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Let S=k[x,, ..., x,] be a polynomial ring over an infinite field k, and let I be
a homogeneous ideal of S.

An algorithm for computing the (first) syzygies of I is due independently to
Spear [Spe77] and Schreyer [Sch80]: One chooses an ordering on the mo-
nomials of S, and then constructs a monomial ideal in(I) generated by the lead
terms of all elements of I. in(I) can be viewed as the limit of I under the
action of a l-parameter subgroup of GL(n) on the Hilbert scheme [Bay 82], so
in(I) occurs as the special fiber of a flat family whose general fiber is isomor-
phic to I. It follows from a well-known criterion for flatness [ Art 76] that each
syzygy of in(I) can be lifted to a syzygy of I; the set of syzygies thus obtained
can be trimmed to give a complete set of minimal syzygies of I.

The monomial ideal in(I) was first studied by Macaulay [Mac27]; an
algorithm for its construction was first given by Buchberger [Buc 65], [Buc 76].
in(f) is studied in [Hir 64], [Bri73], [Gal 74], [Gal 79] as part of an analogous
division process for power series rings.

The following problem arises in using this syzygy algorithm in practice:
in(I) can have minimal generators and syzygies in degrees higher than any
minimal generator or syzygy of I. In this situation, computations in these
higher degrees are unnecessary; one should compute the generators and sy-
zygies of in(I) in only those degrees necessary to find all minimal syzygies of I.

In order to modify the syzygy algorithm to take advantage of this obser-
vation, one would like a criterion for determining when all minimal syzygies of
I have been found. This problem appears to be intractable at present. How-
ever, the question of bounding the degrees of the minimal j* syzygies of I, for
all j, is tractable. Recall that I is defined to be m-regular if the j' syzygy
module of I is generated in degrees <m+j, for all j=0 ([Mum 66], [EiGo 84]).
The regularity of I, reg(l), is defined to be the least m for which I is m-regular.
We have reg(in(l)) =reg(I), because regularity is upper-semicontinuous in flat
families. When reg(in(I))>reg(I), computations in degrees >reg(I)+1 are un-

*  Partially supported by N.S.F. grant DMS 8403168



2 D. Bayer and M. Stillman

necessary. One would therefore like a criterion for determining when I is m-
regular.

We give in §1 a criterion for I to be m-regular, which depends only on
computations in the finite vector spaces S,, and S,,, , of polynomials of degrees
m, m+1: If one can find hy,...,h;eS,;, so that the subspaces
,hy,....h;_):hy), and (I, hy,....,h_,), are equal for 1<i<j, and
(I hy, ..., h),=S,, then I is m-regular. Furthermore, if I is m-regular, then a
generic choice of hy, ..., h;e€ S, will satisfy these conditions.

One could use this result to terminate syzygy computations early, in cases
where reg(in(l))>reg(I). However, further study reveals a close connection
between this result and a particular order on the monomials of S, the reverse
lexicographic order. This order is used to compute saturations in [Bay 82]. The
reverse lexicographic order was then studied in characteristic zero, in generic
coordinates, by several authors. It is observed in [Laz83] that under this
hypothesis in low dimensions, the generators of in(f) are of particularly low
degree. In [Giu84], this hypothesis is further studied, and a worst-case upper
bound on the degrees of generators of in(I) is obtained, which improves
Hermann’s corresponding bound for ideal membership [Her26]. In [Ang84],
independent of a preliminary version of our results, it is shown that under this
hypothesis, the maximum of the degrees of the generators of in([) is equal to a
quantity which agrees with the regularity of I.

In §2, we show that for the reverse lexicographic order and generic coor-
dinates, reg(in(I))=reg(I) in any characteristic. This result generalizes many of
the preceding results; for example, it implies that under this hypothesis, in([) is
generated by elements of degree <reg(I) in any characteristic. This result also
establishes the optimality of the reverse lexicographic order in generic coor-
dinates, since for any order, reg(in(l))>reg(I).

We also show that in characteristic zero and in generic coordinates, in(I)
has a minimal generator of degree reg(I), so reg(l) is equal to the highest
degree of a minimal generator of in(I). Thus the regularity of the ideal I arises
naturally in studying the relationship between I and in([).

We have seen that for the syzygy algorithm, the only unnecessary com-
putations which appear to be systematically avoidable are those in degrees
>reg(I)+1. The results in §2 provide a theoretical justification of the obser-
vation that in practice, with the reverse lexicographic order this algorithm
usually terminates naturally by degree reg(l)+1. Thus the reverse lexico-
graphic order appears to be an optimal choice for the computation of syzygies.

Acknowledgement. We would like to thank David Mumford for many helpful conversations.

§1. A criterion for m-regularity

In this section we prove a criterion for a homogeneous ideal to be m-regular
(Theorem (1.10)).

For a discussion of m-regularity see [Mum66] or [EiGo 84]. We shall be
using graded local cohomology instead of sheaf cohomology: Let #
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=(Xy, ..., X,) be the irrelevant maximal ideal, and let M be a graded S-module.
H, (M), will denote the degree d part of the i'"™ local cohomology group of M.
For properties of local cohomology, see [EiGo 84].

(1.1) Definition. A homogeneous ideal I is m-regular if equivalently

(a) There exists a free resolution
0->@;S(—¢,)>...>®;S(—e, ) > ®;S(—eg )~ 1-0

of I, with e;—ism for all i, ;.

(b) H'(P", 3(d))=(0) for all i=1 and d=m—1i, where J is the ideal sheaf on
P" associated to IS[z], for a new variable z.

(c) H'(I),=(0) for all i, and d=m—i+1.

The regularity of I is the least m for which I is m-regular.

The equivalence of these conditions follows easily using Serre duality. See
for example [EiGo 84].

Recall that two ideals I, J =S define the same subscheme of P*~! if [,=J,
for all degrees d>0; the saturation I’ of I is the largest ideal in this
equivalence class. If I is not saturated, then the vertex of the affine cone in A"
defined by I is an associated prime of I. To see this vertex projectively, we
must add a new variable to S, and study the projective cone defined in P". This
is the motivation for the use of S[z] instead of S in (1.1b). By substituting the
local cohomology modules H',(I) for coherent sheaf cohomology, as in (1.1¢),
we can avoid this difficulty.

(1.2) Definition. An ideal I =S is m-saturated if I,=I3" for all degrees d =m.

(1.3) Remark. Since HY,(I)=H%(S/I)=I**"/I, I is m-saturated if and only if
H,(I), is zero for d =m. Thus if I is m-regular, then I is m-saturated.

Since the field k is infinite, if .# is not an associated prime of the ideal I,
we can find a linear element he S, which is not a zero divisor on S/I.
(1.4) Lemma. Let I =S be a saturated ideal with dim(S/I)=%0, and let heS.

(@) If h is not a zero-divisor on S/1, then (I :h)=1.

(b) If h is a zero-divisor on S/I, then (I1:h),# 1, for all degrees d> 0.

Proof. (a) This is a restatement of the definition.

(b) Choose fe(I:h) so f¢I; this can be done since h is a zero-divisor on
§/I. Choose ge S, not a zero-divisor on S/I. Then gf¢ I, but gfe(l:h). Iterat-
ing, we can find elements in (I : h), which are not in I, for all d=deg(f). O

(1.5)  Definition. Call heS generic for I, if h is not a zero-divisor on S/I**. If
dim (S/I)=0, interpret this to mean every heS is generic for I.
For j>0, define U,(I) to be the subset

{(hy, ..., h)eS||h; is generic for (I, hy, ..., h;_,), 1Zi<j}
of §4.
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Since k is infinite, the set of heS, which are generic for I form a nonempty
Zariski open subset of S,. Uy(I) is likewise a nonempty Zariski open subset of
Si.

(1.6) Lemma. Let I =S be an ideal and let heS. The following conditions are
equivalent :

(@) (I:h),=1, for all dzm.

(b) I is m-saturated, and h is generic for I.

Proof. (a)=>(b). Choose f of maximal degree so feI** but f¢I. Then hfel,

so fe(I:h). Thus deg(f)<m, so I is m-saturated. If dim(S/I)=0, this proves
(b). Otherwise

(I :hy,=I:h,=1,=I" for all d=m.

By Lemma (1.4), h is not a zero-divisor on S/I**.

(b)=(a). If dim(S/I)=0, (a) follows immediately. Otherwise using Lem-
ma (1.4) we have

(I:h),=I*:h),=I{"=1;, forall dzm. O

(1.7) Lemma. Let I=S be an ideal with dim(S/I)=0. The following conditions
are equivalent :

(a) I is m-saturated.

(b) I is m-regular.

© I,=8S,.
Proof. (a) <(c) since I**'=S; (b) =>(a) by remark (1.3).

(a)=(b). H,(I)=0 if i+1 and HY(I)=S/I since S/I is Artinian. Since
HY,(I),;=0 for d=m, by hypothesis, it follows that I is m-regular. O

The following lemma is implicit in [EiGo 84].
(1.8) Lemma. Let IcS be an ideal, and suppose heS, is generic for 1. The
following conditions are equivalent :

(a) I is m-regular.

(b) I is m-saturated, and (I, h) is m-regular.
Proof. Suppose I is m-saturated. Let Q=(I : h)/I, so

0->I->(I:h)—»Q—0.

By Lemma (1.6), I,=(I:h), for all d=m, so dim(Q)=0. Thus H',(Q)=0 for i
#+0, and H%(Q)=0Q. Thus by the long exact sequence for local cohomology we
obtain

H , (D;=H',((I:h), for d=Zm—i+1 and all i.

(a) = (b). Assume that I is m-regular. By Remark (1.3), I is m-saturated. We
need to show that (I, h) is m-regular.
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Consider the exact sequence
0->In(h)—>I®h) -1, h)—0.
Since I n(h)=(I :h)h, we have
(%) 0—-I:h)(—1)>I®Hh)—(, h)—0.
From
H, (1@ ()~ Hiy (1 )~ H (T :h),
and the isomorphisms
H,(),=H,(:h),=0 for d=Zm—i+1 and all i,

it follows that (I, h) is m-regular.

(b) = (a). Suppose that (I, h) is m-regular and I is m-saturated. From the
long exact sequence associated to (*) it follows that

Hy(I:h),_ =H (I ®(h),,
for all i, and d=Zm—i+2. Using the isomorphisms
H (I),=H,(I:h), for dzm—i+1, and all i,
and the vanishing of cohomology for d» 0, it follows I is m-regular. [

(19) Lemma. Let I =S be an ideal generated in degrees <m, and let heS,. If
(I, h) is m-regular, then (I : h) is generated in degrees <m.

Proof. Choose a minimal set of generators for I of the form
firees o Bfoits s BS,

where f, ..., f,, and h are minimal set of generators for (I, h). If fe(I:h), then

hf=g fi+..+gfith(g i frr1t - +8&S),

for some g, ..., g,. Thus

(f—gr+1f;+l_“'_gsf.‘s)h—glfl——"'_grfr:o

is a syzygy of (I, h). Conversely, any syzygy of (I,h) yields in this way an
element of (I:h). Because (I, h) is m-regular, each syzygy of (I,h) can be
expressed in terms of syzygies of (I, h) of degree <m+1. By expressing the
above syzygy in this way,

f—gr+1f;+l_"'_gsf:s

can be expressed in terms of elements of (I:h) of degree <m. Since f,_.,,....f;
also belong to (I:h), and have degrees <m, (I :h) can be generated by elements
of degree <m. O
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(1.10) Theorem. (Criterion for m-regularity.) Let IS be an ideal generated in
degrees <m. The following conditions are equivalent:

(@) I is m-regular,
(b) There exists h,, ..., h;€8, for some jzO0 so that

(ILhy, ooy )ih)y= hyy oo by ) for i=1, .., ],
and
Ly, ... h),=S,,.

(c) Let r=dim(S/I). For all (h,, ..., h,)e U,I), and all p=m,

(L hys s by y)ih)y =L by, ... s by _y),  for i=1,..,r,
and

(I by, oo h), =S,

Furthermore, if hy, ..., h; satisfy condition (b), then (h,, ..., h)e U(I).

Proof. (c)=>(b) is immediate.

(b)=(a). We induct on j. If j=0, I is m-saturated by hypothesis. I is then
m-regular by Proposition (1.7).

If j>0, (I, h,) is m-regular by induction, and (I:h,),=1, by hypothesis.
Also by induction, (h,,...,h)eU/((I, h,)) for j=2. By Lemma (1.9), (I:h,) is
generated in degrees <m. Thus (I:h,),=I, for dZm. By Lemma (1.6), I is m-
saturated, and h, is generic for I. By Lemma (1.8), I is m-regular. Furthermore,
(hy, ..., h)e Uy(I).

(a) =(c). We prove (c) by induction on r. If r=0, Remark (1.3) implies that
1,=§, for all pzm, so (c) holds.

Let (hy,...,h)eU,(I). By Lemma (1.8), I is m-saturated, and (I, h,) is m-
regular. By Lemma (1.6), (I:h), =1, for all p=m.

By construction, (h,, ...,h,)eU,_ (I, h,)). Since (I, h,) is m-regular, it fol-
lows from the induction hypothesis for (I, h,) that the remaining equalities
hold. O

§ 2. The reverse lexicographic order and m-regularity

The division algorithm for S=k[x, ..., x,] is sensitive to the choice of order
on the monomials of S; the following orders play special roles [Tri78],
[Bay 82], [Laz 83], [Giu 84]:

(2.1) Definition. Let A=(ay, ..., a,) and B=(b,, ..., b,) be exponent vectors.

(a) The reverse lexicographic order on monomials of S of the same degree
is defined by x> x? if the last nonzero entry of 4 — B is negative.

(b) The lexicographic order on monomials of S of the same degree is
defined by x> xP if the first nonzero entry of A— B is positive.
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Note that these orders agree on S,: x, >x,>...>x,. For f€§, let in(f)eS
denote the greatest term of f for a given order on S; each of the above orders
is characterized by a list of properties that hold for f iff they hold for in(f). In
the case of the lexicographic order, fek[x,, ..., x,] iff in(f)ek[x,, ..., x,], for
each i; its use in computing projections depends on this relationship. In the
case of the reverse lexicographic order, x;|f iff x;|in(f), for each i and each
fek[x,, ..., x;]. We shall study the consequences of this relationship here.

Given an order > as above, and a homogeneous ideal I, define

in(l)={in(f)|fel};
in(I) is the monomial ideal of initial forms of I.

(22) Lemma. Let > be the reverse lexicographic order, and choose i in the
range 1 <i<n.

(@) in(, x,,, ..., x)=(n(), x,,, ..., X,).

(b) Let x,, ..., x;, €1, and let m=0. Then

(U :x)p =1, <>(in (1) x),,=in (D).

(©) Let x,,...,x;, €1, and let m=0. Suppose that (I:x;),=1, for all dzm,
and that in (I, x;) is generated by elements of degree <m. Then in(I) is generated
by elements of degree <m.

Proof. (a) in(I, x,,, ..., x)2(in(I), x,, ..., x;) for any order >; we need to show
that for the reverse lexicographic order, in(l, x,, ..., x)<=(in(l), x,,, ..., X;).
Suppose that fe(l,x,,...,x). If xjlin(f) for some jzi, then
in(f)e(x)=(in(l), x,, ..., x;). Otherwise write f as g+h,x,+...+h;x; for gel
and h,, ..., h;eS. Since in(f)>in(h,x,+...+h;x;) in the reverse lexicographic
order, in(f)=in(g), so in(f)ein(I)=(in(l), x,,, ..., X;).

(b) Suppose that (I:x,),,=1I,, and that x*€S,,. If x;x*ein(l),,,,, then x,x*
=in(f) for some fel, . If any of x,,...,x;,, divide x4 then x*ein(l),,.
Otherwise, by subtracting multiples of x,,...,x;,;, we may assume that
Sfekl[x,...,x;]. Then because > is the reverse lexicographic order, f=x;g for
some geS,,, with in(g)=x". By hypothesis ge,,, so x*ein(l),,.

Suppose that (in(I):x;),,=in(I),. Let x,f€l, ., and assume by induction
that for all geS,, so in(g)<in(f) and x;gel,,,, gel,. Since x;in(f)
=in(x;f)ein(l),,,,, in(f)ein(l),, by hypothesis. Write in(f)=in(g) for some
gel,. Then x,(f—g)el,,,, and in(f—g)<in(f), so by induction f—gel,.
Thus fel,.

(c) Let fel be homogeneous of degree >m. If any of x,, ..., x;,, divide
in(f), then in(f) cannot be a minimal generator of in(I). Otherwise, by
subtracting multiples of x,, ..., x;,,, we may assume that fek[x,,...,x]. If
x;lin(f), then f=x;g for some geS, because > is the reverse lexicographic
order. ge(I: x;), for d=deg(f)—1=m, so gel,. Thus in(f)=x;in(g) is not a
minimal generator of in(I).

If none of x,, ..., x; divide in(f), write in(f)=x*in(g) for ge(l, x;) and x*
#+1; this can be done since fe(I, x;), but in(f) is of too large a degree to be a
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minimal generator of in(l,x;). Write g=g,+x;g,, with g;el. Since
in(g)>in(x;g,) in the reverse lexicographic order, in(g)=in(g,). Thus in(f)
=x"in(g,) is not a minimal generator of in(I).

(2.3) Lemma. Let r20, let m>0, and let > be the reverse lexicographic order.
The following conditions are equivalent:

@ (I, xp oo s X4 )1 X=Xy oo, Xy ) for i=n,...,n—r+1, and
(I X n r+1) "‘S

(b) ((1n(I),x,,,..., Xip 1) X) =), X,y ..., Xi 4 1)y fOr i=n,...,n—r+1, and
(n(0), Xy, ooy Xy p i =S

Proof. The equivalence of (a) and (b) follows immediately from parts (a) and
(b) of Lemma (2.2). [

(24) Theorem. Let IS be a homogeneous ideal, let > be the reverse lexico-
graphic order, and let r =dim(S/I).

@ (x5 ooy Xp_ i )€U (D) = (x,, ..o X, 1) € Uy(in(l)).

(b) If (x,,, v Xy )€U, T and in(I) have the same regularity.

Proof. r=dim(S/in(I)), since I and in(I) have the same Hilbert function
[Mac27].

Suppose that (x,, ..., x,_,,,;)eU,(I), and let m denote the regularity of I.
Then (x,,...,X,_,,1) satlsfles condition (c) of Theorem (1.10) for I. Since
L, Xy oeey X ,H) =S, in(I, x,, ..., x,_,, ) is generated by elements of degree

gm. Assume by mduction that in(I, Xps .-, X;) i generated by elements of
degree <m; by Lemma (2.2¢), in(l, x,, ..., X;, ;) is generated by elements of
degree <m. Thus in(I) is generated by elements of degree <m.

By Lemma (2.3), (x,, ..., X,_,, ;) also satisfy condition (b) of Theorem (1.10)
for in(I). Thus (x,,...,x,_,,,) €U, (in(I)) and in(I) is m-regular, by Theo-
rem (1.10).

Suppose that (x,, ..., x,_,, ;)€ U(in(I)), and let m denote the regularity of
in(J). Let f be a minimal generator of I. If in(f)=x"in(g) for some gel and
x4+1, then f can be replaced by f—x4g as a minimal generator of I, where
in(f—x1g)<in(f). By iterating this process, we can assume that in(f) is a
minimal generator of in(I). Since in(I) is generated by elements of degree <m,
deg(f)<m, so I is generated by elements of degree <m.

Again by Theorem (1.10) and Lemma (2.3), (x,, ...
m-regular. [

yeU,(I) and I is

Xn— r+1

(2.5) Corollary. Let I=S be a homogeneous ideal, let > be the reverse lexico-
graphic order, and let m be the regularity of I. If (x,,...,x,_,,.,)€U,I), then
in(I) is generated by elements of degree <m.

Note that Theorem (2.4a) does not assert that U,(I)=U,(in(I)), which is
false.

Corollary (2.5) asserts that for the reverse lexicographic order and a generic
choice of coordinates, in(f) is generated by monomials of degree <m. In the
remainder of this section, we show that in characteristic zero, this bound is
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exact: for the reverse lexicographic order and a generic choice of coordinates,
in(I) has a minimal generator of degree m.

(2.6) Definition. Let B={ge GL(n, k)|g;;=0 whenever j<i} denote the Borel
subgroup of GL (n, k). An ideal I is Borel fixed if g- I =1 whenever geB.

Any ideal which is Borel fixed is a monomial ideal, since B contains the
subgroup D(n)=GL(n, k) of diagonal matrices, and the ideals fixed by D(n) are
precisely the monomial ideals.

For 1 £j<i<n, and cek, let g;;(c)e GL(n, k) be given by

gij(c)'xi =X;+cXj,
g:j(c)-x,=x,, for p*i.
Recall that B is generated by {g;;(c)|1 £j<i<n, and cek} and D(n).

The following proposition describes in characteristic zero those monomial
ideals which are Borel fixed.

(2.7) Proposition. Suppose that k is of characteristic zero. Then a monomial
ideal I is Borel fixed if and only if whenever

xitxh2. xPrel,
then for each 1<j<i<n and 0<q<p,,
XptL Xt xpmd xine ]
Proof. If x*=x5'x5>.. . xI"el,
gijc)- xtel x5 .. xB . (x;+ex) .. . xirel
< xfrxprd | xpm? | xPnel,  for 0Zq=<p;.

The result follows since for a monomial ideal I, g;;(c)-x*€l for all x“el,
1<j<iZn, and all cek <1 is Borel fixed. [

The following theorem is due to Galligo, and is proved in [Ga74]. It is
generalized to any order, and any characteristic, in [BaSt 86].

(2.8) Theorem (Galligo). Let I =S be a homogeneous ideal. Suppose that > is
the reverse lexicographic order, and that k is of characteristic zero. There is a
Zariski open subset U, =GL(n, k) such that for each geU,, in(g-I) is Borel
fixed.

(2.9) Proposition. Let I be a Borel fixed monomial ideal, generated by mo-
nomials of degree <m, and having a minimal generator of degree m. If k is of
characteristic zero, then the regularity of I is precisely m.

Proof. x"el, since I contains a monomial of degree m, and I is Borel fixed.
Choose r=0 so x2_,el, for some ¢, but xi_, ¢, for all p. Since I is
generated by monomials of degree <m, xJ'_,€l.
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To show that I is m-regular, it suffices by Theorem (1.10) to show that
(X ooy X ) 1 X )=, Xy oo’y Xy

fori=n,...,n—r+1,and (I,x,, ..., Xy y ) ="Sp-

Since xI' ,el, by the Borel condition (2.7), any monomial of degree m in
the variables x;, ..., x,_, is also in I. Thus (I, X,, .-, X, 4 1)n = Sm-

Let J=(,x,, ..., x;, ) for some i in the range n—r+1=<i=<n, and suppose
that x,x*eJ for a monomial x* of degree m. If any of x,, ..., x;, , divide x*,
then x*eJ. Otherwise x;x*el. Since deg(x;x*)=m+1, x;x* is not a minimal
generator of I. Write x,x*=x;x®, for some j<i, where x®el. If j=i, then x*
=x%eJ. If j<i, write x®=x,x°. Then x*=x,x°. By the Borel condition (2.7),
since x8e I, xAelcJ. Thus (J:x,),=J,. O

(2.10) Lemma. Define U, as in Theorem (2.8), and define U, to be the open
subset of GL(n, k) given by {geGL(n, k)|(x,,...,%,_,.)€U,(g-1)}. Then
U,cU,.

Proof. For each ge U, since in(g-I) is Borel fixed, the associated primes of
in(g-1) are all of the form (x,, wsx)  for  1=jsn. Thus
(Xps eoes X, _, 4 1)€U(in(g-1)). By Theorem (2.4), (x,,...,%,_,,1)€U(g-I), so
gel,.

The inclusion U, = U, is in general proper. For example, if I=(x3, x3), then
1€ U,. I is not Borel fixed, so 1¢ U, .

(2.11) Proposition. Let I =S be a homogeneous ideal of regularity m. Suppose
that k is of characteristic zero, and define the Zariski open subset U; = GL(n, k)
as in Theorem (2.8). Then for each ge U,, in(g-I) has a minimal generator of
degree m.

Proof. For each geU,, in(g-I) is Borel fixed by Theorem (2.8). Since U, c U,
by Lemma (2.10), in(g-I) is of regularity m by Theorem (2.4). By Proposi-
tion (2.9), in(g - I) has a minimal generator of degree m. [

In characteristic p, Proposition (2.11) fails: I =(x%, x3) is Borel fixed, and of
regularity 2p—1.
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