u". (image of 3,(h; N) in R,)

and hence that §, (b; N) e R®. We refer to §,.(N)=J,.(1; N) as the (principal)
Stickelberger element at m (of level N).
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If m is not associated to w2 we have then that S,,(N) is generated by the
Stickelberger elements 3, (b; N) where b runs through the divisors of N which are
prime to p.

We define the “unhatted” versions, 3,,(b; N), S, (ap"), Sy (ap™) similarly.

Proposition 2. Let m be a pseudo-primitive component and not associated to w* (resp.
™ ?) or the trivial character. Then S;(N) (resp. S,,(N)) is generated by the 9,.(d; N)
(resp. 8,.(d; N)) where d ranges through those divisors of r which are prime to p.

For the definition of the integer r associated to a pseudo-primitive component
m, see §3.

Corollary. If' m is a-primitive and not associated to w* or to the trivial character, then
Sw(N) is the principal ideal in R generated by the principal Stickelberger element
3., (N).

To prove this proposition we shall be translating results proved by Sinnott for
the first Stickelberger ideal to the case of concern to us here (the second
Stickelberger ideal). We refer to [61] for the details of the first two lemmas below.

Let 4 stand for the group (Z/NZ)*/(+ 1) and if b is an integer prime to N, let [b]
denote the element in the group ring Z [4] determined by the image of b in 4.

Lemma 1. (¢f. Lemma 2.1 of Sinnott [61]). Let y be any Qp-valued character of A and
Sy its conductor. Then if m is any multiple of f,,

S w0 B((5) =% Ta-ave) B

tmod m glm
(t,m=1

where q runs over the primes dividing m, and B,(y) is the second generalized
Bernoulli number associated to the character .

Proof. This is an elementary calculation using the distribution relation satisfied
by B,. _
For any Q,-valued character y of 4 define the projection operator

1

“=1dl

Y ¥ (o) 0eQ,l4].
ged
For any prime number g, let
Yq= Z X_l(q)elEQP[A]
x:4-QF
where the summation is taken over the even primitive Dirichlet characters of

conductor N with values in Q,. Note that y, lies in Q,[4] and not just in Q,[4].
For any positive divisor f of N let

s;=) [t1eZ[4]

where the summation is over those integers t modulo N which are relatively prime
to N, and such that r=1modf. Let U denote the Z,[4]-submodule of Q,[4]
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given by

U={o;:a,=(N/f)-s;-[] 1—gy,) such that 1 <f< N,p"|f and f|N}.
qlf

In the above, the product is taken over the primes g which divide f.
Let w be the element

2 B,(y)/2-¢,€Q,[4]

y+1

where ¥ runs through all nontrivial (_zp-valued characters of 4.
Lemma 2. One has
(1—e) S(@N)=w-oay,
Jor d< N and d a divisor of N. In particular,
(1—e) - S(N)=w-U.

Proof. The second statement follows from the first because w - o, = 0. To prove the
first statement, it is sufficient to check that

py((1 —ey) - 8(d, N))=p, (W oy;s)
for each character y of 4 where p,, is the homomorphism QP[A]aQ-p induced
from y. For this, assume first that y is a nontrivial character and let f= N/d.
Writing £, for the conductor of y, consider the two cases:
o

In this case, p,(3(d; N)) =0=p, (ay,) since on either side one can isolate a

factor of the form
Pw( Z [t]>
t=1modf

For details, see [61].

S If:

In this case

py(B(dN)=N2- 3 v~ (1) B,(tfY)

(t,N)=1

=N2-(eM)e(MN) - X ¥~ () B(KH)

N=1
where the second summation is over integers tmodf which are, as indicated,
relatively prime to fand ¢ is Euler’s ¢-function. Using Lemma 1, this becomes

py(8(dN) = N2:(¢(N)@o(N)) B~ H)-1/f [T =gy (@). (1)

qlf
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The term on the right is equal to p, (w - ay,,). For the trivial character one has
also that p; (w - ay,y) = O since p; (w) = 0. But p, (1 — e,) is also zero. This completes
the proof of Lemma 2.

We return now to the proof of Proposition 2. Let ©,, denote the ideal in R™
generated by all the elements 9,,(d, N) where d runs through the divisors of r, which
are prime to p.

Let ay denote the image of ay, in RY ®Q,, under the projection R™ — R
and let &/, denote the R{’-submodule in R{Y®Q, generated by all the oy,
where d runs through the divisors of r which are prime to p. The element w is a unit
in R"®Q , because m is not associated to the trivial character. Hence multi-
plication by w induces an isomorphism

Su/On =UQRY |,
Our aim is to prove that the quotient modules above vanish.

Lemma 3. For each prime number q dividing ap|r, the image vy, , of y, in R ®Q,
vanishes.

Proof. For each character y associated to the pseudo-primitive component m we
have p,(y,) =¥ (q) =0 since y has conductor divisible by ap/r and hence by q.
Since 7, is zero on each sheet of m, y, . =0.

Now suppose that a, is one of the generators of U, i.e., that p"|f. It will be
enough to show that o, is in o/, . Let ro=(r,p) and let dy,=(d, r,). Then set
fo=N/d,. We claim that a;,, is a multiple of oy ,, by an element of R{. This will
prove Proposition 2 since o, , €9,.

Now we have the formulae

afy'“ = (N/f) ’ sﬁm ’ n(l - qu,m)’

qlf

afo,m = (NM)) ' sfo,m : l_[ (1 - qVq,m) .
qlf
Since f/f, = dy/dis prime to r (it is prime to p since by hypothesis d and d,, are prime
to p), hence the two products in the above expressions are the same by Lemma 3.
For, as was noted earlier, by the assumption of pseudo-primitivity (r, ap/r) =1.
Also, it is clear that s;,, is a multiple of s; , (indeed s, is of 5;) and so Proposition 2
follows.
Finally, we consider the two special cases omitted from Proposition 2.

Proposition2’. (i) If p > 3 and m is a pseudo-primitive component associated to »?,
then S, (N) is contained in the module generated by the set {3,.(d; N): d|r,(d, p) = 1}.
Furthermore, if q is a prime dividing r, then ¢*9,,(1; N) — 9,.(q; N) € Si(N).

(i) If p >3 and m is a pseudo-primitive component associated to y, (the trivial
character), then the module (1 — e,) Sy, (N) is generated by the set

{1-e)9.(d; N): d|r, (d,p)=1}.

(i) If p=3 and m is a pseudo-primitive component associated to y,, then
the module (1 —e,)S,(N) is contained in the module generated by the set
{(1 —e,)8,(d; N): d|r, (d,p)=1}. Furthermore, if q is a prime dividing r then
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(1 =) (¢° 9,(1; N) = 8, (g; N)) e(1 — ;) Su(N).

Proof. Except for the statement that ¢*3,,(1; N) — 3,.(g; N) is in S,,(N) in part
(i) and the parallel statement in part (iii), the proof is, with some obvious
modifications, the same as for Proposition 2. Note that the difficulty in part (i) is
simply that the elements 9, (c; N) are not necessarily in R®, but only
in RPY®Q,.

To see that ¢*9,,(1; N) — 9,.(g; N) is in R®™ and so also in S;,(N) one just
observes that the usual proof for smoothing numbers (where the assumption is
made that c is prime to N) works also in this case (cf. [41] Chap. 2, in particular,
Theorem 2.1).

Remark. If in addition to the hypotheses of Proposition2 we have that N=ap
(i.e., n=1), then S, (N) =S, (N). This follows easily from the fact that y, e R\ in
this case.

In order to study the pseudo-primitive components we will need a further
modification of the Stickelberger elements. Let m be a primitive component with
basic character y of conductor ap/r wherer = ¢, - - - q,. The g; are distinct primes and
(r,ap/r) =1. For each g; + p let n,, be an integer such that n,; =g¢;mod N/q; and
n,;=1modg;. For any ¢ dividing r, with (¢,p) =1, set

v =[] a:n,)~",

qilt
ORICIVE

where d (1) is the number of distinct prime divisors of ¢. Then for any integer s and
any r’' dividing r set

YUss )= Y u(@)9,0:(1)9).

tr
(tp)=1

Also, let S¢7(N) be the ideal of R, contained in S,,(N), given by the image in R
of

SPON)=Z(Z/NZ*I n Y, 9(b;N)ZI(Z/NZ)*].
Grp=1
The following proposition is an analogue of Propositions 2 and 2’ and is proved
in the same way. We omit the proof.

Proposition 3. (i) Ifm is pseudo-primitive and not associated to y, nor tow* ifa=1,
then

SW(N) =315 N)).
(i) If m is pseudo-primitive and associated to y,, then

(1 —e)SPNV)=(1—-¢e) X1 N)).
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Proposition 4. Let m be a pseudo-primitive component of level N = ap™ and let y be the
basic character attached to m. Suppose that y is of conductor ap|/r and that r|r. Then
for any divisor d of N,

Py (d; N)=%¢ci-B,(w™ ) TT(1—¢*v ™ ()

qlro

for some integer c,.

Proof. Recall that r=g¢q, - ¢, is a product of distinct primes, and that (r, ap/r) = 1.
Suppose that v=1 and let f, be the conductor of y. If g, = p the proposition is
obvious in view of (1) since in this case the Euler factor is a unit. If f, ¥ f= N/d then
the equation is satisfied with ¢, = 0. If on the other hand £, | fand ¢, # p, we obtain
from Eq. (1),

Py (899 (d; N)) = p, (9,.(d; N) — 9,,(dgn; *; N))

N o(N) - 20 -1
=52 —— By ) (1 —¢’v ().
2f () ?
The general case is similar and we omit the calculation. R
We have, also, analogous results for the “‘hatted” versions 3¢"(s; N), S¢”(N)
etc., defined in the evident manner.

$ 6. p-adic L-functions

Recall that the p-adic L-function L ,(y, s) attached to a non-trivial, even, primitive
p-adic Dirichlet character y is the unique continuous function defined for seZ,
such that

L,(x,1-k)=—-01—-x@pr HB.(uwlk,

for k=1,2,3,... Here x, = “x»~*” is the primitive character associated to yw~
and

k

S
B (x) = (1/f) Z B, <<§>> (1)

t=1

“N=1
where f'is the conductor of y,.
Iwasawa has shown that if y is of the first kind (i.e., with conductor not divisible
by p?) then there is a unique power series G,(x, T) €0,[T] such that

G,(r, ' —1)=L,(x,s) for all seZ,.

Here u =k (y) is chosen for later convenience (for the definitions of x and y see § 2);
such a power series would exist for any p-adic unit u = 1 mod p and u = 1 mod p?. If
¥ is an arbitrary primitive even character then we may write y uniquely in the form
X=P L Where x, (= y.me) and p are of the first and second kinds respectively.
(A p-adic Dirichlet character is said to be of the second kind if its conductor is a
power of p and it has order a power of p). Iwasawa showed that if y, is non-trivial
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G, (X, {w’ =) =L, (%, 9) ™

where { = p (1)~ '. Similar statements hold even when y, is the principal character,
although then there is a pole at s=1. For details, see [23] §8 or [30].

Iwasawa gave an explicit construction of the power series G,(x, T) as follows.
Suppose now that y is a non-trivial primitive even character of conductor a or ap,
with (a,p)=1. If k=1 and 9, (ap®)e R is the k™ Stickelberger element
smoothed by c (see §5), denote by

Gp,k,c(x, T) € 01 [[T]]

the image of 9, .(ap®) under the following composition of homomorphisms:
a,: R =RV[Q] — 0,[9] —:—» olr]. ®)]

Here we are considering y as a homomorphism (Z/apZ)* — @;even if the conductor
of x is a. The map o, is the unique continuous ¢,-linear isomorphism which maps
[u]€0,[2] to 1+ T.If yw~*is not of p-power order, then the image of 1 — ¢*[c] ™"
under these homomorphisms is a unit power series u, , .(x, T) in 0, [T]. Under this
hypothesis we define the kt Stickelberger power series attached to x

Gp,k(X, T) E@z[[T]]

to be the quotient power series G, ; ./u, . .. It is easily seen to be independent of c.
Even if yow ¥ is p-power order the same construction still gives a power series
G, (x, T)€®,[T] provided that a> 1. It is also the image of the element

lim (8(1; N) - (1/4)9(g; N)) e lim R™ =R

under «, . Indeed, the equivalence of these two constructions shows that G,(x, T), a
priori in the quotient field of [T, is actually in O,[T7] itself.

Iwasawa’s construction of G,(y, T') is in terms of the first Stickelberger power
series. Specifically he proved that

Gp(X9T)= - p,l(Xalw,T)'

In view of Proposition 1 of § S we may also write this in terms of the k* Stickelberger
power series for any k> 1,

Gp(X5T)= - p,k(X—lwk9 uk_l(1+T)__1) (3)
This follows easily from Proposition 1 of § 5 and the commutativity of the diagram

al
RO — >, 0[T] T

1.—1

R®—— 0,[T] uwl+T)-1

X0
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where o, is the composite homomorphism in (2), and " is the inverse of the twist
automorphism 7 introduced in §4.

Let y denote the “dual” character, that s, § = “wy !>, the primitive character
attached to the product w-x~!. Recall from §2 that h, (%, T) is the Iwasawa
polynomial of H, ;. The Main Conjecture for Q ([23], §1; [8], §5) asserts:

Conjecture.? Let x be an even primitive Dirichlet character of conductor not divisible
by p*. Then as ideals of O,[T]:

(h, (%, 1) = (G, (x, 7).

Remarks 1. If y=y, is the trivial character it will be convenient to define
G,(x,T)=1 (though there is perhaps a more natural choice, cf. [23], §4). The
conjecture then also makes sense for y =y,. We note that for y=w?, p>3,
G,(x, T) is a unit power series. This follows easily from the fact that B, =¢.

2. If x is an odd character, then G,(x, T) is not defined, as the corresponding
p-adic L-function is identically zero. There are no known examples for which
h,(%, T) is not equal to 1 in this case.

3. The main conjecture for Q as formulated above has been described by
Greenberg [23]. In the article cited, Greenberg shows the equivalence between the
main conjecture for Q and a broader conjecture involving p-adic L-functions
attached to imprimitive Dirichlet characters over Q.

Coates has formulated a conjecture [8] (a main conjecture for any totally real
field) which is more general than Greenberg’s formulation in the sense that it
concerns the p-adic L-functions attached to arbitrary totally real fields, but
nevertheless it does not quite include Greenberg’s since Coates considers only a
restricted class of Dirichlet characters.

A crucial step in the direction of this conjecture is afforded by the analytic class
number formula. One obtains from this classical formula two propositions, the first
being essentially due to Iwasawa ([23], §5), the second using a theorem of Coates
together with the p-adic residue formula of Leopoldt (cf. [24], Proposition 5).

If fe®,[T] we write u(f) for the largest integer such that n~*" fe@,[T]
where 7 is a uniformizing parameter for ¢,. We may then write # ~**/)fin the form
Jo - u(T) where f; is a distinguished polynomial and u(7) is a unit power series. We
let A(f) be the degree of f;.

Proposition 1. Let F be a totally imaginary cyclic extension of Q. Then
YAG(LTN=Y A1 1)), 2 (Gt 1))=Y u(h, (%, 7)),
X X X X
where the sums are taken over those even x for which F(3), the field attached to j by
class field theory, is F, § being the corresponding dual characters.

Proposition 2. Let F be a totally real cyclic extension of Q. Then
YAG,6T)=Y A, 1), Y u(G,(0 1))=Y uh,(1 1)),
4 X 4

where the sums are taken over those even y for which F(x)=F, § being the
corresponding dual character.

2 See the theorem of §9
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Using either of these we see that to prove the main conjecture it would be
sufficient to show that the Iwasawa polynomial 4,(, T) is contained in the ideal of
0,[T] generated by G,(x, T) for each .

It remains to compare the Stickelberger ideal with Stickelberger power series. If
k=2, and yx belongs to a pseudo-primitive component m as in §3 and if

% R —>0,[T] 4

is the homomorphism such that composition with the natural projection
R —» RG? yields the homomorphism «, of (2), then we have

Proposition 3. If y is a non-trivial even character of conductor a or ap and y + ™ ?

if a=1, then
O (Sn(@®) =G, (1™, A+T) "' =1), ©)
as ideals of 0,[T].

Proof. In the case where m is a-primitive, this follows immediately from the
relation

O m(13ap°) = G, (7Y (14 T) 71 = 1)

since it is clear from the corollary to Proposition2 of §5 that S (ap®)
=(8,.(1; ap™)). More generally, if m is pseudo-primitive and not associated to y, or
to w2 it follows from Proposition2 of §5 that

Su(ap®) ={,(d; ap™): d|r, (d) p)}.
To see this we just observe that
{On(d; ap®): d|r, dX ply, 1 ={8.(d ap®): d|r, d X p}

where M,  r»+_; denotes M/((1+T)?°— 1) M. Now since y is of conductor a or ap,
Ol (3,.(d;ap®)) =0 for d|r, (d,p) =1, and so again we have (5).

When m is associated to w~2 and p>3 the same argument shows that
Si(ap®)< (3, (1; ap™)) by Proposition 2’ of § 5. However, as in this case a & 1, by
the same proposition there is a g |r, g * p, such that

lim {g*8,.(1; ap") — 8,.(g; ap")} € Sm(ap™).

n- o

Applying «, again gives the desired relation. The remaining cases where m is
associated to y, also follow directly from Proposition 2’ using that p (1 —e;) =1.

$7. Iwasawa theory (in terms of components)

Let K be a number field, Galois over Q, with abelian (but not necessarily finite)
Galois group. Let L/K be an algebraic p-abelian extension (also not necessarily
finite: a union of finite p-abelian extensions) with Galois group G. We suppose that
L/Q is Galois, and we view Gas a Z ,[Gal (Q/Q)] module via the usual conjugation
operation.
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Definition 1. The extension L/K is said to be of type m if the Gal (Q/Q) module G
can be given a 1_, “‘yoked module structure”. It is equivalent to require that the
kernel of 7j_:Z,[Gal(Q/Q)] —» R\ annihilate the module G.

Remark. 1t is important to notice that our yoke 77_, has a twist inherent in it, and
therefore an extension L/K of type m where m where m is an even component will
have the property that a complex conjugation of K acts as —1 on G.

Definition 2. A finite extension L/ K is said to be everywhere unramified if there is an
algebraic number field of finite degree K'= K and an L'c L containing K' such that
L=L"Kand L'|K' is everywhere unramified. In general an extension L|/K will be
said to be everywhere unramified if it is a union of finite everywhere unramified
extensions.

We shall be especially interested in everywhere unramified abelian extensions
of type m for some component m. More precisely, let m be a component not
necessarily primitive. Let F,f denote the finite (real) abelian extension field of Q
‘cut out’ by the set of Dirichlet characters of conductor dividing ap belonging to m.
That is, if S denotes this set of characters,

Gal Q/Fy¥) = () ker ()
XES
where the y’s are viewed as characters on Gal(Q/Q). Set F, = F, ({ »)-

Recall that Q, is the unique Z -extension of Q and set K, = F,,- Q. Let L,
denote the maximal everywhere unramified abelian extension of K, of type m.
Set H,, = Gal(L,,/K,,).

The connection between H,, and the ¢ ,-modules H, , introduced in §2 is as
follows. Let y be a character belonging to m of conductor dividing ap. Let H, ,
denote the O, [T]-module obtained from H,, via the change of scalars

RY =Ry [Q] — 0,[I'] — 0,[T]. €9

Here o, is the same map as in (1) of §6. Then let V,, , denote the K, -vector space
Vm,w = Hm.w ® g, Kw .

It inherits a continuous action of I.

Now let x denote the character (yw) ' andlet H,, , = H,, ,(F,) be the module
studied in § 2 with F= F, . (Note that F,, nQ,, = Q so this is defined). As previously
welet ¥, be the corresponding K, -vector space. Then the following proposition is an
immediate consequence of the definitions of H, and H,,. Note that 0, =0,.

Proposition. The natural map H ,— H,, induces an isomorphism of O ,-modules
H,,— H,,

and hence also of K,vector spaces, V, — V, ,. The relation between the

0,[T]-module structures on domains and ranges is given by
ua((@+7) x)=01+7)""a(x)
for xeH,, , (orV,).
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Remark. As Galois-modules the isomorphism « is of course compatible with the
actions on range and domain. What we have done here is to introduce a ‘twisted’
action of @,[T] on H, , via its yoke whereas the action on H, , has been left
untouched. Our purpose in doing this is to lay the groundwork for Chap. 5 in which
this twisted action will occur naturally on a certain quotient of H, .

$ 8. Virtually unramified extensions

Our main construction will not necessarily produce an everywhere unramified
extension (Chap. 5, §6) if m is not a-primitive. We shall therefore study a more
general type of extension in this section.

Recall the standard terminology: m is a component of Z,[(Z/ap" Z)*]. We
suppose that m is pseudo-primitive with basic character of conductor ap/r. Let K
denote a subfield of Q ({,,-).

Definition. An abelian extension L/K is said to be virtually unramified of type m if
L/K is of type m and if it is unramified except possibly at primes of residual
characteristics dividing a.

In the notation of the previous section, if K= F, - Q,, let L# denote the
maximal virtually unramified extension of K, so that we have the tower of fields

L3
I Im
HY L, M
| (Ha
Km

with indicated Galois groups. If y is a character belonging to m, let H ¥ , denote the
base change of H* via the change of scalars (1) of §1.7.
Set

Vo, = H:,w§ K,.
We have natural mappings
H:f,w -H,,; V"fw = Viu-

Proposition 1. If m is pseudo-primitive (notation as above) and if L|K is a virtually
unramified extension of type m, then the primes of L which ramify over K have
residual characteristics dividing r and different from p.

Proof. Fix a prime q which divides a but not r. We may suppose that L is a finite
extension of Q. Let L, = L be the maximal subextension which has the property that
Ly/K is unramified at primes of residual characteristic ¢. By class field theory, the
Galois group Gal (L/L,) is isomorphic to a quotient of

[To&)*
Alg

where K is the completion of K at A, A runs through all primes of K of residual
characteristic ¢, and @ (X)) is the ring of integers of K.
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Since ¢ # pand L/L, is a p-extension, Gal (L/L,) is, more precisely, a quotient of

[Tk
ilg
where k; is the residue field of K.
Let v =0 be such that K< Q({,,v). The natural action of

Gal(Q (,,")/Q) = (Z/ap” Z)*
on [] k¥ factors through the quotient

Alg
(ZJap’ Z)* - (Z / “*;l : z) .

Consequently the same is true for the action of (Z/ap® Z)* on Gal (L/L,). But
Gal (L/L,) is a yoked bimodule of type m ([it is a bi-submodule of Gal (L/K)]) and
since every character belonging to m has conductor divisible by g, it follows easily
that Gal (L/L,) vanishes.

Corollary. If m is a-primitive, then a virtually unramified extension of type m is
everywhere unramified.

Proposition 2. Let m be pseudo-primitive andy a character belonging to m such that
a divides the conductor of y. Then the natural surjection H} ,— H,, , has finite kernel
and so induces an isomorphism

*
Ve =V

Proof. As in the proof of Proposition 1 above, using class field theory we may
obtain I, as a quotient of some explicit Z ,-module of finite type (there being only
finitely many primes of K|, lying above any rational prime). Moreover, [, is a
product of Z -modules on each of which the natural action of lim Z,[(Z/ap" Z)*]
factors through the projection

. . ap" _\*
lim Z,[(Z/ap"Z)*] - lim Z,| | Z p Z
for some g|r, g # p.

For each such ¢ we may find an integer «, mod ap such that «, =1 mod (%)
and y () # 1. Then [T (x,)— 1) annihilates I, , = I,, ) 0,,, which is therefore a
Ir Ry

finite group. The proqposition follows.

$ 9. Our Main theorem

Let X be the set of pseudo-primitive components of the following types.
(i) of level N =p" and with basic character w2
(1) of level N=p" and with basic character y, (the trivial character)
(iii) of level N = ap" and with Sy, (ap) the unit ideal in R".
It will be convenient to separate the pseudo-primitive components m ¢ X into

two types. To distinguish these types let y be the basic character associated to m and
write
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Y=y, o
where ¥, is a character of conductor prime to p, w is the Teichmiiller character

and k is an integer, 0 < k < p — 1. We will say that we are in case (1) if either of the
following conditions hold

@) vy (p)*1

®) k+-1.

Otherwise we say that we are in case (2).

In Chap. 4, § 3 we will define an ideal b for any pseudo-primitive component.
In case (2) we define a modification of this ideal, b*™, in Chap. 5, § 5. This depends
on the choice of integers x and / (not to be confused with the k appearing above)
which themselves depend on m. Rather than distinguish the two cases we will adopt
the convention that for the rest of this section b will refer to b* in case (2). We
hope that this will not lead to any confusion. Also we will define x to be zero in case
(1). Then for any pseudo-primitive component mg X we shall produce two objects:

an ideal b = R®

an extension of type m, L/K ., which is virtually unramified in the sense of § 8.
These constructions have the following properties.

(I) The ideal b is closely related to the Stickelberger ideal. Explicitly, if n,, is
an integer such that n,; = 1modg; and n,, = g;mod (N/g;), then

(—=1{p* H (ilng1—1) B < S (N). M)
it

(II) The extension is ‘large’. Explicitly, if G™ = Gal(L™/K,,) is the Galois
group viewed as an R{®-module, and ® is the R{®-fitting ideal of G, there is
an ideal A, = R of finite index (and independent of n) such that A_ PP is
contained in the inverse image of b® in R, for all n = 1. (The ideal U, can be
taken to be the unit ideal in case (1)). Moreover, L/K,, is ‘virtually unramified’,
i.e., it is a p-extension unramified outside primes dividing a.

Remarks. (i) In each of types (i)—(iii) for the component m € X one checks that
Gp(“u/wz”, T) is a unit power series for any y attached to m. In the first two cases
this is true by remark (I) of § 6. In the third case evaluatingat T=u"' — 1 and using
the relations of §6 (assuming that y + w?, x,),

G,(“yo?,u" =)= -1 —y(p)p)B,(¥)/2€0,.

Now under the hypothesis that S; (ap) is the unit ideal we have that
pw_l(ﬁ,; (ap))=0,,. But by the explicit formulas in the proof of Lemma 2 of §5
every element of pw-.(S,; (ap)) is a multiple of B, (y). Hence B, (y) is a unit mod p
and this shows that Gp(“l//wz”, T) is a unit power series.

(i) The ideal b is defined to be the annihilator in R™ of a certain finite
subgroup, generated by divisors of degree zero with support on certain cusps, of the
p-divisible group of a certain specific abelian variety quotient of J, (ap”) (see Chap. 4
and 5). The action of R on this p-divisible group is via the ‘diamond operators’.
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(ili) We show that if m is a-primitive and we are in case (1) then the inclusion
b® < S (N) of (1) is actually an equality. By the corollary to Proposition 2 of §5
this ideal is principal, a generator being the principal Stickelberger element 3, (N).
In general, we show that b is a Gorenstein ideal in the sense that R™/b®™ is a
Gorenstein ring (Appendix, Proposition 4). We note that any principal ideal in R%
is Gorenstein.

Let b{ = R{* denote the intersection of the inverse images of the ideals b
under the natural projection Ry — R for n=1, 2, ---. Recall that H¥ is the
Galois group of the maximal virtually unramified extension of K, of type m (see §7
and §8(1)). Let ¥ denote its Fitting ideal in R .

Proposition 1. Assume that m ¢ X. Then there is an ideal W, = R of finite index
such that W - ®* is contained in B .

Proof. The proposition follows from assertion IT and the fact that the R{®’-module
H* maps surjectively onto G for every n, in view of Appendix (10).

Proposition 2. Lety be an even character of conductor a or ap belonging to a pseudo-
primitive component m ¢ X. Then the Iwasawa polynomial h,, ,(T) of H,, ,, satisfies
the relation

A=lyOUIM)* [T A= qw () [g1(T)hy (TS (G, (w1, A+ —1)

qlr
a.%p
Proof. First, to interpret the proposition we note that we have written [¢;](7) for
the power series in 7 associated to it, namely if ¢, is viewed as an element of Z ,,
q;=u" for some a;€Z,, then [¢;](T) = (14 T)«. (Note that g;=1mod p.)
By considering the relation (1) for each =1 we obtain the inclusion of
R{@-ideals,
Yo" B S Sin(ap™) )

where y,, is given by the formula

Y= llm A=10D TT 4 =gq:[n3D).
ilr
qq*P
Here n{? is any integer mod ap" satisfying nl? = ¢,;mod (ap"/q;), n{? =1modg;.
We now apply the map «,, , to both sides of (2). From proposmon 3 of §6 we
have that o, , (Sw(ap®)) = (G, (W~ ',(1+T)" ' —1). An easy calculation shows
that

Oy (V) = (1 =y O[T = q:w(9) [9:1(T)) -

By the proposition of §7, H* , and H,, , have the same Iwasawa polynomial

hy,,(T). By the corollary to Proposmon 2of the appendix, there is an ideal of finite
index A;, < R{™ such that

Wy gy (T) S ety (BF).

So, applying «, , to both sides of (2) the proposition follows easily from
Lemma 3 of the appendix.



214 B. Mazur and A. Wiles

Recall that for an even primitive non-trivial character y of the first kind we have
the power series G,(x, T) of §6 with the property that G,(x, u*—1) = L,(x, 5). We
also have the Iwasawa polynomial #,(%, T) of §2.

Theorem. The main conjecture for Q and for odd primes p is true (cf. §6), i.e.,
for each even primitive character y of conductor not divisible by p?,

(hp, (%, 1) = (G, (1, 7))

Proof. We use the notation of §7. Let y denote the character yw 2. Then y is a
character of conductor a or ap (with (a, p) = 1), and we may view it in either case as
giving a homomorphism (Z/ap Z)* - O} . As such it is attached to some pseudo-
primitive component m. By the proposition of §7 the Iwasawa polynomial of
H,;is h, ,(u™'(1+T)~'—1). By Proposition 2, if m ¢ X, then

A=yDOUD*[] A=y lg: ' Dhy,, @ ' A+~ 1)
qgilr

== Gp,Z(w_l’u(1+T)_1)a

where here and subsequently in the proof we abbreviate [g; *](T) to [¢; !]. (We
have used here that in the change of variable T+~ u~'(1+7) ! — 1, the element [g;]
gets taken to ¢; ! [g;'].) We can rewrite this in terms of y, using (3) of §6,

A=yOUT D[] A=y(n) lg7 " Dh,(LDEG, (0, T).
it
Let us write [g; !]= (1+T)%. Then the power series 1 — y(n,)(1+T)% has a
zero if and only if ¥ (n,,) is a p-power root of unity. This root is then a solution
to the equation (1+ T)? =1 for some r. If the root is non-zero, i.e., of the form
{ —1 for some non-trivial p-power root of unity {, then

G, (1, {=1)=L,(0,1p) = —(1 —xpo>~")(p)) By (xpor™") 0

where p is the character of p-power conductor such that p(y)={"!, and the
equation follows from (1) of §6, If, on the other hand, the root is at 7= 0, then
G,(x,0) is again non-zero if yw~'(p) 1. But if yw™'(p)=1 then Ferrero and
Greenberg have computed the multiplicity of the zero at 7= 0 for both 4,(§, T) and
G,(x, T) and they are both equal to 1 (cf. [22] and [18]). Here we only need the result
for G,(x, T). Exactly the same analysis applies to the zeroes of (1 —y (/) [/ *]). Inall
cases we can deduce the relation

G, (6 D) k(% T).

Finally, for those characters y associated to an m € X, we have the same relation by
remark (i) at the beginning of this section. This is sufficient to prove the theorem
either by Proposition 1 or 2 of §6.

$10. Arithmetic applications

(i) Ralph Greenberg has shown how the main conjecture implies a conjecture of
G. Gras concerning the structure of the ideal class group of real abelian fields.
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Special cases of this conjecture were implicit in the work of Kummer and Iwasawa.
We quote from Greenberg’s paper [24].

Let p > 2 be a prime number and consider K a real abelian finite extension of Q
whose degree over Q is prime to p.

For any cyclic subextension F/Q of K/Q suppose that f is the minimal integer
such that F< Q({,) for {, a primitive /™ root of unity and let

= Nog,yr(;—1).

Let Hy be the subgroup of K* generated by o, and its conjugates for all cyclic
subfields F of K.

Let E; denote the subgroup in K* of units in the ring of integers of K. Define
the circular units of K to be

Cy=HyNEg.

Define 4(K) to be the p-primary component of the ideal class group of K. Define
B(K) to be the p-primary component of E;/Cy.
The finite groups A4(K) and B(K) are known to have the same order.

Theorem 1 (conjecture of G. Gras [21]). The Z,[Gal(K/Q)]-modules A(K) and
B(K) have isomorphic Jordan-Holder series.

Proof. Greenberg (loc. cit.) has shown the above theorem to follow from the main
conjecture.

(i) This conjecture of Gras is an analogue of an earlier conjecture of Iwasawa
and Leopoldt concerning the odd eigenspace of ideal class groups of cyclotomic
fields. Just as the above theorem may be considered as a Galois-theoretic
interpretation of the plus part of the class number formula, what follows may be
considered as a Galois-theoretic interpretation of the minus part. We now show
that this conjecture for the minus part is also a consequence of the main theorem of
§9. The basic method for proving this, at least in the hard case where there is a
trivial zero, is again due to R. Greenberg. An exposition of an equivalent form of it
in the case where the ground field is K ({,) with K imaginary quadratic may be found
in [22]. We are indebted to him for explaining it to us. We note also that some of
the main elements of it were generalized by Federer and Gross in [17], and we rely
at certain points on their exposition.

(a) x-orders. Let y: Gal Q/Q) -~ O be a p-adic Dirichlet character of order prime
to p. Let H<=Gal (Q/Q) be the kernel of x. Let M be a Z ,-module with an action of
Gal (Q/Q) which factors through a finite quotient group G.

Let M* be the ¢,-submodule of M ®@ comprising all elements w such that

ow=y(c)-w for all ¢ €Gal(Q/Q). If M” denotes the submodule of invariants
under H, then M¥ is naturally a G/ H-module, where G/H is a finite (cyclic) group of
order prime to p. We have natural isomorphisms
M* = (MY} =M" &) 0O,
Z,[G/H]
where 0, is viewed as Z,[G/H]-module via the ring-homomorphism induced by x.
We refer to M* as the y-part of M, and its order is denoted o, (M).
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(b) Statement of the theorem. Let Fbe an abelian imaginary field extension of Q of
degree prime to p. Let G = Gal (F/Q), and let x: G — @} be an odd character. We
may view y as a homomorphism from Gal (Q/Q) to 0Ff.Setg =[0,:Z,]. For y not
equal to w, the Teichmiiller character, we have the following theorem, where for
two p-adic numbers a, b we write a ~ b if they have the same p-adic valuation, and
where B, (y~!) denotes the Bernoulli number associated to the p-adic Dirichlet
character corresponding to y~! (cf. §6).

Theorem 2. For any odd prime p not dividing [F: Q] and any odd character y + w,
0,(A(F) ~B;(x" 1)’

Remarks. 1) If Fis the cyclotomic field Q ({,,) then we can reinterpret this in terms
of the Stickelberger ideal. Letting R=7Z,[(Z/NZ)*] and identifying G with
(Z/NZ)*, the theorem says that the minus-part A~ (F) ® Z,and R /S, (N)~ have
isomorphic Jordan-Holder series as R-modules.

2) If y = w, it is known that 4 (F)* = 0. This follows easily from Stickelberger’s
theorem. It also follows from the main theorem of §9 and the fact that G ,(w?, T) isa
unit power series. For together these imply that Hom (4%, Q,/Z,) = 0.

3) Weidentify the character y with a homorphism Gal (Q**/Q) — O using class
field theory. Here Q= is the maximal abelian extension of Q. If F= Kis an inclusion
of abelian field extensions of Q, and y a Dirichlet character of order prime to p, such
that y factors through Gal (F/Q), then the natural mapping

A(FYi— A (K

is easily seen to be an isomorphism if the degree [K: F] is prime to p. The following
proposition, explained to us by Sinnott, shows that the above mapping is an
isomorphism under other conditions, as well.

Proposition 1. Let y be odd. Let y factor through Gal (F/Q) and suppose that we have
equalities of conductors:

cond () = cond (F) = cond (K).
Then
A(F)Y*— A(K)*

is an isomorphism.
In particular, we have that

0,(4(F)) = 0,(A(K)).

Proof. We can assume that F/Q is the field extension cut out by y so that
G = Gal (F/Q) is of order prime to p. Let

H =ker (y) <€ Gal (Q/Q).

Let 1(K) denote the group of ideals of K, tensored with Z ,, and let /(F) be defined
similarly. Consider the diagram
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I(F) — A(F)

I(K)! —— A(K)!
and pass to y-isotypic components, which we may write as follows:

I(Fy* — A(F)

I(K)* — A(KY.

Since x is odd, the right-hand vertical morphism is injective.
The lower horizontal morphism is surjective by the following argument. We
have an exact sequence

0~ (K*®Z,)" > I(K)™ > A(K)” —0

where the superscript ~ denotes the ““minus part”, i.e., the — 1-eigenspace under
complex conjugation. (Recall that K possesses no nontrivial p* roots of 1). The
above exact sequence remains exact when we pass to H-invariants, by Hilbert’s
theorem 90. Now pass to y-parts.

Our proposition then follows if we prove that the inclusion 7 (F)* < I(K)*is an
equality. But we can given an explicit description of I(K)#/I(F). For any rational
prime g, let e, be the maximal power of p dividing the ramification index for the
extension K/F of any prime of F lying above ¢q. Choose such a prime of F and let
D, =G denote its decomposition group. Then there is an isomorphism of Z,[G]-
modules

I(K)YH/I(F) =@ (Z/e,Z)[G/D,]

where (Z/e,Z)[G/D,] is given the natural Z,[G]-module structure (G operating on
the left). Of course, the direct sum on the right may be taken over only those primes
g such that there is a prime of F, lying above ¢, which is ramified in K/F. But since
cond K=cond y, any such prime is also ramified in F/Q. In particular, D, is
nontrivial, and since x is an injection of G into ¢, x| D, is a nontrivial character of
D,. But then the tensor product of (Z/e,Z)[G/D,] with O, over Z ,[G] vanishes.

(c) Casel;proofwheny(p)#+1. Let A, = A(F,) where F, is the extension of degree
p" inside F,, the cyclotomic Z -extension of F. Note that Gal (F,/Q) is canonically
a product G x (I'/T;,) where G = Gal (F/Q) and I, is the subgroup of index p"in I,
the Galois group of the (cyclotomic) Z,-extension of Q. Consequently, 4 (F,)
(indeed, any Gal(F,/Q)-module) may be viewed as G-module. The natural map
AX— A% (m>n) is injective for x odd (see, for example, Corollary 2.6 of [17]).
Furthermore, 4% = (A4%)", where I, = Gal(F_/F,), so

#A%=#Hom(4,,Q,/Z,)" ).

Now since Hom(4,,,Q,/Z,)*" has no finite A-submodule (see Proposition
1(i) of § 2) this order is given by the power of p dividing the value of its characteristic
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power series at T =0, [i.e., &,(x, 0)] raised to the gt power. By the main theorem
of §9

hy(1, 0 ~G(x ' 0,0)=L,(x ' 0,0) = —(1 ="' (P) B, (x .

Since y has order prime to p and x(p) # 1 the power of p dividing the term on the
right is precisely the power of p dividing B, (x~!) and so the theorem is proved in
this case.

(d) Preparation for the proof in case 2.
a@=1.

Now suppose that y # w is an odd character of order prime to p, and x(p) = 1.

Let K/Q be the field extension cut out by y. If a=cond y, then K may be
imbedded in Q (u,). Identifying Gal (Q (¢,)/Q) with (Z/aZ)*, we let F< Q (u,) be
the fixed field of D, = (Z/aZ)*, the subgroup generated by the image of pin (Z/aZ)*.
Let H< (Z/aZ)* denote the kernel of y.

If U< F* is any subgroup, then passing to H-invariants we have

Ufc F*'=K*,

and consequently if U* is defined to be (U® Z,)*, we may view U* = (U#)* as a
subgroup of K**. The functor U~ U* preserves inclusions and intersections.
Let W, <= F*, and Wy < K* denote the subgroups of p-units. For simplicity, set
W =W. We have Wk =W, and W} = W*. Define a subgroup V, cW; generated
by Gauss sums, as follows: Fix a prime p=p,; of Q(u,) above Q and fix an
isomorphism y: Z/pZ —— p, < Q. Write O for the ring of integers of Q (u,)

and set
c x\ "¢
g<_>= - Z (4> WoTr(x)eZ[llap]'
a xe(0/p)* p
Here (x/p) is the power residue symbol, i.e., (x/p) = where { ey, is such that
Np»—l

{=x @ mod p. The value of g(c/a) is seen to lie in Op[p,). 1t is easy to show
that g (¢/a) is in O and furthermore lies in W;. We let V; be the subgroup generated
by these elements

Ve= {G (2) = g(i)a: ¢ such that (c,a) = 1} .

This group is independent of the choice of y and p. Note that for g, € Gal (F/Q) (for
be(Z/aZ)*), G(c/a)y»= G (bc/a).
Let V be the subgroup of V. generated by the elements

h/
{]_[ G(C—a—>; ¢ such that (c,a) = 1}
%
where A’ runs through representatives in (Z/aZ)* for H/{p) < (Z/aZ)*/{p>. Thus
Ve (Vp)h.

(e) Sublattices in M*. Let M be the free abelian group generated by the prime
divisors of p in K. Let M,= M ®Z, and M*= (M )*. Define mappings

u w-um,
AWM,
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which induce O,-linear homomorphisms denoted by the same letter:
pr Wr— M,
A WX > M*
by the rules:
py= 3 ord,(u)-q,

g: prime
of K over p

Awy =Y log,(t,u) g

g: prime
of K over p

where 7,: K—Q, is the embedding corresponding to the prime g.

Proposition 2. The module V'* — W* is nontrivial; it is an O -lattice (of finite index)
in Wx,

The mappings A,u are nontrivial; they map V*, W* isomorphically onto O,-
lattices in M* (of finite index).

Proof. Itsuffices to show that u is injective on W%, and that A (V' *) is nontrivial. The
first assertion is elementary. As for the second, the main ingredient is the following
result of Ferrero and Greenberg ([18] or [43]).

Let log, denote the p-adic logarithm (log, p =0), and note that if we view the
element G(c/a) as being in the completion of K at g=g,, i.e., in K, — Q,,
then as an element of Q, it is independent of the original choice of p=p,.

Theorem 3 (Ferrero — Greenberg).

L (xw,0)= 1 Y x(o)log, (G <—2)> +0.

ce(Z(aZ)*/D,

To see that A (V') is nontrivial, note that A (V') contains the element

H(zo()-3 enlno(s))«

where the summation over 4’ is of a complete set of representatives mod a of
elements of H<(Z/aZ)*, and the ¢’s run through all prime divisors of p in K. For
the given odd character y of Gal (K/Q) we thus obtain an element of (4 (V) ® Z,)*

given by
r h/
X, =e (Z 2, log, (‘c,.G <;>> g;
i1 ®)
=[F:K] ¥ 1 '(c)log, (G (5)) TACHE
ce(Zja)D, a
where

1
ex(th)-—-[K—:aT Y 2 No)gs.

Gal(K/Q)
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But e, (q,) is a generator of M* and according to Theorem 3, X, is non-zero.

() Ideal classes supported at p. Define D, <= A, as the subgroup comprising those
ideal classes of p-power order which can be represented by ideals which are products
of the primes of K, above p. We have D}< A%, which we view as an O, [I'/T,]-
module. Let E} be the quotient module, giving us an exact sequence

0—D*— A™—>EX 0. )

Since y is odd, the mappings A% — A% are injective (m = n) and therefore so are
the mappings DX — DX. Itis also true that EX — EX is injective (cf. § 2 and the remark
at the beginning of §4 in [17]).

Passage to the direct limit (as » tends to co) gives an exact sequence of ¢, [I"]-
modules

0->DX% — A% - EX —0. 2

The following statements are known about these @, [ ]-modules.

1. D% ~Q® 0,/0,; the action of I on D% is trivial.

2. The submodule of I'-invariants in A% fits into an exact sequence:

0->Df> A¥T Et -0

which splits.

3. The submodule of I-invariants in E% is finite and E%F = E%"T for m
sufficiently large.

For 1. and 2. cf. [17] Proposition 3.4.

Part 3. is deeper, and due to Greenberg; we now review it.
From 1. above, the characteristic polynomial of

Hom (D%, Q,/Z,)
is seen to be TeO,[T] =0,[I']. Therefore, a characteristic power series for
Hom (E%,Q,/Z,) is
defn.

& (T)——h,(x, A+ 1)~ =1T.

Greenberg has proved in [22] that &(0), or equivalently d/dT(h,(x,(1+7)" " —1)) |7—o,
does not vanish.

Since Hom (E%,Q,/Z,) has no finite @,[I"[-submodules (as follows im-
mediately from Prop. 1(i) of §2),

E0) ~ #ExT, 3)

(8) Structure of the proof in case 2. We have the following diagram of sublattices
of M* and pM*.

M* pM*
@ ®
w¥n A
O\ | «®-> | ©)
u(V*) A(VT)

about which we will prove these facts.
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@ [wW?): u(VH] =LA@ A1)
M*: (V)] ~ B (x” ) [F: K}
[pM*: A(VH] ~ G, (x ', 0°[F: K]
M*: u(W*)] = 0,(Do) =0,(4,)/0,(Ep)
[pM*: AW )] ~ £(0)/o,(Eo).

©®eee

Note that Theorem 2 follows from D-® together with the fact that
E(0)~G,(xw™',0). But this last assertion is a consequence of the main
theorem of §9, which implies that

(G, o, 1)) =(&(T)" T)
as ideals in O, [T7].
Proofs.

(@D Both u and A are injective, by Proposition 1.
@ According to Stickelberger’s theorem ([41] Chap. 1)

oo

as ideals of F, where 0(—1)= Y  (—c/aypo; ' viewed as an element of
ce(Ziay*/D,

Z [G]. If we apply the map u we see that u (V') is generated as a Z [Gal (K/Q)]-

module by
h/
ﬂ(ﬂ G(;)) =0(=1) Y oy ¢,
14 h

where 4 runs through a system of representatives for Gal(F/K). Now taking
x-components we find that u (V)* is generated by

ex-u<r[ G(%)) — —a[F:KIB,(t ) e,@y).

(® We first observe that by the defining property of G,(x 'o,T)in §6, we have
that

PG, (¢ 'w,0)~ L, (1 ' ,0).

As a Z[Gal(K/Q)]-module, V is generated by [] G(Z—). Hence A(V)®Z, is
W

generated by A ] G(% as a Z,[Gal(K/Q)]-module. In the notation of (5)

e
{A(V)®Z,}*is generated by X, , and since e, (g,) is a generator of M} we see that

the index [M?: {A(V)®Z,}*] is given by the index of the ideal generated by

[F:K]l Y x %o logp(G<£>>~ [F:K]aG,(x 'w,0) in O,

ce(Z/a)*/D, a
(cf. Theorem 3 and (5) following it).
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@ This follows immediately from the definitions.

(h) Proof of ®. Consider the I'-cohomology exact sequence coming from (2):

0

0 D%, AxT Ex" — H'(I\D%,).

Let 4* denote the image of §.
By fact 2 of (f), we have an exact sequence

0——>Eé——-——>E§(;r—5>A"——>O. 4

From (3) and (4), the proof of ® follows from
Proposition 3. A* 2pMX[A(W*).

This proposition, in turn, follows from Lemmas 1 and 2 below. Let m =0 be an
integer, and let NK = K* denote the image of K¥ under the norm mapping Ny .

Lemma 1. For m sufficiently large,
A(WXANK**)=pm+i M2,
Lemma 2. For m sufficiently large, there is an isomorphism

pr: ¥ —— WEANKE (W)™,

Proof of Lemma 1. Recall that the superscript ~ means “minus part”, i.e., the
—1-eigenspace under the action of complex conjugations in Gal (K/Q).

We first show that the image does indeed lie in p™** M* (a priori it lies in pM*).
Suppose that ¢ e W. Then ¢ e Norm (K}¥) if and only if ¢ is a local norm everywhere.
Since K,,/K is ramified only at p, this is so precisely when ¢ is a norm at each prime
above p. But K, , — Q,, , (the completion of Q,, at the prime above p) and
the norms for the extension Q,, ,/Q, are the group pZxu, , x(1+p"*'Z)).
Thus ¢ is a local norm at each i if and only if log,(1;¢) =0 (p™* 1) for each i, that
is, if and only if A(e) ep™ ™' M ,» - This argument has the following consequence:

l((WmNK,;';)‘)cp'"“Mp
and
i(W‘)np’"“MpE A(NK})

for all m. Hence:
AWXANK* ) cp™tt M*,
AW NP M A(WXNNKXY).

But by Proposition 2, there is an m such that p™** M*< A(W*). Consequently, for
such an m, A(W*NnNK**)=p™*! M*, whence Lemma 1.

Proof of Lemma 2. The isomorphism p* was defined by Greenberg. It may be
viewed as a ‘““diagonal isomorphism” of the sort given in Lemma 3 below.
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Lemma 3. Let

0 0 0
! ! i)
0— 4y, Ay, — Ay > 0
il 1) !
0 - A4y, > Ay, > Ay > 0
! i) Vj
0 - 45 Az, > Ass > 0
i) ! !
0 0 0

be a commutative diagram of C-modules, where every straight line is exact, and where
Cis a finite cyclic group. Suppose that H*(C, A; ;) =0 for i=1,2,3. Then there is a
canonical isomorphism (the “‘diagonal isomorphism’)

AS3/jAS,—— Hom(C; i~ NAy,/NA,,)

where N=Y_ c is the “Norm element” in the group-ring Z[C].
ceC

Proof of Lemma 3. Take a;3eAdh;, and we shall define 6(as;5):
C—i"'NA,;/NA,,. Let ceC. Let a,,€A4,, be an element which projects to
a33 in A;5. Then (¢ —1) - a,, projects to zero in A,5, and consequently can be
written as a sum a,, + a,, where a,, is in the image of 4,, and a,, is in the image
of A,,. Since Na,, = — Na, ,, thereis an element a,, € 4, such thati-a,, = Na,, .

Define 6 (a53)(¢)=a,; mod NA,. It is routine to check that J (a53) is a well-
defined homomorphism of C to i"* NA,,/NA,,, and that J is a homomorphism
from A$,;/jAS; to Hom(C;i"* NA,,/NA,,). To check injectivity one uses the
hypothesis that H' (C, 4,,) = 0. To check surjectivity, we reverse the process. Fix
ce Cagenerator, and a,, mod NA,,, where a,, €i"* NA,,. Write ia, , = Nua,, . Let
a3, be the image of a,, in A;,. Since Na;, =0, and H'(C, 45,)=0, we nmay
write a5, =(c—1)a;,. Let a;; be the image of a5, in A;;. Then a;; € AS;, and
0 (az;3)(c)=a;; mod NA,,.

To conclude the proof of Lemma 2, apply Lemma 3 to the diagram:

0 0 0
| | i

0 — WX — Div, (0 )* — DX — 0
| | |

0 — KX — Div(Oy )* — AL —0

! l |

0 — KXWy — Div(O,[1/p])*  — Ef —0

! | |

0 0 0
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where Div (Ox ) or Div (0, [1/p]) denotes the group of divisors of the indicated
rings, Div,(Ok ) means divisors supported at primes of residual characteristic p, W,
is the group of p-units in K, and the cyclic group Cis I'/T, = Gal (K, /K) acting on
all groups involved, in the natural way. As usual, the superscript y denotes the
operation of first tensoring with Z, and then taking x-parts. Note that W} = W*
because the elements of W, generate I'/I',-invariant ideals (each prime above p being
totally ramified in K,/K), and any I'/I, ideal generated by a minus-element is
generated by an element of K* (cf. [17] Cor. 2.6, §2). Therefore Nk x W)= (W*)"".

(iil) As a final application of the main theorem we have certain results on K, 0.
where F is a real abelian field. In [10], using the theorem of Tate in [65], the
following theorem is proved:

For each odd prime p, # K,0.~ 4 4 (1)". (6)

Recall that for a given prime p, a ~ b if a and b have the same p-adic valuation.
Here 4,,(1)= A4, ®Tap,- where Tap,-= lim p,,. From this result it is easy to
deduce the following analogue of the class number formula for K, which was
conjectured by Birch and Tate.

TheoremS. # K,0; is equal to w,(F)|{z(—1)| multiplied by a power of 2. Recall
that w,(F) is defined as the largest positive integer N such that Gal (F((y)/F) has
exponent 2.

To deduce this from the main theorem of §9 we note that
# A4, (1) = # {Hom(4,,Q,/Z,) (- },.
Now the characteristic polynomial of
Hom(4,,Q,/Z,)(—1) is ITh,(x ', u"'(A+T) ' -1)

where the product runs over all odd characters y such that yw ™! is a character of
Gal (F/Q). Since this A-module has no finite A-submodule

#A, W ~[Th,G"Hu™t = 1)
X

where the product is taken over the same set of characters. By the main theorem of
§9 we can rewrite the right hand side in terms of the Stickelberger power series and
then the p-adic L-function,

[Th,(" " u—1~ [] GGou-1)~ T[] L,(xw, —1).

XWtame F Xo Xwtame ¥ Xo

Thus we have that

#4,M) '~ [ BGw)™'=]]B,(¥) ™)

XWtame ¥ Xo

where the product is taken over those even characters y of Gal (F/Q) for which
Yime * o We claim now that

[T B.w)~w,(F)~". ®

¥:yolame = 1o
vEw?
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To prove this assertion observe first that if w? is not a character of Gal (F/Q), then
F({,) is not quadratic over F and so w,(F) is prime to p. In this case there are no
characters ¥ such that yw2 . = 1,. SO now we assume that w? is a character of
Gal (F/Q) and hence that F({,) is quadratic over F. Then

B,(w)~1/({, —1) if yw? is of order p" and has conductor p"*'.

This follows immediately from ([31], § 3, Theorem 2, and § 6). The relation (8) now
follows, and (6) and (7) give the theorem. Using the theorem referred to in (6) we can
also give a description of # K, analogous to that given for the minus part of the
class group in Theorem 2.

Theorem 6. Let F be a real abelian field and p an odd prime not dividing [ F:Q). Then
Sfor any x of order prime to p, y * w?,

#* {K20F)®Zp}x ~ {BZ(X_ 1)}g-
( For y = w? the left hand side is trivial).
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§ 1. Preliminaries concerning commutative group schemes.
The relationship between the Picard functor and Néron models

If k is a perfect field, the category of commutative group schemes of finite type over
k is an abelian category [51]. A member G, of that category possesses a canonical
filtration

0cG'cGcG'=G°=G *)

where G° is the connected component of G, G" is the reduced group scheme
associated to G°, G* is the maximal affine reduced, connected subgroup scheme of
G’, and G' is the maximal subgroup scheme of multiplicative type contained in G“.
The successive quotients of the filtration (*) are of the following nature: G*/G" is a
unipotent smooth connected group scheme, G'/G“ is an abelian variety, G°/G" is a
finite connected group scheme, and G/G° is a finite étale group scheme. The
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filtration (*) is functorial in G. We shall refer to G"/G* as the abelian variety puart of
G, and we note that it, too, is functorial in G. References for the assertions made in
this paragraph are to be found in add [51].

Example. Let X be a proper k-scheme such that every irreducible component
of X'is of dimension one. Let X, denote the reduced k-scheme associated to X, and
let X4 denote the “normalization” of X,.4; thus, X., is a disjoint union of smooth
proper curves over k.

Lemma 1. In the above example, the natural morphism
Pic® (X)) = Pic®(Xreap)

is a surjective homorphism of group schemes over k. Its kernel is a smooth connected
affine groupscheme over k. The above morphism identifies Pic®(Xea ) with the
abelian variety part of the group scheme Pic®(Xq)-

Proof. Compare the proof of Lemma 2.6 of [14]. Let X%, be the scheme with
morphisms

Xred/k - Xk - Xrea sk *X/k

such that ¢ is an isomorphism of underlying topological spaces and

I'(U, Oyyy,) = €T (U, 1y Og,eq ) | if x1,x,€n~ 1 U then f(x,)=1(x,) when
n(x)=mn(x,)}.

In the notation of the proof of Lemma 2.6 of [14], this is D*. The arguments of ([14]
2.6) then show that Pic®(X}%; ;) is an extension of Pic® ()7/k) by a smooth connected
group scheme of multiplicative type, while Pic® (X, ) is an extension of Pic® (X )
by a smooth connected unipotent group scheme.

Let K be a finite extension of Q,, whose ring of integers we denote ¢/, and whose
residue field is k. If V, is an abelian variety, let V), denote the Néron model of V;
over the base ¢, and let av (V) denote the abelian variety part of the fiber over k of
Vo . We view av (—) as a functor from the category of abelian varieties over K to the
category of abelian varieties over k.

Lemma?2. (a) If ¢: V-V, is an isogeny of abelian varieties over K, then the
morphism av (¢): av(Vy)—av(V,) is an isogeny of abelian varieties over k.
(b) If

)

0

0 d,,’Vl d‘AVZ dzrV3

is a sequence of abelian varieties over K which is exact (or more generally, which is a

cochain complex whose cohomology groups are finite group schemes), then
0-av(Vy) »av(V;) » av(V3) -0,

viewed as cochain complex, has finite cohomology groups.

Proof. Assertion (a) is immediate. For (b), find a morphism i: ¥V, — ¥, such that d, - i
is multiplication by some nonzero integer. Then

dixi: VixVy-oV,
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is an isogeny of abelian varieties over K. Thus
av(d,) x av(i): av(V}) x av(V3) — av (V)

is likewise an isogeny, and part (b) follows.

We keep to the notation that O is the ring of integers of a finite extension Kof Q,
with residue field k. Then the following proposition is a special case of [26],
Theorem 12.1.

Proposition 1. (Raynaud [547). Let X be a regular scheme and f> X — S = Spec
a morphism satisfying these conditions:

(a) The morphism f is proper and flat with fibres of dimension I

(b) X ¢ is a smooth irreducible curve

(¢) If k is an algebraic closure of k, then the greatest common divisor of the
multiplicities of the irreducible components of X is 1.

Then the relative Picard functor of X is representable by a smooth group object
in the category of algebraic spaces Pic(Xs) and so is the functor Pic® (for definition,
see SGA 3V1,3.1). The functor Pic® is actually representable by a smooth group
scheme. Moreover, if 4 denotes the connected component of the Néron model of
Pic®(Xx) then the isomorphism Pic®(Xy) —— A extends uniquely to an isomor-
phism

Pic®(X5) — AL

Remarks. (i) We note that the flatness and properness of ftogether with the fact
that Xx is irreducible give the condition f, (Oy) = Os in [26], Theorem 12.1.

(ii) Artin ([1], Theorem 7.3) has proved more generally that if f: X—>Sis a
proper, flat map of schemes which is finitely presented and cohomologically flat in
dimension zero then Pic(X)s) is representable by an algebraic space over S.
Mumford and Mori showed us how an argument due to Artin and Winters can be
used to check “cohomological flatness of f'in dimension zero” directly (assuming
the conditions of the proposition). We sketch this below.

Let S denote the maximal unramified extension of S and let X denote the base

change of X to S. We view Z = X; as a divisor on X, and write Z= Y m,Z; where
i=1
the Z, are irreducible curves over k, and where by hypothesis the greatest common
divisor of the m; is one. To check cohomological flatness of fin dimension zero, it
suffices to check that every global function on X is constant (E.G.A. III. 7.8.6).
Assume then that we are given a positive divisor Z’ < Z such that H°(D,) =k,
and assume also that the degree of Z' is maximal with this property. If Z’' = Z we are
done, so assume that Z' < Z. Then forany Z,c Z — Z'set Z" = Z + Z, and consider
the exact sequence of coherent sheaves over X:

0“") DZ;(—Z/‘ Zl)_> DZ"_) Dzr—‘)o.

If there exists Z; such that —Z’-Z;>0 then there is no global section of
O, (—2Z'- Z;) contradicting the maximality of Z'. If, on the other hand, for each
Z,=Z—Z7 wehave Z'- Z; <0, then

—(Z’)2=Z/'Z'—(Z,)2=Z"(Z—Z/)§O,
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But then using the theorem ([59], Lecture 6) that the intersection matrix (Z; - Z)) is
negative semi-definite of rank (r — 1) we get that Z’ is a rational multiple of Z. Since
the greatest common divisor of the m;’s is 1 we get that Z' = Z. This contradiction
completes the proof.

Corollary. Let f: X — S satisfy the hypotheses of Raynaud’s proposition above. Let
Z,,...,Z, denote the k-irreducible components of the ‘“‘normalization” of the
“reduction” of the k-fiber. That is,

(X;/k)red=le_IZZH ..... ]—IZ )

There is a canonical isomorphism of group schemes over k making the following
triangle commutative:
Pic® (X,y)

Pic® (X = [] Pic®(Z) — av(Pic® (X,y)
i=1

Proof. This follows from Lemma 1 and Proposition 1.

For a specific application to Chap.2, we state the following criterion of
compatibility for a pair of correspondences in characteristics 0 and p. We keep to the
notation of the preceding corollary, and suppose further that any irreducible
component of the special fibre Xz which has multiplicity greater than one is of genus 0.

Let U: Pic®(Xy) — Pic®(Xx) and

u. H PiCo(Zi7k) g l—I PiCO(Zi/k)
i=1 i=1
be endomorphisms. We shall state a criterion which will insure that the square

() n PiCO(Zi/k) S 1—[ Pico(zi/k)
i=1 =

i=1

av (Pic® (X)) —~2 av (Pic® (X))
is commutative.

We prepare for it with some notation. If k'/k is a finite field extension, let O'/O
denote a finite discrete valuation ring extension of @ which is unramified over ¢ and
such that the residue field of @’ is k'. Let K’ denote its field of fractions. If D is a
relative Cartier divisor of Xj,, let D, and Dy denote the restrictions of D to the
indicated fields. Given a relative Cartier divisor D of degree zero on every
irreducible component of each fiber, let {D} e Pic®(X),) denote the class in Pic’
represented by D.
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Proposition2. Suppose that for every finite field extension k'/k and every pair of
smooth k'-valued points of X, z,, z, which lie on the same irreducible component of
the special fiber X, one is given the following:

(a) a pair of O'-valued sections Z, and Z, of the smooth locus Xg°o® whose
specializations to k' are z, and z, respectively.

(b) a pair of effective relative Cartier divisors Dy, D, of Xg°°" of equal degree on
every irreducible component of every fiber.

Now suppose that, for all pairs z,, z, as above.

(©) U{Zyx — Zyx} = {Dyx — Dy}
and
(d) u{zy =z} = {Dllk’ - D?_/k’}

where, in the second equality (d) we have identified z, , z, with points, and D, o> Daje
with Cartier divisors, on Z, 11----11Z, by means of the lifting Xmoo" — (X;) .
Then (**) is a commutative diagram.

§ 2. Passage to the quotient under the action of a finite group

Let B be a semi-local noetherian ring and Max Spec (B) its (finite) set of maximal
ideals. Let us suppose that for every maximal ideal P of B, B,, the completion of B
at P, is a discrete valuation ring whose field of fractions, Kj, is of characteristic 0.
Let kp denote the corresponding residue field.

Let G be a finite group which acts faithfully as a group of automorphisms of the
ring B. Then the ring of G-invariant elements of B, denoted B, is again a semi-local
ring such that the completions By at maximal ideals P € Max Spec (B) are discrete
valuation rings with fields of fractions K5 of characteristic 0.

The group G operates naturally on Max Spec (B) and we have a bijection

Max Spec (B)/G —— Max Spec (B)

such that the G-orbit of a maximal ideal P of B is sent to P=PNB.
If Gp = G is the decomposition subgroup associated to P (i.e., the isotropy group
of P eMax Spec(B)) we have the identification

I?F = (KP)GP’
EF = (Bp)°*

where the superscript G, refers to Gp-invariant elements.

Moreover, if I, = G, is the inertia subgroup associated to P, then G/, operates
faithfully on k, and the natural morphism £z — (k,)©?// identifies k7 with a subfield
over which (k)©*/"P is purely inseparable.

Now suppose that the ring B contains a subring 4 which is a discrete valuation
ring with uniformizer = such that B is a flat (but not necessarily finite) 4-algebra.
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Suppose that the finite group G which acts on Bleaves A4 stable. Finally, we suppose
the “multiplicity-one condition™:

n-B= I1T P
P e Max Spec(B)
That is, every maximal ideal P occurs to the first power in the prime

decomposition of 7 * B.
Write:

7-B= ] P
P eMaxSpec(B)
where 7 is a uniformizer of 4 =ANB and ep is the multiplicity of P in the prime
decomposition of 7 - B.
The following “‘criterion for multiplicity-one” will serve:

Proposition 1. In the above situation, e =1 under either of these two conditions:
(a) 4 is an unramified extension of A= ANB.
(b) B is an extension of B which is totally ramified at P, i.e. kz—kp is an
isomorphism.

We apply the above discussion in the following context. Let Y be a regular
connected projective scheme of dimension two, and f: Y-S a flat morphism of
finite type where S'is the spectrum of a Dedekind domain whose field of fractions is
of characteristic 0.

We suppose that G is a finite group acting on S, and faithfully on Yin such a
manner that fis a G-equivariant morphism. Let s €S be a closed point, fixed under
the action of G. Let Y, denote the fiber of f at s. Make the ‘“multiplicity-one
hypothesis”: i.e., suppose that Y is a reduced scheme. Equivalently, if we view Y, as
a Cartier divisor on Y, and we let .#(Y,) denote the set of irreducible subvarieties of

codimension one in Y contained in ¥, then Y,= ) Z.

Zes(Yy
Now let X=Y/G and T=S/G be the quotient schemes under the action of

G ([53, 37]). We have a natural morphism which we also call f:
ffX->T.

If t e T is the image of s, let X, denote the fiber of fat the point . We denote by
J (X)) the set of irreducible subvarieties of X of codimension one, contained in X;.
Again we write X,, viewed as Weil divisor on X, as follows:

X= Y e Z

ZeS(Xy)
where the ez € N are the multiplicities.
Definition. A closed point x of X (or more generally of any two-dimensional normal

scheme of finite type) is called an inconsequential singularity if the inverse image of x
in a desingularization of X contains no curve whose normalization is of positive genus.
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Proposition 2. The quotient scheme X of the discussion above is normal with at worst
inconsequential singularities. The irreducible components J(X,) of X, are in natural
one: one correspondence with G-orbits of irreducible components of Y,, the G-orbit of
Z € J(Y,) being sent to the image-component of Z in X,:

J(X)/G - F(X).

Let Z € #(Y,) andlet G, =G denote the subgroup of G stabilizing the component Z
(the isotropy subgroup). If Z € #(X,) is the image-component of Z, then the natural
map -
ZIG,—~Z
induces a radicial morphism from the normalization of the domain to the
normalization of the range.

Under the following further hypothesis, the multiplicity ez of an irreducible
component Z in the Cartier divisor X, is equal to one.

Hypothesis H (Z). There is a normal subgroup G, G such that
(a) S—S5/G, is unramified at s,

and
(b) Y/Gy— Y/G=X is totally ramified over Ze #(X,).

Proof. The scheme X is normal since Y is normal. The following argument
establishes that X has at worst inconsequential singularities. Let X' — X be a regular
resolution of X and Y the normalization of the fibre-product of X and Y over X. Let
Y be a regular resolution of Y’. We have a diagram

Y—Y

||

X—2t-x
where all the morphisms are proper.

Let x be a closed point of X. Then any reduced curve in ¥ lying in the inverse
image (gh) ~* (x) must collapse to a point in Y; since ¥'is regular, any such curve is of
genus zero. It follows from the properness of 4 and Luroth’s theorem that the
normalization of any reduced curve in g~ !(x) is also of genus zero.

The remainder of the proposition follows directly from the discussion
concerning semi-local rings which began this paragraph, and from Proposition 1
above, where 4 = (s , the local ring of the scheme S at s, and where Bis the subring
of rational functions on Y which are regular at (the generic point of) each
irreducible component of Y.

§ 3. Models of modular curves

Consider the following list of well-known subgroups of I' = PSL,(Z):
If N is a positive integer, write
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F(N)={i (‘C’ Z) ((1) ?) modulo N}/(i—l),
pl(N)={i (‘c’ Z) ((1) :) modulo N}/(ii),

FO(N)={i (‘c’ Z) ¢ =0 modulo N}/(i 1.

If M is a divisor of N, write

ab
F1(N,M)={i (C d)

If m is prime to N, write
I''(N;m)=T{(N)nTI (m),
I (N,M;m)=T,(N,M)nTI (m).

¢=0 modulo N, a=1 modulo M}/(i 1).

If Y. denotes the quotient of the upper half-plane by the action of any of the
above groups, let X denote the corresponding complete Riemann surface obtained
by “adding” the appropriate finite set of cusps to Y, . For the above set of groups,
we denote the corresponding set of complete Riemann surface by X (N)¢, X{(N)c,
Xo(N)e, X{(N, M)c, X, (N; m)c, and X, (N, M; m)¢, respectively. These Riemann
surfaces are finite branched coverings of the ‘‘j-line”:

J 1
X~ PL.

In general, we shall be considering canonical models over two types of fields:

(a) Q({,) where dis an integer, and {, a “‘specified”” primitive d-th root of unit.
We adopt the convention that Q ({,) be viewed as a subfield of C via the imbedding
{4~ exp(2mi/d).

(b) Q(¢,)* the maximal totally real subfield of Q ({,), viewed again as subfield
of Q. If {ff ={,+{; " then Q({/)=Q()".

Much work has been done in the direction of providing adequate (‘“‘canonical”’)
algebraic models for these Riemann surfaces. One can distinguish two aspects to
this problem:

1. Canonical models over number fields. Let K= C be a number field. The problem is
to describe an algebraic curve X)x whose associated Riemann surface is X and such
that the function j is rational over K. Any such curve we will call a canonical model
of X¢.

For example, when X = X,(N)cand K any number field, we may take X to be
the smooth projective curve whose function field is K(j, jy), where j=j(t) is the
elliptic modular function, and jy(t) =j(N7). All the curves described above do
possess canonical models over Q.

2. Canonical models over rings of integers. Let X, be a canonical model as described
above, and let O denote the ring of integers of K. Let P denote the “‘j-line over ©”’.
Define X, to be the normalization of X, over the j-line Pj. Then X, is a (proper
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two-dimensional) scheme finite over Pj,. But our succinct construction of X, is not
sufficient to determine the geometry: which fibers of X — Spec @ are smooth, the
irreducible components of the fibers, their multiplicities, and the nature of the
singularities.

The sucessful line of attack on these problems has been to provide a modular
interpretation for the scheme X, (or for some suitable family of coverings of X,
obtained by imposing auxiliary level structures).

By this method, for example, if X)x denotes either the standard choice of
canonical model X, (M, N),q or the standard choice of canonical model X (N),q )
Igusa [29] has proven that Xy, is smooth. For a prime p dividing N the
characteristic p fibres for some of these curves has been studied extensively in [15].
The ideas of Drinfeld [15] give a simpler formulation of the moduli problems in
question and we will use these to describe a model for X (N);,; for suitable N
(with auxiliary level structure). This will be sufficient for our purposes though we
note that we do not analyze the singularities in the models we consider.

The modular interpretation which we take for X,(N)q (N=5) is that its
noncuspidal points ‘represent’ isomorphism classes of pairs (E, ey) where E is an
elliptic curve and ey is a point of E of order N. More precisely, it is the coarse moduli
scheme for the function which assigns to a scheme S the S-isomorphism classes of
such pairs. We identify the Riemann surface X (N)¢ with X (N),o® C via the map

2= (C/(z,1), 1/N). (*)

$4. “Incomplete” models and Igusa curves

Fix p a prime number, a an integer relatively prime to p, and let N =ap".

We choose an ‘auxiliary level’ m = 3 such that m is relatively prime to ap.

Let ¢,,(X) €eZ [X] denote the m-th cyclotomic polynomial.
Thus

X" —1= l—[ ¢4(X) .
1<dim

We shall work over the base 0" =Z ,[X]/(¢,,(X)). Let {,, €0 denote the image
of X. Note that 0’ =Z[{,] is a product of finitely many discrete valuation rings,
which are extensions of Z, generated by primitive m-th roots of unity.

Consider the following moduli problem: to each (¢'-algebra R we associate the
set of isomorphism classes of triples

(Ea eN il (x)/R

where E ; is an elliptic curve (i.e., an abelian scheme of dimension 1); ey is a section
of Eover Rwhich is annihilated by N, and which specializes to a point of order N in
every residue field of R (equivalently: the section e, generates an etale constant
subgroupscheme, finite flat of order Nin Ez); finally, « is a level m structure of E
over R of determinant {,: that is, o is an isomorphism of the constant group-
scheme Z/mZ x Z|/mZ onto E[m] such that the Weil pairing {x(0,1,(1,0)>
is equal to {,,.
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It is known that the above moduli problem has a coarse moduli scheme which is
a smooth irreducible (but nonproper) scheme of dimension one over ¢'. Denote
this scheme %, (N; m),, and compare the discussion in ([35], 4.3).

All geometric fibers of %, (N; m),, are irreducible affine curves. The charac-
teristic 0 fibers have the property that their smooth projective models are
canonical models for X, (N; m) in the sense of §2. The fact that the characteristic p
fibers are irreducible is a result due to Igusa ([28, 35], 4.3). If k" is a residue field
of O’ =Z,[{,] of characteristic p, we let Igusa (N; m),- denote the smooth projective
model of the affine curve &, (N; m),.. We thus have the inclusion

Y, (N;m)e = Igusa(N; m); .

The action of GL,(Z/mZ) on Z/mZ x Z/mZ induces an action on level m
structures: o — o - ‘g where g € GL,(Z/mZ). This action has the following effect on
determinants:

det (o) = (det or)dets
and consequently it induces an action on the scheme %, (N; m),, which does not
preserve its (0'-scheme structure.

We define %, (N),, to be the quotient scheme %, (N; m)/GL,(Z/mZ) which is
easily seen to be independent of m in the sense that we have canonical
isomorphisms:

Y, (N;m)|GL,(Z|mZ)=%,(N;m")|GLy(Z|m'Z)

for m,m' = 3.

The general fibre %, (N),q, we identify with the open subscheme of X, (N)q,
obtained by removing the cuspidal points. The mapping #,(N), > X (N)q, 18
induced from the mapping

(E, ey, “)/R - (E, eN)/R

of #,(N;m),g—X,(N),#. (Here # = Q,[X]/(¢,,(X)), and we let GL,(Z/mZ) act
on X, (N),z via the determinant on #).
We let Igusa(N), denote a smooth projective model of %, (N)p, .

§ 5. Standard automorphisms and the Hecke operators

1. The “diamond” operators. If r is an integer prime to N, let {(r) denote the
automorphism of the ¢'-scheme %, (N; m) induced by sending the isomorphism
class of triples (E, ey, o)z to (E,r-ey,a). Clearly, {r) depends only on the
congruence class of the integer r modulo N. We let (> also denote the
automorphisms induced on Igusa (N; m),., on % (N);,, and on Igusa (N),.

These are called the diamond operators. Since { —1) is the identity on %, (N),,
and on JIgusa (N)g, the diamond operators give us an action of the group
(Z/NZ)*/(£ 1) on these two schemes.

. The involutions. Let { = {, be a primitive N-th root of unity in Q and consider
the canonical model X, (N). For any integer i relatively prime to N, one has an
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involution of X, (N)q(, usually denoted w., and defined in terms of the moduli
problem as follows.

If (E, ey) represents an R-valued point of X (N),q(, where Ris a Q ({)-algebra,
let Cy= E[N] denote the subgroup of E generated by ey, and let

y: E[N]/Cy— py

denote the isomorphism defined by x — (x, ey> (where {,) is a fixed choice of Weil
pairing).
Set E= E/Cy and ey=7*({'). Define:
w.(E,ey) = (E, ey).

This induces an involution of the curve X, (N) rational over Q ({)* independent
of the choice of sign in the Weil pairing. We have

WC' = WC—A
and the set of operators

{{(£r), £re(Z/NL)*/(£1) and w,+., +ie(Z/NZ)*/(£1)}

form a group of operators on the curve X, (N)q ) called the twisted dihedral
group, and described further in §2 of [48].

Note that the involutions described here do rot extend to involutions on
¥, (N)p,. If M is relatively prime to N, then there are involutions w.  of X\ (N- M)
rational over the field Q ({), which fit into a commutative dlagram

Wyt

X, (NM)__CL X, (NM)

wet

X, (N)

X, (N)
where the vertical arrows are given by (E, ey.,,) — (E, M- ey.y).

3. The automorphism w,. Let I be a prime number not dividing N. Let B,< GL,(Z/Z)
denote the subgroup of matrices of the form (% %). Define

Y (N-ILN),,

to be the quotient of the scheme %, (N; /) by the action of the group B,. Then the
fibre %, (NI, N),, is an affine curve whose smooth projective model is a canonical
model for I\ (N[, N)=T, (N)ml"o(l)

The F,-fiber, %,(NI, N )¥, is an irreducible affine curve, whose smooth
projective model we denote Igusa (NI, N),.

If Risa Z ,-algebra, an R-valued point of %, (N/, N),, may be represented by an
R-isomorphism class of triples (E, ey, C;) where (E, ey) is a pair as in 2. above, and
C, is a subgroup of order / in F.

We define an automorphism of the scheme %, (NI, N),, by the rule:

(E, ey, C)—5 (E,éy,C)
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where:
E=E/C,, éy=image of ey in E, and C,= E[/]/C,.

Note that w, is not an involution: w? (E, ey, C;) = (E, ley, C,). The automor-
phism w; extends to an automorphism of X, (N, N)q and of Igusa (NI, N)g,.

4. The Hecke operators T,(1L¥ N). If f: U— V is a finite morphism of smooth proper
curves, let f,: jac(U)—jac(V) and f*: jac(V)—jac(U) denote the induced
mappings on jacobians, where in the first instance we interpet the jacobian as
“Albanese variety” and in the second as Pic®. For simplicity we sometimes denote

J by f.
Let
X (NI, N)q Y (N, N)y, Igusa (NI, N)p,
X, (N)/Q %, (N)/z,, Igusa (N)/F,,

be the natural projections.

Consider the endomorphisms of J,(N)q=jac(X;(N)q) defined by the
formulae:

Tx=m, wpm*

(1
T*=m, wf n*.
We have
wit =<1 Wi
~ (2)
T*=<"" T

The endomorphism 7, is the endomorphism of the Albanese variety J,(N)q
induced by the correspondence

(E,ey) > Y, (E/C,, image of ey in E/C)) (3)
9]
where the summation is taken over all subgroups of order I, C,= E[/](Q).
We denote 7;. simply 7; and refer to it as the (I-th) Hecke operator. Consider the
endomorphism of j, (N) = jac (Igusa(N)y,) defined by the analogous formulae:

te =T Wy T*
o C)
tF=n, wfn*.
Again,
=y by ®)
5. The Atkin operators U,(q|N). For prime numbers g dividing N there are
endomorphisms U, of J;(N)q (cf. [2,40], Chap. VIII) whose description as self-

correspondences of the curve X, (N),, is given as follows. If (E, ey) is a Q-valued
point of Y;(N),q, then

U, (E,ey) =Y (E/C,, image of ey in E/C,) (6)
Cq
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where the summation is over those subgroups C, of order g in E [¢1(Q) which are
not contained in the subgroup of E generated by ey. The operator U, can be defined
by a procedure analogous to the definition of 7; as follows. Let I' =SL,(Z) denote
the subgroup of matrices (¢ %) such that a=1modN, ¢=0modN, and
b=0modgq. One gets a canonical model for I" over Q by representing the moduli
problem which associated to a Q-algebra R the set of R-isomorphism classes of
triples (E, ey, C,)x Where ey is a point of order N, and C, is a subgroup of order g in
E which is not contained in the subgroup generated by ey. Call the projective
smooth model of the schemes representing the above moduli problem Z,. There
are two finite morphisms @, ¥: Z 4, — X, (N),o, defined on the moduli problems by
the rules:

®: (E,ey,C,) —(E, ey),
Y: (E,ey,C)) — (E/C,, image of ey in E/C,).
we define:
U,=U,=%Y,®* and Uf=9o, ¥V*. 7

An important distinction arises between the primes g dividing N which are
different from p, and g = p, when we try to define operators u,, and u} on the Igusa
curves, in analogy with the Atkin operators U,, and U}*.

The case q|N, q#+p:
Let m =3 denote an auxiliary level and k' as in §1, and define

u,=u,,: jac(lgusa(N; m),.) — jac (Igusa(N; m),)

to be the endomorphism induced from the self-correspondence on Igusa(N; m),.
which is characterized on k’-valued points of %, (N; m) by the rule:

u,(E, ey,a) =Y (E/C,, image of ey in E/C,, &) (8)
C‘i

where C, runs through all subgroups of order gin E [g1(k") which are not contained
in the subgroup generated by ey, and & is the level m structure induced from o. One
can give a description of u,, as a composition of morphisms in analogy with the
definition of U,, given in (7) and, in this way, we may define u} as well.

Specifically, to define the analogue of Z 4 in characteristic p one simply takes the
incomplete model corresponding to the group I (N) NI (g) NI (m). Then we define
uy gnd u,, on jac (Igusa(N)y,)) by taking the induced action viewing it as a quotient
of jac(Igusa(N; m),) by the action of GL,(Z/mZ).
The case q=p:

Here there is no obvious extension to %, (N),, of Uy and U,,,

but see (§10).

6. Basic properties

() Recall) T =< T* (rp, =<r"H*,
(b) The operators T;(/ ¥ N), U,(q!N)and{r),(r e (Z/NZ)*) all commute. Call
these operators the standard operators.
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(¢) Ifa=<rp, T, or U, (with the restrictions on r, /, and ¢ as in (b) above), then
Wegtto®owe =0,

Remark. U,, and U} do not necessarily commute.

7. Effect on cusps. The action of the Hecke operators (as correspondences) on the
cusps can be computed over C. We obtain the following formulae for them acting
on oo: (=[}] in the usual notation, cf. Chap. 4).

(Tx) o =(I+<I)) @ for I¥N,

(U,) o=q- for g|N,
). op — < -1

(U)o = ao+a;1 [(N/q)-a] for g|N.

Likewise the action on the cusp zero (=[?] in the usual notation) is:
(T,)-0=(1+IKD)-0 for I¥N,
Uf-0=q-0 for g|N,

=14
U,) 0=0+ ) [q] for g|N.
a=1

8. Effect on differentials. If .Y — X is a finite morphism of smooth curves over a
field K we denote by f4: H°(X, Qyx)— H°(Y, Qyx) the induced morphism on
regular differentials. When X and Y are proper there is also a trace mapping f;:
H(Y,Qyx - H°(X, Qkx) obtained, for example, by applying duality to the
induced morphism on global regular functions. Using the definitions of the Hecke
correspondences in §5.4 and §5.5 we obtain endomorphisms of the spaces of
regular differentials H°(X,(N)q, Q") and H (Igusa(N),, '). If, for example, we
write t; and n, for the two maps 7 and 7 ° w; of X, (NI, N),g to X, (N),q (cf. §4) then
we would naturally write (7)*= (n,),° (n,)? and (T}),;= (z,)*° (n,),. The classical
action of the Hecke operators on differentials is that of (7;)%.

There is a second way of obtaining an action of the Hecke operators on the space
of differentials and that is by viewing them as the cotangent spaces of the respective
Jacobians. Thus if we use a superscript ¢ to denote the action on cotangent spaces
we may consider the actions of (7;*)° and (7;.)° on H°(X,(N)q, 2"). One checks
that

(T*)F=(T))g and (Tp) =(T))".
We will always use the action of (7;)* on differentials and simply write 7, for it. We

note that this action is induced by (7;),, on J; (N), which we have also sometimes
abbreviated T;.

$ 6. Drinfeld bases

Recall that @y(X) denotes the cyclotomic equation of order N, so that
XV=1= ] @s(X).

1<dIN
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If R is a commutative ring, a primitive N-th root of unity {y of R is an element
of R satisfying the cyclotomic equation ¢, ({y)=0.

For example, if Ris a reduced ring of characteristic p, then the identity element 1
is the unique primitive p"-th root of unity in R, for any n.

Let u¥ be the functor which associates to a commutative ring R the set of
primitive N* roots of unity of R. The functor uj¥ is representable by an affine
scheme u# and if we fix a primitive N root of unity {y of Z [ X]/(¢ (X)) we obtain an
isomorphism of uj with SpecZ [X]/(¢y(X)).

For later purposes, note that the group GL,(Z/NZ) acts on uj by the rule
gol=(%e.

Let N be a positive integer, and S a “base scheme”. Let E* be a generalized
elliptic curve over S in the sense developed in ([15,II); we require that E* be a
proper flat S-scheme whose geometric fibers are either elliptic curves or “‘polygons
with N sides™ ([15], II, §1). The subscheme E of smooth points of E} is open and
dense in E* and is endowed with the structure of smooth group scheme over S. The
subgroup scheme E[N]; is a finite flat group scheme over S of order N>.

The “Weil pairing” on points of order N induces an isomorphism between
E[N];s and its Cartier dual. If ¢,, t, are two sections of E over an S-scheme S’ we
denote the Weil pairing by

{ty, ) epun(S’).

The closed subscheme E[N]<FE (which is the inverse image of the 0-section
under the faithfully flat morphism [N] = multiplication-by-/N) may be viewed as a
Cartier divisorin Eg. Also, if t is any S-valued section of E[N] we may view ¢(S)c E
and [a]- t(S)< Eforany a e Z/ NZ as Cartier divisors. Given a pair ¢, , t, of S-valued
sections we may form the Cartier divisor

Z(ty, 1) = ) la,] 1,(S) + [a2] 12(S).
(a1,a2)€eZ/NZXZ/NZ
We ssay that (¢,, t,) form a Drinfeld basis of level N for Eif t, and ¢, are S-valued
sections of F[N] such that we have an equality between the Cartier divisors
Z(t,,t,)=E[N], and such that {¢,,¢,) is a primitive N-th root of unity over S.
Refer to {t,,t,) as the determinant of the Drinfeld basis (¢,, t,).
It S=Spec R, and {y e R is a primitive N-th root of unity, we say that the pair
(t,,1,) form a Drinfeld { y-basis of level N if they form a Drinfeld basis of level N, and
if we have the equality

{ty,t,)=C(yeR.

Examples. 1. Suppose that the residual characteristics of the points of S do not
divide N.

Then a Drinfeld basis of level N is the same as a level N structure on
Ej. Explicitly, given a Drinfeld basis (¢,,,) we obtain an isomorphism of the
constant group scheme Z/NZ xZ/NZ onto E[N]s by sending (a,,a;) to
[a;]" t,(R) + [a,]- t,(R). A Drinfeld {,-basis is the same as a level N structure of
determinant (.

2. Suppose that S is the spectrum of a discrete valuation ring whose field of
fractions K is of characteristic 0.
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Then a Drinfeld basis of level N of E is the same as a level N structure on Ej.

3. Suppose that S=Spec k where k is a perfect field of characteristic p.
Suppose further that N =p". Then we have two cases to consider:

(1) E, is supersingular. In this case the Cartier divisor E[N] is simply the
origin of E taken with multiplicity p>". The only Drinfeld basis of level Nis given by
t, = t, = the zero-section.

(ii) E, is ordinary. In this case, E), possesses a Drinfeld basis of level N (over k)
ifand only if the k-rational points of E [ N]form a cyclic group of order N. By choice
of a generator we may identify this cyclic group with the group Z/NZ; under this
identification, ¢; and ¢, are identified with integers modulo N, o; and «,
respectively. One has that (¢,, ¢,) form a Drinfeld basis of level N if and only if at
least one of the two integers o, o, generate Z/NZ, i.e. is prime to p.

4. Suppose S is a smooth (irreducible) curve of characteristic p, and let N = p".
Suppose further that E is ordinary at the generic point # of S, and consequently
E[N]s is generically ordinary. Let ¢ be an S-valued section of E[N] whose
restriction to 7 is a generator of the étale (constant) group scheme E[N]¢. Thus
(Es, t) determines an S-valued point of the Igusa curve of level N. Let (o, a,) be a
pair of integers modulo N such that one of the two is prime to p.

Sett, ={a,]¢t,t,=[a,] 2. Then (¢, t,) form a Drinfeld basis of level N for Ej.

5. Let S be an irreducible scheme whose generic point is of characteristic 0 and
let {,y be a primitive root of unity in the ring of global sections of S. Let E; possess a
Drinfeld basis of level N, (¢,,¢,). If Ae GL,(Z/NZ) is a matrix:

= <a1 1 4 12) i
ay1 423
let (¢1,¢,) be given by the formula (¢,,1,) ‘4 =(t}, t5). Then (¢}, t3) is again a
Drinfeld basis. Clearly, (¢}, t,) ={t,, t,y%'4. The set of Drinfeld bases of level N on
Ej is a principal homogeneous set under the action of GL,(Z/NZ) and the set of
Drinfeld {,-bases of level N is a principal homogeneous set under the action of
SL,(Z/NZ).

6. Let us return to the case of Example 2, where S is the spectrum of a discrete
valuation ring whose field of fractions Kis of characteristic 0. Suppose, further that
the residue field & is a perfect field of characteristic p, that N=p", and that the
special fibre E), is ordinary. Fix a primitive N-th root of unity {y in K. We shall say
that a Drinfeld basis (¢, , ¢,) is adapted (in this situation) if ¢, specializes to the zero-
section over k, and, consequently, ¢, specializes to a generator of E(k)[N]. It is
useful, when we encounter such a situation, to fix an adapted Drinfeld basis (7, 7,),
and to represent all the other (y-bases as (z,7,)'4, where A varies through
SL,(Z/NZ).

The subgroup B GL,(Z/NZ) of upper triangular matrices, B = (§ ) operates
transitively on the set of ‘adapted’ Drinfeld bases.

7. Let N=m-p" where m is prime to p. Let {, be a primitive N-th root of unity
in R. Then {,, = ({y)*" and {,, = ({»)™ are primitive m-th and p"-th roots of unity,
respectively, in R. To give a Drinfeld {,-basis of level N for E% is equivalent to
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giving a pair consisting in a Drinfeld {,,-basis of level p”, and a Drinfeld {,,-basis of
level m for Ef%.

S (I (%)
We have the natural product decomposition
GL,(Z/NZ)=GL,(Z/p"Z) x GL,(Z/mZ)
A (AP, A™)
which is compatible with the correspondence (*) in the sense that
Eytty= (G- ' AP, &, 'A™).

In what follows, the action of GL,(Z/p"Z) will play an especially important
rc)lel.\low fix a prime number p, an ‘“‘auxiliary level” m = 3 not divisible by p, and set
N=m-p" for some n=1. Consider

Z(N): R {isomorphism classes of pairs}
N ——

(E*, (1, 1)z

where R runs through the members of the category of commutative rings, and E% is
a generalized elliptic curve over R, with (¢, t,) a Drinfeld basis of level N for R*
over R.

We have a morphism of functors

Z(N) - pf,
(E*’(tla ZZ)) __)<t15 t2>

which we refer to as the structural morphism. 1t is equivariant with respect to the
GL,(Z/NZ)-action defined on domain and range (cf. opening remarks and
Example 5 above).

The following theorem is due to Drinfeld (unpublished). See pp. 152, 153 of [15]
for a discussion of this theorem and its antecedents. See also [36] (First Main
Theorem of Chap.IV, and Chap.XIII.)

Theorem. The function ¥ (N) is representable by a projective scheme over Z
naturally endowed with “structural morphism” to u};. Denote this scheme X (N)/, .
Choosing an isomorphism

SpecZ [{y] — pk

(i.e., choosing a “‘primitive N-th root of unity”) we may identify X (N),» with the
canonical model X (N) ., as described in § 3.

We have a natural action of GL,(Z/NZ) on X (N) and on the base u} compatible
with structural morphism.

The morphism X (N)— SpecZ [{y] is proper and flat with one-dimensional fibres
described as follows.

The fibres in characteristic 0 are smooth irreducible curves. Indeed, if K is a field of
characteristic 0, then a choice of primitive N-th root of unity in K is equivalent to
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giving a homomorphism Z [{y] - K and the scheme X (N obtained by base change
via this homomorphism is isomorphic to the canonical model of the modular curve
associated to I' (N) over K (§ 3).

If k is a characteristic p residue field of Z,[{ ), then the fibre X (N), is a union of
irreducible components, each of which is a reduced smooth curve isomorphic to
Igusa(p";m),. The group GL,(Z/p"Z), which acts in the natural way
(c¢f. Example 7) on X (N), operates transitively on the set of irreducible components
of X(N),>. If ¢ is such an irreducible component, and B, GL,(Z/p"Z) is the
stabilizer (i.e., isotropy group) of the component c, then as ¢ runs through the set of
irreducible components of X(N),, the subgroups B, run through all subgroups of
GL,(Z/p"Z) which are conjugate to the subgroup B<GL,(Z/p"Z) of upper
triangular matrices. Making a choice of ““base component” c, we may identify the set
of irreducible components of X (N),,, viewed as a set with GL,(Z/p"Z)-action, with:

PY(Z/p"Z)=GL,(Z|p"Z)/B.=SL,(Z/p"Z)/SB,
where SB.=B.NSL,(Z/p"Z).
All irreducible components of X(N), meet at every supersingular point and,

except for this, there are no further intersections between distinct irreducible
components.

Further discussion

Picture of a characteristic p fibre. Suppose that N=m-p. Then there are
p+1= #(PI(FI,)) components, each isomorphic to Igusa(p;m) all of which
meet at every supersingular point, these intersections being pairwise transversal.
For p =2 we would have the following ‘‘schematic” diagram:

-- lgusa
7
\ / 7 curves
e

supersingular
points
Fig. 1

Specialization of a given “ordinary elliptic curve” to characteristic p: Let S denote
the spectrum of a discrete valuation ring which is a finite Z,[{y]-algebra. Let Eg be
an elliptic curve over S, with ordinary reduction in characteristic p. Suppose a
Drinfeld {y-basis ¢y = (&, £,,) is given for Eg, as in Example 7 above. Suppose,
further, that £, is adapted in the sense of Example 6 above.

3 This is indeed an action over k, for the reader will recall that the subgroup (Z/p"Z)* of

(Z/p"Z)* x(Z|mZ)* =(Z/NZ)* = Gal (Q({ N)/Q)

is the inertia group for primes of residual characteristic p
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Then as 4 runs through the elements of SL,(Z/p"Z), the specializations to a

residue field k* of Z,[{y] of characteristic p of the S-valued sections of X (N)
represented by the triples

eA = (E/S’ ‘:pn .tAa ﬁm)

will lie on every irreducible component of X (N),.. The specializations to k of the S-
valued sections represented by e, and e, lie on the same irreducible component of
X (N), if and only if 4 and A" are in the same left-coset of SL,(Z/p"Z) relative to
the subgroup B of upper triangular matrices.

Explicit relationship between Igusa curves and the characteristic p fibre. Let G be a
finite group and H<=G a subgroup. Let Sch; denote the category of schemes
endowed with an action of G, as group of automorphisms. Let Ind% denote the left
adjoint to the “forgetful functor” Schg ---> Schy,. That is, if X € Schg and Y e Schy,
then we have ‘natural isomorphisms’

Hom;(Ind¢ Y, X) =Homg(Y, X).

Given a representative system {g,, g,, ..., g,} for left cosets of G relative to H,
we may construct Ind§, Y explicitly as the disjoint union of r copies of ¥, which may
be conveniently labelled as follows:

Ind¢ Y=g, Y I g,,Y L---1lg, Y.

To describe the group action of G on Ind¢ Y, it sufficies to say what the effect
of an arbitrary element ge G is, on g;" y for 1 £i<r, and y a point in Y (R) for R
any ring. We have that g-g; is equal to g;-h for a unique j and he H. Then
g8 y=g hy

Now let B, GL,(Z/p"Z) denote the subgroup of upper triangular matrices.
Thus /1 € B, may be written h= (g ). If the triple (E, ¢,., {,)s = ¢ represents an
S’-valued point of the Igusa curve Igusa (p"; m),. where S" is a k'-scheme, Ej. is an
elliptic curve, e,, is an S’-valued section of E which generates an étale subgroup of
order p", and ¢, is a level m structure, then define /- e ={a)e where {(a) is the
diamond operator explained in §5.1. This induces an action of the group B, on
Igusa (p"; m),.. We may now define a morphism

¢ Indg?(z/p"z) Igusa(p"; my > X (N)y

which is equivariant with respect to the GL,(Z/p"Z) action of domain and range.
By the functorial property of Ind to define ¢ it suffices to define a B,-equivariant
mapping from Igusa(p"; m), to X(N),, and this we do by specifying such a
mapping on points represented by triples e as above.

Explicitly, we send the triple e to the S’-valued point of X (N),. represented by
(E, &, &) where &, is the Drinfeld basis of level p™: (e,,0), and we call the
component of X (N),. on which it lies the base component.

One sees easily that the mapping ¢ ““is”” the normalization of X (), in the sense
that if X(N), denotes the normalization, there is an isomorphism

i: Ind§E2@r® { Igusa (p"; m),. } - X/(?V_;/k,

such that ¢ is the composition of i with the natural projection )?UV/) — X (N).
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§ 7. Actions of finite groups and quotient modular schemes

Let H denote a subgroup of GL,(Z/NZ) containing the matrix (~§ _9). For
simplicity, we make the further hypothesis that

H=H,x H,< GL,(Z/p"Z) x GL,(Z|mZ) = GL,(Z/NZ)

for subgroups H,cGL,(Z/p"Z), and H,,c GL,(Z/mZ).

Let det H=(Z/NZ)* denote the image of H under the determinant
homomorphism. Let SH=HNSL,(Z/NZ) and SH,=H,NSL,(Z/p"Z). Let
I'=SL,(Z) denote the full inverse image of SH under the homomorphism

SL,(Z)— SL,(Z/NZ).
Let Ry Z,[{y] denote the subring of elements invariant under the action of

det H.

Define X (N; H) to be the quotient scheme obtained from X (N) by passage to the
quotient under the action of the group H. Then X (N; H) inherits the structure of
Ry-scheme.

Proposition. The scheme X (N; H) is the quotient of a regular scheme by the action of
a finite group of automorphisms. It is normal, and has only inconsequential
singularities. The Ry-scheme X (N; H) is a ““canonical model” for X over the ring
RH .

The characteristic 0 fibers of X (N; H) are irreducible smooth projective curves.

Let ,
Zp [CN] - k

.

R, —» k
be a commutative diagram, where k'|k is a (finite) extension of finite fields of
characteristic p.
The set of irreducible components of X(N;H), is in canonical one: one
correspondence with the set of H ,-orbits of irreducible components of X (N),.. This set
may be identified with the set of double cosets:

HN\GL,(Z/p"Z)/B,.
The scheme X (N; H), is reduced if detH,=1.
—
If X(N;H), denotes the normalization of (X(N;H),).q, there is a natural

radicial morphism
Indgfz‘z/""Z) {Igusa (p"; m),. }
H

——
X(N; H),

where the domain is the quotient of Ind§l2@r'® Jgusa(p"; m), by the (natural
action of ) H.

Proof. The above proposition is a straightforward deduction from Drinfeld’s
theorem and §2, Proposition 2. Note thatif det H,=1 and if G = G, = H, then the
hypothesis of Proposition 2 of § 2 is fulfilled and consequently X (N; H), is reduced.
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It may be of use to “unwind” the definition of Ind, so as to make clearer the
nature of the irreducible components of X (N; H), (up to radicial morphism). For
this, recall that we are identifying GL,(Z/NZ) with GL,(Z/p"Z) x GL,(Z|mZ).
Fix {g,,...,g,}, a representative system of left-cosets of GL,(Z/p"Z) relative
to B,; these may aiso be viewed as a representative system of left-cosets of
GL,(Z/NZ) relative to the subgroup of matrices B= {((¢ 5) € GL,(Z/NZ) such
that ¢ = 0mod p"}.

We then have that Ind§-®*r"® {Igusa(p";m),} has precisely r distinct
irreducible components which may be labelled g, Igusa(p"; m),. for i=1,..., r.
The stabilizer of the i-th component is the subgroup:

H,=Hng;Bg, 'S GL,(Z|NZ).
The quotient

Igusa(p";m) _ g Igusa(p"; m)
g 'Hg,nB ~ H,

1

maps radically (i.e., by a ‘radicial morphism’) onto its image in )?(T;f—l/)/k.

Consider the homomorphism «: B—(Z/p"Z)* obtained by taking (* %) to a
modulo p". Let n; be the smallest positive integer such that g; ! Hg, N B contains the
kernel of the homomorphism (Z/p"Z)*— (Z/p™ Z)*. We shall refer to p™ as the
p-level of the i-th component. The significance of the ‘p-level’ is that »n; is the
smallest integer such that the natural map of Igusa (p"; m) onto the i-th component
factors through the projection Igusa(p"; m)— Igusa(p™; m). In particular, the
i-th component is a quotient of Igusa (p™; m).

Corollary 1. Let N divide N'. Imbed Z,[{y] inZ,[{ ] by sending {y to the N'|N-th
power of (.

Let H and H' be subgroups, as above, of GL,(Z/NZ) and GL,(Z/N'Z)
respectively, such that H' is the full inverse image of H under the natural mapping
GL,(Z/N'Z)— GL,(Z/NZ).

Then Ry = Ry and the natural mapping

X(N)zewy = X (N gy
induces an isomorphism of Ry-schemes: X(N'; H')— X (N; H).

Proof. These schemes are both normalizations of the same Q ® Rj-scheme over
the j-line over Ry (cf. §3.2).

In view of the above corollary, if #<=GL,(Z) is the full inverse image of
HcGL,(Z/NZ), thering Ry depends only on #(denote it R ) and the R 4-scheme
also depends only on J# (denote it X (3¢)).

Return to the setting of the Proposition and form the following commutative
diagram:

Q,lly] — K’

P

Q®Ry —» K
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where K’ is the field of fractions of the discrete valuation ring quotient of Z ,[{y]
obtained by completing with respect to the kernel of the homomorphism
Z, (6% Bl 28

We are now in a position to describe the abelian variety part of the special fiber
(over k) of the Néron model of the Jacobian of X (N; H) . The crucial point is that
X (N; H) has only inconsequential singularities and hence the proposition gives a
good description of the characteristic p fibre of a regular resolution X*(N; H) of
X (N; H). Indeed, they differ only in the adjunction of projective lines. So using the
results of §1 and the previous proposition we have:

Corollary 2. There is a natural isogeny of abelian varieties over k:

Igusa (p™; m)}

av {Pic® (X (N; H)x)} - il=—[1 Pic° { ¢ T Ho.nB

§ 8. Examples

1. The canonical model of X, (ap™)z,(;,m- Let a be an integer prime to p, and fix
m=3 any integer prime to ap. Let N=a-m-p" and consider the subgroup
H=H,xH,xH, of GL,(Z/aZ)x GL,(Z/mZ)x GL,(Z[p"Z) =GL,(Z/NZ)

defined as follows:
H, — {i (é :>EGL2(Z/aZ)},

H, = GL,(Z/mZ),

1 = .
sz{i <0 1>6GL2(Z/p Z)}.

Then Ry =Z,[{,»] and X (N; H) is indeed a canonical model for X (ap") over
Ry. Call it X,(ap")z,,- We shall refer to the residue field as k, or as k, if n is
understood. Of course, k, = k =F,. The components of X, (ap"), are in natural
one: one correspondence with the H,-orbits of P'(Z/p"Z) which we now proceed
to describe.

A point of P! (Z/p"Z) is given by an equivalence class of pairs of integers (¥)
modulo p" such that at least one of these integers is a unit modulo p”", and where
@) ~(@)ifand onlyif d’=A-d, b'= A b for A a unit modulo p". For example, the
“base component” of X(N), (cf. discussion following Drinfeld’s theorem)
corresponds to the point () in P*(Z/p"Z). Any such equivalence class has a
representative of the form (‘fj) for a unique integer j: 0 < j < n where dis determined
up to multiplication by an arbitrary unit modulo p" which is congruent to 1 modulo
J 2

Call the integer j the exponent of the equivalence class. The action of H,
preserves the exponent of an equivalence class, and two equivalence classes
represented by (5,) and ({’) are in the same H ,-orbit if and only if

d'=d-Amodp’ where Ais a unit =1modp" /.
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Distinguish two cases:

(1) j=0 and n: There is a unique orbit of exponent 0 and a unigue orbit of
exponent #; call these the good orbits.

(ii) 0<j<n: In these cases an H -orbit is represented by (‘,’,,-) where dis a unit,

and is determined modulo (p’, p" /) = (p™int:n-0).That is, the class of the integer d
in the group

(Z/pmin(j.n—j) Z)*

determines the H ,-orbit. Call this class the invariant of the H -orbit. The number of
H ,-orbits of exponent j such that 0 <j<nis:

min (¢ (p’), @ (p"™)

where ¢ is Euler’s ¢-function.

Thus an irreducible component of X (ap"), is determined by its exponent j and
its invariant a (if 0 < j < n). The p-level of any irreducible component of exponent jis
easily seen to be pmaxU:n—) and, moreover, any component of exponent j has the
property that its normalization is a radicial quotient of Igusa(a- p™U-"=7).

Notation. Let f stand for the curve Ind§-2®2"® Jgusa(N), so that . is a smooth
projective (disconnected) curve over k. By the proposition of § 7 we have a natural
radicial surjection

HN\ I~ X (N,

where ~ denotes normalization of the reduced subscheme {X;(N),}.s. The
irreducible components of both domain and range of ¢ are in natural one: one
correspondence with the H, orbits of P! (Z/p"Z). In particular, they admit natural
decompositions into finite disjoint unions

HN\JS= }UO (H\ 9);,

)?IN>/k=jL="]0 X, (N)w);

where the subscript j denotes the union of all irreducible components of exponent ;.
The mapping ¢ respects this decomposition, and, restricted to the j-th piece, it gives
rise to a radical surjection

(HN\S); T (m)/k)j .

There are finite morphisms
(Hp\f)j ’_/‘1;_’ Igusa (N/pj)/k

whose definition is sketched below.

Let & be an irreducible component of the curve £ which projects to an
irreducible component of (H,\ £);. Let Uc % be an open dense subscheme
contained in the complement of the supersingular locus, and which therefore we
may view as a subscheme of X' (N),, . Fix an “auxiliary level” m = 3 prime to N and
let U'-» U denote the inverse image of U in X (Nm),.
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From the inclusion of U’ in X (Nm),, we obtain an ordinary elliptic curve E over
U’ together with a Drinfeld basis (¢, t,) of level N and an “auxiliary” level m
structure. Since U’ is a smooth curve, it follows from our hypothesis ( ¥ projects to
an irreducible component of (H)\ .#);) that ¢, is a U’-valued section generically of
order N/p’. Thus (E, t,) determines a U’-valued section of Igusa(N/p’),. This U’-
valued section “‘descends” to a U-valued section which determines the morphism 4;
on %
The mappings B, and B, Define the mapping B, Igusa(N),—(H\5),
—>(X,(N )i), of the Igusa curve of level N onto the good component of exponent 0
by composing the ““identity mapping”

Igusa(N)— g- Igusa(N) —.%

(g = the representative of the identity B,-coset in GL,(Z/p"Z) with the projection
mapping
I>HN\S.

Then B, is a radicial morphism of Igusa (N) onto the normalization of the good
component of exponent ».

In terms of moduli problems, f, has the following simple description: To a triple
consisting of (E, e,., €)' ———— where S’ is an F -scheme, E. an elliptic curve, e,,
an S’-valued point of E which generates an étale subgroup scheme, finite and flat
over S’, of order p", and ¢, an S’-valued section of E of order a ——— the mapping
By associates the “triple” (E, (t,,1,), e,)s» Where (1, ) is the Drinfeld “‘(,,”-basis
of E. given by t, = e,,, and t, = the zero-section of E, where “‘(,,” is the constant
unit section 1 over S'. o

Define the mapping f# = f: Igusa(N) — (H,\ #)o— (X, (N),), analogously. In
terms of moduli problems it has the following description: To a triple (E, e, e,),5 s
above, f, associates the triple (E, (¢}, t3), e,)s- Where (¢1, t3) is the Drinfeld “(,.”
basis given by ¢} = zero-section of E, and t; =e,,.

It will be convenient for later purposes to use the notation Z# and X* for the
curves (X;(N),)o and (X, (N),), respectively. Though we have not actually even
proved that these are non-singular, we do know that in the normalization of the
reduced fibre, (X;(N),) the natural maps

Bo: Igusa(N) -5, B,.: Igusa(N)— E*

are radicial.
The mapping f§, “‘extends” to an open immersion

bo: ¥, (apn)/z,,[g,,n] = X1 (@p")z,10m

where %, (ap™) is the “‘incomplete moduli space” studied in §4. The mapping b, is
induced from the following rule expressed in terms of moduli data:

Let S be a Z,[{,.]-scheme. Let (E, e,., e,)s be a triple where Ej is an elliptic
curve, ¢, is an S-valued point of E of order a, and ¢,, is an étale S-valued point of E
order p" (étale in the sense that it generates a finite étale subgroup scheme of E over
S, of order p"). Let y e %, (ap")(S) be the S-valued point represented by this triple.
We may extend e, to a Drinfeld {,.-basis of level p”, £,. = (e;n, €,,) where ¢, is a
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suitable point of order p". This determines a unique S-valued section of X, (ap™)
which we define to be b, (y). It is evident that b, induces an open immersion on
generic fibres (the canonical open immersion).

Moreover, since %, (ap™)z,;,., is @ smooth scheme, quasi-finite over the j-line,
and X, (ap")z,,(,. 1S the normalization of its generic fibre over the j-line, it follows
that b, is an open immersion on all of %, (ap™) ;.1 I k,, is the residue field, it is
immediate that the following triangle is commutative:

%, (ap™), —— Igusa (ap™,

by, Bo

X, (“P")/k,,

Consequently, we have

Proposition 1. The mapping
Bo: Igusa(ap™),, — f/}c}t,,

is an isomorphism of curves.

2. The canonical model of X,(ap")z,i,. (W' Zn). Here we let N'=a- m:p" "and
H'=H,x H, x H, where H, and H,, are as above, while H c GL,(Z/p" 'Z) is the
subgroup:

H, = {g =+ (Z Z) €GL,(Z/p" Z); c=0mod p"; detg=1 (p”)} .

Then Ry =Z,[(, ]; Refer to X(N'; H')z,,. as X, (ap" )z, (o)

If C denotes the subgroup of scalar matrices of GL,(Z/p" Z) which are
congruent to the identity matrix modulo p", then the full inverse image of H,, in
GL,(Z/p"Z) is C- H, and therefore the natural map induces a one:one
correspondence

HN\PY(Z/p" Z) — H\P'(Z/p"Z).

Let {g{,..., g} bea system of representatives in GL, (Z/p" 'Z) for the double
cosets C-H\GL, (Z/p Z)/B, (where B, is the subgroup of upper triangular
matrices in GL2 (Z/p™ Z)) and let {g,, ..., g} denote the system of images in
GL,(Z/p"Z), viewed as representative system for the double cosets
H\GL,(Z/p"Z)/B,.

Then the full inverse image in B, of g; ' H,g; N B, is equal to g;~ ! CH,g;N B,
=C-g"'H,g nB,. This fact implies:

Proposition 1. The natural map

X, (apn)/z,,[c,,,.] - X, (aP")/z,,[(,,n']
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induces a one: one correspondence of irreducible components of the fibers over the
residue field k,=k, =F,. The mapping induced on the normalizations of the
reduction of the F-fibers is a radicial morphism. The mapping induced on “abelian
variety parts” on the ¥ -fibers of the Néron models of the jacobians of the fibers over
the field of fractions is an isogeny:

av (Pic® (X, (‘ZP”)/Q,,[g,,n']) - (Pic® (X, (”P")/Q,, [C,.n])‘

3. The canonical model of X, (ap", ap"~ ‘)/ZPKM. Keeping the notation of example 1
above (e.g., N=a-m-p"), let

= {g =+ (‘; Z) €GL,(Z/p"Z)

a=1modp" !; c=0mod p"
and det g=1 mod p"

and set H=H, x H, x H,. One has that H, contains H, as a normal subgroup
of index p; H contains H as normal subgroup of index p. The model X (N; H).
is a canonical model for I'; (ap”, ap"~ 1) over Z[{ ] and we shall therefore refer to
it as X, (ap", ap"~ ")y, .- The natural mapping

H\P'(Z/p"Z) — H\P' (Z|p"Z)
is easily seen to be a bijection, and consequently the mapping

I, X (ap") 2, 0 — X1 (ap", 9" D)z, 0,

induces a one: one correspondence on irreducible components of F,-fibers.

An irreducible component of the F,-fiber of X, (ap", al’"'l)/z,,[cpn] may be
characterized, then, by its exponent and its invariant, as described in Example 1.
One easily sees that the p-level of the two good components of the F,-fiber of
X, (ap", aP"_l)/z,,[g , is p"~', and the mapping which II, induces on the
normalizations of the reductions of the F -fibers of domain and range has the
following form:

(i) the good components: We have a commutative diagram

Igusa(ap"yy, ———————  Igusa(ap" '),

the irreducible component of the irreducible component of
exponent 0 of the normalization exponent 0 of the normalization
of the reduction of the F,-fiber of the reduction of the F,-fiber
of X, (aP")/z,, [Cpn] of X, (ap", ap"~ l)/z,, (]

where the horizontal mappings are the natural ones, and the vertical mappings are
radicial morphisms.
We have a similar diagram for the irreducible components of exponent ».
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il) the remaining components: We have a commutative diagram

Igusa(ap™> "Dy,

the irreducible component of the irreducible component of
exponent j and invariant d of the exponent j and invariant d of the
normalization of the F,-fiber T normalization of the F -fiber

of Xy (ap")z,1t,m of X, (ap", ap"” 1)/1,, [€pn)

where the horizontal mapping is the natural one, and the oblique arrows refer to
radicial morphisms.
It is also easy to analyze the natural mapping

pn: Xy (ap”, ap"~ 1)/zp[;,,n] - X, (ap"” 1)/zp[g,,n]

which we may regard as being induced by the inclusion of the group
H=H,x H, x H, of example 3 into the group H" = H, x H,, x H, where

a b\|a=1modp !
H' = =+ = n
p {g _<c d)‘czOmodp"‘l det g 1m0dp}

(i.e., H} is the group H, of Example 2, where n’ and n are nand n — 1 respectively).

One finds that if 1 £j<n—1, an irreducible component of exponent j and
invariant de(Z/(p’,p"~/))* of the F,-fiber of X, (ap",ap"~ ') ) maps to the
irreducible component of exponent j and whose invariant is the image of 4 in
(Z/(p’, p"~*7Y))*, and that good components map by radicial morphisms onto good
components.

4. The canonical model of X,(p", ap"“)/zp[cpn,]. Keeping the notation of
Example 2, let

a=1modp" !

Ty n
,,‘{g-i(c d) € GL.(Z/pZ) ¢=0mod p"

det g =1mod p"}

and set H'=H,x H,, x H,,.

If C denotes the subgroup of scalar matrices of GL,(Z/p"Z) which are
congruent to the identity matrix modulo p”, then, as in Example 2, we have that the
full inverse image of H,in GL,(Z/p" Z)is C - H}, and one obtains by a process of
reasoning analogous to that in Example 2 the following result:

Proposition 2. The natural map
X, (ap", ap"~ 1)/2,,[(,,"'] - X, (ap", ap"~ 1)/z,,[g,,n]

induces a one: one correspondence of irreducible components of the fibers over the
residue field F ,. The mapping induced on the normalizations of the reductions of the
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F -fibers is a radicial morphism. The mapping induced on “abelian variety parts” of

the F ~fibers of the Néron models of the jacobians of the fibers over the field of
fractions is an isogeny:

av Pic® (X, (ap", ap" ™ ") q, ¢,n) — av Pic® (X (ap", ap" ™ ) q, g,m)-

Summary. Although the canonical models of X, (ap") and X, (ap™, ap"~ ') will not
commute with a base extension of the type Z , [{ o )2, [C ] there is a certain limited
type of stability that obtains. That is, the normalization of the reductions of the
F,-fibers will change by at most radicial morphisms. In consequence, if we are
willing to consider the normalization of the F,-fiber up to the equivalence relation
on the category of curves over F, induced by radicial morphisms, we may talk of
the F,-fiber without reference to n’. Up to this equivalence relation we have given
a complete description of the morphisms

normalization of the normalization of the normalization of the
F,-fiber of —— F,-fiber of —— F,-fiber of (*)
X, (al’n)/l,, o) X, (ap", ap"~ 1)/z,, pn] X, (ap"~ 1)/z,,, )

(on good components)

Igusa(ap"), —— Igusa(ap"~ 1)/Fp — Igusa(ap"~ ‘)/Fp
exponent 0 —— exponent 0 —— exponent 0
exponent n —— exponent n —— exponent n—1

(on a component of exponent j: n/2 < j<n)
Igusa (apj),Fp — Igusa(ap’)y, — Igusa(ap’),
{invariant d in (Z/p" /Z)*} — invariant d=image of d in (Z/p" /™' Z)*}
(on a component of exponent j: n/2 = j> 0)
Igusa(ap" ), — Igusa(ap" )y, — Igusa(ap" ™),
(all invariants d in (Z/p’ Z)*).

For example, when n = 2 we have the following description of (*), up to radicial
morphisms:

Igusa(ap?) U |] Igusa(ap) 1 Igusa(ap®)

| l

Igusa(ap) 1 ]_I Igusa(ap) W Igusa(ap)

l @2 \

Igusa(ap) U Igusa(ap)

where the mappings are the evident ones.
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§ 9. The correspondence U,

We have described the correspondence U, on the modular curve X, (N),q in §5.5.
In this section we study the “effect” of U, on the canonical model X 1Nz, (cpm 5
and, in particular, on the characteristic p fiber. (See Example 1 of § 8: we retain the
notation from this example.)
To begin, consider two mappings

F: Igusa(N)y,—— Igusa(N)py,

V. Igusa(N)y,—— Igusa(N/p),
which are induced from mappings

F Y (N;m)—— Y (N;m),

V%, (N; m)/k'__’ %,(N|p; m)
characterized by the rules:

F: (Ea €y, <x)/R EE— (E/E[p]O’ éN’ &)/R

V. (E ey, 0)g — (E/Cp, ey, %)r
where E[p]° is the connected component of the group scheme F[p] ; and where C,
is the finite flat étale subgroup scheme of E; generated by (N/p) - ey . Here, é is

the image of ey in the appropriate quotient elliptic curve, and & refers to the
level m structure induced from a.

Note that # is the Frobenius morphism, associated to Igusa(N)y,. On the
other hand, if Ris a perfect field, then the elliptic curve E/C, can be identified with
Ej% where EV is the image of E under Verschiebung.

We now make use of the notation of Example 1 of § 8. Consider the following
correspondence

v: Igusa(N)g, —» H,\ S
v(x)=Bo- F(x)+ A7 V().

We consider the composite homomorphism v':
Pic® (Igusa(N),) —— Pic®(H,\ #) — Pic®(X,(N),)

13

av(Pic® (X, (N, 1c,m))
Proposition 1. We have a commutative diagram

Pic®(Igusa(N)) —> av(Pic® (X, (N)q, ,m)

\ %> ")

av(Pic’ (X, (N)/Q,,[Cpn]))'
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Proof. To begin, let K be a field of characteristic 0 containing { a primitive N-th
root of unity. Let x be a K-valued point of X, (N) which is represented by the elliptic
curve Ey together with a Drinfeld basis (¢, t,) of level N.

If we modified the point ¢, by adding any multiple of 7,, we would still obtain a
representative of the point x. Indeed, the point ¢, is a “‘redundant” piece of
information in characteristic 0.

Let C(r) < E[p](K) denote the cyclic subgroup of order p generated by the point
(N/p) - (t;+rty))for0=r< p Then U, (x) may be viewed as the divisor on X (N) of

degree p represented by Z (E/C(r), t,(r), t,(r)) where t,(r) is simply the image of
r=0
t, in E/C(r) and the ‘‘redundant” point ¢,(r) is any other point of order N which

renders (¢, (r), ,(r)) a Drinfeld {y-basis of E/C(r). An elementary argument shows
that we may take ¢,(r) to be the image of any point #;(7) in E such that p - ¢{(r) is
equal to ¢, + rt,.

Now suppose that, as in Example 6 of §6, S is the spectrum of a discrete
valuation ring whose field of fractions is K'. Let Eg be an elliptic curve whose
reduction to the residue field k' is ordinary. Suppose, further, that (¢,,¢,) is a
Drinfeld {y-basis for Ejs, which is adapted in the sense that the specialization of #,
to the residue field k' is of order a. Thus, (a-t,,a"t,) is an adapted Drinfeld
basis of level p”. It follows that the specialization of (E, t,, t,),s to k' represents a
point lying in the irreducible component of X, (N), of exponent 0.

Let us examine the specialization to X,(N), of the sections of X;(N)s
represented by the triples (E/C(r), ty(r), t,(r))s for r=0,...,p — 1.

r=0: Since the Drinfeld basis (¢,, ¢,) isadapted, and C(0) is generated by (N/p) - t;
it follows that (E/C(0), t,(0), ¢,(0)) specializes to represent a point of X; (N), lying
in the irreducible component of exponent 0. This point is immediately seen to be
Bo - F(e) where e is the point of Igusa(N) represented by (E,., t,).

r+0: Here E/C(r),, may be identified with the image of E, under the
Verschiebung morphism.

Clearly, t,(r),  which is the image of ¢, ,. under the natural morphism is of order
N/p and therefore (E/C(r), t,(r), t,(r)), represents a point of X; (N), which lies in
an irreducible component of exponent 1. One further checks that the “invariant” of
the component containing the specialization (E/C(r), t,(r), t,(r)),. is the image of
in (Z/pZ)*. In terms of the notation introduced in 8.1, if e(r) is the point of (H, \ .#),
represented by (E/C(r), t;(r), t,(r)), then A, -e(r) is the point of Igusa(N/p)
represented by ¥(E, t,),. and therefore

p—1

Y e(r)=A7' YV (E, L)

r=1

the above equation being an equality between divisors of degree p — 1 on (H, \ #), .
The required formula then follows from the criterion of compatibility given in
Proposition 2 of §1.
We also need a formula giving the effect of U, on Pic®(£*). This time we do not
use the map S, but consider Z* itself (rather than the Igusa curve).
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Proposition 2. We have a commutative diagram

Pic® (2*) ——— av(Pic®(X;(N)q,¢,m))
Ver, - {n,» av(U,)

Pic® (£#) ——— av(Pic® (X, (N)q, ¢,n)):

where n, is any integer satisfying n,=1mod p",n,= pmoda.

Proof. Let ky be a residue field of Z ,[{] and S the spectrum of a discrete valuation
ring which is a finite extension of the completion of Z,[{y] with respect to the
maximal ideal corresponding to ky. Let k' be the residue field of S. The field &’
contains ky. Let x be a point of X1 (N)z,,,y Which is represented by a triple
(E, 1y, 13);s 0n X(N)pz, ) - Assume that the specialization of E is ordinary and that
(t1,t,) is a Drinfeld {y-basis with ¢, specializing to a point of order a. Thus the
specialization of (E, ¢, t,),s represents a point of X* in X, (N),.
Applying U, to x we find that U, - x is represented by the divisor

p—1
;0 (E/C(r), 11(r), (1))

where ¢, (r) is the image of ¢, and ¢, (r) may be chosen to be the image of any point
t1(r) in E such that p - £{(r) is equal to ¢, + rt,. The specialization of each point
in the sum lies on 2*. Now apply Frob, to this sum. This, on X(N),,, amounts
to division by the subgroup {(N/p)t,(r)> over S and then specialization to
characteristic p, and hence we have

p—1

(Frob,°U,)(x)= Y. (E/E[p], t,(r), 55(r)) (**)
r=0
where ¢, (r) is the image of t,(r) and % (r) is any point which renders (¢, (r), t,(r))
a {fr-basis. Here (7 is the pull-back of {yeky under Frob,. Using the natural
isomorphism E/E[p] —— E induced by multiplication by p we see that we may
rewrite the right-hand side of (**) as

p—1

Y (E ty+rty,n,ty).

r=0
Thus we obtain the equation Frob,° U, =p - {n,» on 3* by invoking the criterion of
compatibility in Proposition 2 of §1.

In order to give formulae’ for the action of U} we recall that there is an
involution w;, of X; (N),q(y, for which w;' - U, - w;, = U, . Then w;, extends to an
involution of X;(N)g,,; and it is easily checked that it interchanges the
components Z¢ and X*.

Suppose that we extend Ver ), to Pic®(£ ")y (Where ky is a residue field of Z,[{y])
by giving it the trivial action on k. Then w,, satisfies the relations

wgy' - Frob, - w, =<n, ') - Frob,

wey' - Ver, -w,=<(n,> -Ver,.
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These follow from the fact that w{, =w,, - (a). Hence we deduce the following
formula for Uy over Z,[(,.] by first proving it over Z,[{y].
Proposition 3. We have a commutative diagram

Pic® (£4) — av(Pic®(X, (N, 1,m)

Ver av(U})

14
Pic® (£) — av(Pic® (X1 (N)q, ¢,m))-

Similarly we can prove a formula for av(Uy') on Pic® (£*) by applying W, to diagram
(*) of Proposition $. Since wy, is only defined over Z[{y] we work over ky and obtain
a commutative diagram

. Wiy © Box .
Pic®(Igusa(N),,) = av (Pic® (X, (N)q, )
Weyod a(U?)
av(Pic® X, (N)q, cv)

$ 10. g-expansions

1. For the basic construction and facts about the Tate curves we refer the reader to
[15] VII and [34]. The Tate curve Tate(q) may be considered as an elliptic curve
over Z((¢g"")). It is proved in [15] that it extends to a generalized elliptic curve over
Zg"™].

Let a be an integer prime to p, and fix m =3 any integer prime to ap. Let
N =map" and consider the scheme X(N) over Z,[{y] (cf. §6). Let Tate(q) over
Z,[{v1[g""] be the Tate curve. Then associated to this curve we have a Drinfeld
basis ({y, ¢"/¥) and thus also an associated point of X(N),

SpecZ,[{y] [[‘I”N]] - X(N)/Z[{N] . (*)

The point corresponding to ¢'/¥ =0 is the point oo, and it is shown in [15] that
the map (*) may be identified with the formal completion of X(N);y,, along the
oo-section.

Our objective now is to describe the formal completion of X, (ap")z, . along
the oo-section. (Recall that as a point of X; (ap"),q , e is only defined over Q({,,n)).
To obtain this we observe that X;(ap")z,,. is obtained from X(N)gz, i, by
division by the subgroup H’ generated by H, x H,, x H,. The groups H, and H,
are defined by:

H = {i (3) I)eGLZ(Z/aZ)}, H = {i <(1) I)EGLz(Z/P"Z)}

and H,=GL,(Z/mZ). As in §8, H, x H, x H, is viewed as a subgroup of
GL,(Z/NZ), and hence so is H'.
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The stabilizer of the cusp e in the group H' is the intersection of H' with the
group {( 0 )EGL2 (Z/N Z)} The action of this stabilizer on the parameter ¢'/V is

readily computed and the invariants of the ring Z,[(y][¢""] is found to be

z, [gap"][[q]]. Hence the fomal completion 7, of X, (ap")z(,,. along the co-section
fits into a commutative diagram

SpecZ,[{N1[g'™] — X(N)z,u

SpecZ,, (][] == X1(ap™)zyicom -

A similar computation at the cusp zero (corresponding to (Tate (q)) with Drinfeld
basis (¢, {y)) gives a commutative diagram

SpecZ,[(N1[g""] — X(N)z, iy

|

SpecZ,[(,][g'"N] —— X, (ap")z, i,

where the top arrow is the formal completion along the zero-section of X(N)z, ¢, -

2. Let Rbea Z,[{,,n]-algebra. The g-expansion at e of a differential f/ defined on
an open nelghborhood of e /R is defined by means of the pull-back fof funder 7,

f=YaNg
iz0
We will use this construction only in the spemal case where R is a field F. For a
regular differential the g-expansion Y. a;(f)q' has first term ao(f) = 0. In the case

i20
F=C and {, = e*"/¥ this is just the usual g-expansion. Now let f be a differential
form and y: (Z/NZ)* —» F* such that

if=y(rf for re(Z/NZ)*.

Suppose also that F= C and that f= Y a;q' - dg/q is the g-expansion of /. Then the
classical formulae give the action of the Hecke operators on f,

NN =Y ad + (DY aq" (+%)
U, H=Ya4"

Clearly these formulae hold for any field F of characteristic zero.

In the case where F is a field of characteristic p we now prove that similar
formulae hold. First, recall that in the decomposition of the normalization X ar
of X; (N), into irreducible components we have singled out two special ones Seand
S* of exponent zero and 7 respectively (cf. § 8). If we denote all the components )
where the i denotes the exponent then by (§7) there is an isomorphism

av (Pic® (X, (N)x)) — [] Pic®(Z™).

i,Jj
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Here K denotes the field Q((,.). Each T;., T}*, Uy, U, U,, Uy and diamond
operator induces an endomorphlsm of av (Plc0 Xi (N)/K)) by the map T—av(T).
Moreover, except for U,, UF they map Pic° (Z ¢) and Pic®(Z*) into themselves.
Moreover, the map f, respects these actions in the sense that the diagram

Pic® (Igusa(N)) —2 Pic® (&)
t av(T)

Pic® (Igusa(N)) - Pic® (£¢)

commutes for each Te{Tu, T}* Ux, U} (q+ p),{a>*} and ¢ correspondingly
chosen. We note that the map f, does not commute in the same fashion. We now
write ¢ for av(T) both as endomorphisms of Pic® (£¢) and of Pic® (£#).

We now consider the induced actions of ¢ for re{t,u,(q# p),<{ad} on the
cotangent space H° (£*, Q').* In a neighborhood of e, Z* is isomorphic to £* and
so we also have an action on the g-expansions at ee. The formulae for ¢,, for (a) and
for u, may be proved by a formal computation on Tate curves [34].

The formal justification for this is briefly as follows. On an open neighbourhood
of the cusp oo the natural map £*—X* is an isomorphism. On such a
neighbourhood we can define correspondences on 2* by the standard formulae, by
representing points of X* as images of points of X (), for suitable field extensions
k'/k. For example, to each point of Z* in such a neighbourhood there corresponds a
triple (E, t, t,), wWhere (¢, t,) is a Drinfeld {,-basis. We define # by the formula

L(Ety, ) = Z(E/Cz, 1y, t_z)/k'

where C, runs through the subgroups of order /, £, is the image of ¢, and ¢ is a point
chosen to make (¢, 7,) a Drinfeld {y-basis. This induces a correspondence ¢, on an
open neighbourhood of e in X*, and so, too, of £*, and using the criterion of
compatibility (cf. §2) this #, is compatible with the action of ¢, = av(T}) on Pic® ().

The object of the rest of this section is to establish a “‘g-expansion principle’ (the
Proposition and Corollary below). An obstacle to this is that we lack an adequate

u,-operator”’. We get around this by using the *“‘operation of Cartier and Tate”.

Let y: (Z/NZ)*/(+1)— F* be an even character, and ¢ a function from the set
of rational prime numbers to o= ¢). Let

%: H°(Z*, QY)» H(Z*, Q")

be the operation of Cartier and Tate (in the terminology of [57]).
Now let f be a holomorphic differential form on 2* such that

> f=x)-f (re(Z/NZ)*)
nf=af (¥ N)

upf=c,of  (qla) @@
Cf=c, f

4 Recall the convention of §5.8 that 7= ¢¢.
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If f = Y a,q" is the g-expansion of f about the cusp oo (a,,ef'p) we have the
formula:

tlf = Zalnqn + l <I>Zanq1n
uq"‘ f = Zaqn q" (ll)
6f =Y and"
where ¢ is the inverse of Frobenius. _

Let k' be a finite field of characteristic p. In the scheme 2%, , the locus of co-cusps
is a closed k'-subscheme defined by a sheaf of ideals #, and is isomorphic to
Speck’[(,], where k'[{,] is the k'-algebra k'[x]/(®,(x)) with &, the cyclotomic
polynomial of level a. This can be seen using theorem 10.9.1 (3) of [36].

Set G={re(Z/NZ)*, r=1modp"}. Then G =(Z/aZ)* acts on X2} via the
diamond operators, and leaves the ideal # stable.

Lemma 1. Let reG. The action of the diamond operator {r) on the locus of co-cusps
is given by the formula.

ry:Speck’[(,]—Spec k'[(,].

Speck’
i l=0.

Proof. This may be deduced from the description of the cuspidal locus given in [36]
Thm. 10.10.3 and the formulas of loc. cit. Lemma 10.3.2 (see also loc. cit. §10.5,
§13.10). To make the translation from [36] to our setting let the N appearing

in [36] be our a; letI', = GL,(Z/aZ) be the subgroup ! : and choose

0
A,eHomssurj((Z/aZ)?*, Z/aZ) to be such that Fix A4, = (:) I) The action of {r) is
given by the matrix g= (:) (:_1>€GL2(Z/0Z), or equivalently by <(}; (1)>eFix A,
0 . . .
since <0 -t lies in I,. Now apply loc. cit. formula (10.3.3) noting that the locus

of oco-cusps on f/‘,t is obtained from the A-component of [I'(a)];s (0f10.3.3),

for a suitable choice of A, by the homomorphism Z[{,]®,G, - k'[{,] where X

is sent to 0 (terminology as in 10.3.3; see also Theorems 10.5.1 and 13.10.4(3)).

q.e.d.

Using loc. cit. Theorem 10.9.1, the #- adic completion of f/‘,ﬁ, is identified with
Spfk'[(,]1[¢]- A holomorphic differential form ¢ on 2} has a g-expansion

o= 2 a,(0)q"
nx1
with coefficients a,(¢) in k' [{,] where @ dg/q is the restriction of ¢ to the completion
of #.
Consider the tangent space to the co-locus, ¢/ # 2, which is isomorphic to the
k'[{,]-module k' [{,] - q. The k'[{,]-module ,#/ #*is free of rank 1, and the group G
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acts via diamond operators on #/.¢2 in a manner compatible with its action on
k')
(- m)y=(ry o) (Kr) - m) (**)

Lemma 2. We may choose a k' [{,)-generator of #| #* fixed under the action of G.

Proof. Let M= ¢/ #? and let meM be any k'[{,]-generator. If the 1-cocycle
g—gm/mek’[{,]in Z'(G,k'[{,]*) can be split, i.e. is a coboundary (g~ g*/a for
aek’[(,]*) then a~'-m is a G-fixed generator. It suffices to show that
H'(G,k'[{,]*) =0. But since a is prime to p=-chark’, the k'-algebra k'[(,] is
separable, hence decomposes into a product of fields, each one isomorphic to a field
extension k£” of k' generated by a primitive a-th root of unity. Let H = Gal(k"/k")
and let H < (Z/aZ)* = G be the natural imbedding. One sees that the G-module
k'[¢,]* is isomorphic to the G-module induced from H:

Ind§ (k" *).
Therefore H' (G, k'[,]*) = H'(H, k" *) and the second group vanishes by Hilbert’s

Theorem 90. q.e.d.
Now let us identify ¢/ #2 with k’[{,] by choosing a G-fixed generator m and

retine i k'] A7
x> o m.

By Lemma 1, the natural action of G on £/ #? is then given, after this
identification, by the formula

<y L=0. (%)

At this point, let k'S Fp be large enough to contain the values of ¢ and of .
Let V= Pic® (£,) [pl(F,) and V**¥ the k' subspace of V®g, k' consisting of
those vectors v such that ;v = v, u,v = c,v(q|a) and {r)v=y(r) - v. We say that
a k'-valued character y is k'-pseudo-primitive if there is a finite totally ramified
discrete valuation ring extension D of the Witt vectors W (k') and a pseudoprimitive
D-valued character y, whose reduction to the residue field k' of D is equal to y.

Proposition. Ify is k'-pseudo-primitive, the k' vector space V= ** is of dimension < 1.
Proof. The mapping
0: Pic® (54, [p] » HO [}, @1)°

([57], §11, Prop.10) identifies the k'-vector space V** with the subspace of
HO(Zk,, QY)¥@¢ k' on which ¢, acts like ¢,(I ¥ N), u, acts like c¢,(q|a) and {r)
actslike y () (re(Z/NZ)*). If fis a differential form in this subspace, fis determined
by its first Fourier coefficient a, (f) ——— (note that a,, (f)=<{n,> " 'a,(f)) ——
and consequently V% ¥ imbeds in the subspace of k' [{,] consisting of elements v
such that {(r) v = x(r) - v. But this subspace is one-dimensional over k', as the reader
can easily verify, using k’-pseudo-primitivity of y, and the formula (sx*),



Class fields of abelian extensions of Q 261

Corollary. Let y be k'-pseudo-primitive. Let V™ be the subspace of
Pic® (£%) [p](F,) ®f, k'

consisting of those elements such that 1, acts as (multiplication by) ¢,(1¥ N), u, acts
as c,(qla) and {r) acts as y(r)(re(Z/NZ)*). Then the dimension of V* ¥ is less
than or equal to 1.

Proof. The involution w; , on X; (N) induces isomorphisms from Z* to £ and from
S4 to £* defined over F,. Let r, denote the element in (Z/NZ)* such that
rn=I1 mod ptandr, =1 mod a, for any prime / + p. Then we have the commutation
rules

W{pn t/ax W(p‘nl =<r’>t1* for l*N
wgp,,uq*wg;l:(rq)uq. for gqja.

Moreover, conjugation by w; , preserves the group of diamond operators.
It follows that w, , will bring V" * ¥ to a space of the form V<" * ¥ for suitable
¢’ and y'. The corollary then follows from the proposition.

Chapter 3. A study of abelian varieties which are ‘‘good” quotients of J; (N)

1. Construction of 4, . . . . . . . . . e 261
2. Reductionmodp . . . . .. . .. 263
3. Formulasfor U, . ... ... ... ... . ... ... 269
4. Propertiesof Tyand Y, . . . . . . . .. .. 274
S. The pseudo-primitive Case . . . . . . . . . . . .t i i e e 277
6. Astudy of A%, ... ... 279
7. p-deprived qUOLIENLS . . . . . . . ... e 285

§ 1. Construction of A,

We fix an integer n = 1 and set N=ap" with a a positive integer such that (a, p) = 1.
Recall that fpr any i1 X, (ap';ap"” "o is the modular curve associated to the
group I'y(ap’) NTI'y(ap'~1). Let n; and p; be the natural projections

ni: Xy (apo— Xi(ap'sap'™ g, pi Xi(ap'iap'™ Do Xi(@p'T e
These induce maps of the associated Jacobians
¥ Ji(ap'iap' o~ Ji(apYe  and  ppiJi(ap’iap'T = Ji(ap' -
Also let w be the involution on X, (ap;a) given by
w: (EP,G,)—~(EG,,P,,G,)

where the bar denotes image in E/G,, and G, is a group of order p in E not equal to
G,, and P, is a point of order a.
Consider the morphism:

nf X (wxont):  Jy(a)g % Jy (@)~ Ji(ap;a),- €))
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The kernel is shown to be finite by considering the induced map on differentials
(viewed as the cotangent spaces of the abelian varieties). For on their associated
g-expansions the two maps are respectively

wt Yaq-Yad, went: Yag-Yad

The theory of newforms implies that the dimension of the sum of the images of these
maps is equal to 2 dim J, (a),q ([40], Chap. VIII, §3), and so the map (1) induces an
injective map on differentials.

Let #; be an abelian subvariety of J,(ap;a),, which is isogenous to
Ji(ap; a)/image (J;(a) x J,(a)). The quotient J,(ap;a)/image (J,(a) x J,(a)) has
multiplicative reduction as follows easily from [15],VI, Theorem6.9 and
Raynaud’s theorem (Prop.1 of §1 of Chap.2). Then since J;(a)q x J;(a)o has
good reduction at p, it is clear that J is uniquely determined as the maximal
abelian subvariety of J, (ap; a),o with multiplicative reduction at p. We define 4, to
be the quotient J,(ap;a)/ A and «,: J,(ap;a) — A, the natural map.

Now we will inductively define 4; and %} for 1 <i<n. Each X will be an
algebraic subgroup of J(ap’,ap'~')q and each 4; a natural quotient abelian
variety of J, (ap),q via a map o;: J; (ap')o = 4;. Given #; forsome 1 < i < n, define
A; and «; by the exact sequence

71:"|1r, : &;
H, — Ji(@p)q — A, — 1.

Given 4, for some 1 <i<n—1, define %, , by the exact sequence

i i % °Piy 1
0 A,y - Jl(aP'HaaP')/Q — A;.

It is clear from the definition of 2] that it is stable under all endomorphisms of
Ji(ap, @),q. Hence any endomorphism of J; (ap, a);q also induces an endomorphism
of Ay which commutes with the projection a,. In particular, we may view any
operator in the set {{r),T;, U}, U,,,U¥,U,,} as an endomorphism of 4,q. One
checks that the maps n} and o;°p,, , « also commute with the naturally defined
actions of the above Hecke operators on their respective domains and ranges
(except for Uy¥). We thus get an action of the same operators (except for U) on each

Ay for0sisn

Up to isogeny the 4, ,’s are given inductively by the formulae:
Ao~ Ji(a) x Jy(a) —I
A; ~{Jy(ap))/n¥ (Jy(ap',ap'~ )} x 4,y ——TII(foriz1).

Furthermore, the isogenies given in II may be chosen so as to respect the natural
actions of all the Hecke operators in the set r>, T;, U¥, U,,, for q|a,U,, }, whereas
the isogeny I respects those in the set {(r>,T;, U*,U,,, for q|a}. We set

Vo=A4o, Vi={Jy(ap))/r} ] (ap';ap'~Y)} fori=1,...,n.
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Then we may deduce from I and II that
4, ~ 1V, @)
Jj=0

and this isogeny respects the actions of {(r), T}, U¥,U,,} on both sides.

If 4, ,,, denotes the p-divisible group scheme over Q associated to the abelian
variety Amq, we have a natural action of Z,[(Z/ap"Z)*/(+1)] on A, , where
re(Z/ap"Z)*/(£ 1) acts via the diamond operator {r). If m is a component, let
Ap,mq denote the p-divisible subgroup scheme of A, (the direct summand) which
is the image of the irreducible idempotent e, (Chap. 1, §3). Thus 4, w/q is naturally
endowed with the structure of R,-module.

§ 2. Reduction mod p

Since n will be fixed throughout this chapter we will often write 4 for 4,. Our first
goal is to prove the following theorem.

Proposition 1. 4 acquires good reduction at p over Q((,.).

Since the property of having good reduction is invariant under isogeny
(cf. [26],2.2.9) it will be sufficient to prove the following lemma.

Lemma 1. V; acquires good reduction at p over Q((,,) for 0 < i<n.

Proof. For i=0 the lemma is well known. Suppose then that i> 1. Let X; be the
abelian variety associated by Shimura to a newform f;. Then it follows from the
definition of V; that there is an isogeny

i~ 1%, M
Jredy

where the newforms f, attached to a j;€J; has level a'p’ for some a’|a. Further-
more, the conductor of each such f, must be divisible by p'. We claim that the
abelian variety X, associated to such a form f, acquires good reduction at p over
Q({,). It will be sufficient to prove that X, acquires good reduction at p over an
extension of Q((,,) which is unramified outside p. This result is an immediate
consequence of the following Proposition which is a corollary of a very general
theorem due to Langlands and whose relevance was pointed out to us by Ribet.
Alternatively, we may use the Theorem of Chap.XIV of [36].

Proposition 2. Let X, be the abelian variety associated by Shimura to a newform f of
level M with character y. Write y =y, where y  is ramified only at the prime g,
andy , is unramified at q. Suppose that q is aprime divisor of M such that (M/cond y)
is prime to q. Then X, acquires good reduction at q over O where F is the splitting
field of the character y over Q.

Proof. 1) Langlands has shown how to attach to any newform f an irreducible
admissible representation 7 of GL,(A ;) where A denotes the adéles over Q with
trivial co-component. The representation = decomposes as a restricted tensor
product n= @ m, of infinite dimensional admissible representations m, of

<o
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GL,(Q,). Furthermore, the L-series associated to f(via the Mellin transform) is the
product of the local L-series attached to the representations 7;. A theorem of Ogg
[45] shows that under the hypothesis that ¢ ¥ (M/cond ) there is a non-trivial Euler
factor at ¢. In particular, the representation 7, is either a special representation or a
principal series representation. It is proved in [3] that under the same hypothesis
g X (M/cond y), m, is in fact a principal series representation. (Actually they prove it
under a weaker hypothesis). We give a simple alternative proof in this special case.

The representation r,, if it were special, would have the form o (u, | |™") for
some quasi-character u of Q¥. The existence of an Euler factor at g shows that u
must be unramified. But this contradicts the fact that y is ramified at ¢, and so &,
must be in the principal series.

To each m, there is associated by the local Langlands correspondence a two-
dimensional complex representation of W, the (absolute) Weil group. The
representation of Wy, associated to n, has the form

1y (2(w)
Y [ uz(a(w))]

where a is the canonical surjection Wo — Qy and x4, and u, are quasicharacters.
Since there is an Euler factor at ¢, one of u, and y, is unramified. Thus we may
assume that the representation has the form u, =y, &, p,=¢""' where ¢ is
unramified and y, is the restriction to Q} of the idelic character associated to y.

Now let X, be the abelian variety over Q which is associated to f. Then as is
explained in [66] and in [6], especially § 3, for each prime s dividing N we may attach
a representation ; of Wy, by its action on H;' (X,) where H;' is l-adic cohomology.
More precisely, if K, < C is the field generated by the Fourier coefficients of f
then we may view K as contained in End (X ;) ® Q. Picking a prime A above /in K
and an embedding K, , » C compatible with the inclusion of K, in C, = is the
representation of W, on

H{(X)®C=(H! (X)) @ K;.)®C.

S A

The isomorphism class of this representation is 1ndependent of the choice of /and 4.
Langlands proved in [44] that when 7 is either a principal series or special

representation, then n, = m;. Hence the l-adlc representation of Wq_associated to X,

when restricted to Gal Q /ker ) is just the sum of two unramified quasicharacters.

By the criterion of Néron-Ogg-Safarevich ([26],2.2.9), 4, has good reduction at ¢

where F is the splitting field of y, over Q.

2) An alternate reference. We may apply the good reduction theorem of Chapter
XIII of [36] with v = n in the terminology of that theorem. As in 1), the theorem of
Néron-Ogg-Shafarevitch allows us to conclude the proof of proposition 2.

For v any (_)’;-valued character recall the notation y = y,,* v, where v, has
conductor prime to p, and y, has conductor a power of p.

Let m be a component. If  is a basic character belonging to m, then y, = o*
where  is the Teichmiiller character and 0 Sk <p—1.

Definition. The subring 0, ., < Q is defined to be the ring extension of Z, generated
by the splitting fields of y, over Q, where y runs through all characters of
(Z/ap™Z)* belonging to m.
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The ring extension 0, ,/Z, is the (totally ramified) sub-discrete valuation ring in

-1
Z,[u,] of degreep 7

-p" ! where d=g.c.d.(p — 1,k).

Corollary (to Proposition 2). The p-divisible group scheme A, .q, admits a
prolongation to a p-divisible group scheme over the base O, ..

Proof. This follows from the fact that Proposition 2 implies that for any new-

form fwith character
vy (Zjap"L)* - C

and any field isomorphism C —— Qp, such that iy belongs to m, the abelian
variety X achieves good reduction over 0, .
We now obtain a more refined description of 4 by applying the results of §1.
Let us write K, for the field Q,({,.). Then recall that there is an isomorphism
av (J; (ap")x,) = Pic®(£¥) x 8, x Pic®(£¥) (1)

where we have used the notation £¢ and £# to denote the normalizations of the
““good” components of X (ap"), of exponents 0 and n respectively, and where %,
denotes the ‘““‘contribution” from all the middle components:

B,= H Pic®[(X, (ap")w);1.

O<y<n

We also have an isogeny
av(Jy(ap”, ap" V)x) ~ Pic®(E¢,) x B, x Pic®(Eh_,). 2

To relate the ““three-fold product decompositions™ (1) and (2) to the natural
mappings 7* and p,, we have:
The natural mapping

n*: av (Jy(ap”, ap" " )k,) — av (Jy (ap"),) (€)

is compatible with a mapping of the right-hand side of (2) to the right-hand side of
(1) which sends (x, y,z) e Pic®(2¢_,) x 8, x Pic®(2%_,) to the point (pr*x, y, pr*z)
where pr denotes the natural projections

$7ét , Sét 5, . 3
Zn pr Zn—h Zf: pr Z::—l'

Recall that there is an isogeny (Prop.1 of §8)
av((J1(ap"™ g, gpn- 1)) = a0 (J1(ap" ™ ig, cpm)
and hence an isogeny
Pic®(£é ) x B, _, x Pic®(Z¥_,) —» av (J; (ap" ™ ")k, 1y
by (1). The mapping
Pyt av(Jy(ap" ap"')) = av(Ji(ap" M),

is not compatible with the three-fold product decompositions in (1) and (2);
nevertheless there is a commutative diagram
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Pic®(Z3 ;) x Pic®(Zh_ ) — av(Jy(ap", ap"~")x,)

|- . @)
Pic®(Ze ) x Pic®(Z_ ) — av(Jy(ap"~ 1)/1(,)

where the horizontal mappings are given by the maps (x, z) — (x, 0, z) composed
with the isogenies in (1)’ and (2). The asserted commutativity follows from the
explicit description of the relationship between the irreducible components of the
fibre over k of X, (ap",ap" ') and X, (ap" '), as described in Chap. 2, §7 (4). See
also the summary following Proposition 2 there.

Since A4, has good reduction at p over Q({,,), its Néron model Awz,c,m 1S a0
abelian scheme. Thus av (A,/x,) 1s the fibre 4, over k of the Néron model.

Let O’ denote the ring of integers in any finite extension K’ of K, with k' as
residue field and X, (ap")%., X (ap",ap"” 1)/‘5, regular schemes which are
obtained by performing successive blow-ups on the appropriate canonical model.
Let J,(ap™), and J(ap", ap"~ '), denote the Néron models.

Proposition 2. The natural mappings
@ av(Jy(ap")k) > 4y,
(11) av(Jl(ap", ap”_l)/K’) - An—l/k'

are surjective.
The natural mappings

Ji (ap")/(u' - A

nje’

(iii) -
Plc (Xl (ap")?:9’) - An/@'
. J(ap", ap" ™ )g = Au_y
(iv) ) .
Pic® (X, (ap”, ap” Vo) = An_1
are faithfully flat.

Proof. Since 4,,, is a quotient of J; (ap")x., there is an abelian subvariety of
J1(ap")x mapping isogenously to 4, . One easily deduces (i) and similarly for (ii).
By Raynaud’s theorem (Proposition1 of §1 of Chap.2) Pic°(X1(ap")/j;,) is the
connected component of J;(ap"), and therefore the morphisms of (iii) have
constant fibre-dimension. Since the schemes involved are smooth, the morphisms
are flat as can easily be seen using the “local criterion of flatness’ (Bourbaki,
Commutative Algebra III, §5, Theorem 1; or [27], III, Lemma 10.3A). But the
morphisms are also surjective, hence faithfully flat. A similar argument holds for
the morphisms of (iv).

Consider the morphism ¢ = g, given by the composition

Pic®(£¢) x Pic®(Z¥) — av(J; (ap")) — A

Pkp

where first map is (x, z) — (x, 0, z) in terms of the three-fold product given in (1)
above, and k, =k is the residue field of Q,({,.).
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Proposition. The morphism
o: Pic(Z¥) x Pic®(£¥) - 4,

is an isogeny.

Proof. We proceed by induction on n. When » =1, we have that #, =0, and the
subgroupscheme %} in J;(ap")x, is the largest abelian sub-variety which has
multiplicative type reduction in characteristic p. The proposition then follows
for n=1. See Proposition 4 below for a closer study of the case n=1.

Now let n be greater than 1. Consider the commutative diagrams

00— %r‘: - av(Jl (ap")/l(/,) _— An/kn — 0

T T

0— A — av(Jy(ap",ap" V) —> 4 — 0

n—1,
where X, X, are the subgroup schemes defined so that the horizontal rows are
exact sequences. Note that each of the central terms comes from “av” applied to
abelian varieties over the field Q,, ({,.) = K, . There are isogenies (i.e., surjections of
group schemes with finite kernel)

v (w (Hy ) = Ky, av(Hy) = K,

in the notation of § 1. This follows immediately from the definitions of %, and 4, (in
characteristic zero). Therefore, since 7 has finite kernel, the map it induces from
A, to A, is an isogeny (in the sense that it has finite kernel and cokernel).

Now assume that the proposition is true for n—1. Then by (4) we have a
commutative (but not exact) diagram

Pico(fﬁ‘_ 1) X Pico(f;,‘_ 1) — av(Jy(ap", ap"~ 1)/1(,,) — A,y
= Py =

Pico(fﬁ‘_ 1) X Pico(ft,‘_ 1) — av(Jy(ap"” 1)/1(,.) — A4,y -
By the inductive hypothesis the composition of the two morphisms in the lower row
is an isogeny. (Note that although we are working with the base K, =Q,({,») the
composite map of the lower row is still an isogeny). Hence the same is true for the
top row. Thus the natural projection, 4,: X, — %, formed from the commutative
diagram (again not exact)

Ay — av(J(ap"))  — Pic®(CY)  x B, x Pic(5Y)

o

A, — av(Jy(ap" ap"*)x,) —> Pic®(Z4,) x B, x Pic®(Zh_)
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is an isogeny (cf. (3) for the right hand square and (6) for the left hand one). Hence
also the projection 4,: X, — %, is an isogeny since the map X, — X, is an isogeny.
This is readily seen to be equivalent to the proposition for #.

The remainder of this section is devoted to the case n=1.

Let p, and p; denote the maps X (ap; a) —» X, (a) given by

py:(E e, )~ (Ee) and pi:(E e, &)~ (E/6,¢,)
where e, is a point of order a on E and &, is a subgroup of order p. Recall that
Ay < ker {(pF x p*): Jy(ap,a) > Jy(a) x Jy(a)} .

(in fact, ] is the connected component of the kernel of this map).
Since the composition

J1(@) % Jy () —EL2E s, (ap, @) ————— J1(a) x (@)
is just multiplication by (p + 1), the mapping
Hy x Jy(a) x Jy (@) —————— Ji(ap, a)
LX Py X Py

is an isogeny with kernel of order prime to p. Here i is the natural injection.
Since the composition

J,(ap,a) —Z— J(ap) —=2=— J,(ap. a)

is multiplication by an integer prime to p, we get an isogeny with kernel of order
prime to p,

Ay x Ji(a) x Jy(a) x (ker 7 +)° - Jy(ap)

where (kerm,«)° is the connected component of the identity in ker 7, «, where
y=ntixmlptxakpi¥ X j
and where j is the natural inclusion.
Note that =¥ i is the natural mapping of ] to J;(ap).
Let the subscript p denote associated p-divisible group. It follows from the

above discussion that we have a canonical product decomposition of p-divisible
groups over Q:

Ji(ap),= A, ,x Ay p. )

Let O =Z,[{,] with k(= F,) as residue field. Let J, (ap)f denote the connected
component of the Néron model over ¢/, and J, (ap),‘,’w the ind-quasi-finite group

scheme () J,(ap)° [p].
v=1
We have

Jl (ap);(z)/a = xi?ﬂ/@ X A‘l.p/@
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where 4, ,, is the p-divisible group scheme over ¢ associated to the abelian scheme
A, 4, A1y 1s the connected component of the Néron model over @, and consequently
where #.%,, is an ind-quasi finite group scheme whose special fibre is of
multiplicative type. Projection onto the second factor is induced from the natural
mapping

oy Ji(ap) - A, .

Proposition4. The natural isogeny
a: Pic®(£9), x Pic®(£Y), - A4, ,,
is an isomorphism.

Proof. Consider the commutative diagram

Jy (ap)p?/k — Ai.p/k
av(Jy(ap)), av(4,),

|

(

Pic®(Z4), x Pic®(Z§), — Ay,

But 7 is a (connected) multiplicative type group scheme over k. It must therefore
be in the kernel of the natural mapping

Ji(ap)j, — av(Jy(ap)).

Consequently, #7°,, goes to zero under the left-hand vertical mapping of the above
diagram. Since #7°,,, is, in fact, the kernel of the unlabelled horizontal mapping, o is
an isomorphism.

§ 3. Formulas for U,

Let O =0,=1Z,[{,,] and let k = k, be its residue field (=F,). Let K, be its field of
fractions. We also let @ denote some finite unramified extension of O; k' and Kj
will be its residue field and field of fractions respectively.

Our standard diagram of maps

Xi(ap™)o = X, (ap", ap™” l)/cv Loy Xy (ap™~ 1)/(9
gives a commutative diagram:

Pic®(X, (ap")) —> A

K

PiCO(Xl(ap",apn—l)/G - An—l/@ (*)

njo

Pny =

Pico(Xl(apn_l)/w) _— An—i/@
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If D is a divisor on the smooth locus of X; (ap"), such that the restriction of D to
every irreducible component of X, (ap"),. has degree zero, then D determines a k'
valued point of av (J; (ap™); K:) and hence, by application of (+), a k’-valued point of
A,. We will say that D is congruent to 0 (D = 0) if the k’-valued point of 4, which D
determines is zero. More generally, let D, , D, be two divisors on the smooth locus of
X, (ap™),- such that D, — D, has degree zero on every irreducible component. Tllen
if D; — D, =0, we will write D; = D, . Clearly if D, and D, lift to divisors D; o, D,
which give rise to the same Kj-valued section of 4,,., then they are congruent. By
“lift” we mean as relative Cartier divisors (flat) over the base 0'.

Consider now the operator 7} °r,, = s on Pic®(X;(ap™),). Since r,, is simply
passage to the quotient space of X, (ap™),, under the action of G, (a cyclic group of
order p), the endomorphism s is multiplication by the element Y, [¢] of the group

teGn
ring Z [G,] which acts on Pic(X;(ap"),) and so too on divisors.

Now restrict to characteristic p. We observe that on the intermediate
components X, i.e., those of exponent j with 0 < < n, the map induced by =, on
>V is radicial. Thus the action of G, on its k' valued points is trivial and the action of
s on divisors supported on X{? is just multiplication by p.

In the discussion below, we let (E, e,, (, t,)),- and (E', e;, (11, t5)),- be triples,
where E and E’ are ordinary elliptic curves over k', e, and e, are points of order a on
Eand E'respectively, and (¢, , t,) and (¢}, ;) are Drinfeld bases of level p" on E and
E’ respectively.

Let “square brackets” [...] denote the point on X (ap"),. determined by such a
triple.

Proposition 1. Suppose that the points [E,e,,(t,,t,)] and [E', e,,(t1, t5)] lie on the
same irreducible component of X,(ap"), of exponent j and invariant d. Suppose
further that j > 0. Then the divisor

Dl = pn—j : [E’ ea, (tla tl)] ——Pnhj ’ [EI, e:v (t; s té)]
is congruent to

pr—J—1

D2= Z ([Eaeas(t1+rt2’0)] ——[E,’e:z:([i_*_rtlZvO)])'
r=0

Proof. If j=n, then t, = t; = 0 and there is nothing to prove. Thus we may assume
that n = 2. We proceed by induction, and suppose that 0 <j < n. By the discussion
above we see that n*n, [E,e,,(¢,,1,)] =p-[E, e, (¢,?,)] and consequently
Dy = p Tl (m [, e, (11, 1)) = M [E, €, (21, 5)]) -
Moreover,

pr—i-1-1

Dy=m*m, Y ([Een(t;+rt,0)] = [E', €, (t] +rt5,0))).

r=0

One easily sees, by considering diagram (*), and the two equalities above, that
the proposition will follow if

p"_j_l p* ° Ty ([E9 eas(tl’ tz)] - [E/a e:u (tia t/z)])
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is congruent to
pr-J—1—1
promy X (B ety + 11, 00] = [E', €, (1] + 113, 0)]).

r=0

Since p, °m, is just the mapping induced from the natural projection of
Xi(ap")x, onto X, (ap"“)/,g the desired congruence holds by our inductive
hypothesis, and Proposition1 of §8 of Chap. 2.

Consider the natural projection

proj:  X(ap") — X (a)
and denote by p; its restriction to the part of the domain which is of exponent j:
pi: (Xi(ap")y); — Xy (@)
In particular, setting j =0 and j = n, we obtain mappings
Po: i:' - Xy (@)
o Z > Xi(a)y.
Define homomorphisms
¢;: Pic®Sd 5 Pic®Zk,  ¢,: Pic®Zk - Pic®Z#
by ¢y =Py Poss €2 =DF " Dre-

Proposition2. The following diagrams with u and U, or with «’ and U} are
commutative:

Pic®Sé x Pic®Zs 2 4,

lu av(Uy) lm‘(Up.)

Pic® 2 x Pic® Sk —— A,

u'

where u(x,y)=(Fx,c;(x) +<n,»y Vy)
U (x, )=y ey (0) + Vo, <nyy =1 FY).

Here n, is any integer = 1modp" and =pmoda, and F and V are the Frobenius
and Verschiebung endomorphisms.

Proof. Set U,=U,. We must check that U,-(0,y)=(0,{n,»Vy) and that
U, (x,0)=(Fx,cy(x)). The first formula is immediate from Proposition2 of
Chap. 2, §9.
As for the second formula, it suffices to check that
Pt av(U,) - (x,0)=p" " (Fx, ¢y (x)). (*)
To prove this one uses the formula for U, given in the proof of Proposition1 of
Chap?2, §9,

Upx =3, (EICOLL0).00)
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for x a divisor of X,(ap"), corresponding to a triple (E, ¢,t,) with (¢,,7,) a
Drinfeld basis of order ap”. Let us separate the r =0 term from the rest. In the
notation of the proof of Proposition1 of Chap. 2, §9,
p—1
Uyx=PoFe+ Zl (E/C(r), t,(r), 15(r))
where for r=1,---,p—1, E/C(r) may be identified with the image of E,. under
Verschiebung, and (E/C(r), t(r), t,(r)) represents a point of X, (N), which lies on
an irreducible component of exponent 1. Applying p*~! to both sides and using
Proposition 1 for the terms where r & 0, one gets (*) by virtue of the criterion of
compatibility (Proposition 2 of Chap.2, §1).

The proof for U, is similar and we omit the details.

If I is a p-divisible group and p is an endomorphism of I', let I', denote the p-
divisible subgroup defined by:

r,=Uri
(the p-nilpotent part of T').
We apply this to the p-divisible group
I =Pic®(£8),, x Pic®(E¥),
and to p=u—1.
Let I'' = Pic®(£¥),,, and I'" = Pic°(2¥),, so that
r=r'xr’. 2
Let V= {ny V.
Proposition 3. There is an isomorphism of p-divisible group schemes
I,

n
u-1 " TpoyxTE_,

(to be described below). The group scheme I,_, is ordinary.

Proof. Since I';_, is étale, and I'#_, is of multiplicative type, the fact that I',_, is
ordinary follows from the existence of #. The isomorphism # is not compatible with
the product decomposition (2). A precise description of # is given as follows.

If the subscripts ét and 0O refer to the étale and connected parts of a p-divisible
group over k, we may consider the four-fold product decomposition

F=TgxTygxTgxIy. 3)

Now if T'is any k-scheme and & = (x, y, z, w) eI’ (T) is any T-valued point of I,
described by the four coordinates obtained from (3), then ¢ = (x, y, z, w)eI,,_ ,(T)
if and only if ¢ is annihilated by (¥ — 1) for some a, or equivalently (using the
formula of Proposition 2) if and only if
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(1) (F—1y¢x=0.

@ y=o.
B) (F—-1)yz+ Y (V=11 (F= 1) ¢, (x)=0.

4 (V-1)*w=0.

Here we have usgd that (I'g)r_,; =0 to obtain (2), and (2) gives (4).
Now note that V' — 1 is an invertible endomorphism of I'y; so that we may
deduce that

==Y (=) F— 1)
0

from formula (3).
The mapping

7]-1: F}_lxré',1%{Fél‘xr(;x[‘é'(xl—'o"}u_l
is then defined by the rule that it take the T-valued point (x, w) to
(0,0, =% (F =)™ H(F = 1) ey (x), w).
0

Corollary 1. There is a commutative diagram

I

n
LAY YRS

n
— Ty X I¥_,

I,

u—1
A similar argument yields

Corollary 1. There is a commutative diagram

Fu’—l —rI—-—? F;}_1><I“)€‘L1

"
e F;?_1><I¥’_1

I

u

where F=(n,» ' F.

Proposition4. (‘“‘g-expansion principle” for the étale part of I, _,).
Let y: (Z/NZ)* —->_IT“;‘ be an_even character and c a function from the set of
rational primes, excluding p, to F,.
Let V'=T,_,(F,)[p] be the F valued points of order p in the p-divisible
group I, _ .
Let - -
V'®F ) “cV'®F,
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denote the subspace of eigenvectors for the operators {ti*,u} (q # p); {r)*} with
eigenvalues given by y and c. Explicitly

*x=x()x; f'x=c- x; ufx=c, x.
Then (V’@F‘,)"’C is of dimension <1 over Fp.
Proof. By Corollary 1’,
Loy (F) =T (F,) =Tt (F,).

Now apply Proposition2 of §10 of Chap.2.
We have the analogous:

Propositiond’ (g-expansion principle for the étale part of T, _ ).
With notation as in Proposition4, let V denote I',_,(F,) [p] and let
(V®F,)cV®F,

denote the subspace of eigenvectors for the operators {t,, u(q * p); {r>,} given by y
and c.
Explicitly,

e x=2(rX; LuX=0"X; UpX=Cy" X.
Then (V@)T?I,)"’C is of dimension <1 over —Fp.

Proof. This may be proved in a manner similar to Proposition 4.

$ 4. Properties of T, and ¥,

We begin by defining the Hecke ring as a ring of endomorphisms of 4= A4,. We
assume that N=ap”" with n=1 and (a,p)=1.

Definition. Let T be the subring of endomorphisms of A generated over Z by the set
{T, for LY N, U, for q|N,{r> for re (Z|NZ)*/(£1)}.

The ring T is free of finite rank as a module over Z, and is commutative.

There is a natural map (not injective) of the group ring Z [(Z/NZ)*] to T given
by [0] = {(6). Letting T, = T®Z, we have an induced map from R=Z,((Z/NZ)*]
to T,. The ring T, is a complete semi-local ring so we may write

T,=[IT;
iel
where each T, is a complete local ring. The inverse image of each T; under the map
from Ris one of the rings R,, in the corresponding decomposition of R (see Chap. 1,
§3), and then we may view T; as R,-algebra. We say that T; is primitive if the
corresponding component of R is primitive. More generally, we associate to T; any
of the list of objects associated to a component of R (cf. Chap. 1, § 3), in particular, a
Q,-conjugacy class of Q,-valued characters.
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Let Ta,(4) (Q)=Hom Q,/Z,, A (Q)) be the p-adic Tate module of 4. It is a
module both for T, and for Gal (Q/Q) The aim of this section is to prove the
following results about Y, where

Y,=Ta,(4) Q) @ T;

is associated to a primitive T;.
Proposition 1. If T, is primitive, then T,®Q is a product of fields.
Proposition 2. If T; is primitive, then Y, ®Q is free of rank2 over T,;®Q.

Before proving these propositions we will prove a lemma which will be useful in
understanding the m-divisible group of A. We introduce an abelian variety quotient
A" of A which is defined as follows. Using the decomposition (cf. Chap.1, §3,
formula 2)

(Z|ap"Z)* =(Z|apZ)* x I'|T,

we consider the set S of subgroups H of (Z/ap"Z)* such that the intersection with
(Z/ap Z)* contains the kernel of the map (Z/apZ)* — (Z/rZ)* for some r|ap, r < ap.
Then let J, (ap™)* be the algebraic subgroup given by

Ji(ap™y* = 3. Ji(ap™,
HesS
where superscript H denotes the intersection of the fixed part under the action of
(h) for all he H. Then define 4’ by the exact sequence

(A + Ji(ap™)*) = Jy(ap™) > A" > 0.

Since A4 is the quotient of J, (ap™) by the image of ., there is a natural surjective map
A — A'. Wenote that the cotangent space of A4’, when identified with a space of cusp
forms of level ap”, contains only forms of primitive nebentypus (in the sense of
Hijikata) of level ap’, 1 < i < n. Recall that a form has primitive nebentypus of level
M if it is of level M and its nebentypus character has conductor M.

This will be made more precise in Lemma 4.

The Hecke operators {7; for ¥ ap, U, for q|ap, {r) for re(Z/ap" Z)*/(+ 1)} all
induce endomorphisms of J;(ap™), and these all commute with the action of
(Z/ap"Z)* on J,(ap™). Hence J, (ap™)* is preserved by all these operators. The same
being true for K, (cf. § 1) we get an induced action on 4’ and we define T’ to be the
ring of endomorphisms which they generate, i.e.,

={T, for 1¥ ap,U,, for qlap,{ry for re(Z/ap"Z)*/(+1)} < End(4’).

There is clearly a natural map T — T'. We may consider both T and T’ as
(Z/ap"Z)*-modules via the natural map r—<r) and so also T, and T, as
R-modules. For a component m of R (cf. Chap. 1, §3) we set T, =T,®R,, and
T.=T,®R,. Let 4, and 4;, be the m-divisible groups on 4 and 4, i.e,
4, = lim A[p"] @ ® R, etc.
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Lemma3. Let m be a primitive component of R. Then the natural map A — A’
induces an isomorphism A,, —— Ay,. Also the map T — T’ induces an isomorphism
T, — Th.

Proof. Since m is primitive (J; (ap™)¥ = 0. This follows easily from the fact that all
the characters associated to m are of conductor divisible by ap. Hence from the
sequence

Ju(ap")*[J(ap™)* NK, > 4> A" =0

we deduce that 4,, —— Ay, (first taking ker p* and then tensoring with m, both
operations being exact).

To prove the second part note first that if X is an abelian variety, X, its
associated p-divisible group, and S a commutative subring of End(X), then
S®Z,— End (X,). Consider then the ring T, acting on 4,. Since T, commutes
with the diamond operators it preserves each factor A4,, in the decomposition

A,®R=]]A,. The map T, - End(4,,) induces an injection
T,=T,®R, - End(4,).

Similarly there is an injection T,, » End (4;,), and using that 4,, —— A;, we have
a diagram

T, — End(4,)

S

T, — End(4;).

This proves that the map T,, — T;,, which is obviously surjective, is also injective.

Now let T; be a primitive factor of T,. Then T; is a direct factor of T,, for some
primitive component m. Similarly thereis a factor 4; of 4,, corresponding to T;. We
define 4; and T to be the images of 4; and T; under the isomorphisms of Lemma 3.
To prove the two propositions stated earlier in this section it will be sufficient to
prove the analogous results for 4’. That this is a simplification is due to the
following lemma. Recall that X, is the abelian variety associated by Shimura to a
newform f, and that if it is of level M we may assume that X, is given (uniquely) as
an abelian subvariety of J, (M). Furthermore, Shimura has shown that the image of
{T; for L¥ M, {r) for r e (Z/MZ)*} generate over Q a field K, = End (X, ) ®Q such
that [K;: Q]=dim X,. If M|N we may consider the composite map with finite
kernel

("N/M)*

X, — Ji(M) Ji(N).

The image of X in J; (N) is again stable under {7; for /¥ N,{r) forre (Z/NZ)*}.In
particular, the group of diamond operators acts through its natural quotient by the
subgroup {<a): a=1mod M}.

Lemmad. There is an isogeny over Q

[1x,~4'
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where the product is taken over those distinct X ; belonging to newforms f of level ap'

Sfor 1 £i=< nwhose associated character is also primitive of conductor ap'. The isogeny
may be chosen to respect the action of all the operators in the set {T, for | ¥ N, {r) for
re(Z/NZ)*}.

Passing to the quotient by J; (ap™)* has the effect of removing all forms from the
cotangent space of J, (N) which are not both new of some level ap’ (1 < i < n) and
also having nebentypus character of conductor divisible by a. Dividing out by the
image of %, then ensures that, in the quotient, each such form is represented only
once and its nebentypus character has conductor equal to its level ap’. We note that
the isogeny we have chosen is obtained by taking for each f the composition
X, > Ji(N)—>4'.

We now turn to the proof of the two propositions. The mapping [[ X, —» 4’
induces a mapping of endomorphism rings,

[1K,<>End(4)®Q.

Since each element of T preserves the image of X, for each f(as follows from the
theorem of multiplicity one and the fact that T’ is commutative), hence we have that
[1K; — T’®Q. This proves Proposition1.

To prove Proposition 2, note that there is a canonical decomposition of Q-
algebras

Q [(Z/NZ)*] = Prim. Comps. x Imprim. Comps.

having the property that any character y on (Z/NZ)* belongs to a primitive
component m if and only if the associated homomorphism is induced by a
homomorphism on the first factor.

We have already established that the cotangent space of A’ over C, which is a
C [(Z/NZ)*}-module via the diamond operators, is a C® Prim. Comps. module of
rank 1. It then follows by an application of a standard duality theorem that
7,(4)®Q, is a Q,® Prim. Comps. module of rank 2.

§ 5. The pseudo-primitive case

Here we give the analogues of Proposition1 and 2 of §4 in the general pseudo-
primitive case. Recall that in the proof of Proposition 1 we constructed an abelian
variety A’ for which the cotangent space contained only forms of primitive
nebentypus of level ap’ for some i with 1 <i < n. We adapt this construction to the
present case as follows. Assume that we have fixed a pseudo-primitive component
m whose basic character y has conductor (ap/q,...q,) (cf. Chap.1, §3). Then
consider the set S of subgroups H of (Z/ap"Z)* such that their intersection with
(Z/apZ)* contains the kernel of (Z/apZ)* — (Z/rZ)* for some r|(ap/q,...q,),
r<(ap/q,...q,). Now define J, (ap™)* by

Ji(ap™)* = Z Jy (ap™H

HeS
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and let 4’ be given by the exact sequence
(A + Ji(ap™)*) - Jy(ap") > 4" > 0.

As before, A’ is naturally a quotient of 4 on which all the standard Hecke operators
(T, U, <)) act.

The cotangent of 4’ may be identified with a subspace spanned by forms of level
ap" which come from forms of primitive nebentypus of level divisible by
(ap'/q, ...q,) for some i 2 1. The Hecke operators {T; (for /¥ N), U, (for ¢ | N),<r>}
generate a ring of endomorphisms T’ of 4'. As in §4 it will be sufficient to prove a
structure theorem for T’ ® Q and for the cotangent space of 4’ as a module over this
ring. Actually we will show that the cotangent space of 4’ is free of rank one over
T'®Q. This will give the following versions of Propositions 1 and 2 of §4.

Proposition 1. Let m be a pseudo-primitive component. Then T,, @ Q is a product of
fields and of Q-algebras of the form K(x,,...,x,)/(x},...,x?) where K is a field.

Proposition2. Y, ®Q is free of rank 2 over T,,® Q where

Y, =Ta,(4) QT
T
is the m-adic Tate-module.

Proof. Let S,(I') denote the complex vector space of cusp forms of weight 2 for a
subgroup I' € PSL,(Z). We consider the two maps

ny(d): S,(I1(ap"/d)) > S, (I1(ap™))
ny(d): Sy (apM)/d) — S, (11 (ap™))
given by
nl(d) (Z anqn) = Zanq"
n,(d) L ang") =Y a,q".

The maps commute with 7;, for /¥ N and with U, for g 4 d. By the theory of Atkin
and Lehner (but for I](N) as in [40], Chap. VIII) there is a basis of cusp forms of
S, (7 (ap™)) of the form

{n,(d)n,(d) f2 dd =ap", fanewform of level ap"/dd'}. )

Suppose that fis a newform of level ap'/r. If p|r then assume that i = 1. Then let
Q(f) denote the space generated by

{mi(@mny(d) f: dd'=r}.
We may identify the cotangent space of 4’ with Y. Q(f) where f runs over the

. s
newforms fof level ap’/r with r|q,...q, and 1 £ i < n, with the restriction that i =1
if p|r. Moreover, on each space Q(f) the action of the operators {T;,,{ >} is
via a field K, .
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All of the standard Hecke operators preserve Q(f). For g =g¢;, ¢; 4 r and ¢;|N,
we find that U, |Q(f) €K, since it commutes with each r;(d) for d|r. We now
compute the minimal polynomial of U, on Q( f) when g;|r. Let f= Y a,q". Then we
have that fis an eigenform for T, since g, [|ap” and ¢;|r, i.¢., fhas level prime to g;. So
T, f=o, f for some o, . Thus

O‘q,f= E,f= Uq,(nl(qi) N +e@)qr(q) f) 2
where ¢ is the nebentypus character of /. We also have the relation
U, (my(g) f)=m1(q) f- 3)

Since U, commutes with m,(q;) for «=12 and any j#+i we see that the
decomposition
Q)= dd|®/ | {m(%) ‘i (d)mo(d) f+1y(q) nl(d)ﬂz(d’)f}
"\(r/a

is respected by U, . By formulas (2) and (3) we see that the minimal polynomial of U,
is f(x) = (x? — a, - x + &(g;) g;). (It cannot strictly divide this since U, would then be
a scalar — but it does not preserve m,(r) f, for example).

We now consider the linear map of K -vector spaces

€ =K (xysees x ) (x1)50005 £ () = Q(S)

given by p(xy,...,x,) = p(U,,...,U,) - m,(r) - f. This map is surjective and hence
by counting dimensions, it is an isomorphism. Thus the subring of End (Q(f))
generated by the Hecke operators {7.,U,.(for g|N), (r>'s} is a Q-algebra
K, [U,,...,U,] isomorphic to € ;. Furthermore, we see that Q(f) is free of rank
one, a generator being 7,(r) f.

The proof of Proposition 2 is parallel to that of Proposition2 of §4. Here we
must note that there is a canonical direct product decomposition of the Q-algebra
Q [(Z/NZ)*]into two factors, one corresponding to pseudo-primitive components,
and the other to the remaining components.

Remark. We note that T, ®Q will actually be a product of fields unless
o, = 21/3((],.) gq; for some g;.

§6. A study of A3},
We are grateful to Ofer Gabber for explaining to us some results of his concerning
the geometry of the mapping

Pic®(X;5) — Pic®(¥js)

induced by finite morphisms of S-schemes Y — X, which satisfy certain properties.
We have attempted, in this section, to specialize some of Gabber’s ideas to the
specific context in which we work; the results whose proofs we present in this
section are much weaker than those that he can establish.

Let m be a component, and consider 4, , y, 1, the (U, — 1)-divisible subgroup
scheme in 4, .
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Proposition 1. The natural mapping
An——i,m,Up—l(E) - An,m,U,,—1(E)

is injective for n = 2.
Recall that 4,, 4, is an ordinary group scheme, as follows from the

Proposition of § 3, and Proposition 3 of § 5. In fact, using the notation of § 5, we
have an isogeny

’

"
m o1 X D p_y =T,

g
mu—1 ) An.m,Up—l/k

and since I, »_ is a multiplicative-type group scheme, when we pass to k-rational
points, we have

Lemmal. The natural map induced by ¢ yields an isogeny:
04! Pico(fst)m,F—l(E) = Ay m, U,,v1(1€)a
and the zero-mapping:
C’-2: Plco(fﬁ)m(k) - An,m, Up—1(E)'

To prove Proposition 1, we let y be a basic character attached to m and write
%=1, @* where y,. is a character of conductor prime to p, w is the Teichmiiller
character, and 0 <k <p—1.

We have separate arguments for Proposition 1 in these two cases:

Casel. The greatest common divisor of k and p —1 is >1.
Case2. k> 0.

The reader should note that when y is a power of the Teichmiiller character, we
are in case 1, and the proof of Proposition 1 (in this case) is quite easy.

Proof'in Case 1. Using the notation of § 2 of Chap. 3, 4, ,, achieves good reduction
over 0, ,, whose field of fractions is the subfield of Q,({,,) which is of degree

p—;—i-p"‘l, where d=(p —1,k).
The morphism

A, 1,m,Up—1/Zp[Lpn] An, m, Up = 1/Zp[Lpn]

comes by base change from a morphism of p-divisible groups

An—l,m, Up— 1/0n,m - An,m.Up—— 1/0“»"‘

which are ordinary, since their “base changes” to Z,[{,.] are.
The proposition of chapter zero then applies (since d > 1) to give injectivity of
An—1,m,U,,—1/E - An,m,U,,—uE

and case 1 is proved.
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Proof in Case 2. Set K= Q an algebraic closure of Q,,, O < K the ring of integers
with £ its residue field.

Let {,n € K be a primitive p"-th root of 1, and set S, = Spec Z,[(,n].

We “simplify”’ our standard notation of Chap. 2 by setting

X,=X(ap")s,,
Y,_ =X (ap", ap"” 1)/5,, s
so that the standard diagram (§3) is:

X, — Y, -\ Xo-1%s,,Sn 1)

where 7 identifies ¥, _; with the quotient of X, by the cyclic group of order p, G,.

Let o €(Z/p"Z)*/(+ 1) be an element of order (p — 1)/2. We view ¢ as acting on
X, via the diamond operator (o).

Let the superscript # denote ‘‘minimal regular resolution’’; thus X* and Y}*_,
are obtained from X, and Y,_; by successive blow-ups. Moreover, since the
singularities of these schemes are inconsequential the exceptional curves are all of
genus 0.

Consider the diagram ((*) of §3)

Pic®(X}) —A,s,
] .
Pic®(Yr ) > A4,_ys,-

By Proposition2 of §1 the horizontal morphisms are faithfully flat. Let X*

nlk
and Y* |, denote the special fibres and X ¥\« their normalizations.

Let Z v, 2y,_, refer to the irreducible components of X* and VAR o Tespectively,
which map surjectively to the good component of exponent 0 of X, Y, . Write
X+ b= =5, 105,
rh=5, UL,
We have the maps induced by =, p of (1):
X =%, U %y
" n| ol
vE,, =%, , 0 %y | A3)
pacs Rl R
(X#—1XS"_1Sn)/k=fX,,_1 I f X st

Moreover. I1,is a separable morphism and R, _, is purely inseparable of degree p.

-3

Lemma 2. There is an isomorphism £ Yoy = Sy, such that

i
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& Frob &
2 —_

ZXn—l

is commutative, where Frob is the Frobenius endomorphism.

Proof. Here we merely use that R,_, is an inseparable morphism of a curve to a
curve of degree p.
We also may “‘reduce” diagram (2) to characteristic p to get

Pic®(X}t) —  Pic®(Zy) x Pic®(Xy) — A4,

T o I @
Pic°(Y,t ) — Pic®(Ey, ) x Pic®($y,_,) — 4

n—1
where we have identified Pic®(Z, ) % 1 Pic®(Z,) with the abelian variety part of
Pic® (X * s ») and similarly for Pic? (ZY )% Plco(Zy -

In A4,_,(k), let A,_, (k) denote the image of

{0} x Pic®(Z%,_,) (k)
under the natural mapping. Let

h: Pic®(£y,_ ) (k) — A, (k)/4,_1 (k)
denote the mapping induced from (4) to the indicated quotient.

A description of the kernel of Pic®(L;*,)(K) = A4,_,(K):

Note that Pic® (¥*)(K) = Pic®(¥,)(K). Let k=1 and let Nk S Pic® (¥;)(K) be
the kernel of the ‘“‘norm mapping” PICO(K‘)(K)—i Pic® (X,— )(K).

Define N, (< < Pic®(¥,)(K) to be the kernel of Pic®(¥y)(K)— 4,(K).

Define N, ,cPic®(Y,)(K) for n=k=20 by the inductive law:
Nen=Pn-17)* Ny o1 -

Lemma 3. The kernel of Pic®(Y;* |)(K)— A, _(K) is generated by the subgroups
Ny fork=0,...,n—1.

Proof. This comes directly from the inductive definition of 4,.

A basic commutative diagram: The following compatibility was proved by Ofer
Gabber.

Let L be a line bundle of degree 0 representing an isomorphism class of line
bundles [44] in Pic®(Y;* ,)(K).

Let Ut <Yt denote the open subscheme consisting of the generlc fibre
together with the open subscheme Xy, _, of smooth points (over the base) in Xy, .
Let % denote an extension of L to U}, .
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Let £ |59 | denote the restriction of & to the special fibre of U, and let
&z’ | fy denote any extension of ¥ |z9 toa line bundle on £ Y., - Form the line
bundle ,?’ 'Q#'7=L"""! where o 1s the element of order (p—1)/2 in
(Z/p"~'Z)*/+ 1 chosen in the previous discussion.

Note that o fixes pointwise the complement £, — Z¥,_,. One sees that £ ~*
is of degree zero, and that its isomorphism class in Pic® (| v,_,) (k) depends only on
[L] and not on the choice &’ | fyn_] . Denote this isomorphism class ¢ ([L]).

Consider the diagram

Pic® (Yt V(K)—— 4, ,(K) = 4,.,0)

{ |

Pic’(£, (k) A, (k)
c—1 l (c—1)? (5)
Pic°(£,,_ (k) A, (k)

Ay (k) Ay (K)
where the unlabeled maps are the natural ones.
Proposition 2. Diagram (5) is commutative. Equivalently, ho (o —1)° c([L])= f[L]
where f: Pic®(Y* ) (K)— A,_,(k)/A,_,(k) is obtained by proceeding clockwise in
®).
Proof. Since Pic® (Y,* ,)(0)— A, _, (O) is surjective it suffices to show

(a) ho(e6—1)°c([L]) = f[L] where L represents an isomorphism class of line
bundles in Pic®(Y;* ,)(O) < Pic® (Y, ,)(K).

(b) he(c—=1)cc(Ny p-1)=0for k=1,...,n—1.

But assertion (a) is evident, for, by hypothesis, L extends to a line bundle £ over
Y,* o and we may take & | 5y, _, to be the restriction of this line bundle to 5.

As for (b) it sufficies to show that c¢N, = 0 for all k. Here we use diagram (3) and
Lemma 2. If [L] e N, € Pic®(¥#)(K) for k=1 we have that

Rn—l*(y IZ%_,)

is trivial, as line bundle on the curve XY | of smooth points of X, . But by
Lemma?2, R,_, is isomorphic to Frobenius, and an elementary local calculation
then shows that % |z is itself trivial, giving what we wish. If [L]e N,
one has only to note that Lo~ is trivial.

A “Snake Lemma”. Using diagram (2), consider the mapping

Pic® (Y 1/Qpllp"]) Pic® (X/Qp[Cp"]) x A, 1/Qp [Lpn]

and form P?Sn the scheme-theoretic closure in Pic® (X*) x 4,_s, of the image of ¢.
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The natural mapping
P— Pic®(X, )

is proper since A4, _, is proper over S,, and by construction Pis a flat group scheme
over S,. We have a commutative diagram of group schemes over S,:

0-K,— Pico(X;,j*Sn) - Ays,— 0
I T i I (6)
0K, — P — A, 45— 0

where P— A, _, is faithfully flat by proposition 2 of §2.

Over QP[C pn] we have that A, — A, is surjective, and 4,_, — A, is injective.
Since A, is flatg and f,,/s —+J£”,,/s is proper it follows that %, (k)—» A, (k) is
surjective. By the snake-lemma applied to k-valued points of (6), we then have
that the mapping of kernels

ker {P(k) —— Pic®(X;*)(k)}

ker {An—- 1 (E) — An(E)}
is surjective.

Recall that an element of P (k) can be lifted to P (0) and an element of P (0) is an
element y e Pic®(¥,_,)(K) such that n*y lies in Pic®(X* ,)(0).

It follows from this discussion that any x, eker {A,l (k)—>A4,(k)} is the
spec1ahzat10n of an element XK €A,_,(K) which is the image of some
y e Pic? (Y . )(K) such that n*y lies in Pic® (X;*)(0) and such that its specialization
to k, m*y; is zero. Call such a y an admissible lifting for x.

Proposition 3. (0 —1)*ker{4,_,(k) > 4,(k)} = 4,_,(k).

Proof. Let x be in ker {4,_,(k)— A,(k)} and y an admissible lifting for x;. By
proposition 1, it suffices to show that e (o6 —1)° c¢(y) =0. We shall show, in fact,
that (6 —1)° c(y) =0. Note first that there is a commutative diagram

Pic® (Y2 1)(K) —— Pic®(X#)(K)

| |

Pic®(2y,_)(k) Pic®(Zy,) (k)

.,_11 a~1l

Pic®(5,_)(B) —= Pic® (S,)(k)

where ¢’ is defined in analogy with c. Consequently, since y is admissible we have
that (6 —1)°¢’on*(y)=0. To conclude what we wish, we note that
n*: Pic®(Fy, ) (k) — Pic°(£y,) (k)
is injective.
To apply these two propositions we observe:
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Proposition 4. The subgroup
A, (k)= 4, (k)

is the image of {0} x Pic° (Zk_ ) (k) under the isogeny a,_, and is stable under the
operator U, — 1.

Proof. This follows from Propositions 1, 2 of §4.

Proposition 5 (““Case 2’’). Let m be a component of reduced conductor divisible by p.
( Equivalently: every basic character associated to m has conductor divisible by p.)

Then _
An—1,m. UF—I(E) - An,m, Up—1 (k)

is injective for n = 2.
Proof. By Propositions 1, 2
(0 —1)% ker {An—l,m,Up—l(E) - An.m,U,,Aj(E)}

is contained in 4, _; .y, (k) which vanishes by Lemma 1. But by hypothesis, ¢ — 1
is an automorphism on m-components.

$ 7. u-deprived quotients

Let p be a prime and a an integer prime to p, F/Q a number field of finite degree,
O (F) the ring of integers in F and S'= Spec0 (F) [1/a].

Lemma (Serre). Let I' be a nontrivial p-divisible group scheme over S ([16, 64]).
Suppose that I' is either étale or that its dual group is étale over S. Then I does not
occur as a subquotient of the p-divisible group associated to any abelian variety over F
which has potentially good reduction at every prime above p.

Proof. Replacing I by its dual if necessary, we may suppose that it is étale. Let
h = height (I") and H = Ta*(I;) which is, by definition, Hom (I'(F), Q,/Z,). Let E
denote the h-th exterior product of H, E = A"H. Thus Eis free of rank 1 over Z ,and
the action of Gal (F/F) is therefore abelian in the sense that it factors through an
abelian quotient of Gal(F/F). Let G be the quotient of Gal (F/F) which acts
faithfully on E. Since I's s étale, G is (a finite group times a pro-p group which is) the
Galois group of an extension of Funramified at primes of F which do not lie over
rational primes dividing a. Such an extension is then an abelian extension field of F
such that every inertia group is finite. It follows that G is a finite group.

Suppose that I}, occurs as the subquotient of an abelian variety 4, with
potentially good reduction at every prime above p. Extending F, if necessary,
suppose that 4 has good reduction at every prime above p. If 1 is a prime of S at
which the abelian variety 4 has good reduction and @, is the associated Frobenius
element, then the eigenvalues of @, acting on H are roots of unity. But, since I}zis a
subquotient of the p-divisible group associated to 4., the eigenvalues of @, would
have to be of absolute value N (4)"?, yielding a contradiction.

Recall that a finite flat group scheme is said to be of multiplicative type if its dual
is étale.
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Let I's be a p-divisible group, where S is as above. Let E,, E, S I' be two finite
flat subgroup schemes of I' (over S) such that both are of multiplicative type. Then
the subgroup scheme E I generated by E; and E, (Which may be taken to be the
Zariski closure in [}s of the group scheme over F generated by the generic fibres E; ,
and E,,) is again of multiplicative type. One sees this easily, by considering the
Cartier dual of the natural morphism E;® E, — E.

Let u(Is) denote the ind-finite subgroup scheme of Iy generated by all
multiplicative-type subgroup schemes in Is.

Proposition 1. If T} is a p-divisible group scheme such that I occurs as a subquotient
of the p-divisible group associated to an abelian variety over F with potentially good
reduction at all primes above p, then u(I}s) is a finite (flat) multiplicative-type group
scheme; it contains all multiplicative-type subgroup schemes of Is.

Proof. Consider the ind-finite subgroup scheme Iy of u(Is) defined by the
prescription that its F-rational points are given by the subgroup of p-divisible
elements in the F-rational points of u(I}s). Thus Iy is the canonical p-divisible
subgroup scheme of u(I}s). Since the dual of I is étale, and I; occurs as a
subquotient of the p-divisible group associated to an abelian variety over F, we have
that I, = 0 by Serre’s lemma, from which it follows that u(Is) is finite.

Remark. 1f I}sis a p-divisible group scheme such that I occurs as a subquotient of
the p-divisible group associated to an abelian variety over I" with potentially good
reduction at all primes above p, let I}g denote the p-divisible group scheme obtained
from I by dividing by the finite flat subgroup scheme x (I}5). Since an extension of a
multiplicative-type group scheme by a multiplicative-type group scheme is again of
multiplicative type, it follows that u(I}s)=0. We refer to I)s as the canonical u-
deprived quotient of I'g. If I' =T, we say that I' is u-deprived.

Proposition 2. . Let I}g be as in Proposition 1, and suppose that I'sis p-deprived. Let
F'[F be a finite field extension and S’ = Spec O (F")[1/a]. Then the base change I is
again u-deprived.

Proof. Without loss of generality we may suppose F’/F Galois. Let F be an
algebraic closure of F’. Suppose that M < I' (F) is a finite Gal (F/F')-module that
prolongs to a multiplicative-type subgroup scheme .#in I, . If g € Gal (F/F), then
g McTI(F) is again a finite Gal (F/F')-module, which prolongs to a finite flat
subgroup scheme in I} which we call g.#.

Claim. g/ is of multiplicative-type.

Proof. Consider an integer m large enough so that .#< T [p™]s and let
I,=TI[p")s. The restriction of g to F', g: F'— F' induces compatible auto-
morphisms of schemes

S/ 1xg I—;nxS/

i

’
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and the restriction of 1xg to .#, viewed as subscheme of I, x S, is an
N

isomorphism of the scheme .# onto the scheme g.#. Of course, this isomorphism is
not compatible with S’-scheme structures. Rather, we have a commutative diagram

M — S’ngl——————» gM

N,/

S,——> S/

where the parallelogram is cartesian, and the horizontal morphism in the triangle is
an isomorphism of S’-group schemes. It is then immediate that g.# is of
multiplicative type and depends only on g, and not on g.

Now form W < I (F), the subgroup generated by {gM} where g ranges through
a (finite) system of elements of Gal (F/ F) such that g runs through every element of
Gal (F'/F). By the discussion before proposition 2 and what we have just proved,
one sees that the prolongation %' of Win I is of multiplicative type. But ¥ is
Gal (F/ F)-stable by construction. Thus W prolongs to #, a finite flat group scheme
in I . Since I’y is the base change of I to S’, #~ ' is the base change of #to S’, and
since w ' is of multiplicative type, # also is. It follows from u-deprivedness of Ig
that #" = 0; hence M =0 as was to be proved.

Now let RY be a factor of Z ,[(Z/ap"Z)*] corresponding to an even pseudo-
primitive component m. Let F=Q({,.), S=0O(F)[1/a], and let 45= A4, be the
Néron model of 4, which is defined in §1. Let P be a maximal ideal in T =T,,,
containing the element U,—1. (Later we will let P be the Eisenstein prime of
Chap. 5, §1). As usual, we let T, denote the P-adic completion of T and A4, the
“P-divisible group” associated to 4.

By Proposition 3 of Chap. 3, § 3, 4,/sis an ordinary p-divisible group scheme (at
the closed point se€S of characteristic p). Consider the exact sequence of Tate
modules over ¢, the completion of Z[{,.] at the prime above p.

0> Ta*(48,) = Ta*(A4p,) - Ta*(A3,}) -0 6))

where the superscripts ét and m.t. refer to étale and multiplicative-type parts. The
above exact sequence may be viewed as an exact sequence of T,-modules.

Proposition 3.
Ta*(43,)®Q and Ta*(4ARt)®Q
are both free of rank 1 over T,® Q.

Proof. In the exact sequence (1) above we know by Proposition 2 of Chap. 3, §4
and §5 that Ta* (A,,F) ® Q is free of rank 2 over T, ®Q Moreover T,® Q is a
product of fields and of Q-algebras of the form K [x,, ..., x,]/(x2, ..., x?) where K
is a field (cf. Proposition 1 of Chap. 3, §4 and §5).

A theorem of Tate asserts that the functor from p-divisible groups over @ to
their associated Galois modules is fully faithful. Hence there can be no non-trivial
Galois-equivariant map from a Gal (Q/Q)-stable subquotient of Ta*(43;5) ® Q
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into a Gal (Q/Q)-stable subquotient of Ta* (4% ,) ® Q or vice versa. We now are in
the situation of the following algebraic lemma.

Lemma 2. Let K be a field and A'=K|ey,...,¢,] the commutative K-algebra
defined by the relations

gl==¢2=0.
Let
0-U->V->W->0 2)

be an exact sequence of nontrivial A-modules with a commuting action of a group 9,
such that

V is a free A-module of rank 2.

Suppose that there is no nontrivial %-equivariant homomorphism from a 9-stable
subquotient of W to a 9-stable subquotient of U. Then U and V are free A-modules of
rank 1.

Proof. Let dbe the dimension of  as a vector space over K. Then Vis of dimension
2d over K.
After passing to the K-dual, if necessary, we may suppose that dim, U < d. Note
that J# is a Gorenstein ring, so that Hom (V, K) is also free of rank 2 over #.
Lete=¢, - ¢,. Toshow that Uis free of rank 1 over £, it suffices to show that ¢
doesn’t annihilate U. For then, taking e U any element such that ¢- u =0, one
easily sees that u is a free generator for the #~module U. Consider the map

e VoelV=V][a] 3

where a is the maximal ideal (¢4, . . ., ¢,) = X, and where V' [a] denotes the kernel of
a in V. If ¢ annihilates U, then (3) factors through the quotient V/U to give a
surjective mapping

e: W— V]a].

But since V' [a] contains U [a] we may restrict e to

W,=e 'Ula], yielding a nontrivial %-equivariant map, contradicting our
hypothesis.

Passing again to the K-dual and noting that dim,Hom (W, K) = d, we get that W
is also free of rank 1.

Now to prove Proposition 3, apply the above lemma, taking (1) for (2) and
Gal(F,/F,) for 4.

We see then that if the proposition is false, then there is a Q-algebra " of the
type in the lemma occurring as a direct factor of T, ® Q such that one of the
following two A#-modules vanishes:

Ta*(A43,)®y, A or Ta*(Ap}) @ A

P|Fs

Suppose, for example, that it is the latter #-module that vanishes. Then

Ta*(4p,,) @, ' = Ta*(43,) O, X
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Let # T, denote the kernel of T,— 2 and let I)s denote the quotient p-
divisible group scheme A4,/.# - A, over the base S. The p-divisible group scheme I"
inherits a T,/ # Tp-module structure, and we have the natural isomorphism of 4~
modules and Gal (Q/Q)-modules:

Ta*(Ap,,) ®r, K =Ta* (L5,) Oy p1, X

From the discussion above, it then follows that Is is an étale p-divisible group
scheme such that I} occurs as a subquotient of the p-divisible group associated to
some abelian variety over F, of potentially good reduction at p, contradicting
Serre’s lemma.

Corollary 1.

Ta*(A43,) and Ta*(Ap:

are faithful Tp-modules.

Proof. The natural mapping T, — T, ® Q is injective, and by the proposition if U is
either of the two modules above, U® Q is free of rank 1, and hence faithful over
T,®Q.

From Proposition 1, we conclude that 4 (4,) is a finite flat subgroup scheme in
the p-divisible group scheme A4,,. If B,; denotes the quotient abelian scheme
obtained from A5 by division by u(A4,,) one easily sees that By inherits a natural
Tp,-module structure, and has the property that it contains no multiplicative type
subgroup schemes over S. We refer to Bjs as the canonical quotient of 4, which
is u-deprived at P.

From the arguments of proposition 2, /z(AP/S)(Q)cA (Q) is easily seen to be
stable under the action of Gal (Q/Q) and therefore we have that B is ‘‘defined over
Q7 in the sense that we may take By, to be the abelian variety defined as the quotient
of A, by the finite Gal Q/Q)- module ,u(AP/S)(Q)
Corollary 2.

Ta*(Bp,) and Ta*(Bg!

are faithful Tp-modules.

Chapter 4. The cuspidal group

§1. The Zero-CUSPS. . . . . . . v o vt it e e 290
§2. Kubert-Lang theory in characteristicp . . . . . . ... .. ... ... 294
§3. Astudy of cuspidal groups. . . . . . ... ... 300

The main result of this chapter (the theorem of §3) shows that a certain cuspidal
group on 4, is a cyclic R®-module whose annihilator ideal (denoted b{: the “basic
ideal”) is closely related to the Stickelberger ideal S, (N). If m is a-primitive, this
ideal is generated by the Stickelberger element 3.
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$1. The zero-cusps

0f. .
Recall that the ““zero-cusps” of X; (N) refer to the cusps of type L Shimura’s

notation, where b ranges through integers mod N which are relatively prime to N.
That is, |:+ b:| is the I (V)-orbit in P! (Q) consisting of elements =+ («, 8) where « is

an arbitrary integer and = bmod N.

We may view the set Z, of zero-cusps in X, (ap™) as a principal homogeneous set
under the action of (Z/NZ)*/(+ 1) via the diamond operators. The zero-cusps are
rational over Q.

If Z[Z,] is the free abelian group generated by &, and Z [Z,]° is the kernel of
the degree-homomorphism

7[2,] —* 7

we view Z [Z,]° as a group of divisors of degree zero on X, (ap™); it is naturally a
module over the ring Z [(Z/NZ)*/(+ 1)] via the diamond operators, the action

being given by:
0 0
@ (a1

The Hecke operators 7;(/\, N) operate on Z[Z,] by the formula:

0 0
T,[b]=(1<l>+1)[b].

The operator U,(q|N) acting on the cusp z=r/s is given by the formula

oox()

In particular, in Shimura’s notation, for the zero-cusp [O] (with (b, N)=1) we
. b
obtain
0 o] =t
= 1
afs]-[o)+ % Lo ®
0 i
I A N
! 1 b te(Z/Zq:rZ)* q'b

The Zariski-closure of the subscheme Z, in Z (), (the “‘incomplete moduli
space”) is an étale (“‘constant”) finite flat extension of Spec Z which we denote &,
Its reduction to characteristic p may be regarded as a finite subscheme of £

Q’_Z

et/pp

and

ét /p

From the basic diagram of Chap. 3 we have the following connection between
zero-cusps at level n and at level n—1:
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zero-cusps of X, (ap") = Z,
|~
zero-cusps of X, (ap”, ap" ™)
p, (1:1 correspondence)

zero-cusps of X, (ap"~ 1)

where n > 1. We identify &, _, with the set of zero-cusps of X (ap", ap" ') via p,,.
We obtain the following commutative diagram of Z [(Z/N Z)*/(+ 1)]-modules and
of group schemes over Q:

AEA Eo N@ph)  ——— A4,
I Tr Iﬂ: ] i
Z(%,\° —— J@"ap") — 4, , A3)
Iidentity Pus l identity
50-*1)

Z[‘yn—l]o EE—— Jl(ap"_l) EE— An—l

We have considered the left-hand groups as “constant” group-schemes over Q.
Thus, since Z, is a finite étale scheme over Spec Z isomorphic to the disjoint union
of a finite number r of copies of Spec Z, Z[Z,]7, is an étale “‘constant” free abelian
group over Spec Z of rank r — 1. The mapping Tr is the natural “trace’ map which

sends zto ). [z'] for z e Z,_, where the summation runs over z' € Z, which project

to z. By the Manin-Drinfeld theorem, the image of Z [Z,]° in J, (ap") is a finite
subgroup. The mapping iy, is injective by construction. Let

A Z[Z,1°> A4,
denote the composition of the two homomorphisms in the top line of diagram (3).
If 0=2,[(,.], since Z[Z,]fy is étale, diagram (3) induces a homomorphism
SR A M (ap")o

(where J, (ap™),o is the Néron model over @ of J; (ap")) and a commutative diagram
of group-schemes over O:

Mo
Z [gn ]/% —_— no

Irr Ilg@ ()
AT AN L

n—1/0"

Here again the left-hand group schemes are constant group schemes over ¢. The
Néron model 4,,, is an abelian scheme. We do not know whether iy, identifies 4

n—1/0
with an abelian subscheme of A4

njo *
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Note that since Z, specializes to smooth points of the irreducible component &
in X, (ap"), it follows (by considering a regular resolution of X, (ap")/@ and applying
Raynaud’s Proposition 1 of §1 of Chap. 2) that ¢’ maps Z [ Z,]3 into the connected
component J, (ap™) of the Néron model.

We have the following commutative diagram which describes what happens
when one specializes to characteristic p. Let k ~F, denote the residue field of 0.

AU
N

Z[2,]° —— Pic®(£%) —> Pic®(X,(N),). ©)

Pic®(£) x Pic®(£*) — 4
where the mappings are as follows:
(a) Pic® (/\/’IT]V),,() breaks up canonically as the product of Pic® of the
normalization of each irreducible component of X, (N), and the injection of
Pic®(£#) in Pic® (X, (N),) is as a factor.

(b) The injection of Pic®(£%) in the product Pic®(£¥) x Pic®(£*) is as the first
factor.

(c) The mapping o is the isogeny of Chap. 3, §2.

(d) The mapping Z [Z,]° — Pic®(Z#) is the natural one obtained by viewing an
element of Z [Z,]° as a divisor of degree zero in %,

(¢) The mapping &P: Z[Z,1°— J,(N)j, is the reduction to k of the mapping

g Z1Z, )6~ S (N -

(f) The mapping u: J; (N)j — Pic® (X, (N),) is the projection to the abelian
variety part (cf. Cor.2 of §7 of Chap. 2).

We have the commutative triangle:

"k

5™ oo
YAEAK Pic®(2®)
X 6
S / (©6)
A

nyk
Since the image of Z [Z,]° under Ay (and under s) is a finite group, we may

pass to “p-primary components” * (of the images) replacing the abelian varieties by
the associated p-divisible group schemes. This gives us commutative diagrams

5 Note that for any prime ¢ dividing N, we may extend the definition of U, —q<n») &Y, and of

U, = q<{n)s™ from Z[Z,]° to all of Z[Z,] by setting (U,—q{n,) ‘"‘[ :| equal to the divisor

class of
MR

in J; (ap™), and similarly for (U, — g<{n,»)s™
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Am

Zp[fl’"]/% — A pjo

ITr [ (7)
(70—1)

Z,Z, .y —— 4

n—1,pi0

and
(n)
ZI,[,@Z’,,]0 —r Pic"()?é‘),J

. ®
A

n, plk

where the subscript p attached to an abelian scheme means: associated p-divisible
group scheme.

Now choose an even component m, whose associated factor of R™
=.Zp[(Z/N Z)*/(i 1)] we denote, as usual, R™. Tensoring diagrams (7) and (8)
with the projection

R(m)=Z,[(Z/NZ)*/(£1)] > RY

allows us to pass to the component m.
Let the subscript m denote the ““m-part” of the p-divisible group scheme
associated to an abelian scheme. Thus,

—_ po
Ay mio = R O 1zivzyix 1) An, pio

and similarly for Pic®(£#),,.
With the above understandings, then, diagrams (7) and (8) yield the following:

(n)
Zp[gnlo@va) —'A'm—> An,m(w)
R(»
]Tr I © )
-1
Z2,Z,.,1® RV —— 4, 1.(0)
R(I=1)
" -
Z,[Z,°QRY Pic® (2), (k)

o 10
pi l w‘ l (10)
An,m(@) ——— An,m(k)'

In (10), the bottom horizontal line refers to the natural specialization
homomorphism.

For any ¢ dividing N, we have an extension of (U,—q<{n»)s? from
Z,[Z,I°QRY to all of Z,[Z,1® R, and similarly for (U, — g<{n) Ay .

R(n) R(»)
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In the case where m is a nonprincipal component (i.e., its basic character is of
conductor greater than 1), the natural mapping

Zp[ff,,]"gg)R.‘J" - Zp[ﬂ",,]ggR,‘.?’

is an isomorphism of R™-modules, the latter being free of rank one over R™,
It will simplify notation considerably (and not add much confusion) if we choose

an R%W-generator of this module. Indeed, we do this by choosing a ‘“‘base cusp’’:

if {y is identified with e>*/¥ in C, then we take our “base cusp” to be [{]in X; (N),c.

§ 2. The theory of Kubert-Lang in characteristic p

It is a great convenience to us that the modular units of Kubert-Lang behave in
many ways much better in characteristic p than in characteristic zero. In particular,
we shall see that the so-called special group of [39] is, at least in the primitive
components, precisely the kernel of specialization in a suitable sense.

Let g,, ,, for (a,,a,) e(Z xZ) — (NZ x NZ) be the Siegel functions as in [38]
and [39]. The g-expansion at the cusp [{] of 8ar.a 18

~ (). 2k )

-(1 i qﬁz) I (1—& q”?) (1-&,;“1 q”‘ﬁz> ()

2ni
where g=e?™("1? and {y=e" . Changing (a,,a,) by adding an element of
NZ x NZ has the effect of multiplying g, ,,, by a root of unity. Hence the divisor
of g, , 2y is determined by (a,, a,) modulo N.

Now consider the function g, for seZ — NZ. We observe first that
8o.s= (constant) g, _,. For convenience of notation we shall write g, o =1. If
m: Z/NZ —%Z is a function such that m(0) = 0 and m (— s) = m(s) we write g = g™
for the Siegel function

g"=[]g?

where s runs through a system of representative of Z/NZ — 0 in Z — NZ. The
divisor of g™ is independent of the system of representatives chosen.

Kubert has determined necessary and sufficient conditions for a Siegel function
to be of level N (i.e., to be “on I'(N)”). We quote his basic result (§4, and
Theorem 1 of §5[38]) adapting it to our Siegel functions. Let v=12/(N, 12).

Proposition 1 (Kubert). Let m: Z/NZ — Z have the property that m(0) = 0. The Siegel
function g™ is a modular function on I';(N) if and only if Y. m(s) s* =0mod N
and any of the following three conditions hold.: Smod N

(@) N isodd and ) m(s)=0modyv.

(b) N is even, Y m(s) =0modv, and ) m(s) s* = 0mod 2 N.

(©) N=2mod4, () m(s),v)=%vand) m(s)s*+0mod2N.
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Proof. Let 1y ,=n"%g,, be the Klein form (loc. cit.). Then the explicit
transformation laws given in §1 of [Ku] show that a product [ [#3¢ is invariant
under I' (N) if and only if it is invariant under I (V). We have then only to copy the
conditions given in Theorem 1 of [Ku].

In the subsequent discussion we suppose that m satisfies the conditions of the
preceding proposition. Also if N is even we will always assume that N = 0mod 4.

Note that g™, when viewed as a modular function for I' (N), has the property that
all of its “‘translates” g™ooa(xeSL,(Z/NZ) have g-expansions with coefficients
lying in Z[{y][1/N] and therefore g™ itself lies in the integral closure of
Z[{y]111/N] [j]in the rational function field of X; (N),q¢y; - (Compare [39], Chap. 2,
§5). But the integral closure alluded to is just the ring of regular functions on the
affine scheme Y (N)z,un and therefore we may view the Siegel functions as
regular functions on Y;(N)z iy -

One can easily determine the divisor of g™ on X; (N)q,, from the g-expansion
(1) and the formula

ord,-1(go,s) = 0rd (g0,9,) for oeSL,(Z/NZ) )

where the order on the left is with respect to e?™° '@ (with the obvious
meaning) and on the right with respect to e>™*%. Using that the ramification index

of [;] on X, (N) over X(1) is N/(N, y) we obtain that at the cusp [;djl with
d|N, (y,N) =1,

N d
ord[x) g" = sezzm m(s) 55 B <<S7yv—>> 3)

where here ord is taken with respect to a local parameter.

Consider the divisor (on the scheme X, (N) ;) of the rational function g™. Let
k’ be a residue field of Z [{y] of characteristic p and note that X, (N),. is the base
change of X, (N), to k’. Then one sees immediately from the g-expansion that the
irreducible component Z§ of X; (N),. is not contained in the support of div(g™).

It is possible, however, for other irreducible components of X, (), to occur in
the support of the divisor of g”. The condition given in the proposition below
insures that this does not happen:

Proposition 2. Let m satisfy the hypotheses of Kubert's proposition 1. Suppose,
further, that
(i) m()=0 if pls.
i ) m(s)=0.
s=0moda

Then the divisor (g™) has support concentrated on the cuspidal sections of
Xl (N)/Z (S9N

Equivalently: g™ is a unit in the ring of regular functions of the affine scheme
Y (Nzgu-
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Proof. We shall work on the scheme X (N),q,, where Q ({y) is viewed as a subfield
of C by identifying {,, with ¢2"#¥. Choose a residue field k of Z [{ ] of characteristic
p, and consider the fibre X (N),,. If [3] is a cusp of X(N), let ) [4] denote the
irreducible component of X (N),, containing the specialization of the cusp [}].

If his a rational function on X (N)q,, let mult (h; [}]) denote the multiplicity of
the irreducible component Y. [5] in the divisor div (h).

If h is a general Siegel function (i.e., h=[]g{y? where (sy,s,)€ZxZ
— NZ x NZ and m is zero for all but a finite number of pairs (s,, s,)) then

585) - 0Ty —
mult ([ ] g% 3] = (Z ord, (1 =034 - m(sy,s,)
$1.89)
x2§(;mzodN
sy =0moda

wheren=1—({}=1-{,,asiseasily seen from the formula (1) from which one can
read off the constant terms of the g-expansions of g, ,,, at [?].
One also easily obtains the formula

mult (g(O,s); [%]) = mult @as.ﬁs; [(1)])

from formula (2), [where we have allowed ourselves a mild abuse of notation since
80,5 18 not necessarily a function on I"(N)].
Putting the above together, we have:

mult ([Tgoy: h= X ord.(1 =) m(s).

s
as=0(a)
Bs=0(N)

But now, since (a, 8, N) is the unitideal, if«s = 0mod aand s = 0mod N, it follows
that s = 0mod a so, writing s = at, we obtain:

mult ([[g%: D= X ord(1—{3) m(ar) “)
Bt =0modpn

which clearly vanishes for any [5] under the hypothesis of our proposition, and this
completes the proof.

Note that the cusps of Z¢ have the form [;;] with (d, p) =1,d|Nand (y, N)=1.
By formula (3) we have

ord[x]g" = ord[x | gm ®)

if y=y'mod N/d.

Let div,y (g™) denote the restriction of the divisor of g™ to &, the zero-cusps in
e,

The divisor div, g™ is also given by (3),

) N sb 0
d m___ B 3T :
Vo & 2 ® ,%:1 seZZ/NZ ) B, <<N >) I:b:l ©)
=¥ m(s) §,(s;N) - [9]

where 3, (s; N) is the second Stickelberger element (I, §1.5).
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Recall that a cusp [}] lies on Zéifand onlyif (y,p)=1.Let Dbe the subgroup of
the free abelian group {) a;¢;: a;€Z} on the set {c;} of cusps on 2'* satisfying

() Za,=0

.. . X; X
(i) a;=gq; if c,-=[y] and cj=[y’:|.

Then the Z-rank of D is seen to be 1 less than the cardinality of the set
{reZ: 0<y<(N/2), (y,p)=1}. Note that D contains Z [Z,]°.

Let & be the group of functions on 5% of the form {c-[[gn®} with c a
nontrivial constant, m(s)=0 if (s,p)%1, m(—s)=m(s), and ) m(s)=0.
Let PD be the subgroup of D consisting of principal divisors. s=0moda

Proposition 3. The divisors of functions in & form a subgroup of PD of finite index
prime to p.

Proof. By (4) any function in # has its divisor in PD. We claim that to prove the
proposition it is sufficient to show that if f is a function on 2® such that

fr=c[lggVeZ, )

then f=¢' - [ gt e # with pm’ = m. For applying this with f = 1 shows that the
Z-rank of the group of functions & mod nontrivial constants is equal to the rank of
D. Then applying it a second time shows that the quotient group of PD by the
subgroup of divisors of functions in & has order prime to p.

Suppose then that g" = ¢ [| g € & is a p™ power of a function on £%. Then
the g-expansion of g™, which we write in the form

r 1 2
g" (1 4o, g" +oa,qV +--)eF,[q],

is also a p™ power. Recall that the g-expansion of g, , has the form

5

* s o ba s LoL
Zos=—¢"0=¢") [] =g M A-q V)
v=1

for some integer t. Now using that g™ is a pth power we must have thato, = 0(p). But
o, =m(1)—m(N—-1)=-2m(1), so also m(1)=0(p). Applying a diamond
operator ¢s) to both sides of the equation in (6) shows that m (s) = 0(p) for each s
with (s, N) = 1. Now repeat the argument for o, where dis the least prime divisor of
N which is prime to p. This shows that m (s) = 0(p) for each s such that (s, N) =d.
Repeating the argument for each divisor of N which is prime to p in increasing order
proves that m(s) = 0(p) for each s. This establishes the proposition.

In order to study the pseudo-primitive components we now consider a modified
version of Proposition 3. Let D" be the subgroup of the free abelian group
{Y a;c;: a,eZ} on the set {c;} of cusps of £ satisfying

(@) Zaizo

.. . X; X;
(i) a;=a; if c‘=|:y] and c’:[y}]

(i) =0 if c,.=[’;'] with (p,r)>1.
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Here r’ may be taken to be any integer dividing N such that r' =¢, --- g, for distinct
primes g; and (¢, N/r'") = 1. (Later we will choose r’ to be a divisor of r, the integer
associated to a pseudo-primitive component m, i.e., such that the basic character y
associated to m has conductor ap/r).

The group D" is a subgroup of D. Its Z-rank is one less than the cardinality of
theset {yeZ: 0 <y < N/2, (y, r'p) =1}. Again D’ contains Z [Z,]°. We let PD")
be the subgroup of D™ consisting of principal divisors.

Using the notation from the end of Chap.1, §5,

V(t) = 1—1 qi(nq,)_l

qlt
pH)=(=1

where d(f) is the number of distinct prime divisors of ¢, we let

%,s=fgr;)= H (gO.v(t)s)u(t)

tir'
(t,p)=1

the product being taken over all the positive integers ¢ which divide ' and are prime
to p. We then let # ¢ be the subgroup of # consisting of functions which may be
written in the form ¢ - [] £ with ca constant and /(s) € Z and I(s) = 0if (s, rp) > 1.
We note that the divisor of f'=c-[[£Y is given by (3), and in particular the
restriction of this divisor to the zero cusps is given by

dive () =2 1(s) 9 (s; N) - [9] ®)

Proposition 3. The divisors of functions in F " form a subgroup of PD"" of finite
index prime to p.

Proof. Using (3) one verifies that any function in % ¢ has its divisor in D*". As in
the proof of Proposition 3, one checks that & *" has free rank equal to that of D™,
and so the divisors of these functions generate a subgroup of PD"" of finite index.
An application of (7) shows that the index is prime to p.

Let €™ be the p-primary part of the subgroup of Pic® (£¢)(k) which is generated
by the zero-cusps (the image of s%” in the notation of §1). Then using the natural
action of R® =27 [(Z/NZ)*/(+£1)] (acting via the diamond operators) we may
write €™ = @PE, the sum being taken over the components m of R®.

The action of R™ on €™ induces an action of R™ on €™ If m is not associated
to the trivial character then the elements of R%, viewed as a subring of R™, have
degree zero. In this case, €™ = R® - [9]is a cyclic module. (Here we write A, - [7]
where A, € R for the element lim (%, - [7]),, €€, where {h;} is a sequence in R™

such that lim A, = h,,. More generally, if m is not the trivial component, 4 is any

i» o0

divisor in Z[Z,], and ce€® we write 4,, ~ ¢ if 5,,(4)=c.)

Proposition 4. Suppose that m is a pseudo-primitive component with basic character
of conductor ap|r.

(i) If m is not associated to the trivial character y, nor to w~? if a=1, then

hw - [91=0 if and only if h,e(3(1)).
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(if) If m is associated to the trivial character y, and a> 1, then
hw - [91=0 if and only if h,e{(1—<b>) 3P (1): (b, N)=1}.
In either case if h,, - [{]=0 then h,, €Sy, (ap™).

Remark. The final assertion is true even without the hypothesis that m is pseudo-
primitive.

Proof. Suppose first that m is not the trivial component. Then if m is pseudo-
primitive but not a-primitive one checks easily that f , = ] satisfies the
conditions of Proposition 2 and so is a function on £%, provided that the conductor
of the basic character y associated to m is not p. Here r is the integer for which the
basic character associated to m has conductor ap/r. Hence div (f;, ; ), ~ 0. But since
m is pseudo-primitive

div (5 )~ 301 - [9].

If the conductor of y is p, we may choose a function (£ , /) for some b prime to N
and as m is not trivial ((b) —1),, is a unit for a suitable choice of b.

If, on the other hand, m is a-primitive, then suppose that u: (Z/NZ)*/(£ 1)>Z
is any function such that

(i) Y u(£s)s*=0(N) if Nis odd and modulo 2N if N is even
(i) Y u(+5)=0 if a=1
(iil) Y u(+s)=0 modulo v=12/(N,12)

the sum in each case being taken over all elements of (Z/NZ)*/(+ 1). Then by
ProEosition 2 if m(s) = pu(x ) for (s, N) =1, m(s) =0 otherwise, g™ is a function
on 2% and has support on the cusps. For such a g™

div(gm ~0 = L u)sla") §.(1) - [§1=0

Assuming now that m is not associated to w2 it is easy to show that the ideal of
elements {)_ p(s)[s]." } in R,, obtained by taking all functions u as above, is the unit
ideal. Note that if m is a-primitive, then 3, (1) = 30 (1).

Finally, if m is associated to the trivial character and a>1, then f ,/f , is a
function on X% for any b prime to N.

Conversely, if m is any component and 4, [?] ~ 0, then we can find 6 € R™ with
8 = h,,(mod pM) for M arbitrarily large, and satisfying 6 - [{] ~ 0. According to
proposition 3™, e§ - [9]=div f* for some f'e F ©, with e an integer prime to p.
Then

div (f*) = divo (/) eSO (N) - [3].

If m is pseudo-primitive and not associated to y,, nor to ™2 if a=1, then by
proposition 3(i) of chapter 1, §5, SO (N)= (3 (1)). If, on the other hand, m is
pseudo-primitive and associated to y, then since f* is a function one sees that in (8)
we must have ) /(s) =0. (This is condition (ii) of proposition 2). It follows easily

that div (f!) e {(1 — <)) §O(1): (b, N) =1}.
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Corollary . If m is a pseudo-primitive component not associated to the trivial
character, nor to ™2 if a=1, then

CP — RYIGY (1))

as an R module.

$ 3. A study of cuspidal groups

Let B, be the canonical u-deprived quotient abelian variety over Q derived from 4,
as in Chap. 3, §7, so that we have a natural isogeny

An—_’Bn

whose kernel is a finite group admitting a prolongation over the base ¢, ,, to a
u,-type group scheme (see Chap. 3, §2).

Let B, denote the m-component of the p-divisible group associated to B,,
over 0, ..

(a) Stabilized groups in characteristic 0. For the remainder of this chapter we will
suppose that m is a pseudo-primitive component (cf. Chap. 1, §3). Thus a basic
character y of m has conductor ap/r where r=gq, *** q, and each g; divides ap
“exactly once” (i.e., ¢;||ap) and that either ¢; = 1 mod p or else ¢; = p. We assume,
moreover, that m ¢X (cf. Chap. 1 §9). In particular, the second Stickelberger ideal
Sy (ap) is not the unit ideal.

The component m may be principal or associated to the character » ~ 2. In either
of these cases the condition that S, (ap) be non-trivial implies that a > 1.

If g divides r and g # p, let n, be any integer such that n, = gmod N/q and
n,=1modg. Note that if g # p and Div (resp. Div®) denotes the group of divisors
(resp. of degree 0), then

(U, — q[n,)) Div(X) € Div° (X)
for X = X, (ap™) or X =54,

Formula (2) of §1 gives:

(U = UD[31=q<ny (U, = D3] M
G = U R1=p<ny (U = U~ DB @)
Lemma 0. (i) The operator U, fixes the image of
Up ™t (U, = p<n,») °s™: Z[2Z,] - {Pic® (Z2) x Pic® (Z)} (k)
and of
Uy~ (U, = pLny») o E™: L[ Z,] - Jy (ap™).
(i) If g=*p, q|r, the operator U, fixes the image of

(U= q<np)°s™: Z[Z,] > Pic® (Z) (k)
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and of
(U= qin) o €M Z[Z,] - Jy(ap™).
(iii) If qla, gk r, the operator U, fixes the image of
s®: Z,1Z,1° - Pic®(Z),, (k)
and of
& Z,12,1° — Jy(ap™).

Proof. Assertions (i), (ii) follows directly from formulas (1) and (2). To prove (iii),
fix a prime g\ pr such that ¢ divides N. If d is an integer prime to N such that
d=1mod N/q, then {d) fixes any element x in the image of (U,—1)" st (by
formula (1) of §1). Thus [d],, — 1 annihilates x for all such d. But since the basic
character y belonging to m, which is of order prime to p, has the property that
x(d) # 1 for some d = 1, we have that {[d],,— 1((d, N)=1, d=1(N/q)} generates
the unit ideal in R, giving that x =0.
If r' is an integer dividing r, let ¢, denote the operator.

& = U;— ! ll—[/ (Uq - Q<nq>) .
qipr

Define the r'-stabilized zero-cuspidal group C{. to be the finite subgroup of B, ,,
given by the image of the long arrow in the following diagram:

Zp [‘yn] i Clgl,)"

= =

Div (X, (ap") ® Z, —— Div® (X, (@p") @ Z, — Jy(@p") — Ay — By
3)

We view C{, as a Gal (Q/Q)-module with trivial action, and C®, 4, , refers to the
finite flat group scheme prolongation of C{’, in the abelian scheme B, ,.

Proposition 1. The r'-stabilized zero-cuspidal group

Cr(n",)r’ = Bn,m (Q)

is preserved by the action of the following Hecke operators, the action being given by
the formulae:
re=l]nc,
T-c=({[l.+1) ¢ for prime numbers | prime to N,

Uy-c=c for q cgrr_.

The group schemes C, .., are étale. They are cyclic RY)-modules.
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To show that C{,0, , is étale, we note that U, acts as the identity on C%, and
therefore C", liesin B, ,,, y,_; Which is ordinary, since 4,,  , - is. (See Chap. 3: the
proposition of § 3 and Proposition 3 of §5.) But suppose C{¥",, were not étale. Since
the Gal (Q/Q) action on C{, is trivial, there would then be a nontrivial Uy-type
subgroup scheme in C{,,o and consequently in B, ., , contradicting the fact that B,
is u-deprived.

The C{, are cyclic R%-modules as can be seen from diagram (3).

Set C"=C®,.

Definition. The basic ideal b = R" is the annihilator ideal of C{®.

Theorem.
@ [T @ nJu—1) - b =S, (ap™).
|\r
qq*p
(ii) If 2™ is the maximal ideal of R, then

(R /60) ]

is of dimension <1 over R® /s .
The ring R™ /6™ is Gorenstein.

The remainder of this chapter is devoted to the proof of this theorem.

Corollary. Suppose that S,,(ap) is not the unit ideal. Then the cuspidal group C is
nontrivial for n sufficiently large.

Proof. This is the argument of the main theorem of Chap. 1 §9. Roughly speaking
one checks that if m¢X then there are zeroes of the power series attached to
Sn(ap™) which are not attached to y,, (cf. Proposition 2 and (2) of Chap.1 §9).

Remark. We omit the details because we do not make essential use of this corollary.
Our ultimate objective is to make the construction in (I) and (II) of Chap. 1 §9, and
the required construction is trivial unless C is non-zero as follows from the above
theorem.

It is conceivable that even when C is non-zero for large values of n,
nevertheless it may be zero for small values of n. However it will be important for us
that, under the hypothesis S, (ap) is not the unit ideal, the semi-stabilized group
CM. is always non-zero for n> 1, (cf. Lemma 7 (ii) following).

(b) Partially stabilized cuspidal groups in characteristic p. Let € = Pic® (£#),, (k)
denote the m-part of the subgroup of Pic®(£%)(k) generated by linear equivalence
classes of divisors of degree zero which are supported on the zero-cusps. We view
€™ as a subgroup of
Pic® (£&)(k) x Pic®(£¥)(k)

in the natural way.

For each divisor r'|r we consider the partially stabilized cuspidal group %"
defined by the diagram:
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Z,0%,] > Gy
< | =
Div(Z®) @ Z » DivO(ZaL1E*) @ Z - Pic® (£¥),, x Pic® (£¥),,
T U= q<np) ’
qlpr’

where u, = u is the endomorphism of Pic® (£%) x Pic®(£*) studied in §3 of Chap. 3.
Let

D < Pic®(E8), (k)
be the image of %\". under the natural projection

proj;: Pic® (Z), (k) x Pic® (£)m (k) — Pic® (£, (k).

Set M =E",
and 2 =2,
Lemma 1. If

(x,»)€Pic® (£&),, (k) x Pic®(£¥),, (k)
lies in €., then .
y= ) pnyke (%)
k=0
Proof. This follows from the formula for u, (Proposition 2 of §3 of Chap. 3; this is

also where ¢, is defined) together with the relation Fx = x. Note that all but a finite
number of terms in the above infinite sum vanish.

Lemma 2.
() 2= T1 (WU, - 4[n)) €Y
N

(ii) The homomorphisms

2, G
’ u;_ ! (u‘; -p [np]m) '

and

65, _ > 2
projy
are isomorphisms.

Proof. This follows easily from Proposition 2 of §3 of Chap 3. The right-hand side
of (i) is contained in the first factor of Pic®(£#),, (k) x Pic®(E*),, (k). Moreover,
proj, ° up~*(u, — p[n,],) is an automorphism of the right-hand side of (i). This
proves (i). Assertion (ii) follows easily.

Let the subscript 0 denote the restriction of a divisor to the zero-cusps on 2%, its
“zero-cuspidal part”. If h is any element of Z [(Z/ap"Z)*/(+ 1)], we have



304 B. Mazur and A. Wiles

Lemma 3. The divisor

b T {|

qlr’
q¥p

is contained in the group of divisors D' (introduced in the discussion of Proposition
3®), §2). The zero-cuspidal part is given by

=g [} =r 1 a-a-[7]

qlr qlr’
q¥p q¥p

Proof. The assertions follow immediately from the formulae for U, .

Lemmad. If he R annihilates the subgroup

Zwr = [1 (U, - qln,).) EP
Ir
qq*p

of Pic® (£¢) (k) then
[TA —qln)w) - heSE™ (ap™.

qlr
q%*p

Proof. Using Lemma 3, the argument of Proposition 4, §2, may be adapted to prove
Lemma 4.
Briefly, we may “‘approximate” 4 by an element A eZ [(Z/NZ)*/(+ 1)] such that

5= ] (U~ g¢n) m

qlr
q*p

is a divisor of degree zero on £ which is linearly equivalent to zero. It then follows
by Lemma 4 and Proposition 3 of §2 that there is an integer e prime to p such that
e 6=(f™) for a suitable function /™. But by (8) of §2, div,(f,) is given by
Y m(s) 35 (s; N)[$], while the zero-cuspidal part of 8 is given by

e q<n,,>)m.
K

Since S (ap™) is a closed ideal, Lemma 4 follows.

(c) Eisenstein maximal ideals. If T™ denotes the Hecke algebra acting on 4
that we may also view T™ as a ring of endomorphisms of

note

Nk
Pic® (£&) x Pic®(Z»),
the action being compatible with the isogeny

Pic®(£¥) x Pic®(£4) — 4

Mky *
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Let P,= T be the associated Eisenstein “maximal” ideal;®) that is, P, is
generated by

{T;_l—l<l>’ Uq——1 (fOI' q’N), <r>_[r]m’ﬁn}’

where 4, is the image in T® of the maximal ideal of R™.
Consider the p-divisible group over 0 =Z,[(, ]:

A= 0 4B

and the étale p-divisible group over &,
o = {Pic®(£%) x Pic® (£¥)}
= (U {Pic®(Z%) x Pic®(Z1)} [Py]*.
v=1

The natural mappings induce a commutative diagram of étale p-divisible group
schemes over k:

ét

et Al i - —— Bffp,./k
ét ~
. 1 ¢ = ét
et fp, — Bﬁpuk.

Lemma S. The vertical mappings in (4) are injections.

Proof. For injectivity of the right-hand vertical map, see Chap. 6, §6.

To see injectivity of the left-hand vertical mapping, consider the étale p-divisible
part of {Pic®(£&) x Pic®(£¥)}p,,. . By Proposition 3 of Chap.3, §3, the desired
injectivity would follows if Pic®(£¢)%, — Pic®(£%)4, were injective, or equiva-
lently, if

Pic® (£ (k,) — Pic® (Z¥) (k,)

were injective. But by Proposition 1 of Chap. I, §8.1, the mapping f, identifies the
above morphism with the mapping

Pic® (Igusa(ap)) (k,) — Pic’ (Igusa(ap") (k,) ©)

induced from the natural projection
Igusa(ap™) — Igusa(ap). (6)
But (6) is totally ramified at the supersingular points, and therefore (5) is injective.

Lemma 6. The p-divisible groups I ™% are nontrivial for n < 1. The ideals P, are proper
forn=1.

6 The reason for the quotation marks around the word maximal is that it is not yet evident that P, is a

proper ideal. See Lemma 6 below
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Proof. The second assertion follows from the first. Moreover, since I' D& — [®ét jg
injective by Lemma 5, it is enough to show that W& % (),
For this, let y be a basic character belonging to m, and let us fix

r= 1] ¢

qlr
x(ng)*+1

for the remainder of this proof. Lemma 6 follows from
Lemma 7.
(i) €. is annihilated by a power of P,; €I < ™%(k,)
(ii) the RW-annihilator of €Y, is contained in S¢™) (ap), and hence also in S;,(ap).

This will establish nontriviality of ™%, since by our hypothesis, S, (ap) is not
the unit ideal.

Proof of (i): We must show that a power of P, annihilates €%, . But a power of £,
annihilates €%, and the operators

T,—1—-KI I¥N
<X> - [x]m (X,N)=1
q=p (Lemma 1 (i))

q

U-1q%p ¢ ' “71’ (Lemma 1 (iii))
qlr (Lemma 1 (ii)
all annihilate €. .
We now consider the operators U, —1 for g + p, q|r, and such that y(n)) =1.

Since x(n,) =1, we have that [n,],, — 1 €4, . Recall that if |7, then g — 1 is divisible
by p. Therefore (U, — 1) (U, — q[n,],,), which annihilates %\ , may be expressed as

U= DU, = qn)e) = U, = D>+ (U, = 1°x
where x € £,. It follows that a power of U, — 1 annihilates €\ .

Proof of (ii). By Lemma 2, it is equivalent to study the R{-annihilator of 2,7, . But
by our choice of r’ the element

[T ~-aqln,.)

qlr
q%p

is a unit in R, and so Lemma 4 implies (ii).
Proposition 2. The mapping
GVéIt : F(")ét - Aitl’n/"

is an isomorphism of p-divisible groups, for n= 1.
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Proof. Since ¢¥ is an isogeny, it suffices to show that
oy T'"%[P]— A4, [P]" ®)
is injective. But by the g-expansion principle (Chap. 3, §3, Prob. 4’) we have:
Lemma 8. '™ [P,](k) is cyclic as a module over
T®/P, =~ R s, =RV |me, .
Now, since 'MW — @@ jg injective, and I' D is nontrivial (Lemma 6) we
have an isomorphism of (cyclic) R’//,-modules:
ro@ P — ros (2.
It follows that it suffices to show injectivity of (8) for n = 1, but this comes from
Proposition 4 of §2 of Chap. 3.
Corollary. The mapping
& s O (k)
is an isomorphism for all n > 1.

(d) Proof of the theorem: Collecting what has already been proven, we have the
surjections and isomorphisms

6 e A P W R = O
9~ 9 MgIm -

(Lemma 2, the corollary to Proposition 2, and Proposition 1).

To prove (i) we simply apply Lemma 4 with r’ = r, and use that (by definition)
b is the annihilator of C™ (0). As for part (ii), we must show that G (k) [P,] is of
dimension <1 over T"/P, (Lemma 8). But C"(k)[P,] 22" [P,1< I ™% [P,](k)
which is of dimension one over T"/P,.

Chapter 5. The kernel of the Eisenstein ideal

1. Thebasicsequence . . . . . . . .. . . . 307
2. The étale part of the kernel of the Eisensteinideal . . . . . ... .. ... ... .. .... 308
3. The multiplicative-type part of the kernel of the Eisenstein ideal. . . . . . .. ... .. .. 310
4. The splitting fields L& . . . . . . . . . . 319
5. The basic Mapping . . . . . . . . v o v vt e e 322

§ 1. The basic sequence

The stabilized cuspidal group C” defined in Chap. 4, §3 is stable under the action
of T by Proposition 1 of §3 of Chap. 4.

Define the (stabilized) Eisenstein ideal I" = T\™ to be the annihilator ideal of
C™ . Thus, by the proposition just quoted, I is the ideal generated by 7, — 1 — KI)
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for ¥ N, U, — 1 for q| N, {r) — [r],,, and the image of the “‘basic ideal” b{ in T, .
(For the definition of this ideal see Chap. 4, §3).

If C{ is nontrivial, then I is not the unit-ideal and is primary to the maximal
Eisenstein ideal P,.

Note that the natural mapping R®/b® — T/ [ is an isomorphism.

To simplify our notation, we fix an nsuch that C™ = 0, and we drop the sub- or
superscript (n), in most cases. Thus I’ =1, = I, P,= P, etc.

Let E,, denote the kernel of the Eisenstein ideal I = I, in the Q-rational points of
the p-divisible group scheme B, associated to the abelian variety B/,. We may write:

E,=B,[I]=B,[I]=B,[I-T,

and we view the above finite abelian p-group as endowed with its natural structure
as a bimodule (I, §8). More precisely, it has a natural module structure over the ring

T,/I-T,= Ry/bQ

and it also has a natural action of Gal (Q/Q) which commutes with its R{*-action.

Let Fand Sbe asin Chap. 3, §7,i.e. F=Q({,»)and S =0O(F)[1/a]. If we restrict
the Gal(Q/Q) action to Gal (Q/ F), the Galois module E,, over Fextends to a finite
flat group scheme over S (since 4 and hence also Bacquired good reduction over S),
and we denote this finite flat group scheme E, .

The m-part of the cuspidal group C\" is contained in E,, . Let M,, s denote the
cokernel of the morphism C, s — E s and let M,, denote the finite abelian group of
Q-rational points of the group scheme M, .

We then have an exact sequence of finite abelian groups

0-C,—»E,.—»>M, >0 (*)

and M,, may be given the structure of a bimodule in such a way that (x) becomes an
exact sequence of bimodules. These groups are just the Q-rational points of the
corresponding exact sequence of finite flat group schemes over S:

0-Cys—E 5= M, s—0. (%)

We refer to (x#) as the basic sequence.

$ 2. The étale part of the kernel of the Eisenstein ideal

Let s =Spec(F,) be the point of S of characteristic p, and let 5= Spec(F,) be a
geometric point lying above s.

Let I' = {Pic®(£%) x Pic’(£*)}, denote the P-divisible group scheme over s
associated to the abelian variety Pic?(£%) x Pic®(Z*).

By Proposition 3 of Chap. 3, §3, I' is ordinary.

Lemma 1. The group scheme over s, I'® [P] is a T/P-‘vector space’ group scheme of
“T/P-rank” <1.

Proof. This follows from the g-expansion principle, (Prop. 4', in §3, of Chap. 3) and
the fact that u} —1eP.
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Lemma 2. The Tate module Ta*(Pic®(Z' @) is a cyclic T ,-module. The étale group
scheme Pic®(Z&) (1] is of order < the cardmalzty of T/I

Proof. We remind the reader that £% is the normalization of one of the two good
components of the special fibre of X, (ap"), that Pic®(£%), is the P-divisible group
over s associated to Pic®(Z£¢), and that Pic®(Z" )4 is the canonical étale quotient of
Pic® (£4),.

Lemma 2 follows directly from Lemma 1 since the Pontrjagin dual of
the group of §-valued points of Pic®(Z" “&[P] is isomorphic to
Ta* (Pic® (Z&)&)/P - Ta*(Pic® (£¢)&).

Let %, denote the stabilized cuspidal group on Pic®(2 ety x Pic®(Z£#), that is
the image of the cuspidal group 9,,, on Pic® (£4)(k) under (U,)" (U, — p{(n,»).
Since this image is in the kernel of (U,— 1) the formula of Proposmon 3 of
Chap. 3, §3, shows that €, lies on the first factor Pic® (Z¢)é, Consider the
following line of morphisms of group schemes over s:

I’iCO(T)ét (1] — (4,[N,)% — (B[I],)* 3)
Cmys —_ Cy

where the left-hand horizontal maps are induced by o, (cf. Prop. 2 of §3 of Chap. 4).
We also have the morphisms of Tate modules of P-divisible groups over s:

Ta*(B%,) AN Ta*(A%,) — Ta*(Pic® (£4)).

Lemma 3. A/l the morphisms of (3) and (4) are isomorphisms. In particular
Co, = (B[I];)*.

Proof. We know that y is an isomorphism since the isogeny 4,5 — B)s has a kernel a
group scheme of multiplicative type by construction of B (cf. Chap. 3, §7). Recall
that C,s is étale (Proposition 1 of §3 of Chap. 4). The mapping %,,;— C, is an
isomorphism by the corollary of Proposition 2, §3, of Chap. 4. Since the Eisenstein
ideal [/ is the annihilator of C,, the injection %, < Pic® (Feya[r] is an
isomorphism by Lemma 2. The top left-hand morphism in (3) is an isomorphism by
Proposition 2 of §3 of Chap.4. One proves that the mappings in (4) are
isomorphisms similarly.

Heaving just proved that C, = B[/]{ we immediately deduce the following.
Lemma 4. The finite flat group scheme M, is of multiplicative type.
Proof. The finite flat group scheme B[I]; is ordinary and its étale part is Cy;.

Let E denote the completion of the field F at s, and let ¢, = O(F;) denote its
ring of integers. Consider the multiplicative-type parts of the p-divisible groups
Apjo, and By, and denote them, as usual, 43, and B respectively.

Notation. Set Z = Ta* (Bp), and view Z as a module over the ring T,. We also
consider Hom(M,,;Q,/Z,) as T,-module in the natural way; namely, if
feHom(M,,;Q,/Z,), teT,, then (tf)(m)= f(tm).
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Proposition 1. The T,-module Z is faithful. We have an isomorphism of T,-modules
Z[1,- & =Hom (M,,,Q,/Z,).

Proof. The faithfulness of 2 as a T,-module follows from Corollary 2 of §2 of
Chap. 3. The asserted isomorphism comes from the identification of the group
scheme M, , with the maximal multiplicative-type subgroup scheme in B, [I],,

mjos

using Lemma 4. More precisely, since

M, = (B,[I])™" = B [1)

Pjos

our assertion follows from the elementary fact that if A is a p-divisible group over F
which is also a T,-module, then the modules

Ta*(Ajp)/L, - Ta*(A;r)

and A(F)[L] (the kernel of I, in A(F)) are in perfect Pontrjagin duality.
We end this paragraph with a comparison of the kernel of the Eisenstein
maximal ideal in various cuspidal groups. For this, let

r= 11 ¢ Q)

qlr
2ny) +1

and let n be large enough to that G =% 0, cf. the corollary to the Theorem of § 8 of
Chap. 4. Consider the natural map

B0 Cok [P]—=CY [P
which is injective.
Proposition 2. The mapping i, is an isomorphism and the group C.[P,]

=i, C{1). [P,]is equal to C [P,), these being T |P,-vector spaces of dimension one.

Proof. The three groups referred to in the statement of our proposition have trivial
Galois action and are contained in B[P,]. Since the étale part of B[P,]s is
C®[P,)s, for any Q-valued point ¢ of C{, [P,], there is a Q-valued point d of
CW[P,] such that c-d, when lifted to the base S, specializes to zero at the point s.
If ¢ d, the section c—d then generates a subgroup scheme of B[P,] of order p,
necessarily of multiplicative type. But B is u-deprived and consequently ¢=d.
It follows that

0 + in C'(“n‘)r, [Pl]c Ct('ln,)r' [Pn] < CrE:l) [Pn] .

But C®[P,] is a T/P,-vector space of dimensional 1. The Proposition follows.

§ 3. The multiplicative-type part of the kernel of the Eisenstein ideal

Recall the morphism
n: Z,[Gal(Q/Q)] - Ry
which sends the /-Frobenius element &, to /- [/],, (see Chap. 1, §4).
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Let
: Gal(Q/Q) >k},

be the k,-valued character obtained by composition of #, with the natural
morphism to k¥ :
Gal@Q/Q) —— R — ki

Note that B[I] and hence also M,, satisfies the Eichler-Shimura formula
([13,67]). Since I annihilates M,, , the Eichler-Shimura formula can be expressed in
the following way:

(&= 1) (P, — 1, (P))=0 1

for /any prime number not dividing ap, and @, any choice of /-Frobenius element in

Gal(Q/Q).

Definition. 4 bimodule will be called simple if it is simple as an R{®-module;
equivalently, if it is annihilated by the maximal ideal in R\ and is of dimension one
as a k-vector space.

Any simple bimodule has the property that its Gal (Q/Q)-action is given by a k-
valued character on Gal(Q/Q), y:Gal(Q/Q) — k¥ . Such a simple bimodule will be
called of type y. We refer to the trivial character as 1.

We begin with some preliminaries on bimodules.

Lemma 1. Suppose X is a bimodule having a filtration such that every subquotient is of
type 1. Suppose further that X is annihilated by I. Then the action of Gal(Q/Q) on X is
trivial.

Proof. Consider the subgroup G,< Gal(Q/Q) consisting of elements g such that
¥(g)=1. Then G, is an open and closed proper subgroup. Its complement D in
Gal(Q/Q) generates Gal (Q/Q) as a group. If /is a prime number not dividing ap
such that there is an /-Frobenius element which lies in D, one sees that the
endomorphism @, — 5, ($,) of X must have trivial kernel. (This is because on any
element of the kernel &, — 1 is nilpotent by the hypothesis on X.) So &, — 5, (@) isan
automorphism of X and then by the Eichler-Shimura relation (1) #, = 1 on X. By the
Cebotarev density theorem every element of D acts trivially on X. Since D generates
Gal(Q/Q), X has trivial Galois action, and the lemma is proved.

If we impose the stronger condition that X is annihilated by P we obtain that

t
X — @ k,, with trivial Galois action. A similar proof to the above in the case
i=1
where each successive subquotient is of type x yields the following:

Lemma 2. Suppose X is a bimodule having a filtration such that every subquotient is of
type x. Suppose further that X is annihilated by I. Then

gx=1n,(g)x for every x e X,geGal(Q/Q). 2
Again we note that if we impose the condition that X is annihilated by P we

t
obtain that X —— @ k. where the action on each k,, is via the character x.
i=1
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From the argument of ([47],p.114) or ([67], §4), using the Brauer-Nesbitt
theorem, one sees that M, admits a filtration by sub-bimodules of type 1 and x. A
priori both types could occur for successive quotients of the same filtration.

Ideally we would like to prove that M,, has a filtration by simple bimodules of
type %. In this case we say that M, is pure (or more precisely pure of type x).
Unfortunately we have been unable to prove this for all components m and we have
to make do with a weaker result in some cases. To distinguish these cases let i be the
basic character associated to m and write

W = l//p’ wk
where v, is a character of conductor prime to p, w is the Teichmiiller character of

conductor p and kis aninteger, 0 < k < p — 1. Wesay that we are in case (1) if any of
the following three conditions hold

(a) the greatest common divisor of k and (p — 1) is greater than 1,

(b) 1,y (P) *1,
(c) kis odd and *+ — 1.

We say that we are in case (2) if none of the above hold.
Proposition 1. In case (1) M,, is pure of type x.
Corollary. In case (1) M, is an n,-yoked bimodule.

For the definition of a yoke see Chap. 1, §4. Here it simply expresses the relation
(2) above and it holds in this case by Lemma 2.

Proof of Proposition 1 in case 1 (a). Note that this includes the powers of the
Teichmiiller character since ¥ is necessarily even.

Using the notation of §2 of Chap.3, 4,, achieves good reduction over
0, whose field of fractions is the subfield of Q,({,,) which is of degree
(p—1)p"~'/d over Q,.

If we denote by 4, 0, the p-divisible group scheme prolongation, there is no
ambiguity in the notation, for (using Tate’s theorem; see Chap.0) 4, .z, i
naturally isomorphic to the base change of 4,, 0, .. t0 Z,, [{ ,»]. It follows that M, s,
is of multiplicative type, since M,z . is. But then M, = can have no
subquotients of type 1 by the proposition of Chap.0.

Now we prove the key lemma for case (1) which will enable us to prove
Proposition 1 also in cases (b) and (c).

Lemma 3. In case (1) B[I] has no submodule of type .

Proof. The idea is to use the fact that B is u-deprived. (For the definition of this see
Chap. 3, §7). Thus it is sufficient to show that the existence of a sub-bimodule M of
type x implies the existence of a multiplicative type subgroup of B.

In case 1(a)let Fbe the unique subfield of Q ({,.) of degree p" ! (p — 1)/d and let
0, . denote the completion of its ring of integers O at the prime above p. (Here d
=g.c.d.(p—1,k)). Then the Zariski closure of the simple bimodule M in B, , is a
finite flat group scheme (see Corollary 2 to Proposition 2 of Chap. 3 which applies
also to B, ,, since 4 and B are isogenous over Q). As a Gal(F/F)-module M is
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isomorphic to an unramified twist of u,®k, and consequently M, is of
multiplicative type since d > 1 and M,  is ordinary. (This follows easily from the
classification theorem of Qort-Tate or of Raynaud cf. [52,55] and Chap.0.) But
this contradicts the fact that B is u-deprived.

In case 1(b)let S = Or[1/aland suppose that M, were étale. Then M (Fp) isin the
kernel of 7and hence by Lemma 3 of §2 it is contained in the cuspidal group C,,s.
But this has a trivial action of the Frobenius element of Gal (TT,,/ F,) whereas the
conditiony, (p) + 1 means that a Frobenius at p acts non-trivially on M (F). This is
a contradiction if Mg is étale, whence Ms is of multiplicative type. But this again
contradicts B being u-deprived.

In case 1(c) we use a similar argument but this time we keep track of the
action of the inertia group at p. If 0eGal(Q({,.)/Q) then ¢ induces an action
of Bo®Q((,,) which by the functoriality of the Néron model extends uniquely
to By, - The induced action on the fibre By is algebraic (cf. [69], proof of
Theorem 2). Now the action of any such ¢ on C,s is trivial. If M,; were étale,
M (F,) would be in the kernel of I and so as above it would be contained in C,s.
Thus the action of ¢ on M(F,), and so also on M (F), would be trivial. But in
case 1(c) the action of the inertia group at p is via the character ew* which is
non-trivial mod p if k # — 1. (The action of Gal (Q/Q) is given by n, on M (F)
since M has type x). This is a contradiction, so M is of multiplicative type and
this then contradicts B being u-deprived as before.

Proof of Proposition 1. Recall the sequence (**) of §1,
0— Chys— Enys = Myys >0 (**)

where S = 0r(1/a) and F=Q({,,). We may pass to the completion 0 =Z,[(,,] of S
at p and obtain the corresponding sequence of finite flat group schemes over ©:

0“’ Cm/w—')Em/(U_) m/0 _)0 (3)

Since ¢ is a complete local ring there is a canonical exact sequence decomposing the
finite flat group scheme E,_ , onto its connected and étale parts:
OHE!S/Q—)EM/Q_—)E;}/Q —‘)0

On the other hand, Lemma 3 and Lemma 4 of 2 show that C,, , is étale and M, is of
multiplicative type. Thus the sequence (3) splits canonically:

Em/ﬂ] — Cho X Mm/tD .

In particular the sequence () splits as a sequence of Hecke modules whence the
sequence of Hecke modules

0- G [P]- Ex[P] > M, [P]1-0

is exact. Since the actions of Galois and of Hecke commute they are also Galois
modules.

To prove the proposition it will be sufficient to show that M, [P] admits a
filtration by sub-bimodules in which the successive quotients are all simple
bimodules of type . For then if we pick any basis {¢,,...,,} for the K,, vector space
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PS/Ps*! the map ;
M, [P M, [P]- @ M, [P]
i=1

given by x+— xt,@...@ xt, is injective. Since this is true for each s, and since
M, = M, [P'] for some ¢, the proposition will follow.

We assume then that M, [P] admits a filtration with some subquotient of type 1.
(Recall that in any filtration by bimodules each simple subquotient is either of type
1 of x.) We pick a sub-bimodule Z of E,, containing C,, and of minimal order subject
to the condition that Z/C,, has a subquotient of type 1. This Z has a filtration

0cC,[PlcZ°cZ

with Z°/C,,[P] of type x and Z/Z° of type 1. Since Z is annihilated by P it is a
k,-vector space and we may pick a basis. If dim(Z°/C, [P])=s the Galois
representation on Z may be represented in GL,, ,(k,) by matrices of the form

1 a(g® y@®

grp@) =0 x(g b(g) |eGL,,(k,)
0 o 1

where aand bare (1 x s) and (s x 1) matrices respectively and x(g) is an s x s matrix
with the values 2(g) on the diagonal and zero elsewhere. That we may choose x(g) to
be of this form follows from the remark following Lemma 2.

First we show that s> 0. For if s=0 then by Lemma1 Z has trivial Galois
action. Its closure in E, s is a finite flat group scheme and we can pick a subgroup
scheme which is of multiplicative type. We simply take the kernel of reduction
mod p, which is nontrivial because by Lemma 3 of §2, C,, [P];; = (B[P],)*. But this
contradicts the hypothesis that B is u-deprived.

We have seen (Lemma 3) that since B is u-deprived Z does not contain a
simple sub-bimodule of type x. This implies the following condition on the set
4={a(9): x(g)=1},

S L) 2@ =1} = (kn)". M

To see this first observe that &/ is indeed a k,,-subspace of (k,,)°. It is certainly a
subgroup since a(gh) = a(g) + a(4). On the other hand conjugation of a matrix p(g)
lying in &/ by any other matrix p(g’) multiplies a(g) by (g’). Since the {x(g")} span
k.. over F, we see that ./ is indeed a subspace. If dim o/ <5, then we could find a
subspace W of Z° of dimension 2, containing C,,, and with the property that p
restricted to W has the form

W@ =(g 1

>eGL2(km)

with a, (g) = 0 whenever x(g) =1. Thus the kernel of this representation is ker x
which has degree prime to p. It follows easily that the representation is
diagonalizable and hence that Z° contains a simple sub-bimodule of type x, which is
false. Hence dim &/ =s.
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A similar argument, this time using the fact that Z was chosen with minimal

order, implies that
defn.

B=1{b(g):2(g) =1} = (kn)". (D)
Now let us consider the subgroup # of p(Gal(Q/Q)) given by

H={k=p(g):x(g)=1}.

By the Eichler-Shimura relation (1) we have that (k — 1)2 =0 for all ke . (Note
that n, (g) = x(g) on Z since it is annihilated by P). Furthermore £ is an abelian
group. If k and &’ are any two elements of J# then from the identity

2(k' = 1) (k= 1) = (k' — 1)? + (k —1)> = k> (k'k 1 —1)?

we see that (k' —1)(k —1)=0. But this obviously contradicts (I) or (II) for a
suitable choice of k and k'. For if, in the obvious notation, a=a(k) and b'=b (k")
we would have that a-b’=0 for any pair k, k".

Thus there is no filtration of M, [P] with a subquotient of type 1 and
Proposition 1 is now proved.

We turn now to case (2) i.e. where k = — 1 and . (p) = 1. It will be convenient
to redefine the cuspidal group in this case as follows. Pick an /= 1 (ap) such that
I%1(p?). Then set

Cr=C¥"=(—-I<I>)yCP

for some integer x which will be chosen later. Then C¥ is again a module over R,,
and T,, and we let IF = Ann(C}) be the annihilator ideal of C}¥ in T,,. We need
a lemma.

Lemma 4. For any sufficiently large x, (I},1—I{l[))S P;, for some integer s
independent of n.

Proof. We note first that although we have dropped it from our notation 7 and P,
depend on n. By Proposition 4 of Chap. 4, §2, 80 (1)e,,. Hence the ideal a, defined
by

a,={reR®:(1 — KD)- re(® (1))}

is contained in 7¥. The map
RY/(a,,1 = KD) =TI, 1 = KD)

is surjective so it will be sufficient to show that the left hand side has order bounded
independent of n. We consider the following projective limits over #:

y=lim (1 -KD), 9= lim 9 (1).
These are then elements of R = lim R{Y. It will be enough to show that
R{[(a,,,y) is finite where a_, is the ideal of R defined by
a,={reR:y*re(}.

For any sheet o attached to m there is a natural map R{" — R{" which induces a
map R{ — R [64]. (See Chap. 1, §3 for the definition of a sheet; see also formula
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(5) of that section. If y is a character belonging to ¢ then composition with the
natural map R — 0, induces the homomorphism a,, , if (4) of Chap.1, §6). Let
y,(T) and §,(T) be the images of y and § under this map. Then for suitably large «
we can find an element o, (T)e R [64] such that

1) o,(T) and y,(T) have no common factor,
ii) Yo(T)* o (T) €(8,(T)).

This simply amounts to removing whatever zeroes (7" has in common with
¥,(T). Note that neither of these power series is zero, the former by, for example, the
corollary to Proposition 4 of Chap. 4, §2 and the finiteness of the cuspidal group.

There is an isomorphism

RYP®Q,— [[RV[[TNI®Q,
and it follows easily that p'a_(7) is in the image of R\ for some i. (This is the
element which maps to p'a, (T) in R [T] and to zero in R} [T]if 6’ =+ 5). We can
then find a j (depending on o) such that p’a,(T) €a,, . Since p t y it follows from (i)
above that the ideal )
{npla, (T): cem}

has finite index in R{®, whence the same is also true of a .
We now fix a choice of « satisfying the above lemma, and so also of C* and I} .

Lemma S. In case (2), suppose that B,[I*] has a finite submodule X which is pure
of type x. Then the order of X is bounded independent of n.

Proof. First we observe that if X is pure of type ¥ then by Lemma 2 the relation
g =1,(g) holds on X for every geGal(Q/Q). Hence a splitting field for the Galois
action on X is given by F=Q({,,) for some m. As in the proof of case 1(c) in
Lemma 3 we can define an action of the inertia group at a prime above p on X.
Suppose that xe X (F) is of order p". Then for some prime p of Fabove p, p" ! x is
not in the kernel of reduction mod p, for otherwise it would generate a subgroup
scheme of multiplicative type over F, contradicting the hypothesis that B is
u-deprived. Hence any element of I, acts trivially on x since the action of /, on C,
is trivial and since x/g, is in B/g, [I]* so it is in C,, by Lemma 3 of §2. But for the
prime p, I, is the subgroup of Gal(F |Q) consisting of those &, with /= 1(a) and
(4,p)=1. Thus for any such /

1=¢,=n,(d)=KI> on X

By Lemma 4 the ideal (/*,1 — KI)) contains P° for some s independent of » (and /
chosen as in Lemma 4). It is sufficient then to prove that X[P] is finite since picking
a basis 1,,...,t; for P//P'*! we get an injection

, , j
X[PHYX[P @ X[P]
i=1
givenby a—at; ®...® at;. But X[P]is a direct sum of simple bimodules of type x

(by the remark after Lemma 2) and so a splitting field for it is given by Q((,,). Over
this field X[P] has trivial Galois action and we let ¥, be the kernel of reduction
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mod pin X[P] where pis a prime above pin Q({,,). Then V, is of codimension <1,
as follows from Lemma 3 and Proposition 2 to §2. Thus V= N ¥, has codimension
in X[P] at most equal to the number of primes above p in Q({,,). But V= 0 since B
is u-deprived, and this completes the proof.

Now let X denote the maximal submodule of B, [7*] which is pure of type x, and
let E} = B,[I*]/X. Let C¥* be the maximal submodule of E* which is pure of type
1. We consider the following exact sequence, where MX* is by definition the
cokernel in the sequence,

0— Cx* — Ex*—2 MX** 0.
Proposition 1*. M}* is pure of type %, and is therefore an n,-yoked bimodule.

Proof. 1t will be enough to prove that M}* [P]is pure of type ¥. Assume that it is
not. For simplicity of notation we will drop the subscript m during this proof. From
the filtration

0c C*¥*= C** + E**[Plc o™ Y (M**[P)])
we see that we can assume that we have a filtration of bimodules
OcE,=C**cE,cE,

in which E,/E, is of pure #-type and E;/E, is a simple bimodule of typel.
Furthermore we may assume that £5 has minimal order with this property. Note
that E,/E, cannot be zero since C** was the maximal type 1 sub-bimodule of E**.
Also we know that E, contains no x-type sub-bimodule since X was chosen to be
maximal of x-type in B,[I*].

Thus we are in a situation similar to that of case (1) except that we do not have
that pE;=0. We do however that p(E,/E,)=0. We need a more elaborate
argument in this case (which also works in case (1)). Let z be an element of E, which
generates E;/E,. Let x,..., x, be elements of E, which form a basis for the k.-
vector space E,/E, (cf. the remark following Lemma 2).

Step 1. There exists a o, with #(g,) * 1 such that 6,z — ze C**.

There is certainly some element 7 with x(7) # 1. Suppose that 1z =z + x with x e E, .

Then as in (IT) of case (1) there exists a p with #(p) =1 and pz = z+ x mod C**. Let
-1

g=1p L.

Step 2. 6yz=1z.
Applying the Eichler-Shimura relation we have

(09 —n(0g)) (6p—1)z=0.

But on C** ¢, acts trivially, whence the result follows since x(g,)+1
(n,(0o) =x(0,) modulo the maximal ideal of R,,).

Now write 6x; =1,(0,) x; + ¢; with ¢;€ C*¥*. Let ¢, =(cy,..., ¢, ). Also for any
g€Gal(Q/Q) with x(g) =1 we write

gz=z+b x+c¢ with b=(by,...,b)e(R,), ce C**

4)
gx;=x,+d, with dyeC**,
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Here, even for fixed g, the choice of b; and ¢ are not unique but we make a choice.
We note also that b;, c and d; all depend on g but for the moment we suppress this in
our notation.

Step 3. Suppose that n,(g) =1. Then
b-d= ) bd;=0
i=1

as an element of C**.
Applying the Eichler-Shimura relation to g we get that (g — 1)? z= 0. The above
relation now follows immediately from (4).

Step 4. Suppose that ,(g) =1. Then
b co+(1—1,(04)c=0. ©)
We apply the Eichler-Shimura relation to o,g. First we have
(cog—1)z=04b x+c)=n,(cg)b-x+b-co+c.
Then applying (o, — 11, (0,)) to this we get zero by the Eichler-Shimura relation:
Ni(@p)b-d+b-co+ (1 —n,(a)c=0.

Now applying the result of step 3 gives the required relation.
Note that (5) uniquely determines c in terms of b.

Step 5. Forany b e (R,,)’, there exist a g with #, (g) = 1 and for which we may choose
b=b(g).
By adjusting our choice of ¢ we see that we only have to prove that

2B = {b(g)modwe: n (g)=1}

is equal to (k,,)*, where » is the maximal ideal of R, . This is a slight generalization
of property (II) of case (1) where it was seen to hold if the condition #, (g) =1 was
replaced by (g) =1. To see that we can make this generalization let K be the
splitting field of E,/E,, Fthe fixed field of ker xand L the fixed field of ker , . Then
L and K are abelian extensions of F. Furthermore L " K = F because the action of
Gal(F/Q) on Gal(L/F) is trivial whereas the action on Gal(K/F) is via the
character x. The assertion now follows easily.

Step 6. For all g with n,(g) =1 we have d(g) =0.
We consider two elements g and g’ for which #,(g) =#,(g’) =1. With formula (4)
for g and g’ we get, in the obvious notation,

(gg)z=g(z+b  x+c)=z+(b+b) x+b -d+c+c'.

Now apply the relation (5) to g, g’ and gg'. By combining these relations we deduce
that b’ - d = 0. By the result of step 5 this holds for every b’ in (R,,)° whence d = 0.

We now obtain a contradiction from this. We have shown that E, has trivial
Galois action over the fixed field of ker#,, and hence over an abelian extension of
Q. Let g be any element of Gal (Q/Q) for which x(g) # 1. Then ker (g — 7, (g)) is a
sub-bimodule of E,. A simple sub-bimodule of it must be of z-type, but there are
none of this type by our choice of X. Hence ker (g — #,(g)) = 0, whence g — n,(g) is
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an automorphism of E, . But this is impossible because E,/E, is non-trivial and pure
of z-type. The only possibility is that M ** [P] was of pure ¥-type and this completes
the proof of the proposition.

Let us now review our construction in case (2). We have now two related exact
sequences which we can put into a commutative diagram

0->C¥>EX¥=B,[I*]>M}->0

R

0> CF* > EX* —— M}X* 0.

In the top sequence, if we take the Zariski closures over 0, C%, is identified with the
étale part of B,,[I*],, (See Lemma 6 below) and M.¥ with the multiplicative part
just as in the discussion after 3. On the other hand C}* is of type 1 and M}** is of
type . We now show that these two sequences are not too different (as expressed in
Proposition 2* below). First we need a lemma.

Lemma 6. CJ is the maximal type 1 sub-bimodule of £}, and C is the étale part of
E¥o.

Proof. The Pontrjagin dual of C,,, is a cyclic T,,-module (see the beginning of §2).
This is therefore also the case for C,,[IT*]. By construction, Cf is also cyclic. Since
C¥and C, [I*] have the same annihilator ideal /* = T,, it follows that they have the
same order.

Consequently the inclusion Cf < C,,, [I*] is an equality. It follows that C¥s is the
étale part of Ef, using Lemma 3 of §2.

Now suppose that T is the maximal type 1 sub-bimodule of E¥. The action of
Gal(Q/Q) on T is trivial by Lemmal. The kernel of reduction in T (F) (to
characteristic p) is zero because E, has no subgroup of multiplicative type (being
u-deprived). Hence T, is étale. But i is the étale part of Exf, whence Cf =T.

Proposition 2*. Thevertical maps in (6 ) have kernels and cokernels of order bounded
independent of n.

Proof. Since by definition EX* = E}/X the statement for ¢ follows from Lemma 5.
Thus we only have to prove that the order of the cokernel of the natural injection
CY¥ - C}* is bounded independent of ».

We define a map

@~ (C) - H'(Gal(Q/Q), X)
by e — {6 » ce — ¢}. By Lemma 5 and the fact that the image of the above mapping
lies in a finite subgroup of the range of order independent of n, it will be sufficient to

prove that the kernel is C} + X. Clearly, C} + X is contained in the kernel. The
converse follows immediately from Lemma 6.

$ 4. The splitting fields LY

We continue the notation of § 3. In particular we often omit the n from the notation.
Also for the time being we only consider case (1).
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Let K, denote the smallest field extension of Q which

(i) is a splitting field for all Dirichlet characters y of conductor ap” (anyr)
belonging to the component m, and
(ii) contains Q ({,).

It is evident from (1) of § 1 that K, is a splitting field for C". It follows from the
corollary to Proposition 1 of § 3 that K,, is also a splitting field for M,, . Let LY = L,,
denote the minimal field extension of K, contained in Q which is a splitting field for
the Galois module E,, . It is evident that L, is a Galois extension of Q, and that
L./K,, is a finite Galois extension, whose Galois group G,, is a finite p-abelian
group. We have a pairing

G.xM, - C,
(8, x)—><g x>

defined as follows. Let X € E,, be any lifting of x, and let

M)

<g9x>:g(x~)_x~ecm~

Since L,,/Q is a Galois extension we obtain an action of Gal (Q/Q) on G,, in the
standard way: if « € Gal (Q/Q) and g € G,, then, denoting the action exponentially,
we have

g*=0aga ! where & is the image of « in Gal(L,,/Q).

Denoting the action of Gal(Q/Q) on M,, and C,, exponentially also, we have:

g% x*> =g, x)*={g,x). (2
The compatibility with the diamond operators is given by the formula
(g, <{r>my={_ry {g,m). 3)

Lemmal. The pairing (1) is nondegenerate.

Proof. That it is left-nondegenerate follows directly from the choice of L, as the
minimal splitting field of E,, over K,,,.

We shall prove that the pairing (1) is right-nondegenerate. Suppose not. We
may then find a submodule (as a Galois module and also as a Hecke module)
M2 <M, such that{g, x) =0forall ge G, and x e M. Form the exact sequence of
Gal (Q/Q) modules:

0—>Cm—>E'3—->M,2—>0 (4)

by pullback from the basic sequence (*) of §1. By the defining property of M we
have that K, is a splitting field for the Galois module E? . Recall that K,, is an
abelian extension of Q. Consequently, for any prime number / not dividing ap, and
for any /-Frobenius element &, € Gal(Q/Q) the endomorphism &, —1 may be
viewed as an endomorphism of the sequence (4) of Gal (Q/Q)-modules. Fix a prime
number / not dividing ap such that x(®,)#1. Let MS<ES denote the kernel
of ¢, —n,(p,) in ES. Since ¢, —n,(¢p,) is an automorphism of C,, we see that
M3NC, = {0}. Since @, —n,(¢,) is zero on MY, it cannot be an automorphism
of EQ and therefore M2 is nontrivial. It follows that A2 is a Galois-invariant
_ lifting of M{ to E,, and is therefore of type x. This contradicts Lemma 3 of §3.
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The pairing (1) determines an inclusion
A Gy — Homg (M,,, Cy,)

(in the light of Lemma 1 and (4)).

The module Homge (M., C,,) is naturally endowed with the structure of a
bimodule. We see from the corollary to Proposition 1 of § 3 that it is an 77 _ ;-yoked
bimodule, in the sense that its Galois action is derived from its R{*-module
structure via the ring homomorphism:

-y Z,[Gal(Q/Q)] - R ©)

By (2), the morphism 4 commutes with the Gal (Q/Q)-action and consequently, the
image of G, in Homg» (M,,,C,) is stable under the action of the ring
Z,[Gal Q/Q)].

Since the ring-homomorphism of (5) is surjective, it follows that the image of 1 is
also stable under the action of R{*’. Since A is injective, we may endow G,, with the
structure of an R{”-module in a unique manner such that 4 is a homomorphism of
bimodules. We shall henceforth regard G,, as being endowed with this bimodule
structure. Note that it is a sub-bimodule of a yoked bimodule, and therefore it is
itself ““yoked” (in fact, #7_,-yoked).

The field extension L, /K, is a Galois extension of type m unramified except
possibly at one of the primes ¢; + p,i=1, ..., v (for the notation, see the beginning
of this chapter).

Proposition 1. In case (1), if m is pseudo-primitive, then the extension L. /K, is a
virtually unramified Galois extension of type m.
(For the definitions of type m and virtually unramified, see Chap.1, § 7 and §38).

Proof. The extension L,,/K,, is Galois of type m by construction, and is unramified
at primes not dividing N. It suffices to show that it is unramified at primes dividing
p. For this, we return to the basic sequence (**) of §1 and pass to the completion
0=27,1(,,)of Z[(,.,1]:

pnaE *

0-C, —-E, —-M, —0. (6)

me mo m/n

Since C,,, is étale and M., , is of multiplicative type, and @ is a complete local
ring, a comparison of (6) with the canonical exact sequence decomposing the finite
flat group scheme E,, , into connected and étale parts shows that the sequence (6)
splits canonically:

E,,—C

which, in turn, shows that L, /K,, splits completely (and is therefore unramified) for
the primes of K|, dividing p.

In case (2) we use M¥* and C}* in place of M,, and C,,, and we define L,, to be
the splitting field of E}*. (The notation is as in §3.) The non-degeneracy of the
pairing (1) is still valid (for M¥*, C¥* and and G,,). However Proposition 1 must be
weakened slightly.

x M

me me

Proposition 1*. In case (2), if m is pseudo-primitive, then L,/ K., is a Galois extension
of type m unramified outside primes dividing N.
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Furthermore the inertia groups at the primes above p all lie in an R{®-submodule
which is annihilated by a power of the maximal ideal, 2, with ¢ independent of n.

Proof. The idea is to compare the two sequences in (6) of §3:

0-C¥>E}X=B,[I*]>M}->0

|l b

0->Ct* 5 EXY* —— M¥*—>0.

Let K, be the minimal splitting field of ¢ ~ ! (C#*) containing K,, . One checks that
K, is a finite extension of K|, of degree bounded independent of n. Let K} be the
minimal splitting field of M} containing K, .

Now pick a prime p above p in L¥, the splitting field of E¥ (again assumed to
contain K,;), and primes p and q lying under pin L, and K} respectively. We form a
diagram in which all the squares are commutative:

I,< Gal(L,/L,NnKy)

P

I,< Gal (L/K;,)

|

I, < Gal(K3#/Kn) - Homge (M, 0~ (CE*)/(CY)).

On the left the group I, is the inertia group at p and similarly for p and q. The
horizontal map is defined by

c>{es>be—e}

where éis a lifting of o to Gal (L%/K.,). The fact that the restriction map I, — [, isan
isomorphism comes from the fact that L}/K} is unramified. This is proved in the
same way as Proposition 1.

To prove the proposition we just observe that ¢ ~*(C**)/C¥ is of finite order
bounded independent of n (Proposition2* of §3). Hence the image of I, is
annihilated by a fixed power of p. The same is then true of [,. Since K, is a finite
extension of K, of order bounded independent of n, the same is true for the inertia
groupsin L,./K,, . Finally, using the theorem of Ferrero and Washington [19] on the
vanishing of Iwasasawa’s y-invariant we obtain our proposition.

$ 5. The basic mapping

We begin by considering case (1) in the sense of § 3. The pairing (1) of § 4 gives rise to
a homomorphism
Mm —p_-> HomRsﬁo) (Gm9 Crn)

as follows. For x e M,,, define p (x): G,, = C,, by p(x) (g) =<x, g)>. If we wish to
indicate that we are working at level n > 1 (N = ap™) at the component m we denote
this morphism p = p{ . The mapping p is injective for all components in case (1).
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Lemmal. Let m be a pseudo-primitive component in case (1). There is an
isomorphism of R{®-modules:

HomRszo) (Gm H Cm) _;—:_) I_Iornl (Gm s Qp/Zp)
well defined up to multiplication by a unit in R\ .

Proof. We use Proposition4 of the appendix, nothing that C,, is isomorphic to
R®/B™ which is a Gorenstein ring. (The theorem of Chap. 4, §3).
There is a mapping of R{®-modules

& Gu— Z/Ip F=Hom(M,,,Q,/Z)

well-defined up to multiplication by a unit in R{ given by the dual of §p, making
use of Proposition 1 of § 2. If we wish to indicate that we are working at level n, we
write £ =¢™, From Lemmal and the injectivity of p we deduce the following
Lemma.

Lemma 2. The mapping & is surjective for any component m in case (1).

Proposition1. In case (1) of §3 the Fitting ideal of the R®™-module G
= Gal (LW/K,,) is contained in b,

Proof. The surjection of R™-modules of Lemma 2 gives an inclusion of Fitting
ideals
Fpo (G) € Fro (Z]1, ),

by Remark 1 of the appendix. It suffices then by Remark 4 of the Appendix to show
that
Frogo (21, Z)=0.

But R?W/bM ~ TW/IM and therefore, using Remark 4 again, it suffices to show that
Fo (XL X)E Iy,

This follows from the faithfulness of & as a Tp-module (Proposition 1 of §2) and
Remark 7 of the appendix.

Now we turn to case (2). We define b*™ to be the intersection of I™ with R,
Thus b*™ is the annihilator ideal of CX*= C*™ in R®™. Since C¥ is cyclic as an
R™-module,

Ck — RW/BE™.
The same analysis used in the proof of the theorem of Chap.4 §3 shows that
R™/bx™ is a Gorenstein ring. Furthermore

(1 =KDy T] (@iln,) = DR = SL(N).
ql;xT’p

We also have the natural isomorphism

R,(,:')/b,’f‘(") N T}}")/I;Jk(n)
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An analysis as in case (1) gives a diagram
ME* —— Homy (G, G

Fk
M,, — Homg (G, G —— Homg (G, Q,/Z,)

where M,, is defined as the inverse image of HomRm» (G, C¥) under p. Here we
recall that in case (2) G,, = Gal (L,,/K,,) where L,, is "the splitting field of E}*. We
have the following maps of R{-modules, the first two being surjective and the last
injective:

G, —Hom(M,,Q,/Z,),

Hom, (M**,Q,/Z,) - Homy(M,,,Q,/Z,),
Hom, (M3*,Q,/Z,) » Homy (M},Q,/Z,)= Z|I} Z.

The second mapping has kernel of order bounded independent of n using the
vanishing of Iwasawa’s u-invariant [19] as can be seen from the Cartesian square
above. The third mapping has cokernel bounded independent of »n (Prop.2*
of §3).

Let #, be the maximal ideal of R{™. From Remarks 1, 8 and 9 of the appendix
we easily deduce that there is an integer ¢ independent of » such that

() Fy (G) S Fyo (Z/IF ).

By the argument of the proof of Proposition1 we obtain the following version in
case (2).

Proposition 1*. There is an integer ¢ independent of n such that

(4%71)C ' FR'(:) (Gm) = b::l(n) .

Appendix: Fitting ideals

Let R be a commutative ring with identity, and M an R-module of finite presentation. We refer the reader
to Northcott’s excellent book [50] for a self-contained elementary account of the theory of Fitting
invariants of M. We will only have use for the “zero-th” (or the ““initial”) Fitting invariant.

If h: R*— R®is an R-homomorphism given by /', an a x b matrix with entries in R, the Fitting ideal
of h over R is, by definition, the ideal Fy(h) = R prescribed as follows: If a < b, then Fr(h)=R.Ifa=b,
then Fg(h) is the ideal in R generated by all & x b minors of the matrix 4’. [Compare Bourbaki, Comm.
Alg. VII exercise 10 p.573.]

By Theorem 1 of [50], the Fitting ideal of & over R depends only upon the R-isomorphy class of the
cokernel of A. Thus, if M is a finitely presentable R-module, we define the Fitting ideal of M over R,
denoted Fr (M), to be Fg(h), where

h

RE— RP— s M — 0

is any finite presentation of M over R.
These relations are evident, from the definition of Fitting ideal, in light of Theorem 1.

1. If M - M’ is a surjection of R-modules, then

Fr(M) = Fp(M").
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Note. 1t is not necessarily the case for general R that if M’ is a submodule of M, then we have an
inclusion of Fitting ideals. (For an example where R is a polynomial ring in three variables over a field,
see Bourbaki Commutative Algebra VII Ex. 10 (g)) but see the corollaries to Propositions 1 and 3 below.

2. If M =M, x M, is a direct product of finitely presented R-modules, then
Fr(M) = Fp(M,) - Fr(M;).
3. If Anng (M) is the annihilator ideal of the R-module M, then

Fr(M)<=Anng(M).
4. If I< R is any ideal, then

Fp(M[I- M) =image of Fp(M)in R/I.
From the above one deduces
5. If M is a direct sum of cyclic R-modules, M = R/a; x --* x R/a,, then
Fr(M)=a;-.... q,.
6. If Ic R is a finitely generated ideal, then

Fr(M/I- M) (Fx(M),I)cR.
Proof. If
RS R — M—0

is a presentation of M, and I=(x,, ..., x,,) < R, then an R-presentation of M/I- M is given by

RX RPX RPx ... x R® s R — s M/I-M — 0

n

where /* =h xx,* X x,* X *** X x,.Any b x b minor of the matrix associated to 4* is either a minor of
h, or a multiple of one of the x;’s.

A special case of 6 using that the Fitting ideal of a faithful module is trivial is:

7. If Ic R is a finitely generated ideal and M is a faithful R-module, then Fr(M/I M)c 1.
The proofs of the next two assertions are easy, and may be found in [50]:

8. If M can be generated by n elements over R, then

Anng(M)"< Fr(M)
(cf. [50], Chap. 3, Theorem 5).

9. If 0>M, ->M,—M;—0is an exact sequence of R-modules, then
Fr(M,) - Fr(M3) < Fp(M;)

(cf. [50], Chap. 3, Exercise 2: solution on pp. 90, 91).
Now suppose that R is a complete local noetherian ring with maximal ideal m.

10. If Risa completelocal noetherian ring, and M an R-module of finite presentation expressed as a
projective limit of quotient R-modules:

M= lim M, n=1,2 ...

n

Then ®
Fp(M)= Q Fr(M,).

From 9. one easily deduces:
11. Let M be an R-module of finite length. Then
mlengthR(M) - FR (M) .

We now establish some results for the ring R=Z[X].
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Let N be a finitely generated abelian group endowed with an endomorphism 7: N - N. We view Nas
an R-module, where R=Z[X] by: X - n= T(n) for any n e N, and denote by N, the underlying group.

Lemma 1 (Auslander-Buchsbaum; [4] p. 392). The sequence
Z[X]®Ny, 1> Z[X]®N;, =+ N— 0
is an exact sequence of Z[X] modules where
e(P(X)®n)=P(T) n
YPX)®n)=X-P(X)®n—-P(X)®T-n
for P(X) a polynomial in Z [X], and ne N.
Proof. The sequence is evidently compatible with the action of Z [X], e is surjective, and e y=0. We

must show that Kerecimagey. It would suffice to show that for any yeZ [X]® N, there is a
zeZ[X]® N, such that

y=y7@)+1®e(y). (%)
But to check (x) it suffices to check it for elements y of the form y = X* ® n for k =0 and ne N. This we
do inductively in k.
For k=0, y=1® e(y) and we may take z=0.
Fork=1,y=X®n=X®n-1®T(n)+1® T(n) and we may take z=1®@n.
Suppose the assertion (x) established for k£ — 1, and let y = X*® n. Then

y=X-X"1@n-X"1QTm+ X '@ T().

By the inductive hypothesis, X* " '® T(n)=y(z') +1® T*(n), and therefore we may take
z=X""1Q@n+z.

Lemma 2. If N is a free abelian group of finite rank endowed with an endomorphism T: N — N, then we
have the finite presentation of N, viewed as Z [X] module:

0 — Z[X]®N, —— Z[X]®N, — N — 0.

Proof. In this case, Z[X]® N, is a free Z[X] module of finite rank. Injectivity of y is also easily
established.

Now let M be a finite abelian group endowed with an endomorphism 7: M —» M. If N=1Z’ for a
suitably large r, we may construct a commutative diagram

0— N SN M—0
[ |n |
00— N — N - M—0
where the rows are exact, and where y is given by a diagonal matrix. We may identify 7, and T, with
matrices in terms of the given standard Z-basis of Z". Let N, (i=1, 2) denote the Z [X'] module whose

underlying abelian group is N, and where multiplication by X is given by the endomorphism 7; . Consider
the resolutions of Lemma 2 for N;:

0 — Z[X]®N 1o Z[X]®N -2 N,— 0
which yield the following Z [X] presentation of the module M;

ZIX]ON®Z[X]®N — 2281 , 7 (x|®@ N — M — 0. )
We are thankful to David Buchsbaum for providing us with the proof of

Proposition 1. Let M* denote the Pontrjagin dual of M, endowed with the natural Z [ X'} module structure
induced from that of M. Then
Fpi(M) = Fp 5 (M*).
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Proof. In the resolution (1) for M, we identify N with its Z-dual, using the standard inner product. Then
the analogous resolution of M* is
ZIXIONDZX]ON —22%% |, 72(x]@ N — M*— 0 )

where the superscript ¢ denotes the transpose matrix. Of course, under our hypotheses, ¢' = ¢.
We may view the resolutions (1) and (2) as given by r x 2r matrices .#, and .#, respectively, with
values in Z [X]. For suitable entries a,, ..., a,and x;;: 1 £, j<r, these r x 2r matrices have the form

a, X11 X1 777 Xy
a; Xa1 Xz 777 X
My = ",
a, Xp1 Xp2 T Xy
a; X1 ar/a Xy o0 agfa,c X,y
a, ala, - Xi, X3z a/a, - X,,
My = . )
a, a,fay- Xy, alay- X, X,

The proposition will follow if we prove that there is a one: one correspondence between the rx r
minor submatrices of .#; and those of .#, so that corresponding minor submatrices have the same
determinant up to sign. This will be true in the field of rational functions (over Q, say) in the variables
Ay, ooy @y Xygs ooy Xy

The minor submatrices of size r x rin an r x 2r matrix .# are in one : one correspondence with pairs
of subsets Sy, S, in [1, r]= N of the same cardinality. The minor matrix .# (S, S,) associated to such a
pair (S,,S,) is given by taking the r columns of M indexed by the subset

Syu([r+1,2r1-83)<1,2r]

where seS; if and only if s—reS,.
An easy exercise:
det #,(S,,S,) = +det #4,(S,,S;)

for any pair S,, S, of subsets of [1,r] of the same cardinality.
Corollary. If M'< M is an inclusion of Z [X] modules of finite cardinality, then
Fpi(M) S Fpyy(M).

Proof. The inclusion is converted to a surjection after application of Pontrjagin duality, and then we
may apply 1.

We now pass to rings of particular interest to us: Let D be a finite discrete valuation ring extension of
Z,and A=D[X], the power series ring in the variable X over D.

The results proved for the ring Z [X] carry over to A quite easily. One has

Proposition 2. If N is a A-module, free of finite type over D, and if N, denotes the underlying D-module
of N, we have the finite free A-resolution:

0 — AQ,Ny —> A®,Ny —> N — 0.

(The Auslander-Buchsbaum resolution) where e(A@n)=A-n, y(A@n) =X -AQn—AQ® X n. The
Fitting ideal of N is det ,(y).

Recall that if M is any A-torsion A-module of finite type over A, Iwasawa has defined a polynomial
Sfu(X) e D[X], the “characteristic polynomial” of M, which is, in general, a power of the uniformizer of D
times a distinguished polynomial. Now assume that M is of finite type over D and let T (M) = M denote
the D-torsion submodule. Since t (M) is stable under the action of A, we have an exact sequence of A-
modules

0->1T(M)->M->N->0
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where N is free of finite rank over D. In this case t(M) is finite, and therefore f,,(X) =fy(X) is the
characteristic polynomial of the endomorphism induced by multiplication by X on N. Note that this
characteristic polynomial is simply det, (y) where y is as in the Auslander-Buchsbaum resolution for N.

Corollary. The A-module N has ““restricted projective dimension” equal to one (cf. [50]). The Fitting ideal
F,(N) is the principal ideal generated by the characteristic polynomial f,,(X). If M is a A-module which is of
finite type over Z,, as above, then

Su(X) - mEAMD < F (M) < i, (X) - A
where m < A is the maximal ideal.

Proof. Use the above discussion and Proposition 2; by 11, m'"1® js contained in F,(t(M)); by 1,
F,(M)c F,(N) = fy,(X) - 4; by 9. the other asserted inclusion holds.

In applying this corollary, it is useful to note the following elementary fact.

Lemma 3. Let ac A be an ideal of finite index. Let f, g € A. Suppose that

a-(NH<(®.
Then g divides f.
Proof. The ring A is a unique factorization domain, and a contains two nonzero elements a, f with no

common irreducible factors. Since g divides af and Bf, one sees that g divides f, by considering the
irreducible factors of g.

We also immediately obtain the analogues of Proposition 1 and its Corollary:

Proposition 3. If M is a A-module of finite cardinality, and M* is the Pontrjagin dual of M, with its
naturally induced A-module structure, then

Fy(M)=F;(M*).
Corollary. If M'< M is an inclusion of A-modules of finite cardinality, then F,(M)< F(M’).

The following result was explained to us by David Eisenbud.

Proposition 4. Let R be a nontrivial local Z -algebra of finite cardinality with maximal ideal denoted my .
Then the following conditions are equivalent.

1. The kernel of my in R, viewed as vector space over R/my is of dimension 1.
2. The R-module R* =Homy(R,Q,/Z)) is free of rank 1.
3. For any R-module W of finite cardinality, there is an R-module isomorphism

O Homy(W, R) —— Hom,(W,Q,/Z,)
4. (Definition) R is a Gorenstein ring.

Remark. If we are given a generator h e Homy (R, Q /Z,) we may determine a canonical R-isomorphism
8y for all such R-modules W. Without the choice of such an 4, the R-isomorphisms d,, are canonically
determined up to multiplication by a unit in R.

Proof. 1) > 2): If R [m,]is of length 1, then R*/mg- R* is of length 1. By Nakayama’s lemma we then
have a surjection of R-modules R — R* which must be an isomorphism since domain and range have the
same (finite) cardinality.
2) = 1): If R* is free over R of rank 1, then R*/m;R* is of length 1 and therefore so is R [mg].
2)<>3): This follows immediately from the ‘“‘adjointness” isomorphism

Hom, (W, Q,/Z,) = Hom(W, Homz(R, Q,/Z,)).
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