C‘ U q NIEDERSACHSISCHE STAATS- UND
-~ L UNIVERSITATSBIBLIOTHEK GOTTINGEN

Werk

Titel: Metrika

Verlag: Physica-Verlag

Jahr: 1993

Kollektion: Mathematica

Digitalisiert: Niedersachsische Staats- und Universitatsbibliothek Gottingen
Werk Id: PPN358794056_0040

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN358794056_0040

Ubergeordnetes Werk

Werk Id: PPN358794056
PURL: http://resolver.sub.uni-goettingen.de/purl?PPN358794056

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational,
research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections
are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission
from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online
system to access or download a digitized document you accept the Terms and Conditions.

Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further
reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the
source.

Contact

Niedersachsische Staats- und Universitatsbibliothek Gottingen
Georg-August-Universitat Gottingen

Platz der Gottinger Sieben 1

37073 Géttingen

Germany

Email: gdz@sub.uni-goettingen.de


mailto:gdz@sub.uni-goettingen.de

Metrika (1993) 40:1-23

Metrika
Construction of Minimax-Iests for Bounded Families

of Probability-Densities

ROBERT HAFNER

Institut filr Angewandte Statistik, Johannes-Kepler- Universitit Linz, 4045 Linz/Auhof, Austria

Summary: A new method for the construction of least favourable pairs of densities and of minimax-
tests is given for the compound test-problem Hj: g<f=<g against H,:f<f< £, the bounds &8/ I
being fixed. The main tool of the method is the risk-function for simple test-problems.
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1 Introduction

Suppose (X, &) is the sample-space and the o-algebra of measurable events of
some experiment, u denotes a g-finite measure on (X, /) and .# the set of u-
densities of u-dominated probability-measures on (X, &). By f,g... we denote
the u-densities of probability-measures on (X, &). Now two subsets of .# are
defined:

My:={fig<f<g...u-ae},
M= f<f<f.. . u—-ae},

where the nonnegative, measurable bounds g, &, f, f are subject to the conditions:

§gdus<t<[gdu, |fdusti={fau .
X X X X

We consider the compound test-problem (.4, .#;):
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2 R. Hafner

Ho:feulo H1:f€j1.

In [1] Kuznetsov describes a method to construct minimax-tests for it. In the
present paper a different method for the construction of these tests is developed.
The main tool used is the risk-function for simple test-problems (fy, f;): Hy: f =
Jo versus H,: f= f;. This tool has already proved its power for the construction
of least favourable pairs of distributions and minimax-tests for compound test-
problems (#,, .#,), where the sets .4, .#, are either defined by:

Mi=Pe M:PA)<(1—¢) Pi(A)+3;,...VAesd] i=0,1,

so-called contamination-neighbourhoods of the central probability-measures P,
Py, see [2], [3], or by:

Mi=Pe M:P(A)<Pi(A%)+d, Aesl] i=0,1,

with A%:={x:d(x,A)<e} — so-called Prokhorov-neighbourhoods of the
measures Py, P,, see [4], [S].

As is well known these compound problems are fundamental in the theory of
robust testing. The solutions, the existence of which has been known since the
paper of Huber and Strassen [6] are constructive, simple and apt for practical ap-
plication.

By the risk-function-method we also obtain a remarkably simple method for
the construction of both, a pair of least favourable distributions as well as the
family of minimax-tests for the problem treated by Kuznetsov.

2 The Risk-Function

We mention some well known facts about Neyman-Pearson-tests (NP-tests) for
simple test-problems H,: f= fy, H,:f = f;. The family of these NP-tests is given
by:

1
>
(pc,y(x|fo,f1)={y...fi(x)/fo(x)zc... for 0<c<o , O<y=<i.
0

the quantities a(c,y) = Efq((oc,y) and B(c,y) = E;(1-¢,,) are respectively the
risk of the first and the risk of the second kind under the test ¢ ,. The pair
(a,B) = (a(c,y),B(c,v)) is called the risk of the test ¢ .
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(“("'0) '.B(".o)) = (0,1)

§ (a(=NgB(=1)) = (031- s )
(f,=0)

r(fo,fl)

slope: -c

(a(c,0);8(c,0))

8

BN

—_— 1-a «— /1 (a(0,1);8(0,1)) = (1,0)
(a(0,0),8(0,0)) = (1- s £ ;0)
(f,=0)

——

Fig. 1

In the (a,8)-plane the set {(a(c,7),8(c,y)):0<c<o, 0=<y=<1}is a convex
curve joining the points (a (o0, 0),8(,0)) = (0,1) and (a(0,1),8(0,1)) = (1,0)
(see Fig. 1). It is called the risk-function of the test problem and shall be denoted
by r(fo, f1). (a(c,y),B(c,y)) is a parameter-represention of r(fy, f;). Since

1=a(e,y) =P (filfu<c)+(1 =) Py (fi/fy=¢)

B(e,y) = Py (fi/fo<c)+(1—y) Py (filfo=c¢)

)

(1—-a(c,y),B(c,y)) and thus r(fy, f,) can be interpreted as the map of the distri-
bution functions of the density-quotient g (x) = f; (x)/fy(x) under f; and f; plot-
ted one against the other.

For c-values with P;(fi/fo=c)>0 the risk-function r(f,,f;) contains line-
segments of slope —c joining the points (a(c,0), 8(c,0)) and (a(c,1),8(c,1)). In
the general point (a(c,y), B(c,y)) the straight line with slope —c is a tangent of
r(fo.f1)- This is also true if r(fy, f) has an edge in (a(c,y),8(c,y)). Finally the
optimality of NP-tests implies:
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B(c,y) =inf{E;(1-¢):0€ D, E;(¢) =alcy),
@
a(c,y) =inf{E, (9p):9e D, E,(1-9) =B} ,

ie. r(fy, f1) is the lower border of the convex set
R={a,B):a=E;(9),f=E;(1-¢)...Vp:0=sp=1},

the so-called risk-set of the test-problem (fy, f1)-

For the purpose of the present paper it is useful to extend the notion of risk-
function to the case, where f, and/or f, are the densities of general positiv u-
dominated measured P, and P;. (a(c,y), B(c,y)) and r(fy, f;) shall be defined in
the same way as for probability-measures. The graph of r(f;, f)) is also mono-
tonically decreasing, convex and joins the points (a,B) = (0, S xJf1du) and
(a,B) = (SX fodu, 0). As regards tangents, all statements made earlier remain
valid.

3 Results

We consider the generalized simple test-problems (g,f), (g./), (&.0), (& f). The
corresponding risk-functions (g, f), (g, N, rg, ), r (8, ) respectively connect the

points: (0, §x/), (1x& 0% ©,x/), (x& 0 0,§x/: (x&0%; ©,§x), (x£0) in
the (a, f)-plane (compare Fig. 2).
We shift these risk-functions in the way shown in Fig. 3. The shifted curves are

denoted by 7(g,f), #(g.f), F(&.0), and F(g,f). F(g,f) is identical with r(g,f). The
curves F(*, *) now connect the following endpoints:

PP =(1-{xg1) and Q,=1,1-[xf) ,
Fgf):Py=(1-[xgfxH) and Q,=(1,0),
FE.[): Py =(0,1) and Qy=({x&1-{x »

F&): Py=0,(xf) and Q= ([x£0) .

3)

Finally, denote by r* the convex-hull of the four curves 7(:,); r* is the fat
line shown in Fig. 3 connecting the endpoints (0,1) and (1,0). Then the main
result of this paper is the following:
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Theorem: There exists a pair of admissible densities g* € M, and f* € M, with
r(g* f*) = r* and the family of NP-tests (p’c",}, for the simple test-problem (g * f*)
is minimax for the compound test-problem H,: fe€ M, against H,:fe M, ie.:

a*(c,y)=En(pr,)2E, (0}, Vge My,

1=B*(c,y) = Ep(02,)<Ef(oc,) Vfed; .

In fact three different situations are possible.

Case I: r* is the convex-hull of #(g,f) and 7(g,f) alone, whereas r(g,f) and #(g,f)
are situated above r* Figure 4 shows this situation and we refer to this figure in
the following. r* connects the points (0,1) = P53, R, S and Q, = (1,0). The slope
of the line-segment RS shall be denoted by —c*.

In this case the density-ratio f*/g* the knowledge of which is sufficient for
the construction of the NP-tests (pr is given by:
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f*g*=<c* for xeB=[(f/g=c*<fl/g}, (C))
7g for xeC={(f/g<c,

{i/g for xeA={f/g>c*,
which can be written in the form:

S*/g* = min{max {f/g,c*},f/g} .

If (a, ) is a point of r*, the corresponding test ¢ y is determined by the slope
—c of r* in this point. For ¢ # c* it is:

0r,=0.,E&f) for c>c*,

P, =0c,&f) for c<c*.

The densities g* f* are:



Construction of Minimax-Tests for Bounded Families of Probability-Densities 7

| P
x 2
i
x 4 \
1
P3 P
Rg.h) = ra.h)
g, 1)
R(g.f)
R(3.f)
r'/
1-sf
- 1 3
1-/ 1%, a ’
x9 p
X
Fig. 4
g* = l f*= | for xe...
£ [ A={c*<f/g)}
g c*g B={(f/g<c*<f/g) 6
g f C={f/g<c¥

where g has to be chosen according to the conditions:

p:=max|g f/c¥<g=min{g,flc*=:p , O
fe=1-{z-[g=:A. X
B A C

We will show, that these conditions can be fulfilled, that (g*f*) € 4y X 4, i.e.
(g* f*) is admissible, and that r* = r(g* f*).

Case 2: r* is the convex hull of #(g, /), #(g,f) and #(g,f) whereas 7(g,f) is situated
strictly above r* Figure 5 shows this situation and we refer to this figure in the
following. r* connects the points P;, R, S, T, U, Q,.
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The line-segments RS and 7U may have slopes —c¥ and —cJ respectively. In
this case the densities g* f* and the density-ratio f*/g* are:

g*= | f*= fr/g* = for xe...

g f [’ A=lct<f/s)

f/et f cf B=ff/g<ct=f/g}

g f I/g C={cz*<f/g<cf} ()]
g civg | 3 D={f/g=c}=f/g)

g f /g E ={f/g<c})

The ratio f*/g* can thus be written in the form:
S*/g* = min {max {min {max (f/g,c{}.f/g},c3}.f/g} . (10)
or even shorter:

S*g* =med{f/g,1/8,F/8,ct,c3} ,
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if med{ay, ...,az. ) denotes the median of the (2k+ 1)-values a,

9

s @ofeiqe

The pair (g* f*) is admissible, ie. (g* f*) e #yx 4,, and if (a,p) is a point
on r* where the slope of r* is —c, then for the cases cf <c, c3<c<cf, c<c3

the test ¢ :y is identical with ¢ ,(8./), ¢c (&) ¢c, (& ) respectively.

Case 3: r* is the convex hull of (g, f), #(8,/f) and #(g,f), whereas 7(g, ) is situated
above r* This situation is shown in Fig. 6 to which we refer in the sequel. 7* con-
nects the points P;, R, S, T, U, Q, and the slopes of the line-segments RS and
TU shall be —c} and —c7 respectively. The densities g* f* and the ratio f*/g*

are:

g* = f*= f*/g* = for xe...
g f f/g A=(ct<f/g)
g ct-g | cf B ={(f/g=<ct=<f/g)
g 7 g C={c5<f/g<c]}
frey | f c3 D={f/g=c3=f/g)
g 7 flg E ={f/g<c}
8
7 474 P2
X
1 Py Pl
Rg.f)
r(g,f)
%(3.f)
H3.7)

T

Py
slope: 3

Fig. 6

Al Al T T
! 6 o
\

(11
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The ratio f*/g* can here be written in the form:
Sf*g* =med{f/g, f/g.f/g,ct,c3) . (12)

The pair (g* f*) is admissible and if (a,f) € r* with the slope —c in this point,
then the corresponding test ¢, for the cases cf <c, c¢3<c<cf, c<c3 is iden-
tical with ¢, ,(&,/), ¢.,(&.f) and ¢, ,(g.f) respectively.

The above Cases 1, 2 and 3 exhaust all possibilities, for we will show, that a
situation, where all four curves #(g,/), #(g,f), #(&.f) and 7(g,f) contribute to the
hull r* does not occur.

4 Proofs

We refer to Fig. 7 and denote the convex-hull of 7(g, f) and F(8,f) by R* R* con-
nects the points (0,1) = P53, R, S, Q, = (1,0), the slope of RS being —c* As in
Case 1 of Section 3 we divide the sample-space X into three parts:

A=fc*<f/g}, B=\f/g=sc*<f/g}, C={f/g<cH, (13)
and define two functions p(x) and p(x) on B:

p=max{g,f/c*} and p(x)=min{gf/c*} . (14)
Since by definition of B in (13) we have f/c*<g and g=< f/c* on B and thus:

p<p on B. (15)
Finally we define (see Fig. 7):

1-fg-fg (16)
A C

If (@(R), B(R)) and (a(S), B(S)) are the (a, B)-coordinates of R and S we have
from the definition of the risk-function:
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b P
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a®)=fg, a®)=1-fg, a@)-a®)=A
A C
an
BR) = 1—£f, B(S)=£f, BR)-B(S) = A-c* .

We show:

Lemma I: Depending upon 53 D<A or >A the curve F(g,[) is situated totally
above or partly below R* (both cases are shown in Fig. 7).

Proof: The case [pp=<A:
R* can be interpreted as risk-function of the simple test-problem (g*,f*), the
densities g*, f* being defined by:
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g*= ! Sf*= I for xe...

g [ A=[c*<f/8}

g c*-g B={f/g<c*<f/g} (18)
g 7 C={f/g<c¥

where we choose g such, that g=p and SBg =A.

Note that (g*f*) in general is not admissible, i.e. not element of .#,X .4},
for this is only the case if g=<p and this in turn can only be achieved, if 5 pP=A,
which however has not been presupposed. The condition ng = A however
guarantees, that g* and f* are probability densities (see also Fig. 7).

We now consider the risk-function r(g, f*) and shift it to connect the points
P =(1- S x& 1) and Q, = (1,0). The shifted curve is denoted by 7(g,f*). Figure
8 shows R* = r(g* f*), F(g,f*) and F(g, /).

We intend to show, that the relative position of the three curves R*, r(g,f*)
and 7(g,f) is as shown in Fig. 8, ie. F'(g,f) is situated above 7(g,/*) and this in
turn is above R* so that the first part of Lemma 1 will be proved.

For this purpose we choose J € (0, 1) arbitrarily and denote by T'= (&, 3) and
T'= (&', B’ = B) the points on R* and F(g,f*) with second coordinate j (see
Fig. 8). From (2) we have

\ P
1
g
(g, f*)
o, ™
0 ]
R
3.3 u v
1-sf
X q
3
R*=r(g",f")
‘ \ Q, -
b [ 1

Fig. 8
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¢ = infelEp(@): Ep(1—9) =B},

(19
' = info{E,(9): Ep(1-9) = [f}+(1—}§(g) .
Because of g*=g (see (14) and (18)) we have:
Epu(9)-Eg(0)<Eg()-E, (1) =1-{ g (20)
X

and thus @ <éa’. Consequently 7(g, f*) is situated to the right and as such above
R*
Choose now a'e[t—{yg 1] and denote by T'=(a¢',8) and T"=(@" =

a’, ,B”) the points on 7(g,f*) and 7(g,f) with abscissa &’ (see Fig. 8), then again
from (2) we have:

B =infolEp(1-0): E(1-p) =1-a,

21)
B = infg (E(1-): Eg(1-¢) = 1—dr}+1—§(f .
From f*=f (see (18) and (14)) we conclude:
Ep(1-9)—Ef(1- )< Epa (1)~ Ef(1) = 1—3{(_f (22)

and from this #'<3". As a consequence #(g,f) is seen to lie above r(g*,f*) and
thus also above R* This concludes the first part of the proof.

The case [z p>A:
We choose (g* f*) according to:

g* = l f*= l for xe...

g [ A=[c*<[f/g}

5p c*-op B ={f/g=<c*<f/g} (23)
g ba C={f/g<c*

with d = A/Lg p<1. Then g¥ f* are probability-densities and R* = r(g*,f*).
Because of <1 the pair (g* f*) however is not admissible.
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Consider the set

D={f/g>c* . @4)
Because of f/g=<f/g=f/g we have:

ACDCAUB&®BUCODD*>C. 25)
Thus from the definition of p in (14) and from (23) we see:

f*=06f on DnB, g*=4'g on D°NB. 26)

The test ¢ = I, is NP-test for the generalized test-problem (g,f) and, con-
sidered as a test for the problem (g* f*), is equivalent to ¢'=I,+ylgif y=
P,.(D N B)/P,+(B). Therefore to ¢ there corresponds a point U = (a (U), 8(U))
on R* =r(g*f*) and a point U’ = (a(U"), 8(U")) on F(g,f). In U and U’ the
slopes of R* and #(g,f) are both —c* (see Fig.9). It is:

p P
by
R"xr(g".f")
3(3._{)
8(V) S V]
8(u") "
1-sf
X ) !
%
a
1-s N
;06‘) a(V)

Fig. 9
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(@), BU)) = (Pg+(D), P+(D°)) ,

@7
@U),B(U")) = (Py(D)+1- | g P{(D)+1 —)I(D :
X
From (23), (25), (26) and (27) we conclude:
a(U)=a(U’) = Ppu(D)=Py(D)—1+ [ g = P,(D) = Pye (D)
X
=(1-8)"P,(D°nB)=0,
(e2))

BW)—B(U’) = Pp+(D)~Py(D)—1+ [ f = P{D)~Ps+(D)
X
=(1-06)-P(DNB)=0,

where, because of 0<A <§Bp = P,(D°n B)+P«D n B)/c* at least one of the
inequalities (28) is strict. From this we see that U is situated below R* and thus

7(g,f) partly reaches below R* as shown in Fig. 9. This concludes the proof of
Lemma 1. ¢

Along the same lines of argumentation one can show

Lemma 2: Depending upon SB P=A or <A the curve F(g,f) is situated totally
above or partly below R*.

The Lemmata 1 and 2 show, that three possible cases have to be distinguished:
1. 55 gsAsSB P:F(g.f) and F(g,f) are both situated above R* Figure 4 shows
this case.

2. A<SB pP= §B p:F(g,f) is above and F(g,f) partly below R*. Figure 5 shows this
case.

3. SB 1_)553 P<A:F(g,f) is above and #(g,f) partly below R*. This case is shown
in Fig. 6.

We discuss the three cases in detail:

1. §BESA$§BP1

We refer to Section 3. Suppose g* and f* are defined according to (6), (7) and
(8). From [pp=<A=<(pp it is clear that conditions (7) and (8) can be fulfilled.
Furthermore we have R* = r(g* f*) and (g*f*) € My X M4, ie. the pair (g*.f*)
is admissible. We show that it is also least favourable.

For this purpose consider the family (¢ 2‘ ») of NP-tests for (g* f*). For c>c*
we have (see (6)):
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pa,>00CA, g*=¢g and f*=f on A.
From this follows:

E (92 ))<Ep(02,) s Ef02,)ZEn(0s,) V(gf)eMox M . (29)
For c<c* we have (see (6)):

(1-92,>00CC, g*=g and f*=f on C.
From this:

E,(1-92)=En(1-07,) , E(1—9X)<En(1-0%,) V(g)e Moyx A .
(30)

Finally for ¢ = c* we have (see (6)): q);“*,y = I, +yIg. Thus:

Ep(pivy) = Po(A)+yPy(B) = (1-7) Py(A)+y- (1-P,(C))

< =y)Peu(A)+y-(1=Puu(C)) = Epu(ph,) Vgedy, (1)

and analogously:
Ef(¢:',}’)ZEf‘(¢:‘,}') er ./41 . (32)

(29), (30), (31) and (32) show that (g* f*) is a pair of least favourable distribu-
tions in X 4, and that the test-family (¢, = ¢.,,(g*f*)) is minimax for the
problem (.4, A,).

2. A<[pp={pp:

This case is shown in Fig. 5. Here r* is the convex-hull of #(g,[), F(g, f) and
7(g.f). Let g* and f* be defined according to (9), so that g=g*=<gand f<f*=< ya
We show r(g*,f*) =r*

From the definition of (g* f*) in (9) it is evident, that r(g* f*) contains the
arcs P,R, ST and UQ, in Fig.5. It is also evident that between these arcs
r(g* f*) contains line-segments of slopes —cf and —c5. What is not evident is
the fact that these line-segments are identical with RS and T U, i.c. that they have
the same length.
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The B-projection of the line-segment with slope —cf of r(g* f*) is, with the
notation of (9), obviously Py (B) = P«(B). On the other hand the g-projection
of RSis, since S € F(g,f)and R e F(g,f)and R RS is tangent to both these risk-func-
tions, given by (see Fig. 5):

BR)-B(S) = [(1 - )S{ _f> +P_f(AC)]
- [(1 — _f) +Py((A v B)c)] = P/(B) .
X

Thus the line-segment with slope —c of r(g* f*) and RS have equal length. In
the same manner we see that the line segment with slope —c5 of r(g*f*) and
TU have equal length. From this finally follows r(g* f*) = r* and especially
(&*f*) e MyX M.

In order to see that (g* f*) is least favourable consider the family of NP-tests
(@2 = Pc, (&%)

A. cf<c: Since {p7,>0} C 4; g* =g and f* = f on A4 (see (9)). We have:
E (02 ))<E.;(p2,) and Eg(p2,)=Epn(ps,) V(eS)eMox 4 . (33)

B. cf<c<ct: (9) shows {(pcy>0]CAuBuC S*=fon AUBUC and {1 -
q)m,>0}CCuDuE g*=gon CuDUE. From this we conclude:

E,(1-92,)=E,(1-9%,) and EipZ,)ZEn(ps,) V(&f)eMox M .
(34)

C. c<c3: Here {1-9¢7,>0}CE; g* =g and f* = f on E (see 9)) and:

Eg(1_¢:y)ZEg‘(1_¢:‘,y) ’
(35)
Ef(l“'w:,y)SEft(l—(p:’y) V(g,‘f)e.ﬂoxvd1 .

D. ¢ = c{: In this case (pcy—IA+yIB, with f*=fon AUB, g*=g on A and
g*=gon CUDUE = (AU B)* (see (9)). Thus we have:

Ef((o:,y)ZEf‘(wz‘,y) er'/gl ’
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Ey(pcy) = Py(A)+yPy(B) = (1-y)Py(A)+y(1-P,(CUDUE))

S (1=p)Pe(A)+y(1=Pou(CUDUE)) = E;u(p,) VEE M .
(36)

E.c=c}:Here1-9?,=Ig+(1-y)Ip, f*=fonAUBUC={DUE)" f*=F
on E and g* =g on Dy E. From this:

E,(1-92,)2Ex(1-9,) Vged,,
E(1-92,) = PAE)+(1—y)PyD) = yP{E)+(1-y)(1—PyA v B U (C))
<yPn(E)+(1-y)(1-Prp(AUBUC))

=Efl‘(1"¢:’y) er/l . (37)

From (33)—(37) we conclude, that (g* f*) is least favourable and the family of
NP-tests (97, = @.,,(g**)) is minimax for the test-problem (4, .#).

3. fap=fp<A:

This case is shown in Fig. 6. The argumentation is similar to that of the previ-
ous Case 2. After proving that r* the convex hull of 7(g,f), #(g./) and £(g./),
is the risk-function of the pair (g*,f*) defined by (11), one shows that (g* f*) is
least favourable and the corresponding family of NP-tests (¢, = Pc,y (&%) is
minimax for (4, 4,).

5 Calculation of c*c7,ct

Although we have made extensive use of the graphical representation of risk-func-
tions the decision which of the three possible cases is given and especially the
determination of the slopes c*, cf, c3, the knowledge of which is necessary and
sufficient for the calculation of the density-quotient f*/g* and the test-family
(@,,(f*g*), has to be carried out by numerical calculation. We list the
necessary steps:

1. Calculation of c*, the negative slope of the common tangent of 7(g,f) and
F(g, Jf). c* is determined by the condition, that the line connecting the points
(@(c*0|&./), B(c*0|g.[)) and (&(c*0|g.f), B(c*0|g.f) of /(& [) and F(g,f)

respectively must have slope —c*:
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B(C*,OIQ,D—B(C*,Ol&f)
d(C*’0|g’D_d(C*)O|g-’D

=c*, (38)
with:
a(c,0|8.) = P;(f/g>¢) , B(c,Olg,j)=P[(__f/g'5c)+1—§([,
d(c,OIg,f)=Pg(f/g>c)+1—§(g , B,0]gf)=Pif/g=c) .

Equation (38) has to be solved numerically.

2. In order to see, which of the three possible cases is given, calculate the coor-
dinates:

a(c%0|gf)=P,(f/lg>cH+1- g, a(c*0|gf)=P,(f/g>c*) ,
- X

B(c*0|g,N) =Piflg<c))+1-[f, B(c%0|8/)=Pifig=c*) ,
X

and from these the slopes ¢’ and ¢” given by:

o= B 018N-Bc*0lg.N o= Be*012.n-B(c%012.)
a(c*0|gN)-a(*0|s)) a(c*0|g.NH-a(*0|g.

Then we have the following implications:

A. ¢’=c* and ¢”=<c*: Case 1 of Section 3 is given.
B. ¢”"=c*<c’: Case 2 of Section 3 is given.
C. ¢’sc*<c": Case 3 of Section 3 is given.

The case c*<c’,c" is impossible. If A holds no further calculations are necessary.
For B we continue to 3 and for C to 4.

3. Calculate the slope ¢} of the common tangent to 7(g,f) and 7(g,f) and the
slope c3 of the common tangent to 7(g,f) and r'(g,f) by solving the appropriate
equations (38).

4. Calculate the slope ci of the common tangent to 7(g,f) and 7(g,f) and the
slope c3 of the common tangent to 7(g,/f) and #(g,f) in the same way.
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With these calculations carried out the density quotient g* = f*/g* and the
corresponding family of NP-tests is known in all possible cases.
We conclude this section by mentioning the well known fact, that for a sample

n n
of size n the pair of n-dimensional densities | [] f*(x;), [I g*(x;) ) isleast
o .

=1
favourable. The minimax-tests can thus be determined from the density-quotient

q* (e -oxn) = [T 0)/e* () = 1 g*(x)).

Jj=1 Jj=1

6 An Example

Suppose w(x) is a probability-density on R with y(x) = w(—x) and

y'(x) _din(y X))
w(x) de

strictly nonincreasing . (39)

The corresponding distribution-function is denoted by ¥(x).

Consider the test-problem Hy: f(x) = w(x+u) H;:f(x) = w(x—u). Its risk-
function r = r(y (x+ u), w(x—u)) is symmetric with respect to the line a = g, i.e.
if (a,p)er also (B,a)er.

As a consequence of (39) the density-quotient q(x) = w(x—u)/w(x+u) is
strictly increasing and thus the NP-tests are of the form ¢ ,(x) = I{;/, o) (x).

Now for two constants A and A with 0<A=<1=<A we introduce the bounds

& & hr:

gX)=Awx+u), E§X)=Aykx+p);
_ (40)
f)=Ayx—u), fX)=Aywyx-p) .

We intend to show, that the subset [0, 1] X [1, o) of the (A, A)-plane is divided into
three parts corresponding to the three cases described in Sections 3 and 4.

In Fig. 10 the risk-functions r = r(y (x+u), w (x—u)), #@&.0), F@&.[), F(.f)
and F#(g,f) are shown. The latter four functions obviously are generated by
suitably stretching and shifting r. Because of symmetry the common tangent to
F(g,f) and F(g.f), the line RS, has slope c* = —1.

If A, B, C are the points where 7, 7(g,[f) and F(g, /) have slope c* = —1, then
we have the following possibilities:
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Case 1: B and C are above RS ,
Case 2: B is below RS (and automatically C above RS),

Case 3: C is below RS (and automatically B above RS) .

The conditions (41) therefore are equivalent to:
Case 1: a(R)+a(S)<2a(B) and =2a(C),
Case 2: a(R)+a(S)>2a(B) ,

Case 3: a(R)+a(S)>2a(C) .
The coordinates of 4, B, C, R and S are:

A=(@(A),pA)=>0-Yw),1-¥W) ,

B =(a(B),f(B)=(1-A-Fu)1-A-F) ,

o
A
! ()
;(é.f_’)
"(g_’f)
B P(g.f)
N @,
c
A S
1-a ——
a
1-a 1 &

Fig. 10

21

41
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C=(@()B(C)=A-(1-F@),A-(1-P@)) ,

R=(a(R),B(R)) = (P;(A/A-q(x)>1), PA/A-q(x)<1)+1-A)
=A-(1-Pu+g ' A/A),1-AFu-g7 ' A/B) ,

S =(a(8),8(8)) = BR),a(R)) ,
so that with the abbreviations:

2=A/A, H@)=Pu-q7'@)-2(1-Pu+q™' @) ,

01(2) = 1/(H(2)+2z(1 - ¥ (1)), 0,(2) = 1/(-H(2)+2 ¥ ())

o

case 1 case 2

g -
y Byp = 2
9 2 '
case 3 \

1=

1
§1(2) 85(2)

'LD

Fig. 11



Construction of Minimax-Tests for Bounded Families of Probability-Densities 23

we obtain:

Case 1: if 0,(z)<A=<0d,(2),
Case 2: if 0,(z)<A ,

Case 3: if A<d((z) .

Figure 11 shows the situation. The curves C; and C, are given by the parameter-
representations:

Ci:(AR),AR)) = (4:(2),20,(2)) ,

C;:(A2),AR)) = (92(2),20,(2))

The horizontal asymptote to C; and the vertical asymptote to C, are situated
at A, =1/2(1—¥(u)) and A, = 1/2 ¥ (u) respectively.

The special case shown in Fig. 11 results if we choose the density of the
N(0, 1)-distribution for w and u = 0,55. In this case r = r(w (x+u), w(x—u)) is
almost a circle.
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Book Review

Pfanzagl J: Estimation in semiparametric models. Springer-Verlag 1990, 112 S.,
DM 130~

This monography is an update of Pfanzagl and Wefelmeyer’s important (1992)
“Contributions to a general asymptotic statistical theory”. Its subject is the same
as that of the 1982 monograph, the estimation of Euclidean parameters in a non-
parametric context. The emphasis is however now on construction of estimates
rather than calculation of information bounds. In these notes Pfanzagl discusses
a number of approaches to estimation, many of which have appeared in the
literature in connection with special cases during the last 30—40 years but whose
general applicability in a nonparametric context began to be recognized in
1982 —89. In particular,

Section 3,4:

The sample splitting and discretization tricks applied to one step im-
provements introduced by LeCam and Hajek and developed in this context by
Hasminskii and Ibragimov, Klaassen, Schick and the author of this review among
others are described with care.

Section 5:

The main focus of this section is the construction of improvements (using one
step estimates) with specified not necessarily efficient influence functions. The
emphasis is on selecting the best within a family of influence functions smoothly
indexed by an estimable Euclidean parameter. This approach has, for instance,
been considered by Jaeckel (1971).

Section 6:

This is a critique of Godambe’s and others’ approach to efficiency via estimat-
ing equations.

Finally, Sections 7—9 contain a discussion of recent work of Pfanzagl’s and
van der Vaart’s on estimation in mixture models. This includes some numerical
results on the two sample scale mixture of exponentials model and a much studied
model of Neyman and Scott which can be viewed as the simplest example of
estimation of fixed effects in a mixed model (in the sense of Scheffé). Pfanzagl
proposes what can be viewed as one step estimation using the method of sieves
to estimate the ubiquitous (in these models) derivative of a log density. The
numerical results are encouraging but rather limited.

The performance of method of sieves estimation is consistent with that found
with a similar use of such procedures in theses by Faraway and Jin in Berkeley
(1988 and 1990 respectively).

There are a number of interesting observations in these notes. Unfortunately
the presentation is abstract and rather forbidding for nonspecialists in this realm
of asymptotic methods.

Berkeley P J. Bickel -



Metrika (1993) 40:25-35

Metrika

A Fixed Sample Size Selection Procedure
for Negative Binomial Populations

MADHURI S. MULEKAR

Dept. of Mathematics & Statistics, Faculty Court South # 3, University of South Alabama,
Mobile, AL 36688, (205) 460-6264, USA

LINDA J. YOUNG

Department of Biometry, 103 Miller Hall, University of Nebraska, Lincoln NE 68583, (405)
744-5684, USA

Summary: A fixed sample size procedure for selecting the ‘best’ of k negative binomial populations
is developed. Selection is made in such a way that the probability of correct selection is at least P*
whenever the distance between the probabilities of success is at least 6* The exponent r is assumed
to be known and the same for all populations. Extensive computer calculations* were employed to
obtain the exact least favorable configuration. The smallest sample sizes needed to meet specifications
(P*, 0*) are tabulated for r = 1(1)5; d* = 0.05(0.05)0.55 and P* = 0.75,0.80, 0.90,0.95,0.98,0.99 in-
volving k = 3(1)6,8, 10 populations.

Key words and phrases: Fixed sample selection procedure, Negative binomial populations, Indif-
ference zone approach, Least favorable configuration.

1 Introduction

The negative binomial distribution was used by Williamson and Brentherton
(1964) to model industrial purchasing. If the purchasing occasions are distributed
as a poisson distribution, same for all consumers and the amounts bought per oc-
casion are distributed as a logarithmic series distribution, then the total amount
purchased over all occasions follows a negative binomial distribution. A
mathematical derivation of this model is given by Quenouille (1949). A criticism
of this model is that it is inconsistent with general experience to suppose that dif-
ferent consumer’s average purchasing patterns are the same. In the industrial or
consumer purchasing experiments, the hypothesis that different groups, depart-
ments, or companies have the same purchase patterns is meaningless if the groups
are actually different. In such a case, it seems obvious that the different groups

*  All the computations were carried out on the Alabama Supercomputer.
Part of this work was completed when the authors were at the Department of Statistics, Oklahoma
State University, Stillwater, OK 74078.

0026 —1335/93/1/25—-35 $2.50 © 1993 Physica-Verlag, Heidelberg
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will show differences in purchase amounts, however small in effect. Thus the hy-
pothesis that there is no difference in purchase patterns of different groups is
unrealistic, the real problem is to select the group with the largest average pur-
chases.

Consider k (k=2) negative binomial populations, such that each population

r+x—1

n; is characterized by a probability function nb(x;p;,r) = pi(i—=p)*,

(i=1,2,...,k). Hence each population 7; is associated with a fixed but un-
known probability of success p; (0<p;<1, i=1,2,...,k). We assume that r is
known or estimated from the past experiments and is the same for all popula-
tions. The estimation of r has been studied extensively by Shenton and Bowman
(1967), Willson et al. (1984), and Clark and Perry (1989).

For the negative binomial, the probability of success is neither a location nor
a rank parameter and the population variance depends on the unknown mean.
With the standard error of sample mean unknown, this dependency makes it dif-
ficult to obtain the optimal sample size. To overcome this difficulty Chambers and
Jarratt (1964) proposed large sample double-sampling procedure. In this pro-
cedure the unknown population variance is estimated using the first sample. Gup-
ta and Nagel (1971) considered a selection rule in the framework of a subset selec-
tion problem and Bechhofer et al. (1968) developed a sequential selection pro-
cedure.

We propose a fixed sample procedure for selecting population with the largest
probability of success using the indifference zone approach. Unlike the procedure
of Chambers and Jarratt (1964), which uses large sample approximation, this pro-
cedure is based on the exact distribution of the statistics. In this procedure the
Probability of Correct Selection (PCS) is minimized over all possible values of the
largest probability of success to obtain the minimum sample size. The proposed
procedure and the associated PCS are given in Section 2. The Least Favorable
Configuration (LFC) and the monotonicity property of the PCS are derived in
Section 3. The sufficient condition for the existence of the smallest sample size
and the tables of sample sizes required to apply this procedure are given in Sec-
tion 4.

2 Proposed Procedure and Probability of Correct Selection

Let pyy<pp<...<PK-11<PK) be the ranked values of p; (i=1,2,...,k).
Before the experimentation begins, the investigator is not aware of the association
between py;) and 7y, 7, . . ., or ;. The problem of selecting the ‘best’ popula-
tion can be stated as the problem of selecting a population associated with py;.
The investigator is willing to accept any one of the ¢ populations as the ‘best’ if
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there are ¢ ties for first place. The simple distance measure J = py;—Py-1) is
used as an indicator of the true difference between the best and the second best
population. For P* and J* specified by the user, the goal is to select the popula-
tion associated with py such that the PCS=P* whenever 6=4% (0<p;<l1,
k™'<P*=<1and 0<d*=<1).

Let X;; = 1,2,...,n) be independent observations from the population =;
(=1,2,...,k), having probability mass functions nb(x;p;r), respectively.
Define T;= ), X;. Then (T}, T;,...,T}) is an independent set of sufficient
statistics. The selection rule is given as follows:

Selection Rule: Select the population 7#; associated with the min (7%, 75, ..., T)
and randomize with equal probability if there are any ties.

After selecting the best population, the confidence statement can be made
about the correctness of the selection. Suppose p; is the true p-value of the pop-
ulation selected and p, is the maximum p-value over all unselected populations.
Then with confidence P* p; and p, satisfy py)—0*<p;<py), i€, 0=<py;—
Ds<0* or equivalently, py_<p,<py-n+9J%* ie, 0<p,—py_y<J* The
statement that the interval [p,,ps+ d*] covers the true best p value with con-
fidence P* is equivalent to the previous statement. Since the procedure is defined
by the common sample size, the confidence statement can also be made after the
determination of n for specified (P* J*). For given confidence level P*, the o*
can be interpreted as the maximum error likely to be committed in the selection
procedure.

Suppose T; corresponds to the population associated with py; (i=1,2,
...,n). The experimenter is unaware of this association between 7{; and py;.
Since samples are drawn independently, for a fixed number of populations, under

the LFC, P —o0* =DPwk-1= --- =Pp)=Pup
k-1
oo k-1 i
PCS= Y nb(x;pyynr) -
x=0 i=0 141

xnb"(x;p[k_u,nr)(l -NB(x;p[k_“’nr))k—i—i

X
where NB(x;p,r)= Y nb(;p,r).
j=0
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3 The Least Favorable Configuration

Since the conditions under which Mahamunulu (1967) has obtained the LFC for
the selection procedures are not satisfied by the negative binomial distribution
parametrized using p, we must proceed to obtain the LFC. Consider configura-
tions Q4 ={py)—0zpy-y=. .. >pm] and Qp ={py)—6=py-n=... =Py}
For any specified py; = px; and 6 = 6%, if the selection procedure satlsfles the
specifications for configuration Q5 then it also satisfies the specifications for
configuration Q4. To prove that the LFC can be found using Q5, the following
three lemmas are required.

Lemma I: For any non-negative integer x, positive 7 and any 6 (0 <6<1) indepen-
dent of p, the function H(x;p,0) = NB(x—1;p,r)+6nb(x;p,r) is a non-decreas-
ing function of p (0<p<1). It is strictly increasing on (0, 1) except for 8 = 0 and
x=0.

Proof: The proof is accomplished using the derivative of the cumulative distribu-
tion function of the binomial distribution and the relation between the binomial
and negative binomial mass functions and the corresponding distribution func-
tions.

Define the ‘continuous negative binomial’ (CNB) random variable Y to be
uniformly distributed in the interval (x—0.5,x+0.5) with the total probability on
this interval equal to the probability that the discrete negative binomial (DNB)
random variable X takes value x, x=0,1,2,..., ie, fO;p,r) =nb(x;p,r).

Lemma 2: The PCS remains unchanged if each of the x DNB populations is
replaced by the kK CNB populations, i.e., PCS (CNB) = PCS (DNB).

Proof: Define Y;) =the CNB random variable associated with the population
with parameters p;; and r, and X(;) = nearest integer to Y, for i=1,2,.. k.
Thus X; is a DNB random variable with the same parameter as Y;,. Then for
any configuration with py;>py_1s

PCS (CNB) = Pr (Y )<Y, i=1,2,...,k=1)
® Xy +1/2

= X § Pr Ow0<Ya i=12,..,k=1)f0uy P ") W)

Xy =0 Xy =172

Within any interval (x),—+, X()++) we have
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Pr i <Yupyuoy<Yep - s Vuy< Yu-n)

=Pr (X(k)<X(1),X(k)<X(2), .. "x(k)<X(k—1))

1 k=t ) )
+E E Pr(X(,) =X(k))PI' (x(k)<X(j)’J =1,2,.. .,k—1,j¢t)

t=1

1
+.. .+7€'PT(X(1)=X(2)= =X(k—1)=x(k)) .

Then using this equality and simplifying the expression for PCS the required
result is obtained.

Lemma 3: Let F(y;p,r) be the cumulative distribution function of the CNB ran-
dom variable. For any real r>0 and any y, F(y;p,r) is a nondecreasing function
of p. In particular, for 1/2<y< o it is a strictly increasing function of p.

Proof: Define x = x(y) = the integer part of (y+0.5) and 6 = 8(y) = the frac-
tional part of (y+0.5). Then the inverse function y is a single valued function of
the pair (x, ) such that y(x,0) =x+6-0.5 where x=0,1,2,... and 0<f<1.
Thus F(y;p,r)=0 in p for y<—1/2. For any y=y,>—-1/2, F(yg,p,r) =

Yo x(vg)—1
§ foip.rydy= i SO p, 1)+ 000 f(x (o) P, 1) = H(xo; p, 0p). Therefore the
—1/2 x=0

result follows from Lemma 1.

Theorem: For a fixed py,, the probability of correct selection is a strictly increas-
ing function of each of the differences py,—py; (1= 1,2,...,k—1).

Proof: Using Lemma 2, for any configuration with py;>pyc-1;

[}

k-1
PCS= | II U-FO;pupmfGspu,r)dy

-1/2i=1

Thus the result follows using Lemma 3.

The PCS being a continuous and bounded function over a closed interval, it
attains its minimum at some point pf“,,](é * n,k) in the interval (6* 1). Thus the
configuration Qp with § = * and py,; = p[Lk] is the LFC and it depends on the
common sample size n.
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4 The Smallest Sample Size Required to Meet Specifications

Due to the dependency of the population variance on the unknown mean, the
standard error can not be determined. Therefore the PCS depends on d* n, k and
the location of py; in the parameter space. Using a conservative approach like
Sobel and Huyett (1957) the PCS can be minimised in two stages. In the first
stage, for a fixed py; and 6=J* each pj;, (i=1,2,...,k—1) is replaced by
Py —d* In the second stage, the PCS is minimized with respect to py;. This
procedure is repeated for each n until the smallest sample size for which the in-

Table 1. Number of Units Required per Process to Meet Specifications (P*,5*), for r =1

J*™\P* 075 0.80 090 095 0.98 0.99 0.75 0.80 090 095 0.98 0.99

22 2 3 4 6 7 34 4 5 6 7 8

0.55 3b 3 4 5 6 7 4¢ 4 5 6 8 9
3¢ 3 4 5 7 8 4f 4 s 6 8 9

2 3 4 5 7 8 4 4 5 7 9 10

0.50 3 3 4 6 8 9 4 5 6 7 9 11
3 4 5 6 8 9 4 5 6 8 10 11

3 3 5 6 8 10 4 5 6 8 10 12

0.45 3 4 5 7 9 11 5 5 7 9 11 13
4 4 6 8 10 12 5 6 8 9 12 14

3 4 6 8 10 13 5 6 8 10 13 15

0.40 4 4 7 9 12 14 6 6 9 11 14 16
4 5 7 9 12 15 6 7 9 12 15 17

4 4 7 10 13 16 6 7 10 13 17 20

0.35 5 6 8 11 15 18 7 8 11 14 18 21
5 6 9 12 16 19 8 9 12 15 19 22

5 6 9 13 18 22 8 9 13 18 23 27

0.30 6 7 11 15 20 24 9 11 15 19 25 29
7 8 12 16 22 26 10 2 16 21 26 30

6 8 13 18 26 32 1 13 19 25 33 39

0.25 8 10 15 21 29 35 13 15 21 27 35 42
10 11 17 23 31 37 14 16 23 29 37 44

9 11 20 28 40 49 16 19 29 38 51 61

0.20 12 15 24 33 45 54 19 2 32 4 55 65
14 17 27 36 48 58 21 25 35 45 58 68

15 19 34 49 T 87 28 33 50 68 90 107

0.15 20 25 41 57 19 9 33 39 57 74 97 115
24 30 46 63 85 102 37 43 61 79 103 120

32 42 75 110 158 195 60 73 112 150 202 240

0.10 44 55 91 128 177 215 72 85 125 165 218 257
53 65 103 141 191 229 80 94 136 177 230 269

124 164 297 437 629 7177 235 285 440 596 802 957

0.05 171 216 360 507 705 857 278 331 494 655 866 1024
207 254 405 557 760 913 312 367 535 699 913 1073

afor k = 3; Pfor k = 4; “for k = 5; for k = 6; for k = 8; ffor k = 10.
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Table 2. Number of Units Required per Process to Meet Specifications (P*,0*), for r=2

S*\P* 0.75 0.80 090 0.95 0.98 0.99 0.75 080 090 095 098 0.99
12 1 2 2 3 4 24 2 3 3 4 4

0.55 26 2 2 3 3 4 2¢ 2 3 3 4 5
2¢ 2 2 3 4 4 2f 2 3 3 4 5

1 2 2 3 4 4 2 2 3 4 5 5

0.50 2 2 2 3 4 5 2 3 3 4 5 6
2 2 3 3 4 5 2 3 3 4 5 6

2 2 3 3 4 5 2 3 3 4 5 6

0.45 2 2 3 4 5 6 3 3 4 5 6 7
2 2 3 4 5 6 3 3 4 5 6 7

2 2 3 4 5 7 3 3 4 5 7 8

0.40 2 2 4 5 6 7 3 3 5 6 7 8
2 3 4 5 6 8 3 4 5 6 8 9

2 2 4 5 7 8 3 4 5 7 9 10

0.35 3 3 4 6 8 9 4 4 6 7 9 11
3 3 5 6 8 10 4 5 6 8 10 11

3 3 5 7 9 11 4 5 7 9 12 14

0.30 3 4 6 8 10 12 5 6 8 10 13 15
4 4 6 8 11 13 5 6 8 11 13 15

3 4 7 9 13 16 6 7 10 13 17 20

0.25 4 5 8 11 15 18 7 8 11 14 18 21
5 6 9 12 16 19 7 8 12 15 19 22

5 6 10 14 20 25 8 10 15 19 26 31

0.20 6 8 12 17 23 27 10 11 16 21 28 33
7 9 14 18 24 29 11 13 18 23 29 34

8 10 17 25 36 44 14 17 25 34 45 54

0.15 10 13 21 29 40 48 17 20 29 37 49 58
12 15 23 32 43 51 19 22 31 40 52 60

16 21 38 55 79 98 30 37 56 75 101 120

0.10 22 28 46 64 89 108 36 43 63 83 109 129
27 33 52 7 96 115 40 47 68 89 115 135

62 82 149 219 315 389 118 143 220 298 401 479

0.05 86 108 186 254 353 429 139 166 247 328 433 512
104 127 203 279 380 457 156 184 268 350 457 537

afor k =3; Pfor k = 4; “for k = 5; Yfor k = 6; <for k = 8; ffor k = 10.

fimum of PCS exceeds P* is obtained. The optimal sample sizes required to meet
specification (P*,0*) are listed in Tables 1 — 5. Additional tables and plots of
sample sizes and the PCS are given by Nagardeolekar (1988). Using these tables,
the required number of observations per population for specified (P*,J*) may
be determined. For a fixed known n, these tables may be reversed to obtain the
PCS that will be achieved by the procedure. The values not listed in tables can
be obtained by interpolation, which can be carried out easily using the graphs of
the PCS, presented by Nagardeolekar (1988), for given n and 4.
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Table 3. Number of Units Required per Process to Meet Specifications (P*,6*), for r =3

6*\P* 075 0.80 090 095 0.98 0.99 0.75 0.80 090 0.95 0.98 0.99
12 1 1 2 2 3 1d 2 2 2 3 3
0.55 1b 1 2 2 2 3 2¢ 2 2 2 3 3
1¢ 1 2 2 3 3 2f 2 2 2 3 3
1 1 2 2 3 3 2 2 2 3 3 4
0.50 1 1 2 2 3 3 2 2 2 3 3 4
1 2 2 2 3 3 2 2 2 3 4 4
1 1 2 2 3 4 2 2 2 3 4 4
0.45 1 2 2 3 3 4 2 2 3 3 4 5
2 2 2 3 4 4 2 2 3 3 4 5
1 2 2 3 4 5 2 2 3 4 5 5
0.40 2 2 3 3 4 5 2 2 3 4 5 6
2 2 3 3 4 5 2 3 3 4 5 6
2 2 3 4 5 6 2 3 4 5 6 7
0.35 2 2 3 4 5 6 3 3 4 5 6 7
2 2 3 4 6 7 3 3 4 5 7 8
2 2 3 5 6 8 3 3 5 6 8 9
0.30 2 3 4 5 7 8 3 4 5 7 9 10
3 3 4 6 8 9 4 4 6 7 9 10
2 3 5 6 9 11 4 5 7 9 11 13
0.25 3 4 5 7 10 12 5 5 7 9 12 14
4 4 6 8 11 13 5 6 8 10 13 15
3 4 7 10 14 17 6 7 10 13 17 2
0.20 4 5 8 11 15 18 7 8 11 14 19 22
5 6 9 12 16 20 7 9 12 15 20 23
5 7 12 17 24 29 10 11 17 23 30 36
0.15 7 9 14 19 27 32 11 13 19 25 33 39
8 10 16 2t 29 34 13 15 21 27 35 40
11 14 25 37 53 65 20 25 33 50 68 80
0.10 15 19 31 43 59 72 24 29 42 55 73 86
18 22 35 47 64 17 28 32 46 59 77 90
42 55 99 146 210 259 79 95 147 199 268 319
0.05 57 72 120 169 235 286 93 111 165 219 289 342
69 85 135 186 254 305 104 123 179 233 305 358

for k= 3; "for k = 4; “for k = 5; Yfor k = 6; *for k = 8; ‘for k = 10.
Lemma 4: A sufficient condition for the existence of the required smallest sample
size is

lim [Var(T(l)) +Var(T(k2))] -0
now  [E(Tg) = E(Tyy)]

provided the infimum of the PCS exists for some p; = p([)k].
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Table 4. Number of Units Required per Process to Meet Specifications (P*,d*), for r=4

6¥\P* 075 0.80 0.90 0.95 0.98 0.99 0.75 0.80 090 0.95 0.98 0.99
12 1 1 1 2 2 14d 1 2 2 2 2

0.55 1b 1 1 2 2 2 1¢ 1 2 2 2 3
1¢ 1 1 2 2 2 1f 1 2 2 2 3

1 1 1 2 2 2 1 1 2 2 3 3

0.50 1 1 1 2 2 3 1 2 2 2 3 3
1 1 2 2 2 3 1 2 2 2 3 3

1 1 2 2 2 3 1 2 2 2 3 3

0.45 1 1 2 2 3 3 2 2 2 3 3 4
1 1 2 2 3 3 2 2 2 3 3 4

1 1 2 2 3 4 2 2 2 3 4 4

0.40 1 1 2 3 3 4 2 2 3 3 4 4
1 2 2 3 3 4 2 2 3 3 4 5

1 1 2 3 4 4 2 2 3 4 5 5

0.35 2 2 2 3 4 5 2 2 3 4 5 6
2 2 3 3 4 5 2 3 3 4 5 6

2 2 3 4 5 6 2 3 4 5 6 7

0.30 2 2 3 4 5 6 3 3 4 5 7 8
2 2 3 4 6 7 3 3 4 6 7 8

2 2 4 5 7 8 3 4 5 7 9 10

0.25 2 3 4 6 8 9 4 4 6 7 9 11
3 3 5 6 8 10 4 4 6 8 10 11

3 3 5 7 10 13 4 5 8 10 13 16

0.20 3 4 6 9 12 14 5 6 8 11 14 17
4 5 7 9 12 15 6 7 9 12 15 17

4 5 9 13 18 22 7 9 13 17 23 27

0.15 5 7 11 15 20 24 9 10 15 19 25 29
6 8 12 16 22 26 10 11 16 20 26 30

8 11 19 28 40 49 15 19 28 38 51 60

0.10 11 14 23 32 45 54 18 22 32 42 55 65
14 17 26 36 48 58 20 24 34 45 58 68

31 41 75 110 158 195 59 72 110 149 201 240

0.05 43 54 9 127 177 215 70 83 124 164 217 256
52 64 102 140 190 229 78 92 134 175 229 269

afor k = 3; Pfor k = 4; *for k=5; Yfor k = 6; *for k = 8; for k = 10.

Proof: Under the assumptions, not satisfied by the negative binomial as defined
here, Mahamunulu (1967) (Section 7) has presented a similar condition. This
result can be derived by following the proof given by the same.

It can be easily checked that, when sampling from negative binomial popula-
tions the smallest # exists for which the PCS = P*. The effect of r on the number
of units required per process is also studied. Sample sizes per process to meet the
specification (P*,0*) for r=1(1)5 are listed in Tables 1 —5. Notice that n
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Table 5. Number of Units Required per Process to Meet Specifications (P* 6*), for r=35

6*\P* 075 0.80 090 095 098 099 075 0.80 090 095 098 0.99
12 1 1 1 2 2 1d 1 1 2 2 2

0.55 1b 1 1 1 2 2 1¢ 1 1 2 2 2
1¢ 1 1 1 2 2 1f 1 1 2 2 2

1 1 1 1 2 2 1 1 1 2 2 2

0.50 1 1 1 2 2 2 1 1 2 2 2 3
1 1 1 2 2 2 1 1 2 2 2 3

1 1 1 2 2 3 1 1 2 2 2 3

0.45 1 1 1 2 2 3 1 1 2 2 3 3
1 1 2 2 2 3 1 2 2 2 3 3

1 1 2 2 2 3 1 2 2 2 3 3

0.40 1 1 2 2 3 3 2 2 2 3 3 4
1 1 2 2 3 3 2 2 2 3 3 4

1 1 2 2 3 4 2 2 2 3 4 4

0.35 1 2 2 3 3 4 2 2 3 3 4 5
1 2 2 3 4 4 2 2 3 3 4 5

1 2 2 3 4 5 2 2 3 4 5 6

0.30 2 2 3 3 4 5 2 3 3 4 5 6
2 2 3 4 5 6 2 3 4 5 6 6

2 2 3 4 6 7 3 3 4 5 7 8

0.25 2 2 3 5 6 7 3 3 5 6 7 9
2 3 4 5 7 8 3 4 5 6 8 9

2 3 4 6 8 10 4 4 6 8 11 13

0.20 3 3 5 7 9 11 4 5 7 9 11 13
3 4 6 8 10 12 5 5 7 9 12 14

3 4 7 10 15 18 6 7 10 14 18 22

0.15 4 5 9 12 16 20 7 8 12 15 20 23
5 6 10 13 17 2 8 9 13 16 21 24

7 9 15 2 32 39 12 15 23 30 41 48

0.10 9 11 19 26 36 43 15 17 25 33 44 52
11 13 21 29 39 46 16 19 280 36 46 54

25 33 60 88 126 156 47 57 88 120 161 192

0.05 35 4 72 102 141 172 56 67 99 131 174 205
42 51 81 112 152 183 63 74 107 140 183 215

for k = 3; Pfor k = 4; “for k = 5; for k = 6; *for k = 8; 'for k = 10.

decreases as r is increased keeping k, P* and d* constant. When r is increased
from 1 to 2, the sample sizes are reduced by almost fifty percent. The geometric
distribution is a particular case of the negative binomial. Therefore this procedure
for r =1 can be used for selecting the best geometric population.

Acknowledgements: The authors would like to extend sincere appreciation to J.D. Becker, Applica-
tions Analyst, Boeing, from the University of South Alabama, Mobile, for his invaluable assistance
in setting up programs on the Alabama Supercomputer to carry out computations of the tables.
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Book Review

Johnson NL, Kotz S, Wu X: “Inspection Errors for Attributes in Quality Con-
trol”. Monographs on Statistics and Applied Probability 44. Chapman & Hall,
1991, xi+212 pp., 25.00

In this book the very important problem of the influence of inspection errors on
acceptance sampling and on the identification of nonconforming items is in-
vestigated. In the Introduction the authors give an illustrative and motivating ex-
ample: Let p = 0.99 be the probability that a nonconforming item is classified as
nonconforming and p’ = 0.01 be the probability that a conforming item is classi-
fied as nonconforming. If the proportion of nonconforming items in the popula-
tion is 0.01 then 50% among all items declared nonconforming are conforming!

The book is divided into three parts. Here, the table of contents:

1. Introduction
Part One: Acceptance Sampling

2. Basic distributions: single sampling

3. Basic distributions: multiple sampling

4. Double and link sampling for acceptance

5. Multitype nonconformities
Part Two: Identification of nonconforming items

6. (Dorfman) group testing

7. Dorfman-Sterrett group testing and its extensions

8. Curtailed Dorfman-type procedures

9. Graff and Roeloff’s approach and related procedures

10. Binary search
Part Three: Miscellaneous

11. Estimation of error probabilities
12, Stratified populations: grading
Appendix A Note on computer programs
Appendix B The detection of defective members of large populations
References
Index
Although this monograph is based on about twenty papers by the authors they
included the work of other authors in this field (see the extensive bibliography).
In my opinion the authors found a good compromise between theoretical con-
siderations and applications in the field of quality control. Here the computer
programs noted in Appendix A should be mentioned.

As for Part One the influence of inspection errors on acceptance sampling is
carefully investigated. I think sampling plans should be constructed in such a way
that inspection errors are taken into consideration — and compensated. This
might be a field of further research. Part Two of the book is dedicated to the iden-
tification of nonconforming items in the presence of inspection errors, where
most emphasis is put on group testing with important applications especially in
the medical area. In Appendix B the famous 1943 Dorfman paper on group
testing is reprinted. In Chapter 11 in Part Three the problem of estimating the in-
spection error probabilities is investigated and discussed — a very important and
challenging field of research.

All in all I recommend this book to everybody (researches, practitioners,
students) who is interested in acceptance sampling or group testing.

Miinchen B. Arnold
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A New Interpretation of Optimality
for E-Optimal Designs in Linear Regression Models

HOLGER DETTE

Institut fir Mathematische Stochastik, Universitidt Gottingen, Lotzestr. 13, 3400 Géttingen, Germany

Abstract: The optimal design problem for the estimation of several linear combmatlons 0 (I=
1,...,m) is considered in the usual linear regression model y = " (x)8 (f(x) € R¥, 6 € R¥). An op-
timal design minimizes a (weighted) p-norm of the variances of the least squares estimates for the dif-
ferent linear combinations c}6. A generalized Elfving theorem is used to derive the relation of the
new optimality criterion to the E-optimal design problem. It is shown that the E-optimal design for
the parameter § minimizes such a (weighted) p-norm whenever the vector ¢ = (¢, .. .,C}) is an inball
vector of a symmetric convex and compact “Elfving set” in R¥

1 Introduction

Consider m linear regression models of the form
gx)=f1x)6, I=1,....m

where fij(x) = (fj;(x),..., f,k (x)) is the vector of regression functions (/ =1,

..,m). The control vanable x takes values in a compact space £ with sigma
field Z including all one point sets. 6, = (6,4, . . O,k) is the vector of unknown
parameters and the functions f; (x), .. f,k (x) are assumed to be real valued
and continuous functions on the des1gn space 4. The different models are collect-
ed in the set

=lle) =110, I=1,...,m} . (1.1

For every xe Z a random variable Y(x) with (unknown) mean g(x) € 4%, and
variance a2>0 can be observed where different observations are assumed to be

0026—1335/93/1/37—50 $2.50 © 1993 Physica-Verlag, Heidelberg
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independent. A design is a probability measure on £ and the information matrix
of £ in the model g, is defined by

M(¢) = gr G fi)deéx) I=1,...,m .

Throughout this paper we assume that there exists a finite support design ¢ on
Z such that all information matrices M,(¢) are regular. If € is supported at s

. . n; .
points xi,...,Xx; with masses £(x;) = — the experimenter takes n; uncorrelated
n

s
observations at each point x; {i=1,...,5, ¥ n;=n) and the covariance
i=1
matrix of the least squares estimator for 6, (in the model g;(x)) is proportional
to the inverse of the information matrix M,(£) (see e.g. Krafft (1978)). This
paper deals with the E-optimality and the c-optimality criterion for the model
g;. An E-optimal design (for the model g;) maximizes the minimum eigenvalue
Amin (M;(&)) of the information matrix M,;(£) while a c-optimal design mini-
mizes c;M| (&) ¢, for a given vector ¢, € R*%. Here M 1 (&) denotes any generaliz-
ed inverse of M,;(¢) and we assume that the vector c; is estimable by the design
¢, ie. c;erange (M(£)) (see Pukelsheim (1980)). The croptimality is a special
case of the following more general definition of optimality. Consider a number
pe[—-,1], m vectors ¢;e R* and numbers 8,>0. The vectors ¢, are collected

m
in the “grand” vector (ci,...,c,,) €R¥ (k= Y k) and the vector 8= (8,
=1
.. .»fm) is called a “prior” for the class %, in (1.1) where we assume that the
components of § sum to one. For pe[—o , 1]\{—o, 0} define

m 1/p
P5,5(¢) = [IZ BiciM; (4‘)01)"’]
=1

and let for p=0and p= —o

m

¢8,p(€)=1H (CiM[ &)™ and ¢c—on,ﬁ(é)=l};'itrll(c;Ml_ ey
=1 =

respectively. It is easy to see that ®§ 4(&) = m'? @5, 5. (&) where

1 1
ﬂ*=<—,...,;> and é= (B7Y?Pcl,...,B."*ch) (@#0, —) .

m
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Definition 1.1: A design & for which all linear combinations c}0, are estimable is
called ﬂ-optimal for the class Z, with respect to the prior B if £ maximizes the
Sfunction @ ﬁ(ﬁ) If all models in the set %, in (11) are identical (ie. f,(x)
=fi(x), I = 1 .,m) the maximizing design is called cbc, g-optimal with respect
to the prior .

Note that if f;=f; (/=1,...,m) and p = —1 the &, ;-optimality criterion gives
the A'#6,-optimality (defmed as in Karlin and Studden (1966)) when putting

A=Ag= (V,Bvicl, .. .,V;S;c,,,) € R\ XM (see also Studden (1971) for some prop-
erties of optimal designs with respect to this criterion).

The Definition 1.1 is motivated by the following point of critism on the “clas-
sical” optimal design theory. This theory is based on the fact that the underlying
model (namely g;) is known by the experimenter which is not very realistic from
a practical point of view. In scientific experiments it is often the case that a
suitable (linear) model for the description of the dependency of Y from x is not
known before experiments have been conducted. However, in some cases the ex-
perimenter does not know the “true” model exactly but he knows that the model
belongs to the given class %, defined by (1.1) (e.g. the experimenter is sure that
a linear or quadratic polynomial is appropriate). Assume that in every model
g € %, the linear combinations c;0, (/ =1, ...,m) (where ¢, ...,c,, are given
vectors ¢;€ R*) or different linear combinations in the same model have to be
estimated (in this case all vectors f; would be the same). Because the variances of
the least squares estimates for the linear combinations c;6, are proportional to
ciMy (&) (I=1,...,m) an optimal design with respect to one of the criteria of
Definition 1.1 allows “precise” estimates of all linear combinations in the given
models of %,. The numbers f,; are used to reflect the experimenters belief about
the adequacy of the models g; or the importance of the linear combinations c}6,.
In this sense the &¢ p,p-optimality criterion can be viewed as a model robust ver-
sion of the classwal croptimality criterion.

Note that the efficiency of a @, g-optimal design for estimating one linear
combination c; 6, in the model g, will depend sensitively on the choice of the
prior B;,. Thus a “bad” design for estimating cj,6;, in the model g, may be
judged as a good solution of the @}, ;-optimal des1gn problem just by choosmg a
relative small number ﬂ,o. A statlstlcal justification of a design performing well
for the estimation of completely independent parameters in different models can
be given under special circumstances. As an example we will consider the following
two regression setups. Assume that an estimate of the (unknown) regression func-
tion g(x) € £, at a given point x; ¢ x is desired. In this case we choose ¢; = f;(xg)
(/=1,...,m) and obtain an extrapolation design robust with respect to the model
assumptions. If the experimenter has a very precise knowledge about the underly-
ing model and wants to estimate the regression function at the points xy, .. .,X,,
we choose ¢; = fi(x;) ({ = 1,...,m) and all models g, equal g,. Secondly, consider
the case of nested regression models (ie. f;(x) = (fj; (%), .. ... x), I=1,...,m)
and define ¢;=(0,...,0,1) € R’. In this case an D, goptimal design may be use-
ful to decide how many regression functions have to be included into the model.
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For the classical cq-optimality criterion (i.e. m =1 and §; = 1 in Definition
1.1) the theorem of Elfving (1952) is an important tool for the (geometric) charac-
terization of the c;-optimal design (see also Karlin and Studden (1966) and
Pukelsheim (1981) for more details). A c;-optimal design can be characterized as
a design which allows a representation of the intersection of the half line {4 ¢, |
A >0} with the boundary of the Elfving set

% = co ({f,(x)|xe DYU{-fi(x)|xe ) ¢ Rk (1.2)

where co (&) denotes the convex hull of a set & ¢ R¥. In Section 2 we will pre-
sent a generalization of Elfving’s Theorem for the &¢ p,g-optimal design problem
of Definition 1.1. In the same section the relatlonshlp between @, ;-optimal
designs with respect to different values of p e (—o, 1] is given and a sufficient
condition is stated when a design is & ﬂ-optlmal for all pe[—o,1]. Section 3
deals with the E-optimality criterion and its relation to the qﬁf,, g-optimal design
problem where all functions f; are identical (ie. fi(x) =/fi(x), I=1,...,m). We
show that the E-optimal design is @¢ 7, ﬁ-optimal with respect to a prior f, where
D €(—xg 1] is arbitrary, ¢ = (cy, . . ,ck )’ is any inball vector of the generalized
Elfvmg set and the /-th weight of the pl'lOI' B is proportional to (cjc,)?*! (I=1,
k).

2 &, ;Optimal Designs

In the following we will define a generalized Elfving set f%",’;, corresponding to the
b p,p-optimal design problem by

RE:= co ({(s 100, .. @) |x€ % /€ [—L, —1—],
1/ 1 l ! V-ﬂ_I VB-[

1; Biel = 1}) Q.10

m
which is a convex, symmetric and compact subset of R* ( k = Z k,> con-

taining the point 0. Note that in the case m = 1 (ﬁl = 1) (2.1) gives exactly the set
defined in (1.2). In general the structure of 9? is very complicated and is il-
lustrated by some examples in a paper of Dette (1992). We are now able to state
an analogous geometric characterization of the @, ;-optimal design problem for
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the class %, with respect to a prior 8 as given by Elfving (1952). The proof of
the following theorem is performed by similar arguments as given in Dette (1992)
(where the case p = 0 is considered) and therefore omitted.

S
Theorem 2.1: Let p e (— ,1], a design & = x"} (for which c;0, is estima-
v)v=1
blel=1,...,m) is @, Foptimal for the class %, with respect to the prior B if
and only if there exist positive numbers y, . . .,V and numbers €y, . . ., €15 €1,
v es€2gs -+ +5€mis - - -5 Ems SUCh that the following properties (A), (B), (C) and (D)
hold.

s
Vi€ = Z pvelvfl(xv) I=1,...,m. (A)

v=1

The point (y(Cci,...,YmCr) is a boundary point of the set 91’{’,, with

a supporting hyperplane (8,d1, . ..,B,d ). (B)
p+1 p -1
cid, i ;
y;<1_1> =[Z /;j<_,yf_> I=1,...,m ©
Vi Jj=1 dej
m
Y Berb=1 v=1,...,5. (D)

=1

Remark 2.2: 1t follows from the proof of Theorem 2.1 that the quantities y,, €,
and d, are given by

vt =M ey’ T BeMy @) (=1,...,m) 22)
Jj=1

d=yGc (=1,...,m) 2.3)
ey, =fix)d, (=1,....mv=1,...,5)
where the matrices G, are “suitable” generalized inverses of M(¢), I=1,...,m

(see Dette (1992) for more details). Note also that the numbers y, ...,y are

uniquely determined which is a consequence of (2.2) and the concavity of the
function @, 5(¢).

Remark 2.3: The case p = —1 plays a particular role in Theorem 2.1 because in
this case all quantities y, in the general Elfving Theorem coincide, that is
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m
y2=y2= Y BieiM; (&), I=1,....m .
j=1

Here the &< g-optimal design can be determined (as in the classical case m = 1)
finding a representation (A) of the point where the line {A(ci, . ..,c,)'|A>0}in-
tersects the boundary of the Elfving set %2, For the choice of identical models
we thus get the Elfving theorem for A’ 6-optimality given in Studden (1971) where

A=Ag=Bicrr....VBum).

Theorem 2.4: Let p, € (— ,1] and & denote a ¢1‘,p g-optimal design for the class
&, with respect to the prior 8= (B, ...,Bn) where vy, ...,Vm dy, . . .,d,, are the
quantities of the Elfving Theorem 2.1. For every p, € (— , 1] the design & is also
@, poptimal for the class %, with respect to the prior B= (B, .. .,B,) where

y§ P2 (cidP P

m
Y BiyP P (cidpP P
=1

Bi=8

If pe(—~,1] and £ denotes a @, g-optimal design for the class %, with respect
to the prior B such that the quantities c;d,/y, are constant, then the design & is
&, goptimal for the class %, with respect to the prior B whenever q € (— ,1].
If, additionally, the matrices M,(¢), . . .,M,,(¢) are nonsingular the design & is
also ®°, goptimal for the class Z,.

m
Proof: Let k=Y, k; and
=1

i M, (&)
ME) = e RA*k
M, (&)

(o
K= e R™xk |
&

(all other entries in the matrices are 0) & = 8 /?”¢,(I=1,...,m) and Cg(M) =
min {LML'|LK’ = I,,}, then minimizing &}, ;5 over all designs ¢ is equivalent to

maximizing the (unweighteQ) p-mean (trace (Cz(M)P)!”? in the convex compact
set of associated matrices M(¢). Thus the first part of the theorem follows im-



A New Interpretation of Optimality for E-Optimal Designs in Linear Regression Models 43

mediately by computing gradients of dif,, g via standard rules of differentiation
(see e.g. Gaffke (1985, 1987)). For the second part we use (2.3) and obtain by an
application of the first part (p; = p, p, = q) that the design ¢ is @7 g-optimal for
the class %, with respect to the prior § whenever g € (—o, 1]. Finally, the case
q = —o follows considering the limit g— —o . |

We will finish this section showing that every design which allows a represen-
tation of a boundary point yc = (y;ci, . ..,¥sCn) of the generalized Elfving set
&8 is already @, soptimal for a special prior f.

Theorem 2.5: Let c = (¢4, ...,Cp) and y. = (yyC4, .. .,YmCm) denote an arbitrary
boundary point of the set .%f;, with supporting hyperplane (8,d4, ... B,d,,). Let
s

X, : j
&= { "} denote a design which allows a representation
Dy)yv=1

s
Yic = E pvelvfl(xv) (1= 11 . -9m) ’

v=1

m

such that for v=1,...,s Y. Be% =1. For every pe(—,1] the design & is
=1

@5, g-optimal for the class %, with respect to the prior B= (B, ...,Bn.) where

c'd p+1 m c'd p+17 -1
B ()| E o (24) | amnm.
1 Jj=1 il

Proof: By an application of Theorem 2.1 in the case p = —1 we obtain that the
design £ is ¢"_,, goptimal for the class %, with respect to the prior § where
E=(Ci ..., PmCr) (note that in the case p= —1 the condition (C) of
Theorem 2.1 is evident by the property (B)). The assertion now follows directly
from Theorem 2.4 putting p, = —1 and p, = p. |

3 E-Optimal Designs

In this section we will investigate the relation between the E-optimality criterion
and the model robust criterion given in Definition 1.1. In what follows A,
always denote the minimum eigenvalue of the information matrix corresponding
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to the E~-optimal design and A, (4) denotes the minimum eigenvalue of a sym-
metric matrix A € R¥ ¥, Pukelsheim (1980) showed that ¢ is E-optimal iff
there exists a matrix

ko

E=Y a;zz,e R\ >k @3.1)
i=1

such that f{(x) Ef; (x) < Ayin (M (&) for all x e £ The vectors z; in the represen-
tation (3.1) are normalized eigenvectors (||z;||, = 1) corresponding to the mini-
mum eigenvalue A;, of M, (£), the a; are positive numbers with sum 1 and k,
= rank (E)<k,. Throughout this section we will consider the model robust op-
timality criterion of Definition 1.1 where all models g, € %, are identical (that is
fix)=fi(x), I=1,...,m). The following result generalizes Theorem 3.2 of
Dette and Studden (1992) (p = —1).

Theorem 3.1: For every p € [- ,1] the design & is &, g-optimal with respect to
the prior o where a = (ay, . . S 0) and the vector ¢ = (21, .. -,Zk(,)' are defined
by (3.1).

For the following investigations of the geometric properties of the E-optimal
design we will consider the corresponding Elfving set .41’%0 defined in (2.1) and
its “inball radius”

ry,:=minf{||c||y|cedZL} . (3.2

Because %; is a convex subset of R*k we obtain an equivalent representation
of (3.2) by the distances of covering halfspaces to %"

ky

E gdifix)| =

dIE 'Rk‘,

1 ko
ry =min { ——e—— vxedZ, ¥ aei=1%.
“ {1‘21":1‘1;‘11 I=1 o (}3)

Every vector ce 3% with ||c||, = ry, is called an “inball vector” of Zj .

Theorem 3.2: Let E be defined by (3.1) then the point VAni, (25, ...,2}) is a

1
(@;2%,---
b’lmin

boundary point of the set 5?%0 with supporting hyperplane

0,2k ) For the inball radius ry of % we have the estimates



A New Interpretation of Optimality for E-Optimal Designs in Linear Regression Models 45

Amin =<7k, <KoAmin - (3.4)

‘y

If, additionally, all weights a, in (3.1) are equal the vector ¢ =V Ay, (24, . .

* 1 1
i)' defines an inball vector of ﬂ’ﬁo a*=(—,...,— and the inball

ke ko
radius is given by ry = koAmin-

Proof: Consider the bijective linear mapping

1 1 '
vec, (4) = —a’,,...,———-——a;) , A=(ay,...,a)eRk*k
‘ <Va-1 Vay ’ 0)

0

from R**% onto R¥ko, It is easy to see that

vecy (Si,) = A, . vec, (8Sy) = 0%, (3.5)

where S :=co{fi(x)e'|xe % ee Rk, ||e||, =1} ¢ R¥*% denotes the Elfving
set investigated by Studden (1971). By straight forward calculations it follows that

= (V—a,, .. ,Mak) is a covering halfspace to S if and only if a=
(ala,, cen Qg ako)’ is a covering halfspace to %"’ Dette and Studden (1992)

showed that the squared inball radius of S;_ is glven by Anin. Thus we obtain
from

1 1 1

<.._..._
trace(A'A) Y5 aaja, a'a

min =

and from (3.3) the inequality Ap,<r3 k, It also follows from Theorem 3.3 of
Dette and Studden (1992) that the point Z = 1/—,“; (V—z1, .. ,l/:z:zk) defines
an inball vector of the set S, (here z;, a; and k, are the quantltles of the
representation of the matrix E in (3. 1)) By (3.5) vec, (Z) is a boundary point of
the set #; with norm ||vec, (Z )||3 = koAmin Which proves the right inequality
of (3.4) (note that vec, (Z) is not necessarily an inball vector of %Zo because the

supporting hyperplane d = (@izy, ..., 0x,2k) tO Rio at the point vec, (Z)

min
has in general a different direction as the vector vec, (Z)).
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1
In the case of equal a,=;— (I=1,...,ko) we have ||vec, (4)||3 = ko||4]|3 and

0
obtain from (3.5) the second assertion of the theorem. ]

The results stated so far are more of theoretical interest for the determination of
the E-optimal design because they assume the knowledge of kg, aj, .. @, in
the representation (3.1) which is usually not available without knowing the E-op-
timal design. Nevertheless they provide a first insight into the geometric structure
of the problem and also indicate the usefulness of a representation with equal

. 1 .
weights a; = k_ (I=1,...,kp). The following Lemma shows that there always ex-
0

ists such a representation.

Lemma 3.3: For every matrix E in (3.1) there always exists a representation with
identical weights a,.

Proof: Considering a spectral decomposition of the matrix E in (3.1) we obtain
akrepresentation with orthonormal vectors z; (ko= rank (E)<k,). Let k* =
2%=! and

(1 1... 1 1)
1 t... 1 -1
1 ... -1 1
1 1... -1 -1
F=| ¢+ Do eRFxk
1t -1 ... 1 1
1 -1 ... 1 -1
1 =1 ... -1 1
L1 =-1... -1 -1

where all 2%~ ! components of the first column of F are 1, the first 2%0~2 com-
ponents of the second column are 1 while the second 2%=2 components of this
column are —1 and so on... . Defining new vectors Z; € Rk by

(fi, .. .,fk.) = Walzh ey llakozko)F'

kO ko
€8 zi= ¥ Vaiz, %o =Vayz,— ¥ Vayz;) we have
i=2

i=1
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1 kE 1 z
— Y GT=— i) |
k* ;=4 k* Zhe

Vo, 2}
=%(l/a_,z,,...,l/a_,%zk0)F'F ;

a2k,
— — Va—1z’, K,
= W2y -y akozko) : = E a;z;izi=E .

Varzi, ) 1=

The vectors Z; are eigenvectors of the information matrix of the E-optimal design
corresponding to the minimum eigenvalue A;,. From the orthonormality of the
vectors z; we obtain ||Z;||, = 1 which proves the assertion of Lemma 3.3. W

In view of Theorem 3.2 and Lemma 3.3 it now makes sense to investigate the in-

ball radii of the sequence of Elfving sets (a* = <i, .. ,i>>
m m

A% = co <{(£1f'1(x),.‘.,smf’1(x))’|xe Z, 816[—1/;, WL ) 3%=m}>

I=1

(m=1,2,...) for the determination of the minimum eigenvalue of the E-optimal
information matrix. By the results stated so far we have equality ri. = K* Anin
for some k*<2%~! (note that ko = rank (E)<k;,). The following theorem shows
that this identity holds already for the set ?/ZZ:.

Theorem 3.4: Let r,, denote the inball radius of #,, then we have rt, = mApy,
Jor all m=k,. Whenever m=k, and c = (ci,...,cy,) is an inball vector of the
set Ry the E-optimal design is @, goptimal with respect to the prior

B=(B,...,B,) where

(cie)?*!
Bi=

=— I =1,...,m. 3.6
E?":x(cfcl)pﬂ 36

Proof: Observing the reasoning in the proof of Theorem 3.2 we see that the Elf-
ving set S, is a scaled version of the Elfving set #%° and obtain for the corre-
sponding inball radii



48 H. Dette

1
Sp=—F7=Tr forall meN .

T

By Theorem 3.3 of Dette and Studden (1992) we have for m=ky rZ, = mi;,
which proves the first part of the assertion. For the second part let m>k0 and
c=(c},...,c},) denote an inball vector of the set #2 (i.e. ced%% and ||c||}

1
= MAmy)- Using (3.5) it follows that C = vec ;. o) = —(ci, .. sCy) € Rk xm ig
a boundary point of S,, with norm || €||2 = trace (C’ C’) =— ||c||% = Amin- Thus
m

the matrix C is also an inball vector of S,, and we obtain from Theorem 3.4 of
Dette and Studden (1992) that the E-optimal design ¢ is an optimal design for
C'0,. This implies that the E-optimal design is also @, soptimal with respect

1 1 .. .
to the prior f* = —,...,— ] and the quantities of the Elfving Theorem 2.1 are
m m

! (!=1,...,m). By an application of Theorem 2.4 it
min

now follows that for every p € (—,1] the E-optimal design is also ¢ p,p-optimal
with respect to the prior 8= (8, ...,8,,) given in (3.6). |

given by ;=1 and 4, =

Using the above results the F-optimal design can now be determined in the
following way. In a first step we have to find an inball vector ¢ and its supporting
hyperplane of the set %z: (note that the number k; = rank (£) in the Theorem
3.4 is unkown but always <k;). This problem is equivalent to the calculation of
the inball vector and its supporting hyperplane of the set Sk (which is a scaled
version of %% ) In a second step we have to find the &¢ ,g-optlmal designs with
respect to the pnor B in (3.6) using the results on &¢ ﬁ—optlmahty By Theorem 3.4
the E-optimal design has to be among these de51gns In general the computational
difficulties in this part will depend sensitively on the choice of the parameter p in
the optimality criterion. Usually the cases p = 0 (for p = 0 the criterion is invariant
with respect to different scalings of the vectors ¢;) and p= —1 (for p= —1 all
numbers y; in Theorem 2.1 are equal, see Remark 2.3) can be treated easier com-
pared to other choices of p. A couple of examples for this procedure in the case
p = —1 can be found in Dette and Studden (1992) and we will present here a simple
example where the choice p = 0 might be useful.

Example 3.5: Consider the weighted polynomial regression model f(x) = Vb%—x?2
X(1,x) on the interval [—b,b] where b>l/-2_. Observing (3.3) it is straight for-
ward to show that an inball vector of 91"5* is given by ¢ = (c},c3) = 1/—2_ ©,1,
Vb?-2,0). From standard arguments of optimal design theory it follows that
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there exists a symmetric E-optimal design. Expressing the information matrix of
such a symmetric design in terms of canonical moments of ¢ (see Studden (1980),
p. 1336) we obtain (g, = 1—p,, g4 = 1—py)

b? 0
Mz(c)=< 2 > :
0 b 'qypraq,

Therefore a &g g-optimal design with respect to the prior B=/(b*-1),
(b2~2)/(b2—1)) maximizes the product qz(p2q4)1/ ®*-1) and we obtain for the
canonical moments of the maximizing measure p, = 1/b%, p,=0. Using the
results of Studden (1982) (transformed to the interval [— b, b]) we obtain that the
unique @g g-optimal design puts equal masses at the points —1 and 1 (indepen-
dent of the length of the interval [— b, b]). By Theorem 3.4 this design must be
E-optimal too. n

If the E-optimal design and the matrix E in (3.1) are known it follows from
Theorem 3.1 that the E-optimal design also maximizes every (weighted) p-mean
of the inverse variances of the least squares estimates for the linear combinations
zj0, (I=1,...,kp) and we obtain a new interpretation of optimality for the E-
optimal design. It is remarkable that by Theorem 3.4 the E~optimal design is not

. . . . . 1 1
necessarily 45;’ g-optimal with respect to the uniform prior a* = —,...,—

m’ T m
(although c is an inball vector of the set 2% (m=k,)). The weights of the prior
in the @, s-optimality criterion will usually depend on the length of the com-
ponents c; of the inball vector ¢ = (¢{, .. .,c},)" and these are not necessarily all

equal (see Example 3.5).
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Uniformly Most Accurate Equivariant Prediction Limit

YOSHIKAZU TAKADA

Department of Mathematics, Faculty of Science, Kumamoto University, Kumamoto 860, Japan

Summary: Prediction limits are widely used for reliability problems and other related problems. The
determination of prediction limits has been extensively investigated, but few optimal properties of
these limits have been explored. This paper introduces a concept of uniform accuracy in order to com-
pare equivariant prediction limits and show that the prediction limits used for the normal distribution
and the exponential distribution are uniformly most accurate equivariant.

Key words: Prediction limit, location-scale family, equivariance, uniform accuracy, median unbiased-
ness, s-out-of-m system.

1 Introduction

Suppose that the observed variables X = (X}, ..., X,) and the predicted variable
Y have a joint distribution, which depends on an unknown parameter . We con-
sider the problem of obtaining a lower or upper prediction limit for Y. The discus-
sion of lower and upper prediction limits is completely parallel, and therefore it
is enough to consider the case of a lower prediction limit.

Let 6 = d(X) be a statistic such that

PylY=d(X)=z1—a (1.1)

for all 6, then it is called a lower prediction limit for Y at confidence level 1—a.

For certain parametric classes of distributions such as the normal distribution
and the exponential distribution, several authors have obtained prediction limits.
Good reviews are provided by Hahn and Nelson (1973) and Patel (1989). But few

0026—-1335/93/1/51—61 $2.50 © 1993 Physica-Verlag, Heidelberg
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theoretical justifications for the limits have been considered. See Chapter 5 of
Takeuchi (1975) and Takada (1985). In order to compare prediction limits, this
paper introduces the concept of a uniformly most accurate (UMA) equivariant
prediction limit which is analogous to a UMA confidence limit (see Chapter 3.5
of Lehmann, 1986), and provides the conditions for a prediction limit to be UMA
equivariant for the location-scale family.

Suppose that X and Y have a joint density given by

o "Dl —u)/a, ..., (x,—u) o, (y—u)/o) (1.2)

for some known function f, where 8 = (4, ), with ¢>0, is unknown. Then it
seems reasonable to confine our attention to (location-scale) equivariant predic-
tion limits, that is, é for which

3@X,+b,...,aX,+b)=ad(X)+b (1.3)

for all >0 and all b. The equivariance requires that the prediction limit remains
unchanged under the location-scale transformation. A prediction limit § is said
to be UMA equivariant at confidence level 1—a if within the class of all
equivariant prediction limits J subject to (1.1) it minimizes

Py(Y-y=8(X)

for all >0 and all 4. That is, for every preassigned margin y>0, § (X) (uniform-
ly) minimizes the probability that the predicted variable Y exceeds the lower
prediction limit J(X) by this margin y.

In Section 2 the condition for a prediction limit to be UMA equivariant is
given. In Section 3 it is shown that the prediction limits used for the normal fami-
ly and the exponential family are UMA equivariant.

2 UMA Equivariant Prediction Limit

Let A = y/o. Then it follows from (1.2) and (1.3) that for an equivariant predic-
tion limit &

PoY-yp28(X)={...§ 1 § o fox,.. .,x,,y)dy} dx,...dx, . @.1)
d(x)+4
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In order to obtain the condition for a prediction limit to be UMA equivariant,
we need the following lemma.

Lemma: For an equivariant prediction limit J,

oo

Po{Y—-)’Za(X)]=S"'S{ f Fa@i2 - - 022 7))y
0@z, oy Z,_5,1,0)

oo
+
ERFE 45

Gs(z, 2, .- "zr—Z’y)dy} dzy...dz,_, ,
a(zy, .

»—1,0)

T

where

FA(Z1, .. ~azr—2’y)

Il
ey

{5 t"lf(tz1 +u, .. G2t uttu,u, ty+u+A)dt} du
0

and

GA (21, .. -,Zr-z,)’)

= S {5 t"‘f(tz1+u,...,tz,_2+u,—t+u,u,ty+u+A)dt} du .
- (0

Proof: Changing variables from (x,...,x,) to (4, ...,U,_{,u) With u; = x;—x,
(i=1,...,r-1) and u = x,, it follows from (1.3) and (2.1) that

Py{Y-y= (X))

=§§{ of f(u1+u,...,u,_1+u,u,y+u+A)dy}
P

¥y, - sty 1,0)

Xduy...du,_jdu

=f...§ {T { of fu+u,.. .,u,_1+u,u,y+u+A)dy} du,_,}
0 (o,

v lt,_,0)
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Xduy...du,_,du

0 o
+§S{S { § Sf@i+u, .. u_ +uu,y+u+A)dyt du,_,
- \d(uy,...,u,_,0)

Xduy...du,_,du=1+I1 (say) .
Make the change of variables
Zi=u/u,_y (=1,...,r=-2), t=u_q.
Then

I={...§

2.2)

oo [+-]
X {S 12 s f@zi+u, ... tz,_s+u,t+u,u,y+u+A)dy; dt
0 16z, - - +2,_5,1,0)

Xdzy...dz,_,du

=§"'§ {J( 5 FA(ZI,.--,Zr—Z,y)dy} dZ1...er_2 .
z,. .

2 1,0)
Similarly,
m={...§ { § GA(z1,...,z,_2,y)dy} dz,...dz,_, .
9(2ys .- 32,5, —1,0)

Substituting (2.3) and (2.4) into (2.2), the proof is completed.

‘

Theorem I: Suppose that for any 4 >0
Hy(xyy - 3%0Y)

l

o "D —u)/a, . .., (65— u)/6,(y-u)/ o+ Aydudo

O g

o~ fx,~u)o, . ..,(x,— 1)/ a,(y—u)/ adudo

fi,

Oty

2.3)

(2.4)
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is non-increasing in y for any fixed x;, . . .,x,, and that an equivariant prediction
limit J satisfies

HA(xla .. -)xné(xl! R ] ")) =4

for all xy,...,x,, where A is a positive constant which does not depend on
Xgs ...y X,and Py {Y=9(X)} = 1—a. Then J is a UMA equivariant lower predic-
tion limit at confidence level 1—a.

Proof: Let 6’ be any other equivariant prediction limit at confidence level 1—a.
Then it follows from Lemma that

PolY—y=6"(X)}— PolY—y = (X))

9z, .. 2.2 1,0)
=5...5 5 FA(Zi,---,zr—Z!y)dy
6’(11, o2, 1,0)

a(z), -1,0)

CeaZg
|
0'(2y, .- 32,_5, —1,0)

Gz, - .,z,_z,y)dy} dzy...dz,_, . (2.5)
It is easy to see that

FA(zl! .. ',zr—Z’y)/FO(ZI) .. -er—z,)’) = HA(ZI’ e s Zp_2s 1,0,.)/)
and

Ga@Zis - 122 Y)Y/ GoZ1s -+ 52r-2,¥) = Hp (24, - . 5122, —1,0,7)

where F, and G, are F, and G4 with 4 = 0. Hence it follows from the conditions
of the theorem that the right hand side of (2.5) is bounded below by

324y - 452,_9,1,0)
AS.‘.{ S FO(ZI’-”’zr—Z!y)dy
0'(zgy .., z,_5,1,0)

5(11; BRRTY A9 P
+
5’(z1. PRRYY AN -1,0)

1,0)
Go(zys - .,z,_z,y)dy} dz,...dz,_,

= APy (Y= 5" (X))~ Py(Y=25(X))=0 ,
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which completes the proof.
Similarly for the UMA equivariant upper prediction limit, the following result
holds.

Theorem 2: Suppose that for any 4<0, H,(x, . . .,X,,») is non-decreasing in y
for any fixed x;,...,x,, and that an equivariant prediction limit J satisfies

HA(xly . -axn(s(xh . "xf)) =2

for all xy,...,x,, where A is a positive constant which does not depend on
Xgs .- -y, and Pp{Y <d(X)} = 1—a. Then ¢ is a UMA equivariant upper predic-
tion limit at confidence level 1—a.

The case a = 1/2 is of particular interest. If J satisfies

PolY<0(X)}=PylY=0(X)} = 1/2

for all 6, then it is said to be a median unbiased predictor for Y. See Takada
(1991). Since for y;>0 and y,>0

Pol= 1 <Y=0(X)<y) = 1=PolY+p =6 (X)} - PplY-y,26(X)} ,

the following result (stated in Lehmann 1986, page 95) is an immediate conse-
quence of Theorems 1 and 2 for the particular case a = 1/2.

Theorem 3: Suppose that for any fixed x,...,x,, Hy(x{,...,X,,») is non-in-
creasing in y for 4>0 and non-decreasing in y for 4 <0, and that a median un-
biased equivariant predictor & satisfies

Hy(x;y .. s X0 0(Xp, .. %) = A

for all xy,...,x,, where A is a positive constant which does not depend on
Xis - . .,X,. Then & maximizes the probability

Pol=y1<Y-3(X)<y)

for all y;>0, y,>0 and all  within the class of all median unbiased equivariant
predictors (X).
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In other words, for any preassigned margins y, >0, ,>0, the predictor & (X)
(uniformly) maximizes the probability that the predicted variable Y lies within the
bounds J(X)—y, and J(X)+ y,.

Remark 1: Though the results here were derived for the location-scale family, the
proofs given in this paper hold for a family of distributions which is invariant

under a certain group of transformations, e.g. the location family and the scale
family.

3 Examples

This section applies the results obtained to the normal distribution and the ex-
ponential distribution. In order to compute H,(xy, .. .,X,,y), make the change
of variables from (u, o) to (z,0) with u = y—oz. Then

Hy(x,...,x;,y)

[ §o A -yVa+z,....0-y)/a+2,2+A)dzdo
_ =0 . (3.1)
s s a—(r+1)ﬂ(x1 -y)/6+2,...,(x,—y)/6+2,z}dzdo

-0 (

3.1 Normal Distribution

Suppose that X, ..., X, and Y are iid according to the normal distribution with
mean u and variance ¢, where 6 = (4, @), with >0, is unknown. From (3.1) it
is easy to see that

§ o~ Vexp(~[r(r+1)"' (x—y)/o- 4)*+5%*/0%/2do
0
Hy(xy...,x,p) =

§ o~ D exp{—[r(r+1)" (x—y)¥/a*+ 8% % /Jdo
0

, , 172
with #= Y}, x/r and S= ( Y (x,~—x)2> , and hence

i=1 i=1
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O e 8

t"lexp{-[r(r+1)"'ut+A4)* +1%/2)dt
HA(xh---sxr’y)= ’
t"lexp (= [r(r+1) " (ut)* +1?*)/2)dt

O e §

with u = (y—%)/S. Then H, can be written as
Hy(xy, .. %))

=exp{-r(r+1)"14%/2) T exp {—sign (W) r(r+1)"'4t)g,(t)dt , (32)
0

where sign (#) denotes the sign function of ¥ and

t"exp{—[r(r+1)" 12 +1t*/u?/2)

gu(t) =
t"exp{—[r(r+1)" 12+ 2/u¥/2)dt

O g

Note that for O<u<u’ g, (¢t)/g,(t) is increasing in t>0, and for u<u’<0
g,(t)/g,(t) is decreasing in t>0. Hence it follows from (3.2) that H,(xy,...,
X,,») is non-increasing in y for fixed xy, ...,x, and 4>0 (e.g. Lemma 2 of Leh-
mann 1986, p. 85) and that H,(x;, .. .,x,,X¥+cS) does not depend on xy, ...,x,,
where c is some constant. Hence from Theorem 1

0(X)=X+cS

is a UMA equivariant lower prediction limit at confidence level 1 —a if the con-
stant c is chosen such that P{Y=X+cS}=1-a.

In particular for @ = 1/2, ¢ =0, so that X is median unbiased. It is easy to
see that the conditions of Theorem 3 are satisfied for X. Hence X maximizes the
probability Pyf—y,; < Y- (X)<y,} for all y,>0, y,>0 and all  within the class
of all equivariant median unbiased predictors J (X).

Remark 2: It can be shown that X is also optimal in the above sense within the
class of all location equivariant median unbiased predictors.
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3.2 Exponential Distribution

Let X;<X,<...<X, be the order statistics in a sample of size n from the
exponential distribution with density function o ~!exp{—(x—u)/a), x>u
(E(u,0)), where 0 = (u,0), with ¢>0, is unknown. We consider two prediction
problems based on X = (X, ..., X,) (1<r=<n).

Consider, first, the problem of predicting the s-th observation in a future in-
dependent sample of size m from the same distribution (s-out-of-m system). It
follows from (3.1) that

Jor i exp{—(S'—n(y_xl))/a}{ f e""zg(z+A)dz} do
-x,)/
Hyxq,....,x,y)= 0 0-x)/a

oo

°§°a-<'+1>expz—(S"—n(y—x1))/al{ f e“"‘g(z)dZ} do
0 0-x,)/ o

r
for x;<...<x, where §= ¥ (x;—x)+(n—r)(x,—x;) and g(z) is the density
of Y under E(0,1). Then =2

e”ATt’“lexp[—t(l—nﬁ)}{ °f e"‘zg(z)dz} dt
t

0 i+4

HA(xh .. wxr,y) =

oo

(j) t" lexp{—t(1-nit)) {T e—"zg(z)dz} dt
ti
with & = (y—x,)/8, so that H, can be written as
Hy(xy,....%,y)=e™ g](j{(l —P@+4))/(1-P@)ps(H)dt , if >0,
=e"“°(§:g1—sv(—t+A)}q,;(t)dt, if <0,

where ¥ denotes the distribution function of the s-th order statistic in a sample
of size n+m from E(0,1),

pat)=t"'exp{—t@ ' -n)(1- W(t))/of t"lexp{—t@ ' -n)(1-P@))dt
0

and
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gz (t)=t"expft(i! —n)y/f t"lexplt(@'-n)dr .
0

Note that for 0<@#i<i@’ p;(t)/ps(t) is increasing in >0 and for fi<@i’'<0
q;(t)/q;(t) is decreasing in #>0. Since ¥ is a distribution with increasing failure
rate (see Theorem 5.8 of Barlow and Proschan, 1975, p. 108), it is easy to see that
(1-¥(@+A4))/(1- ¥(@))is non-increasing in ¢ > 0 for 4 > 0. Hence it follows from
(3.3) that H,(xy, .. .,Xx,,») is non-increasing in y for fixed x;<...<x,and 4>0
and that H,(xy, . ..,X,x, +cS) does not depend on xi, ...,x, if ¢ is some con-
stant. Then Theorem 1 implies that

3(X)=X;+cS

is a UMA equivariant lower prediction limit at confidence level 1 — a if the con-
stant c is chosen such that Py{Y= X, +cS}=1-a.

In particular for a = 1/2 & becomes median unbiased. It is easy to see that
the conditions of Theorem 3 are satisfied with §. Hence & maximizes the prob-
ability Pyf— y; < Y- d(X) <y} for all y;>0, y,>0 and all 8 within the class of all
equivariant median unbiased predictors J(X).

Next consider the problem of predicting the unobserved value X (r<s=<n) in
the sample. It is well known that the conditional distribution of X given X is the
same as that of the (s—r)-th order statistic in a sample of size n—r from
E(x,,0). Hence from (3.1) it is easy to see that

{0~ Ve=5piy—x,)/0+A}do
0
HA (x19 .. -axr’y) =

[ 0="*De=Sni(y-x,)/0)do
0

for x; < ... <x,<}y, where h is the density function of the (s—r)-th order statistic
in a sample of size n—r from E (0, 1). Then

Hy(xy,y ..., x,p)=§ t" e "h(ta+A)dt/§ " e~ h(td)dt
0 0
with 4 = (y—x,)/S, and hence

Hy(xy, .. X)) = ‘S){h(HA)/h(f)lfa(t)dt , G4
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where
L@)=t"te " n@)/( t e h(t)dt .
0

Note that for 0<d<da’ f; (¢t)/f;(t) is increasing in #>0. Since A(t+4)/h(¢) is
non-increasing in ¢>0 for 4>0, it follows from (3.4) that H,(xy, .. .,X,,») is
non-increasing in y for fixed x;<...<x, and 4>0 and that H,(xy,...,x,,
x,+cS) does not depend on xi,...,x, if ¢ is some constant. Hence from
Theorem 1

0(X)=X,+cS

is a UMA equivariant lower prediction limit at confidence level 1 —a if the con-
stant c is chosen such that PyX,>X,+cS}=1-a.

In particular for a = 1/2, § becomes median unbiased. From (3.4) it is easy
to see that the conditions of Theorem 3 are satisfied with §. Hence § maximizes
the probability Py{—y; < X,—d(X)<y,)} for all y;>0, y,>0 and all § within the
class of all equivariant median unbiased predictors J (X).

Acknowledgement: The author wishes to thank the referee for his helpful suggestions and comments.
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Le Cam Lucien, Lo Yang Grace: Asymptotics in Statistics — Some Basic Con-
cepts. Springer, Berlin Heidelberg New York London Paris Tokyo Hong Kong
1990, p. viii+ 180, DM 58,

This book is a new and shorter (compared to [2]) account of Le Cam’s asymptotic
theory of experiments and related topics. Le Cam’s work, which was developed
during many years, is centered on a theory which tries to replace complicated sta-
tistical models by simpler ones, normal ones for instance, by approximating the
given model (experiment) by the simpler one, mainly when the number of obser-
vations becomes large. Therefore this is essentially an asymptotic theory which
heavily relies on local properties of the likelihood function. The authors are ob-
viously perfectly aware of the problems which are related to asymptotics and the
practical relevance of such results. They, indeed, warn the reader against the
faithful use of these properties at the beginning of Section 6. These warnings are
clearly sensible but they sound rather strange in the middle of a book which is
almost entirely devoted to asymptotics. I believe that the natural location of such
a warning about the limitation of the asymptotic theory would have been the in-
troduction. Anyway, what would be left of statistics if we would give up asymp-
totic theory, including all the classical approximations and the applications of the
central limit theorem.

Le Cam’s work is an essential contribution to the asymptotic theory of
statistics. He is well-known for his introduction of contiguity and many
developments connected with local asymptotic normality, differentiability in
quadratic mean and local asymptotic minimax theorems, but this is only the tip
of the iceberg. Many other topics are developed at length in [2] but in such a
framework (use of L- and M-spaces instead of the usual probabilistic framework,
massive introduction of delicate topological tools) that most of it is certainly not
accessible to the average statistician, even the theoretical one.

This book is clearly an attempt to make the essential parts of this theory ac-
cessible to anyone who wants to deal with asymptotics. Of course, it is a short
book and cannot be compared with [2], but it gives a very nice account of various
(and probably the most important) interesting aspects of Le Cam’s theory. The
most noticeable difference with [2] and a crucial one is the fact that this version
is radically more accessible. It avoids the heavy topological machinery and deals
with ordinary probabilities. Although it is supposed to be a new version of [1],
I found it quite different, much more attractive, and most of the time, easier to
read. One can easily discover the main ideas and the principal topics are clearly
treated. I suppose that the rewriting benefited from the presence of a co-author
and a visible effort to make the book more attractive. I must say that I found it
a success and this version is much closer to a textbook than [2]. Nevertheless, even
if the authors, in their introduction, mention that they “have attempted to present
a few concepts and tools in an elementary manner”, I am convinced that most
readers will not find the book so “elementary”. Indeed if a few parts are, some
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are certainly not and the following remark on page 161 gives a better idea of the
general level of the book: “except for various details that should be filled in, we
consider that Theorem 1 has been proved”. I hope that it will also be an incentive
for some people to make the additional effort of reading [2] or at least some parts
of it.

Of course there is some unavoidable drawback for this reduction. One cannot
divide the number of pages by four, use a larger printing size without some loss.
The content of the book has been substantially reduced. Also, some delicate
points which would need rather long developments, are only sketched or mention-
ed without proofs with reference to [2]. This phenomenon is more or less impor-
tant, depending of the sections. Most of the essential points are completely (or
almost completely) treated but I suspect that when one comes to some extensions,
remarks and various digressions, then only the reader who is already familiar with
Le Cam’s work will fully benefit from those pages.

After a short introduction which briefly describes the content of the book, the
authors come to some important definitions of Wald—Le Cam’s theory of ex-
periments. They hopefully avoid the use of L- and M-spaces, nevertheless the con-
cepts of deficiency and related results concerning transitions are not elementary
and most results refer to [2]. Proofs are only sketched and I hope that this rather
abrupt beginning will not discourage the readers. Actually, the remainder of the
book will make a moderate use of these results. One could just have a quick look
at this chapter and come back to it later. A complete understanding of what is
going on really requires a solid knowledge in topology and some familiarity with
Le Cam’s work.

The reader should certainly feel happier with Section 3 where the important
concept of contiguity is developed in great detail together with the proofs.
Classical and very useful properties of Hellinger distances are also derived. I only
found a few misprints in the book but two on page 21 where f© a should be f=a
and similarily for a & e. I would have preferred if convergence of distributions
were defined more precisely (not only compactness) on page 21. These are a few
examples of some of the difficulties an unprepared reader could find on his way
but he should certainly not bother too much and persevere.

Section 4 is a milestone and will be used frequently in the sequel. It derives
the main properties of the asymptotic behaviour of likelihood ratios when the
corresponding product probability measures are reasonably close. This section is
a new version of Chapter 2 of the original Montreal book and proofs are given
in detail although they are rather technical.

Section 5 is devoted to the description of locally asymptotically quadratic
families and the construction of relevant estimates. Everything is nicely explained
with clear notations. Once again proofs are long and rather technical but given
in great detail and the results are by far more general than the (more or less)
classical asymptotic treatment of MLE for LAN families. The end of this section
introduces more sophisticated results but references to [2] are limited to extensions
and do not concern the essential results. There is also an excellent list of references
and historical remarks.
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Section 6 begins with a warning against illegitimate use of asymptotic theory.
As I already mentioned, I found it strange to read it here where it only deals with
sequences of i.i.d. variables although those criticisms are certainly valid for the
largest part of the book. Properties related to differentiability in quadratic mean
and local asymptotic normality are studied in detail. They offer an up-to-date
alternative to classical Cramér conditions and the Cramér—Rao inequality as
well. Unfortunately, several proofs refer to [2]. I regretted that no proof is given
of Lemma 1 in 6.3. Examples are very interesting but sometimes their treatment
is rather allusive. 6.4, which gives nonparametric extensions, will probably look
harder as well as 6.5 and 6.6 unless the reader is already familiar with this type
of arguments. It would also be useful to compare this section with the treatment
of DQM and LAN families given by Ibragimov and Has’minskii [3].

Section 7 deals with Bayes estimates, developing both positive and negative
results. The authors prove asymptotic normality of posterior distributions and a
Bernstein—von Mises theorem in detail. Some counter-examples are also given at
the end.

To conclude, 1 found this short book extremely attractive and interesting
although not really elementary. Actually its level is rather unequal but some good
knowledge of topology and measure theory is clearly required. The concepts are
generally easy to understand but not all proofs are easy to follow, especially when
they refer to [2]. Many results are not proved and some are only sketched but if
the extensions often suffer from these restrictions, the main points are treated in
reasonable detail and the important ideas are very clearly emphathized.

I believe that this book will contribute to make Le Cam’s theory popular
among much wider circles since it is much more like a textbook than [2]. It
develops the basic principles of asymptotics for parametric models (although it
is not at all restricted to parametric theory) and I am convinced that its content
should now be part of the cultural background of every mathematical statistician.
I especially mention Sections 3 and 4 and the first parts of Sections 5, 6 and 7.
Some other more delicate parts like Section 2 or 6.5 will, perhaps, be an incentive
to read [2] and other related references.
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Godehardt E: Graphs as Structural Models. Advances in Systems Analysis, Vol. 4.
Vieweg, Braunschweig, 19881, 19902, p. X +214, DM 48,~

This is a book on classification and clustering methods and at the same time a
detailed account on classical and recent results in the theory of random graphs
and multigraphs. The intimate combination of both is a most interesting feature
of this monograph.

Cluster analysis provides methods for subdividing a set of objects into a small
number of classes which should be homogeneous and well separated with respect
to a given set of data, thereby creating a typology of objects or a structured
classification like a hierarchy or a dendrogram. It is well known that this domain
has undergone, during the last three decades, a rapid development, and many
clustering algorithms have been proposed. The first two chapters of Godehardt’s
book review these more or less classical methods and discuss their role in the
general framework of multivariate statistics and exploratory data analysis.

The main part of the monograph is devoted to the presentation of graph-
theoretical classification methods and to the investigation of related probability
models with the idea to use them for testing the randomness of a clustering. The
most basic model starts with an nxn matrix of dissimilarities dj; between pairs
of objects i and j and a dissimilarity threshold d >0 which distinguishes between
similar and dissimilar pairs. Thereby we obtain a similarity graph G = G(d) with
a link joining i/ and j (i+#/) iff d;;<d. The connected components, cliques or
other subsets of G may be considered as classes or clusters of objects where the
level d characterizes the strength of similarity in the classes and can be modified
appropriately. The reconstruction of these classes is the aim of many com-
binatorial, recursive or hierarchical clustering methods like single and complete
linkage, (weak or strong) k-linkage, k-overlap, B,-clustering etc.

The new and major issue in Godehardt’s monograph consists in using
multigraphs: He assumes that for the same n objects ¢ different similarity graphs
G;...,G, are given describing ¢ different features, variables or aspects of the ob-
jects (possibly all graphs of the previous type G(d), or defined separately by using
metric and nominal variables) and can be considered to be stacked one over the
other. These graphs are combined into a single graph G where i and j are ‘s-linked’
iff they are linked in at least s of the ¢ given graphs (1 =s=<t a given integer). Thus
we are back to the former model, but with an additional similarity or strength
parameter s, and the previous cluster definitions apply with a modified notation
(s-components, (k, d, s)-clusters, (k, s)-clusters etc.). Chapter 3 provides special
algorithms for the construction of these clusters and of the related dendrograms.

The chapters 4 to 6 are devoted to probability models in this graph-theoretical
framework and to the problem of assessing the validity of classifications or
clusters obtained by some graph-theoretical algorithm. After a brief review of
other probabilistic models, the random graph and random multigraph models are
introduced (e.g. the binomial model, the hypergeometric model, the random per-
mutation model). Their mutual relationship and their practical relevance for
clustering purposes are discussed (e.g. the equiprobability assumption and the
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triangle inequality). The classical random graph theory of Erdés, Rényi, Ling and
others for G = I',y is reviewed and, as an original contribution, generalized to
the case of random multigraphs G = I',,,; (Where usually the hypergeometric
model is adopted with n objects and N randomly distributed edges). This in-
vestigation results in various exact or asymptotic formulae for combinatorial
numbers, probabilities, expectations or variances for typical clustering-related
graph characteristics for Iy, e.g.: the number of trees or s-connected graphs,
the s-degree of an arbitrary vertex, the number and size of s-connected com-
ponents, the distribution of s-isolated vertices, the number of s-isolated trees of
size m. The asymptotic results suppose that n— o with N=N(n)— o at a
specified rate. We learn, e.g., that for large n, I, consists almost surely of only
one giant s-component, that the number of s-components (minus 1) has an
asymptotic Poisson distribution with parameter A = e~ provided that N(n)
behaves as n?~!5-(c+log n+0(1))”* for n— o; on the other hand, N(n) must
grow as fast as n%~%5-(c+0(1))!”* in order to guarantee asymptotically at least a
finite number of s-fold connections in I7,,. Other limiting cases for N(n) are
considered as well and related to the existence of bounded, but positive limits for
the expectation of s-degrees, s-trees, and s-saturated connections. — These
Chapters provide an alternative to other probability-based tests for random
clustering, e.g. mixture models or point processes. However, whilst these latter
methods are primarily based on a clustering situation, the random (multi-) graph
model starts from an equidistribution hypothesis without formulating a cluster-
ing alternative; therefore power properties cannot be investigated in this model.

Many proofs and formulae have been collected in Chapter 6 which has been
added for the second edition of the monograph. This chapter is particularly
useful for practical computation. Section 6.7 provides some guidelines and tables
which demonstrate the precision of the asymptotic approximation in the finite
sample case.

Whilst the emphasis of several chapters lies more on the theoretical side (many
results are taken from the author’s dissertation and habilitation), it discusses
many practical aspects and applied problems, especially in the two introductory
chapters (about 70 pages) and in the concluding Chapter 7 where the previous
results are applied to the analysis of three data sets from a medical investigation
and where the typical exploratory and inferential steps are exemplified in full
detail.

The book is a valuable source for classical and recent results in random graph
theory and clustering. It contains an up-to-date bibliography with 451 entries (but
unfortunately not a subject index) and is written in a very readable and illustrative
way. Therefore it can be highly recommended for researchers and practitioners in
mathematics, probability and statistics.

Aachen H. H. Bock
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Summary: This paper presents a method for the estimation of parameters of random closed sets (racs’s)
in R? based on a single realization within a (large) convex sampling window. The essential idea first
applied by Diggle (1981) in a special case consists in defining the estimation by minimizing a suitably
defined distance (called contrast function) between the true and the empirical contact distribution
function of the racs under consideration, where the most relevant case of Boolean models is discussed
in details. The resulting estimates are shown to be strongly consistent (if the racs is ergodic) and
asymptotically normal (if the racs is Boolean) when the sampling window expands unboundedly.

Keywords and Phrases: Random closed set, empirical contact distribution, point estimation, Boolean
model, Minkowski functionals, asymptotic normality.
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1 Introduction

The theory of random closed sets (racs’s) provides an appropriate tool for
describing randomly distributed and irregularly shaped geometrical objects in
plane or space. Special classes of racs’s like germ-grain models, fibre and line
processes and random mosaics represent suitable models and allow a reasonable
interpretation of such phenomena in several fields of application (e.g. material
sciences, texture analysis, biology), see e.g. Stoyan et al. (1987), Hall (1988).
Hitherto statistical analysis of such models mainly rests on “the method of
moments” and consists essentially in determining statistical quantities of first and
second order (for example, of the specific area, boundary length and connectivity
number) or of some empirical distance distribution functions providing station-
arity and isotropy of the considered model, see Stoyan et al. (1987) [Sect. 6.3].
It is not surprising that the Boolean model (Poisson grain model) in particular
that with circular grains is one of the most treated models, see Dupac (1980),
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68 L. Heinrich

Diggle (1981). Till now only a few work has been done in the field of asymptotic
properties of the estimators, see Baddeley (1980) and Mase (1982).

The main purpose of this paper is to establish a rather general method for
obtaining strong consistent estimators of parameters of stationary ergodic racs
which turn out to be even asymptotically normally distributed in the most
relevant and comparatively simple case of Boolean models. Our approach
generalizes an earlier quite natural idea of Diggle (1981) who determined in a
particular Boolean model point estimations of the unknown parameters by
minimizing the integrated squared distance between the true and estimated
contact distribution function (cdf). For doing this we study in Sect. 3 some
properties of the cdf of a stationary ergodic racs and the asymptotic behaviour
of its empirical counterpart. Sect. 4 contains the proof of the strong consistency
of minimum contrast (mc-) estimates in the general case and the consequences
arising in the special situation of Boolean models. The proof of asymptotic
normality for mc-estimates in Boolean models is carried out in Sect. 5 based on
an approximation of this model by m-dependent fields. The final Sect. 6 discusses
two examples in some detail demonstrating the feasibility of the suggested
estimation procedure. Some concluding remarks concern possible improvements
and proposals to extend the applicability of our mc-estimation procedures.

Next in this section we introduce some basic facts from theory and statistics
of racs and define mc-estimates via a general family of contrast functions and a
specified one expressing the “contrast” between the true and the empirical cdf.

Aracs Z in R%, d > 1, is defined to be an (U, 6,)-measurable mapping from a
hypothetical probability space [£2, U, P] into the measurable space [#, a,] of
all closed subsets of R? equipped with the o-field generated by the families
Fx={FeF FnK #0}, Ke A, where A denotes the class of compact
subsets of R?. We recall the well-known fact that the distribution P, induced on
[#, o,] by Z is entirely determined by the hitting function T,

TK) = P)(#F) =P(Z K #0) for Kex ,

see Matheron (1975). Throughout we only consider stationary racs’s Z, i.e.
Z+x<Zforall xe R?, where here and henceforth £ (i) means equality
(convergence) in distribution.

The cdf Hg(r), r = 0, of a stationary racs Z is defined by using a so-called
structuring element B € X" containing the origin 0:

PZnrB=9 _ 1-T,rB)

Hy(r):=P(ZnrB#0|0¢Z)=1— PO¢Z) = =,

(1.1)

where p := E|Z N[0, 1]%| = P(0 € Z) = T,({0}) is the volume fraction of Z (|-
denotes the d-dimensional Lebesgue measure). We shall see in Sect. 3 that
monotonicity of Hy and Hg(oo) =1 hold in general only under some addi-
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tional conditions. Another important quantity for describing the second-order
structure of an isotropic racs Z is the covariance C(r) defined by

C=P0eZ,xeZ)=2p— T,({0,x}) with r=|x]| .

From now on we suppose that our stationary racs model Z incorporates a
vector 3 = (95, 9, ..., &) of parameters which lies in a Borel set @ = R**!,s > 0.
In other words, the distribution P, belongs to a parametrized family P :=
{P,, © € &} of probability measures on [#, g,]. We put Py = P,, Ty = T, and
write Hy(r, 9), p(9), C(r, ) instead of Hg(r), p, C(r). Our method for estimating
the unknown 3 € @ is based on a single observation of Z within a sampling region
A, = R?, where {4,, ne N} is a convex averaging sequence of subsets in R?, i.e.
A, is compact and convex, A, < A4, for ne N and sup{r > 0: b(x, r) < A, for
some x € A,} 1 00 as n — oo, where b(x, r) = {y e R%: ||x — y|| <r}, see Daley &
Vere-Jones (1988).

The definition presented below modifies the classical concept of mc- estimation
in Pfanzagl (1969) and its extension to stochastic processes in Miihleis & Wittwer
(1980) generalizing earlier approaches of Walker (1963) and Ibragimov (1967).

Definition: A family of o;-measurable functions U,(z, (1) N A)|F [ —0, +0],
1€ O° (O° = closure of ©), ne N, is called a family of contrast functions for
B = {P,, t € O}, if there exists a function V|® x 6+ R! such that

Pg({F e lim Uy(r, Fn A,) = V(S, 1:)}) =1 forall 3€6,t1€6°,
1.2)

and
VS, < V(@ 1) forall 3€6,7€0°53#1 . (1.3)

A o,-measurable mapping 3.(()n A)|F — 6° is called mc-estimate w.r.t. the
family of contrast functions {U,(t, ()" 4,), 1€ 6, ne N}, if

U,,(.@,,(F NnA),FnA,)=inf U(t,FnA,) forall Fe¥% . (1.4)
te Oc

For brevity put U,(t) = U,(t, Zn A4,) and §, = §,(Z ~ A,) considered as
random variables on [, U, P].

There are various possibilities of constructing families of contrast functions
for stationary ergodic racs. Before discussing some special cases of contrast
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functions we formulate a set of conditions which ensure strong consistency of
mc-estimates.

Lemma 1: Let {U,(z, (") N A,), T € ©°, n € N} be a family of contrast functions as
defined in Sect. 1 and assume the following conditions are satisfied:

@ is compact , (1.5)
V(8, *) is continuous on O for all 3 O (1.6)
For any ¢ > 0 there exists a 6 = d(¢) > O such that, for all € O , (L7

lim Pg( U { sup |U,(ty, FNA,) — Uy(t,, FN A,)| > s}) =0.

m—w n>m 11,1260t ~1,]| <8

Then the sequence {9,,(F N A,), n € N} of mc-estimates defined by (1.4) is strongly
consistent, i.e.

Ps({nm .9,,(FnA,,)=8})=1 forall 3e6 .

An appropriate way for obtaining a contrast function is the use of certain basic
functions in statistical analysis of racs (e.g. Hg(r) C(r)) in order to define a distance
measuring the discrepancy between such function and its empirical counterpart
obtained from a single observation of Z in A4,. To execute the estimation
procedure in an effective way it is essential that at least for some classes of racs’s
an analytical expression of these functions is known and their empirical versions
can be computed from the observed set by using an automatic image analyzer.

Examples:
UD () = | (Hy(r, 1) — Hp o)) Gldr)
0
and

UP@) = | (C(r, ) — Cy(2Gdr) ,
1]
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where r, > O s a suitable constant, G(-) is a finite weight measure on [0, r,] with
G({0}) = G({ro}) =0,

1— Ay ) = -1—;—%@ for r>0 with p,= 'ZIZ"’I""' , (1.8)
o) = EECOE 0 = e x4 )

and
e =IEoACNNZ =D g is0 (1.9)

|45

Remark 1: The estimators (1.8) and (1.9) are completely determined by information
gained from Z inside of A, whenever 0 < r < ry (minus-sampling). In case one
replaces in (2.4) resp. (2.5) the eroded window A7°® resp. A%®™ by A, the
corresponding estimators of Hpg(r) resp. C(r) are computable only if information
Jrom outside of A, is available (plus-sampling). We mention the fact that all

asymptotic properties established in Sections 2 and 3 remain in force under these
changes.

The empirical functions I?B,,,(r) and C,(r) can indeed be computed in a
relatively simple way and they prove strongly consistent and (asymptotically)
unbiased provided the observed racs is ergodic. The estimates .9,, are obtained in
this case by a “least squares” method to minimize U{" and U!?, respectively.

Let Z = { J;cn(Z; + X;) be a stationary Boolean model (also known as Poisson
grain model, see Stoyan et al. (1987), Hall (1988) and Mecke et al. (1990) for details)
— one of the best studied and most used racs models. Here {X;, i € N} forms a
stationary Poisson point field in R? with intensity 0 < 4 < o0 and {Z,, i € N} is
a sequence of i. i. d. copies of a random compact set Z, (called typical grain) in
R? being independent of the Poisson field. If, in addition, Z, is convex and its
distribution is invariant under rotation about the origin (entailing the isotropy
of Z), then Hyg(r) is analytically expressible as follows:

Hy()=1- exp{—wi i (Z)r*iﬁm(zo)m_kw)} for r>0, (1.10)

d k=1

for an arbitrary convex structuring element B e ¢, where w, = |b(0, 1)| and
W.(K)fork =0, 1,..., d denote the Minkowski functionals of a convex body K,
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for example: W,y (K) = |K|, dW,(K) = (d — 1)-dimensional Lebesgue measure of
0K and W,(K) = w,. In the particular case of d = 2 this gives: W,(K) = area of
K, W,(K) = % boundary length of K and W,(K) = =.

For the volume fraction p and the covariance C(r) the following expressions
can be obtained:

p=1—exp{—AE|Z|} and
() = p* + (1 — pPLexp{AE|Zo N (Zo — %)} — 1] . (L11)

The shape of Hg(r) and p and the inequality |In x —In y| > [x — y| for
0 < x, y < 1 (which sharpens the contrast) motivates to introduce the contrast
function

Cro (1 — Hy(r, D)\ ( 1—p(r))2
U,(t) = g <1n—————1 —ﬁB,,,(r)> G + go{ In-—- (1.12)

for some g, > 0.
In the remaining part of this paper we shall study this distance function and
investigate the asymptotic properties of the corresponding mc-estimates.

2 Results

Theorem 1: Let Z be a stationary racs with distribution Py, 3 € @. Assume that the
following conditions hold:

6 < R**!, s > 0, is compact. 1

For each § € O, Py is ergodic, that is (see Heinrich (1992b)) 2.2)
. 1

lim [ (1= Ty((K, + x)UKj,))dx

n—wm |An| A,

=1 - T(K))(A - Ty(K,)) for K,,K,eX .

B e X is star-shaped, i.e. rB < B for every r € [0, 1]. (2.3)
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For all 8, 1€ 0, 3 # 1, p(9) # p(7) (if go > 0) or there exists some Borel (2.4)
set I = 1(9, 1) = [0, ry] with G(I) > O such that Hg(r, $) # Hpg(r, 7)
forallrel.

For each r € [0, ry], T+ Hg(r, 1) and T p(t) are continuous with (2.5)

sup Hg(ro, 1) <1 and supp(r) <1 .
€6 1e6d

Then the family of functions defined by (1.12) is a family of contrast functions
satisfying the conditions of Lemma 1 with

1 — Hyg(r, 9) 1- p(3)>2 2.6)

r 2
V(9,1) = (f(lnl—_E(T,T—)) G(dr) + g, <1n —

which in turn implies the strong consistency of the mc-estimates {9,,, ne N} wrt.
the contrast functions (1.12).

In case of stationary Boolean models the conditions of Theorem 1 take on a
relatively simple form. To this end write $ = (3, 0) € (0, 0) x R® for the para-
meter vector, where

P? = distribution of the typical grain Z,
9, = intensity of the underlying Poisson point field

w6 = | WyK)PPdK) < o for k=0,1,...,d—1 .
A

Corollary 1: Let Z be a stationary Boolean model in R? with intensity parameter
9, € O, = (0, o) and convex compact rotation-invariant (about the origin) typical
grain Z, having distribution P, 6 € 0* c R°.

Further, assume that

0 = O, x O* is compact, 2.7
B is a convex compact subset of R? containing 0 with 2.8)

I:'=min{k > 0: W(B)>0} <d—1,
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For all(8, 6), (%, 6') € Oy x 0*: (3, 0) = (%, 0) iff $ow,(0) = Fowi(0") (2.9)
Jork=1,...,d — 1and (if go > 0) owo(6) = Fywe(0') ,

(If Wo(B) > 0, go > 0 it suffices to require that, for all 0, 6' € ©*: 0 = ¢’

iff wi(0) = wi(0) fork =0,1,...,d — 1)

The mappings 8'+—w(0'), k =0, 1,...,d — 1, are continuous. (2.10)
There exist d — | distinct pointsry, ..., r,_, € (0, ry) such that (2.11)

min G((r; —&r;+¢€)>0 forany £>0.
1<j<d-1

Then the sequence of mc-estimates 9, = (90,,,, 0,) w.r.t. the contrast functions (1.12)
is strongly consistent as n — co.

The dependence structure of a Boolean model which is determined by the
independence properties of the underlying Poisson point {X;, i € N} field and
the extent of the random compact set Z, can approximately be described by
m-dependent random fields with large enough m, see Baddeley (1980), Mase
(1982), Hall (1988), Heinrich (1988a,b). Based on the central limit theorem for
such type of random fields and the mentioned approximation technique we are
able to establish asymptotic normality of the mc-estimates §, = (90,,,, 6,).

Theorem 2: Assume that the conditions of Corollary 1 are fulfilled, where (2.10) is
strengthened by the following condition

The mappings y+—>w,(y), k =0, 1,...,d — 1, are twice continuously (2.12)
differentiable and [ 4 (W(K))* Py (dK) < © fork=0,1,...,d — 1 .

Further, let the matrix S(9) = (5;(9)); j=0 with

* U9

29,09, 2

r 0 0
= g Ay(r, 9)Aj(r, 9)G(dr) + gogg;ln(l - p(9))a—l%ln(1 — (%)

be non-singular for all 3 = (9, 0) € Oy x O* (the limit exists P — a.s. for U,(-)
Sfrom (1.12)).
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Then the sequence of mc-estimates 4, = (90,,,, 6,) from Corollary 1 is asymptoti-
cally normally distributed, more precisely (with obvious notation) as n — o,

| 4,128, — 9) 5 40, STHZ(S)S'(I) , (2.13)

for all inner points 8 = (3, 0) of Oy x O*, where the matrix Z(3) = (6;;(9)); j=o is
defined by

L d U9 0 Uy
GU(S)_'}E?OIAJEE"S; 2 35 2

=TT Cals, 1, 9 A, 94,2, HGEHG() + Co(0, 0, HBS)B(S)
00
+ 1 Col0, 1, 914, 9B(S) + A, B9} Gldr)
0
with

A9 = 2 in(t ~ Hy(r, 9)

ro ¢
O 1n(t - p(8) — | 2

Bi('g) = go_aﬁi 3 a‘gi

In(1 — Hg(r, 9))G(dr) ,

Cy(s, t, 9) = | [exp{9%E|(Zo ® (—5B)) N (Z, ® (—1tB) + x)|} — 1] dx
R
and (resulting from (1.10) and (1.11))

In(1 — Hg(r, 9)) = — 9, {:}: rka,w,(0) + r”Wo(B)}

In(1 — p(9)) = —9,wo(f) and a,=(d>w“"(B) , k=1,..,d-1.

k] o,
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3 Properties of the Empirical Contact Distribution Function

To begin with we state some properties of the cdf of a general stationary racs.
In the most relevant case d = 2 the commonly used structuring elements are
B=b0,1), B=1[0,1]*resp. B=¢, = {x = (xy, x,): x|l < 1, tan ¢ = x,/x,},
0 < ¢ < =, leading to the spherical, quadratic resp. linear cdf.

Lemma 2: Let Z be a stationary racs in R* and let B be a compact star-
shaped structuring element. Then r — Hg(r) is right-continuous and non-decreasing.
Furthermore we have

lim Hg(r) = 1 if Z is mixing with0 < p < 1 or b(0, ¢) = B for some ¢ > 0 .

r—oo

Remark 2: (i) If B is open then r+> Hg(r) is left-continuous. (i) The mixing
condition imposed on Z to hold Hg(o0) = 1 cannot be replaced by the weaker
assumption of ergodicity in general as the following example demonstrates:
Consider the stationary ergodic racs

Z= | bG8+ X with 0<8<1/2

zeZ?

in R?, where X is uniformly distributed on the unit square [0, 1]2. But for the unit
line segment e, we get

) , 26 — né?
P(ZNreg=0)=1—25 forall r > 1 implying Hyg(o0) = T < 1.

Proof of Lemma 2: The star-shapedness of B = R?is equivalent tor, B < r, B for
ry < r, which implies {Z nr,B} < {Z nr B} and this in turn gives Hy(r,) <
Hg(ry) forr, <r,.

Now, let r,, n€ N, be a non-increasing sequence with lim,_ r, =r, > 0.
Therefore roB < (),en7.B =: B*, where B* is compact and non-empty. For
x € B*, there exists a sequence b,, n € N, so that x = r,b, for all ne N. By the
compactness of B we find a subsequence b,.,n’ € N, such thatlim,. b, = b* € B
and finally x = lim, . 7,b, = rob* € roB, that is roB = (),.n7,B whence it
follows that
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{ZAryB =0} = ﬂN{an,,B={b} and so

Hy(ro) = lim Hy(r,) = Hg(r, + 0) .

n-wo
Recall a stationary racs Z is mixing iff, for K, K, € X,

lim PZnNn(K,U(K,+x)=0)=PZnK,=0PZnK,=0),

llxll

see Heinrich (1992b).
Let I, denote the line segment with end-points 0 and b € B\{0} and fix a
number r’ with r’ < r. Clearly,

PZArB=®)<PZnrl,=0)<PZn(r'l,urb)=9) .

Using the mixing property of Z we get L:=lim,, P(Znrl,=0) <P(Zn
r'l, =@)(1 — p) and, by letting r' = 00, L < L(1 — p) yielding L =0. Thus
HB((D) = 1. D

The following lemma can be regarded as a counterpart to the Glivenko-
Cantelli theorem in classical statistics establishing the a.s. uniform convergence
of the empirical distribution function to the sample distribution function when
the sample size tends to infinity.

Lemma 3: Let Z be a stationary ergodic racs in R? and assume that B is compact
and star-shaped. Then the sequence of empirical cdf’s {Hy ,(r), n € N} (defined by

(1.8)) is an asymptotically unbiased and uniformly strongly consistent estimate for
Hg(r), i.e.

P(lim sup | Hp (1) — Hy(r)| = 0> =1. (3.1)

n—o r>0

Proof of Lemma 3: We begin by showing P(lim,_,, H ,(r) = Hy(r)) = 1 for any
fixed r > 0. For this purpose we employ a spatial ergodic theorem formulated
and proved in Daley & Vere-Jones (1988), p. 333, which says that, for any
o,-measurable f|.# — R! satisfying E|f(Z)| < oo,

lim 1 | f(Z —x)dx =Ef(Z) P-as.,

Lind 4 |An| Ay

provided Z is a stationary ergodic racs.
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In the special case

1 ifFArB#9
=1 _ =
J(F) = 1pg-r5)(0) {0 otherwise ,

where 1,(-) denotes the indicator function of the set A, we obtain

Zd(—rB)nA, 1
l GD(V: l) l A_J 120(-rp)(x) dx > P(ZnrB # ) P-as.

for every r > 0.
Since lim,_ |47°B|/|4,| =1 which is valid for every convex averaging
sequence {4,, n € N}, the ergodic theorem yields (with the notation from (1.8))

lim pg . (r)=P(ZNrB+#0@) P-as forevery r>0

n=aw
so that

lim Hy ,(r) = Hy(r) P-as.forevery r>0 . (3.2)

n—aw

This limit holds also true for r = co. Namely, in view of the continuity of the
Lebesgue and P-measure and since rB1 B := U, >orBasrt oo we have

lim lim pg ,(r) = lim I(Z® (=B) N 4,

n—o r—+wo n—w lAn|

=P0eZ®(-B)

= lim P(ZnrB #0) .

r—+oo

Further, it is easily checked that ﬁ,& »(r) is also non-decreasing and right-
continuous with Hg(c0) := H < 1and Hg ,(©0) < 1. Therefore, by the dominated
convergence theorem,

lim EHg ,(r) = Hp(r) forevery r>0.

For the passage from (3.2) to the stronger uniform convergence (3.1) the following
idea is crucial (similar to the proof of Glivenko-Cantelli’s theorem): For every
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NeN, let O:=ry y<r y<-'"<ryy<Tys n:=00 be a dissection of the
. L ) - H
positive real axis with r, y = sup<{r >r._; y: Hg(r — 0) < N + Hy(r)-,, N)} for

k=1,...,N.
Therefore, forr e [r, n, resi ) k=0,1,..., N, we get

H
0 < Hy(rysq,n — 0) — Hy(ry n) < N’

Hp(re y) < Hp(r) < Hp(rysq,y — 0) and ﬁB,n(rk,N) < ﬁB,n(r) < ﬁB,n(rk+l,N - 0),
whence it follows that

N H ~
Hp ,(re,n) — Hp(ri,n) — N < Hpg ,(r) — Hg(r)

N H
< Hg ,(ris1,8 — 0) — Hg(rysy,8n — 0) + N

Applying the pointwise a.s. convergenee (3.2) for r =r, x4y, k=0, 1, ...
N + 1, the latter inequality leads to

S . 1
lim sup |Hg ,(r) — Hp(r)| < N P-as.forall NeN

n-o r>0

proving the assertion (3.1) of Lemma 3. (J

4 Proof of Lemma 1 and Theorem 1

Proof of Lemma 1: Let 3 € © and ¢ > 0 arbitrary but fixed. Following an idea
of Ibragimov (1967) we find for any é > O a finite number L = L(d) of points
3i,..., 9, € ©,:= O\b(Y, ¢) such that | )%, b($;, ) covers 6,.

Obviously,

(1,(FAA,)—- 9 =¢e = O Bju O {8,(Fn 4,)eb(8,8)}nB;,
i=t j=1
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where B; = {U,(%, FnA4,) — U,(8,(FNA4,,FnA,)<n} and B;= #\B,, j=
1,...,L,and n > 0 is given by

n=min{V($,1)— V(3 1€ 6,}/4,

where (1.3) and (1.6) guarantee the positivity of . Further, introduce the events
C={lU9, FNA)— V(3 %) <n},j=1,..., L. By U(S(FnA4,),FnA,)
< U, (9, F n A,) and the definition of n it follows that, forj =1, ..., L,

B s {U,3(FNA4,),FnA4,) = U9, FnA4,) —n nCuC
S {US(F 1 4,), Fn 4,) 2 V($,8) — 21} L G

< (U9 F 0 A,) 2 V(8,9 + 21} U {|UL(% F A A,) = V(3, 8)| > n} .

Hence

Ps( U {18.(F ~ 4,)— 81 > 8}) @.1)

n>m

< Pa( U (IU% Fn4,) — V(3,9 > 2n}>

n=>m

L
+ Zi Ps( U {IUS, Fn 4,) — V(9, 9)| > ,1})

n>m

L
+P(U U {I18(Fn4,)

j=1 n>m

Taking into account the equivalence

lim X, = X, P-as.iff lim [P(sup | X, — Xol = s> =0 forall ¢>0,

n—w m-—o0 n>m

we obtain from (1.2) that the first and the second summand on the rhs of (4.1)
tend to zero as m — co0. In view of (1.6) the third term also approaches zero as
m — oo proving the assertion of Lemma 1. (]
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Proof of Theorem 1: Let 8 € © be arbitrary but fixed and Py = P o Z™1. In view
of (2.4) and the shape of the function (2.6) it clearly holds

0=V(3 YY<V(@@ 1) forall 7O, 7#3.

We first verify that lim,_, , U,(t) = V(3, 1) P-a.s. Using the identity

a\? a\? cf. a a
<ln5> — (lnz> = lnE<lnB+ lnz>

and Schwarz’s inequality we obtain

|U,(x) — V(8, 7)| < 2UM9)(U,(x) + V(9, 1)*> . 4.2)
Because of the estimate

U,(1) < 2(U, () + V(3 1) 4.3)

and the boundedness of V(9, 7) it suffices therefore to show lim,_, U,(9) =0
P-a.s. Put

D,= sup |Hp,(r) — Hg(r,9| and d,=1p,— pI| .

0<r<rg

The supposed ergodicity of Z and Lemma 3 yield P(lim,_,,, D, = lim,_,,d, = 0) =
1. Hence, for any fixed w € 2 (except of an w-null set) we can choose n so large
such that 2D, < 1 — Hg(ry, 9), 2d, < 1 — p($) and

1= Hy(r, 9) D
sup |In d < n and
osrir | 1= Hpa) | - 1— Hylro, 9 — D,
L1-p®| 4,
1 —p, 1 —p(9) —d,

proving U,($) — 0 as n — oo.
In analogy to (4.2) we find that

[V(3, 71) — V(9, 12) < 2V"2(1y, 1) (V(S, T1) + V(3, 72))”



82 L. Heinrich

and
[Uy(11) — Up(xy)] < 2V (xy, 7,)(Uy(1y) + Up(z))?2 .

Condition (2.5) and the dominated convergence theorem ensure lim, ., V(1,, ;)
= 0 which together with K := supy .. V(3 1) < oo gives

3ug V(& 1) — V(3 1) =20 as. 1,—r1, . 4.4

Moreover the compactness of @ and V(1,71,)= V(15 7,) <2(V(&, 1,) +
V(9, t,))for all 3, 7,, 7, € O guarantees that @(d) := sup;, .,c 6., ~<,1<s V(T1: T2)
tends to zero as ¢ | 0. Combining (4.3) with (4.4) we arrive at

4,(9) := sup [Un(z1) = Up(2,)| < 4002(8)(Uy(9) + K)'2 .

1,12 60:1, -1, <8

For given ¢ > 0 choose § > 0 in such a way that 32Kw(d) < & which leads to

P (sup 4,(6) = s) <P (sup U, = K) .
n>m

n=zm

Applying the a.s. convergence of U,($) to zero as n — oo shows the validity of
(1.7). The remaining assertions of Theorem 1 follows from Lemma 1. []

Proof of Corollary 1: Taking into account (1.10) and (2.6) one can reformulate
condition (2.4) resp. (1.3) as follows: Setting 3 = (9, 8) and & = (9, 0') the
equation

ry

i’

[ i rt (‘,:)W""—"(m(sowkw) - é)",w,‘(e'))]2 G(dr)
k=1 W,
+ go[%owo(6) — FHowo(6)]* =0

has to imply (3, 6) = (3, ¢').
In view of (2.8) the latter equation is equivalent to J,wo(6) = Jyw(6') (if
go > 0) and

d—1
Z “i+in(‘9, SI)Aj(‘g’ ‘9’) = 0 B (45)
Jj=1

i
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where

d d— ro
A4S, 9')=(k>w KB (5 wi(6) — Fywi(@)) and b= | G

Wy

The solution of the Stieltjes moment problem (see Shohat & Tamarkin (1963))
reveals that the quadratic form (4.5) is positive definite if the spectrum of the
weight measure G consists of at least d — | distinct points which is nothing else
but what is required in (2.11). Therefore, (4.5) holds if and only if 4,($, ) =0
fori=1,...,d — | which coincides with condition (2.9). Hence, the assertion of
Corollary 1 is an immediate consequence of Theorem 1. []

5 Proof of Theorem 2

Let us first prove asymptotic normality of the sequence Y, = (Y, ;)i-o, Where

e Afr, 9)
Y,i= g [Hp, a(r) — Hgl(r, 9)]ij6(dr)
0
g In(l = p(9)
+ go—r_‘;@)—‘“[ﬁn —p(¥]

fori=0,1,...,s.
Lemma 4: Under the conditions and with the notation of Theorem 2 we have
|4,1"2Y, 5 #(0,2(9) as n—o o . (5.1)

Proof of Lemma 4: Define the random vector X, = (X, ;)i=o by

ro Ayr, ‘9‘ B3
X, = g [Pa,n(r) — ps(r 3)]1—_%(7’)336(&) +[hn— P15 —(p()9) g

where
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I(Z @ (=rB)) N A4,

pB,n(r) = |An|

and  py(r, 9) = Epp,a(r) = PO ZD (-rB)) .

A short calculation using the limits lim,_, , f, = p(%), P-a.s., and
im,_,q | Ayl E(Pp,(r) — Pp,a(r))*> = O (uniformly in the interval [0, r,] which is
seen by the help of the below formula (5.2)) together with

N 8 o
Hpg ,(r) — Hyg(r, 9) = ﬁB’"(rl) — I;B(r - ﬁl —pﬁ(g)

(1 — Hg(r, 9)) ,

confirms that |4,/ Y, and | 4,/ X, have the same limit distribution (if it exists).

To determine this limit distribution we first calculate the asymptotic covari-
ances lim,_, |4,/ EX,;X, ;, 0 <i<j<s, which essentially depend on the
covariance function of the standardized empirical process |4,|Y?(pg .(r) —
pe(r, $)),0 <r <r,.

For brevity write Z'® instead of Z@® (—rB) = {z —rb:ze Z, b € B}. Using
Fubini’s theorem (several times) and taking into account that Z*8 U (Z'8 — x) is
again a stationary Boolean model with typical grain Z, ® ((—sB) U (—tB — x))
and the original Poisson field {X;, i € N} of basic points we get by means of (1.11)
the following:

| An| E(Bp,n(s) — Po(S, 9))(Pp,n(t) — Pp(t, 9))

|4, " (4, — x)|[PO e Z® A (Z® — x)) — PO e ZB)P(x e Z'®)] dx
IA,J

j' A, N (A, — x)|[PO ¢ ZB) U (Z8 — x)) — P(0 ¢ Z°B)P(x ¢ Z2'B)] dx

IA..I
IA i j‘ |4, (4, — x)‘[e~-9oﬂillo VEZE-x)| _ o= I0(EIZE" +EIZE I)] dx (5.2)
<9 | EIZP N (ZP — x)| dx < S E|ZpB)? . (5.3)
Rd

Therefore, by (2.12) and Lebesgue’s dominated convergence theorem,

im |A4,|E(p,n(s) — P5(s; 9))(Pp,n(t) — P5(t, 9)

n—oo
L

= (1 — pgls, (A — py(t, H)Cyls, 1, 9) ,

where Cg(s, t, 9) is defined in Theorem 2.
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After an elementary computation using the notation of Theorem 2 we arrive at

lim |A"| EX",an,j = O',j(zg) . (5.4)

n—o

In order to apply the central limit theorem for stationary m-dependent fields we
introduce the “truncated” Boolean model

Z® = () (Z,n b0, p) + X)) ,
ieN

where Z, and {X, i € N} as in the original model, and define the corresponding
random vector X = (X);i_, by

ro A, 3 B; )
X¢1= T 000 = P T2 G + L = po O 2

fori=0, 1, ..., s, where p§’,(r) = |Z” @ (—rB) 0 A,l/|A,l, pE'(r, $) = EPE(r)
and Y’ = pf),(0), p*(9) = p$(0, 9.
Our approximation technique requires to show

lim sup |A4,|E[|X, — X¥|2 =0 (5.5)

p—o neN

which certainly holds whenever

lim sup sup |A,|D*(Pp,.(r) — PEu(r) =0 . (5.6)

p—w 0<r<rgneN

By a somewhat lengthy calculation quite similar to the above one leading to (5.2)
we get

| A |ELB,n(r) — PEN(r) — (pp(r, ) — PE(r, $)I[Pp,n(r) — pa(r, I

< j' | e—.90|E|z'.,”u(z'o"-x)1 _ e—zsoﬂz,’,’ _ e—Solﬂzs"u((zoano,p))rﬂ—x)|
Rd

+ ™ SoEIZHA+ENZonbe0. o)™ | g

<% BL (EI1ZE%) N (Z5 — 2| — E|Zg” N ((Zo 0 b°(0, p))* — X)]) dx
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+ 9 | E|Z n(Z§® — X)I(EIZG®| — EI(Zo N b(0, p))®)) dx
Rd
< (c§? + co)(El(Zo N b°(0, p)) ® (—1oB)))'

where b*(0, p) = {x € R": ||x|| > p} and ¢, = IFE|Z"| .
The same upper bound can be obtained for

lAn' “E[ﬁB.n(r) - ﬁ(Bp,)n(r) - (pB(r, ‘9) - p(lf)(ra ‘9))] [ﬁ(Bp.)n(r) - P(é’)(r, 9)][ .

Finally, E(W,(Z,))* < oo fork =0, 1, ...,d — 1, guarantees the validity of (5.6).
In the next step we represent X as a sum of m(p)-dependent random vectors.
To this end define

11\
F(,:[—E,E) , Va={zeZ%Fy+zc4,}, 04,=4,\) (F +2)
zeV,

and the random field £ = (¢¥))i.,, z € ¥, by

"o Ayr, 8
1= {122 @ (=rB) (Fy + 2 - P )2 )
: oy B
+029 0 (Fy + 2 = PO

Since lim, ., |04,]/|4,| = 0 and #V, =|A,\04,] it is not difficult to check that

n—o

2
lim |A,,|"lE<lA,,|X,‘,{’§—— Y 6‘;_’3) =0 for i=0,1,...,s. (5.7

zeV,

As a consequence of the Poisson property of the point field {X;,ie N} and
the independence assumptions imposed on the sequence of grains {Z;, i e N}
the families of random vectors {¢¥, z € U} and {&¥), z € V} are stochastically
independent for each pair U, V < Z¢ of finite sets separated by a distance
(= maximum norm) greater than m = 2(p + r,d(B)), where d(B) denotes the
diameter of B. This is nothing else but the desired m-dependence of the d-
dimensional vector field {¢¥), z € V,}.

Applying the central limit theorem for one-dimensional m-dependent fields
(see e.g. Heinrich (1988b)) we obtain
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(#V,) 12 i@miw(a

zeV, i=0

Z a;a; lim |A,.|‘EX'(.',';}X»(:',';>

i,j=0 n—oo

for every (ay, ay, ..., a;) € R°*1\{(0, 0, ..., 0)}.
Combining the latter relation with (5.4), (5.6) and (5.7) provides

i,j=0

mwz%&AMQ,
i=0

i aiajaij(8)>

or equivalently (by employing the method of Cramér-Wold)
|4,/ X, 5 A0, Z(9)

which terminates the proof of Lemma 4. [

We continue to prove Theorem 2. From now on assume that § is an inner
point of @, that is b(3, 6) = @ for small enough é > 0. The conditions (2.7) and

(2.12) ensure existence and continuity of the partial derivatives U(9) := 9 U,®

09
2
0t;0; X X
In view of the consistency of 3, we may assume 3, € b(3, §) which implies
U,f")(.ﬁ,,) =0fori=0,1,...,s. Hence, after applying the mean value theorem to
the functions U{(), 0 < i < s we obtain

and U%9(7) == U,t)forteb($,6),0<i,j<s.

A

0=UP®) + Y, G — HUEHSY),  0<is<s, (58)
j=0

where 8, = (9, )=0, 99 = 4,8, + (1 — )9 € b(9, 6) for some 0< 4, <1, 0<
J<s.

To accomplish the proof of Theorem 2 we have to determine the asymptotic
behaviour of the vector (U¥(9))i, and the random matrix (U¥?(9); ;- as
n— oo.

By virtue of Lemma 3 we can obtain the limiting distribution of LUD9))=0
on the assumption that sup, <, <, |Hp »(r) — Hg(r, 9| < 3(1 — Hg(ro, 9)). There-
fore, since |In(1 + z) — z| < |z|? for |z| < 4, we have
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0
29,
(1 — Hy(r, 9))*

= In(1 — Hp(r, 3))|
< j (HB a(r) — Hg(r, 9))

r U — G(dn

0
asmu—pwﬂ

+ go(ﬁn - p(‘g))z_(T‘—'("‘gV—“ .

The rhs of this estimate multiplied by |4,|*? tends to zero in probability which
results from Hg(ry, 3) < 1 and the inequalities

sup  E(pg,a(r) — p(r, 9)* < E|Zo®(-roB)*>  and

0<r<ro - ‘A'°B|

3

< —F|Z,)* .
(A, °

E(p» — P(9)* <

derived from (5.2). Hence, by Lemma 4,

%(U,i"’(S))Lo SH0,Z(9) asn->oo . (-9

Straightforward differentiation yields

1 .. "o 0 0
~2-U,$"”(T) = g Ar, ) A(r, 1)G(dr) + goa—rjln(l - P(T))é;jln(l —p(?)

o (1 — Hy(r,7)\ 0
+ g 1n<1 — ﬁ“(r)> - aTjln(l — Hy(r, 1)) G(dr)

In(1 - p(2)) .

p(v)
+gO] <1'—ﬁ,,> lJ

Making use of the P-a.s. limits lim,_,, max, <<, |9 — §|| = 0 (by Theorem 1)

In — Byl 9) =0 (by Lemma 3) and condition (2.12)

and lim,,, SUpo <, </, —I——H——(—T
— ilp.n

we get

1_ ..
lim EU,‘,"”(S,V’) =549 P-as. 0<ij<s.

n—aw
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The assumed invertibility of S(J) enables to treat the system of equations (5.8)
under the condition det(U{*?(99)); ;—, > % det S(9).
Therefore,

| 4,128, — 8) = =4, (UP®)i=o (U () j=0) "

whence together with (5.9) it follows (2.13). This completes the proof of
Theorem 2.

By a special choice of the weight measure G (which may also be sigped with
bounded variation) one can derive the limit distribution of |4,|**(Hp ,(r;) —
Hy(r)),. For this purpose one can apply Lemma 4 for s = 0 and

G(-) = i ciﬂ{)

6, () for ¢y,...,c,eR! .
& Ay, 9 V) o

Corollary 2: Let Z be a stationary Boolean model in R? with intensity parameter
9, € (0, ) and convex compact rotation-invariant typical grain Z, satisfying
E(W(Z,))? < oo for k=0, 1, ..., d — 1. Further, assume that B is a convex
compact subset of R? containing 0. Then, for every k-tuple 0 <r, <+ <r, < 0,

| A,|V3(Hp, (1) — Hp(r)) > 40, 1) as n—>oo ,

where I = (y(r;, rj));(,j=1 with

f [e~ oEIZE V@8 +0] _ o= 90kZ8"U(Zo+x)]

1
A

— e HoEZPUZot ] 4 o= 80EIZou(Zo+nl] gy |

Quite similar arguments as employed in the proof of Theorem 5 in Heinrich
(1988b) and the additional condition

sup [E|ZP)3|\ZPP\Z:E| < c(ry, B)h for h >0
0<s<t<rg
t—s<h

enable us to prove that the empirical process (| A,|"*(Hp o(r) — Hs()o<r<r,
converges weakly in the Skorokhod-space D[0, r,] to an P-a.s. continuous
Gaussian process with zero means and covariance function y(s, t).
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6 Estimation of the Parameter Vector (3,, EW,(Z,), ..., EW,_,(Z,))

We adhere to the notation of Theorem 2 and consider the special case s = d,
0=(9,...,9%), where w,(0) = $,,,k=0,1,...,d — 1, so that

U9 = | (90 (z aSyur + %(B)r‘) +In(l — ﬁ.,,n(r)))z G(dr)

0 i=1

+ 9o(% 9 + In(1 — p,))* .

The estimations (3, ,)%-, are the solutions of the equations
, q

0 .
a—giU,,(S)—O for i=0,1,...,d. (6.1)

To prevent that the system (6.1) is underdetermined we suppose g, > 0 and
Wo(B) > 0 (implying a; >0, j=1,...,d — 1 and exclude the trivial solution
90,,, = 0. Therefore after some rearrangements the equations (6.1) are seen to be
equivalent to the system of equations

0=39,% +In(1 —p,) (6.2)
d-1
Lin= 30(21 Aitti+j%e1 + Hiva Wo(B)> for i=1,...,d, (6.3)
=
where

w=[rG@), Li,=—[rin(l—H, ()G, ix1.
0 0

Setting t; = a;9,94,forj = 1,...,d — land t; = 3, W,(B) the system (6.3) takes
the form

d
Li,n = Z l’l'l"'jtj fOl' i = 1, ceey d . (6.4)
=

Since the coefficients y;,; are moments w.r.t. the measure G the matrix M =
(#:+))f j=1 is non-negative definite. Moreover, arguing as in the proof of Corollary
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1, the solution of the Stieltjes moment problem (sece Shohat & Tamarkin (1963))
yields that det M > 0 holds if the spectrum of the weight measure G consists of
at least d distinct points, i.e. (2.10) is fulfilled for I = 0.

Exactly this is the condition for a unique solution of (6.4).

Denote by M; , the matrix which arises from M by replacing its jth column
by the column vector (Ly ,, ..., Ly ,).

Therefore, we can express the final solution of the equations (6.2) and (6.3) as
follows:

. 1 detM, . det M
., = . 8, = —Wy(B)In(1 — 6.5
Oo,n WO(B) det M B 1,n 0( ) ﬂ( pn)det Md,n ( )
and
, tM, :
8, = 0B detMyy A1 (6.6)

g det M, ,
()m4m “

To close this example we apply Corollary 1 and Theorem 2 to the just obtained
estimates.

Corollary 3: Under the conditions of Corollary 2 and the additional assumptions
go >0, Wo(B) > 0 and (2.10) for | = O the sequence of mc-estimates (@iy,,)‘,Lo for
the parameter vector (34, EW,(Z,), ..., EW,_1(Z,)) given by (6.5) and (6.6) is
strongly consistent and asymptotically normally distributed with covariance matrix
STHHNZ(H)S™I(I) (where s =d and §, = w,_,(0) = EW,_,(Z,) for k=1, ..., d)
given in Theorem 2.

Finally, let us consider the special case of a Boolean model in R? with circular
grains, where the distribution of the radius R, of the typical grain Z, is given by
the probability density f, , with

pe PN ifx>y>0

ﬁﬂﬂ=%

otherwise .

It is quickly seen that

1 21

1
EWi(Z,) = nER, = n(; + y) .
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Replacing EW,(Z,) by §, , from (6.5) and EW,(Z,) by 9, , from (6.6) (for d = 2)
and solving these equations we obtain the estimates

by = (gl'" - (—92—'">2)_1/2 and  §,= LY (ﬁﬁ - (gi"-)zy/z .
n n n n n

One can easily confirm that 2,, §, and 90,,, from (6.5) coincide with the solution
of the equations (6.1) with 3 = (3, 1, ) and

To

Uu®= |:2W1(B).Sl0 (% + y)r + Wy(B)r* + In(1 — 1-7,,,,,(r))]2 G(dr)

0
1 2 3, 2
+ gOI:nS(,(; + y) + ZL—Z" +In(1 — ﬁ,,)] )

To conclude with we make some brief remarks about some desirable improve-
ments and comparisons and possible extensions of the mc-estimates studied in
the previous sections which should be subject of future investigations.

(i) Estimation variances: It is seen from (6.5) and (6.6) that in general expectation
values as well as variances of mc-estimates (in the sense of (1.4)) w.r.t. the family
of contrast functions (1.12) do not exist so that the obtained estimates could prove
rather instable. This unfavourable effect can be reduced upon replacing G by
the “randomly truncated” weight measure

GP(*) = [ 1 )nis: g <1~ (r)G(dr) for a suitable 6> 0 .
0

In any case the weight measure G has strong influence on the covariance matrix
of the Gaussian limit distribution of 8, given in Theorem 2. So far rules for an
“optimal” choice of G are unknown.

(ii) Choice of the contrast function: Let us introduce a rather general contrast
(or distance) function:

U,(x) = d(Hj,,(-), Hp(", 7)) := j f1(Hg,(r), Hy(r, ))G(dr) + go f2(Bns P(2))

The troubles with the estimation variances could be avoided (at least partly) by
replacing the kernel functions f(y, z) = f,(y, z2) = (In y — In z)? in (1.12), say, by
filn, 2) = f(3, 2) = (y — 2)>. At this point it arises the question: How to find
non-negative kernels fi(y, z), i = 1, 2, which are best in an approximation-
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theoretic sense for our mc-method. Some results in this direction (in a slightly
different context) were obtained by Jones (1989). A further non-trivial problem
concerns the comparison of mc-procedures working with distance d(ﬁB,,‘(-),
Hy(-, 7)) and those based on the distance d(C,(-), C(-, 1)), see (1.9).

(iii) Another estimation method: In case of a planar Boolean model Z with
convex, rotation-invariant grains there exists a further procedure (called “method
of intensities”, for details see Stoyan et al. (1987) and Mecke et al. (1990)) quite
different from ours to obtain estimations for 9,, 3; = EW,(Z,) and 9,
= EW,(Z,).

It rests on a system of linear equations establishing relations between mean
area, mean boundary length, mean connectivity number of Z n 4, and the
corresponding densities of the quermassintegrals of Z. Since these densities are
expressible in terms of §,, 3, and 3, (see e.g. Mecke et al. (1990), p. 83) one can
derive the following estimators:

a 2: q pn a in
Jon=2 . 3 ==Prma-p), G.=-",
SR )

where p, is the estimator of the specific area of Z given in (1.8) and

, = (length of 8Z in 4,)/|A,] ,
¥ = (number of positive tangent points w.r.t. the horizontal

bottom line)/| 4] .

One can expect that the limit distribution of [A,|"2((8. . 81.n 92.0) —

(80, 94, 3,)) as n — oo is again Gaussian, however an explicit expression of the
limiting covariance matrix seems to be hardly to get. In any case a more precise
comparison between these estimators and those from (6.5) and (6.6) based on
theoretical arguments and simulation studies would be desirable.
(iv) Estimation of more than d + 1 parameters: If the parameter vector 0 € O*
(with the notation of Corollary 1) consists of d (or less) components it is an
appropriate and mostly successful way to solve the equations @,‘ = w;_,(0) for
k=1,...,dwith §,,..., 8, from (6.5) and (6.6). When the quantities w,(), k = 0,
1,...,d — 1,depend on more than d parameters some difficulties arise concerning
the uniqueness of our estimation problem. A way out of this dilemma could be
the following: Compute the estimates Qi,,, = 9,-,,,(Bj), i=1,...,d, from (6.5) and
(6.6) for quite different structuring elements B;, j = 1, ..., k, satisfying (2.8).
Determine the estimate 6, such that

M-

-

i
A
i

(Wi-l(én) - gu.(B,))z — min .
=1
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Economic Designs of Single and
Double Screening Procedures

Do SuN BAI AND MIN KoO LEE

Department of Industrial Engineering, Korea Advanced Institute of Science and Technology,
Gusung-dong 373-1, Yusung-gu Daejon 305-701, Korea

Summary: Economic designs of single and double screening procedures for improving outgoing
product quality based on two screening variables are presented for the case of one-sided specification
limit. Two screening variables are observed simultaneously in single screening procedure and are
observed sequentially in double screening procedure. It is assumed that the performance variable
and the two screening variables are jointly normally distributed. Three quality cost functions —
constant, linear, and quadratic - are considered. Cost models are constructed which involve screening
inspection cost, and costs of accepted and rejected item. Methods of finding the optimal cutoff values
are presented and a numerical example is given.

1 Introduction

Screening procedures are widely used in industries to improve outgoing quality
of products. In some situations, however, it would be impossible or not
economical to screen items using the performance variable directly. For example,
the voltage at an internal point of an electronic device which is difficult to
measure directly may be the major quality characteristic of interest. It may,
however, be possible to screen the devices by measuring the voltage at an external
point that is correlated with the internal voltage. Therefore, we can inspect
with the screening variable rather than the performance variable directly. An
inspection procedure using the screening variable would be appropriate if the
measurement on the performance variable is more difficult or expensive to make
than the screening variable. The idea of using correlated variables in a screening
procedure has received much attention. Much of the early works in this area is
focused on increasing the proportion of units within specifications from the
current value y to a specified higher proportion ¢ after screening, i.e., improving
the outgoing quality; for example, see Owen et al. (1975), Owen and Boddie
(1976), Owen and Su (1977), Owen et al. (1981), Madsen (1982) and Menzefricke
(1984). Tsai and Moskowitz (1986) considered a single screening procedure in
which two screening variables are observed simultaneously to make one of two

0026-1335/93/2/95-113 $2.50 © 1993 Physica-Verlag, Heidelberg
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decisions — accept or reject. Moskowitz and Tsai (1988) considered a double
screening procedure in which two screening variables are observed sequentially.
One variable is used first to make one of three decisions — accept, reject, or
undecided. After the first screening, the second variable is employed to screen
the undecided items.

Economic designs of screening procedures are also considered by several
researchers. Boys and Dunsmore (1986) considered a decision theoretic approach
using predictive probability based on the constant and linear loss structures.
Tang (1987, 1988a) studied economic designs of one- and two-sided screening
procedures with three quality cost functions — constant, linear and quadratic —
where all parameters are known. Bai et al. (1990) presented economic designs of
one- and two-sided screening procedures for the cases where all parameters are
known and some parameters unknown. Kim and Bai (1990) considered economic
screening procedures in logistic and normal models in which the performance
variable is dichotomous and the screening variable is continuous. Tang (1988b)
studied an economic model for two-stage screening where the first-stage is based
on the screening variable and the second-stage is based on the performance
variable. Tang and Schneider (1990) studied economical effects of inspection
imprecision on a screening procedure. Kim and Bai (1992) presented an economic
design of one-sided screening procedure for the case where all parameters are
unknown.

In this paper, we present economic designs of single and double screening
procedures based on two screening variables for the case of one-sided specifica-
tion limit. The optimal cutoff values of single and double screening procedures
are obtained under the three quality cost functions by minimizing the total
expected cost which includes three cost components; screening inspection cost
and costs per accepted and rejected item. The models are described in Section 2
and methods of finding optimal cutoff values are presented in Section 3. In
Section 4, a numerical example is given.

2 The Models

Let Y’ be the performance variable and X and X be the two screening variables.
Assume that (Y’, X}, X3) are jointly normally distributed with known means
(1, 11, 15), variances (67, 02, 67) and correlation coefficients (p;, py, i, j = 1, 2),
where py; and p;; denote the correlations between Y and X, and between X; and
X, i, j =1, 2, respectively. The standardized variables Y = (Y’ — u,)/0,, X, =
(X — uy)/oy, X, =(X5 — pu,)/0, jointly have a standard trivariate normal
distribution with density function of the form

|z 1 -1 T
1y, xl,xz)=WeXp "5(}’, X1, X2) 27y, X1, X2)" | (1)
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where
L por Po2
Z=1p 1 pial,
Po2 P12 1

and (y, x,, x,)T denotes the transpose of (y, x;, x,).

Owen et al. (1975) introduced the procedure based on the linear combination
of two screening variables, Z = A; X; + 4,X,, where constants 4, and 4, are
computed to maximize the proportion of acceptable product after screening. In
this paper, constants A, and 4, are selected to maximize the correlation between
Y and Z and to minimize the variance of (Y — Z). We then obtain

Po1 — Poz2P12 Poz — Po1P12
Ay o= sl Ay = 8 2
! 1 - P122 2 1—pt,
see Anderson (1984).

Suppose that the performance variable Y is expensive to measure and that
there exists a lower specification limit 7; items with Y > 1 are conforming and
those with Y < t are nonconforming. A conforming item gives a positive profit
of p and a nonconforming one cause losses according to the deviation of Y from
7. Since larger value of (t — Y) causes more consumer’s dissatisfaction which
results in losses to the producer, the quality cost function C(y, t) may be taken
to be a nondecreasing function of (t — y). We assume that C(y, 1) = —pfory >t
and consider three functions for y < 7;

Cy,1)=a (3a)
=b(r—y) (3b)
=clt—y?, (3c)

where a, b and ¢ are positive constants. The cost C(y, 1) of accepting a
nonconforming item may include costs of identifying and handling the non-
conforming item, service and replacement costs, and loss of goodwill. These
quality cost functions are similar to those cited by Tang (1988b). The cost c, of
a rejected item which includes the costs of repairing, scrapping or selling it at a

reduced price and the costs c; of screening an item with X; are known constants
andc, > ¢;,i=1,2.
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Single and double screening procedures can be described as follows.
1. Single Screening Procedure

i) Take measurements X, and X, for each incoming item, and compute
Z = Alxl + /12X2 .

ii) An item will be

a) rejected if Z < 4,
b) accepted if Z > §,,

where 6, is the cutoff value to be determined.
2. Double Screening Procedure

i) Take measurement X, for each incoming item.
ii) An item will be

a) rejected if X, < L,
b) accepted if X; > U,
c) undecided if L < X, < U.

iii) Take measurement X, for each undecided item in (ii), and compute
Z = A'IXI + AZXZ .

iv) An undecided item will be

a) rejected if Z < 6,,
b) accepted if Z > §,,

where L, U and d, are the cutoff values to be determined.

2.1 Single Screening Procedure

The joint distribution of Y and Z is bivariate normal with a density function of
the form

P+ (z/0)2] ’ @

1
y Z) = ———— €X
A by p[ 20— 6)
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2 2 12
. + -2
where it can be shown that § = g, = p,, = l:Pm Poz Pmpozplz]

1—pf,
Then the expected cost per accepted item is

[e o]

® 1
= dz ,
S L Py <\/1~02>¢< )dy ’

and the expected cost per rejected item is

oy
EC,,=c,®( 2
Sz Cr (0) b

99

©)

(6)

where ¢(-) and &(-) are the density and cumulative distribution functions of
the standard normal distribution, respectively. The inspection cost is ¢, + c,.

Therefore, the total expected cost per item is
ETC;= EC,, + EC,, + ¢; + ¢, .

The optimal cutoff value 6¥ can be obtained by minimizing ETC;.

2.2 Double Screening Procedure

The expected cost per accepted item is

EC, =] ] cto Jl = ¢( 7 ""“)as(xl)dydxl
© — Po1

U ©

w1 T T connfn xu x,) dy dx, dx,

L (02-A41x1)/A; —©

The expected cost per rejected item is

X1Po1
= e T d .
EC;, =¢ [ (L) + _[ ¢('{ Tz p,2>¢(x1) xl:I

Q)

@

©®
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The expected cost of inspecting an item is

ECy, = ¢, + c2(P(U) — &(L)) . (10)
Therefore, the total expected cost per item is

ETC, = EC,, + EC,, + EC,, . (11)

3 Optimal Solution Procedures

In this section, methods for finding the optimal cutoff values of single and double
screening procedures when all parameters are known will be given for the three
quality cost functions.

The following identities will be used for the derivations of equations, where
h(y) is the normal density function with mean y, and variance o7 and ¥(, *; p)
is the standardized bivariate normal distribution function with correlation
coefficient p. See, for example, Tang (1988b) and Moskowitz and Tsai (1988).

4 - — —
| (1'—y)h(y)dy=ay|:t o“’d?(C Ulty)+¢<C lly)] . 12)

—© y y Gy

4
ii) | (z—y?h(y)dy

- 3[(1+(’;“Y>2)q><c;"’>+2I‘:Y"C¢<€;“y>]. (13)

iil) ¥(x, y; p) = Y(y,x;p) , and P(x,y;p) = P(x) — P(x, —y; —p) . (14)

iv) ? B, + B, x) dB(oy + B,x)

o By, — ay By . By
B W< \/tzi'f + ;i%’ TR ﬂ§) ' =
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3.1 Single Screening Procedure

dETC,
Letting T = =0 yields
1

fcon y‘é‘)@=q. (16)
g

\/11—92¢(\/1—02

Case 1: constant quality cost function
From equation (16), we obtain

d5(1—51>=c,+p- an
JI—@) a+p

The left hand side of equation (17) is a strictly decreasing nonnegative function
of §,. Hence, equation (17) has a unique solution for ¢, < a.If ¢, < g, the optimal
cutoff value 6% is

5r=r—¢“l<i+—p>./1—92 . (18)

a+p

Case 2: linear quality cost function
From formula (12) and equation (16), we obtain

w+mmw+mm=b“+P (19)

J1—0*"

p T— 0, . )
————and n = —————. Let the left hand side of equation (19)
b./1—6? J1—6?

be v(n). v(y) is a strictly increasing nonnegative function of 5 as it can be seen
from the integral representation: v(n) = k®(n) + |, (1 — x)¢(x) dx. We have

¢, +p . .
——— < o = v(). Therefore equation (19) has a unique
b/1 — 02
solution. A graph for v(+) for selected value of k is given in Figure 1. The value
c+p

b./1 — 6?

o e+
5;"=r—v‘<b—c-1—\/?‘p—02—>./1—62. (20)

where k =

¥(—a0) =0 <

oF can then be easily determined for given values of T and as
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Fig. 1. Graph of v(n)

Case 3: quadratic quality cost function
Using the formulas (3c) and (13), equation (16) can be rewritten as

2 U
(L+m -+ )P0 + 1) = g @)
where m = C—(1~£—?}2—) Let the left hand side of equation (21) be x(1). Using the

integral representation y(n) = m®(n) + [, (n — x)*@(x) dx, it is easily seen that
x(n) is a strictly increasing nonnegative function of n. We have y(—o0) =
& +p
0<—>
c(l — 6%
for x(-) for selected value of m is given in Figure 2. The value 6§ can then be easily

. . ¢ +
determined for given values of t and G TP s

c(1 — 6%

< o = x(o0). Hence, equation (21) has a unique solution. A graph

o o+
5;~=r—x1<g(-ci—:-(’;2—)) 1—6% . 22)
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Fig. 2. Graph of x(n)

3.2 Double Screening Procedure

Equating the first derivatives of ETC; with respect to &,, L and U zero,
respectively, yields

T 1 }"‘52>
cw, dy=c, , 23
4, (“)ﬂ‘ﬁ(\/r_? y=c 3)

f T =20 46,0, L)L) dy dx,

71'!.L) _fw V1-6% /1= p%,

0

I = 0231 4020 DBy d; + ¢ 0(0u(L)

12

-
y1(L)
=c—cy, (24)

and
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A Cy 1)

y.(fw -L J1-0*/1-

muy T \/1 —02\/1

¢(vz(y, U))é(y3(V)) dy dx,

¢(?z(y, U))4(r3(U)) dy dx,

© C(t,y)

+ f —====0(5(y, U)) dy — ¢, P(1s(U)) = ¢; , (25)
o /11— P51
o7 — 4L y— ML —4x, x; — Lpy,
here L)y=——7+—, L)=——7"——""=, (L) = F—=,
w yl( ) /12 72(}’ ) \/1—:72- 3 \/T——plzz

(L) = M and y5(y, U) = Up_“_
4 - s
/12\/1—912 \/I—P

equation (16). Hence, the optimal cutoff value 5* coincides with 6F.

Equation (23) is the same as

Case 1: constant quality cost function
Using formula (15), the first term of equation (24) can be rewritten as

¢(v2(y, L))4(y3(L)) dy dx,

y,!u -jw J1-6 \/1 -4

)

= | 0O, L) (L)) dx,

nw /1 — pf,

= | ad@,(, L))dd(4(L)

y1(L)
_ ‘I’( ©— L(4; + 4,p4,) _ 02 — LAy + 42p13)
(A3(1 = pf) + 1 — 7)1 /1 — p,

_ A (1 — 912)1/2
(A3 —pf) +1—-6%)"

- aY’(y — Lpo, _ 03 — Lpo, . Po1P12 — Po2 )

J1=04 a1 =ph J1= 08 /1 0%

= a¥(ys(t, L), —v4(L); p) (26)
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and using formula (14) the second term of equation (24) as

)

p— ? p
o L T e 40 D) dy ds

12

T

=0(12(y, L)¢(v3(L)) dy dx,

| 14
_m\/l—ez\/l"plz

—p{1 — D(y,(L)) — P(ys(z, L), —74(L); p)}

©
+ [
y1(L)

—p¥Y(—ys(z, L), —y4(L); —p) , 27

Po1P12 — Po2

\/1“!731\/1”9122

where p =

. Equations (24) then simplifies to

Cr
P(s(, L), —7a(L; p) — = P (=75(5, L), — (L) —p) + B ((L)
1
= —(Cr — C2) . (28)
a
Equation (25) similarly becomes

— ¥(5(z, U), =74(U); p) + = #(=5(z, U), =1a(U); —p) + B(s(z, V)

c;+p

+ L0 U) - Zo0u) = 29)

It is difficult to show analytically that equation (28) or (29) has a unique
solution or to find .a closed form solution. Let the left hand sides of equations
(28) and (29) be v,(L) and w,(U), respectively. Numerical studies over a wide

c c o1
range of parameter values of <—', E, 22 Po1s Pozs P125 T |, however, indicate that
aa a

v,(L) and w,(U) are decreasing functions of L and U, respectively. We have

P _¢—¢C ¢ 14 atp—¢

vy(0) = —= < —= < = = v;(—0), and wy(®0) = -, wy(—0) = ———.
1(00) a a a vy ( ). w(0) a 1 ( )

Hence, optimal cutoff values L* can be obtained as unique solution to equation

(28) and optimal cutoff values U* can be obtained as unique solution to equation
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(29) for G2 : P < at I;_ c,' Figures 3 and 4 show the graphs of v, (L) and w,(U)

fora = 1.5(0.25)2.5 whent = —0.5, p = 1.0,c, = 0.4, ¢, = 0.04, p,, = 0.2, po; =
0.7, al‘ld p02 = 0.6.

Case 2: linear quality cost function
Using formulas (12) and (15), the first term of equation (24) can be rewritten as

© c b( )

y.gu “o /1 — 6% /1 -

¢(72(T L))¢(v3(L)) dy dx,

\/ 1= 62 [y,(r, )P(2(c, L) + $(2(r, L))]——=5=9(3(L)) dx,

71(L) - p12

- b{a"(ys(r, L), —7a(L); )t = 44 L) — | my(L) dxz} , (30)

y1(L)

where 1, (L) = {4,x,P(y,(z, L)) — /1 — 6% $(y,(z, L))}

Equation (24) then becomes

\/—-—¢(v3( ) -

c'
¥(ys(t, L), —v4(L); p)(xr — 4, L) — %'I’(—?s(r, L), —7a(L); —p) + L P(ra(L))
© 1
- 5 ny (L) dx, = E(Cr —c3) . (31)
(L)
Equation (25) similarly becomes

—P(5(z, U), =74(U); p)(c = 1,U) + £ ¥(=75(5, U), —2(U); —p)

+/T= 051 [s(5, V)5(5, U)) + 6055, U] + ; DGs(r, U))

~Zo0uUY + | mU)dx, =21 E

(32
r1(U) b

Let the left hand sides of equations (31) and (32) be v,(L) and w,(U),
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respectively. We have v,(0) = —% < c—'—g——c—i < fbl = v,(—o0) and w,(®) =
p_c+tp _ . . .
b <= < 00 = w,(—0o0). As in the previous case, no closed form solutions

for equations (31) and (32) can be obtained and a numerical search such as
the bisection method can be used to obtain L* and U*.

Case 3: quadratic quality cost function
Using formulas (13) and (15), the first term of equation (24) can be rearranged
as

i c(t — y)?
h(L)—oo\/l—oz\/l

=c OI(OL) (1 = 0*)[(1 + 3 (z, L)D(,(r, L)) + 7,(r, L)$(y(r, L))]

¢(72(T, L)¢(ys(L)) dy dx,

X

1
N d
—t0(L) dxs

=c {W(Vs(fa L), —ya(L); p)(1 — 0% + (z — A, L)*) + T m,(L) dxz} » (33)

y1(L)

where
ny(L) = [[(/12x2)2 = 2(t — 41 L)A;x,]1D(y,(z, L))

1
+ (1 = 0%)y,(t, L)$(ra(z, L))]\/——l———z—;tﬁ(vs(la)) .
Equation (24) then becomes

¥(ys(t, L), —y4(L); p)(1 — 0% + (t — A, L)*) — lc’— P(—ys(t, L), —v4(L); —p)

© 1
+ | ma(L)dx, + ZB@y(L) = =(c, — ¢3) » (34)
71(L) c c

Equation (25) similarly becomes
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14
= #0510 U), —0a(U); )1 = 62+ (¢t = 4, U)) + — (=55, U), =2 (U); —p)

+ (1 = p5){(1 + 73(x, UDD(ys(r, V) + v5(c, U)d(ys(c, U))}

[ee]

— | mU)dx; + Lo v) - Tonuw) =

y1(U)

C2tp (35)

Let the left hand sides equations (34) and (35) be v5(L) and w;(U), respectively.

p<c,.—c

. . c
As in the previous cases, we have v3(0) = —- 2 < = py(—o0),
c c c

¢ + .
w;(00) = IE’ < _zc_P < 0 = ws(—00), and no closed form solutions for equa-

tions (34) and (35) can be obtained and L* and U* can be found by a numerical
search method.

4 Numerical Analysis

In this section, when all parameters are known, a numerical example which
originally appeared in Owen et al. (1975) is given to illustrate the optimal
screening procedures for the case of known parameters presented in Section 3.
Then, based on this example, numerical studies are performed to investiage i) the
effects of p,, on single and double screening procedures, ii) the effects of using a
wrong quality cost function on the single and double screening procedures. IMSL
(1987) subroutines are used to evaluate statistical distribution functions and
integrations.

Example: Suppose the stockpile of some component has an initial proportion 0.7
of acceptable units with regard to some performance variable Y’ with a given
lower specification limit. A voltage test X and a pressure test X, are two
screening variables available. The standardized variables Y, X; and X, jointly
have a standard trivariate normal distribution with covariance matrix

1 poy poa] [10 07 06
2 = p01 1 plz = 0.7 1.0 0.2
Poz P12 1 06 02 10
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Table 1. Optimal ETC, and ETC, (p,, = 0.2)

Quality oF = 6% Single Double

cost

function ETC, L* U* ETC,
Constant —0455 | —.2400 | —1.536 0.252 | —.2537
Linear —0.839 —.4142 —2.037 —0.372 —.4358
Quadratic —1.460 —.4943 —2073 —1.002 —.5682

For the three quality cost functions considered in Section 2, it is assumed that
a=20,b=156,c=0.73,p=10,c, =04, c, =0.05 c, = 0.04, and the lower
specification limit 7 for Y is —0.5. The optimal solutions can be obtained from
equations (18), (20), or (22) for single screening procedures and equations (23) plus
(28)—(29), (31)—(32), or (34)—(395) for double screening procedures, and are sum-
marized in Table 1. Optimal cutoff value 6} (=6%) can also be obtained using
Figure 1: For the case of linear quality cost function, for example, the right hand
side of equation (19) is 1.68, and v™!(1.68) = 0.6 for k = 1.19. Hence, ¥ is
approximately —0.82 from equation (20). One of the major advantages of a
double screening procedure is that measurement will not be required on the
second screening variable for items accepted or rejected in the first phase of
screening. Hence, ETC, will be less than ETC,.

i) Effects of p,,

ETC; and ETC, for the above example are given in Table 2 for selected values
of p;,. In Table 2, column B shows the results of employing a double screening
procedure, where X, is used first and then X,; column C shows the results
of another double screening procedure in which the order of X, and X, is
interchanged. ETC tends to increase as p, , increases.

ii) Effects of using a wrong quality cost function

Wrong quality cost function will certainly incur economic loss. To study the
effects of using a wrong quality cost function, we define the percentage increase
of ETC due to use of a wrong quality cost function as

_ETC* — ETC'

PI ETC*

x 100(%) »

where ETC* and ETC' are the expected total cost by using the correct quality
cost function and a wrong quality cost function, respectively.

Table 3 shows how sensitive ETC is due to a wrong quality cost function, and
indicates that correct use of the quality cost function is very important in
designing a screening procedure.
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Table 2. Effects of p,,
(a) Constant cost function
A B C
P12 0¥ = 6%
ETC, L* U* ETC, L* U* ETC,
.100 —.460 —-.2699 | —1.732 439 —.2803 | —2.237 .738 -.2770
150 —.457 —.2539 | —1.630 343 —.2660 | —2.134 .642 —.2622
.200 — 455 —.2400 | —1.535 253 —.2537 | —2.041 .554 —.2496
250 —.453 —.2276 | —1.447 168 —.2430 | —1.955 473 —.2385
.300 —.451 —.2165 | —1.363 .087 —.2337 | —1.875 397 —.2288
(b) Linear cost function
A B C
P12 oF =63
ETC, L* U* ETC, L* U* ETC,
.100 —.842 —.4305 | —2.205 —.192 —.4490 | —2.778 .001 —.4476
150 —.841 —.4219 | —2.119 —.283 —.4419 | —2.693 —.088 —.4406
.200 —.839 —.4142 | —2.036 -.371 —.4358 | —2.614 —-.173 —.4345
250 —.837 —.4072 | —1.954 — 457 —.4303 | —2.535 —.256 —.4291
.300 —.834 —.4009 | —1.871 —.540 —.4255 | —2.456 -.335 —.4242
(c) Quadratic cost function
A B C
P12 | OFf =63
ETC, L* u* ETC, L* U* ETC,
100 | —1.525 —.4994 | —2.142 —.883 | —.5724 | —2.749 -.772 —.5673
150 | —1.490 | —.4968 | —2.110 —942 | —.5703 | —2.727 —.824 —.5659
200 | —1460 | —.4943 | —2073 | —1.002 | —.5682 | —2.698 - 876 —.5644
250 | —1.433 —.4919 | —2031 | —1.062 | —.5661 | —2.663 —-.929 —.5629
300 | —1.409 —.4896 | —1984 | —1.122 | —.5641 | —2.623 —.980 —.5614

A: Single Screening Procedure

B: Double Screening Procedure (X; — X, sequence)
C: Double Screening Procedure (X, — X, sequence)

Table 3. Percentage Increase of ETC When Wrong Quality Cost Functions are used

Used Single Screening Procedure Double Screening Procedure
True Constant  Linear  Quadratic | Constant Linear  Quadratic
Constant 0 2212 79.58 0 53.01 66.89
Linear 10.88 0 12.98 11.15 0 10.05
Quadratic 18.67 1.52 0 2148 2.09 0
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5 Concluding Remarks

We have developed economic designs of single and double screening procedures
for one-sided specification limit based on two screening variables. Cost models
are constructed under the assumption that the performance variable and the two
screening variables are jointly normally distributed, and methods of finding the
optimal cutoff values are presented. For the case of single screening procedure,
the solutions are shown to be unique. For the case of double screening procedure,
it is difficult to show analytically that the solutions are optimal. Numerical
studies over wide range of parameter values, however, indicate that ETC, is
indeed unimodal. Numerical results show that ETC tends to increase as p,,
increases, and correct use of quality cost function is very important in designing
a screening procedure. A major advantage of a double screening procedure is
that it can save inspection cost at the second phase of screening. A possible area
of further investigation would be the extension of the model to the cases of
two-sided specification limits and to the case of unknown parameters.
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Book Review

T. P. Hutchinson, C. D. Lai: Continuous Bivariate Distributions, Emphasising
Applications. Rumsby Scientific Publishing, Adelaide, 1990, AUS$88.00/
UK£38.00

To begin with, this book is not a textbook but a monograph on statistical
distributions. Their application is illustrated in a wealth of examples from pub-
lished research work — certainly the most striking feature.

The text is organised into four parts. The central part II (after an introductory
part I) contains an extensive collection of continuous bivariate distributions
including the bivariate normal and related distributions and distributions aris-
ing in reliability. While formulae and properties are given, theoretical niceties
(such as characterisation theorems) are suppressed. Part III presents concepts
and measures of association, methods for constructing bivariate distributions
and generating random variables, and some issues in reliability. This part ranges
from the discussion of basic facts (e.g. properties of correlation coefficients) to
highly specialised investigations of reliability classes.

Real data examples are scattered throughout the text. They predominate in
part IV. (Together with applications the reader is introduced to probit analysis
and signal detection theory.) Research areas as diverse as engineering, meteorol-
ogy, biology, medicine, economics, and social sciences are covered. Sometimes a
fairly detailed account is given — for example when modelling injury severity in
road accidents. More often only brief mention is made of a topic. The reader is
then referred to the list of references, which is huge.

In short, the book is a valuable source for statistical practitioners and research
workers interested in modelling data.

Munich E. Eberle
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The Lattice Structure of Nonlinear
Congruential Pseudorandom Numbers

JURGEN EICHENAUER - HERRMANN

Fachbereich Mathematik, Technische Hochschule Dar}rxstadt, SchloBgartenstr. 7, 6100 Darmstadt,
Germany

Abstract: Several known deficiencies of the classical linear congruential method for generating
uniform pseudorandom numbers led to the development of nonlinear congruential pseudorandom
number generators. In the present paper a general class of nonlinear congruential methods with
prime power modulus is considered. It is proved that these generators show certain undesirable
linear structures, too, which stem from the composite nature of the modulus.

1 Introduction

The linear congruential method for generating uniform pseudorandom numbers
in the interval [0, 1) shows a lot of undesirable regularities which stem from the
linearity of the underlying recursion. This was the motivation for recent work
on nonliner congruential methods-. A review of the development of this area is
given in the survey articles of Niederreiter (1991) and of Eichenauer-Herrmann
(1992b) and in the excellent monograph of Niederreiter (1992).

In the present paper a general class of nonlinear congruential generators with
prime power modulus is analysed. It is shown that tuples of successive pseudo-
random numbers generated by any of these nonlinear congruential methods form
a superposition of shifted lattices, so-called grids. Hence, these nonlinear
congruential pseudorandom numbers still show a rather strong linear structure.

The second section of the present paper contains the precise statement and a
short discussion of the main result. Its proof is given in the fourth section. In
the third section the result is applied to quadratic and inversive congruential
generators which yields known as well as new results on their lattice structure.

0026 -1335/93/2/115-120 $2.50 © 1993 Physica-Verlag, Heidelberg
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2 Lattice Structure

Let Z, = {0, 1,..., n — 1} for positive integers n and m = p® for a prime p and
an integer w > 2. Let f: Z — Z with

fx)=ax*+ - +a;x +a,

be an integer polynomial. In order to avoid trivial cases it is always assumed that
s >2 and a < w — 1, where the integer o is defined by p* = gcd(m, a,, ..., a;).
A nonlinear congruential sequence (x,), o of elements of Z,, is defined by

Xn4y = f(x,) (mod m) , n>0.

Nonlinear congruential pseudorandom numbers in the interval [0, 1) are obtained
by the normalization x,/m for n > 0. In the following it is always assumed that
the nonlinear congruential sequence (x,),> o is purely periodic. Its period length
is denoted by 4 = min{n > 1|x, = x,}. Let A = min{n > 1|x, = x, (mod p)} be
the period length of the reduced sequence (x, (mod p)), - It is always assumed
that the nonlinear congruential sequence (x,),- o has maximal period length in
the sense that A4 = Ap®~!. Then the set of generated numbers X, = {x,|0 <
n < A} is given by

X, = {x€Z,x(mod p)e X,} ,
where
X, ={x,(mod p)e Z,|0 <n < A}

denotes the set of generated residues modulo p. Now, define functions f,,
gn: Z— Z,, by

S1(x) = f(x) (mod m) ,
.f;l(x) = fl(j;t—l(x)) s n Z 2 )
g.1(x) = f'(x) (mod m) , and

gn(%) = g1(fo-1(X))gp-1(x) (mod m) ,  n=22,
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where f’ stands for the derivative of the polynomial f. For an integer d > 2
let

Vi = {(Xps Xnt1s--s Xnra-1) € Z&I0 < n < A}

= {(xa fl(x)a ceey .f;i—l(x)) € Z‘rinlx € Xw}

be the set of d-tuples of successive numbers in a nonlinear congruential sequence.
Subsets V,(z) of V, are defined by

Vi(2) = {(x, fi(X), ..., fao1(x)) € Zp|x € X, x = z (mod p”)}
forze X, ={xe€ Z,|x (mod p) e X, } with y = [(0w — a + 1)/2]. Let
Gy(2) = {v + mu e Z%v e Vy(2), u e 7%}

be the m-periodic continuation of V,(z) for z € X,. Now, the main result can be
stated precisely.

Theorem: Let z € X,,. Then the set G,(z) is a grid with shift vector

wo(2) = (2, f1(2)s ..., fa-1(2))

and basis

wi(2) = p’(1,4,(2), ..., 4a-1(2) ,

w,(z) =(0,m,0,...,0),

w,;(z) =(0,0,...,0,m) .

The m-periodic continuation of V,, the set

Gi={v+mueZveV,ue},
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is the disjoint union of the sets G,(z) for z € X,. Hence, G, is a superposition
of the Ap”™! grids G,(z) for z € X,. This undesirable lattice structure of the
corresponding nonlinear congruential pseudorandom numbers can render them
useless for certain stochastic simulations. The proof of the Theorem in the fourth
section shows that these unfavourable regularities are due to the composite
nature of the modulus. A substantially better behaviour with respect to linear
structures is obtained by nonlinear congruential methods with prime modulus
(cf. Eichenauer et al. 1988a, Niederreiter 1988, and Eichenauer-Herrmann
1991).

3 Applications

The first nonlinear congruential method for generating uniform pseudorandom
numbers is the quadratic congruential method which was suggested by Knuth
(1981). This approach fits into the present framework when the polynomial f is
defined by f(x) = ax? + bx + c. The integers a, b, ¢ can be chosen such that the
maximal period length A = m is obtained (cf. Knuth 1981, p. 34, and Eichenauer
and Lehn 1987). The conditions for maximal period length imply that a = 0
(mod p) and hence a > 1. Then the Theorem corresponds to the main result of
Eichenauer and Lehn (1987).

The choice m = 2° with w > 3 and f(x) = ax” + b with v = 2°72 — 1 yields
the inversive congruential method with power of two modulus, since f(x)=
ax™! + b (mod m) for all odd integers x. This approach is due to Eichenauer et
al. (1988b), where it is shown that the maximal period length A4 = 2°7! is
obtained exactly for a = 1 (mod 4) and b = 2 (mod 4) which implies that « = 0
and y = [(w + 1)/2]. Then the Theorem corresponds to the main result of
Eichenauer-Herrmann et al. (1990).

The inversive congruential method with odd prime power modulus is obtained
for m=p® with p>3 and f(x)=ax’+ b with v=(p— 1)p®~! — 1, since
f(x)=ax"' +b (modm) for all integers x =0 (mod p). This nonlinear
congruential method was introduced in Eichenauer-Herrmann and Topuzoglu
(1990). The integers a and b can be chosen such that the maximal period
length 4 = Ap®~! with A < (p + 1)/2 is obtained (cf. Eichenauer-Herrmann
and Topuzoglu 1990 and Eichenauer-Herrmann 1992a). The corresponding
conditions imply that a # 0 (mod p) and hence « = 0 and y = [(w + 1)/2]. Now,
the Theorem provides a new result on the lattice structure of these inversive
congruential generators.
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4 Proof of the Main Result
The proof of the Theorem is based on the following auxiliary result.

Lemma: Let z be an integer. Then
Jalx) = ga(2)(x — 2) + fa(z) (mod m)

for all integers x = z (mod p?) and n > 1.

Proof: The lemma is proved by induction on n. First, let n = 1. Any integer x = z
(mod p”) can be written in the form x = yp” 4+ z with some integer y. Since
o + 2y > w and g, = 0 (mod p*) for 2 < k < s, it follows at once that

K6 = fop'+ 2= T aop’ + 2
= i ap(kz**yp” + z¥)
k=0

= (i akkz"‘1>(x —2)+ i a,z*
k=0

=f'@)x -2+ f(2)

= ¢g,(2)(x — 2) + fi(z) (mod m) .

Now, assume that the assertion is valid for some integer n> 1. Let x =z
(mod p?). Then f,(x) = f,(z) (mod p?) and therefore

Jar1(x) = f1(fi(x))
= g1(L(@)(fa(x) = £2(2)) + f1(£a(2))
= 9,(l(@2)9x(2)(x — 2) + f1(£a(2))

= 0p1(D)(X — 2) + fo41(2) (mod m)

which completes the proof. [J
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Now, the Theorem follows at once from the Lemma by the same arguments
as in the proof of the main result in Eichenauer and Lehn (1987).
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A Note on Three-Stage Confidence Intervals for the
Difference of Locations: The Exponential Case
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Abstract: Fixed-width confidence intervals for the difference of location parameters of two indepen-
dent negative exponential distributions are constructed via triple sampling when the scale parameters
are unknown and unequal. The present three-stage estimation methodology is put forth because (i)
it is operationally more convenient than the existing purely sequential counterpart, and (ii) the
three-stage and the purely sequential estimation techniques have fairly similar asymptotic second-
order characteristics.

Key Words and Phrases: Fixed-width intervals; Behrens-Fisher situation; two-parameter exponen-
tials; triple sampling; second-order expansions.

1 Introduction

Let {X;;, Xi3,...}, i = 1, 2 be two independent sequences of random variables
where we assume that X;;, X,, ... are independent and identically distributed
(i.i.d.) having the probability density function f(x; u;, 6;) = o; * exp{ —(x — p;)/a;}
I(x > 1;),0 < 6; < 00, —00 < y; < 0, i = 1, 2. Here and elsewhere, I(-) stands
for the indicator function of (). The particular type of distribution considered
here has been used widely in many reliability and life testing experiments to
describe the failure times of complex equipment, vacuum tubes etc. This distribu-
tion has also been suggested as a statistical model in several clinical trials, such
as studies of behavior of tumor systems in animals and analysis of survival data
in cancer research. One is referred to Zelen (1966). One is also referred to
Mukhopadhyay (1988) for other citations.

The parameters u,, u,, when positive, may be interpreted as the minimum
guarantee times or the thresholds of the distributions. The parameters g,, 0, are
known as the scales of the distributions. We assume that all four parameters are

0026 - 1335/93/2/121 - 128 $2.50 © 1993 Physica-Verlag, Heidelberg
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unknown and our goal is to construct fixed-width confidence intervals for the
parameter 6 = p; — l,.

Mukhopadhyay and Hamdy (1984) proposed a two-stage procedure that came
with the guarantee of the nominal level for the probability of coverage of &
by means of the constructed fixed-width confidence interval. On the average,
however, the two-stage procedures have a tendency to oversample. Hence, in the
same paper of Mukhopadhyay and Hamdy (1984), they had also proposed purely
sequential procedures in order to achieve “efficiency”. All these techniques were
proposed and studied when o,, g, are unknown and unequal. In the case when
g, = 0, = 0, say, but ¢ is unknown, Mukhopadhyay and Mauromoustakos
(1987) had proposed a three-stage fixed-width confidence interval for §, moti-
vated by the works of Hall (1981).

In the present note, we design three-stage sampling procedures for constructing
fixed-width confidence intervals for § when g,, o, are unknown and unequal.
Section 2 gives some of the preliminaries and the main result (Theorem 1) that
sets the rate of convergence of the difference between the achieved confidence
level and the target value. The proof of Theorem 1 is included in Section 3.

2 Formulation and Preliminaries

Having recorded X, ..., X, we write X,, ;, = min{X,,, ..., X;, } and U,, =
s

(n,— 17t 2 (Xij — Xin,1y) for n; > 2 which respectively estimates y; and o;,
j=1

i=1,2 Letn = (ny, n,) and given a preassigned number d(> 0) we propose the
fixed-width confidence interval

J0) = [Xin,1) — Xomy1y £ d] 2.1

for the parameter d(= u, — u,). We are also given a preassigned number
a € (0, 1) and we wish to conclude that P{6 € J(n)} = 1 — «a for all g,, 7,. Now,
with a = In(1/x), n; > ag;/d = C;, say, P{6 € J(n)} can be shown to be at least
(I — a). But C;, C, are unknown and hence certain multistage procedures are
in order. Mukhopadhyay and Hamdy (1984) considered “efficient” purely
sequential sampling techniques. At present, we consider proposing three-stage
estimation procedures so that these will be operationally more convenient than
the purely sequential counterpart, and yet these three-stage methodologies and
the purely sequential ones will have very similar asymptotic characteristics.
Throughout, asymptotics are carried out as d — 0.
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2.1 A Three-Stage Methodology

One starts with X;,, ..., X;, where the starting sample size m(> 2) is such that
m = O(d"'")for some r > 1. We also choose and fix two numbers, 0 < p;,p, < 1.
Now, let

T; = T(d) = max{m, <ap;Upd™' ) + 1} , 22

Ni = Nl(d) = maX{T;, <anT‘,d—l + 8i> + l} N (2.3)

where (x) stands for the largest integer <x and ¢,, ¢, are known real numbers
which are to be defined precisely in the sequel, i = 1,2. Let us write N = (N, N,).
The three-stage methodology (2.2)—(2.3) is implemented as follows. Based on
Xi1s - --5 Xims one determines T; which estimates p;C;, a fraction of C;. If T, = m,
then one does not take any more samples from X; in the second stage, however
if T, > m, then one samples the difference (T; — m) from X, in the second stage
arriving at Xy, ..., X;7,. Now, one determines N; based on X;,, ..., X;r. Notice
that N; estimates C;. If N; = T;, then one does not take any more samples from
X, in the third stage, however if N; > T;, then one samples the difference (N; — T;)
from X; in the third stage, finally arriving at X;;, ..., Xim, ..., Xiz,s ..., Xin, We
then propose the fixed-width confidence interval J(N), defined in (2.1), for 6.

2.2 Preliminary Derivations

Notice that I(N = n) is independent of (X, (1), X;a,1) for all fixed n, and hence

P{6 e J(N)} = E[9(N,/Cy, N,/C3)] 24)
where
g, ) =1—-[x"+y ] [x e ™ + yte™] 25)

for x >0, y > 0. It follows easily that N; - o0 as., N;/C;— 1 as. and hence
P{oeJ(N)} >1—e“=1—0a as d—0, that is, the three-stage fixed-width
confidence interval procedure is asymptotically consistent in the Chow-Robbins
(1965) sense. Our aim is to show that the difference, P{6 e J(N)} — (1 — a),
can be made o(d) if one chooses the “fine-tuning” factors ¢, and &, in (2.3)
appropriately.
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The three-stage procedure (2.2)—(2.3), without the “fine-tuning” factors ¢;, is of
the form considered in general in (2.1)—(2.2) of Mukopadhyay (1990) where
y=p;, A=a/d, 8 =0, and Y;s are iid. 0,x3. Hence Mukhopadhyay’s (1990)
Theorem 2 implies

E(N))=C + (n; + &) + od) , (2.6)

where n; =1 — p;1,i = 1, 2. Also, Theorem 3(i) of Mukhopadhyay (1990) shows
that

P(N; <¢(C)=0(C7™) @7

for arbitrarily large, but fixed, L(> 0). Let us write N* = C7 (N, — C,), and then
Mukhopadhyay’s (1990) Theorem 3(ii) shows that

N*3NQ©,p) (28)
where p; = p; 1. Also, one will observe that

|N*|® is uniformly integrable, s = 1,2, 3 . 2.9)

2.3 Main Result

Theorem 1: In the three-stage estimation methodology (2.2)—(2.3), suppose that one
chooses ¢; = X(a + 3 — p;)/p;, i = 1, 2. Then, we have as d - 0,

P{deJN)} =1 —a) + o(d) .

In other words, P{6 e J(N)} is approximately (1 —a) up to the order
o(d). Note that (2.6) already gives the asymptotic second-order expansion of
E(N; — C)).
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3  Proof of Theorem 1

Weexpand g(x, y) given in (2.5) around (x, y) = (1, 1) and hence for some random
variables W, between 1 and N;/C,, i = 1, 2, one obtains from (2.4),

1 2
P{eJW)} =(1—e¢*) +5de™ Y o] E(N, - C)
i=1
L S 2 L, -1
—29¢7°(1 + @) ¥ 07 E(NF?) + 3de™*(0,0) E(N}N3)
i=1
E[ldS/Za—NZ i a..—3/2e—aW.(a—1 V—4w—4 + 4a—2 V—4w—5
6 &= 1 13 1

— 4a—3 V—S W—6)N~*3] + E[1d3/2a—3/2 z 0._‘-3/2e-aWl
i 1 6 1

1<i#j<2
(V73Q2a 2w 3 m_—z + 6273 W, W, "2 — 6a 3 W, 2 W4
+ VT GaT W 4 30T W 4 a T W W
+ 1a 2 W4 Wt + 3072 W2 W73 + 1002 W3 W2
+8a73WTIW T 4+ 4aT W TIWTY 4 120 WA W

+6a T WEW,TP — 6aT W TIWTY) + V(1273 WA WY

J

+ 12a73WAWE + 43 W TIW T3 + Ba Tt WO W

13

+8a*W AW + 16a'4Wi“5VI§_2)}N;“3:I

+ E[%d3/2a—3/2 Z o.i—la.j—IIZe—aWj(6a-4 V—4 VVi—S W—4

i
1<i#j<2

—2a°%v- 3VVl 3W1 2 4a—3V—3m—3m—3)Ni*llvj*:l

1
+ E[gd3/2a—3/2 Z a,-‘laj"/ze“'""{V"‘(.?»a‘z u/i-3 W—Z

J
1<i#j<2

+6aT2WTIWT 4 3aTEW WY+ 2073 WTAWTR 4 6a T W T

i J i
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+ 8a-—3vvi—3 u,}——?n — 6a—4m—3 m—4) + 4a-1 V—3 m—z m—:’
_ V—5(4a—3 u/i—4m—2 + 12473 m'-swi—a + 12473 m—2m~—4

+ 4a—-3u/i-l m‘s + 8a—4u/i—4u§—3 + 8a-4u/i-2u§—5
+ 4a—4 u/i—3 VW‘)}Ni“Nj*]
=(1 —a) + E(R, + R,) — E(Ry + R,) + E(Rs) + E(Rg + R;)

+ E[ Z Rs,i.j] + E[ Z R9,i,j] + E[ Z RlO,i.j:I , Ssay,

1<i#j<2 1<i#j<2 1<i#j<2
3.1)
where
V=W"+W,Ya .
From (2.6), one gets
E(R)) = de %67 (n; + &) + o(d) , i=12 (3.2)
and from (2.8)—(2.9) one has
E(R)) = ;de™*(1 + a)a;'p; + o(d) , i=34. (3.3)
Then, note that
E(Rs) = 3de™*(0,0,) 7 E(N})E(NY)
=4de™(0,0,) 7 (1, + &, + o(1))(n, + &5 + o(1))(C,C,)™ 12
= 0(d?) + o(d?) = o(d) , (3.4)

in view of (2.6).
The terms Rq, R, Ry ; ; are handled in similar fashions and note that each is
a linear combination of expressions of which a typical one can be written as

L;= Bd¥e "™y Wi m*is N*3 (3.5)
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where i,, i,, i are fixed non-negative integers. Here and elsewhere we write B as
a positive generic constant, independent of d. The aim is to verify that E(L;;) =
o(d) for all appropriate i, j. For brevity, we only show how to handle E(L,,).
For 0<e< 1, define A; =[N, >eC,]n[N, >¢eC;], A, =[N, >¢C,]In
[N, <¢C,], A3 =[N, <eC;]Jn[N,>¢C,], and A,=[N,<eC,]n
[N, < &C,]. Now,

|Ly,1(A,) < Bd¥?¢~(2*1)| N#*|3 and hence

|E(L;,1(4,))| = 0(d**) = o(d) 3.6)
in view of (2.9). Also,

ILy21(4,)] < Bd**(C,/N;)?INF*I(4,) ,  and thus
|E(Ly;1(A,))| < BA®P SE[INFPI(Ny > eC,)]P(N, < ¢C;)

= Q(dtm* 32y = o(d) , 3.7
in view of (2.7) and since “L” can be chosen large. Again,
|E(Ly21(43))| < BA*2E[INF*(C1/N,)>1(A45)]

y N2 B
<Bd™ [ (1-3) dP < Bd™P(4,)

A3 1

= 0(d'™2) = o(d) , (3.8)
along the lines of (3.7). Similarly,

|E(L121(A4))| < Bd™273P(N; < eC,)P(N, < €C,)

= 0(d*mimi) = o(d) , (39

along the lines of (3.7). Now, combining (3.6)—(3.9), we claim that E(L,,) = o(d).

In fact, the terms Ry ; ; and R, ; ; also can be evaluated in similar fashions and

shown to be o(d), since N* and N* are indeed independent random variables.
Now, combining all these with (3.1)-(3.9), one obtains

P{oeJN)}=(1—a)+ %de‘“ i

i=1

fon+a- 30 + amfart + o)
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which simplifies to (1 — &) + o(d) if one chooses

& =

1
(1+a)pf—ni=§(3+a—pi)/pi, i=12.

S

Remark 1: Suppose now one chooses ¢,, ¢, as given in Theorem 1 and obtains
Xiy, ..., Xin,, i = 1, 2 by implementing the three-stage methodology (2.2)-(2.3).
Let us then consider separate confidence intervals for u,, u, and propose
the natural fixed-width confidence interval Ji(N;) = [Xiy,) — d, Xin,1)] for
the location parameter y;, i = 1, 2. From Theorem 2 of Mukhopadhyay and
Mauromoustakos (1987), we can immediately conclude that P{y; € Ji(N;)} >
(1 — a) + o(d).
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‘Student’ A statistical biography of William Sealy Gosset. Based on writings by
E.S. Pearson. Edited and augmented by R.L. Plackett, with the assistance of
G. A. Barnard. Clarendon Press, Oxford 1990, pp. viii+ 142, £15.00

When E.S. Pearson died in 1980, he left a bulky but unfinished set of
autobiographical notes which included much material relating to ‘Student’ (the
pseudonym which W. S. Gosset used in his published papers because of his condi-
tions of employment with Arthur Guinness, Son & Co., Ltd.). The editors, R.L.
Plackett and G. A. Barnard, together with the Clarendon Press, Oxford, are to be
congratulated on producing a very readable and valuable biography of ‘Student’
by the collation and augmentation of this material. The manner of presentation,
which sandwiches chapters on Gosset, Karl Pearson, R. A. Fisher and E.S. Pear-
son between a chapter on background and a concluding general commentary, is
inevitably a bit arbitrary; but nevertheless is successful in providing the reader
with a fascinating insight into the professional activities of these four important
contributors to the development of the British school of statistical science in the
first third of the twentieth century, with Gosset often acting as a catalyst among
the other three. The editors were fortunate in the amount of original cor-
respondence available, this including not only that between both Pearsons and
Gosset, but also the so-called ‘Guinness collection’ of letters between Gosset and
Fisher circulated by L. McMullen in 1962.

Obviously all the detail available in the book must be savoured by the reader.
The reviewer can only mention a few miscellaneous fragments which appealed to
him:

(i) In Chapter 2 there is a useful sketch of the beginnings of biometry in which
Francis Galton and W. F.R. Weldon were also key figures. Weldon, who was three
years younger than Karl Pearson, was, like him, a professor at University College,
London, and a close friendship developed between them, so that Pearson was
deeply shocked when Weldon suddenly died in 1906, only five years after the
founding of the journal Biometrika.

(ii) E.S. Beaven, a friend of Gosset, had links with agricultural science at Cam-
bridge, where Fisher’s tutor was the astronomer F. J. M. Stratton, whose interest
in the combination of observations led via Beaven to an acquaintance with
Gosset; a copy of Fisher’s first paper on estimation, written while he was still an
undergraduate, was sent on Stratton’s advice to Gosset.

(iii) Gosset’s Biometrika paper in 1908 had inferred the sampling distribution of
t, where the sample mean is scaled by the sample standard deviation, and was
highly esteemed by Fisher. Fisher’s use in 1912 of sample space to provide a
geometrical derivation of the distribution apparently baffled Karl Pearson when
Gosset showed Pearson a letter Fisher had written to him (this in reply to a query
from Gosset to Fisher about the appropriate divisor n or n-1 in estimating the
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standard deviation from the sample sum of squares of deviations from the mean).
It was not until 1915 when Fisher published his derivation of the sample correla-
tion coefficient distribution that his geometrical methods appeared in Biometri-
ka, and, as a by-product, confirmed Gosset’s inferred ¢-distribution.

(iv) Gosset did not meet Fisher until 1992, when Gosset visited Rothamsted. How-
ever, his close relation with Fisher is exemplified by Fisher’s asking him to read
the proofs of the first edition of Statistical Methods for Research Workers, which
was published in 1925.

(v) In a quoted letter to Gosset in 1923 from Fisher, there is a clear statement
about the subdivision of the total sum of squares into independent components
with appropriate degrees of freedom — in effect, the ‘analysis of variance’.

(vi) In the chapter on E. S. Pearson, reference is made to his exchange in 1926 with
Gosset on the interpretation of statistical tests, this leading in due course to the
Neyman-Pearson theory of testing statistical hypotheses.

(vii) An illuminating comment by E. S. Pearson quoted in the concluding General
commentary refers to Fisher asking E.S. Pearson to act as a go-between with his
father in seeking to put up Gosset for Fellowship of the Royal Society of London.
However, E.S. Pearson did not feel it was up to him to take any such action, hav-
ing in mind the prickly relations which existed at the time (1933 or 1934) even be-
tween the two Pearsons. It is sad to think that it was their difficult personalities
that prevented Karl Pearson and R. A. Fisher getting together to sponsor Gosset,
whom, in spite of his occasional differences with each of them, they both held
in such high regard.

Exmouth M. S. Bartlett

Brandt A, Franken P, Lisek B: Stationary Stochastic Models. John Wiley & Sons
1990, p. 344, £39.95

In recent years fundamental results concerning stochastic equations of the type
X1 =f(X,,,U,,) , ne’Z ()]

have been obtained. The interest in (1) was stimulated by the desire to understand
the evolution of stochastic models arising in econometrics (see de Haan, Resnick,
Rootzen and de Vries (1989)), physics (Chamayou (1973)), environmental pro-
cesses (Rachev and Todorovic (1990)), sociology (Cavalli-Sforza and Feldman
(1973)). The book “Stationary Stochastic Models” is an excellent collection of
results on the equation (1) mainly paying attention to its applications to queueing
models.

Chapter 1 deals with the steady state behaviour of a stochastic system which
time evolution is described by (1) with U, being a stationary sequence, and U,
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and X, taking values in complete metric spaces. The aim is to provide stationary
weak (or strong) solutions of (1). The qualitative stability (continuity) of the solu-
tions of (1) is also studied here, while the problem of qualitative stability is only
stated. Chapter 2 deals with stationary solutions of (1) for i.i.d. U,. The main
result is the Markov property of the weak solution provided that f(x,u) is
nondecreasing and left-continuous in x. Chapter 3 contains a short review on
marked point processes (MPP) with emphasis on Markov renewal processes and
ergodic MPP. The continuous analogue of (1)

X)) =FfXw), t—u, 6,0, u, teR, u<t,

with @ being a MPP was introduced in chapter 4.

For some basic examples of queueing models (as
G|G|®,G|G|m|0,G|M|m|r) the imput flow U, in (1) has the form (4,, Y,)
where A4, is treated as the interarrival time between the uth and (n+ 1)th arrival,
and Y, is a mark comprising the characteristics of the nth customer. Chaper 5
deals with the weak stationary solution of (1) exhibiting the behaviour of the
above queueing models as the time tends to infinity. Chapter 6 contains examples
of relations between the input- and time-stationary characteristics of queueing
models. Functional analogue of the Little’s formula is discussed in the framework
of MPP’s. Chapter 7 presents generalizations to queueing models with batch ar-
rivals; having geometric, constant or some aging distribution. Chapter 8 deals
with model qualitative stability of the output characteristics of G|G|oo,
G|G|m|0, GI|GI|m|0, G|G|1| e, G|GI|m| . The quantitative stability, so
natural for the problems considered and the methods being used, is not here in-
cluded, cf. the review Rachev (1989). Chapter 9 is a nice illustration of the ap-
plicability of the methods developed in the monograph. It deals with the
stochastic difference equation

X,.1=B,X,+C,, neZ, )

where the sequence (B,, C,) is assumed to be stationary and ergodic. The equa-
tion arises in economics, physics, nuclear technology, environmental models, biol-
ogy and sociology, cf. Vervaat (1979). As an example, take the first order ARCH
process defined by &, = Y, (8+ A£%_,)!"2. The results in this section generalized
the results of Vervaat (1979) for (B,,C,) being i.i.d.

Some final comments: (a) the book is designed for specialists in mathematical
queueing theory, applied stochastic processes and applied analysis; (b) there are
no exercises, and the monograph is written for readers familiar with measure-
theoretic probability and point processes; (c) the vehicle chosen for the exposition
is the stochastic differential equation (1), its weak solution and stability. Related
topics and techniques in the modern queueing theory are presented in the
monographs Borovkov (1984), Franken, K&nig, Arndt and Schmidt (1982),
Kalashnikov and Rachev (1990) and Rachev (1991).
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Santa Barbara S. T. Rachev

Wentzell AD: Limit Theorems on Large Deviations for Markov Stochastic Pro-
cesses. Kluwer Acad, Publishers, Mathematics and its Applications (Soviet
Series). Dordrecht 1990, p. xv+ 176, Dfl. 150.00, US $ 79.00, UK £ 53.00

This book is the English translation of the Russian edition, which appeared in
1986. In some sense it can be viewed as a first attempt to give an unified treatment
of the various large deviation results, which have been discovered during the last
two decades since the famous classical theorem of Cramér in 1938.

Let me first give the rough idea of a large deviation problem as it is presented
in the book. Suppose that (¢%),c4 is a net of stochastic processes defined on
probability spaces (2%, F%,P%) and taking values in a metric space (X, d). The
index set T of the £ may be discrete or continuous. Let X be a space of func-
tions ¢: T—X such that every £% has its paths in X. X is assumed to have a
metric g inherited from the metric d on X (normally the sup-norm). Suppose that
S:X—-R, and k:A—-R, (with lim k(a) = o) are two functions. Then it is

a

said that a large deviation theorem holds for (%) with the action func-
tionall, (9) = k(a)S(¢), if essentially the following two conditions hold for any
d>0, y>0, >0 and sufficiently large a:

P%lo(C% 9)<d1=exp [—k(a)(S(p)+)] )
for every pe®(t): ={weX:S(y)<t}, and
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P%o (&%, d(s))=d]<exp [—k(a)(s-p)] (I
for every s<t.

The functions S and k are called the normalized action functional and the nor-
malizing coefficient respectively.

It is mentioned in the introduction (with a reference to the proof) that these
two conditions are equivalent to the conditions due to Varadhan:

}i__n_lk(a)‘1logP"[{“eG]>—inf{S((p):(peG] , and 9]
l_i@_k(a)”logP“[{"eF]Q——inf{S((p):(peF] (1)

for all open subsets G and all closed subsets F of X. Since the conditions of
Varadhan are probably the more familiar conditions for large deviations, it surely
would have been better to include the proof of the equivalence of (I), (II) and (I'),
aIr).

The book is split into two parts. The first part (Chaps. 1—3) contains (beside
the necessary prerequisites at the beginning) the basic and very general theorems
on large deviations for Markov processes — both for the discrete and continuous
parameter case. The idea is to deduce from these general results the special results
presented in the second part of the book (Chaps. 4—6).

In Chapter 2 two fundamental inequalities are proved, which are essentially
the conditions (I) and (IT) for a single Markov process ¢ satisfying an analogue
of Cramér’s condition of finiteness of exponential moments. In the case of a con-
tinuous time parameter, ¢ is in addition assumed to be locally infinitely divisible.
The action functional I(¢) for & is given by an integral of the Legendre transform
of the so-called cumulant G of £ The estimate from below for the probability
Plo(,¢)<d] is obtained by a measure substitution, called the generalized
Cramér’s transformation. The estimate from above for P [o (&, @(t)) =J] is ob-
tained by approximating ¢ by a suitable polygon /(&).

From the basic inequalities in Chapter 2 the main large deviation results for
the discrete and continuous parameter case are derived in Chapter 3. The essential
assumption on the family (£%) is made on the corresponding family (G%) of
cumulants, e.g. convergence after norming by the normalizing coefficient:

lim k(a) ' Gt x k(@)z) = Go (£, %, 2) .

The action functional is now the integral of the Legendre transform of G.

In Chapter 4 the general results are applied to a number of examples, especial-
ly to the case of locally infinitely divisible processes without jumps, i.e. to diffu-
sions. The possible large deviation results are subclassified into three different
cases: “not very large”, “very large”, and “super-large deviations”. For the
classical problem of asymptotics of the probabilities:
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P[¢1+ . +¢,,>x]

n

for an i.i.d. sequence (é,VLthese three cases correspond to the cases x =0 (l/;),
x of the same order as }n, and x tending to infinity faster than 1/;1_

In the fifth chapter precise limit theorems on large deviations for Markov pro-
cesses are presented. This means that for certain smooth functions F the asymp-
totic behaviour of the expectations

E®exp (k(@)F(*)

is described.

The last chapter deals with large deviation theorems of a different type than
those considered before. Such theorems occur e.g. in the case of Markov processes
with large jumps, or in the classical case when the i.i.d. sequence (&;) is attracted
to a stable law. In this situation the asymptotic behaviour of the probabilities is
no longer exponential but of power type.

The presentation especially of the main results in Chapters 2 and 3 is not very
transparent and the proofs would have benefited by more detailed arguments. For
a first entry to the subject of large deviations this book alone is surely not
suitable, and one should first cast a good look into some of the main original
papers (e.g. those of Varadhan). With such prerequisites then the book will give
the reader a good introduction into the general theory of large deviations of
Markov processes.

Tiibingen E. Dettweiler

Gittins JC: Multi-armed Bandit Allocation Indices. John Wiley & Sons,
Chichester, UK, 252+xii pages. £29.95

Table of Chapters:

. Introduction

. Main Ideas

. Central Theory

. General Properties of the Indices

. Jobs with Continuously-varying Effort Allocations
. Multi-population Random Sampling (Theory)

. Multi-population Random Sampling (Calculations)
. Search Theory

. In Conclusion

O 0NN WA WN -
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This book is intended for use by “researchers in chemometrics, combinatorics,
economics, numerical analysis, operational research, probability theory and
statistics” (author’s preface). It may also serve as a text in a graduate course in
applied probability. With the latter in mind the author has included exercises at
the end of each chapter.

A discrete-time multiarmed bandit problem involves selecting one from a
number of stochastic processes (arms) at each of a possibly infinite number of
stages. Only one arm may be selected at each stage. There is a reward at each stage
that depends on the result obtained at the stage. The results of the previous selec-
tions are known when these selections are to be made. Results from arms not
selected are not observed. The problem is sequential: Select an arm for observa-
tion at each stage depending on what is known at that time. Rewards accumulate
from one stage to the next and the objective is to maximize expected discounted
reward. The problem is difficult because immediate reward must be weighed
against the possibility of gaining information about an arm that may help in mak-
ing better selections later.

This book considers the important case in which the available arms are in-
dependent a priori and the number of stages is infinite with future observations
discounted geometrically-exponentially when time is continuous. Further, the dis-
count factor is assumed to be completely known. In this case “index policies” are
optimal — a most important and impressive result due to the author. But index
policies are not optimal when the arms are dependent or for other types of dis-
counting. In particular, they are not optimal for geometric discounting when the
discount factor is unknown. While no book should try to do everything, a discus-
sion of the consequences of using index strategies when they are not optimal
would have been a nice addition.

There is another omission that will be important for some users. The book
takes a Bayesian approach in which unknown parameters are random variables.
How is the user to come up with a prior probability distribution for these parame-
ters? While not important for the theoretician, a discussion of this issue is essen-
tial for the practitioner. For example, the book includes tables of allocation in-
dices for Bernoulli arms for various beta prior distributions of the Bernoulli
parameter. How is the user to decide which beta distribution to use, or whether
a beta distribution is appropriate? What if none is?

The exercises in the book range from difficult to trivial. An example of the
latter: Show that the mean of a nonnegative random with distribution function
Fis

oo

§ 1=F(x))dx .
0

Most of the exercises are well thought out and will serve as valuable learning aids
for the diligent reader.

The author is a brilliant mathematician. However, his writing style is not
always easy for the uninitiated to penetrate. For example, it is difficult to read the
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later chapters in this book without having read the earlier ones. Consider a reader
who wants to find out about search theory. For the first problem in Chapter 8,
the author indicates that a “related SFABP in fact turns out to have an identical
cost structure, thereby providing a solution in terms of an index” (Page 187).
(Acronyms such as SFABP are not included in the book’s index; nor for that mat-
ter is its longer version: simple family of alternative bandit processes”.) This
SFABP has “a cost structure of the type covered by Corollary 3.10” (Page 187).
This corollary is: “Under Condition C the generalized EWFT criterion for a
SFABP is minimized by the index policy obtained by putting y = 0 in the general
expression for the index” (Page 56). The serious reader is then off to find out
about “generalized EWFT” (this acronym nieans expected weighted flow-time)
and the “general expression for the index”, again with no help from the book’s
index.

In view of the larger issues, this is nitpicking. The book is an important and
useful research tool. The quality of the “stuff” below the surface makes scrat-
ching for it worthwhile. I recommend it highly to its intended audience.

Durham D. A. Berry

W. Haerdle (Ed.): Applied Nonparametric Regression, Cambridge University
Press, 1991, 348 pp., $44.50/£30,00

This book offers a detailed overview on recent developments in nonparametric
regression. After a short introduction on different smoothing techniques the
discussion concentrates on kernel smoothing. Main themes of current research
on kernel smoothing and nonparametric curve estimation are addressed: band-
width choice, curve estimation in the presence of outliers and for correlated data,
nonparametric inference on the qualitative shape of a curve, smoothing in high
dimensions. These topics are discussed in full detail and many illustrative exam-
ples are included.

The emphasis of the book lies more in discussing statistical motivations and
implications of presented results than in a rigorous mathematical argumenta-
tion. More technical points (of proofs) are typically only sketched in separate
sections, where references are also given for more details. This style allows the
author to include a lot of material in the book without getting lost in techni-
calities. Therefore the book can be read on a relatively nonmathematical level,
which makes it particularly useful for people interested in applications of
smoothing techniques, rather than in theoretical considerations. The presenta-
tion of the book is very clear and the reader gets a good impression about trends
and possible future developments in nonparametric curve estimation. The book
is recommendable for practitioners as well as for theoreticians.

Heidelberg E. Mammen
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Abstract: In the variance component model Y ~ (X B Y o vj>, Pukelsheim (1981, Anal. of Statist.)
=

proved that the non-negative and unbiased estimation of the variance component 62, j = 1,2,..., ¢
entails a transformation of the original model to QY (called the Q-reduced model). Lee and Kapadia
(1988, Metrika), considered the maximum likelihood approach based on the likelihood of the QY
(denoted by Q — ML) and applied to an incomplete block design model. In this note, the results
given in their paper are used to show that the variance of the combined estimator of treatment
contrast proposed by Graybill and Deal (1959, Biometrics) can be reduced if the Q — ML estimators
of the variance components are used instead of AOV estimators as is done in Graybill and Deal’s
paper.

Key Words: Variance components, Q — ML estimators, Balanced Incomplete Block

1 Model

Consider a mixed linear model of the form,
Y =40 +b1+eg (1.1)

In this model, ¥; = (Y}, ..., Yx;)isa K x 1 vector (or block of observations, and
A;is a K x I matrix of fixed elements. The quantity 6 = (6,,...,60,) isa l x 1
vector of regression coefficients, b is the j** block (random) effect having mean
zero and variance o7, 1 is a K x 1 vector of ones, and e; = (ey, ..., ex;) is a
K x 1 vector of random errors. In this model the vector 4;0 is a fixed component
of the vector of observations Y; and the vectors b;1 and e; are two distinct
random components. For an incomplete block design, 6 is the I x 1 vector of
treatment means and A; consists of 1’s and 0’s, each row of which contains a

0026-1335/93/3-4/137-147 $2.50 © 1993 Physica-Verlag, Heidelberg
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single 1 indicating which treatment is included in the j® block. This model
includes a balanced incomplete block design (BIBD) as a special case. (See Box
and Tiao 1973)

We assume that b; and the element ¢;,j = 1,2, ..., J are independent and that
b, ~ N(0, 67), e; ~ N(0, 62I). Let o2, = 62 + Ko?.

In a BIBD, ¢ treatments are examined in b blocks, each of equal size K. Each
treatment appears r times and each pair of treatments appears exactly A times in
different blocks. For any such designs, we must have

b>t, bK=tr, At—1)=rK—1). (12)

In terms of the general model in (1.1), 4;is a K x t matrix of 1’s and 0’s each row
of which contains a single 1 in the column corresponding to the treatment
applied. Clearly A; consists of othogonal rows. The t x b matrix

N =[Aj1l...|4p1k] (1.3)

is known as the incidence matrix whose elements consist of 1’s and 0’s indicating
the presence and absence of the ¢ treatments in the b blocks. Since 4;,j =1, ...,

b have patterned forms whose rows are orthogonal, the following relationships
hold,

b

L A= (1.4)
b r—2Aa A

Zl AjRA; =( X )It + gLl (L.5)
£

-1 K A
(J; A}RA,) = (r — 1)( P — RLL:) . r>2 (1.6)
and

LA At e 4

Y AU = R4y =1 (- L1 (1.7)
£

where I, is a t x t identity matrix 1,is a t x 1 vector of 1’s.

Let B = (B,, ..., B,) and B is the average of the block means y ; for those
blocks j where the i** treatment appears and T’ = (T}, ..., T;) where T, is the
average for the i treatment over the blocks where the treatment appears and
y.. is the grand average, i.e.,
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1e 1
B=- z Ailgy.;=-NY,,
r j=1 r
1 b
T=-Y 4Y, and
rj=1
1 b K 1 b K
-1 v -1 v
Y. bkj; k; M ,; k; b
or
b
Zl Ajlgy;=rB, (1.8)
=
b
Y A(I -RY;=r(T—B) and (1.9)
ji=1
LLT=14=B=ty. . (1.10)

From (1.5) and (1.7), it follows that

o

qp = rank[

J

Aﬁ4]=m
1

i

o

q. = rank[

J

4U—RmJ=t~1.
1
2 Estimator of the Treatment Contrasts Inter and Intra Block Model and

OML Estimators

The estimable inter and intral block treatment contrasts are given in the
following table. For more details see Box and Tiao (1973).
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Table 1. Estimators of Treatment Contrasts in BIBD

Parameter Estimator Variance
_ K K [t-1
u=06-0 inter i, = ———(B; — y..) @.1) o2 (22
r—Aa r—A\ t
rK K(t—
i=1,...,1t intra i, = —(T, — B, . 2 .
i intra 4 n ( ) (2.3) ,lt( ; ) (2.4)
1 K
b= (0~ 0) | inter 5, = —= (B~ B, @3) | ——d 26)
P \/5 r—=4a — A
i=1,2...,t—1 intra 9, ( + B, — T, — B.,;) 2.7) K o2 (2.8)
i=12,...,t— v,-—— i A . —0; .
J2 M 1 ! At

Finally, from Kapadia and Lee (1988),

S, Sy + S,
— 2 — 1 € b :
0 — ML(s7) mln[bK—b—t+ 1’bK — 2t — 1]
1[ s S, *
—_ 2) = b — .
Q — ML(d?) K[b—t bK—-b—t+1] ’ e

and

S, S, + S,
Q—ML(a,fe)=max|:b b et S ]

t’bK — 2t — 1
. b K b 5 r’K ¢t 5
where a* = max(a,0),S,= Y Y Yi—-K Y, y'j——t— Y (T, — B)
=1 k=1 =1 =1
2

=

r

t
r— /l.z

and S, = KZ(yJ——y ) -

3 Estimation of the Treatment Contrasts in the Inter and Intra Block Model

The combined estimator of u denoted by # is

_ (l—ei+ewi or ﬁ_(l—e)ﬁ,-+e-wai
T (l-e+ew T - teow

I

3.1)
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and that of v, denoted by b, is

(1 —e)i+e wb _ (1= o) + ewd;

2=(1—e)+e-w ° vi—(l—e)+e-w

(3.2)

At o
where e = X w = 02 /62 u;s and v;’s are given in Table 1.
r

In the above results, w = 62 /32 is unknown and hence we have to estimate w.
v; = v;(w) can be written in the following form

Bw) = b+ =

; m(ﬁi —0;) . (3.2a)

Graybill and Deal (1959) use the A0V estimators of 62 and a2 to estimate o, i.e.,
they substituted the individual estimators 62 and o2 in w, which is

AOV(2) + K AOV(c?)

- 3
AOV () A0V(0D) 3.3)
where
S, 1S, S
=2 2)=_—|2_ " 34
AOV(c?) ” and A0V (6%) % I:"z Vl] , (3.4
where
vi=bK—-b—-t+1, v,=b—1t.
Substituting (3.3) into (3.2) gives
AOV(@) =1 (3.5)
V2 Se
Hence the resultant estimator of v; is
_ R r—24a <
Ui(AO V(w)) =0; + v S (Ui - ﬁ,) . (3.6)
L%
(r—A+ it WS,
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Graybill and Deal (1959) show that 7,( 40V (w)) is unbiased for v; and is uniformly
better (smaller variance) than either 6; or ; if the following is true.

)rt—b—t+1>18 and b—t=9
or ii) b—1t>10.

If the Q — ML estimators of 67 and 62 (and hence o7, and o7) are used instead
of the AOV estimators then the resultant estimator of w is given as

Q — ML(d3.)
— ML) =Z2—-——"-
¢ - ML) =5 " MLE)
S, S.+ S
] +v
2 1 2
= = .7
. [S. S.+ S,,] 3.7
min| =, ——
[ vi v+ vy
[ Vi Sy
= ,—=1.
max 13, Se]
The last equality follows from the fact that
Sy _Se+S, . . S, S.+8,
—> is equivalent to —< )
vV, Vit v, Vi Vv,
which is in turn equivalent to
1<
V2 Se
If the Q — ML estimator of w in (3.7) is used in (3.2a) the result is
-2
50 — ML(@) = 6, + ) =6, - (38)

r—A+4t-Q — ML(w)
Note that in (3.6), the condition

VZSe

is equivalent to

62 = AOV(d) >0 .
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Hence (3.8) can be written as:

If 62>0, (0 — ML() =0, + S( — 6,

where S =(r — ) / {(r Sy ) By Pie ﬁ} (3.9)
Va Se
2 _ r—ai.
If 6;<0, 7v(Q—ML(w)=10+ K @ — 96y .

or
If 62>0, 5(0— ML(w) = 5,(A0V (o)) .

-
If 62<0, #,(0— ML(@)=20,+ ’r (6 - 6) (3.10)

from (3.6) and (3.9).

0, if ¢2>0

Let I(o2) = {1 o2 (3.11)
> = .

To show that 7,(Q — ML(w)) is unbiased for v;, rewrite (3.10) using (3.11), i.e.,

5(Q - ML(w) = {1 - I(&:>}vi(A0V(w» * I(as){ﬁi T=LT ﬁ,-)}

or

5(Q — ML(w)) = 7(40V(w)) + I (&f){(rr;l - S) (@ — ﬁi)} - (3.12)

Since 7;(A0V (w)) is unbiased for v;, in order to show 7,(Q — ML(w)) is unbiased,
it is sufficient to show that

E[!(é&){(’r‘;f - s)(,;,. - ﬁ»}] =0, (3.13)
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where

r—2Aa
V1Sb'

r—2)+ a2

Va2 Se

S =

Note that 62 and S depend on the data only through S, and S, and since &;, 0;,
S, and S, are mutually independent, the left-hand side of (3.13) can be factored as

E{I(a,f)('r';('1 - S)}E(ﬁ,. —8)

and E(f; — 0;) = 0 since §; and o, are unbiased for v;. Hence 7,(Q — ML(w)) is
unbiased for v;. Since both 7;,(40V(w)) and 7;(Q — M L(w)) are unbiased for v;,

we wish to compare their variances.

Var{5(Q — ML())}

=E [{ﬁi(AOV(w)) —ut+1 (ﬁ){(% - S) @ - ﬁ,-)}]z

= Var{7,(40V(w))}

+ 2E[{v,-(A0V(w)) — v} 16} {(’r}f - S) 5~ ﬁ.-)}]

+ E{I(&,})('J{'1 - s>2(5,. - ﬁ,.)z} .

From (3.6)

Var (5,(A0V ()} — Var{5(Q — ML(w))}

r

-}
— E(5 - 0)°E {uﬁ)((',}l)z - S)} !

= —2E{(@ — 00 - vi)}E{I(«m( —

(3.14)
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where the last equality follows from the mutual independence of

5,6,S, and S, .
Let w; = 0; and Z; = #; — 0;, then we have
w ol (o Ka2/it —Ka?/it
Z; 0)’\ —Ko2/it KZx(ro? + Ata?)/At(r — A)
Hence from (3.14),

Var{5{A0V(w))} — Var{5,(Q — ML())}

2Kcre -2 .
T { < S|62 SO}-Pr(&f <0)
K2(ro? + Ato}) r—A\?
— e E — 826, -P <0
At(r — A) rK (e ) -
ro?
Let 0 = 2—— and p = Pr(62 < 0) and note that
+ Ata?
r—4 rS,
© rK S, + Atv, 82
_r=4 where = rS.
=Kk Y y—rSe+,ltvlé,,2

and y > 1 whenever 62 < 0. Hence from (3.16)

Var {7,(A0V (@)} — Var{5,(Q — ML(@))}

r—A4
=== (ro2 + Mo2)E{(y — )y +1—20)|y>1}p .

Herer — A >0,0 < 6 <1 and hence
y—-Dy+1-200=0 whenever y>1 .

Therefore, (3.17) yields

Var{7,(A0V(w))} = Var{7,(Q — ML(w))} ,

145

(3.15)

(3.16)

(3.17)
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i.e., a better (smaller variance) estimator of treatment contrasts can be obtained
by using the @ — ML estimators of the variance components than the AOV
estimators. Note that the reduction of variance is porportional to the probability
of 62 = AOV(o?) being negative. Since the sampling distribution of y is
unknown, further reduction of (3.17) cannot be made at this stage.

4 An Example

To illustrate the theory the following data set is generated by simulation where
t = 3 treatments, b = 15 blocks of size k = 2, each treatment replicated r = 10
times; thus A = 5. The data were generated from BIBD model with 6, = 5,6, = 7,
0y =9,02 =225,062 = 1.0.

Treatment.
Block 1 2 3 V.j
1 4.66 5.99 532
2 5.86 7.30 6.58
3 4.65 9.22 6.94
4 5.74 8.02 6.88
5 449 7.73 6.11
6 5.21 10.52 7.87
7 4.02 9.79 6.91
8 5.60 8.87 7.24
9 7.46 9.15 8.31
10 424 10.25 7.24
11 8.06 5.81 6.94
12 8.25 10.65 945
13 8.78 10.88 9.83
14 9.50 9.20 9.35
15 6.53 10.01 8.27
T; 5.19 794 9.51 y..=17.547
B; 6.94 7.57 8.14 . = 21.9011
S, = 17.1995
Hence from (3.4),

AOV(c?) = 1.6847 , AOV () = —0.1257 .
Also from (2.9),

Q— ML(c?)=15640 , Q — ML(6?)=0 andhence w=1.
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Book Review

S. M. Veres: Structure Selection of Stochastic Dynamic Systems. The Informa-
tion Criterion Approach, Gordon and Breach Sc. Publ, 1991, XI11/342 pp.,
Hardcover, £28.00/$50.00

This book gives a reliable review on structure selection of stochastic dynamic
systems using information criteria and stochastic complexity. Selection of model
structure for a dynamic system is part of system identification. The use of
information criteria seems to be useful if one has little a priori information about
the possible models. After a short introduction in Chap. 2, the most important
results of the literature are summarized. In the rest of the chapters the author
presents his own results. The information criteria AIC, BIC and ¢, are re-
ported and their advantages and disadvantages are pointed out. In Chap. 3, the
asymptotic theory of discrete-type models is investigated in Bayesian frame-
work. The strong consistency of the complexity criterion for ARMA processes
is proved. In Chap. 4, the model validation is concerned. The author concen-
trates on the invariance principle of likelihood ratios for ARMA processes. After
theoretical investigations many simulations are included to show finite-sample
behaviour of the model-structure estimators which illustrate the effectiveness
and the limitations of the methods. In Chap. 5, the small-sample behavior of
several methods is studied. Recursive least squares, extended least squares,
on-line two-stage, recursive maximum likelihood, on-line three-stage, off-line
two-stage, off-line three-stage and off-line maximum likelihood are studied by
simulation. Chapter 6 is concerned with the estimation of continuous-time
processes.

The reader can gain his own experience on the working of many methods
using the demonstration disk. Finally, in Appendix A results on martingale
convergence are given, in Appendix B some PASCAL routines are listed and
Appendix C is a description of the attached simulation and identification
programs.

This book will be helpful to researchers interested in applying methods
of model-structure selection in time series analysis, in control or in signal
processing.

Debrecen M. Araté
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Two-Sample Rank Tests with Truncated Populations

C.H.LIn
Ming Chuan College, Taipei, ROC
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Department of Statistics, lowa State University, Ames, IA 50011

Abstract: Let X,, ..., X,,and Y,, ..., Y, be two independent samples from continuous distributions
F and G respectively. Using a Hoeffding (1951) type theorem, we obtain the distributions of the vector
S = (84 ---> Swy), Where S = #(X;’s < Y;)) and Y is the j-th order statistic of Y sample, under
three truncation models: (a) G is a left truncation of F or G is a right truncation of F, (b) F is a right
truncation of H and G is a left truncation of H, where H is some continuous distribution function,
(c) G is a two tail truncation of F. Exploiting the relation between S and the vector R of the ranks
of the order statistics of the Y-sample in the pooled sample, we can obtain exact distributions of many
rank tests. We use these to compare powers of the Hajek test (Hajek 1967), the Sidak Vondracek test
(1957) and the Mann-Whitney-Wilcoxon test.

We derive some order relations between the values of the probagility-functions under each model.
Hence find that the tests based on S;, and S, are the UMP rank tests for the alternative (a). We
also find LMP rank tests under the alternatives (b) and (c).

Key Words: Hoefiding type theorem, UMP rank test, LMP rank test

1 Introduction

Let X,, ..., X,, and Y;, ..., Y, be two independent samples from continuous
distributions F and G respectively. We obtain the exact distributions of S, defined
in (3), when the samples are from truncated populations. We consider the cases
when one distribution is truncated by the other or the two distributions are
different types of truncation of some other distribution. Truncation does occur
in many practical problems, for example, see Deeley et al. (1969) and Nelson
(1990).

The vector S is obviously related to R, the vector of ranks of the order statistics
of Y sample in the pooled sample {X,..., X, ¥;,..., Y,}. Hence we find the
distribution of R and the distributions of rank statistics when the observations
are truncated. The basic tool is a Hoeffding (1951) type theorem given in the

0026 - 1335/93/3 -4/149 - 172 $2.50 © 1993 Physica-Verlag, Heidelberg
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appendix. We give power comparison of the Hajek (1967) test, the Sidak and
Vondracek (1957) test and the Mann-Whitney-Wilcoxon test.

We derive some order relations between the values of the probability functions
under each model, prove that the tests based on S;, and S, are the UMP rank
tests for the model (a), and find LM P rank tests for the models (b) and (c).

Several two-sample location tests based on exceedances are for the truncation
alternatives where in the distributions do not have the same support, e.g., see
Haga (1960), Hajek and Sidak (1967, p. 89), and Sidak (1977). Also, the two-
sample scale tests, studied by Klotz (1962), are for the alternatives under
consideration. The following are some examples of truncation models:

(a) In a two-sample location shift problem for exponential distributions, one
distribution is just a truncation of the other. (b) Let F be the d.f. of U(q, b)
and G be the d.f. of U(a + 4,b + 4) for 4 > 0. Then F is the right truncated
distribution of U(a, b + 4) and G is the left truncated distribution of U(a, b + 4).
(c) Let F be the d.f. of U(—0.5, 0.5) and G be the d.f. of U(—0.5%, 0.5%) for n > 0.
If n > 1 then F is the two-sided (left and right) truncation of the distribution
function G.

Though some of the exceedance tests, appropriate for truncation alternatives,
were introduced over thirty years ago, apart from some results based on Monte
Carlo studies and some for special shift alternatives relatively very little is known
about their exact powers. Sidak and Hojek (1977) give Monte Carlo comparison
of some rank tests for uniform distributions, Sukhatme (1986) uses the idea of
expressing a rank statistic as a function S;)’s and/or Sf§’s defined in (3) and the
properties of order statistics for computing exact powers of rank tests, and
illustrates the method by computing the exact powers of the Mathisen (1943) and
Rosenbaum (1953) tests for some Lehmann (1953) alternatives, alternatives with
shift in location of a uniform distribution. Callfas and Mohanty (1986) develop
an algorithm to derive the distributions of rank tests under Lehmann alternatives
and derive the exact joint distribution of the Wilcoxon statistic and the
Kolmogorov- Smirnov statistic. Katzenbeisser (1989) uses a method similar to
Sukhatme (1986) to find exact powers of two-sample location tests for shift
alternatives, some of his results are in Sukhatme (1986). Lin and Sukhatme (1990)
compute exact powers of several two-sample rank tests.

In Section 2 we derive the distribution of S under the alternative H, and prove
that the exceedance test is the UMP rank test for the alternative.

In Section 3 we derive the distribution of S under the alternative H,, present
amethod of ranking the values of the probability function of S in many situations,
and use the ranking to search for LMP tests.

In Section 4 we give some rank tests appropriate for H,. Hajek and Sidak
(1967, Problem I1.13) have shown that the Sidak and Vondracek (1957) test is
the LMP rank test at the right end for testing the shift to right in location of an
uniform distribution for a particular choice of a. They also proved the Hajek test
is the LMP rank test at the left end for testing the same problem. We find that
these tests, however, are not the locally most powerful tests for a general choice
of a.
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In Section 5 we briefly discuss rank tests for the alternative H..

Appendix A is for a Hoeffding (1951) type theorem, used to obtain distributions
of R under various alternatives.

Definitions and Notations:

Define
S =MmF(Yy) = #{Xis< Yy}, k=1,..,n (1)
55 =nG(Xy) = #{Ys< X}, Jj=1...m ()]
and
S=Ouy-->8m) »  S*=(5§) ..., S&) 3)

where # A denotes the number of elements of the set A, Y, is the k-th order
statistic of the Y sample and X ;) is the j-th order statistic of the X sample, F,,(x)
and G,(x) are the empirical distribution functions of F and G respectively. The
sample spaces of S and S* are, respectively,

A={G,..,i,)0<i; < <i,<m} 4)
and
A*={(]1,,]M)OS]1SS]mSn} . (5)

Note that R, = S, + k and R} = S + j are the ranks of Y, and X|; in the
pooled sample, respectively. Therefore, S and S* are entirely dependent; that is,
for eachi = (i, ..., i,) € 4 there exists a unique j = (j, ..., j.) € A* so that

{S=i}={8*=j}
and
{iy+1,.. i, +nj+ L. j,+m={1,...,m+n}. 6)

Therefore, for each i € A, we call j € A* the dual vector of i if the above relation
is satisfied. Every rank statistic can be expressed in terms of Sy)s and Sf;s.
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For each N=1, 2, ..., let U;,y <+ < Uy.y be the order statistics of a
random sample of size N from U(0, 1), the uniform distribution on (0, 1). For
each r(1 <r < N), U,.y has the Beta distribution, Be(r, N — r + 1). Also, define
the incomplete beta function with parameters, (o, ), by

1
B(a, p)

B(t; o, B) = i u* (1 — uf 1 du )

where B(a, p) is the usual beta function.

We denote by I,(x) and I(A4) the usual indicator function and the usual
indicator random variable, respectively.

Define three basic truncation transformations, T;, Tz and T, as follows:

1. G=[(F = 6)/(1 —6)11 >4 is the left truncation of F with truncation rate
d € [0, 1). The left truncation transformation T;(-; é) for t € [0, 1] is then,

T.(t;6) = [(t — 6)/(1 — &)1 - ®

2. G =[F/(1 — 6)1Ir<,-s is the right truncation of F with the truncation rate
0 € [0, 1). The right truncation transformation Tx(*; 8) for t € [0, 1] is then,

Tx(t; 0) = [t/(1 = 8)1y<1-) - O

3. G=[(F—6)/(1 — 6, — 6g) 15, <r<1-5, is the two-sided truncation of F
with the left and right truncation rates, d,, 6 > 0, §, + g < 1. The two-sided
truncation transformation T,(-; é,, dg) for t € [0, 1] is,

T,(t; 61, 0g) = [(t — 6,)/(1 — 61, — 5R)]1(6,_<r<1—6,) . (10)

Note that T;, Tz and T, are absolutely continuous distribution functions on
[o, 1].

We consider three alternative hypotheses as follows:

A. H;:G=T,(F;d)(or H;: G = Tg(F;))for0<d < 1.

B. H,: F = Tx(H; ég) and G = T (H; 6,) for dg, 6, > 0 and dy + 6, < 1 where
H is some continuous distribution function.

C. H: G = T,(F; 6., 8g) for g, 6, > 0 and 6z + 6, < 1.
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2 The Distribution of S Under the Alternative H,

Corollary A.2 in Appendix A is used to obtain the distribution of S in the
following theorem. From the definitions of T; and Ty we have for t, é € (0, 1),

Ti(t;0) = (1 — 8) >y (1)

Ta(t; 0) = (1 = 0) " <y s (12)

Theorem 2.1: For each i € A and the corresponding dual vector j € A* and for
each § € [0, 1), we have

1. P{S =i|G = T,(F; )} ___( m!n!

- i( = 3 (Vstimsn > 0}

(= Dl(m — iy)!
T m+n—i — 1)

P{Su) =i;|G = Ty (F; 5)} >

m!n!

zP§=uG=nwwn=@;3Wtjﬁ

P{Ui,,+n:m+n <1- 6}

— 1)!(i,)!
- %In)—-(%"{sw = i,|G = Tg(F; 0)}
i[F = T,G:0)) = — 20
1P$=HF_HWJH—W+MM_6WHQMMH>&

—1)ln—j)!
- (("':'+ ")“(,;1 _hl))!P{Sm =j,|F = T,(G; )} ,

m!n!
mP[U'm+m:m+n <1- 6}

4. P{S =i|F = Tx(G; 6)} =
_ (m—DIG)!

= i P (8 = nlF = To(G; )}
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Proof: We have, using Corollary A.2 and (11),

P(S = i|G = T,(F; 6)}

_m {lﬂl TL(Ulk+k im+n> 6)}

(m + n)! =

m!n
(m + n)‘

{lj (1 - 5)‘11(Uik+k:m+n>a)]}

m!n!

- mP{Uil+l:m+u >4} .

Therefore,

P{S,, =1,|G = T,(F; d)}

B (m+n—i, —)!m!n!
T (m+n)ln— Dm—i)(1 - o)

P{Ui,+1:m+n > 5}

—iy—1
since the number of elements of {i € A: for given i, } is (m * : 11 > Hence

the proof of part 1 of the theorem is completed. The proof of part 2 is similar.
The proofs of parts 3 and 4 follow easily by symmetry and by replacing n — m,
i1 _'jl’ in —')]m and S(i) - SG)

2.1 UMP Rank Test Against H,

Theorem 2.1 (part 1) shows that the probability function of S, under the
alternative H,: G = T, (F; ), 1 > 6 > 0, depends on i;, the number of X’s less
than Y,;,. The probability function is increasing in i, for a fixed é since

Ur.min > Upiman forallm+n>r>r'>1.

Therefore, a UMP rank test under H, exists and is based on §;.

Similarly, the second part of Theorem 2.1 shows that the probability function
of S, under the alternative H,: G = Tg(F; 6), 1 > é > 0, depends on i, only and
is decreasing in i, for a fixed 6. Therefore, the UMP rank test in this case exists
and is based on S,,).
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3 Distribution of S Under the Alternative H,

Since there is no functional relationship between F and G in H,, using Corollary
A.2 and (11) and (12), we have

m'n!

P{S=i} = (+—n)' {l—[ Tx(U,, +x; Or) H T,(Uj +x 51,)}

= COE{I(5L<Uil+x:m+n)I(Ujm+m:m+n)<1‘53)} (13)
-1
where ¢, = [("’; ")(1 — (1 — 5,}’] .

Theorem 3.1: Let F = Tx(H; dg) and G = T, (H; é,) where H is a continuous
distribution function, dg, 6, > 0 and dg + J, < 1.

1. Fori=(m,..., m),
P{S =i} = P{S, =m, 5, = 0}
= CO[P{Um+1:m+n > 5L} - P{Um:m+n >1- 6R}]

where ¢, = [("’; ")(1 — sl — 5L)"T.

2. Foreachie€ A such that i; <m,

o U1 i . .
P{S=i} = (](jm )"fri - 2), P{Sm ity Sy = Jjm})

= COP{éL < Uil+1:m+n < ljjm+m:m+n <1- 6R}

" m+n og \'ImE o
_cl &b [(n—jm_k><1—6k) *P{ iy +1: Jm+m+k>1_5R

where j € A* is the dual vector of i, ¢, is defined above in the first part and

= (=) 100")
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Proof 1: If all the X observations are less than Y, i = (m, ..., m) and its dual
vector j = (0, ..., 0). From (13), we have

P{S = i} = COP{(SL < Um+l:m+m Um:m+n <1l- 5R} .

and the first part of the theorem follows immediately.

Proof 2: Asi; < m, there is at least one X observation larger than ¥;;),and j € A*,
the dual vector of i is such that j,, > 1 and j,, + m > i, + 1. Hence, from (13),

P{S = i} = COP{(SL < Ui1+1:m+n < U'j,,,+m:m+n <1- 5R} ’

and the proof is completed using the following proposition.

Proposition 3.1: ForO0<a<b<land 1 <i<j<N.

Pla< U,y < U,y <b}

Nif N 1 —b\Mi*_ /g
— LN — —_ ..
=b kZ‘o<N—j—k)< b ) P<b<U‘”+">
N-i/ N 1 — p\N-ik a
— BV -0 Bl1-%ivk—i+1,i).
b k;)(N—j—k>< b ) ( pl T l)

Proof: 1t is known that U, y/U;, y and U, y are independent (for i < j) and the
conditional distribution of Uj, y/u, given U, y = u, is the same as that of U, ;_,,
David (1981). Now setting U;, ;_; and U,, y to be independent, we can write

P{a< Ui:N< []]N<b}

= E[P{a < UpnUjn}Hia<u,p<n)]

a
= E[P{U . < Ui:j—l}l(a<U1:N<b)]
jt

l: L pi=1(1 — py~itt ] w1 — wN I
——dv - - u .
alu B(l,] - l) B(.]a N —J + 1)

|
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Let w = u/b in the above integration, and then 1 — u = b[1 — w + (1 — b)/b]
and the result follows after integration.

When 6, = dg = 4, i.e,, the truncation rate is the same on each side, P{S = i}
takes a simple form given by the next corollary.

Corollary 3.1: Suppose §, = 0g = 6 and d € [0; 0.5), then

. n=jm m+n i — m+n
P{S = |} = k;) (n k)A Im kP{Ui,+1:j,,,+m+k > A}/< m ) >

_jm_

where 4 =0/(1 — 6), Upsy.m=1and P(U, iy, > 4) =1
Proof: For i € A with i; < m, the result of the theorem is obvious because of

Theorem 3.1: Assume i; = m. Then from part 1 of Theorem 3.1,

P{S =i} = co[P{Upsy.msn >0} — P{Upin > 1 —8}]

-1
where ¢, = [(m; n>(1 - 6)’”*"] . Since

Loym= (1 — )

P{U,. 1-06}= | —"-
{ m.m+n> } 12 B(m,n+ 1)

1

—m(1 — 5)*('";: ") + P{Upsrmen > 1 — 8},

we have

o 5 n 1-6 um(l_u)n—l
P{S"}“(1—5> o Bmrin ™

P i (S ) m+n
=4+ e i dx/( - )

Letting x = u/(1 — 6) and 4 = J/(1 — §), and integrating we see
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PS=i)-4+ 3 (’:jz)m»kpwmﬂmﬂ N A}/(m + n)

m

- ;:;0 (’:j:)A""‘P{UmH:mH > A}/('”; ") .

where weset Uy 1. = 1, P(Upsy.m > 4) = 1.

Since i; = m implies j,, = 0, the result follows.

The above expression is used to compute exact powers later on.
The sample space of (S;), S§,,) is

B={(m0)}u{Gjri=0,..,m—landj=1,...,n} . (14)

Therefore, from Theorem 3.1, the probability function of S under the alternative
H, has at most mn + 1 different values. In the next section we give the ordering
of the mn + 1 probability values for some cases, that will be useful for defining
some LMP rank tests in Section 4.

3.1 Ranking the Probability Values of S Under H,

It was relatively easy to find a UMP test under H,. However, under H, and H,
we consider the following basic method of finding a LMP rank test. For example,
the method is described for testing Hy: 6 = 0 versus H,: J € (0, &,). Under H,
each rank configuration is equally likely. Hence a critical region, for an o =

k / (m + n) level test, consists of k vectors of the ranks of (Y, ..., ¥,). To make
m

such a test most powerful against a particular é > 0, the critical region should
consist of k rank configurations with the largest probabilities for the particular
9. Since the most powerful test for 6 > 0 must have this property for all its natural
a-level tests the order in which it puts the rank configurations in the critical region
must coincide with ordering the configurations by their probabilities under the
alternative > 0. Thus the rank configuration with the largest probability under
H, must be placed first in the critical region and so on. Thus ranking of the
probability values is useful in searching for LMP tests.

Theorem 3.2: Define for each (i, j,) € B,

f;‘,jm(aL’ 5R) = P{(SL < Ui1+1:m+m (]j,,,+m:m+n <1- 5R) (15)
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where B is defined in (14). Then we have the following results.

1. Forall §;,05 20,6, + 6g < 1,

fm,o(aL’ 6R) = fm—l,l(éln 61()

and the equality holds if and only if 6, = o5 = 0.
2. Fori; <m,j,>0andforall §;,05 >0,9, + g < 1.
a) fi,.j. O, 0g) = fi,_1,j, (0r, Og) provided i; > 0 and the equality holds if and
only if 6, = 0;
b) f,.;,.(OLs 6g) = fi, ;. +1(Or, Og) provided j,, < nand the equality holds if and
only if 5 = 0.

3. For each I, h, b’ satisfying 0 <I<min{m —2,n—2}, 1 <h+L h +1<
min{m — 1,n — 1}, and h, h’ > 0, we have

a) f;,n—l—h(éL’ Og) = f1+h.n—l(51., 0g) if 6, = Og,
b) fi.n-1-4(0, Or) < fran.n-1(01, Og) if Oy < &, Og = 6 for some 0 <c <1
and 6, > 0,

) fi.n-1-1Or; Or) > fren .10y, Og) if 8y < &, Og = cd,, for some ¢ > 1 and
do > 0.

4. For each | with 0 <! < min{n — 1, m — 1}, we have
Jin-101s Or) > fn-1.n-141(81 Og)
and
Jin-101, 0g) > fi1,1(0, Og)

if 6, < 8, Og = cd, for some ¢ # 0 and §, > 0.

5. For each h, k satisfying0 <h<m+n—1and h —n <k <min{h,m — 1},
we have

Somr.5* (5 _ 50)m+n—h - k

i JharealB 80) _ <h)

where ¢, is positive and independent of k.
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In general, for each ¢ > 0,

i Sin—n+x(0p, €I1) e (h)
lim n — ok
s+t LA/ + 1)) — o, ]tk 1 K

where ¢, is positive and independent of k.

Proof:
L. fm,0(5L9 5R) = P{Um+l:m+n > 5L’ Um:m+n <1- 5R}

fm—l,l(aL’ 5R) = P{éL < Um:m+n < Um+1:m+n <1- 6R} -
Since

{6L < Um:m+n < Um+1:m+n <1l- 6R}

< {5L < Um+1:m+m Um:m+n < 1 - 5R} B

part 1 of Theorem 3.2 follows.
2. For i; < m we have using (15)

firin(Op, Og) = P{o, < Uit1:min < U smmen <1 - Or} -
Similarly, we consider expressions for f; _; ; (., 0g)and f; ; .1(p, 6g). Since

{5L < Uil:m+n < Uj,,,+m:m+n <1- 6R}

< {6L < Ui1+1:m+n < lem+m:m+n <1l- 6R} ’
and

{6L < Uil+1:m+n < ljjm+m+1:m+n <l- 6R}

< {6L < Ui,+1:m+n < (]j,,,+m:m+n <l- 5R} ’

part 2 of Theorem 3.2 follows.
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3. frn-1-w(0s 0g) = P{0L < Upii.min < Unin-iopmen < 1 — O}
=P{0g < Upthst:min < Upsnotimen < 1 — 6}

= ﬁ+h,n—l(6R’ 51,) s

the result (a) of this part follows. To prove (b) and (c), we need the following
proposition.

Proposition 3.2: Forl <r<s<t,

(i) 67"P{U,., <}~ <£) as & »0%;

t!

4 —r §—(t—s+1) _ :
(11) 6’. 5R' P{Ur:t<5L’ US:t> 1 6R}_’r!(s_r_ 1)!(t_s+1)!

oy, 0g > 0%,

as

Therefore, for dg = cd,, ¢ # 0, we have
Sin-1-001, €81) =1 — P{Uj 41, msn < O} — O(SLT"*Y)
Joown-1Op, €0L) = 1 = P{Upyy min < €O} — 06" .

Hence, the last two results of part 3 of Theorem 3.2 follow.
4. For g = ¢d;, ¢ # 0, using (15) and Proposition 3.1 we see,

.ﬁ,n‘l(aL, o) =1-— 0(511,“)
Ji=1,1000,¢6) =1 = P{U} s <0} — 0(]) =1 — 0(d1)
Sot,m-1410p, €0p) = 1 — P{Up, pyn < ¢} — O(6) = 1 — 0(4}) .

Then part 4 of the theorem follows.
5. Let p = [1/(c + 1)] — .. Then using (15) and ’'Hospital’s rule we have:

. fk n—h+k(6L’ 051,)
l >
semtiirer [/ + 1)) — 3,17

L 1
P{l +c =P < Uist.min < Unsn-htk:men < m + cp}

m+n—h

= lim
p—0* p
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(1/1+c)+cp 1 m+n—h—2 1 h—k
[ <——— +cp— v) <1 - - cp) dv
= lim t¥a-e 1+¢ 1+c¢

p—0* (m+n—h—2)k\(h—k)!(m+n— h)pm+r?

(1/1+¢)+cp 1 k 1 m+n—h—2 { iy
- u———=+ —u)' “du
(mé‘c)—p (1 tec p) ( l+e¢ p) -

(m + n)!

i ( !
o, (m+n—h—2)k\(h — k)\(m + n — R)p™ "1 (m +n)
< 1 )" R 1 W
——p | [+ )p]™"" (1————01))
—2 lim M F€ 1+ec (m + n)!

p—0+ (m+n— h)k!(h — k)lpm*tn—h=2
—_ m+n h m+n—2h—2 h—k
—2( h )<k>(c+1) c
Therefore, the results of part 5 follow and the proof of Theorem 3.2 is completed.

Proof of Proposition 3.2:
To prove (i), we note that

. _ t! tr [t —p 5"
5 P(U,=,<6)—(r—_m{_—,)gk=o( k )(_l)k(k“)

To prove (ii) we see

6_"6;('—3+1)P(Ur:t < 6L’ Us:l >1- 5R)
t! st fs—r—1
= — 1)
r=1Iis—r— 1l —s)! ,;0 < k )( )

5 (K 5Ei5k
=\ (r+k—l)(t—s+l+1)

and take the limit as §, — 0* and 65 — 0*.

Theorem 3.2 gives a method of ranking the probability values of S in various
cases. It is useful to define rank (score) V(i,j) of £ ;(6,0) in {f; ; (4, 0)
(i1, jm) € B}. The following are two examples where we assume §, = dg = 6 and
the scores satisfy the conditions of Theorem 3.2.
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Case A: Assume 6, = 5z = 4, d € (0, §,) where I, is sufficiently small. For each
6 € (0, 8,), define V (i, j) such that

a) V(0,n) =1,
b) form>nandj=1,...,n,

Vi+1,j)=1+ V(,j) ifn—j>i<m-—1,

Vn—j+1Lj—1)=14+V(@m-1,j) providedj > 1 ;
¢)form<nandi=0,....,m—1,

Vi,j— D)=14+V(,)) forl<j<n—i,

Vi+1lLn—i—-1)=14+V(@1l) providedi<m —1 ;

d) V(i,j)=V(n —j,n—i)fori,j < min{m, n};
e) V(m,0)=1+ V(m— 1, 1).

Example 3.1: For given m = 4 and n = 5, assign the V(i, j) as follows:

3
o 1 2 3 4 5
0 514131211
1 91817 6]2
i 2 12 |11 (10 | 7 | 3
3 14 {13 |11 | 8 | &4
4 |15

Case B: Given some d, < .5 which is close enough to .5, for each d € (9, .5), define
the rank V(i, j) of f; (6, 6) in { f; ; (4, 6): (i1, jm) € B} such that

a) V(O,n) = 1;
b) form>nandforO<i<m,

Vi,m)y=1+V(n+1—i+1)

where [ is the least integer greater than or equal to max{(i — 1)/2, (i — n)};
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c)form>nandfor0<j<n,
Vim—-1,j)=1+V{LI+j—m+2)
where [ is the least integer greater than or equal to max{(m + n —j)/2 — 1,
(m—j— Dk

d) form>n1<h<m+n—3and max{(h/2) + 1,(h + 2 — n)} <i < min{h,
m— 1},

Vi—tLn+i—1—h=1+V@in+i—nh);
e) form<nandfor0<j<n,
VO,j)=1+V({1j+1+1)

where /is the greatest integer less than or equal to min{(n — j — 1)/2, (m — 1)};
f) form <nandfor0<i<m,

Vi, )=1+ V(I 1—-i+2)

where lis the greatest integer less than orequal tomin{(n + i)/2 — 1, (m — 1)};
g)form<nl<h<m+n—3and0<i<min{(h/2)—1,m—1};

Vi+Ln+i+l—h=1+Vim+i—h;

h) V(i,j) = V(n — j,n — i) for i,j < min{m, n};
) Vim0) =14+ V(m—1, 1),

Example 3.2: For given m = 4 and n = 5, assign the V(i, j) as follows:

j
0 1 2 3 4 5
0 7 5 3 211
1 10 8 6 | 4| 2
i 2 12 |11 | 9 6 | 3
3 14 113 (11 8 (5
4 |15
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4 Some Rank Tests for the Alternative H,

From Theorem 3.2, it is obvious that for m, n > 2, there does not always exist a
UMP rank test for testing H,, against H,. However, the results in part 1 and part
2 in Theorem 3.2 indicate that a rank test should have the following property: If
for some (i, j,), {(Si1)> Stkw) = (i1, jm)} is in the rejection region of the test, then
for any iy > iy, ju = jm {(Sq1)> S&y) = (i1,Jm)} is also in the rejection region.
Therefore, if we define some score function V (i, j), (i, j) € B, the sample space of
(S¢1y> Sthy)» s0 that

i) Vim,0)> V(m—1,1),
i) V@,j)=V@i—1,j)if0<i<mand0<j<n,
i) V@G,j)=V(@G,j+1)if0<i<mand0 <j<n,

then V(Sy,, S¢&)) would provide a reasonable rank test. The following are some
score functions with these properties.

Vi@, j) = i for each (i, j)-.

V,(i, j) = n — j for each (i, j).

Va(i, j) = max{i, n — j} for each (i, j).

V4(i, j) = min{i, n — j} for each (i, j).

Vs(i, j) = i + n — j for each (i, j).

Vs(i, j) = V4(i, j) + Vs(i, j) for each (i, j).

Let V;(i, j) be the rank V(i, j) of f; ; defined in Case A in Section 3.1.
Let V4(i, j) be the rank V(i, j) of f; ; defined in Case B in Section 3.1.

XN AP

V, and V, were first considered by Rosenbaum (1953). We like to note that
Va(S1), Sthy) and Vs(S,,, S&,)) are, respectively, the Hajek test statistic and the
Sidak and Vondracek (1957) test statistic for testing H,: F = G against Hy:
G(x) = F(x — 4), 4 €(0, 1) where F ~ U(0, 1). Also note that if H is the d.f. of
U(0, 1 + 4), then the alternative is equivalent to H,: F = Tg(H; 8), G = Ty (H; )
where § = 4/(1 + A4). It has been indicated that the Hajek test and Sidak and
Vondracek test are the LMP rank tests, respectively, in some neighborhoods of
4 = 0and 4 = 1, for a particular choice of «. However, the subsequent examples
will show that the two tests are not the LMP tests for a general choice of a.

4.1 LMP Rank Test for H¥: F = Tg(H; 6, 6), G = T, (H; J, 6), 6 € (0, .5)

Let us consider the alternative, H,: F = Tx(H; 4, 6), G = T,(H, 6, 6)for § € (0, .5).
From the results of Cases A and B in Section 3.1, it is obvious that V(Sy), Sh))
and V4(Sy), St generate LMP rank tests in the neighborhoods of 6 = 0 and
o = .5, respectively.
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Example 4.1: Form = 4,n = 5 and a = 7/126, from Example 3.1, the LMP rank
test in the neighborhood of & = 0 rejects Hy if V,(S;), S¢,)) = 11 and from
Example 3.2, the LMP rank test in the neighborhood of é = .5 rejects Hy, if
Vs(S(1)> Smy) = 11. In the case, the two LMP rank tests are the same and they
reject H, if (S1), Sm) € {(4, 0),(3, 1), (3, 2), (3, 3), (2, 1), (2, 2)}. Actually, the LMP
tests in the case (for m = 4, n = 5 and a = 7/126) are the UMP rank tests.

For m = 4 and n = 5, the score values of V,(i, j) and Vi(i, j) are as follows:

Score values of Vl‘(i,j) Score values of Vs(i,j)
0 1 2 3 4 5 0 1 2 3 4 5
0 0 0 0 0 0 0 4 3 2 1
1 1 1 1 1 0 1 5 4 3 2
i 2 2 2 2 1 0 i 2 6 5 4 3
3 3 3 2 1 0 3 7 6 5 4
4 4 4 8

For the given significance level « = 7/126, the Hajek test and the Sidak and
Vondracek test are defined, respectively, by

1 if Va(Say Sky) > 2
du =< 4T f Vy(Sq) Shy) =2

0 otherwise

and

1 if Vs(Si1), Sty) > 5
¢SV = 3/4 if V5(S(1), S(fn)) =5

0 otherwise

Table 1 shows the power functions of those tests and the Mann-Whitney-
Wilcoxon test MWW test). As we are considering d;, = dx we use corollary 3.1
to compute these powers. The table shows that the power of the MWW test is
quite comparable with that of others even for small values of 4.
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Table 1. Power Comparison of the Hajek test, the Sedak-Vondracek test, LMP test and the
Mann-Whitney-Wilcoxen test for different values of 4 = §/(1 + 6)

4=03 4=05 4=.10 4=.20 4 =40 4 =.60 4 =80

Hajek 07238 08564 .12603 23595 .53045 .81154 97018
SV 07221 08525 12513 23744 .55987 .85951 98776
LMP .07241 08574 12719 24484 57775 .87341 99027
MwWw 07215 .08508 12444 23497 .55391 .85488 .98693

5 The Distribution of S Under the Alternative H,

Let G = T,(F; d,, 6g) where dg, 6, > 0 and dz + ., < 1. Then from Corollary
A.2, we have forn = 1 and foreachi =0, ..., m,

P{Sy) =i} =[(1 — o, — dg)(m + DIT'P{S, < Upsyimer < 1 — Og}
and for n > 1, and for each i€ A,
P{S = i} = COP{éL < Uil+1:m+n < Ui,.+n:m+n <1- 6R}

where

(2o na]

Therefore, for n > 1, we can show

. . . i,—i,+n—2
P{S=l}=P{S(1)=11,S(,,)=t,,}/< ':_2 )

_oomaa m+n 0k \"' L, oy
r (m—in—k><1—6x> " P{U"‘*’=""*"*">1—6R ’

k=0
where

€1 = co(l — dp)™*" .
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Note that P(S = i) depends on i, and i, only.
Define

fi,.i, (01, 0r) = P{S = i|G = T,(F; ., 6p)} , (16)

Following the methods discussed for the alternative H,, we can consider ranking
of

fil.i,,(‘su 0y) = P(S = i|G = T,; 6,0g)

and define some score functions. Details of these are given in Lin and Sukhatme
(1991). An UMP rank test does not always exist. We can find LMP tests under
the condition 6, = d; = J. For example:

(1) Let V,(iy, i,) be the rank of f; ; (d, 6) in the neighborhood of § = 0.
(2) Let V,(iy, i,) be the rank of f; ; (6, 6) in the neighborhood of § = .5.

Now V; and V, generate the LMP rank tests in the neighborhoods of 6 = 0 and
o = .5 respectively.

Acknowledgements: The authors wish to thank the referees for their helpful comments on a previous
version of this paper.

Appendix A: Hoeffding Type Theorem

Theorem A.l: Let X = (X1, ..., X1 Xo1sooor Xongs o3 Xiets o oor Xin) bE 2
random vector, with the joint d.f. W(H(xy,),..., H(xy,)) where H(x) is a
continuous distribution functionand W(t,, ..., t,, ) is an absolutely continuous
distribution function on {(t;;,...,t; )0 <t; <1, i=1,....k j=1,...,m;}
and W is invariant under all permutations within (¢;,, ..., t;s ), i = 1, ..., k). For
each (i, j), let R, be the rank of X, ; in the pooled sample {X, ..., X,,, }, where
X is the j-th order statistic (the j-th smallest value) in {X;;, ..., Xj, }. Denote
k

R=(Ry4) ., Ry N = Zl n; and R is the set of

E=(PigseeesPinsees Tkt ooos Tim) s

a permutation of (1, ..., N) satisfying r;; <= <71y, ;.00 <" < Ty
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Then for each r € R, we have

n!...n!
P{R=r}= J__]\_,'_kE{w(U,“:N, ey U,k’_k;N)} (A.1)

where w is the density function of W and Uy, y, ..., Uy, y are the order statistics
of a random sample of size N from U(0, 1), the uniform distribution on (0, 1).

Proof: Let

A, = {(x11, ..., X4y, ): the rank of x,; is r;;, for each i, j} ,
B, = {(X11p -5 X1y -+ Xk(1ys + - > Xitn)):

X1y << Xyyys e Xy <0 < xk(nk)} ,
B={(tgy - ta): 0 <ty < <ty <1} .

Then we have

P{R =r} =j( dW(H(xyy), ..., H(xy,))

k
= {1‘[ ni!} AW(H (X1 01), - > H(Xem) (A2)

B, (i=1

Since W(t,,, ..., ty,, ) is invariant under all permutations within (¢;y, ..., t;,,), for
eachi=1,..., k, we write (A.2) as

k

P{R = r} = £ {n ni!} dW(t(r“), ceey t('knk))

i=1

k k m
§ {H n,-!} Wty s - L) [T dte.,
B (i=1 i=1 j=1

U J

n,!...

n,!
T Jjg NW(t, -5 b)) {]‘! dt(,.,} .

i=

Then the theorem follows.
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In Theorem A.1l, the k samples, {X;,,..., X;, }, i=1, ..., k may not be
independent. However, if the k samples are independent, we have the following
result.

Corollary A.l: Let X; = (X;;,..., X;,), i=1, ..., k be independent random
vectors and for each i, X; be distributed as W(H(x,),..., H(x,)) where
Wi(t,, ..., t,)isan absolutely continuous and exchangeable distribution function
on {(t;,...,t,):0<t;<1,j=1,...,n;} and H(x) is a continuous distribution
function. For each (i, j), let R,; be the rank of X,; in the pooled sample
{X11---> Xy }» Where X, ;) is the j-th order statistic (the j-th smallest value) in

k
{Xi1, ..., Xi,}. Denote R = (Ry(y), ..., Ryny), N = Y n;and Ris the set of
i=1

F=(FigseeesPingseeos Pits oo Thm)

a permutation of (1,..., N)satisfying ry; < - <r,;...;0q < < T,
Then for each r € R, we have

PR=r}= "l'Ni'"k'E{f] WU, xs s U,WN)} (A3)

i=1

where w; is the density function of W, and U, .y, ..., Uy. 5 are the order statistics
of a random sample of size N from U(0, 1), the uniform distribution on (0, 1).

Proof: The result follows from Theorem A.l1 since the joint distribution of
X=(X,..., X)) is

k
W(H(xl l)s [ERX} xknk l:[ H(x ° H(xn‘))

We consider the k independent random samples and obtain the distribution
of R under the Lehmann alternatives.

Corollary A.2: Let {X;,, ..., Xin,},i = 1, ..., k, be independent random samples
with population d.f’s Q,(H(x)), ..., Q,(H(x)), respectively, where H(x) is some
continuousd.f. and Q;,i = 1,..., k, are absolutely continuous d.f.’s on (0, 1). Then
foreachr e R,
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i=1j

n!...n! LI
P{R=r} = —‘TV,—"—E{I] | qi(U,U:N)} (A4)
where g; is the p.d.f. of Q.
Proof: Since the joint distribution of X; = (X4, ..., X, ) foreachi=1,...,k,is
WiH (), ... o)) = [ 0(HExg)

the Corollary follows from Corollary A.1.
Considering the case with k = 2 in Corollary A.2 and Q,(t) =t and Q,(t) =
Q(t) we get the result due to Lehmann (1953, equation 4.1).
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Abstract: We revisit the bounded maximal risk point estimation problem as well as the fixed-width
confidence interval estimation problem for the largest mean among k(>2) independent normal
populations having unknown means and unknown but equal variance. In the point estimation setup,
we devise appropriate two-stage and modified two-stage methodologies so that the associated
maximal risk can be bounded from above exactly by a preassigned positive number. Kuo and
Mukhopadhyay (1990), however, emphasized only the asymptotics in this context. We have also
introduced, in both point and interval estimation problems, accelerated sequential methodologies
thereby saving sampling operations tremendously over the purely sequential schemes considered in
Kuo and Mukhopadhyay (1990), but enjoying at the same time asymptotic second-order charac-
teristics, fairly similar to those of the purely sequential ones.

Key Words and Phrases: Two-stage procedure; modified two-stage procedure; exact bounded
maximal risk; fixed-width confidence interval; accelerated sequential procedure; second-order
properties.

1 Introduction

Let 7y, ..., m; be independent populations with the distribution of the ith
population being N(y;, a2), i = 1, ..., k. We assume that the means u,, ..., j
and the common variance o2 are all unknown parameters. We write u* =
max{u,, ..., 4} and p=(u,,..., ). Recently, Kuo and Mukhopadhyay
(1990) developed purely sequential and three-stage sampling methodologies for
constructing fixed-width confidence intervals as well as bounded risk point
estimators for u*. In this context, one should also refer to Saxena and Tong (1969)
and Tong (1970).

The present note has direct bearing on the findings of Kuo and Mukho-
padhyay’s (1990) estimation procedures. First, we look at the point estimation
problem in Section 2 and develop both two-stage and accelerated sequential

0026-1335/93/3-4/173-183 $2.50 © 1993 Physica-Verlag, Heidelberg
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sampling techniques. Our two-stage and modified two-stage procedures will
place an exact upper bound on the maximal risk associated with the final estimator
of u*. Kuo and Mukhopadhyay (1990) could only achieve this bound asymptoti-
cally. See, Theorem 2.3 (iv) and Theorem 2.4 (iv) in Kuo and Mukhopadhyay
(1990). Next, we propose a variant of their purely sequential procedure, called
accelerated sequential procedure, which is operationally more convenient. In
other words, we are making the purely sequential procedure (2.4) of Kuo and
Mukhopadhyay (1990) significantly more attractive by suitably modifying it.
In Section 3, we introduce a similar accelerated sequential procedure for the
corresponding fixed-width confidence interval problem and present the asso-
ciated second-order properties.

2 Point Estimation

Let X;,, X;5, ... be independent random variables from =;, and having recorded
{Xi1s ..., Xin} from m;, define

Xp=n'Y X,;, Xr=max{Xy,..., Xa.,
i=1

J

and

S2=(kn -k Y Y (Xy— X,

i=1 j=1

forn>2,i=1,..., k For the point estimation problem, suppose that the loss
incurred in estimating u* by X¥, which is a maximum likelihood estimator, is

L,= A|X} — p*f 2.1)

where A and s are known positive numbers. The risk of L, depends on  and o.
For fixed o, the risk associated with (2.1) is maximized when y, = -+ = g, and
this maximal risk is given by

Sup E(L,) = Ba*/n*? 22
u

where B = kA [, [y'®* 7 (y)(y) dy, ¢(u) = (2m)™"* exp(—3u®), and P(u) =
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f‘iw ¢(t) dt, —o0 < u < 0. Refer to Cohen and Sackrowitz (1982) and Theorem
2.1 in Kuo and Mukhopadhyay (1990).

Our goal is to make the maximal risk given in (2.2) not to exceed a preassigned
level W(>0). Thus, we first propose a two-stage as well as a modified two-stage
procedure in order to attain the goal of bounded maximal risk exactly. Now,
Supu E(L,) < W if n is the smallest integer > (B/W)**a? = n*, say.

2.1 A Two-Stage Procedure

We start with m(>2and > 1 + sk™!) observations from each population to begin
the experiment. Let

v e 502

and define

N = max{m, [(B/W)**hS2]* + 1} 2.3)

where [x]* stands for the largest integer smaller than x. If N =m, then
we do not take any more samples from =#;’s in the second stage. On the other
hand, if N > m, then we sample the difference from each =;. Finally, based on
{Xi1, ..., X;y} from m;, we estimate u* by X%*. This Stein (1945)-type procedure
has the following properties.

Theorem 1: For the two-stage procedure (2.3) we have:

(i) Sup E(Ly) < W for every fixed W(>0),
#
(ii) E(N)/n* > h(>1)as W - 0,
(iii) W™ Sup E(Ly) > 1 as W > 0,
#

where n* = (B/W)**s2,

Proof: In view of Kuo and Mukhopadhyay’s (1990) Theorem 2.2, we get

Sup E(Ly) = Bo*E(N¥2s) | (24)
#
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From (2.3), it is immediate to note that N > (B/W)?/*hS2 a.s. and hence (2.4) leads
to (sincem >2and m > 1 + sk™)

Sup E(Ly) < W{h7tk(m — 1)}V E[{ yZm_1,} V2]
4

o W2s ( (hm — 1) — s k(m — 1)
= wigtum = of () fr(fe )

=W,

by the choice of “h”. Hence, we have part (i).
For part (ii), note that

h(B/W)¥5S2 < N < h(B/W)#*S2 + m (2.5)
and hence
h < E(N)/n* < h + mn*™1 |

which implies that lim E(N)/n* = h. Obviously, h is strictly larger than unity
w-0

which follows from Lemma 2(b) of Mukhopadhyay and Hilton (1986).
In order to prove part (iii), first note from (2.4) that

Sup E(Ly) = WE{(n*/N)121} . (2.6)
H

From (2.5), we obtain lim N/n* = (h~'6?%/S2)"?* a.s. Hence,
w-0

_ (1/2)s
liminf E{(n*/N)25} > {k—@;‘-—}l} E[{XEm-1,} "1 =1
w-0

by the obvious choice of “h” and Fatou’s Lemma. On the other hand,
E{(n*/N)¥2s} < E{(h™'6?/S2)¥?*} = 1, by our choice of “h” as before. Thus
part (iii) follows from (2.6).

Remark 1: The goal of bounding the maximal risk has been met exactly (Theorem
1(i)), however, the characteristic depicted by Theorem 1(ii) is disturbing since it
implies that our two-stage procedure (2.3) oversamples (in comparison with n*),
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even asymptotically. In order to remedy this drawback, we now move on to
implement a modified version of the two-stage procedure (2.3).

2.2 A Modified Two-Stage Procedure

We let m, the starting sample size, depend on W and thereby let it “grow” as W
gets smaller, however at a rate slower than that of n*. Along the lines of
Mukhopadhyay (1980), we define

m = max{mo, [1 + sk™17* + 1, [W~2+0]% 4 1} Q.7

for an arbitrary, but fixed and chosen, y(>0) and my(>2). With this m = m(W),
we now define the following Stein (1945)-type two-stage procedure: Let

N = max{m, [(B/W)¥*hS2]* + 1} (2.8)

and we estimate u* by X#*. The following properties hold.

Theorem 2: For the modified two-stage procedure (2.7)—(2.8) we have:

(1) Sl;p E(Ly) < W for every fixed W(>0),

(i1) N~/n* — 1 as. and E(N)/n* > 1as W — 0,
(iii) W™ Sup E(Ly) > 1 as W —0;
u

(iv) liminf{E(N) — n*} = o0 as W -0,

where n* = (B/W)¥*¢2,

Proof: Part (i) follows immediately from Theorem 1(i). To prove part (ii), note
that m = m(W) - oo as W — 0, but m(W)/n* — 0 as W — 0. Hence, h = h(m) =
h(m(W)) - 1 as W — 0. See Lemma 1 in Mukhopadhyay and Hilton (1986). Part
(iii) follows along the lines of Theorem 1(iii) with obvious changes in a couple of

places. We now turn to part (iv) and use Lemma 1 of Mukhopadhyay and Hilton
(1986).

E(N) — n* > (B/W)**a* {h(W) — 1}
= O(W‘Z/s)o(m—l) = O(WY6+n=2s)

=O(W™2/s6*M) 5 o0 as W -0, which is part (iv) .
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The modified two-stage procedure (2.7)—(2.8) is thus asymptotically efficient
(i.e. E(N)/n* - 1) in the Chow-Robbins (1965) sense or asymptotically first-
order efficient in the Ghosh-Mukhopadhyay (1981) sense. However, this modified
version is asymptotically not second-order efficient (Theorem 2(iv)) in the Ghosh-
Mukhopadhyay (1981) sense. In Kuo and Mukhopadhyay (1990), a purely
sequential procedure and a three-stage procedure were proposed giving rise to
stopping variables, say, Ng., and Nypg respectively. There, it was proved that

E(NSeq) =n* +D+ 0(1) s (29)
E(Ngys) =n*+ D" +0(1) , (2.10)

as W — 0, with appropriate and explicit fixed quantities D and D’. In general,
one expects that |D| is smaller than |D’|, but at the same time, both the purely
sequential as well as the three-stage procedures are asymptotically shown to be
second-order efficient, even though the purely sequential one is slightly more so
than the three-stage one. Hence, it makes sense to make the purely sequential
procedure of Kuo and Mukhopadhyay (1990) operationally more convenient
and at the same time, essentially maintain the second-order property given in
(2.9). In a broad range of problems, it has been noticed through large scale
simulations that the accelerated sequential procedures’ overall moderate sample
characteristics lie somewhere in between those of the purely sequential and
three-stage procedures, but much more like those of the purely sequential ones.
In this context, refer to Mukhopadhyay and Solanky (1991) [written as MS (1991)
in the sequel]. See also Hall (1983).

2.3 An Accelerated Sequential Procedure

Let us write SF? = (1 — n™!)"1S?2 for n > 2. Kuo and Mukhopadhyay’s (1990)
purely sequential procedure essentially looks like

N = inf{n > m(>2): n > (B/W)**S**} . (2.11)

Instead, we chose and fix 0 < p <1 and start the experiment with m(>2)
observations from each n. Then, we take one observation at a time from each
population according to the following stopping rule: Let

R =inf{n > m: n > p(B/W)¥*S*?} . 2.12)
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When sampling stops, we have {X,, ..., X;g} from m;, i = 1, ..., k. Then, define
N = max{R, [(B/W)**S§*]* + 1} . (2.13)

If N = R, we do not take any more samples from any population. On the other
hand, if N > R, then we sample the difference from each population. Finally, we
estimate u* by X} obtained from {X,,, ..., Xix},i = 1,..., k. In view of Theorem
2.2 in Kuo and Mukhopadhyay (1990), the maximal risk is given by (2.4) where
N comes from (2.13). Also note that the accelerated sequential procedure (2.12)—
(2.13) cuts down the sampling operations by approximately 100(1 — p)% when
compared with the purely sequential counterpart (2.11).

Theorem 3: For the accelerated sequential procedure (2.12)—(2.13), we have as
W -0

(i) —2(kp)~! < liminf E(N — n*) < limsup E(N — n*) <1 — 2(kp) ' if m > 4;
(il) W + s(s + 6)W(dkpn*)™! + o(n*') > Sup E(Ly)
u

> W + s(s + 6 — 2kp)W(dkpn*)™t + o(n*™1) if
m > 1 + max{2.02, (6 + s)/k};

where n* = (B/W)*¥sg2.

Proof: The accelerated sequential procedure (2.12)—(2.13) falls under the general
framework of MS (1991) with m replaced by m — 1, and their 6 =1, 0 =k,
12 = 2k,a = %k, p = 2/k,my(6) = 2.02ifk = 2,and 2ifk > 3,h = k/n*,andq = 0.
Hence, part (i) follows immediately from Corollary 2.1 of MS (1991).

The maximal risk is again of the form given in (2.4) where N is given by (2.13).
Here, we will utilize Corollary 2.2 of MS (1991) with | = —4s. Note that

n" = 2/kp. When s = 2, we need m — 1 > max {mo(é), (—52;} = max(mo(9), 4/k},

that is m > 4. When s € R* — {2}, the sufficient condition on m turns out to be
m > 1 + max{2.02, (6 + s)/k}.

3 Interval Estimation

Let us reconsider the fixed-width confidence interval estimation problems for u*
as discussed in Kuo and Mukhopadhyay (1990). Given d(>0), we take I, =
[X}¥ + d] as the confidence interval for u* when we have recorded n( > 2) samples



180 N. Mukhopadhyay et al.
from each 7;. Saxena and Tong (1969) proved that

Inf P(u* € I,) = ®*(dn'?/6) — ®*(—dn'?/c) (3.1
u

for every fixed d, o and n, and the infimum in (3.1) is attained when y; = --- = y,.
Therefore, to achieve the desired coverage probability, thatis P(u* e I,) > 1 — a
for a preassigned « € (0, 1), we first determine “a” such that ®*(a) — &*(—a) =
1 — a, and then “n” needs to be the smallest integer > a%02/d? = C, say. Since
C is unknown, Tong (1970) proposed a purely sequential procedure for this
problem, while Kuo and Mukhopadhyay (1990) studied the associated second-
order properties. In view of our comments given at the end of Section 2.2, we
now wish to consider an appropriate accelerated version of the sequential
procedure discussed in Tong (1970) and Kuo and Mukhopadhyay (1990).

Recall that $*2? = (1 — n™')"'S? for n > 2. Kuo and Mukhopadhyay’s (1990)
purely sequential procedure (3.3) can essentially be written as

N =inf{n > m: n > a®S}*/d*} , (3.2)

where m(>2)is the starting sample size from each population. Instead, we choose
and fix 0 < p < 1 and q > 0, and start the experiment with m(>2) observations
from each n. Then, we take one observation at a time from each population
according to the following stopping rule: Let

R =inf{n > m: n > pa®S}*/d*} . (3.3)
When sampling stops, we have {X;,, ..., X;z} from n;,i = 1, ..., k. Then, define
N = max{R, [a®S§*/d* + q]* + 1} . 3.4)

If N = R, we do not take any more samples from any population. On the other
hand, if N > R, then we sample the difference from each population. Finally,
we estimate u* by the confidence interval Iy. Along the lines of Kuo and
Mukhopadhyay (1990), we then have

Inf P(u* € Iy) = E{®*dN'?/c) — *(—dN"?/c)} , (3.5)
"

where the infimum is attained when p, =+ = y,.
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Theorem 4: For the accelerated sequential procedure (3.3)—(3.4), we have as d — 0:

Inf P(u* € Iy) > (1 — o) + o(d?)
#

. 1 1 1 P 2(g) — P 2(—
S m {0’ 5[2 —a@ F DAk - e di"“‘gzl; T ¢k-1f—§3]}

when m > 4.

Proof: Let F(x) = @*(x?) — &*(—x'2) for x > 0. Then, with | = d?/o?, we have

Inf P(u* € Iy) = E{F(IN)}
H

= F(IE(N)) + %IZE{(N — E(N))?*}F'(IE(N)) + ry(I) , say ,
(3.6)

where |r, ()] = O(IE(|N — E(N)|)). Now, note that the accelerated sequential
procedure (3.3)—(3.4) is covered by the unified theory developed in MS (1991)
where m is replaced by m — 1 and their 6 = 1, h = k/C, 0 = k, 1> = 2k, a = 3k,
p = 2/k,n¥ = C, and my(d) = 2.02 or 2 according as k = 2 or k > 3 respectively.
Corollary 2.1 of MS (1991) leads to

q — 2(kp)™ < liminf E(N — C) < limsup E(N — C) < q + 1 — 2(kp)™" ,
(3.7)

if m > 1 + my(5). Also, Theorem 2.2 (iii) immediately gives |r (/)] = O(13173?) =
0(1*?) = o(l)if m > 1 + 3k™'. Again, since F(a?) = 1 — a, we write for a suitable
z(>0),

F(IE(N)) = (1 — a) + {IE(N) — a*} F'(a®*) + r,(l) (3.8)

where |r,()] = $|(IE(N) — a*)*F"(2)| = O(1?) = o(l), if m > 1+ max{m(9),
3k™'}, in view of Theorem 2.2 (ii) and (3.6). Now, combining (3.6)—(3.8), we get

Inf P(u* e Iy) > (1 — a) + IF'(a®)(q — 2(kp)™* + o(1))
u

+ a?(kp) ' F"(@?) + o(1)} (3.9)
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if m > 1 + max{mq(), 3k }. Now, from (3.9), we obtain,

Inf P(u* e Iy) > (1 — a) + o(d?) (3.10)
[~

. _1 zF”(az) . . " 2
ifq>(kp)™'<2—a Fa@) | Hence, the Theorem, once one simplifies F”(a*)/

F'(a?) in terms of @(a) and ¢(a).

[T i]

Remark 2: One can certainly consider any fixed value for the fudge factor “q

utilized in the definition of N given by (3.4). Then, of course, the second-order

expansion (3.9) for Inf P(u* € Iy) will compare in its form quite favorably
U

with that given in Theorem 3.1 of Kuo and Mukhopadhyay (1990) for the
corresponding purely sequential methodology.

Remark 3: The accelerated sequential procedure (3.3)—(3.4) cuts down the
sampling operations by approximately 100(1 — p)’%, when compared with the
fully sequential methodology discussed in Kuo and Mukhopadhyay (1990).

Remark 4: The accelerated sequential procedures such as (2.12)-(2.13) and
(3.3)-(3.4) seem to perform most favorably for moderate values of n* and C
respectively, when p is chosen between 0.4 and 0.7. This feature has been noted
via large scale simulation exercises for various related problems across the board.

Acknowledgement: This project has been partially supported by the Grant Number 89-0225 from the
Air Force Office of Scientific Research.
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Book Review

C. Constantinescu: MaB und Integral, VDF Ziirich, 1990, 324 pp., Fr. 58,00

This second, revised and augmented edition (1990) of C. Constantinescu’s lecture
notes on measure and integral consists of four chapters and an appendix. The
approach is set-theoretical with some new and interesting modifications.

Chapter I starts with the treatment of (finite positive) measures defined on
semirings. Null sets are always of a local nature and hereditary w.r.t. subsets. The
definition of outer measure uses covers up to null sets. The most significant
modification concerns the completion of measures. Here, in addition a Beppo
Levi property is required. The completion is therefore always defined on a
d-ring.

Chapter II starts with the concept of measurability w.r.t. 6-rings. The integral
is then defined w.r.t. the completion and is hence an abstract essential integral.
This requires some appropriate modifications of classical proofs, e.g. of the
convergence theorems.

Chapter III is devoted to the study of L? spaces, of real measures and their
Hahn-Jordan decomposition, of measures with densities and product measures
on J-rings.

In the comprehensive Chap. IV, Radon measures on arbitrary Hausdorff
spaces are treated The approach, meanwhile accepted in topological measure
theory, follows the one of Kisynski and Topsoe using inner regularity w.r.t.
compact sets. Local boundedness is not required. Finally, representation of set
functions and linear functionals by Radon measures is discussed, not only in the
locally compact case.

In the appendix, many valuable remarks concerning the history of measure
and integral can be found.

Though there are no excercises, these lecture notes can be recommended to
students. But even the expert will find an interesting approach to the classical
theory.

Erlangen B. Anger
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Bounds for the Median of the
Negative Binomial Distribution

R. VAN DE VEN, N. C. WEBER
School of Mathematics and Statistics (FO7), University of Sydney, NSW 2006, Australia

Summary: Bounds are obtained for the median of the negative binomial distribution which are
valid for all possible parameter values of the distribution when the median is defined as
inf{x: P(X < x)>1}.

Key Words: beta distribution, negative binomial distribution, mean, median, mode.

1 Introduction

For the beta distribution Groeneveld and Meeden (1977) outlined a procedure
by which it can be shown simply that the median lies between the mean and
mode, provided that the two parameters of the distribution are strictly greater
than 1. Using this result Payton, Young and Young (1989) obtained bounds for
the “median” of the negative binomial distribution (NBD) when the shape
parameter is strictly greater than one.

Unfortunately, the value(s) treated by Payton et al. (1989) as median values
for the NBD do not, except in the case where there exists a value of x such
P(X < x) =1, satisfy the generally accepted definition of the median of a
random variable X, that being any value (m say) satisfying P(X <m) <4 <
P(X <m). The bounds thus obtained are not necessarily correct for this
definition of the median (e.g. see Payton et al. (1989), Remark 2).

This paper hence has two objectives. Firstly, we modify the results of Payton
et al. (1989) so that they hold for a rigorously defined median. The definition we
employ is

Med(X) = inf{x: P(X <x)> 1%} . 1)
All reference hereafter to the median will refer to this value. Secondly, we

0026-1335/93/3-4/185-189 $2.50 © 1993 Physica-Verlag, Heidelberg
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extend the results obtained by Payton et al. (1989) to cover the complete family
of NBDs. In the process we extend the results available for the median of the
beta distribution. To complete the paper some remarks are offered on the results
obtained.

2 Main Results

Let X = G, , be a beta(p, q) random variable with distribution function G, ,(x)
and density function g, ,(x) given by

I'(p+q

——x" (1 —-x""; 0<x<1p>04>0.
r(pI(g) p>54

gp.q(x) =

Theorem 1: If X has a beta(p, q) distribution then

0<Med(X)<EX)<iep<gqg,
Med(X) = E(X)=4<p=gq,

I<EX)<MedX)<1lep>q.

Proof: To obtain this result separate the parameter space into the disjoint regions
p =4, p <q and p > q. Now by symmetry, if p = q then Med(X) = E(X) = 3.
For the region p < q it can be shown, by considering each of the following
sub-regions 1 <p<gq, l=p<gq, p<1<q and p<gq <1 separately, that
0 < Med(X) < E(X) < . Here the result of Groeneveld and Meeden (1977) that

0<;%§—1——2—=Mode(X)<Med(X)<E(X)<12—; l<p<gq @)

gives the result for the first sub-region. For 1 = p < ¢ the result can be shown
analytically whilst for the remaining two sub-regions the result follows using the
approach outlined in Groeneveld and Meeden (1977) and the fact that if p < 1,
d,,4(x) has a minimum on [0, 1] in the interval (3, 1]. Similarly, we can obtain
the results for the case p > q and then the theorem follows.

Now let Y have a negative binomial distribution with mean u (> 0) and shape
parameter o (> 0), written NBD(y, a). Then we have
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_an T+ o YV p V| _
Pr=p =B (Y yoona,

Using the result of Patil (1960) that

o
F(y)=P(Y<y)= Gu,[y]+l(a+”> 5 y=20, 3

where [x] denotes the largest integer not greater than x, together with a
tightening of the procedure employed by Payton et al. (1989) we obtain the
following result for the median of a NBD(y, ).

Theorem 2: If n = Med(Y) then for alla > 0and u > 0

a—1 .
[( . )u]+1$n<u fu>a

—1
]u[—1sn<<9‘7—)u+1 ifu<a

where Jx[ (= —[—x]) denotes the smallest integer not less than x.

Proof: In the proof below use is made of the fact that, by definition, 7 is an integer.
Consider the case u > a.

From (1) and (3) we have 3 < F() = G, ,+; (ﬁ) giving
u

1
Med(G, 1) < (a;:u-) <3 o

So by Theorem 1 we obtain E(G, ,+;) < 3 and hence
n>a—1 foralluy > a . (5

For n > a we have, again by Theorem 1,

Med(G, ) < E(G,.,) = (a i ”> ,
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L o
where the last term is strictly greater than ( ) because
o+ pu

1 o o
E > F(ﬂ - 1) = Ga,,,<m> :Med(Ga_") > <a " #> .

From here we obtain the result n < u whenever # > o and hence
n<pu foralluy>a . 6)

For the case « > 1, we have, from (5), (2) and (4)

o—1 o
(M—_l> = Mode(Ga,n+1) < Med(Ga‘"“) < <m>

from which it follows that

n><T>u foralll<a<uyu . 7

Equations (5), (6) and (7) can be combined to give

o—1 .
[( " )u]+1$n<u ifu>a.

The second part of Theorem 2 (corresponding to u < «) can be obtained using
a similar argument to the above and the complementary result to (2) given by
Groeneveld and Meeden (1977), that is,

1 _
5 < E(X) < Med(X) < Mode(X) = pJ_-—l—

; l<g<p.
+q—2 a=p
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3 Remarks

Let Y ~ NBD(u, ) and n = Med(Y).

1. fu=athenn=Ju[ — 1.
-1
2. LetM = <a7> u. The mode of Yis ([M] v 0)if M is not a positive integer

whilst the modal values are M and M — 1 if M is a positive integer. From the
lower bounds in Theorem 2 we have #n always bounded below by the mode.
Moreover, if M is a positive integer and a > u then n = M.

3. It is not the case that the median of Y is always bounded above by the mean
of Y. For example, if Y ~ NBD(1.9, 3) then n = 2.

4. If « and 5 both take values in (0, 1] then n = 0.

5. For the case u > a it can be seen from Theorem 2 that the range of possible
values for the median of Y ~ NBD(y, «) can be quite large. However, as

Y 1
*—"»1"(0:,—) as u — oo (a fixed) ,
i o

there would appear little scope for relative tightening if the bounds obtained by
Chen and Rubin (1986) for a gamma random variable

(@ — 1/3) < Med(I'(«, 1)) < «

are tight as these give the following bounds
—1 Y
(a 3) < lim median (—) <1.
@ n-o u
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Book Review

A. D. Barbour, L. Holst, and S. Janson: Poisson Approximation. Oxford Studies
in Probability 2, Clarendon Press, Oxford, 1992, X/277 pp., £30.00

This book is dedicated to a thorough study of various aspects concerning
Poisson approximation with rates and its applications in one and several dimen-
sions (including stochastic processes), with a particular emphasis on couplings
and the so-called Stein-Chen method. Though originally developed in the con-
text of the central limit theorem, this method together with some quite sophisti-
cated refinements by the authors has turned out to be one of the most powerful
tools to tackle a large number of diverse approximation problems, not only for
Poisson limits. In particular, it allows for asymptotic expansions and very sharp
(two-sided) estimations for the approximation error of the distribution of e.g.
sums of dependent and independent random variables by suitable Poisson dis-
tributions, in various metrics such as total variation, Wasserstein type metrics
or the Hellinger distance. A separate section (Chap. 10) is devoted to a general-
ization of the Stein-Chen method to Poisson process approximation, a field in
which research is still going to continue. A novelty might also be the discussion
of the Poisson approximation of mixed Poisson distributions which is scattered
over several sections (e.g. Chap. 3.3).

Besides the more technical background, the book covers quite a large number
of examples in which Poisson approximation is useful and, sometimes, the only
possible way to obtain numerical results. This unique collection ranges from
classical problems such as matchings, “ménages” and urn problems to random
graph theory, order statistics and extreme value theory; some of the results are
presented in book form for the first time here.

Although the authors point out in the preface that “the bulk of the material
can be understood with no more than a knowledge of elementary discrete
probability theory”, the book as a whole is by no means elementary. The style
of presentation is excellent; each chapter is accompanied by extensive introduc-
tory remarks which frequently sketch the basic ideas of the theory in advance
and give references to related work. Where possible, direct comparison is made
with competing methods (such as characteristic functions, or operator theory).
Some basic facts on probability metrics are given in the appendix.

Summarizing, this book is, in my opinion, not only an outstanding up-to-date
research monograph (almost 20% of the references date from 1990 and later!),
but also a rich source of examples and recent problems for those readers who
are more interested in applications. It will surely be one of my favorites for a
long time.

Oldenburg D. Pfeifer
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Bounds on the Efficiency of the Residual Design of
Extended BIB Designs

SANPEI KAGEYAMA AND HIROSHI SETOYA

Department of Mathematics, Hiroshima University, Hiroshima 734, Japan

Abstract: This gives a complete proof for bounds of the efficiency, conjectured by Das and Kageyama
(1992), on robustness of extended balanced incomplete block designs against the unavailability of
any number of observations in a block.

1 Introduction

The robustness problem of block designs against the unavailability of data has
been considered in various ways. Das and Kageyama (1992) showed the ro-
bustness of extended balanced incomplete block (BIB) designs when all the
observations or any one observation in a block are lost. Furthermore, by a
computer search they also observed the robustness of extended BIB designs
against the unavailability of any number of observations in a block, within some
range of design parameters.

In this note, we shall prove bounds of the efficiency to show generally the
robustness of extended BIB designs against the unavailability of any number of
observations in a block. This gives a complete answer to the problem presented
in Section 3.3 of Das and Kageyama (1992).

2 The Bounds

An extended BIB design d with v treatments and b + 1 blocks of size k each is a
design obtained by juxtaposing one binary block of size k to a BIB design with
parameters v, b, r, k and A denoted by a BIBD(v, b, r, k, 4).

In the extended BIB design d, suppose that s (1 < s < k) observations in any
one block of d are lost. Let p be the number of treatments common to the missing
treatments and k treatments in the added block, and let g be the number of
treatments common to the remaining treatments (in a block containing the

0026-1335/93/3-4/191-201 $2.50 © 1993 Physica-Verlag, Heidelberg



192 S. Kageyama and H. Setoya

missing treatments) and k treatments in the added block. The parameters should
satisfy

0<p<s, max{0,2k —v—p}<qg<k-—s. 2.1)

Let d* be the design obtained by deleting s observations for 1 < s < kin any one
block in d. Assume d* to be connected. As shown in Das and Kageyama
(1992), the efficiency of residual design d* is given by

ei(p, q) = ?qu(?) (=B, say)

where
#, = k{lv(v — 1) + k(v — k)}/{Av(lv + k)} ,

¢i(s) =k{v—k — s+ 2(p — 1)}/(Av) + k(k — p — 2)/(Av + k)
+ k(s — p — 1)/(Av — k) + 4Avk(k — s)(1/D + 1/E)
forl<s<k-1,
D =22 (k —s) —a + Ja* — B,
E=20%*k—s)—a—/> — B,
o =(k —s){k(k +2p) — p(p + 29)} — sq(k — q) ,
p=4pk*(k — s)(k —s—q)2k—p—gq); or
$1(s) = 2Avk(k — p — 1)/[(A*0* — k*) + k{v — 2(k — p) — 1}/(4v)
+ 2Avk/(A*v? — 2kp + p?)  fors=k .
Remark 2.1: The above expressions of ¢,(s) for ] <s<k—1 and s =k are
derived through Lemmas 3.1 and 3.3 of Das and Kageyama (1992), respectively.
In fact, Lemma 3.1 is givenunder p>1, k—p—-q>1,9q=>21, k—s—q=>1,
s—p=>1and v—2k+ p+q=>1, while Lemma 3.3 is given under p > 1,
k —p=>1and v — 2k + p > 1. These restrictions occur from some patterns of

the C-matrix of the residual design d*. These parametric restrictions form a
subset of ranges (2.1). To cover all the ranges as in (2.1), we have to consider
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special cases of such restrictions. Simplified expressions of ¢, (s) for these special
cases can be given by Lemmas 3.2.1, 3.2.2, 3.2.3 and 3.2.4 of Das and Kageyama
(1992). {Incidentally, expressions derived in such a way may coincide with those
given by formally omitting eigenvalues with negative values of multiplicity, as in
the results of Lemma 3.1 of Das and Kageyama (1992), used to derive ¢, (s).} For
such special cases Das and Kageyama (1992) implicitly have shown that our
theorem described later holds. Thus our theorem is expressed under (2.1).

The following bound is now conjectured by Das and Kageyama (1992; Section
3.3).

Theorem: In an extended BIB design obtained by adding one binary block of
size k to a BIB design with parameters v, b, , k, 4, when s (1 < s < k) observa-
tions in any one block are lost, the efficiency B of residual designs satisfies

ol — 1) + k(o — k)
T -1 +ko—k+1)"°

(= k) {Av(v — 1) + k(v — k)}
TR —-1)— kv —2k+ 1)

(when v > 2k)

or

(Av — k) {Av(v — 1) + k(v — k)} (A%0? — 20k + v?)/[224%0*{(v — k — 1)
x (A2v? — 2vk + v?) + A%v? — k?}

+ 2k — v — 1)(A%0? — k?)(A%v? — 20k + v?)]

(whenk +1<v<2k-—1)
with
0<p<s, max{0,2k—v—p}<q<k-—s.

In fact, A = e;(1, k — 1) and C = ¢;,(p*, 0) with p* = max{0, 2k — v}.
The theorem shall be proved by separating the range of s into two cases as
l1<s<k—-2ands=k k-1
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3 Proof of the Theorem fors =k, k — 1

Proposition 3.1: In a BIBD(u, b, r, k, 1), an inequality 4 > B > C holds for s = k
and k — 1.

Case: s = k. Note that g = 0 in this case.

(I) A proof of B > C. Since max{0, 2k — v} < p, 0 < p and 2k — v < p. Hence
Theorem 3.4 of Das and Kageyama (1992) shows B > C.

(IT) A proof of A > B.
(i) Case p =k: Here we get ¢, (k) = k(v — 1)/(Av). Hence B = {dv(v — 1) +
k(v — k)}/{(Av + k)(v — 1)}. Thus, 4 — B = k(k — 2){Av(v — 1) + k(v — k)}/

[(Av + K)(v — 1){Av(v — 1) + k(v — k + 1)}] > 0.
(i) Case max{0,2k — v} <p < k — 1: Now

A — B =[{iv(v — 1) + k(v — k)} (2(4*v* — k*)p(2k — p)
+ (A%0? — 2kp + p?){Avk(k — 2) — k*(2p — k)}}1/
[{Av(v — 1) + k(v — k + 1)} N]
where
N = (A%0? = 2kp + p*)(A%v® — 34%0% + 2k — vk? — 2k*p + k?)
+ 24202 (%02 — k?).
It follows that the denominator of A — B is positive. Because (1) Av(v — 1) +
k(v — k + 1) > 0, (2) A%v? — 2kp + p? > 0, and (3) A%v® — 3A%v? + 2k — vk? —
2k?p + k? > 0. Furthermore, the fact that the numerator of A — B is positive can

be shown by the following relations:

4) 2(A%* —k*)p(2k —p) =20, Av(w—1)+ k(v —k)>0;
(5) Avk(k —2) — k*Q2p — k) > k*(k — 2) — k*(2p — k) = 2k*(k — p— 1) > 0.

Thus, we get A > B when max {0, 2k — v} < p < k — 1. Therefore, by cases (i)
and (i), 4 > B holds for max{0, 2k — v} < p < k.

Case: s = k — 1. As noted in Remark 3.2 of Das and Kageyama (1992), the case
of s = k — 1is actually equivalent to the case of s = k. In fact, we only have g = 0
(for s=k) and g =0 or 1 (for s = k — 1). Then, in B, ¢;_,(p, 0) = ¢,(p, 0) and
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e(p,)=e(p+1,0)for p=0, 1, ..., k — 1. This implies that A > B> C
holds for s = k — 1. The proof is thus completed. \ a

4 Proof of the Theoremfor1 < s <k -2

Lemma 4.1: In the following BIB designs, 4 > B > C holds for all s such
that 1 <s <k —2: BIBD(v, b, 1, k, 1) =(4,4,3,3,2),(5,5,4,4,3), (6,6, 5, 5, 4),
(7,7,3,3,1),(7,7,4,4,2), (11, 11, 6, 6, 3).

This can be checked by calculation of factors A, maximum and minimum of
B, and C. Note that the existence of these BIB designs can be seen in Raghavarao
(1971).

Lemma 4.2: In a BIBD(v, b, r, k, A), F > 0 and G > 0 hold for all s such that
1 <s<k-—2,where

F = 2*v*(k — 5) — 220%k(k — s)(k + 2p) + A2v?p(k — s)(p + 29)
+ A2v?sq(k — q) + pk*(k —s —q)Rk —p—¢q) ,
G = 2(A%* — k) {A*v*(k — 5) — pk*(k — s — q)(2k — p — q)}

with0 < p < sand max{0,2k —v —p} < g <k —s.

Proof: 1t is clear that
A22p(k — s)(p + 2q) + A*v?sq(k — q) + pk*(k —s — @)k —p—q) >0 . (4.1)

Some calculation shows that A*v*(k — s) — A%v?k(k — s)(k + 2p) >
A%k — s)[k*{k(k — 2) — 2} + 2k] > O, since k > 3. This with (4.1) implies
F > 0. Next, :

Ak —s) — pk*(k — s — q)2k —p— q)

vtk — 1)*

oo F 2pk’} +pk*(p + q) + pgk*(2k — p — q)

Z(k—s){

>k — )kt — ){(k—1°* -2} >0,
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since r>k, p<k—1,2k—p—q>0 and v >3. This with A?v> —k*>0
implies G > 0. O

Lemma 4.3: In a BIBD(v, b, r, k, 4) with v < 2k — 1, an inequality k <r <24
holds.

Proof: By Av— )=rk — 1), Av=rk+ A —r < A2k — 1),ie. (r =24k —-1) <
0. Hence r < 2. By Fisher’s inequality r > k. (]

Lemma 4.4: Ina BIBD(v, b, r, k, 2), H > O holds for all ssuch that 1 <s <k — 2,
where

H = 4(k — 5){(A%v® — 34%0* — vk? + k® + ks — 2k®p — Avk® + Avks

+ Avk)F + G} .
Proof: This is given by separating into two cases.

Case (I1): v > 2k. Note that in this case v > 6. At first, by k — s > 0 and Lemma
4.2, F > 0 and G > 0. Next, it holds that

2203 — 31207 — vk? + k3 + k%s — 2k*p — Avk® + Avks + Avk
> k%(k — p) + k*(s — p) + v[(Av — k) {A(v — 3) + k}
_Jk(k+1)] (bys=>1)

> k*k — p) + k*(s — p) + (Ao — k)v{A(v — 3) — 1} (byv>2kand A >1)
which is positive. These relations show that H > 0.

Case (II1): k+ 1 <v <2k — 1. Note that v > 4. Since k > 3, at first we have
k — s> 0and, by Lemma 4.2, F > 0 and G > 0. Next,

A% — 34202 — vk? + Kk + k®s — 2k*p — Avk?® + Avks + Avk
= k%(k — p) + k*(s — p) + v{A%v(v — 3) — Ak? + (s + 1 — k)k}

> A% —3)— Ak + 2A—kk (byk>p,s>p,s>1) 4.2)
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> 2A%[{k(k — 3) — 2}/2] . (by Lemma 4.3 withk <2landk + 1 <v)
4.3)

When k > 4, (4.3) is positive. When k=3 and v =4,(4.2) =141 —-3)—-9>0.
When k=3 andv=>5,(4.2) = A(104 —3) —9>0. Thus, H>0whenk + 1 <
v < 2k — 1. Hence the proof is completed. O

Lemma 4.5: Ina BIBD(v, b, r, k, A) withk + 1 <v <2k — 1, K > 0 holds, where
K = 2A%0%{(v — k — 1)(A%0? — 20k + v?) + 220> — k*} + 2k — v — 1)
x (A2v? — k?)(A%v? — 20k + v?).

Proof: Since A>1 and v >k, A%v? — 2vk + v?> = (A + 1)v? — 2vk > 0 and
2?02 — k? > 0. Hence K > 0. O

Thus, since in the six BIB designs as in Lemma 4.1 our bounds hold, such six
BIB designs are, in particular, excluded to prove the following Propositions 4.1,
4.2 and 4.3.

Proposition 4.1: In a BIBD(v, b, r, k, 1), an inequality A > B holds for all s such
that 1 <s <k -2

Proof: Since with H as in Lemma 4.4

(A — B)/{Av(v — 1) + k(v — k)}

_H— (A —k){Av(v — 1) + k(v — k + 1)} DE
B (v — 1) + k(v —k + 1)} H

(=ua,say) ,

if « >0, then A > B. It is clear from Lemma 4.4 that the denominator of « is
positive. Now denote the numerator of a by «'. So

o«/{4(k — 5)} = (—2A%0% + ks — 2k?p + k* + Avks — Wwk)F + G .
(a) Cases=1(and hencep=0orlandgq <k — 1)
(1) When p =0,

o {4k — 5)} = 2420 (A%0? — k*)(k® — k* — kq + ¢*)

> 22204 (A%0* — k?) {k*(k — 2) + k + ¢*} > 0.



198 S. Kageyama and H. Setoya
(2) Whenp =1,

o [{4(k — )}
= (2k — g — 1)(k — g — D[22 {v?r*(k — 1)*/(v — 1)* — 2k?} + 2k*]
2 (2k — g — 1)(k — g — D[24%%k> {k(k — 2) — 1} + 2k*]

which is non-negative, since k > 3 and v > 4. Thus o’ > 0.

(b) Case2 < s < k — 2 (and hence k > 4): Let
o«/{4k — s)} = 2(A%? — K})L + MF
where
L = 22*[{(k = )(k + p) — sq} (k — @) + (k — s)(k — p)(p + q)]

—2pk*k—s—q)2k—p—q) ,

M = ks — 2k?p — k? + Avks — Avk .

(3) Since 420? — k? > 0, it follows from Lemma 4.2 that F > 0.
@ L= 220[{(k —s)(k + p) — sq}(k — q) + (k — s)(k — p)(p + q)

—(k—=s-q@2k—-p-q]

> A {(k—s)k+p)—sqg+(k—pp+9 —Q2k—p—q}k—s—2q)

=¥ {(k+pk—s—1)—k+(*k+1)(p+q) —sq
+p(l —p— @}k —s5s—gq)

>0.

(5) M > 0can be shown by considering four cases,s > p + 1,s = p,s > 3 and

s = 2, separately, after some algebra.
Thus, o' > 0. Hence the proof is completed.

Proposition 4.2: In a BIBD(v, b, r, k, 1) with v > 2k, an inequality B > C holds

forallssuchthatl <s<k-—2.
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Proof: Since

(B— C)/[(Av — k) {Av(v — 1) + k(v — k)}]

{2 —-1)—k*v—2k+ 1)}DE—-H
T (A -1)—k¥(v—2k+ 1)}H

(=B, say)

if B > 0, then B > C. It follows from Lemma 4.4 that the denominator of g is
positive. For, A2v?(v — 1) — k(v — 2k + 1) > 24%v%(k — 1) > 0. Now denote the
numerator of § by f'. Then, since k > 3 and hence v > 6,
Bl{A(k — )} = A%*(k® + k2 — ks + 2k?p + Avk? — Avks — Avk)(k — s)
+ {(A20% — k2) + k2(k — 5) + 2k?p + Avk(k — 5)
+ Av(Av — k)} {A%v®p(k — s)(p + 2q) — A*v*k(k — s)(k + 2p)
+ A2v3sq(k — q)} + pk?*{3(A%0* — k?) + k*(k — s) + 2k?p
+ Avk(k — s) + Av(Av — k)}(k — s — q)(2k — p — q)
> A%0*(k3 + k? — k25 + 2k?p + Avk? — Avks — Avk)(k — s)
— 2202k {(A%0? — k?) + k*(k — s) + 2k*p + Avk(k — s)
+ Av(Av — k)} (k — s)(k + 2p)
> A20%k{A%v? — k(k + 2p)}(Av + k)(k — s — 1)
+ 2220%kp{A202(k — 2) — k2(k + 2p)}
which is non-negative, since A%v? — k(k + 2p) = v2ri(k — 1)*/(v — 1)* —
k(k + 2p) > k*{k(k —2) — 2} + 4k >0, and A2k — 2) — k*(k + 2p) =
virik — 1)k — 2)/(v — 1)* — k*(k + 2p) > k*{k(k — 2)*> — 2(k — 1)} which is
positive for k > 4. For k = 3 the original A2v2(k — 2) — k*(k + 2p) can be shown

to be positive, since A >2 when v=6. Thus, f’' > 0. Hence the proof is
completed. O

Proposition 4.3: In a BIBD(v, b, r, k, 2) with k + 1 < v < 2k — 1, an inequality
B > C holds for all ssuch that 1 <s <k — 2.



200 S. Kageyama and H. Setoya

Proof: Since with K as in Lemma 4.5

(B — O)/[(Av — k) {Av(v — 1) + k(v — k)}]

KDE — (A%v? — 2vk + v?)H
= HK (_ﬂ’ SaY) [}

if § > 0, then B > C. It follows from Lemmas 4.4 and 4.5 that the denominator
of B is positive. Now denote the numerator of § by . Then, since k > 3,

B/{4k —s)}
= A*0*[{k(Av — k)(k — s — 1) + 2k*(v — k + p — s)} (A*v* — 20k + v?)
+ 20(A*0? — k*)(2k — v)](k — s) + [{k(Av — k)(k —s — 1)
+ 2k*(v — k + p — 5)}(A%0? — 20k + v?) + 2420 (A%0? — k)] {A%0?p
x (k — s)(p + 2q) — A*v%k(k — s)(k + 2p) + A*v*sq(k — q)}
+ pk2[{k(Av — k)(k — s — 1) + 2k*(v — k + p — s)} (A*v* — 20k + v?)
+ 2(A%0?% — k2)(2A%0?2 — 20k + v) ]k — s — )2k —p — q)
> 24%0%(A%0? — k) {v(2k — v) — k(k + 2p) + p(p + 29)}
+ k(Av — k)(A%v? — 20k + v?){A*v* — k(k + 2p)}
= A20%(Av — k) {Av(Avk — 2k* — 4kp) — 2k*(k + 2p)}
+ A202(Av — k) {2p(24vq — k?) + 2Avp? + 2kp® + 4kpq + vk(2k — v)}
+ A20*(Av — k) {2A0%(2k — v) — k3}
+ vk?(Av — k) (k + 2p)(2k — v)
which can be shown to be positive, since the six BIB designs in Lemma 4.1
are excluded from our consideration, by noting the following relations
through Lemma 4.3: (i) A%2v? > 0, v — k > 0,2k — v > 1,2A40?(2k — v) — k* > 0,
(i)  Av(ivk — 2k* — 4kp) — 2k%(k + 2p) > k*{Avk — 2(k + 2p)(k + 1)}/2 > 0,
(iii) 2p(2Avq — k?) + 24vp? + 2kp® + 4kpq + vk(2k — v) > 0. Thus, p >0.
Hence the proof is completed. O

Therefore, Propositions 3.1, 4.1, 4.2 and 4.3 can show the validity of the
theorem in Section 2. a0
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5 Conclusion

In Sections 3 and 4, the conjecture of Das and Kageyama (1992) has been proved
mathematically. This means, through Section 3.3 of Das and Kageyama (1992),
that extended BIB designs are fairly robust against the unavailability of any
number of observations in any one block.

Acknowledgements: The authors are grateful to Dr. Ashish Das for his discussion. Thanks are also
due to a referee for his constructive comments and suggestions.
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Book Review

W. J. Anderson (Ed.): Continuous Time Markov Chains: An Applications-
Oriented Approach, Springer-Verlag, 1991, 367 pp., DM 128,—

One could quarrel with the choice of sub-title. ‘Applications-Oriented’ evokes
martingales, weak convergence, diffusion approximation, coupling, maybe strong
approximation, and their use in describing a host of processes arising in stochas-
tic modelling. Instead, we are told on page 5 that the process X will never figure
in any role of importance, and that it is enough for applications to know the
transition probabilities Py(t). Well, never mind.

‘The P-Q Approach’ would be a better sub-title. The main aim of the book is
to present the fruits of the Kendall-Reuter-Karlin approach to Markov chains
in continuous time. It contains a detailed discussion of the construction of
transition semi-groups P(t) from knowledge only of Q = P’(0), starting with the
Feller recursion, and continuing to the construction of other solutions, when
such exist. Conditions for the existence and uniqueness of solutions, including
Hou’s theorem in the non-conservative case, receive corresponding emphasis.
The classification of states is then introduced. For transient classes, the concepts
of A-recurrence and A-transience, and their connection with quasi-stationary
distributions, are examined: for recurrent classes, there is a chapter on strong
and exponential ergodicity. Then come symmetry and reversibility, stochastic
monotonicity, dual processes and coupling. In all cases, much effort is given to
providing conditions expressed in terms of the Q-matrix for the various phe-
nomena to occur. This is important for the practitioner, who is much more likely
to know Q than he is to know P(t). The proofs throughout are analytic rather
than probabilistic, and much use is made of resolvents.

There are, nonetheless, applications: to birth and death processes, in the style
of Karlin and McGregor, to birth-death-catastrophe processes, to open migra-
tion processes and to some ecological and epidemiological processes. Here,
however, the philosophy chosen shows its weaknesses, since those models for
which the (Laplace transforms of the) transition matrices P(t) can be explicitly
calculated are few, and the solutions thereby obtained often uninformative. A
prime example is the formula given for the final size distribution in the general
stochastic epidemic, involving an ugly and intractable combinatorial sum of
products; whereas, if the initial number of susceptibles is at all large, there is a
good approximation to the whole evolution of the epidemic, using a mixture of
a branching process approximation for those paths that die out early and a
diffusion approximation for those that do not.

The strength of the book is clearly in its exposition of P-Q theory rather than
in its usefulness in applications; in this respect, it makes a welcome addition to
the literature on Markov chains.

Cambridge A. D. Barbour



Metrika (1993) 40:203-210 | P " 'I,
‘ Metrik:

Maximum Likelihood Methods for Fitting the Burr
Type XII Distribution to Multiply (Progressively)
Censored Life Test Data

DaLLAs R. WINGO
Math Stat Associates, Inc., P.O. Box 8385, Red Bank, New Jersey 07701, USA

Summary: This paper develops mathematical and computational methodology for fitting, by the
method of maximum likelihood (ML), the Burr Type XII distribution to multiply (or progressively)
censored life test data. Mathematical expressions are given for approximating the asymptotic vari-
ances and covariances of the ML estimates (MLEs) of the parameters of the Burr Type XII
distribution. A rigorous mathematical analysis is undertaken to investigate the existence and unique-
ness of the MLE:s for arbitrary sample data. The methodology of this paper is applied to progres-
sively censored sample data arising in a life test experiment.

Key Words: Burr distribution, maximum likelihood estimation, multiple censoring, progressively
censored samples.

1 Introduction

The Burr Type XII distribution, with cumulative distribution function (CDF)
Fx)=1—(x"+1)7%, x>0,c>0,k>0 (1.1)
and probability density function (PDF)
S(x) = ckx7H(x¢ + 1), (1.2)

is a versatile probability distribution. As shown by Rodriguez (1977) and
Tadikamalla (1980), this distribution covers the curve shape characteristics for
the Normal, lognormal, Gamma, logistic and exponential (Pearson Type X)
distributions, as well as a significant portion of the curve shape characteristics
for the Pearson Types I (Beta), II, V, VII, IX and XII families. Because the family
of curve shape characteristics exhibited by the Burr Type XII distribution is very
rich, this distribution is useful in applications which require a model of function-
ally simple form but which can also exhibit a wide variety of shapes.

0026 -1335/93/3-4/203-210 $2.50 © 1993 Physica-Verlag, Heidelberg
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Wingo (1983) has described methods for fitting the Burr Type XII distribution
to life test or other (complete sample) data by maximum likelihood (ML) and
has also provided an extensive list of references to earlier published work on this
distribution. The present paper extends the work of Wingo (1983) by developing
mathematical and computational methodology for fitting the Burr Type XII
distribution to progressively censored life test or survival data.

2 Notation and Statement of the Problem

Censoring occurs naturally in many life test experiments. Broadly speaking,
censoring occurs when exact lifetimes (or survival times) are known only for a
portion of the subjects under study. For example, when data from a life test
experiment are analyzed, some subjects are still surviving. The survival times of
these surviving subjects are known only to be beyond their current lifetimes.
These data are called right-censored data. When right-censored data have differ-
ent running times (called censoring times) intermixed with exact lifetimes, such
data are called multiply or progressively censored. Multiply censored data arise
when subjects go on test at different times. Thus, when the data are recorded, the
subjects have different running times. For example, in clinical trials, progressive
censoring is often the result of participant dropout.

Let N be the total number of subjects placed on life test, and let n be the
number of known, exact survival (or failure) times. Also, suppose censoring
occurs progressively in [ stages at times T, where T, < T,_;, j = 1, 2,..., L If, at
stage j of censoring, r; randomly selected surviving subjects are removed (cen-
sored) from further observation, then it follows that

!
N=n+Yr. 2.1)
Z

J

Two types of censoring are generally recognized: Type I and Type II censoring.
In Type I progressive censoring, subjects are censored at fixed, pre-determined
times T;. In Type II progressive censoring, the T; coincide with times of failure
and are random variables. For a Type I progressively censored sample, the
likelihood function (LF) is

n 1
L=C Ul f(xi) l;]l (1 - F(T)I1~, 22

where C is a constant, f( ) is the probability density function and F( ) is the
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cumulative distribution function. For a Type II progressively censored sample,
the LF is

L=C n AT - FTD)T" 2.3)

where, as noted earlier, the T; are observed values of random variables and
coincide with times of failure. Only Type I censoring will be considered in this
paper.

As has been pointed out by Nelson (1982), when analyzing progressively cen-
sored data by ML it is necessary to assume that subjects censored at any specific
time come from the same life distribution as the subjects that survive beyond
that time. This assumption does not hold, for example, if subjects are censored
when they appear as though they are about to fail.

3 Maximum Likelihood Estimation

3.1 Log-Likelihood Function and Likelihood Equations

For an I-stage progressively censored sample with n independent, completely
determined lifetimes {x; > 0} (i =1, ..., n) with probability distribution (1.1)-
(1.2) and r; subjects censored at tlmes {T >0}(j =1,..., 1), the log-likelihood
function (LLF) is

L(c, k) = nlog(c) + nlog(k) + (c — 1)) log(x;) — (k + 1)) log(x{ + 1)

—k Z r,log(T¢ + 1) 3.1)

where ) denotes the summation over the n observation {x;} and where
j=1

1
=
denotes the summation over the I censoring times {T;}. All logarithms are of the
Napierian type.
Differentiation of (3.1) with respect to ¢ and k yields

x{ log(x;)

n - I
Lc=z+210g(xi)_(k+ 1)Zm_k Z

J
P (3.2)
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and

L= ~ T log(sf + 1) = 3. 1 l0g(Ty + 1) 63

where L, = 0L/0x for the generic parameter a. The LEs, L, = 0 and L, = 0, are
obtained by setting to zero the right-hand sides of (3.2)—(3.3). The MLEs of the
parameters of (1.1)—(1.2) are the set(s) of values ¢ > 0 and k > 0 which simulta-
neously satisfy L, = 0 and L, = 0 and for which (3.1) is globally maximized over
allc>0and k > 0.

The solution of L, = 0 for k yields

n

k= 34)
Y log(x{ + 1) + Z r;log(T + 1)
The substitution of (3.4) into (3.1) yields the conditional LLF
L*(c) = L(c|k(c))
=®(c)—n logI:Z log(xf + 1) + Z i log(T; 1)] , (3.5)

where

@(c) = n[log(n) — 1] + nlog(c) + (c — l)z log(x;) — Z log(x{ + 1) (3.6)

is strictly concave (Mangasarian, 1969) in c for all ¢ > 0.

3.2 Asymptotic Variances and Covariances of MLEs

An idea of the asymptotic behavior of the MLEs for large samples is obtained
from the expected information matrix I; = — E{0?L/06,06;}, where i, j =1, 2
and O = (c, k)7. I is symmetric. Below, we give the observed information matrix
I;;, which is obtained by dropping the expectatlon operator E. The approximate
(i.e., observed) asymptotic variance-covariance matrix V for the MLEs is ob-
tained by inverting the observed information matrix, i.e.,
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~ 1 .~
Vl=- ;1 (3.7)

where, as noted earlier, I:,- = —{02L/06,00;} and © = (c, k)".
Upon differentiating (3.2)—(3.3) with respect to ¢ and k, we obtain

n x{(log x;)? r;T<(log T}
L.=——5—(k+1 ~ky L2 F 3.8
2 ( + )Z ( c+1)2 }Z—‘:i (7;c+1)2 ( )
n
Ly = T2 (3.9
x{ log(x;) L rTflog T;
L,=L, < I !, 3.10
e Z(xf+1) sz T+ 1 (.10
where L,; = 0°L/00dp for the generic parameters o and .
3.3 Existence and Uniqueness of MLEs
When c is known and positive, k exists, is unique and is given by (3.4). |

When k is known, fixed and positive, the LLF (3.1) is strictly concave in c,
inasmuch as (3.8) implies that L. < 0. It follows from the strict concavity of (3.1)
(when k > 0 and fixed) that ¢ is unique. To show that ¢ always exists, we show
that the equation L, = 0 (where L. is given by (3.2)) always has a single, finite
zero on the positive real line, as long as x; # 1 and/or T; # 1 forsomei=1,...,
nand j=1,...,1L

Suppose we define

n x{ log(x;) ! r. T (log T)
=- -k Y L= 3.11
#o) =+ Lloglx) = (k+ VY=o —k ¥ (3.11)

where k > 0 and fixed. Also, define the index sets
M={i(i=1,...,n)|x; <1},
P={i(i=1,....,n|x;> 1},

e={j(j=1...DIT>1}.
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Now, direct calculation shows that, as ¢ — oo,

F+ 1

Z( X )logx)ﬁzlogm

1 c

jeQ
Direct calculation also shows that

#(0) = o0 ,
(3.12)

=Y log(x;) — k[z log(x) + % r,-log(Tj)] :
ieM ieP j

jeQ

A close examination of (3.12) reveals that its right-hand side will always be
negative, as long as either of the index sets M, P or Q is nonempty. Under these
conditions, it therefore follows that ¢(c0) < O for all ¢ > 0. Since ¢(0) = oo and
#(0) < 0, there exists at least one real root of ¢(c) = 0 on the positive real line.
To show that this root ¢ is unique, it suffices to show that d¢(c)/dc < 0, i.e., that
#(c) is monotone decreasing in ¢ for ¢ > 0. Now, straightforward differentiation

1
of ¢(c) shows that dé(c)/dc < 0, since Y x{ log(x,)/(x{ + 1) and Y’ r, T log(T;)/
=1

J
(TF + 1) are both monotonically increasing in ¢ for ¢ > 0. Hence, when k is
known, fixed and positive, then, under the above conditions on the sample data,
the MLE ¢ always exists and is unique. ]

When ¢ and k are both unknown, ¢ can, in principle, be obtained by maxi-
mizing the conditional LLF L*(c) in (3.5) over all ¢ > 0. It turns out that, when
both ¢ and k are unknown, L*(c) is unimodal, provided that certain conditions
on the sample data are satisfied. We shall prove this assertion by examining the
behaviour of the equation ¢(c) = 0, where ¢(c) = dL*(c)/dc. More specifically,
we prove below that the equation ¢(c) = 0 always possesses a single, finite zero
on the positive real line if and only if the set M is nonempty. Let

c] .
#0) =" + ¥ loglx) - 3 22

x§ log(x;) 1, T;* log(T})  log(T))
_"{Z X+ 1 +,; T + 1

. (3.13)
Y log(xf + 1) + ,-:1:‘1 r;log(TF + 1)
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Now, direct calculation shows that

$(0) = o,

(3.14)
#(0) = 3 log(x) .

As before, the right-hand side of (3.14) will be negative if and only if the set M is
nonempty. Therefore, provided that these conditions on the sample data hold,
¢(0) < 0 for all ¢ > 0. Since ¢(0) = oo and @(0) < 0, there exists at least one
positive real root of the equation ¢(c) =0, where ¢(c) is defined by (3.13).
Differentiation and straightforward (though tedious) algebraic manipulations
show that d¢(c)/dc < O for all ¢ > 0, implying that ¢(c) = 0 has a single, finite
zero on the positive real line. This zero is the MLE é. u

For the case in which both ¢ and k are unknown and must be estimated
jointly, it is instructive to compare the conclusions drawn in the present paper
with those of Theorem 1 of Wingo (1983). It should be noted that Theorem 1 of
Wingo (1983) contains a serious misprint that renders the theorem false. How-
ever, all is not lost. If every occurrence of the expression “x; > 1” is replaced by
“x; < 17, then Theorem 1 remains valid.

4 Example

Table 1 gives data from a clinical trial that was conducted to assess the effective-
ness of an anesthetic antibiotic ointment in relieving pain caused by superficial
skin wounds. Because of its flexibility to model a variety of clinical data, the Burr
Type XII distribution was used as a tentative model for the distribution of
patient relief times.

Table 1. Pain Relief Times (in Hours) for 20 Patients

0.828 0.881 1.138 0.879 0.554 0.653 0.698 0.566 0.665 0917
0.529 0.786 1.110 0.866 1.037 0.788 1.050 0.899 0.683 0.829

A total of 30 patients was involved in the clinical trial. Table 1 gives the time to
pain reflief (in hours) of 20 patients. The remaining 10 patients were subjected to
the following Type I progressive censoring scheme: | = 3, T, = 0.25, T, = 0.50,
Ty, =0.75r =5,r,=1 and r; = 4. The computed MLEs for these data are
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¢ = 6.560 and k = 2.597. Approximate variances and covariances of the MLEs
are var{¢} = 0.014, var{k} = 0.017 and cov{¢, k} = 0.002.
If we define u = E{x}, then the MLE of the distribution mean is (Wingo, 1983)

e )rfied)

k)

= (3.15)

The estimated average pain relief time is computed from (3.15) as 2 = 0.817
hours.

5 Conclusions

This paper has described mathematical methodology for estimating the parame-
ters of the Burr Type XII distribution from progressively censored sample data.
Mathematical expressions are given for the approximate (large-sample) vari-
ances and covariances of the MLEs. Necessary and sufficient conditions on the
sample data were derived which ensure that the MLEs exist, are unique and
finite. The results of the present paper are therefore expected to facilitate the
computational calculations faced by clinicians or other researchers who wish to
use the Burr Type XII distribution as a tentative model to describe life test or
other experimental data.
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Summary: In this paper we derive some recurrence relations for moments of order statistics of a
random sample from a truncation parameter density when one of the observations is an outlier. We
also derive uniform minimum variance unbiased estimator of a parametric function.

1 Introduction

A variety of outlier models have been the subject of discussion in the literature.
We restrict attention to the case when the outlier has a distribution that is
different from the population distribution. An outlier is not necessarily a bad or
an erroneous observation; it may be an indication of some unexpected useful
industrial treatment or successful agricultural variety. One approach is to re-
move such outliers by means of some test of significance and to base analysis
only on the remaining observations. In this study, however, we shall be inter-
ested in the estimation of parameters and the moments of order statistics based
on the complete sample.

We consider one — truncation parameter probability density functions (pdfs)
of the forms

m_ Ja@)h(x), a<8<x<b
S 8) = {0, otherwise ,
and
q@)h(x), a<x<BO<b
- 0) =
f(x, ) {0, otherwise ,

where —o0 < a <b < oo are known constants, h(x) is a positive, absolutely
continuous function and q(8) is everywhere differentiable. In Section 2 we obtain
some recurrence relations between moments of order statistics in the presence of

0026-1335/93/3-4/211-221 $2.50 © 1993 Physica-Verlag, Heidelberg
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an outlier. In Section 3 we derive UMVU estimator of a U-estimable function,
say g(0). Some applications of the theorems are given in Section 4.

2 Recurrence Relations for Moments of Order Statistics

Recurrence relations for moments of order statistics have been the subject of
intensive investigation. Balakrishnan (1987) derived two simple identities involv-
ing single moments of order statistics from a sample of size n in the presence of
an outlier. His results generalize those of Joshi (1973).

In this section we obtain some new recurrence relations between single mo-
ments for the following outlier model. Let

L J91Oh(x), a<B<x<b
filx; 0) = {0, otherwise , 21
and
o J920)hy(x), a<B<x<b
Salx; 0) = {0, otherwise . (2.2)

Let us represent the sample by n (=2) independent random variables X,
(r=1,2,...,n— 1) and Y, such that X, has pdf f(x; 6) and Y has pdf f,(x; 6).
Furthermore, let Z,, < Z,, < --- < Z,, be the order statistics obtained by ar-
ranging the n independent observations in increasing order of magnitude. Then
the pdf h;.,(x) of Z,,, (1 < i < n)is given by (David and Shu (1978))

-1 x i-2
hea() = ""1_1‘9)"2“’)[(,-—_@2)—!(;):7)1 {g hl(u)du}

. {} hl(u)du}"_i {; hz(u)du} hy(x)
x ]

X

(n— 1) x i-1 (b n—i-1
+ (D=1 {{ h,(u)du} {i hl(u)du}

{} hz(u)du}hl(x):l, ifx>80,

(n - 1)| x i-1 (b n—i
+ S TIC {{ hl(u)du} {j hl(u)du} h,(x)
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and
=0 otherwise ,

where the first term drops out if i = 1, and the last if i = n. We denote the k'
order moment E(Z%,) of Z,, by u(6) (1 <i < n). Further, let f,,(x) be the pdf
of the i'® order statistic in a sample of size n from a continuous population with
pdf fi(x; ), and denote by

b

vin(0) = [ X fi(x)dx,
(]

the moment of order k of X;,,. For convenience we denote the antiderivative of
£i(6;0),i=1,2by

di(0)=[£(6;0)d0 , =12 (2.3)
and forr > 0, let

J, =rd,(0) + d,(0) . (2.4)
Let f denote the integral operator defined by
Jo(0) = [e~4©f(6; 0)w(6)dO (2.5)
and for n > 1 define f" iteratively as follows.

flw@) = fw@®) and ["w®)=f(/™"'w(d)), ifm>1. (2.6)

We find a relation between u(6) and f operating on u%),_.,,(0) and v%,.._.(0).

t—rn—r

Theorem 2.1: Let d;, i = 1, 2, J, and f be as defined in (2.3) to (2.6). Then for
nonnegative integers k and i (2 < i < n)

0 = (-1 o ety 0)

n—1) 0;0
+ew;(u{ ;ﬂ%~~ﬁ0£ﬂmw}
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and

1n(®) = (=172 (n — Dl elif"=2 {e“’""’u‘z":’z(e)}

- 1) 0
I e e LN DU

Proof : For any nonnegative integer k

u&No) = jl:x"h.-m(x)dx . (2.8)
‘]
Note that
b -1
q:(0) = {I hi(u)du} , i=12 (2.9)
]
and
dq,(0
q:(0) = % =g}O)h0), i=12 (2.10)

Differentiating (2.8) with respect to 6, and using (2.9) and (2.10) we get the
following differential equation

du""((’)

— [(n — 1)£1(6; 0) + £2(6; 0)1ul(6)

= —(n — 1)/,(6; 0) .01 (6) — f2(6; )2y, (6) . (2.11)
Solving (2.11) we get

W) = —e'»1@ [eIn1On — 1)£,(6; O)pf) -1 (6)dO

Ine1@ [ g~ In1@f (0; B)vP, 1 (0)d0 (2.12)

Using the definition of f and iterating (2.12) we get (2.7).
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Theorem 2.2: Letd;,i = 1,2, J, and f be as defined in (2.3) to (2.6 ). Then for any
nonnegative integer k

HEO) = —ens® [ eSO (n — 1)£,(65 6) + £,(65 6)1d0 .

Proof : For any nonnegative integer k
uth6) = EZ3,,

b b
= q717(0)q.(6) { xk[{fhl(u)du}”"hz(x)
+n—1) {} hl(u)du}"—z {}hz(u)du} h,(x)] dx . 2.13)

Differentiating (2.13) with respect to 8, and using (2.9) and (2.10) we get

du)6
Hir0) _ Lqa@)hal®) + (0 — 1y @)y (O)1¢

+ [(n — 1)g,(0)h,(6) + g5(0)h(0)1u10(6) -

That is

(k)
P50 10— 11O 0) + 0Ok @) Tu6)

=[(n — 1)q,(6)h,(8) + q2(6)h(0)16" .
Solving the above differential equation we get
HE(O) = — 1@ [8*[(n — 1)q,(0)h,(8) + q2(0)h,(6)]e~"=1'db
= — O [ (n — 1)£,(6; 0) + £(6; 6)]e o) .
Remark 2.1: When f,(x; ) = f,(x; 6) we get

KOO) = —nem @ [ £,(6; 6)6%edp .
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Let
43(0)h3(x), a<x<O<b
fitx; 8) = { > otherwise ,
and
Loy q4(0)hy(x), a<x<b<b
falx: 6) = {0, otherwise .

For convenience we denote the antiderivative of f(6; 8), i = 3, 4 by

di(0) = [ f(0;0)d0 , =34 (2.14)
and let
K,(0) = rd;(0) + d,(0), forr>1. (2.15)

Let I denote the integral operator defined by

Iw(0) = [e*9f,(0; 0)w(6)d0 (2.16)
and for 1 < n define I" iteratively as follows.

I'w@®) =Io@®) and I'w(0)=II""'w®), ifn>1. (2.17)

Then the following analogous result holds for the pdfs f5(x; 6) and f,(x; 0).

Theorem 2.3: Let d;, i = 3, 4, K,(0) and I be as defined in (2.14) to (2.17). Then
for any nonnegative integer k and for nonnegative integer 1 <i<n

HEE) = (e O Xy )

_ n=i(n— 1) d4
Kn-1(6) eKn-r-100) (k)
+e 2 1(n—r)' d, vin_.(6) ) .

Applications of Theorem 2.1 will be given in Section 4.



Some Statistical Problems in the Presence of an Outlier 217

3 Unbiased Estimation of Parameters

The problem of estimation of parameters in the presence of outliers has been
considered by many authors. Dixit (1989) derived the maximum likelihood
estimators and moment estimators of parameters for samples from a gamma
distribution in the presence of outliers. Joshi (1988) discussed several estimators
of the mean of an exponential distribution, when an unidentified single outlier
is present. In this section we derive UMVU estimators of parameters from
truncation parameter families in the presence of an outlier.

We see from Section 2 that the pdfs h,.,(x) of Z,,, (n > 2) and h,.,(x) of Z,,
(n = 2) are given by

b n=2 (b
hy (%) = (n — 1)4';'“(9)q2(9){f hl(u)du} {I hz(u)du}hl(X)

b n—1
+417'(0)92(0) {j hl(u)du} h,(x), if <x,

and
x n—-2(x
hyn(x) = (n — 1)q717'(0)q2(0) {£ hx(u)du} {g hz(u)du} hy(x)

x n—1
+ 4717'(0)q,(9) {I hl(u)du} hy(x), if6<x,
6

respectively.

Theorem 3.1: Let Z,,< Z,, <" < Z,, be as defined in Section 2. Then the
UMVU estimator of a U-estimable function g(6) is given by

_ q';ml(zl:n)qz(zlzn)
[(n - l)fl(lem Zl:n) + fz(zlzn’ Zl:n)]

d < g(6) )
a9\ g3 (6)q.(0)

Proof : We can easily prove that Z, ., is complete for 6 using equation (3.3) below.
In view of Lehmann-Scheffe theorem it follows that the UMVU estimator of a
U-estimable function g(8) is given by the solution of the following equation.

¢(len) =

3.1

0=Z,,
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E¢(Z,.,) = g(0) .

That is

© © n—-2 ©
£¢(x)<j hx(“)d“> [(I hl(“)du)hz(x)

X

+(n— 1)(10 hz(u)du>h1(x):ldx = E:“‘(]—l;()’?;j(‘f)_) . (3.2)
Differentiating (3.2) with respect to 0 we get
syl = DAO0) + 0:0) _d < _40) > |
47 0),00) 46\ ¢ 6)4:6)
That is
40 =~y (9(0 6)9‘)12:0}2(0; ) %(q:*%?()zz(e))) ' G

Substituting Z, ., for 6 in (3.3) we get the UMVU estimator of g(0).
Let f; and f, be as defined in Section 2. Then the following analogous result
holds for the pdfs f; and f,.

Theorem 3.2: Let Z,,< Z,, <+ < Z,, be as defined in Section 2. Then the
UMVU estimator of a U-estimable function g(0) is given by

¢( qq~1(Zn:n)q2(Zn:n) d ( g(e) >
q

) = 0 = o Zu) + s Ze)] 40\ 0)06)

0=2,,

4 Some Applications

Example 4.1: As an example of Theorem 2.1, consider the Pareto pdfs

o, 0% x™47 ifx > 6
0, otherwise ,

fl(X; Ga al) = {
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and

a,0%2x7%71 ifx >0
10, 05) =4 2 ’ .
falx; 6, 22) {0, otherwise .
We see easily that

a29k+a2—-a, a10k+al—az

42 — ka1 — Kjay) T a3@ — ko) (I — kjay) °

w0y = ifay,a, >k

and

I'(r+ D)I'(1 — k/ay)

v(0) = I(r+ 1 — kjoay)

65, ifa,>k.

Using the values of u%%(0) and v¥)(6) given above, and applying Theorem 2.1 we
get
(n — Day I (1 — k/a, )0

Ha(0) =
06— k/ocl)(n + oy /o, — kjoa, — 1)

n—2

(n — Do, I'(1 — kjo,)0*

1 — k/a2)<n + 2oz2/,o:1_—2k/oz1 - 2>

+

+ 2 rmyr(1 — k/a,)6*
oy

1

n-2
. Z .
I+ ) — r — kja, + 1)(" + “2/“1/"/“1 - 1)

ifa,, 0 >k .
Note that when f(x; 0, a;) = f,(x; 0, a,), that is when o, = a, we get

I(n+ )I(l — kfo

1) .
Fin— ka1 6, ifa,>k.

u(0) =
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Example 4.2: We now compute u'®) () for the Pareto pdfs considered in Example
4.1. Using Theorem 2.2 we get

“(1k)"(0) — _e(n—l)al1n0+azj‘eke—a,lna—a;lno [(n _ 1)% + %:I d0

= —[(n — Day + o, 10" Der+a [ ge=tr-Dai=a:-1 49

[(n— Doy + a;] o«

_ o .
[(n — Do, + o, — K] if (0 — Doy + o, >

Note that when f,(x; 6, a,) = f;(x; 0, a,), that is when a; = a, we get

w0 = k{)" ifne, >k .

Example 4.3: As an example of Theorem 3.1, consider the following pdfs.

af*x 1 ifx>0
0, otherwise ,

fl (x’ 09 CX) = {
where o is a known constant, and

fo(x;0)=e>"9 ifx>0 and =0, otherwise .

Let g(0) = 6. Then using Theorem 3.1 we have

3 (x6°) d ] L ]
#0) = (= Da/6 + 1&6((a0“)"~1e") =053 (n— Do’

Zl:n

Hence, the UM VU estimator of 6 is given by Z,., — n—Da+Z,,
- 1
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Book Review

K. V. Mardia (Ed.): The Art of Statistical Science. A Tribute to G. S. Watson,
John Wiley & Sons, 1992, 317 pp., £49, 95

Geoffrey Stuart Watson turned 70 on December 3, 1991. Twenty-five colleagues
and friends took the opportunity to honor and dedicate this book to this
most remarkable statistician, who is soon to retire as professor of statistics at
Princeton University. A total of seven subdivisions of this book reflect the wide
range of interests, inspirations, and contributions by G. S. Watson to the field of
statistics.

In part I, time series are treated by T. W. Anderson, J. Durbin, and E. J.
Hannan. Directional data are discussed in part II by N. I. Fisher and P. Hall,
E. Ronchetti, and M. A. Stephens. In part III, J . Aitchison, D. G. Kendall and
J. T. Kent review compositional and shape data analysis. Five chapters in part
IV contain discussions of technical problems in inference by O. E. Barndorff-
Nielsen and P. Bloesild, R. J. Beran and P. W. Millar, H. E. Daniels, and J. W.
Tukey. Part V is devoted to spatial statistics, with contributions from N. A. C.
Cressie and M. O. Grondona, C. Jennison and B. W. Silverman. W. J. Ewens
and S. Karlin discuss statistics and genetics in part VI. Part VII, the final
section, is concerned with case studies on issues of public policy with chapters
by N. T. J. Bailey and P. Bloomfield.

Geoffrey Watson is not only praised for his great and lasting impact in a
diversity of areas of statistics ranging from econometrics, physics, and biology
to earth sciences and space; he is also acclaimed as a successful painter. This
volume is an eloquent and comprehensive tribute to a great scientist and a most
amiable friend, to whom many applicants of his various forms of art, including
the referee, are greatly indebted.

Four photos document the ontogeny of the boy from the Australian bush to
Prof. Dr. G. S. Watson.

Tiibingen K. Schmidt-Koenig
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Abstract: @-divergence statistics quantify the divergence between a joint probability measure and
the product of its marginal probabilities on the basis of contingency tables. Asymptotic properties
of these statistics are investigated either considering random sampling or stratified random sam-
pling with proportional allocation and independence among strata. To finish same tests of hypo-
theses of independence are presented.

1 Introduction

Let X and Y be two random variables taking on the values x; (i = 1,..., M) and
y; (j=1,..., M) with probabilities P = (p,, ..., py) and Q =(q,, ..., qu), Te-
spectively. Csiszar (1969) defined a measure of information in Q about P, or ¢-
divergence between P and Q, as follows

o Di
I(PIQ) =}, qi¢ (—)
i=1 di
where ¢ is a real valued convex function on (0, c0) with

. B 0\ ay _ . 2@
igr:)¢(u)—¢(0), 0"’(6)"0’ 040(5)—61331; el

1
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¢-divergence statistics are obtained by either replacing both distributions
involved in the argument of the ¢-divergence measure by their sample estimates
or by replacing one distribution and considering the other as given. In Zografos,
Ferentinos and Papaioannou (1990) the sampling properties of estimated diver-
gence type measures are studied. Approximate means and variances are derived
and asymptotic distributions are obtained. Furthermore, tests of goodness of fit
of observed frequencies to expected ones and tests of equality of divergences
based on two or more multinomial samples are given by them. With a different
family of divergence measures, Morales et al. (1992) have studied the same
problem in a stratified random sampling with proportional allocation and inde-
pendence among strata. Other interesting works in this line can be seen in
Menéndez et al. (1991) and Salicru et al. (1992).

In this paper we will consider a random variable (X, Y) of the discrete type
taking on pairs of values (x;, y;),i = 1,...,M,and j = 1,2,..., K. We denote by

.....

tively, i.e. p;. = Z pjandp ;= Z 478
=

Csiszar’s measure of informatlon in Py*Py about Pyy is given by

M K Dij
I‘?(ny”PX*PY)=.Z z ,(P< J )

i=1j Di.D.;

In this paper we analyze the properties of the analogue estimate of
I‘(Pxy || Px*Py) in a simple and stratified random sampling set up as well as its
applications to test statistical hypotheses.

As we were informed by the referees similar results as in Theorems 1 and 2 of
Section 2 have been obtained by Zografos (1991a). Also related with the strati-
fied sampling setup is a recent paper by the same author (Zografos (1991b)).

2 Asymptotic Distribution of I°(Py | Py*Py)

Consider a sample of n members drawn at random with replacement from the
population. We denote by p; = n;/n, p;. = n; /n, p.; = n_;/n the sample estima-
tors of p;, p;. and p_j, respectively, where n;; is the number of observations of
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K
the value (x;,x;) (i=1,...,M, j=1,...,K) in the sample, n,, = ) n; and
=

M
n;= i; n;. The @-divergence in the sample may be quantified as follows:

R A M K pi.
I(Pyy|| Px*Py) = Y, 2 bib;o (p. 1; ) :

i=1j .J

When the sample is drawn at random and with replacement from the popula-
tion, the random vector (np,,, ..., nppx) has a multinomial distribution with

parameters (n; pyy, ---> Pmk)- o
The asymptotic distribution of I°(Pyy || Px*Py) in the previous random sam-
pling set up is given in the following theorem:

Theorem 1: If we consider the analogue estimate I°(Pyy || Py*P;) obtained by
replacing p;, p;. and p_; by the observed frequencies py;, p;. and p_;, then

nY2(I°(Pyy | Py* By) — I'(Pxy | P*Py)) <72 A0, 07)

where

2 M K 5 M K 2
ve= Z Z kipi; — (Z Z kijpij>

i=1 j=1

[,

and
M
pr' pr' pr’
¢ ; p.p.j) p.j \PrD.;
K . . . Iy
el 2l
s=1 Di.D.s Di. Di.D.s Di.D.j
provided »2 > 0.

Proof: Bickel and Doksum (1977, pp. 135) have shown that if —:;h(xl, evs Xag)

exist and is continuous for all i = 1, ..., M, then the asymptotic distribution of
T, = h(p,, ..., Py) in a random sample is given by
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nllz(’l:t —h(pl,- ’pM)) "T°° ‘/V(O o ) s

where
2

M (0h 2 M oh
=l_; pi(&T),.(p“""pMO “‘(‘; pia_m(pl,--pr))

The derivatives are calculated treating p,, ..., py as “independent variables” not
linked by p, + p, + --- + py = 1. If we consider the function

h(py1s ..., Pux) = I°(Pxy | Px*Py) ,

then we obtain the stated result.

Remark 1:

(i) If we consider @(x) = x log x, ¢(x) = (1 — x)%, p(x) = (1 — x'?)?, and @(x) =
(@ — 1) 1(x*—x), «a >0, « # 1, we obtain the following measures of diver-
gence, between Py, and Py*P,: Kullback-Leibler, I*X(Pyy | Py*Py); Kagan,
IXa(Pyy || Py* Py); Matusita’s square, IM%(Pyy || Py*Py) and Havrda and Charvat,
I19(Py, || Px*Py); respectively. The corresponding expression of »2 for the
Kullback-Leibler’s divergence is given by:

a2 & & 2 bij LR by 2
OkL = Z Z — Y Y pylog——] .
= J

i=1 j=1 Pi.D.j

In the remaining cases we will only write the expression of k;;:

kKa__Z pu ﬁ‘: przj . X ptzs

Di.D. ¥ 1 D..D. o s=1Pi.D.s
o3 S PR & P ool
ij 1/2 x/z 2
r=1 s=1 pu
1 P
k!{a = — pr] _ pu (1 —a ij )
v 'Zzl pr Szl p s pl 1 —a p: lp? !

(i) In this context Zvarova (1973) obtained the asymptotic distribution of sam-
ple estimates of Renyi’s divergence measure.
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Theorem 2: If Pyy = Py*Py, then

U Pey |1 PP = 0() 1,2
(p”(l) "Tw (M-1)(K—-1)

provided that ¢”(1) 5 0.

Proof: A Taylor series expansion of ¢(x) around the point 1 for

x = (py)/(pi.b.;)

yields

by \_ Py .\, b Vo .
o5ha) o+ (3, - 1)ew 3505, -1 v

. . P
i=1,...,M,j=1,..., K, where ai,j_,,—;—-o—o—»Oasna 0.

Multiplying both sides of the last expression by np;.p_; and suming over i =
,....M,j=1,..., K, we get

bi.p.;)’

~ ~ A n M K
nl*(Pxy | Px*Py) = no(1) + 50°(1) Z Z

M X (b~ pib)
l; J; pi.D. o

+

ijn *

Nl:

Note that

L2
> X(M-1)K-1)

M K
(PN A

j=1 n.n; nfo

|
-
<.
L]
-
<.
Ul
-

Finally, as ¢, T 0, we obtain the stated result.
2n(I°(Pyy | Px*Py) — o(1))

®"(1)

remark 1, can be seen in the following table.

The expressions of , for the ¢-divergences given in
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M K Dii
Kullback-Leibler: 2n Y, 5 p;. log— —

i=1 j=1 plp Jj
Kagan: " f 5 (Bi..D.;. — byy.)
=1 /=1 bi..b.;.
M K
Matusita: an’y Y (pYPpM? — py.)?
SS
M K ﬁ
Havrda-Charvat: o ' (a — 1)"2n<z y S~ )
i=1 j=1 pa pa

Now we suppose that the population associated with the bivariate random
variable (X, Y) is finite, N elements, and it can divided into L non-overlapping
subpopulations, called strata as homogeneous as possible. Let N, be the number

L
of individuals into the Ith stratum <so that ) N, = N) and let p;; be the
=1

probability that a randomly selected member belongs to the Ith stratum and
takes on the value (x;, y;),i=1,...,M,j=1,...,K,I=1,..., L. Thus

Let p;;. be the probability that a randomly selected member in the whole popula-
L

tion takes on the value (x;, x;), pj. = Y, pji=1,...,Mand j=1,..., K
I=1

’

K
pi.i = Y, p; be the marginal probability of the value x; in the Ith stratum and
j=1

M
p.y = Y, pi be the marginal probability of the value y; in the Ith stratum. We
i=1

L L
will also define p;.. = ) p;,and p ;. = Y, p.;. The p-divergence in this context
=1 =1

2 " (p:i;. ,-.) ’

where Pyy = (p;;i=1,..., M, j=1,..., K), Py=(p;..; i=1, ..., M) and
=(pii=1...K)
Consider a stratified sample of size n drawn at random from the population
independently in different strata. We hereafter suppose that the sample is
choosen by proportional allocation in each stratum. Assume also that a sample

is given by

al(Pxy || Px*Py) =

TlMg
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of size n, is drawn independently at random with replacement from the /th
stratum where n;/n = N/N. If p;; denotes the relative frequency of the values

M K K
(x;, y;) into the Ith stratum <and hence Y > pyu=m/n, b=, b
i=1 j=1 Jj=1

M L L
b= Z biji> bi.. = Z P, and p ; = Z p. j,), then the ¢@-divergence in the

sample may be quantlﬁed by I (Pyy |l Px Py), where Pyy = (13lJ ;yi=1..., M,
=1, K, Py=(p.si=1.. ,Mand P, =(p ;j=1,...,K).
In th1s context we establish the following theorem.

Theorem 3:

n'2( I (Pyy | Py*Py) — I (Pey || Py*Py)) 0 V0, %)

where
, Mok L N/M K 2
st = Z ) bupu = Z N’(Z Z bijPijl)
i=1 j=1 1=1 1 \i=1 j=1
and
M
P jo pr'. pr'.
b, = <p,..<p(——~” )——Lw'(——’ ))
d ‘; Pr..P.j.) P.j. \P..D.;.

K
Dis. Dis. ,{ Dis. Py
B (ol ) - peo )+ ()
Sgl( ¢ Di..D.s. pi.. Di..D.s. Di..D.j.

Proof: If we consider Taylor series expansion of s,I‘(ﬁ,,,, I ﬁx*ﬁy) in a neighbour-
hood of Pyy, then we obtain that the random variables

n2 (o I°(Pyy | Py*Py) — o I(Pyy || Px*Py))

and

; b’j(ﬁij. - pij.)

||Mg

have asymptotically the same p.d.f., where the partial derivatives
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Oy I°(Pyy || Px* Py)

b.. =
apij-

Y

s i=1L.. M, j=1,...,K,

are calculated treating the p;;.’s as “independent” not linked by

Zzpu_

i=1 j=

Furthermore, the random vectors
n n
—Pras s — , I=1,...,L .
<nlﬁlll n,ﬁM“)
are independent and multinomially distributed with parameters
N N
<n,,Nlp1“,...,ﬁlpM“> N l=1,...,L

Applying the M K-dimensional Central Limit Theorem, we obtain

N N
ni” (( Piu— Put), e (nﬁlﬁlma - ‘ATIPMH>) TN A0, 2(1))

where

N N
2() —< Piy, i (5(:",1.)(1:.1':) - ﬁ,p‘i"j”’))}‘,’,",ﬁiﬁ ..... M

.....

O, intiz.in = Vif (g = iy, j1 = J2), 8, j i s = O otherwise and the index (i, j) is

read in the following order: (1, 1), (1, 2), ..., (1, K), (2, 1), (2, 2), ...
(M, 1),(M, 2),..., (M, K).
As n/n, = N/N, and n}”? = n'?(N,/N)*?, we have that

N 1/2
Xi=n'? (I‘V‘) ((Pyy1 — P11d)s - s (Brw — Paawa)) 5552 "T°° N0, 2(D) .

1

I=1,...

,(2,K), ...,

,L
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As X, X,, ..., X, are independent vectors, then

(3wt o o)

Therefore

ZIZ

L M 1/2 M K
Z ( ) b'X! =n'? Zx Zx b;(by. — p;;.)
=1 i=1 j=

has a normal asymptotic probability distribution function with mean zero and
variance

L
" Z bBZ()b

where b' = (b;i=1,..., M, j=1,...,K).
Now we calculate 2 explicitly.

=SB ) ()
Y aI’ij. r=1 Dr..D.j D.j. D:..D.j.

K
Dis. Dis. Dis. ’ pij.
s;l (p * w(Pi..P.s.> Di.. Di..P.s Pi..D.j.

Finally, we have

K 2
Z upijl> .

u[\/]:

(&

Remark 2: Applying Jensen’s inequality to the convex function ¢, we obtain
«v2 < »2 Equality holds if and only if L = 1 or

-3

=1

Zlz

W
Ut

a

S

~

I
M
TMR

)

j=

M:

pijlbij

2=z

L]
-
-

i

doesnotdependonl(l=1,..., L).
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Theorem 4: If Pyy = Py*Py and ¢"(1) # 0, then

[ I (Pry | P*Py) — ()] L MK,
(p"(l) "TOO' iz Bin

=1

where the x,’s are independent, the ;s are the eigenvalues of the matrix AX*,
being

* < N
A= (a<i,,j,)(i,,jz))(,.i_,=1 ..... M > 2= Z NZ(I) >

Ji2=1,..., K 1=1
(1 1 £ . j
- h=iy=10 ji=j,=]
pi.P.j. Pi. P.; e P
1 [P . .. .
_p—‘ if iy=i=1i, j;#],
Aiy, ji)igeja) = 9 b
1 . . . . .
_;‘; if i, #i,, ji=j,=]
L 0 if i, #i, j1#]2

N N
( ) <Nl p(‘l-ll)‘( (g, d1)i2,d2) N‘ pﬂz,h)l));'ll:ljzz;ll ----- A’g

.....

and the index (i, j) is read in the following order: (1, 1), (1, 2), ..., (1, K), (2, 1),
22,...,2,K),...,(M, 1), (M, 2), ..., (M, K).

PrOOf.‘ If ny = Px*Py, then

M K
n'2 Y % by(py. — py.) =0

i=1 j=1
and
sl (Pxy | Px*Py) = (1) .

So, we must use Taylor series expansion of ,,I°(Pyy || Py*Py) in a neighbour-
hood of Py*Py including the second order partial derivatives term. After some
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straightforward calculus, it can be proved the following equality between
matrices:

2
0% I*(Pyy || Px* Py) "
=¢"()A+ B,
a a u‘ i=1,..., M
Pi j, - OPiyj,. Juia=1,..., K
where
= @, joipintini=t,om > B =, i in)ini=t,.. M
Jjnix=1,..., K J1Jj2=1,..., K

b('l Jiz, ) — 2[(,0”(1) + (p(l) (P’(l)] >

(1 1 1 £ . .. . .
—_——— — 1 li =14 = l’ J =J =
pi.P.j. Pi. P e te
1 . . .. .
—p— if iy=i,=1, j,#]
Ay iz =
1 e . . . . .
‘“;T if iy #i, ji=j2=]
. 0 if i #iy i #J2

and the index (i, j) is read in the following order: (1, 1), (1, 2), ..., (1, K), (2, 1),
2,2),..., 2. K), ..., (M, 1),(M,2), ..., (M, K).
As (Pyy — Px*Py)YB(Pxy — Py*Py) = 0, then the random variables

2n[ I(Pyy || Py*Py) — 0(1 . .
LA 0 = 001 ang (o= PRYA(Po — PR

converge in law to the same distribution. We know that if Pyy = Px*Py, then
(ny — Py*Py) is normally distributed with parameters u=0 and X* =

Z N X (1), where

N N
AGES ( Pijon <5u,,maz.jz) - ﬁl’(iz.m:)).x =1, M
[} K

Jjui2=1,...,

Therefore, see Mardia et al, 1982, pp. 68, we have the stated result.
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3 Tests of Independence

Let (X, Y) be as in Section 1. n observations are drawn at random and with
replacement from the population. The hypotheses to be tested is Hy : p;; = p;.p.;
i=1,2...,.M,j=12...,K,

We consider the statistics given in theorem 2

. _ 2Py | Be*Py) — p(1)
' ")

If H, is true, then T, will be small. Thus a large value of T; indicates data less
compatible with the null hypothesis. Hence for large n a level « test is given by

1 if Ty > xa-1k-
D(pyy, ..., Pyx) = 17 XM-1)K-1).0
(P Prux) {0 otherwise
Theorem 1 can be used to evaluate the asymptotic power of the previous test
when p;’s are known but not equal to the p; p_;'s

2n(I°(Pyy | Py* Py) — (1))
B(Pxy, Px*Py) = er( Py (p’)'{(l)y > X(ZM—I)(K—l).a

—1-y (p"(l)X(zM—l)(K—l),a — 2n[I¢(Pyy || Py*Py) — o(1)]
2n'2u(Pyy | Py*Py) ’

where o2 (Pyy | Py*Py) is the expression of »2 given in theorem 1 and ¥ denotes
the mean zero and variance one normal c.d.f.

On the other hand, if we have n observations on (X, Y) obtained by a stratified
random sampling with proportional allocation, then we consider the statistic
given in theorem 4.

_ 2n(I(Pyy || P*Py) — (1))
9" (1)

T,

If Hy is true, then T, will be small. Hence for large n, when T, = t one must reject
H, at a level a if

MK
P<Z Bux? > t> <a
=1

where the fi,’s, h = 1, ..., MK are given in theorem 4.
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As in simple random sample set up, theorem 3 can be used to evaluate the
asymptotic power of the previous test when (p,,., ..., Pyk.) IS not equal to
(1.1 s Pm..P.x.)-

Acknowledgements: The authors thanks the referees for their valuable suggestions.
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Book Review

Ch. E. Minder/G. U. H. Seeber (Eds.): Multivariate Modelle; Medizinische
Informatik, Biometrie und Epidemiologie 74, Springer-Verlag, 1991, 165 pp.,
DM 54,—

In this book written in German and edited by G. U. H. Seeber and Ch. E. Minder

we find several papers presented at a seminar of the Swiss-Austria Region of the

International Biometric Society held in September 1991 in Biel.

M. Berres. Non-Linear Multivariate Analysis of a Field Experiment.

R. Hatzinger. Quasi-Likelihood Method of Analysis of Independent and Depen-
dent Observations.

G. Tutz. Kernel Functions in Density Estimation Problems, Nonparametric
Regression and Discrimination Analysis.

S. Frithwirth-Schnatter. Monitoring of Ecological and Biometric Processes with
Statistical Filtering.

W.-J. Stronegger. Kalman Filter for On-Line-Discriminant-Analysis of
Growth Curves.

Ch. E. Minder. Global Goodness of Fit Tests for a Wide Class of Statistical
Models.
The individual articles demonstrate examples of biometric research that use

more complex methods than the classical multivariate techniques.

Bern H. Riedwyl
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A Characterization of the Binomial and Negative
Binomial Distribution by Regression of Products

JERZY Pusz

Institute of Mathematics, University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland

Summary: Products of independent random variables with different shifts are considered. The
binomial and negative binomial populations are characterized by proportionality of regressions of
these products with respect to residuals.

1 Introduction

Characterizations of probability distributions by properties of regression of
some functions in independent random variables with respect to residuals have
begun with the celebrated Kagan-Linnik-Rao theorem — see Kagan et al. (1965).
The most recent results are gathered in Kagan and Rao (1988), Wesolowski
(1989) and Kagan (1991). In the second paper a characterization of the Poisson
law by a constant regression of product was obtained.

The main results of the present paper is somewhat similar since we also deal
with regressions of products. However we are not interested in the exact form of
these conditional moments. Instead we relate regression of products of indepen-
dent and identically distributed random variables with different shifts. A charac-
terization of the binomial and negative binomial distributions follows.

2 Characterization

It is well known that
fO) = (pe™ + qe™),  teR, p+q=1, r#r, (1)

is the general form of a characteristic function of the binomial and negative
binomial distributions. The distribution is binomial iff pg > 0 and v is a positive
integer; it is negative binomial iff pg < 0 and v < 0.

0026-1335/93/3-4/237-242 $2.50 © 1993 Physica-Verlag, Heidelberg
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Let X be a random variable with a distribution function F and the expectation
m. Consider two samples (Y, ..., Y,)and (Z,, ..., Z,), n > 3 from shifted popula-
tion F(x — 6,) and F(x — 6,), 6, # 0,, respectively. Let

" _ 1
2 Y Z;

1
n k=1

—

Y= Z, . )

llM:

Theorem: The relation

(m + 02)"E(f[ VY, —-Y,..., Y, — 17)
k=1
(3)
—(m+ 01)"E<]£[ ZlZ, - Z,....Z, ~Z)
k=1

holds almost everywhere iff

1° X has the binomial distribution and (m + 8,)(m + 6,) <0,
2° X has the negative binomial distribution and (m + 6,)(m + 6,) > 0,
3 X =mas.and (m + 0,)(m + 6,) = 0.

Proof : To proof the necessity we assume that (3) is satisfied. We first observe
that (3) is equivalent to

(m+02)"E<H YIY,-Y,..., Y, — Yl)
k=1

4)
= (m + 91)"E<l_[ ZkIZZ - Zl’ vy Z,l - Zl) .
k=1
Hence (see, for example, Lemma 1.1.1 in Kagan et al. (1973))
(m + 92)"E<H Ykexp<i Y u Y —iY, Y t,,))
k=1 k=2 k=2
©)

Zk - iZl z tk))
k=2

=(m+ 01)"E<H Z, exp(

e,M=

fort,eR k=1,...,n
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Let ¢(t) = E exp(itX) be the characteristic function of X. From (5)

(m+%r0m¢(—in)+¢(—it§)ﬁa&mm+¢nm
k=2 k=2 k=2
(6)
=(m+6,) <i92(0<" Y tk) + (P'<‘ > tk)) [T (60(t) + ¢'(t) .
k=2 k=2 k=2

Consequently for m + 6, = 0, j = 1 or 2, we have img(t) = ¢'(t) in a neighbor-
hood of the origin. Hence ¢(t) = exp(imt).

Assume now that (m + 6,)(m + 6,) # 0. Hence in a neighborhood V of the
origin i6;p + ¢’ is non-zero, j = 1, 2 so we can introduce a function

(m + 6,)(i6,0(t) + ¢'(2))

HO = 8, @,00 + ¢ 0)

teR Q]

(we take the principal branch of the logarithm).
Then by (6)

H(-i tk>+ Y H(t) =0 . @®)
=2 K=2

As the solution of the equation (8) we obtain (see, for example, Lemma 1.5.1 in
Kagan et al. (1973))

H(t)=at+d, a,deC . )

Since H(0) = 0 then d = 0.
From (7) we have

(m + 0,)(i0,0(t) + ¢'(t)) = e*(m + 6,)(i0, 0(t) + ¢'(2)) . (10)
Hence

m+0, . i m+6, .,

(me —-1)([)([)-—1(—m+01€ 01+02)q)(t). (11)

Consequently ¢ is infinitely often differentiable. Taking ¢t = 0 in (11) before and
after differentiation we get
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. 6, — 01)02

= —ib , b=—2= -~ | 12

a=- (m + 0;)(m + 6,) (12
where 62 = Var(X).

We solve the differential equation (11) and obtain (1) in V with

_m+0, _-m+91 v-__(m+01)(m+92_)
p_ez-el, 4— 02_01’ - 02 )

(13)
0,02 - 0,0?

r

Tmt0)m+0) 2T (m+0)m+ 6,

Consequently, if (m + 6,)(m + 6,) < 0 then pg > 0, v > 0 and X has a binomial
distribution and if (m + 0,)(m + 6,) > O then pg < 0, v < 0 and X has a negative
binomial distribution, since both the distributions are uniquely determined by
moments.

Now let us assume that X is a binomial random variable with the characteris-
tic function (1). Then

[v(pry + qry) + 6,1(p@, + r, U)e‘”’ + q(0, + rzv)ei’z‘]

H(t)=In = =g (14)
[v(pry + gry) + 0,1[p(6; + riv)e™ + q(6; + ryv)e™]
Hence the equation (8) is fulfilled for any real t,, k = 2, ..., n and
0, =—-rv, 0, = —r,v . (15)

As the consequence we obtain (3). B

Remark 1: For n = 2 the formula (8) takes the form H(¢t) = — H(—t). And the
problem in this case remains open.

t
Remark 2: Putting t, =+ =t, = - in (5) we find that it is equivalent to
k=1 k=1

Hence, the assumptions in the Theorem can be weakened replacing there (3) by
(16).
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Similarly as in Wesolowski (1989) we can omit the equidistribution assump-
tion of the Theorem. Also the shifts may differ.

Let X, be a random variable with a distribution function F, and an expec-
tation my, k=1,...,n,n>3; X, ..., X, are independent. Consider random
VariablCS Y;( = Xk + 01,‘, Zk = Xk + 02’(’ olk, 92‘( € R, 01,‘ # 02’(9 k = 1, A (B Ad‘

ditionally assume that [] (m, + 6,,) # 0 # [] (m, + 6,,).
k=1 k=1

Proposition: The relation

=

(m, + 92k)E<]_[ Y|V, -Y,.., Y — 7)
k=1

k=1

)
= hl:ll (mk + 61k)E<kl:[1 Zklzl - Z-, ooy Zn - Z)
holds almost everywhere iff X,, ..., X, are binomial or negative binomial
random variables.
Proof : Let @,(t) = E exp(itX,) be the characteristic function of X, and
i0 «(t
Hy(t) = ln(mk + 02101, 0, (1) + @i(t) k=1,...n. (18)

- (M, + 01) (102, 0,(8) + (1) °

Then from (17)

H1<*Zt,‘>+ZHk(t,‘)=0, tteR, k=2,...,n, (19
k=2 k=2

and as consequence H,, k=1, ..., n are linear functions (see, for example,
Lemma 1.5.1 in Kagan et al. (1973)). Solving the differential equation (18) we
obtain the final conclusion. B

Acknowledgment: The author is greatly indebted to the referee for the suggestions, which helped to
strengthen the main result.
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Summary: Let & = {Fy} be a parametric family of distribution functions, and denote with F, the
empirical d.f. of an i.i.d. sample. Goodness-of-fit tests of a composite hypothesis (contained in &) are
usually based on the so-called estimated empirical process. Typically, they are not distribution-free.
In such a situation the bootstrap offers a useful alternative. It is the purpose of this paper to show
that this approximation holds with probability one. A simulation study is included which demon-
strates the validity of the bootstrap for several selected parametric families.

1 Introduction and Main Result

Assume that # = {F(;0): 6 € ®} is a parametric family of distribution functions
(d.f) on m-dimensional Euclidean space. We observe a sample X,, ..., X, of
ii.d. random vectors in R™ with common unknown d.f. F. An important issue
then is if the underlying F belongs to & or not. More precisely, we may write
0 = (0,,0,), where 6, is a p,-dimensional parameter of interest and 6, is a
p,-dimensional nuisance parameter. In such a situation one would like to test,
e.g., the hypothesis Hy: 8, = 6,. When p, = 0, this reduces to the case of a simple
hypothesis, while for p, = 0, Hy, becomes equivalent to the aforementioned full
model check F € #. A general recipe to test Hj is to

(a) compute the empirical d.f. F, of X, ..., X,
(b) estimate 6, by some 0,,

and then to compare
(c) F,and (58, 6,,) .

Set 8, = (8,, 0,,). Goodness-of-fit procedures are often based on proper discrep-
ancies of the so-called estimated empirical process

8,(x) = n*?[F,(x) — F(x;8,)] , xeR™.

0026 — 1335/93/3-4/243 - 256 $2.50 © 1993 Physica-Verlag, Heidelberg
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E.g., we may consider the Kolmogorov-Smirnov distance
D, = n' sup,|F,(x) — F(x; 6,)| = |4,

or the Cramér-von-Mises distance
W? = n[[F(0) - F(x;8,)1°F(dx;0,) = [82()F(dx;6,) .

Unfortunately, estimation of 6, may lead to test statistics which are no longer
distribution-free. Consequently, computation of critical values has to be carried
through for each particular &. Moreover, the distribution of the test statistic
may depend on the unknown parameter. D’Agostino and Stephens (1986) pro-
vide a comprehensive account of available results for some selected parametric
models. See also Stephens (1974), (1976). Durbin and Knott (1972) and Durbin,
Knott and Taylor (1975) provide an orthogonal series decomposition of @&,
yielding a representation of W, as a weighted series of independent y2-variables.
It is the purpose of this paper to show that the bootstrap offers an alternative
universal approach for the computation of critical values, under broad assump-
tions on % and 6,. The main result is stated as Theorem 1.1: It provides a
bootstrap version of Durbin’s (1973) invariance principle for &,. The proof is
postponed to the Appendix. Section 2 contains several simulation results which,
for the sake of comparison, show that the bootstrap offers an excellent alterna-
tive approximation in situations when the true quantiles are tabled. In case no
tables exist it constitutes the only possibility. In the following we state the
asspmptions required for Theorem 1.1 below. (A1) is concerned with regularity
of 0,,.
(A1): Under H,, ie. F = F(-; 0) with 8 = (8,, 0,)

n'2(@,, — 0,) = n"1? }_:1 IX,,0)+ ¢y, » (i)

where
E,l(X, 0) =0, E,[I(X, 0)I'(X, 6)] exists

and ¢;, — 0 in probability.
Moreover, as 8, — 0, for each x, € R™

[ I'(x, 6,)Fdx;0,)—~ [ I'(x, 6)F(dx;6) (i)
]

(—20,Xo) (~2,Xo
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and
d,[I(X",0,),1(X,0)]—-0 asn— oo . (iii)

Here X" ~ F(-; 6,) and d, denotes Mallows’ metric.
Assumption (A2) guarantees that F(x; 8) is smooth as a function of x and 6.
(A2): For any open neighborhood U of 6

F(; ), e U, is equicontinuous
and
g(x, 0,, 0,) = 0F(x; 8,, 6,)/30, is uniformly continuous on R™ x U .

In a bootstrap situation we shall need (i) with 6, in place of 0. “¢,, —» 0 in
probability” then means that for each 6 > 0

Py {leyl =0} -0 asn— oo .

Though it might look artificial at first sight, (i) just reminds us of how asymptotic
normality is achieved in proofs, namely via (i) and a Cramér-Slutzky argument.
Cf. Serfling (1980), pp. 144, for the maximum likelihood estimator. Conditions
(i1) and (iii) yield distributional smoothness of the leading term in (i). Introducing
Mallows’ metric only describes, in a concise way, the fact that I(X", 6,) - (X, 0)
weakly together with convergence of their second moments; cf. Bickel and
Freedman (1981). Durbin (1973) formulated his main result for an &,-process
properly transformed so as to become an element of the Skorokhod space
D[0, 1]. We prefer to state our result for the original process, which is in
D[ — o0, c0]™; cf. Pollard (1984). In such a situation, under (A1) and (A2),

&, — Z in distribution ,

where Z = {Z(x)} is a zero means Gaussian process with continuous sample
paths and covariance function

Cov[Z(x,), Z(x;)] = F(x; A x3;0) — F(xy; 0)F(x,; 0)

— [ Ix, 0)g(x,, OF(dx;0) — [ I'(x, 0)g(x,, 0)F(dx; 0)
]

(—20,x, (—20,x4]

+ [ g'(xy, 0)I(x, O)I'(x, B)g(x,, O)F(dx; 0) .



246 W. Stute et al.

To adequately define the bootstrap version of &,, take an i.id. random sample
X%, ..., X} from F(-;0,). Let 6%, denote the bootstrap value of 4,,. The bootstrap
version of 4, is then given by

at(x) = n'2[FX(x) — F(x;8,,0%)], xeR".

We are now in the position to state

1.1 Theorem: Under H,, assume that (A1) and (A2) are satisfied. Then, if (92,, -0,
w.p.1,

ok —>Z in distribution

with probability one.
As a consequence, for each Z-continuity set A

P*(o* € A) — P(@,€ A) >0 .

Here, P} is a probability measure carrying X¥, ..., X}. In particular, since Z has
continuous sample paths, the sup is continuous Z-almost everywhere. The
continuous mapping theorem thus yields

Prledllo < x) = P(ldulle <x)=>0  wp.1

for each x at which P(|| Z| < x) is continuous. In other words, under the stated
regularity assumptions, the distribution of D, allows for a bootstrap approxima-
tion. Similarly for W2

2 Simulation Study

In this section we shall report on various simulation results which will demon-
strate the validity of the bootstrap approximation in several selected parametric
families. As test statistics we considered D, and W,2. The parametric families to
be discussed in greater detail include

(a) The normal distributions (univariate and bivariate)
(b) The exponential distributions
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(c) The logistic distributions
(d) The Weibull distributions

M random samples, each of sample size n, were generated and analyzed accord-
ing to the following algorithm:

Generate a random samp]e X, ..., X, from some F(; 0)
Calculate the estimator 6,, of 6,

Evaluate Z; = F(X;; 0,, 6,,)

Rearrange the Z’s in ascending order: Z,.,, < '+ < Z,.,

For real-valued data (m = 1) calculate D, and W, according to

SANESIR ol

. i1
Dn = nl/Z max {i - Zi:m Zi:n - (l )}

1<i<n (N n

n 2i 12 1
w5 225 v

=1 2n

6. Draw B bootstrap samples as described below:

(a) Generate random samples X *(j), ..., X*(j) from F(:; 0,, 6,,),1<j<B
(b) Calculate the bootstrap estimator 92"‘,,( jofb,,1<j<B

(c) Evaluate Z*(j) = F(X*(j); 0, 0%(j), 1 <j<B,1<i<n

(d) Foreach 1 <j < B, put the Z*(j) in ascending order

(e) Compute the D¥(j) and W,*(j) as above, with the Z*(j)’s in place of the Z’s

7. Suppose that for a particular & of interest, a given n > 1 and a significance
level o, the exact 1 — « quantile x,_, of D, respectively W,? is available. Then
reject H, if the test statistic exceeds x;_,.

8. If 7. does not apply, or just for comparison, the bootstrap based methodology
suggests rejecting H if, e.g., D, exceeds Dy _4+1), the B(I'— a) + 1 — largest
order statistic among D*(1), ..., D}(B). Similarly for the W*s.

9. Obtain the estimators &, 4y, 4} and &} of the significance level a, where

_ Number of times H, is rejected
= v i

a

In each case we were intergsted in a full model check: F € & versus F ¢ &. Hence
p; = 0and 0,, = 6,. For 6,, we always took the MLE of 6. Finally, M = 1000
and B = 500.
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Test for a Normal Distribution

Our first example deals with the univariate normal distribution N(y, ¢2). Pa-
rameter estimators are

X; — X)* .

n n
=1

p=X=n'Y X, and é=n"

i=1 i

Random samples have been generated using the program GGNPM (generation
of random deviates from a normal distribution using the polar method) from the
IMSL library. Also, we used the program MDNOR from the same library to
evaluate the Z’s. Critical values for D, and W, may be found in table 4.7 of
D’Agostino and Stephens (1986). See also Lilliefors (1967). Table 1 compares the
actual significance levels.

Table 1. Normal Distribution

a=0.10 « =005 o =001

n=20 dp = 0.102 dp = 0.042 dp = 0015
Gy = 0.099 dy = 0051 gy = 0017

4% = 0.100 4% = 0.043 a% = 0016

a3 = 0.094 g% = 0.050 4% = 0018

n =50 dp=0.119 dp = 0.054 dp = 0014
dy = 0.108 Gy = 0.045 Gy = 0010

4% =0.114 4% = 0.055 % = 0012

% =0.109 % = 0.045 a3 = 0.009

n =100 dp = 0.108 dp = 0056 ép = 0016
4y = 0.094 Gy = 0.066 Gy = 0012

% = 0.099 g% = 0.061 a% = 0013

% = 0.098 a4 = 0.064 % = 0014

Test for an Exponential Distribution

Recall that X is exponentially distributed with parameters « and f, iff the
pertaining d.f. is

— o

F(x;a,ﬁ):l—exp{—x }, x> >0



Bootstrap Based Goodness-Of-Fit-Tests 249

Table 2. Exponential Distribution

a=0.10 a = 0.05 o = 0.01
n=20 4p = 0.075 4, = 0.049 4, = 0.008
Ay = 0.085 dw = 0.050 4w = 0.005
a3 = 0.080 a3 = 0.054 a3 = 0.010
4% = 0.084 ax = 0.053 a3 = 0.009
n =50 4p = 0.091 4, = 0.041 &, = 0.003
dw = 0.094 dy = 0.045 dw = 0.007
a3 = 0.096 a3 = 0.043 a3 = 0.005
a% = 0.097 ax = 0.043 a% = 0.008
n =100 &, = 0.083 &, = 0.043 4, = 0.015
Gy = 0.081 gy = 0.049 4y = 0.009
a3 = 0.090 a3 = 0.045 4% = 0011
4% = 0.085 a% = 0.052 a% = 0.009

and zero otherwise. In our simulation study, exponential variables were gener-
ated using the program GGEXN. o = 0 was assumed to be known, and § was
estimated by its MLE = X. Critical values for D, and W2 may be found in
table 4.11 in D’Agostino and Stephens (1986). See also Lilliefors (1969). Table 2
presents the actual significance levels.

Test for a Logistic Distribution

Now, X has d.f.

1
~l+exp{—(x—ayB}’

F(x; a, B) xeR,p>0.

The random variables were generated using the rejection method for the Laplace
distribution. See Devroye (1986), p. 471. = 1 was assumed to be known. The
MLE of « solves the equation

e 1 _
8 [ rrenmea)

respectively

n S L2 = F(Xg o, 1)]=0 .
=1
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Table 3. Logistic Distribution

o« =0.10 o =005 a =001
n=20 é, = 0.096 dp = 0.054 dp = 0.008
Gy = 0.109 Gy = 0054 4y = 0010
a% = 0.099 4% = 0.060 a% = 0012
a3 = 0.108 a4 = 0051 % = 0.009
n=>50 d4p =0.113 d, = 0.052 ép = 0.004
dy = 0.107 Gy = 0.043 gy = 0.010
a5 =0.116 g% = 0.049 g% = 0.005
% =0.101 % = 0.047 a4 = 0010
n =100 dp = 0.102 dp = 0.056 by = 0015
by = 0.084 Gy = 0.047 dy = 0.018
% = 0,096 % = 0.053 % =0014
a3 = 0.083 d% = 0.048 g% = 0015

We have used a Newton-Raphson algorithm to solve the last equation:

(X; — o)

=
<

W
Kt

amtl) — y(m +

’

(X, — o)

=
<

Il
-

where y(u) = 1/2 — F(u; 0, 1). Alternatively,

- Y F(Xia™, 1)
i=1

NS

am+1) — plm) _

’

f(Xn a(m)’ 1)

13

A=

with f denoting the density of F and «'® = X. Critical values of D, and W,? are
contained in tables 4.22 and 4.23 of D’Agostino and Stephens (1986). See also
Stephens (1979). Table 3 presents the estimated significance levels.

Test for a Weibull Distribution

Recall that X has a Weibull distribution with parameters a and S, iff

F(x;a, B)=1—exp{—(x/B)}, x>0a>0andf>0.
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Table 4. Weibull Distribution

a=0.10 o = 0.05 a = 0.01
n=20 dp = 0.106 4p = 0.053 ép = 0.010
dw =0.114 4w = 0.054 4y = 0.010
a3 = 0.109 a3 = 0.049 43 = 0.008
a% = 0.115 a3 = 0.060 4% = 0.012
n=50 dp = 0.108 ap = 0.041 ép = 0.009
dw = 0.103 Ay = 0.042 Ay = 0.012
43 = 0.107 a3 = 0.039 ap = 0.009
ax = 0.097 a% = 0.043 a% = 0.011
n =100 ép = 0.078 dp = 0.036 4p = 0011
4w = 0.094 dw = 0.037 dw = 0.014
43 = 0.089 a3 = 0.045 a% = 0.011
a3 = 0.086 a% = 0.039 a3 = 0.012

In our simulation study we considered o to be known, a = 2. Generation of
random samples has been done using the program GGWIB from the IMSL
library. As is well known, the log-transformation leads to random variables
Y = —log X having an extreme-value distribution of Gumbel type:

F(y)=exr>[—exr>[—y~;—¢ﬂ ,  yeR,

with = a™! and @ = —log B. Hence testing about a Weibull distribution is
equivalent to testing about an extreme value distribution. The MLE of & equals

é = —5log|:n“‘ 5 exp(~Y,-/5):I .
i=1

Critical values of D, and W,? are contained in tables 4.17 and 4.18 of D’Agostino
andd Stephens (1986). See also Stephens (1977) and Chandra, Singpurwalla and
Stephens (1981). Table 4 presents the estimated significance levels.

Test for a Bivariate Normal Distribution

For our last example we generated a random sample from a bivariate normal
distribution using the procedure as described in Devroye (1986), p. 566—567.
Only tests based on the Kolmogorov-Smirnov distance will be considered. Note
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that given a sample (X}, X?), ..., (X}, X2) from 4 (u, X), then D, can be com-
puted as follows:

; i—1 . k—1
D, = \/n max {max [J—“Zk.j;zk,i_J n Fu X — n ]} ’

1<k<n (1<j<k LN

with Z, ; = F(xt,, Xlm) 1<k <n,1<j<kand X}, denoting the concomi-
tant of X}, F = F(p, ) is the estimated normal distribution and F, denotes its
first marginal.

We made a comparison between a goodness-of-fit test based on D,, using
bootstrap based percentiles, and Mardia’s test for multivariate normality, based
on multivariate measures of skewness 8, and kurtosis f,. See, e.g., Seber (1984),
p. 149. To compute the Z, ; and F,(X},,), we used the programs MOBNOR and
MDNOR, respectively, from the IMSL library. As estimators of 4 and 2 we
considered the sample mean £ and sample covariance matrix 2, respectively.

To apply Mardia’s test, note that under H,: F is normal, 8, =0 and §, = 8.
Tests are based on

P)
I
N| -
M=
Ing
«Q
oTw
)
=]
(=N
=
N
1l
S|

where
g =X — R ENX,— ) .

Under the null hypothesis, we have approximately

'
I

np,~y: and B,= nl/zﬂ—zg;8 ~N(0,1) .

=
AN —

For a given critical level a, H, is rejected if A, > x}_, 4 orif |B,| > ®7!((1 —)/2).
In each case M = 1000 samples were drawn. The number of bootstrap replicates
was B = 100 in this example. Table 5 presents the estimated significance levels dg
and &, for Mardia’s tests based on skewness and kurtosis as well as for the boot-
strap based Kolmogorov-Smirnov test. It turns out that the bootstrap based test
is satisfactory if not excellent while Mardia’s tests often have a low power.
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Table 5. Bivariate Normal Distribution

o« =0.10 « =005 « =001
n=20 4s = 0.061 ds = 0025 ds = 0.006
8 = 0.005 dx = 0.003 dx = 0.000
g% = 0.091 &% = 0052 &% = 0.009
n=50 ds = 0.069 ds = 0.039 ds = 0022
by = 0014 by = 0011 dx = 0.009
=0.099 % = 0.067 g% = 0.010
n =100 g5 = 0.087 g5 = 0.046 ds = 0015
by = 0025 by = 0016 dx = 0010
4% = 0.085 % = 0.043 a5 = 0011

3 Appendix

It is worthwhile remembering the main steps in proving Durbin’s result. We only
deal with real-valued data here. Write, in terms of a uniform empirical process &,,,

8,(x) = n'2[F,(x) — F(x; )] + n"2[F(x; 0)] — F(x; 6,)]

= G,(F(x; 0) — n"2 3 I{X;, 0)g(x, 0) + 0p(1) ,
i=1

where 0p(1) is uniform in x. Observe that both terms are asymptotically C-tight:
the first by C-tightness of &, and continuity of F(+, 6), and the second by uniform
continuity of g(-, 0) and asymptotic normality (and hence boundedness in prob-

ability) of n™?2 Z I'(X;, 6). Convergence of the fidis follows from the Cramér-

Wold device and the CLT.
Now, for o* the above decomposition becomes

ak(x) = n'2[FX(x) — F(x; 0,1 + n"?[F(x; 6,) — F(x; 8, 63,)]
(3.1)

= G(F(x; §) — n"2 3 IXE, O)9(x, B,) — eftg(x, §,)
i=1

for some 6, = (8,, b,,), with 92,, between 92,, and (9’2“,,. To analyze the finite
dimensional distributions of &} observe that for real numbers x,, ..., x, and
ai,...,a,
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4 () = a1 xs<x,y — Fx;3 6,) = (X, 6,)g(x;, 6,)]

U
i
I

J 1 j=1

12 ~
- Zl ajsf:lg(xjs en) .
j=

Lemma: With probability one,

P*(10%, — 0,,l 2e) >0, foreache>0 .

Proof : By assumption, ¢¥, — 0 in P¥-probability. Furthermore
Covr [IXF, §)I'(XY, 6,1 = Cov[l(Xy, 0,)1(X 1, 0,)1 ,

where X, ~ F(-; 6,). Since 6§, » 6 with probability one by assumption, the co-
variances converge to Cov[l(X,, 0)I'(X,, 6)], X, ~ F(; 0), by (iii). Conclude
that 93‘,, —6,,-0 in quadratic mean as n — oo, with probability one. This
proves the Lemma. ]

Lemma: With probability one,

P*(10%, — 0, >¢)>0, foreache>0 .

Proof : We have
PX(10%, — 0,1 > &) < PX(10%, — 0] 2 &/2) + 15, g5, =20 P —as.,

upon using the last Lemma and 6,, — 6, with probability one. []

We are now in the position to give the

Proof of Theorem 1.1: 1t follows from the last lemma that along with 0% and 0,,,
6, — 0, in P}¥-probability, for P-almost all basic sample sequences. By continuity
of g(x;, -) it thus suffices to analyze

n-—l/Z

1]

;{1 xr<x,) — Flx;; 6,) — I'(X, 6,)g(x;, 6)]

n

p
1j=1
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It is a sum of centered i.i.d. random variables w.r.t. P*. Its variance equals

P

Y aa, [F(xj A x;; 0,)

M=

=1 k=1

— F(x 0)F (i 6) — | 1(x, 8,)9(x, 8)F(dx; 6,)

= T 1, 605, 0, F(ax; 6,)
+ [ g'(x;, B)1(x, 0)1'(x, 0,)9(x,, 6,)F(dx; én)] :

Since 6§, - 6 with probability one we find from (ii), (iii) and the continuity of F,
that the last sum converges to

Var[i ajZ(xj):| P —as. .

j=1

The verification of Lindeberg’s condition is similar. Finally, asymptotic C-
tightness of o* follows from (3.1), upon using the asymptotic C-tightness of &,
and the equicontinuity of F(-; 6), 8 € U, on the one hand, and the asymptotic

boundedness of n™'2 )" I'(X}, 6,) and equicontinuity of g(-, 8), 6 € U, on the
i=1
other hand. The proof is complete. []

Acknowledgment: The first author’s work was supported by a grant from the Xunta Galicia.
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Lee AL: U-Statistics, Theory and Practice. Statistics: Textbooks and Monographs.
Marcel Dekker, New York Basel 1990, Vol. 110, p. xi+302

This monograph on nonparametric statistic fits well into the series of books
which appeared during the last decade on this topic. Its merit lies in a good com-
bination of theory and practice. Although the presentation is kept on an elemen-
tary level, the reader will find many topics presented which lead to mathematically
very interesting and fruitful areas of research. Likewise, the problems arising in
applications are treated with great care. It is clear that a book of this size cannot
give all aspects of the theory, however, the choices made by the author agree in
large parts with the common taste. This may be seen from the following brief
sketch of its content.

Since U-statistics are unbiased minimum variance estimators, they play a cen-
tral role in statistical inference for parametric and nonparametric models. This
motivation is explained at the beginning of this book on an elementary level. The
reader will not get a deeper insight from the viewpoint of sufficiency and com-
pleteness and should contact other sources. A second motivation for studying U-
statistics is purely analytic, since these statistics may be regarded as a generalized
averaging method. Therefore a good deal of the monograph is concerned with the
development of the analysis for U-statistics. There are two fundamental and
elementary analytical properties, the Hoeffding decomposition and the represen-
tation of variances. These topics are covered in Chapter 1 together with some
standard examples, illustrating the results.

The author takes care of recent developments in the following chapter, exten-
ding the basic analysis to variants of U-statistics under the classical assumption
of i.i.d. observations to other models. In particular, the reader will find results on
generalized U-statistics, non-identical distributed observations, m-dependent and
weakly dependent process, sampling from finite populations and generalized L-
statistics. The book gives an excellent overview over the mathematical applicabili-
ty of the theory, but examples for applications in the non i.i.d. case are missing.
(This might be too ambitious.) The results are not always stated in full generality
or under the weakest assumptions, but this also seems to be too much expected.

Chapter 3 contains the asymptotic distribution theory for U-statistics. Hoeff-
ding’s result about the asymptotic normality in the non-degenerate case is covered
and also the degenerate case for degree 2 kernels, where the asymptotic distribu-
tion is given by a “weighted” x? distribution. This is followed by a brief descrip-
tion of the approach of Rubin, Vitale, Dynkin, Mandelbaum and Taqqu on the
representation of limits as multiple Wiener—Ito integrals. The reader will find
more details in Chapter 4 in connection with symmetric statistics. The alternative
approach (and conceptually simpler) of using empirical distributions is not at all
treated in the book. This is certainly a disadvantage. The distributional con-
vergence is completed by a result on convergence to Poisson laws.
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More advanced convergence results are covered in the following chapter. A
basic result on the Berry Esseen approximation is proved and the problems con-
cerning Edgeworth expansion are outlined. A third analytic tool is introduced
next, showing the martingale properties of U-statistics. From this the a.s. con-
vergence (in fact 3 different proofs are given) and maximal inequalities are obtain-
ed. As a result one obtains the law of the iterated logarithm and invariance prin-
ciples. While the non-degenerate case is proved (an easy proof), the mathematical-
ly more interesting degenerate case is treated expositorily. The remaining part of
this chapter contains some asymptotic results for variants of U-statistics, the case
when the kernel contains estimated parameters is of special interest for applica-
tions.

Chapter 4 on related statistics builds the bridge to other types of statistics.
Symmetric statistics were mentioned before. The close connection of U-statistics
to V-statistics (differential statistical functionals in the sense of v. Mises) is
discussed only briefly, important examples are missing in this context. A larger
part is devoted to incomplete U-statistics, which are especially interesting for ap-
plications (they are easier to compute). Two different designs (balanced designs
and random designs) are discussed in great detail, including, for example, efficien-
cy considerations.

One of the essential problems in applications of U-statistics is the estimation
of the asymptotic variance of U-statistics. The jackknife method is very often
used and hence treated in Chapter 5 extensively, and not only for the variance esti-
mate. The reader will find it helpful that this estimate is compared with the
bootstrap method in some special cases. The final chapter contains thoroughly
chosen examples: estimation of correlations, tests for symmetry, normality, in-
dependence, several sample problems, analysis of variance, spatial statistics and
sequential estimation.

The monograph presents an excellent overview of both, theory and applica-
tions. The subjects chosen are certainly due to the authors own interest and taste,
so the reader will find some parts lengthy, some topics missing or mentioned only
briefly. The reviewer found it a bit inadequate and inconsistent that large parts
are written on an ‘elementary’ statistical basis while other parts (sections 3 and
4) use ‘heavy’ machinery, which is introduced and explained insufficiently for the
unexperienced reader. Besides this, the mathematical part is overall well written.

This book on U-statistics is one of the best and can be recommended without
hesitation for teaching and research.

Goéttingen M. Denker
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Torgersen E: Comparison of Statistical Experiments. Cambridge University Press,
Cambridge New York Port Chester Melbourne Sydney 1991, p. xviii+675,
$99.50, £60.00

Comparison of statistical experiments emerged during the Fifties from the fun-
damental research work of D. Blackwell and L. Le Cam. Based on the decision
theory of J. Neyman and A. Wald they compared the risk functions the ex-
periments produce for varying losses. In the hands of Le Cam comparison of ex-
periments became an important tool for asymptotical statistics. This is
documented in his famous monograph [2].

Inspired by this work the author of the present book has made substantial
contributions to the theory of comparison of experiments. Choosing his own
original line of approach he developed important fields within this theory, e.g.
comparison of finite experiments, of linear normal models, with totally (non-)in-
formative experiments, of (signed) measure families, and geometric criteria for
comparison. This profound research work and lectures of the author given at the
University of Oslo have formed the basis for the book under review.

The volume is divided into ten chapters, each opening with a substantial in-
troduction and concluding with a comprehensive list of references.

In Chapter 1 (Statistical experiments within the measure theoretical
framework) the basic concept of a statistical experiment is introduced as
E = (X, A, Py: 0eO) where every Py is a probability measure on the measurable
space (X, A) and where @ is a parameter set. Special emphasis is laid on coherent
experiments as a natural and useful extension of dominated experiments.

In Chapter 2 (Convexity) standard results from convex analysis (together with
full proofs) are assembled, for application in the sequel.

In Chapter 3 (Two-person, zero-sum games) those parts of game theory are
discussed that are especially useful for decision theory.

In Chapter 4 (Statistical decision problems) a decision rule is defined as a
Markov kernel p from the sample space (X, 4) of E to some (measurable) decision
space (7, S). Given a loss function L : ©XT—]— o, o] one defines the correspon-
ding risk (expected loss) of p at 8 as r(6:p) = PypLy.

In Chapter 5 (Vector lattices) a short introduction to Riess spaces (in par-
ticular to L- and M-spaces) is given. The utility of this concept in the theory of
statistical experiments has been known since Le Cam’s famous 1964 paper.

In Chapter 6 (Deficiencies) the central subject of the book is taken up: Given
two experiments E and F with the same parameter set © the deficiency J (E, F)
of E with respect to F measures what one may lose by basing oneself on E rather
than on F under the most unfavourable circumstances for E for this comparison.
All of the general criteria for comparison are discussed including reduction by in-
variance.

In Chapter 7 (Equivalence, representations and functionals of experiments) —
together with Chapter 6 the core of this work — the well known characterizations
of types of experiments are discussed, e.g. by standard experiments, Hellinger
transforms, sufficiency, conical measures, likelihood experiments.
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In Chapter 8 (Comparison of linear models) the general theory is applied to
finite dimensional linear (normal) experiments. This illuminating topic is inten-
sively discussed.

In Chapter 9 (Majorization and approximate majorization) the comparison is
extended to (signed) measure families thus shedding new light on the comparison
of experiments. The theory may be considered as a vast generalization of well
known theories on majorization.

In Chapter 10 (Complements: further examples, problems and comments) in-
teresting additional information on the main themes is provided in a mixed exam-
ple/problem form. Broad scope in this book is given to motivate and apply the
general theory, and there are many examples. Special emphasis is laid on the con-
tributions of the author and his school. Thus many results appear for the first
time in book form.

There are only a few books which have a certain overlap with Torgersen’s;
principially, the books by Heyer [1], Le Cam [2], and Strasser [3]. In [1] and [3]
a good portion of classical statistics is also included e.g. on testing and estima-
tion. In [2] and [3] asymptotical methods are intensively discussed. These themes
are only touched in Torgersen’s book, which deals almost exclusively with com-
parison for a fixed sample size. But within this context it covers much more mate-
rial in much more detail than in the other books mentioned above.

This monograph is indispensable for every mathematician who wants to learn
what it means and what is going on in ‘comparison of experiments’. The
mathematical treatment is concise but not boring. The presentation is excellent;
and there are only a few misprints. For short an enjoyable book; not only for
statisticians but also for mathematicians.

References

[1] Heyer H (1982) Theory of Statistical Experiments. Springer
[2] Le Cam L (1986) Asymptotic Methods in Statistical Decision Theory. Springer
[3] Strasser H (1985) Mathematical Theory of Statistics. De Gruyter

Tiibingen E. Siebert
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Rozovskii BL: Stochastic Evolution Systems. Kluwer Acad. Publishers, Mathe-
matics and its Applications (Soviet Series). Dordrecht 1991, p. xviii+315,
Df1. 210.00, US $ 129.00, UK £ 73.00

The book gives a first comprehensive account on the theory of stochastic partial
differential equations. This is a fairly recently developed new branch in the field
of stochastic differential equations, which is beyond the scope of the nowadays
classical theory of ordinary stochastic differential equations and the Ito calculus.
The need for this new type of stochastic equations has several origins. Since the
mid-seventies an increasing number of models (mainly from physics, biology) oc-
curred, which could be described by such stochastic partial differential equations.
On the other hand, there is also an inner need for studying such equations. For
example, the problem of non-linear filtering of diffusion processes leads naturally
to a second order stochastic partial differential equation.

In principle, the book is the English translation of the Russian edition, pub-
lished already in 1983. But the last chapter (using the Malliavin calculus) is newly
added and also other parts of the book have been extended.

An illustrative survey of examples of stochastic partial differential equations
arising in different fields is given at the beginning of the first chapter. Here and
then mainly in the second chapter, the basic stochastic calculus is presented which
is needed for the general theory. Especially, a thorough introduction of stochastic
integration in a Hilbert space is given.

Chapter 3 presents the main tool for solving stochastic partial differential
equations. This is the theory of so-called linear stochastic evolution systems in
Hilbert spaces. A stochastic evolution system is governed by the equation
du(t)=A(tu(t))dt+B(t u(t))d W(t). Here, the process u(t) takes values in a
function space X, the coefficients 4 and B (the drift and the diffusion term) are
in general unbounded operators, and W(¢) is a function space valued “white
noise”. The unboundedness of the coefficients A and B is handled by embedding
the space X of the process into a certain Gelfand triple (X, H, X’) of Hilbert
spaces. In the later applications such triples are mostly triples of certain Sobolev
spaces. Under certain conditions on 4 and B (coercivity or dissipativity) general
theorems on the existence and uniqueness of solutions of linear stochastic evolu-
tion equations are proved. These results are then applied to the Dirichlet problem
for stochastic partial differential equations (of arbitrary finite order).

In Chapter 4 stochastic second order parabolic equations are treated. Beside
a general result on solutions of the Cauchy problem, based on the theory
developed in the previous chapter, further analytic properties of the solutions are
proved. Chapter 5 continues with the study of the Cauchy problem. It is shown
that there are natural mutual connections between the stochastic parabolic equa-
tions and certain associated diffusion processes.

These relations to the classical theory of ordinary stochastic differential equa-
tions turn out to be essential for the applications to the theory of filtering, ex-
trapolation and interpolation presented in Chapter 6. There it is shown that the
so-called filtering measure of a filtering problem given by a diffusion process has
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a density with respect to Lebesgue measure, and that this density is the solution
of a stochastic parabolic differential equation (the forward filtering equation). A
corresponding backward filtering equation is studied for the problems of inter-
polation and extrapolation.

The last chapter is concerned with the hypoellipticity of second order
stochastic differential equations and in particular of the filtering equations.

In the preface it is said that “the book was written to be understood by resear-
chers of different interests and educational background” and that the necessary
prerequisites for a reader are “familiarity with functional analysis and the theory
of stochastic processes within the framework of standard university courses”. This
is surely an understatement and the book is only readable and valuable for people
already working at least in related fields. More references and motivations be-
tween the standard definition-theorem pattern would be helpful. The prerequisites
are not sufficient for an understanding. One rather annoying reason is that the
book contains too many misprints or wrong notations. Probably, there was never
any proofreading. I mention only one typical example: At the beginning of
Chapter 4 the defining equation of the second order stochastic parabolic equation
is written completely false — and this is the subject of the whole chapter! The
symbols for certain variables change almost from line to line, and it is a real puz-
zle for the reader to finally find his own correct version of the parabolic equation.
The usage of a summation convention is — admittedly — a matter of taste, but
I believe that a consequent coordinate free notation is surely preferable to a nota-
tion that is too often wrong if more than one index variable occurs.

Nevertheless, this is a book on a new and fascinating subject and there are also
large parts which are very well presented. So the book is surely of high value for
anybody who is getting interested or already working in this field.

Tiibingen E. Dettweiler
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Abstract: 1t is well known that dropping variables in regression analysis decreases the variance of
the least squares (LS) estimator of the remaining parameters. However, after elimination estimates
of these parameters are biased, if the full model is correct. In his recent paper, Boscher (1991) showed
that the LS-estimator in the special case of a mean shift model (cf. Cook and Weisberg, 1982) which
assumes no “outliers” can be considered in the framework of a linear regression model where some
variables are deleted. He derived conditions under which this estimator outperforms the LS-estima-
tor of the full model in terms of the mean squared error (MSE)-matrix criterion. We demonstrate
that this approach can be extended to the general set-up of dropping variables. Necessary and
sufficient conditions for the MSE-matrix superiority of the LS-estimator in the reduced model over
that in the full model are derived. We also provide a uniformly most powerful F-statistic for testing
the MSE-improvement.

Key Words and Phrases: Dropping variables, Mean squared error superiority, least squares estima-
tor, F-test.

1 Introduction

The implications of dropping variables in regression analysis have been investi-
gated by a number of authors. For example, Rao (1971), Hocking (1974) and
Judge et al. (1985, pp. 857-862) have derived sufficient conditions for situations
where omission of variables leads to better estimates with respect to the matrix
mean squared error (MMSE).

Boscher (1991) was successful to derive necessary and sufficient conditions for
dominance of the dropping variables least squares estimator (LSE) over the
ordinary LSE in terms of MMSE for the special case of a mean-shift model. In

! A first draft of this manuscript was prepared when I was a Humboldt research fellow in the

University of Dortmund. The financial support of the Humboldt Foundation is gratefully acknowl-
edged. Finally, I thank Professor Gétz Trenkler, University of Dortmund, for his hospitality.

2 Support by “The German Marshall Fund of the United States” is gratefully acknowledged. This
author also wishes to thank Professor George Judge, University of Berkeley, for his kind hospitality.

0026-1335/93/5/263 - 269 $2.50 © 1993 Physica-Verlag, Heidelberg
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\

the following we generalize these results to the general regression model where
some of the variables are dropped. Furthermore we provide a uniformly most
powerful F-statistic for testing the MMSE-improvement.

2 The Linear Regression Model

Consider the linear regression model
y=Wl+u, 21

where y is an n x 1 vector of observations on the dependent variable, W is an
n x p matrix of observations on p independent variables of full column rank, u
is an n x 1 vector of unobservable disturbances, and 6 is an unknown p x 1
vector of parameters. We assume E(u) = 0 and E(uu’) = 621, where 62 > 0 is
unknown. If we allow a more general error process, e.g. an autoregressive
process, then in principle model (2.1) could be transformed such that the
transformed disturbances have the simple independence structure. In order to
determine the transformation matrix we should know cov(u) = X, which is not
available in practice. So, the transformation technique can be applied only
conditionally, provided the covariance matrix X is given. If the unknown co-
variance can be estimated from the data, then also the transformed W depends
on y and the distributional assumptions, for example in Section 3, do not hold.

Suppose that W = (X, Z), where X and Z are n x p, and n x p, matrices,
respectively. Then (2.1) may be alternatively written as

y=Xf+Zy+u=Xp+v, 2.2)
where § = (', y') and v = Zy + u. If Z is available, then the LSE of g is
B=[X(10-ZZ2HX]' X0 -2ZZ%)y , (2.3)

where Z* = (Z'Z)"'Z’ denotes the Moore-Penrose inverse of Z. However if we
drop the observation matrix Z from (2.2), the formal LSE of f becomes

B=(XX)'Xy=X"y
which has bias

EB-p=X"Zy. 24



MSE-Improvement of the Least Squares Estimator by Dropping Variables 265

For the sake of convenience we introduce the following orthogonal projectors

Py = XX* , P,=727" 2.5)
and
Qy=1-P,, Q;=1-P,. (2.6)

To compare B and B in terms of their MMSE we need their dispersion
matrices, which are given by

cov(p) = 6*(X'QX)™! 2.7
and
cov(f) = e*(X'’X)! .

Then we obtain as the corresponding MMSE

M(p) = cov(p) = 6*(X'Q;X)! (2.8)
and
M([?) =a2(X'X)"! + XY Zyy'ZX" 2.9)

and the difference of MMSE’s becomes

M(B) — M(B) = *[(X'QX) " — (XX) '] - X*Zyy'Z’X"

= (X'QzX)'D(X'QX)™" , (2.10)
where
D=A-aa (2.11)
with

A = sz’QzQxsz and a= X'QZPXZV .
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Obviously M(B) — M(p) is nonnegative definite (n.n.d.) if and only if D is
n.n.d.

Theorem 1: The least squares estimator f = (X'X)"X_’y which drops the obser-
vations from Z dominates the least squares estimator f = (X'Q,X) ' X'Q_y with
respect to MMSE if and only if

YZ'PsZy < 6? (2.12)
where
P; = G(G'G)'G' = GG*

is the orthogonal projector on the column space of G = Q,Q,X.

Proof: By our lemma from the appendix the matrix D is n.nd. iff A is
nnd, aeR(A) and A;(a'A*a)=a'A*a< 1. Clearly A is nnd. and a=
X'Q,PyZy = —X'Q;QxZy belongs to R(A) = R(X'Q,Qy). Thus a’'A*a =
YZ'G(G'G)* G'Zy/s?, and the third condition turns out to be

YZ'PsZy < 6? . [ ]

To illustrate the potential gains in precision we write (2.10) in the form
M(B) — M(B) = X*Z[cov() — yy IZ'X*"

which can be proved straightforwardly (c.f. Hocking 1974). Thus M(f) — M(B)
is n.n.d., if cov($) — yy’ is n.n.d. If only a single variable, z, is excluded, M(f) >
M(B) if var(p) > y?, see also Rao (1971). So, we can improve the precision of our
estimates by eliminating a variable provided that the absolute value of the
corresponding coefficient is small compared with the standard deviation of the
LSE 5.

Example: Consider the mean-shift model investigated by Beckmann and Cook
(1983), Cook and Weisberg (1982) and Boscher (1991), where X = (X}, X3) and
Z = (0, I,) with X, of type (n — k) x (p — k) being of full column rank and X,
of type k x (p — k). Then the “never-pool” estimator ﬁ* = (X, X,) 'X}y,, where
y, results from y by deleting the last k observations, coincides with g from (2.3).
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Boscher (1991, Theorem 1) derived necessary and sufficient conditions for the
superiority of ﬁ overﬁ =B Wc give an alternative criterion:

The least squares estimator ﬁ X*y which drops the matrix Z indicating the
shift, dominates the least squares estimator § = ﬂ = X1y, if and only if

Y= V)X, [X5(0 = V)X, 1P X5 = Vy)y <6, (2.13)

where V, = X,(X'X) !X, is located in the southeast corner of Py. This follows

immediately from Theorem 1 and the identities G = —Q,P,X, P, = (g f >,
k

P,Q,P; = (O 0 > and G'Zy = —X,(I — V,)p.

0 I-V,

Note that in the mean shift model cov(f) = ¢*(I — V,), and for k = 1 we have
var(f) = 6?(1 — v,), where v, = x,(X'X)"!x,. If var(§) > y?, then one should con-
sider to ignore the level shift. However, since 62 and y are unknown, we need a
test for detecting the unknown ‘state of nature’.

Condition (2.12) can be simplified if X or Z is a column vector: If X = x we
may writeG = g = Q,Qzx and GG* = gg'/g'g. Hence (2.12) becomes (g’ Zy)2 <

g'g. If Z =z, 2’P;z is a scalar, and (2.12) turns out to be (@Ps2)y'y < a2,

Let us now investigate the situation when # dominates ﬂ

Theorem 2: The least squares estimator f = (X'Q,X) 'X'Q,y dominates the
least squares estimator f = (X'X) !X’y which drops the observations from Z
with respect to MMSE if and only if R(A) = R(a) and a'Aa < (a’a)’> where
A =0°X'Q;QxQ;X and a = —X'Q,QxZy.

Proof: By (2.10) and (2.11) B is superior to ﬁ iffaa’ — A is n.n.d. From our lemma
in the appendix this is the case iff R(A) = R(aa’) = R(a) and ,((aa’)*A) < 1.
However, since (aa’)* = aa’/(a’a)? and 1,(aa’A) = a’Aa we obtain the asserted
equivalence. |

Since R(A) = R(a)is equivalent to A = ab’ for some vector b we can state that
B dominates § if and only if A = ab’ and b’a < a’a for some vector b.

Again the case X = x or Z =z deserves special attention. If X = x, then
a=—x'Q;QxZy and A = ¢’x'Q,QxQ;x are both scalars. Let now a # 0.
Then we may choose b = b’ = A/a and b’'a < a’a is equivalent to

”zx’QzQxsz < (X’QzQxZ}’)z . (2.14)

If a = 0 we must have A = 0 or, equivalently P;x € ‘R(X) Since, vice versa,
P,x € R(X) also implies a = 0 we may say that # dominates pif either a # 0 and
(2.14) holds or P,x € R(X).
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If Z = z, then y is a scalar, a = yX'2(zQyz/2'z), A = X'22X (6°2Q,z/(z2)?)
and b = X'z6?/yz'z, provided that y # 0. Then b'a < a'a is equivalent to

o < y*7Qyz (2.15)

(cf. Boscher, 1991, formula (6)). If y = 0, we must have A = 0 which is satisfied
iff Pyz = 0 or Pyz = z. Since rank(W) = rank(X, Z) = p, Pyz = z can be ex-
cluded for z # 0. Hence B dominates f if either y # 0 and (2.15) holds or y = 0
and P,z = 0 holds.

3 A Test for the MMSE Improvement

Let us assume that u follows a normal distribution, i.e. u ~ N(0, 6*I). Then
the quadratic form $Z'P;Z$/a*> = y'P;y/a* has a noncentral y2-distribution
with noncentrality parameter A = yZ'P;Zy/26* and with r = tr[P;] degrees
of freedom, where § = (Z’QxZ)'Z'Qyy. If we put Q =1 —P where P =
QxZ(Z'QxZ) ' Z'Qy is the orthogonal projector on R(QxZ), the quadratic form
Y QxQQyy/s? follows a central y2-distribution with tr(Q,QQy) = tr(Qyx—P)=
tr(I — Py — P) = n — p, — p, degrees of freedom. Since QxP; = P; and PP; =
P; (the latter identity follows since R(QxQ;X) = R(QxP;X) = R(QxZ)) we
obtain QQ4P; = 0, and thus we may state

Theorem 3: The statistic

Fe yPsy/r
YQxQQxy/(n — p; — p,)

3.1)

follows a noncentral F-distribution with r and n — p, — p, degrees of freedom
and with 4 = yZ'P;Zy/26? as noncentrality parameter.

Since = 24 the hypotheses H,: 6 <1 vs. H;: 6 > 1 can now be tested by
using the F-test of Toro-Vizcarrondo and Wallace (1968). This test suggests
deleting the observation matrix Z at level a if F < F,_,(r,n — p; — p,; 1/2),
where F,_,(r, n — p; — p,; 1/2)is the (1 — a)-quantile of the noncentral F-distri-
bution with r and n — p, — p, degrees of freedom, and with noncentrality pa-
rameter 1/2. This test results in a pre-test estimator (cf. Judge and Bock, 1978):
Choose ﬂ if H, is accepted, and B otherwise. The pre-test estimator may be
written as a weighted sum of # and B, where the weights are indicator func-
tions. The hypothesis and the level of the test determine the weights to be
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allocated to f and B. General properties of pre-test estimators are discussed in
Judge and Bock (1978, Chapters 3-5). The MMSE comparisons of the above
pre-test estimator with # and B can be done by applying stralghtforwardly the
results of Judge and Bock (1978, Chapter 5) in the same way as in Boscher (1991,
Theorem 2).

Appendix

Lemma: Let A and B be n.n.d. matrices. Then A < B iff R(A) = R(B) and
L (B*A) < 1.

This result was introduced by Stepniak (1985, Theorem 1). Various proofs of
the lemma can be found in Baksalary, Liski and Trenkler (1988, Theorem 2), Liski
and Puntanen (1989, Lemma) and in Baksalary, Schipp and Trenkler (1991).

The authors wish to express their gratitude to the referee for his insightful
suggestions.
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Book Review

D. A. Williams: Probability with martingales, Cambridge University Press, 1991,
XV/251 pp., $59.50/£10.95

The textbook under review was based on lecture notes for a third-year under-
graduate course at Cambridge and serves as an introduction to measure-
theoretic probability with as much probability and as little measure theory as
possible. At the same time, the author tries to make the exposition as rigorous
as necessary for beginners.

As motivation for an analytically serious approach to probability theory, the
author discusses a very special branching process (from scratch) and points out
explicitly where his first martingale appears. Martingales as very useful stochas-
tic processes then receive priority in the present introduction. They fill the main
(and middle) part B of the book, which is framed by part A concerning the
foundations including product measures and part C discussing Fourier transfor-
mation and central limit theorem. In part B, conditional expectations are intro-
duced, then the usual Doob’s ‘Forward’ convergence theorem is proved; chap-
ters on L2-bounded and uniformly integrable martingales follow; a rich collec-
tion of applications (to option pricing, the sheep problem, noisy observations,
and harnesses) appears as a sort of culmination to the book.

Clearly, incorporating that much material on approximately 250 pages, with
an advanced emphasis on a central theme of stochastic processes, makes it
difficult to accomplish consequent and complete proving. The numerous appen-
dices at the end of the book (and also some of the exercises supplementing the
text) demonstrate this dilemma. In particular, the existence of an infinite product
of probability measures and hence the existence of an infinite sequence of inde-
pendent random variables having prescribed distributions (the topic of the
Appendix to Chap. 9) remains difficult to verify unless the “keen student who
has read all previous appendices studies it with a tutor” (slightly modified
quotation).

But despite those well-known problems any author of an introduction to
probability has to face, the book under review is most original in setup and style
and will definitely enjoy strictly positive reception. The reviewer himself has
decided to test the proposed approach in one of his introductory courses, since
he agrees with the author who produced “as lively an introduction as he could
manage”.

Tiibingen H. Heyer
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Summary: Fujino (1979) studied several tests for homogeneity of nondecreasing variances and
concluded that the modification of Bartlett’s (1937) test, first proposed by Boswell & Brunk (1969),
is generally superior to its competitors in terms of power. A weakness of this test, however, is that
the null distribution of the test statistic has not been adequately determined for cases other than
when the group sample sizes are equal. In this article a class of simple tests for equality of non-
decreasing variances is proposed which can be used without special tables for arbitrary sample sizes.
Some of these tests have operating characteristics which compare favorably to those of the modifica-
tion of Bartlett’s test. A prescription is also given for applying the tests in cases where the population
variances are constrained by more general partial orders.

Key Words: Bartlett’s test; Combining independent tests; Fisher's Combination method; Logit
Combination method; Order-restricted inference.

1 Introduction

The assumption of equal error variances underlies many inferential procedures
in the normal theory analysis of linear models. The well-known homoscedas-
ticity tests of Bartlett (1937), Cochran (1941), and Hartley (1950) provide appro-
priate type I error control even if the population variances are a priori order-
restricted, however their powers would be expected to be smaller than those
of procedures which utilize the prior information about the ordering. In this
spirit Fujino (1979) suggested modifying the classical tests by using the order-
constrained maximum likelihood estimates of the variances in the test statistics
in place of the sample variances. He considered the case where the variances
are known to be in nondecreasing order and the sample sizes are equal. In
an empirical study of the classical tests and their modifications, as well as a
regression-type test due to Vincent (1961) and its modification, Fujino found
that the modified tests have a substantial power advantage over the classical
tests, and that the modification of Bartlett’s test is preferable in this regard.

In this paper we employ the general strategy for order-constrained hypothesis
testing proposed in Mudholkar & McDermott (1989) for constructing simple
alternatives to the modified tests investigated by Fujino. In this approach the

0026-1335/93/5/271 - 281 $2.50 © 1993 Physica-Verlag, Heidelberg



272 G. S. Mudholkar et al.

null hypothesis is decomposed into several nested component hypotheses, each
of which can be tested using simple, well-known statistics. It can be easily shown
that these statistics, and therefore the associated p-values, are mutually indepen-
dent. These p-values are then pooled using such classical devices as Fisher’s
combination method to provide an overall test of the null hypothesis.

The modified versions of the classical tests of homoscedasticity proposed by
Fujino (1979) are outlined in Section 2. In Section 3 the new tests are described
for the case where the population variances are known to be in nondecreasing
order. These tests are easy to implement for arbitrary sample sizes. A power
study is undertaken in Section 4, using both exact computation and simulation,
which compares the new tests with the modification of Bartlett’s test. The new
tests for homoscedasticity are extended in Section 5 to cases where the popula-
tion variances are constrained by more general partial orders. The conclusions
are summarized in Section 6.

2 Modifications of the Classical Tests

Let 62 =S? (i=1,..., k) be the unbiased estimates of the variances ¢? of k
normal populations, where the v;S?/6? are independently distributed as x> with

v; degrees of freedom. It is of interest to test H,: 62 = -+ = g2 against the simple
order alternative H,: 67 < -*- < ¢, with at least one inequality strict.
Fujino (1979) assumed v, = ‘** = v, = v and developed the modifications M*,

F}.., and G*, G, of the classical tests M due to Bartlett (1937), Hartley’s (1950)
F,.x; and G proposed by Cochran (1941) respectively for testing H,, against H,.
These modifications were obtained by replacing the unrestricted maximum
likelihood estimates of a7 in the classical statistics by the order-constrained
maximum likelihood estimates 6;*2:

k

M* =kvlogé? —v Y logér?, 2.1
i=1

where 62 is the maximum likelihood estimate of the common value ¢ under H,,

F*,, = max 62 / min 6%, 22

1<i<k 1<i<k

k k
G* = max 6,’"2/2 6, G,= min 6;'2/2 6 . (2.3)
i=1

1<i<k i=1 1<i<k
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Note that several algorithms are available for computing the constrained esti-
mates 6*2 (i =1, ..., k); see Robertson, Wright & Dykstra (1988, Ch. 1) for
details.

Boswell & Brunk (1969) first proposed M* as a statistic for this problem and
also obtained its large sample null distribution. Fujino (1979) tabulated the null
distributions of M* and F%,,. Fujino also performed a simulation study in order
to evaluate the power properties of the above tests as well as a “regression type”
test to due Vincent (1961), which is based on the statistic

k k
=Y {i—3k+ 1)}0‘.-2/2 e, ‘ (24
i=1 i=1
and a modified version based on the statistic
k
=Y {i—k+1)}logé? . 2.5)
i=1

The test based on M* was found to have the best overall performance in this
investigation.

3 A New Class of Tests

Following the approach given in Mudholkar & McDermott (1989), one may

view the problem of testing H,: a7 = -+ = o subject to the simple order con-
straint ¢ < --- < 62 as the conjunction of k — 1 nested problems of testing
Hygy: 02 = -+ = 6%, = o against the alternative H,: 07 =+ = ¢, < o for

i=2,..., k To ease notation, let

S[2i~11 = li VSZ/Z

i-1
Voot = ,-; y o i=2...,K . 3.1)

It is well-known that the uniformly most powerful unbiased test of Hy;, against
H, is based on the statistic F; = S?/SZ_,,. The construction of the new tests of
H, against H, depends on the following result:
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Theorem 1: Under the null hypothesis the (k — 1) test statistics F; are mutually
independently distributed as F with v; and vy;_,, degrees of freedom (i = 2,..., k).

The theorem follows immediately from the following lemma:

Lemma 1: Let V,, ..., V, be independent gamma random variables with the same

scale parameter, i.e.

ap

fyi(v,-) = fl:a) vlf'i‘le_ﬂw ,

v; >0

fori=1,...,n. Then the random variables

V2 Vs Va

W,

are mutually independent.

Proof: Let V; = W,. It follows that

Vl = Wl N Vz = Wl Wz N V3 = Wl(l + Wz)W3,..

V=Wl +W,)...(0 + W,_ )W, .

The Jacobian matrix

o
=] — i=1 EETR L j = IR ’
J (aw) i=1..,n j=1..n

is upper-triangular, therefore

4
|J|=H5‘Wi

i=1
=W (W1 + W) (W1 + W) (1 + W,,))

n—1
=Wt [+ wr
i=2

=2, W=—2>,. W=
v, T+, Vi+ Vot +

Va1

b4
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The probability density function of W = (W), ..., W,) is then easily shown to be
gw(w) oc w1 @it exp{—[iwl 'EL 1+ wi)} .=l£[z wiTL(1 4 wy) T
Hence the joint density of W* = (W,, ..., W,), obtained by integrating out W,, is
(W) o 1=‘[2 e (1 + wy) D :jj et exp{— Bw, [[2 1+ w,.)} dw,
oc .=ﬁz Wi + wy) T

This is clearly the product of the individual densities of W,, ..., W,. Therefore
W,, ..., W, are mutually independent.

Now let P; be the p-values associated with the test statistics F;, which by
Theorem 1 are mutually independent. The new tests of H, subject to the simple
order constraint are based on various methods of combining independent p-
values. In this article we study four such tests based on the combination statistics
¥, = min(P,) due to Tippett, ¥ = —2Y log P, introduced by Fisher, Liptak’s
¥y =Y @7'(1 — P), and the logit statistic ¥, = —47*2Y log{P,/(1 — P,)} pro-
posed by Mudholkar & George (1979), where A = n2m(5m + 2)/(15m + 12) and
m =k — 1 is the number of p-values being combined. Small values of ¥ and
large values of ¥y, ¥y, and ¥, are seen as evidence against the null hypothesis.
Under H, ¥ is distributed as the minimum of m uniform variates, ¥, has a x*
distribution with 2m degrees of freedom, ¥, has a N(0, m) distribution, and ¥
has a distribution that is very well approximated by Student’s ¢ with Sm + 4
degrees of freedom. Note that ¥, and ¥, are asymptotically equivalent and
optimal among all monotone combination methods, and in some cases among
all tests based on the data, in terms of Bahadur’s exact slopes; for example see
Berk & Cohen (1979).

4 Power Comparisons

Consider the simple case where k = 3 and the degrees of freedom are all equal,
ie. v, = v, = v3 = v. To calculate the power of the new tests for Hy: 67 = 67 =
o? against the alternative 67 < 62 < 02, with at least one inequality strict, it is
necessary to examine the distributions of the component p-values under the
alternative hypothesis.
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Consider the random variables

_Si/a3 ,_ 25303
* SYjat’ > (S¥eD) + (83/03)

’

where 67, 67, and 62 cancel under the null hypothesis. Clearly these random
variables may be expressed as F; = %, ) (U;) and F3 = #,7,,(U,), where #, . (*)
is the cumulative distribution function of the F-distribution with v, and v,
degrees of freedom and U, and U, are independent U(0, 1) random variables.
Hence, after some manipulation, it is easily seen that the random variables F,
and F, satisfy

o3 {1 + Z,(U)}
O'f + GZZg;vTvl(Ul)

2
o _
F,=5#30U), F= F()
1

where = denotes equivalence in law. Therefore the component p-values satisfy

2
P=1- %,v{gm(m} , (1)
1
2 -1
a{l+ £} -,
=1- ’ . 4.
P3 1 *%,Zv[o_f_‘_o_g%,-vl(ul) %,h(UZ) ( 2)

The power function of the new test based on ¥y = —2log P, + —2log P,
may be found directly using (4.1) and (4.2). Note however that this power
function is not a simple convolution of —2log P, and —2 log P, because, in
general, the component p-values are not mutually independent under the alter-
native hypothesis. However because P, is a function of U, alone, the power
function may be obtained by conditioning on Uj;:

pr(¥e=C)=pr(—2log P, + —2log P, > C)
= pr(P; < e”“?/Py)
= E{pr(P; < e_c/z/Pz)lvl} >

where C is the upper 100a% point of the y2 distribution. Expressions (4.1) and
(4.2) may be substituted above for P, and P; respectively, leading to the power
function

(ol +adFIW ecr2
1-— —_—f Ny 1— du , (4.3
§ P (a§{1 T w o T T e ) @Y
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where
y=% A # (1 - e )al/a}} .

The power functions of ¥, ¥y, and ¥, may be obtained with some effort in a
similar fashion.

The power function (4.3) of ¥ and analogous expressions for ¥y, ¥y, and ¥,
were numerically evaluated using NAG (1981) fortran library subroutines
DO01AJF and DO1AHF for quadrature. The significance level was taken to be 5%,
and values of v =5, 10 were used. The power function of M* was estimated
using Monte-Carlo simulation. NAG fortran library subroutines GOSCCF and
GO5SDDF were used to generate n; = v + 1 independent normal random vari-
ables with mean 0 and variance 6?2, i = 1, 2, 3, and using these M* was calculated.
The powers were estimated by calculating the percentage of times out of 100,000
repetitions that M* exceeded the appropriate critical value. The results of the
comparisons of these five power functions are presented in Table 1(a). Various
configurations (07, 67, %) of the variances were used and these are listed in
Table 1(b).

Table 1(a). Powers at the 5% level of five competing tests for Hy: 02 = 6} = 6% in the model
2 2 2
6i <63 <o}

Configuration v M* Ye v, Yy Y.
Null 5 0.050 0.050 0.050 0.050 0.050
10 0.050 0.050 0.050 0.050 0.050
Step (1, 2) 5 0.404 0416 0411 0.396 0.369
10 0.710 0.729 0.720 0.691 0.656
Step (2, 3) 5 0.454 0.434 0.391 0.348 0.453
10 0.737 0.702 0.640 0.565 0.728
Linear 5 0.378 0.392 0.402 0.397 0.325
10 0.644 0.664 0.679 0.674 0.556
Quadratic 5 0.378 0.392 0.401 0.395 0.328
10 0.640 0.658 0.672 0.666 0.556
Logarithm 5 0.380 0.395 0.404 0.399 0.329
10 0.654 0.677 0.689 0.682 0.570

Powers are based on 100,000 simulated replications for M* and are exact for ¥, ¥;, ¥y, and ¥,

Table 1(b). Configurations (47, 62, 62)

Null (1.00, 1.00, 1.00)
Step (1, 2) (1.00, 4.00, 4.00)
Step (2, 3) (1.00, 1.00, 4.00)
Linear (1.00, 2.50, 4.00)
Quadratic (1.00, 2.25, 4.00)

Logarithm (1.00, 2.89, 4.00)
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Table 2(a). Estimated powers at the 5% level of five competing tests for Hy: 6 = --* = o2 in the
model 6} < -+ < 62

Configuration v M* Y ¥, Py Yr
Null 5 0.050 0.050 0.051 0.050 0.051
10 0.050 0.050 0.050 0.050 0.051
Step (1, 2) 5 0.367 0.375 0.359 0.344 0.282
10 0.694 0.706 0.661 0.616 0.540
Step (3, 4) S 0.707 0.699 0.628 0.571 0.609
10 0.949 0.943 0.900 0.847 0.882
Step (5, 6) 5 0.501 0415 0.331 0.259 0.481
10 0.776 0.673 0.553 0.411 0.752
Linear 5 0.460 0.490 0.494 0.483 0.315
10 0.742 0.773 0.790 0.781 0.508
Quadratic 5 0.497 0.512 0.504 0.485 0.357
10 0.777 0.782 0.782 0.764 0.574
Logarithm 5 0418 0.462 0.471 0.460 0.282
10 0.707 0.758 0.774 0.767 0.470

Table 2(b). Configurations (¢, ..., 62)

Null (1.00, 1.00, 1.00, 1.00, 1.00, 1.00)
Step (1, 2) (1.00, 4.00, 4.00, 4.00, 4.00, 4.00)
Step (2, 3) (1.00, 1.00, 1.00, 4.00, 4.00, 4.00)
Step (5, 6) (100, 1.00, 1.00, 1.00, 1.00, 4.00)
Linear (1.00, 1.60, 2.20, 2.80, 3.40, 4.00)
Quadratic (1.00, 1.26, 1.69, 2.29, 3.06, 4.00)
Logarithm (1.00, 2.16, 2.84, 3.32, 3.69, 4.00)

A second simulation study was done in order to compare the five power
functions for k = 6, again at the 5% level of significance and for v = 5, 10. The
simulation was performed as described above, except that N = 50,000 repeti-
tions were used for this study. The results and the configurations (62, ..., 62) of
the variances employed are listed in Tables 2(a) and 2(b) respectively. These
configurations are taken to be the same as in Fujino (1979) to facilitate compari-
son with his results.

For most of the configurations considered, the test based on Fisher’s com-
bination method is superior to the modification of Bartlett’s test. As seen in
Mudholkar & McDermott (1989) the tests based on the Logit and Liptak
combination methods perform quite well for some configurations but quite
poorly for others. The test based on Tippett’s combination method is generally
unsatisfactory.

It should be noted that the application of these combination methods in this
setting is not invariant. Indeed one could proceed by first testing equality of any
two adjacent variances, then one could test equality of their common value with
an adjacent variance, and continue in this fashion. Clearly the power of the
overall test will depend on the way in which the procedure is carried out. This
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in part explains why the tests based on combination methods outperform the
modification of Bartlett’s test for some configurations, but not for others.

5 Applications to Other Partial Orders

The new tests proposed in this article can be extended to cases where the
variances are constrained by partial orders other than simple order. As an
illustration of the necessary notation, consider the constraints

o} <o} ; 0} <[oi 03 03]<[0} 03] .

Here the eight variances are divided into two blocks, where the separation is
indicated by a semicolon, and it is understood that there are no order restrictions
among the variances in different blocks. The inclusion of variances within a
bracket, such as [62, 62, 62], implies a lack of any order restrictions among
them. More generally, the k variances will be divided into blocks such that there
are no order restrictions among the variances in different blocks, but the vari-
ances within each block will be restricted in some manner.

To test the overall null hypothesis, first conduct the following steps for each
block separately:

Step 1: Use Bartlett’s test for testing equality of the variances included within a
bracket. Obtain the corresponding significance probability for each bracket.
Step 2: Assume that all variances within each bracket are equal, thus yielding a
simple order structure for the block. If there are, say, r inequalities in the block,
obtain the r — 1 significance probabilities using the method described above for
the case of simple order.

Having treated each of the blocks in this manner, assume equality within each
block and use Bartlett’s statistic to test equality of the variances between blocks.
The component p-values involved in the procedure can be easily shown to be
mutually independent. They can therefore be combined as described above in
order to test equality of the variances.

In the above example, the new testing procedure would result in six compo-
nent p-values arising from the following tests: (1) Bartlett’s test for Hy: 62 =
02 = 02; (2) Bartlett’s test for Hy: 62 = 02; (3) F-test for Hy: 6 = o%; (4) F-test
for equality of ¢ and the assumed common value of 62, 62, and 62; (5) F-test for
equality of the common value of 62, ..., 62 and the common value of 67 and 63;
(6) Bartlett’s test for equality of the common value of 6 and ¢7 and the common
value of 62, ..., 63.
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The independence of the component test statistics relies on the following
result (e.g. see Johnson and Kotz (1970)): if X, ..., X, are independent gamma
random variables having the same scale parameter, then the two random vari-
ables Y X; and X;/Y’ X, are independent for each j (j = 1,..., k). As an illustra-
tion of the use of this result in proving independence consider the case where the
variances are subject to the simple tree order, 67 < [02, ..., 62]. The Bartlett
statistic used for testing equality of 62, ..., 67 at the first stage is easily seen to
be a simple function of

k k Vi
o =T1{% v

i=2 (j=2

The above property of gamma random variables can be applied directly to show
that Q, is independent of the F-statistic used at the second stage, which is a
simple function of

=

Q,= Visiz/sf .
2

A combination statistic ¥ may then be applied to the two associated component
p-values in order to test equality of the k variances.

When testing equality of unrestricted variances in the above procedure, it is
apparent that one may apply either Hartley’s or Cochran’s test instead of
Bartlett’s without sacrificing independence of the test statistics. This follows
from the fact that, for independent gamma random variables having the same
scale parameter, ) X; will be independent of max X,/ X;, min X;/}" X;, and
their ratio max X;/min X,.

The new procedures may be extended further to more complex situations
where the variances are subject to more general restrictions such as o7 <
[02; 02; 62 < [02, 62, 062]]. Here groups of variances separated by semicolons
are understood to have no order restrictions among them. In this case equality
of the seven variances may be tested by first comparing 62, ..., a2 subject to the
constraint to the right of 67, and then using an F-test to compare the common
value of 67, ..., 62 with ¢?. An example of an ordering for which the new
procedures may not be applied is 67 < [62, 02]; 67 < 02, where ¢ appears in
both blocks. In general this new approach may be applied whenever a particular
variance appears in one and only one block, not for general partial orders.

6 Conclusions

Until now satisfactory procedures for testing homogeneity of normal variances
subject to order constraints have existed only for the simple order restriction and
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equal sample sizes. The new approach to the problem outlined in this paper is
easy to implement for arbitrary sample sizes and may be applied to a wide
variety of order restrictions. The power comparisons show that, in particular,
the proposed test based on Fisher’s combination method compares favorably
with the best of the existing tests, namely the modification of Bartlett’s test.

Acknowledgement: The authors wish to thank an anonymous referee for some very helpful comments
which substantially improved the manuscript.
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Book Review

V. L. Girko: Theory of Random Determinants, Kluwer Academic Publishers,
Dordrecht, Boston, London, 1990, XXV/677 pp., Dfl. 420.00/US$245.00/
UK£147.00

The book is monumental. It contains 677 numbered pages and 28 chapters,
covering a wide range of topics. It was first published in Russian. The English
version is not simply a translation, the material has been increased by about
50%.

Chapters 1-4 contain proofs of assertions concerning the probability distribu-
tion of random determinants; methods to find their moments; distributions of
eigenvalues and eigenvectors of random matrices and inequalities for random
determinants. Chapters 5—16 present various limit theorems concerning random
determinants. Since a determinant is the signed volume of a parallelepiped, it is
not surprising that a typical theorem states that the logarithm of the absolute
value of a random determinant is normally distributed. Using suitable normal-
ization, however, laws of large numbers can be proved. The more than 280 pages
devoted to elaborate limit theorems on various special topics such as: accom-
panying infinitely divisible laws; determinants of random Gram, Toeplitz, Han-
kel, Jacobi and Fredholm matrices and some limit theorems connected with
them; asymptotic properties of solutions of random linear algebraic and integral
equations. The remaining chapters deal with applications of the theory pre-
sented in the former chapters. These include applications in statistical analysis,
control theory, stochastic linear programming, pattern recognition, experimen-
tal design, Physics and numerical analysis.

The book is comprehensive and very useful. However, when reading it, one
regrets that not enough effort has been put into its preparation. Names such a
“Erdesh” and “Loran” should have been written as Erdos and Laurent. The
theorems or methods are not always attributed to the right authors and the
presentations of some areas are one-sided, some of the important results are
disregarded.

In spite of the above critical remarks, Girko’s book is a good one and can be
used by many researchers working on various problems of stochastics.

New Brunswick A. Prekopa
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Estimators Under Absolute Error Loss

Wolfgang Bischoff and Werner Fieger

Institut fiir Mathematische Stochastik, Universitit Karlsruhe, EnglerstraBe 2, 7500 Karlsruhe 1,
Germany

Summary: In case of absolute error loss we investigate for an arbitrary class of probability distribu-
tions, if or if not a two point prior can be least favourable and a corresponding Bayes estimator can
be minimax when the parameter is restricted to a closed and bounded interval of R. The general
results are applied to several examples, for instance location and scale parameter families are
considered. We give examples for which, independent of the length of the parameter interval, no two
point priors exist. On the other hand examples are given having a least favourable two point prior
when the parameter interval is sufficiently small.

1 Introduction

In classical minimax estimation problems no restriction is made on the pa-
rameter space. In applications however, parameter spaces are usually restricted
which has been taken into account by many statistical papers within the last
decade. Most of these contributions have treated squared error loss; only a few
papers have considered more general loss functions; cf. Bischoff (1992), Bischoff
and Fieger (1992), Eichenauer-Hermann and Fieger (1992) and Eichenauer-
Herrmann and Ickstadt (1992).

In this paper in case of absolute error loss we investigate for an arbitrary class
of probability distributions, if or if not a two point prior can be least favourable
and a corresponding Bayes estimator can be minimax. (See Section 2 for the
definition of least favourable priors and their relation to minimax estimation).

It is worth mentioning that usually a two point prior is least favourable when
the parameter interval is sufficiently small; cf. Zinzius (1979, 1981), Casella and
Strawderman (1981), DasGupta (1985), and the papers cited above. Recently,
Eichenauer-Herrmann and Ickstadt (1992) have shown among other results that,
independent of the parameter interval, no two point prior is least favourable in
case of some location parameter families under absolute error loss.

In this note we give general conditions which must be fulfilled if a two point
prior and a corresponding Bayes estimator form a saddle point. We use these
results to decide for some examples if or if not two point priors are least
favourable and a corresponding Bayes estimator is minimax. In particular we
investigate location and scale parameter families. By this means we can general-

0026 - 1335/93/5/283 - 298 $2.50 © 1993 Physica-Verlag, Heidelberg
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ize the result given by Eichenauer-Herrmann and Ickstadt (1992). On the other
hand we give examples (Result 4 and Result 5) where two point priors are least
favourable; these examples have the same behaviour as “expected”, namely that
a least favourable two point prior exists when the parameter interval is suffi-
ciently small. The examples are chosen such that the used ideas together with
the general results may be usefully applied to other examples as well.

Section 2 contains the statistical background and results of some examples.
The proofs of these results are given in Section 4 using some general statements
which are handled in Section 3.

2 Notation and Examples

Firstly, we give some statistical background useful for the following. Let
{P,|0 € 6} be a family of probability measures on a sample space (%, &) where
the parameter space @ = [c, d] is an arbitrary interval of R equipped with the
Borel g-field #(0). Let 4 denote the set of all (nonrandomized) estimators, i.e.
measurable functions : & — 6. Supposing absolute error loss the risk function
of an estimator 9 is given by

R(8, 8) = | 10 — 8(x)| Py(dx)
ES

for 6 € ©. Let I be the set of all priors, i.e., probability measures on (0, #(6)).
The Bayes risk of an estimator & with respect to = € I7 is given by

r(n, 8) = [ R(6, 5)n(d6) .
]

An estimator J, is called Bayes estimator with respect to a prior =, if §, minimizes
r(n, -); an estimator 6* is called minimax estimator if 6* minimizes sup r(z, -).
A prior n* is said to be least favourable, if n* maximizes inf r(-, §). ™7

The statistical game (77, 4, r) is definite, if ded

inf sup r(n, 8) = sup inf r(x, J) .
ded nell nell ded

If in a definite statistical game (17, 4, r) a least favourable prior n* and a minimax
estimator 6* exist, then (n*, *) forms a saddle point in the game (77, 4, r). On
the other hand if (n*, 6*) is a saddle point in (77, 4, r), then (17, 4, r) is definite
and n* is least favourable and the estimator 6* is minimax. Therefore, if in a
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definite statistical game (/7, 4, r) a least favourable prior n* exists, then each
minimax estimator §* is a Bayes estimator with respect to n*.

Next, we give results on some illuminating examples. For that let ¢, be the one
point measure on {t}.

The first result generalizes the results of Section 5 of Eichenauer-Herrmann
and Ickstadt (1992).

Result 1: Let A be the Lebesgue measure on R, and let X, ..., X, be n indepen- -
dent random variables each of them having the A-density f,(-) = f(- — 0) where
the location parameter 6 is an element of & = [0, c], ¢ > 0 fixed. Suppose that
for each a € R with 0 < a < ¢ and for every f € (0, 1) the conditions

A{x e R|B- fo(x) = (1 = ) fu(x), fo(x) #0}) =0 (2.1
and
A{x e RIB- fo(x) = (1 = B)- fa(x), fara(x) # 0}) = 0O (2.2)

hold true. Then no two point prior can be least favourable.

Remarks: (a) The above conditions are obviously satisfied for most of the distri-
butions used in statistics.

(b) It is worth mentioning that the assumptions supposed by Eichenauer-
Herrmann and Ickstadt (1992) for their result are much more stringent than
ours.

(c) A similar result holds true for scale parameter families:

Let A be the Lebesgue measure on R, and let X,, ..., X, be n independent
random variables each of them having the A-density f,(x) = 0 g(6x) on R or on
(0, 00) where the scale parameter 8 is an element of @ = [s, (1 + m)s] where s,
m € R with s > 0 and m > 0 are fixed. Provided that for each pair a, b € @ with
s<a<b<(1+ m)sand forevery f € (0, 1) the conditions

M{x € R|B-a-g(ax) = (1 — B)-b-g(bx), glax) # 0}) = 0

and

l({xeRlﬁ'wg(ax) - ﬂ)-b-g(bx),g(a “ZL bx) ¢o}> =0

hold true then no two point prior can be least favourable. Especially, the above
conditions are fulfilled for a class of generalized gamma distributions. The proof
is similar as for Result 1 and therefore omitted.
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Let us have a look to a similar phenomenon for some families of normal
distributions. In literature it is usually assumed that only the expectation or only
the variance of a normal distribution depend on the unknown parameter. In
practice this assumption is often violated. In the following result both expecta-
tion and variance depend on the unknown parameter.

Result 2: Let s > 0, g € R be fixed, and let ® =[—s, s]. Let X,, ..., X, ben
independent, normally distributed random variables each of them having the
mean 6 and the variance |0|%, if 8 # 0. For 6 = 0 we distinguish three cases
depending on g:

a) X,, ..., X, are uniformly distributed on [ —c, c] where ¢ > 0 is arbitrarily
fixed, if ¢ < O,

b) X,,..., X, are normally distributed with mean 0 and variance 1, if ¢ = 0,

¢) X, ..., X, are distributed according to &, if g > 0.

Then no two point prior is least favourable.

Remark: Result 2 does not depend on the distribution of the random variable X;
for the parameter § = 0.

In Result 3 and Result 4 least favourable priors exist, if the parameter interval
0 is sufficiently small; that is caused by the fact that the set CZ; ;,/, has positive
probability for some parameter 6 € ©. (For the definition of CZ ;,,, see Section
3.) An example that is partly treated in Eichenauer-Herrmann and Fieger (1989)
is completely solved in Result 3.

Result 3: For fixed s > 0 let @ = [—s5, 5], and let X, ..., X, be n independent
random variables distributed according to the uniform distributionon[—1 + 6,
1 + 6] where 0 € 6. Let s, denote the only positive zero of

h(s)=2(1—s—1—%sn—L4snl—s".

Then in case of s > s, there does not exist a two point prior 7, ,,, which is least
favourable. If 0 < s < s, then n* = &_; + 3¢, is the only least favourable prior
and

—s formax x;< —s+ land —s — 1 < min x; <s—1
1<i<n 1<i<n

0*(X1y ey X,) = 0 else

s for min x;>s—lands+ 1> max x;> —s+ 1
1<isn 1<i<n

is minimax.
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Remarks: (a) For n = 1 the above result means:
No two point prior is least favourable, if s > 4. But in case of 0 < s < 4 the prior
n* = 3e_, + }¢, is least favourable and the estimator

—s forxe[-s—1,s—1)
0*(x) = 0 forxe(—o0, —s—1Nuls—1,1—-5]u(s+ 1, )
s forxe(l—s,5+ 1]
is minimax; note the risk function for n = 1 is given by

R(B,6%) =s*—0*+(1 —s):6] .

(b) By methods similar to those of Eichenauer and Fieger (1989), pp. 370, and
Eichenauer-Herrmann and Fieger (1992), p. 36, one can show that

1 -
Sp=ca o(n™),

where a, is the positive zero of
h@)=2e*—1—-1a—%ae™.

The interesting problem of estimating 8 € @ = [0, s], s > 0, based on n inde-
pendent random variables uniformly distributed on [0, 1 + 6] can partially be
solved by using Corollary 2. The complete solution may be obtained in a similar
way as Result 4 where a “symmetrization” of that problem is treated.

Result 4: For fixed s > 0 let ® = [—s, 5], and let X, ..., X, be n independent
random variables. Suppose that X;, i =1, ..., n, is uniformly distributed on
[-1+6,1]iff@e[—s,0]and on [—1, 1 + 0] if 6 € (0, 5], respectively. Let s,
denote the only positive zero of

hys):=—14+2"Q2+s)™" ' [4—-(n—2)s] .

Then in case of s > s, there does not exist a two point prior =, ,,; Which is least
favourable. If 0 < s < s, then n* = 4¢_; + 4¢, is the only least favourable prior
and
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—s for max x;<land —s— 1< min x; < —1
1<i<n 1<i<n

0% (X1y.ees Xp) = 0 else

s for —1< min x;and 1 < max x;<s+ 1
1<i<n 1<i<n

is minimax.
Remark: The above result means for n = 1:

If s <./5—1, then the prior n* =4¢e_, + 4s, is least favourable and the
estimator

—s forxe[—-s—1,-1)
o*(x) = 0 forxe(—o0, —s—1uU[—11Ju(s+ 1, o)

s forxe(l,s+1)

is minimax. In case of s > ./5 — 1 no two point prior can be least favourable.

3 General Results

We use the notations and assumptions given at the very beginning of Section 2.
Further we suppose:

a,be@witha<b ,

P,, P, are absolutely continuous with respect to a measure y, say, on (%, &).

Let £, and f, denote the corresponding Radon-Nikodym derivatives of P, and P,
with respect to u, respectively. For g € (0, 1) we define:

Cosp = {xeZ|B fi(x) — (1 — B) f(x) > O} ,

abs = {(XEX|B fo(x) — (1 — B) fo(x) =0} ,

Canp = {x e Z|B- folx) — (1 = B) fo(x) < O} .
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Consider the two point prior n, .5 = f-¢, + (1 — B)-&,. Then a Bayes estimator
0* = 874, With respect to the prior 7, fulfills the condition

o0*(x)e[a,b] P,—as. and P, —as. (3.1)

Thus we get

r(fa 5, 0*) = [ (Bfo(x) — (1 = B)fy(x))- 6*(x)u(dx) — a + (1 — B)b .

Therefore an estimator 6* € 4 is a Bayes estimator with respect to 7, ., if and
only if

a forxeCgyy
b forxe Cryy

o*(x) = { P,—as. and P, - as. 3.2)

and for x € C, 4 the value 6*(x) may be chosen arbitrarily subject to the condi-
tion (3.1). Thus the risk function of any Bayes estimator 6* with respect to 7, ;.4
is given by

R(6, 6%) = 16 — a|- Po(Cgpg) + |b — 0] Py(Cpp) + Cj |6 — 6*(x)| Py(dx) .

a,bp

In particular, we investigate the case that P,(C, ;4 ) = 0 which is equivalent to
Pb(C:b;ﬂ) =0.

In the following result (n, 4, 6*) is supposed to be a saddle point which
implies that 6* is a Bayes estimator with respect to m, 4, i.e. 6* fulfills (3.1) and
(3.2).

Theorem 1: Let P,(C,,,4) = 0 (or equivalently P,(C.,,) = 0) be fulfilled. Then
each of the following conditions is necessary for (n, .5, 6*) being a saddle point:
a) Pa(ca>,b;ﬂ) = Pb(C:b;ﬂ),

b) Pa(c:.b;ﬂ) = Pb(c:,b;ﬂ)a

¢) P(Cpp) <min{B, 1 — B} and P,(C; ) < min{p, 1 — B},
d) 10 — a|* Py(Clyy) + b — 8] P(CSpp) < (b — @) P(CSyg) for all 6 € 6.

Proof : Let (n, 4,5, 6*) be a saddle point. This implies

(b — a)* Po(Cpp) = R(a, 6*) = R(b, 6*) = (b — a) Py(Cppp)
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thus we have
P, a(C:,b;ﬂ) =P, b(ca>,b;ﬂ)s P, a(C:,b;ﬂ) =P b(C:,b;p) .

Hence condition a) and condition b) are shown.
Furthermore these results and the definitions of C;,4 and C,,, provide

1= PiCia) = RCing) > T PACiog) = PG < 1=
> > 1—
L~ PCap) = PCing) > 52

Pb(Ca:b;ﬂ) = Pb(ca>,b;ﬁ) <B;

whence we obtain
Pa(C:b;ﬂ) = Pb(C:,b;p) <min{f, 1 — B} .

Thus assertion c) is proved.
Next, for fixed 6 € @ we consider the estimator

a forxeCryy
5*(x)=<b forxe Cors
0 forxeCryy
which is Bayes with respect to 7, ;5. Then we get

R(6, 6*) = R(6, 5*) =6 — a|'Po(Ca>,b;p) + |b — 0] Py(Cjpp)

for every Bayes estimator 6* with respect to m, 5. Thus, for 6* being minimax
the following condition is necessary:

(b — a) P,(CJy) = R(a, 5*) = R(6, 6*) > R(6, 5*) .

Hence d) follows. O

The above result provides
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Corollary 2: Let P,(C,45) = O (or equivalently P,(C,,,) = 0) be fulfilled. Then
each of the following conditions is necessary for (n, ;.4, 6*) being a saddle point:

a) P(C;,4) > max{f, 1 — B},

b) Py(Cpp) > max{f, 1 — B},

©) Patpy2(Capg) >0,

d) 3Poiny2(Copp + Copg) < P, (Cabip)s
e) %P(a-fb)/z(c:.b;p + Copp) < Po(Clpp)

Proof : Theorem 1 ¢) implies a) and b) since P,(C,,,) =0 and Py(C,,,4) =0,
respectively. a+h

In order to prove c) and d) put § = ——. Using Theorem 1 c) and d) we
obtain 2

b—a - b—a < S .
3 ‘(1 = Py(Capp)) = —Z“’Po(Ca.b;ﬁ + Copp) < (b —a) min{B, 1 — B}

b—a
2

<

and therefore
Py(Copp) > 0 5

i.e. condition c) holds true.
Furthermore by Theorem 1 b) and d) we get

b——a_

(b—a): Pa(C:,b;ﬂ) =(b—a) Pb(CZb;ﬂ) = P(a+b)/2(ca>,b;ﬂ + C:,b;ﬁ) . a

The following result is useful for determining triplets (a, b, ) which are not in
question that 7, ,, and any Bayes estimator 6* with respect to ,,, form a
saddle point (, ;.5, 6*).

Proposition 3: Let a be an interior point of €, suppose that Py(C,.4) = O for all
d . L
0 of a neighbourhood of a, and that EéP"(C:-""‘) exists for 6 = a. (This implies
d . . .
that — Py(C, ) exists for 0 = a as well). Then (n, 5,5, 6*) is not a saddle point.

do
An analogous result holds true, if b is an interior point of ©.
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Proof : For (n, 4,4, 6*) being a saddle point the left-hand derivative & ; )R(O %)

and the right-hand derivative 7 : R(0, 6*) of R(, 6*) must fulfill the following
conditions: ©+)

d > < d <
0 < d(g )R(o 6*)|0 = Pa(Ca,b;ﬁ) - Pa(ca.b;ﬂ) + (b - a)'a—o'PO(Ca,b;ﬂ)|0=a

and

d X . i
02 255 RO, 8oy = Pu(Clyg) = PulCling) + 6 — @) 35 PoClig)loa -

Thus P,(C;4,4) = 0; whence the assertion follows by Corollary 2 a). Od

4 Proofs of the Results of Section 2

In the sequel let X, ..., X, be n independent, identically distributed random
variables whose distributions are specified in the handled results. Note that
{P,: 6 € ©} denotes the family of probability measures belonging to X =
X ..., X,)

Proof of Result 1: Note that by Fubini’s Theorem for eachae Rwith0 <a <c¢
and for every f € (0, 1) the conditions (2.1) and (2.2) imply

A"({x = (s x,)mﬂ folx) = (1 — B)- n Sl 11 folx) # 0}> -
and
v({x = (s x,)m-g folx) = (1 — ﬂ)-g £, H fun(x) # 0}> =

where 1" is the Lebesgue measure on R". Then the assertion follows directly by
Corollary 2 c). O
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Proof of Result 2: By a straightforward calculation one can verify that

d . . . N
70 Py(C,p.p) exists for a, b € @ with a < b. Proposition 3 implies that only (r, 8) €

IT x A with
TE{M_g5p Mg 0 Tosp: BE(O, 1)}

and J suitable chosen is in question for being a saddle point. According to
Corollary 2 c) only the prior n_g ., , and a suitable estimator J can form a saddle
point.

a) In case of ¢ < 0 the above prior cannot be least favourable according to
Corollary 2 c).

b) In case of 0 < g consider the estimator

—s forxe{x=(xy,...,x,)eR" Y x; <0} =CZ 1
0*(x) = 0 forxe{x=(xy,...,x,)eR"Y x; =0} =CZ, .1

s forxe{x=(x;,...,x,)eR"Y x; >0} =C5, .

which is uniformly better than each other Bayes estimator. Thus we get for each
Bayes estimator 0 with respect to n_/:

R(6,0) = (8 + 5) Py(CZ,512) + (s — 0) Py(CZ,42) 25— 0 for>0.
Therefore Theorem 1 d) implies that n_  , , is not least favourable. O

Note that in the following two estimation problems a two point prior n* is
least favourable, if and only if 7* and a suitable Bayes estimator with respect to
n* form a saddle point.

Proof of Result 3: (i) Let —s < a < b < s. Corollary 2c) provides that n, ., can
only be least favourable if b — a < 2 and § = 4.
(ii) In order to show that the prior n_g ,, is least favourable if and only if s < s,
we may assume s < 1 since (i). By similar considerations as in Section 5 of
Eichenauer-Herrmann and Fieger (1992) one gets that (n_, ;,,, 6*) is a saddle
point if s < s,,.

On the other hand n_, , , is not least favourable for 1 > s > s, because

=s

d
*
dBR(O,é ) , <0 fors>s,
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and R(f, 6*) < R(6, 9) for all 8 € [—s, s] and every Bayes estimator é with
respect to m_g .y)2-

(iii) Finally, we have to show that no other prior 7, ,, can be least favourable.
Because of (i) and (ii)) we may assume without loss of generality that

—s<a<b<s, b-—a<?2, p=

N —

In the sequel we need the set
Co =Crpypn{x=(x1,...,x,) R fo(x;) >0fori=1,...,n} .

Now we define for each 6 € [—s, b] the particular Bayes estimator d with
respect to 7, .4, Firstly for 0 € [a, b] let be

-

a forxe Cry.yp
a ; b for x e Cy
07 (x) = <
b for x € Copyp
0 for x € C;p.12\Co -

Further choose y € R such that

P,(Co)

| ==

P,,(C; n{x = (X1,..., X,) € R"| max x; < v}) =
1gi<n

and use the sets

CT =Cy n{x=(xl,...,x,,)elR"

max x; <7y
1<ign

C;=C;\C .

Secondly for each 6 € [ —s, a) we define
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a forxeCly,, v Cl
0(x)=<b forxeCrpnuCy

0 forxeCrpn\Co -

Then it can easily be seen for all 8 € [—s, b] and any Bayes estimator §* with
respect to 7, ., fulfilling R(a, 6*) = R(b, 6*) that the following inequality holds
true:

R(0, 65) < R(0, 6*) .
Note, that

b -
R((), 5;) = (0 - a)'Po(C:.b;x/z) + (b - 0)'P0(Ca<.b;1/2) + (a -; - 9>'P0(C5)

forfe [a, a ; b:' and

R(6, 55) = (a — 6) (Po(Capai2) + Po(CT)) + (b — 0) (Po(Copa2) + Po(C3)

for 0 € [ —s, a). Necessary conditions for 7, ,.,,, being least favourable are

0> d R(8, 6F)

~d+) = P(Coba) = PulCopap)

6=a
d < -, ,b—a d _
+ (b - a)'mPO(Ca,b;l/Z) o — P,(Cy) + 5 mPo(Co ) o
and
0< LR((’, )| = —PuCopup) — PiCT) = Pu(Copa2) — Pa(C3)
dai-) 0=a
d < d
+ (b —a) (d(@ )Po(cabl/z) +d(0 )Po(cz) => .

Because of

F,(Co) = P(Cy) + Fi(C7)
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and
d < d
d(0+)Po(Ca b; 1/2) o=a - d(e )PO(CZ ) 0=a > 0 )
d d
_* p(C: < =
d(0+) 9(C0 ) 0=a d(o )PO(CJ b; 1/2)
we obtain
Pi(Copap) <0 .
Hence m, ,,/, can not be least favourable. O

Proof of Result 4: (1) We assume that n, ,,, with —s < a < b < s is least favour-
able and 6* is a minimax estimator. This implies that n_, _,,_, is least favour-
able as well, and 0* is Bayes estimator with respect to 7, s and n_, _ ;4. Using
(3.2) one gets a = —b. Therefore a necessary condition for =, ,, being least
favourable is a = —b and f = 1/2 by Corollary 2c¢).

(ii) Next we show that n_; ., can not be least favourable for 0 < b < s. Con-
sider for fixed 0 € [ —s, s] the particular Bayes estimator

b forxeCZ,,,,

0 forxe[—-1,17"
o (x) =
—b forxe Clyyyp

0 for Cppu\[—1, 17"

~

with respect to n_, ;.1 ,. Then for all 6 € [ —s, s] and any Bayes estimator 6* with
respect to m_, ., the following inequality holds true:

R(, 5%) < R(6, *) .

Following the idea of the proof of Result 3 part (iii) one gets that n_j ,, , is not
least favourable for 0 < b < s.

(i) In order to show that the prior n_g ,,, is least favourable and 6* is minimax
if and only if s < s, we consider R(6, *) only for 8 > 0; for the risk function
R(-, 6*) of 6* is symmetrical with respect to 0. It holds for § > 0:
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RO,6%)=02"2+0)"+(s—0)-(1-2"2+6)™" .

Thus we get

ZI%R(O’ M)=—-14+2"Q24+0)™" " [4+sn-20n—1)],

d
—R(0, 6*) =—142""Q+s) ™" [4—(n—2)s]
de o=s
and
4 Re,5%| =-1+2+S">0
do+)" " Te=o 2 ‘
A necessary condition for (n*, 6*) being a saddle point is 2l%R((), %) >0
6=s

which implies

s< 42 ifn>3.

Let

(0, 0) ifn=1,2

D, =
<0,——4 ) ifn>3
n—2

Then we have on the other hand

d2
%*
d——ezR(9,6)<0, 0€(0,s) ,

for arbitrary s € D,. Therefore R(:, 6*) is strictly concave on (0, s) where s € D,.
Thus R(:, 6*) is strictly isotonic on [0, s], if and only if s <s, where s, is the
unique positive solution of

h,,(s)=dioR(0,6"‘) =t +2"Q+s) " [4—(n—2s]1=0.

s
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Therefore we have
{5 € QIR(é, d) = max R(6, 5*)} ={-ss} ifs<s,.
6e &

Thus by a well-known argument (n_, ;;,, 6*) forms a saddle point if s < s,. It
follows analogously as for Result 3 that n_g ./, is not least favourable if s > s,.

a
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An Outlier Test for Linear Processes
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Abstract: In this paper we introduce an outlier test for linear processes. It is assumed that an upper
bound for the number of outliers is known which is not too big in relation to the sample size. The
test statistic bases on the comparison of the observations with certain predictors.

We discuss the asymptotical behaviour of the test statistic under the null hypothesis ‘no outlier’
and derive the asymptotic distribution for the case that the distribution of the squared white noise
process belongs to a certain subset of the domain of attraction of the Gumbel distribution. Especially
the most important case in applications, the Gaussian white noise is included.

Keywords: Outlier, ARMA-process, linear process, outlier test, robust estimates

AMS-Classification: 62M 10, 62F03

1 Introduction

In practice it is often important to know whether a data set contains outliers or
not.

The answer to this question affects the choice of the statistical procedure for
data analysis. Shall we apply a robust or a classical method? It is known that
robust techniques must be favoured, if outliers may occur, while frequently
classical procedures have advantages in outlier free situations.

Sometimes one is also directly interested in the outlying observations.

There is little published work on outlier tests in time series, e.g. Fox (1972),
Martin and Zeh (1977 ), Abraham and Yatawara (1988), Schmid (1990 a/b/c).
These tests base on a comparison of the observations x,, ..., x, of the process
{X,} with predictors ¥, t = 1, ..., n of the undisturbed process {Y}.

Since in general we have no prior information on the appearance of outliers,
it is advisable to use robust estimators for the model parameters. This proce-
dure was proposed by Martin and Zeh (1977 ) in the framework of time series
analysis.

A popular assumption of many robust procedures is to require that an upper
bound s, for the total number of outliers is known. In this paper we make use of
this additional information.

0026 —1335/93/5/299 -318 $2.50 © 1993 Physica-Verlag, Heidelberg
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This leads to a test statistic of the following form

T, = max Y X — V)

1<u(1)<--<p(sp)<n i=1

Test statistics of that kind were introduced by Schmid (1990c ). They base on the
idea that the residuals are large at the outlier positions. Since all possible
arrangements of the residuals are taken into account these quantities use maxi-
mal information.

The case s, - s < o0 was studied by Schmid (1990c). Here we discuss the
more natural case that {s, } converges to infinity. Furthermore we assume s,/n —
0, i.e. the maximum degree of contamination shall be small, but not too small, in
relation to the sample size.

All investigations are made under the null hypothesis ‘no outlier’. For this
reason it is not necessary to introduce an outlier generating model.

The main result of our paper is Theorem 3.1. We determine the asymptotic
distribution T, for linear processes with white noise process {,}, where E(¢,) = 0
and Var(e,) = 0. It is assumed that the distribution function of (¢,/g,)? is in the
domain of attraction of the Gumbel distribution. Our result includes the family
of distributions considered by Csorgé and Mason (1985 ), especially the most
important case in applications & ~ Ny 2, i.e. F = x}.

Now, in practice, we don’t know the whole sequence {s,}, we know just one
value for a fixed n. Theorem 3.1 shows that in many cases the asymptotic
distribution does not depend on {s,}, provided that s, — oo and s,/n — 0. This
ensures the applicability of the implied outlier test.

The paper is organized as follows. In Section 2 we describe the underlying
model. The main result on the asymptotic distribution of T, together with the
proof, is given in Section 3. The proof of the theorem bases essentially on several
lemmata, which are given in an appendix at the end of the paper, in order to
improve the clarity.

2 The Model

Frequently the occurrence of outliers is declared by the influence of a contamina-
tion process on the interesting system, i.e. we obtain a realization x,, ..., x, of a
process {X,}, instead of one of the undisturbed process {Y;}. Since in this paper
we only analyse the behaviour of the test statistic under the null hypothesis, we
may assume X, = Y,,t=1,...,n.

In the following let {Y;} be a MA(00) process,

Y, = io €i(30)&—; 2.1)

i=



An Outlier Test for Linear Processes 301

with ¢(30) := 1, {ci(99)} €, and 3, € O. The random variables ¢,, t € Z are
assumed to be independent and identically distributed with E(g,) = 0 and
Var(e,) = 6} > 0. The underlying probability space is denoted by (2, Z, ).

We suppose that the parameter set @ is a subset of a normed space with norm
II-ll. Let §4 be an inner point of ©.

In addition we need some assumptions on the coefficients {c,(9)}. Suitable
conditions (A4) can be obtained by restricting the induced power series P:

(4)

(A1) There is R > 1 and an open neighbourhood ¥" = @ of 3, such that the
mapping P: % x ¥ — ¢ given by

Pz 9= c9)z!
i=0

exists and is continuous on its domain. We set ¢,(9) := 1 and define % :=
{ze¥:|z] <R}.
(A2) P is assumed to be holomorphic in z on % for all 3 € ¥~ and

0 < inf inf |P(z; 9)| < sup sup |P(z; 3)] < o0 .

ze ¥ € ¥’ ze ¥ 3e ¥

(A3) There is L > 0 such that for all z e # the series P satisfies a Lipschitz
condition in 9, i.e.

|P(z; 84) = P(z; 8,)| < L8y — &yl Vze¥, $e¥ (i=12).

Remarks: Since cy($,) can be regarded as a normalizing constant of ¢,, we may
assume co(Jp) = 1.
If P satisfies (A4), then 1/P does it too. Let

06 8):= 1/P@ 8) = 3 di(9)2

for z € %, 3 € ¥ with coeflicients {d;(9)}. Especially we have dy(9) = 1.

The assumption (A) is not very restrictive. Each stationary, causal and inver-
tible ARMA process {Y,}, satisfies (4). This can be seen by straightforward
calculations.

The best predictor of Y in terms of X, © < t, in the undisturbed case is given
by

Y:=68YX,1<1t). (2.2)
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For a MA(o0) process which satisfies condition (4) the one-step predictor can
easily be calculated. Since P is not equal to zero, 1/P is holomorphic in z on #
for each fixed 3 € ¥". Thus we find

& = '=Zo di(90) X,

(see e.g. Brillinger (1975, p. 76/77 )). Hence it follows under the null hypothesis
that

Ms

7, = ci(90)8t-i = X, — &= — Zl di('gO)Xt—l'

i=1

Since in practice only a finite realization x,, ..., x, is present, we use the
following truncated quantity as a predictor of Y,

R t—1
Y= _'Zi di(30) X, .

For a discussion of this predictor for an ARMA process we refer to Brockwell
and Davis (1987, p. 177 ). Y, is an approximation of Y, for large ¢.

In general 9, and o, are both unknown. Let §, and 62 denote arbitrary estimates
of 9, and 62. Since outliers may be present it is advisable to use robust estima-
tors. E.g. GM estimators are suitable for an AR process (Martin and Zeh
(1977 )) and RA estimators for an ARMA process ( Bustos and Yohai (1986)).
A review on robust estimation procedures for the parameters of an ARMA
process is given by Martin and Yohai (1985 ).

Thus a natural predictor in the case of unknown parameters is

~ t_l A
= — Z:l di(3) X, -

This quantity is well-defined, provided that 3, € ¥
The residuals are given by

6= X, = B = 5+ S (@) — S X — 3 dS) X, (2.3)
i=1 i=t

and are no longer independent.



An Outlier Test for Linear Processes 303

We consider the test statistic

Sn
= V(n))2 /42
L= max 2 X — YB)/6;
1<pu(l)<---<p(s,)<n i=1

Sn
= Z Mn+1-i:n »
i=1

where 1, ., ..., 1., denote the order statistics of (6"/6,)%,t = 1,..., n. Note that
the test statistic is equal to the sum of the s, largest order statistics.
In the following {s,} is assumed to be a sequence satisfying

1<s,<n,s,—0,5,/n—>0 asn—- oo . S)

i.e. we suppose that the maximum degree of contamination is not too big.

3 The Asymptotic Distribution of the Test Statistic

Let F be any right-continuous distribution function and
Q(s) := inf{x € R: F(x) > s} forall 0<s<1

will denote its quantile function. Furthermore let w := Q(1) denote the right
endpoint of F.

The notation 2(A) is used for the domain of attraction of the Gumbel distribu-
tion A. For Fe 2(A)and 0 <s < 1 let

c(s) ;= %J‘ ) (1 —u)dQ(u) .

We will use the same integral convention as in Csorgo et al. (1986 ).

Note that the residuals X, — ¥, t = 1, ..., n are independent and identically
distributed.

The asymptotic distribution of the s, largest order statistics of a sequence
of independent and identically distributed random variables with distribution
function F was analysed in the case (S) and F e P(exp(—x~'"*)) (domain of



304 T. Flak and W. Schmid

attraction of the Fréchet distribution) by Csérgé and Mason (1985), while Lo
(1989 ) studied the situation F € 9(A).

Since X, — ¥, = ¢, for known parameters the asymptotic distribution of the
test quantity can be obtained with the result of Lo (1989 ).

Using the same normalizing constants, T, is also asymptotically normally
distributed. This is a consequence of Proposition 3.1.

For small ¢ the estimator ¥, of Y, may behave badly and thus £ is big. To
ensure that the influence of the first observations is not too strong, we have to
demand that the scale quantity tends to infinity. This assumption is satisfied for
a large class of distribution functions belonging to the domain of the Gumbel
distribution.

Proposition 3.1: Let {Y,} be a M A(0) process, (¢,/0,)* ~ F and F € 9(A). Suppose
that the conditions (A) and (S) are satisfied. Let 8, be an estimator of 3, with
18, — 3ol = Op(1) and c(s) = cg(s) such that

sac(su/m) > 0 (n— o0) . (3.1)

Denoting

Joi={p = (p@)i=1,...5, €N 1 < p(1) <+ < puls,) < m}

then as n - oo

Sn
P
max Z &0 — max ) &2;,| 0 .

(i)
\/_C(Sn/") wedn =51 0 wed, i=1

Remark: The assumptions on the estimators in Proposition 3.1 are very weak
and are satisfied both of nearly all classical estimators (e.g. Yule-Walker, ML,
CLS) and the robust GM- and RA- estimators. Note that we are working under
the null hypothesis ‘no outliers’. For the reasons cited above robust estimators
must be favoured.

Proof of Proposition 3.1: If 3, lies in the neighbourhood of 9,, Lemma 4.1 can
be applied on ¢;(9) and d;(9). A short consideration shows that this can be
assumed without any restriction.

We denote by C, the left-hand side of the assertion. It must be proved that
C, Lo

Let #,={weQ: 19, — %l <r} for some r>0 such that K,:=
{9: 18 = Sl < r} = # with #” as in Lemma 4.1.
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Since lim,_, , #(#,) = 1, it follows that for alle > 0
2(|C,| > &) = 2({|IC,(w)| > e} N M,) + P({|C, ()| > &} N L)
= 2({|IC(w)| > e} N A,) + 0o(1) .
Thus we can assume w € .#,,, i.c. @,, EW.

Let p, := s,/n and

max z e
\/— c(p,) nedn i=

é(n)z

f Sncpn) ne .Z o -
Furthermore let
U, = M, — 03./5,(Q(1 = p,) + c(p,))/c(p,) (32

for 1 < 6 < & (6 as in Lemma 4.1)

‘70

We have

M, — M,| < max Z |6m2 — €2 . (33)

f 5,0(pa) neda 510

Let u € J, be arbitrary, but fixed. Because of (2.3), we get §” = ¢, + R,, — R;,
with

= tii (di(gn) — di(So) X, Ry = 2 di(30)X,-; »

consequently

Sn

Sy Sn
Y |§,("('})2 —elpl < Zl (Ryusy — Ryp)* +2 ‘Zl [&4 IR 1yl + [R2u))
= i= =

<2, + I, + 11, + 1V,) (34
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with
Sn Sn
I,:= 21 (Rlu(i))z > I, := Zl (Rz,4(|'))2 s
i= =
and
Spn Sn
I, := Zl l&u IR 1ueipl » v, = iZl Isn(i)IIRZu(i)I .

Applying Lemma 4.2 it can be found that

2

II, < K2H, i 6720 < H, resp .
=1

-1

Sn
1V, < K, HY? ; 87H0e, o] < K,H3?V .

Thus we have an upper bound of I1, and IV,, which does neither depend on the
index set nor on n. This is the only case where we need (3.1). It follows that

max =o0p(1) , max

_ L
nedn /3,¢(py) wedn /50C(Py) o

Using Lemma 4.2, the inequality of Cauchy-Schwarz and Lemma 4.4, we obtain

(3.5

I < K218, — 9|12 ;1 H,» < K29, — 8> max Y H,

u@i) =
nelJ, i=1

Sp 1
<K,||8, - 30|12<max Y &+ 5—.H0>

nel, i=1
< K3 /s.c(p)l1, — 9612M, + K4ll8, — Sl12Ho
and in the same way

12

S, Sp 1/2 Sy
I, < (; &y ;;1 Rqu)) = (i; 6;2«01»-)

< (K s(+/5ac(PII, — 96IM,)? + Kn/5:c(p) 19 — 8ol1>M, Ho)'? .
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Both upper bounds do not depend on the partition, thus

max ———— =0p(1) and max

= 1 K
wel, \/'C p" wel, \/-C p”) OP( ) ’ (3 6)

if

i) 18, = 8ol M, = 0p(1) and i) /ns,c(p,) > oo(n— o0) .

Since Theorem 4.1 implies U, = Op(1) (see (3.2)), we conclude

18, — 8y ¢, = MO _ Un0(l) | /5,001 = p,) + c(p,))

NN /ne(p,)

=o,.(l)+( p,,+*/p_"Q(( ) >0p( ) .

0:(1)

Now p, tends to 0. Lemma 4.3 iii ) implies that the right-hand term in the above
equality is converging to 0 too, and i) is proved.

With some 0 <y < 1/2 and K(y) > 0 as in Lemma 4.3, we obtain that, as
n— oo,

\/ST”C(P,.) = n\/—ic(p,,) > nK(y)p!*? = K(y)n'?71s}277 & o

and thus ii) is true.
Using (3.5) and (3.6) the proof is finished. O
This result immediately implies

Theorem 3.1: Let {Y,} be a MA(x) process, (s,/a(,)2 ~ F and F € 9(A). Suppose
that the assumptions (A) and (S) are satisfied. Let 8, and 62 be estimators of 9,
and o with

/18, — 8ol = 0p(1) and
/nl6Z — adl = 0p(1) .

If furthermore c(s) = cg(s) with p, := s,/n satisfies

V5P >0 (1> ),
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then as n — ©

1 d
max M2 — 62(Q(1 — p,) + c(p) = X
25,¢(Pn) 62 1 Sut)<- <uts s ‘Z (6t Q0 = po) + clp)

with X ~ @, where @ denotes the standard normal distribution.

Proof: We use the same notation as in proof of Proposition 3.1 and

R L a /50— p) +c(p)
RVE V2c(p,)

2L o /500 —p) +c(pa)
TV V2¢(p,) '

Furthermore we define S, := 6ZR,, S, := 62R,.
Combining Proposition 3.1 and Lemma 4. 3 iii) we have

- SP@U =)+ ¢ n
S,—8,= M,— M,)— 62 )
\/_( \/E ( n) \/-( ao

=o0p(1) .
Theorem 4.1 gives R, = Op(1) and R, % X ~ &. Since

-~

R, =

62R =R, + 05(1)

aq.:l —
B

D>
N

the assertion follows.
Remarks: 1. (3.1) is satisfied, if one of the following assumptions is true:
i) There exists ¢ > 0 such that

liminfe(s)=c .
=0+
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ii) There are 0 < f < 1 and ¢ > 0 so that

lim infs,/n® =c .
s=0+

Proof: i) is evident; ii ) is an immediate consequence of Lemma 4.3 with § := /2.

O

Thus Theorem 3.1 can be applied to all distribution functions discussed in
Csorgo and Mason (1985, Theorem 1.5).
2. (3.1) is not always satisfied.

Consider e.g. the following distribution function with ¢? := n/2

2N a(®) — 1 ifx 20
Fl:= {0 otherwise

Hence f(x) = 2n, ,2(x), x = 0 is a density of F and we have

Q(s) = No e (l—;—f) forall0 <s < 1

The special choice of 62 ensures the first moment to be equal to 1. The upper tail
probability of F and N, ,. are of same order of magnitude.

Using a von Mises condition, (see e.g. Resnick (1987, Proposition 1.17 )), which
is easy to calculate for F and all normal distribution functions, we obtain
F e 9(A).

Expansion of 1 — F(u) in terms u for u — oo, the von Mises condition and
using Lemma 4.3 i) lead to

2

c(s)~§h ., 0(l—s)~/—20%logs ass—0+

Thus we get in (3.1) as n — o

1/2
x/S:C(p..)~Q(("12‘/S—" ~K< o ) :

— Pa) —log p,

The last quantity converges to infinity if and only if

lim °8" _ ¢ .

n-*ao Su
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3. In applications it is often assumed that the white noise is normally distri-
buted, i.e. (¢,/0,)* ~ x3.
Applying Lemma 4.3 i) to a gamma distribution function F we find that

lim ce(s)=¢c>0, especially lim ca(s) =2 .
s=0+ s=0+

Because of remark 1, (3.1) is satisfied. Since gamma distributions belong to 2(A),
Theorem 3.1 can be applied. Note that we don’t need any restrictions on {s,}
except of (S).

4. By means of a simulation study we have determined the empirical power
functions of some outlier tests of type T,,.

We confined ourselves to the case that the undisturbed process is an AR
process with a Gaussian white noise. To describe the appearance of outliers an
additive outlier model is used. We compared the test ¢, basing on T, with the
test @ basing on the maximum of the squared one-step residuals. It turns out
that ¢, provides better results than ¢, if several outliers occur, i.e. it is recom-
mendable to make use of the information on the upper bound s,. Furthermore
the test ¢; shows to be rather robust with regard to the choice of s,, provided
that s, does not exceed the exact number of outliers too much. The results of the
simulation study are given in Flak (1992).

A closer investigation of the proof of Proposition 3.1 and Theorem 3.1 leads to
some interesting consequences.

Corollary 3.1: Let {Y,} denote a causal and invertible AR process with (¢,/,)* ~ F
and F € 9D(A). Suppose (S) is satisfied.
Let 3, and 62 be estimators of 3, and a2 with

V8, — 8ol = 0p(1)  and
Jnl62 — a3l = 04(1) .

Then, denoting p, := s,/(n — p),asn — ©

1 3n
=y A Y. (607 — 62(Q(L — p) + c(P)) S X
N/ 28,¢(P,)87 p+1<u()< - <uts)sn i=1

with X ~ &.
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Proof: The proof is similar to that of Theorem 3.1. The only difference is that
Proposition 3.1 may not be applied, since (3.1) is not required. £™ is of rather
simple form for all t > p, since d;(3,) = Oforalli > p + 1.

We have to examine the n — p residuals £, t =p + 1, ..., n. Note that
R,, =0 for all t > p, consequently we have 11, = 0 and IV, = 0. The remaining
terms I, I11, can be handled as above. This completes the proof. O

In the case of an AR(p) model the processes Y and Y, are identical for all ¢t > p.
Therefore the loss of information we suffered by usmg the truncated one-step
predictor (see Brockwell and Davis (1987, p. 117 )) is not crucial.

In section 2) we stated that all causal and invertible ARMA processes satisfy
(A). The moving average component causes 17, to depend on all X, 7 < t, i.e. the
truncated approximations Y, will behave badly for small ¢. The loss of informa-
tion may be important if (3.1) is not satisfied (see e.g. remark 2).

We now state a variant of Theorem 3.1 without using (3.1). One can proceed
as follows:

Examine the time series realizations Xrtny+15 +++> Xn for some r(n) < n, but use
the preceding (undisturbed) x;, ..., X, to improve Y™, t > r(n). Choose r(n)
with r(n) - oo(n — o0). On the other hand r(n) should not grow too fast, because
we want to examine as many data as possible.

Corollary 3.2 gives some proper choice of r(n).

Corollary 3.2: Let {Y,}, 9,, and 62 be as in Theorem 3.1. Suppose (A) and (S) are
satisfied. If r(n) ~ o log n for some o > 0, then we have with p, := s, /(n — r(n)) as
n— o

V25,¢(p,)62 c(pn max Z (60 — 62(Q(1 = po) + c(p)) > X

r(n)+1 Su(1)<-c-<p(sp)<n i=

with X ~ ®.

Proof: Since n — r(n) ~ n, p, tends to 0. We replace n by n — r(n) in M, and R,.
For reasons of simplicity the same notation is used for the new quantities.
The behaviour of I, I11,, is still the same. Furthermore we get

K2

2 W < 2-67"WH,  and
11, < K3H, Z 5 52
1V, < R, HYV, 677

with the stationary process ¥, = Y2, 67|¢;4,|.
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Both upper bounds converge in probability to zero. Adding the scaling con-
stants we only have to ensure that instead of (3.1) the weaker condition

6""’\/:9_,,c(p,,) - © as n— o0

is satisfied.
But since r(n) ~ « log n, this follows at once (Lemma 4.3). O

4 Appendix

Lemma 4.1: Let P be a power series satisfying condition (A). Then for each
1 < 6 < R exist a K = K(6) > 0 and an open neighbourhood W = #(d) of I,
such that

i) forallieNgy, S, e#,3,e W
K
lei(31) — c($2)l < 5 19, — 3,1l .
ii) forall e W

lei(9) < ; foralli=0,1,...

Proof: LetK,:= {3€O: |3 — 3|l <r},r>0.
Since 7 is open, there exists some r > 0 such that

W =K, cK,cV.

P is a holomorphic function ir: z for fixed 3. Applying Cauchy’s integral formula,
we have for all j

¢i(9) = —1—- § ﬂz,_&_) dz , 4.1)

2ni Jo 2zt
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where .Z represents a circle of radius 1 < 6 < R centered at 0. Hence the second
inequality follows with

K, = sup sup |P(z; 9)| .

1zZ|<é e ¥’

Combining (A3) and (4.1) we get i). O

Lemma 4.2: Suppose that the assumptions of Proposition 3.1 are satisfied and that
8, €W (see Lemma 4.1), there exist K, >0, K, > 0 such that

Ryl <K, I8, — $IH? and  |R,|<—2H{?

where R, and R,, are defined as in proof of Proposition 3.1.

Proof- Given 1 < & < & < R there is some ¢ > 0 such that m/6™ < ¢/6™ for all
m=1, 2, .... Applying Lemma 4.1 to P and Q = 1/P, the Cauchy-Schwarz
inequality and the above inequality, we find

mM<WW—&MZZyW&J<%W—% Y mé e, |

i=1 j=0 m=1

<RI, — 9ol X 7 "leml < Kyl8, — Soll HI?
m=1
Moreover, we obtain that

IR, < K? Z Z 6_i_j|81~i—j| ==

i=t j=0

o .
Z 67 Jle-—i-j‘

||'M 8

A
|70
f

S— 1/2
5ol < S2HY? .

o

and thus the proof is finished. O

A fundamental auxiliary result for the proof of Theorem 3.1 and Proposition 3.1
is due to Lo (1989).
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Theorem 4.1: Let X;.,, i =1, ..., n denote the order statistics of an independent
random sample of size n with distribution function F € 9(A). Let {s,} satisfy (S)
and define p, := s,/n. Thenas n -

Jz? e 3. (rsprin = (@1 = p) + B X
with X ~ &.

Proof: See Lo (1989). O
The crucial normalizing constant c(s) needs some further study. In the following
we prefer, for technical reasons, to work with functionals of F instead of Q, as

Lo (1989) did.
Given a distribution function F with right endpoint w we define forallu <

m(u) .= T-%fu_) Lw t dF(t) and r(u) :==m(u) — u

A sufficient condition for the existence of m(u), r(u) is {2 |t|” dF(t) < oo for some
y > 1. The integral exists for all y > 0, if F € 9(A) (de Haan (1970, Corollary
2.5.3)).

Partial integration leads to

1 [0
r(u)=mfu (1 —=F(@))dt .

The first part of Lemma 4.3 connects c(s) with r(u), while property ii) provides
a lower bound for c(s).

Lemma 4.3: Assume that F € 9(A).
i) Let A(s):=1— F(Q(1 —s)) forall0 < s < 1, then

lim A_(s) =1 and c(s) = f’—@r(Q(l —93) .

s—»0+ §
ii) For all 5 > 0 there exist 0 < s4(6) < 1 and K(6) > O such that

c(s) = K(©)s?  forall0 < s < so(5) .
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iii) For all 6 > 0 we have

Q1 — 9)s° _

lim =0.

s—0+ C(S)
Proof:
i): Recalling 1 — F(Q(1 —s)) <s <1— F(Q(1 — s)—) and using lim,_,_(1 —

F(x))/(1 — F(x—)) = 1 (Resnick (1987, Corollary 1.6 ) ) we get the first part of i ).
Applying the integral transformation to m(Q(1 — s)) gives

4(s)m(Q(1 — s))

= L 1 tdF(t) = E(I o1 -s),0)(X)X) = E(I g1 -5, 1,(U)Q(U))
(1-s)

= E(I(l—s,l)(U)Q(U)) - E(I(l—s,F(Q(l—s))](U)Q(U))

1
=J_mw@—Qu—ﬂw—Mm-

1

since Q(u) > Q(1 — s) is equivalent to u > F(Q(1 — s)) and since F(Q(1 — 5)) >
1 —swehaveforl —s <t < F(Q(1 — s)):

Q1 —-95)=0(F@Q1 —-9)) 200 201 —5) ie. Q@)=0Q(1~—5)

(see Shorack and Wellner (1986, p. 5)). Using r(Q(1 — s)) = m(Q(1 —s)) —
Q(1 — s) and noting that partial integration of c(s) leads to ¢(s) = —Q(1 —5) +
f1-5Q(u) du we obtain the required result.

ii): For u < w we define

h(u) := JW Jw(l — F(s))dsdt .

Resnick (1987, Prop. 1.9 ), resp. de Haan (1970, Theorem 2.5.2) proved with the
preceding notation

lim 1

W 4.2
wo- (1= F(u))r*(u) @2
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De Haan (1970, Theorem 2.5.2 ) has given the following representation for F

“ a(t)

—dt forallu<w ,
= J@) )

1 — F(u) = b(u) exp(—
where a(t), b(t), f(t) are real functions with

‘ir)n_a(t)=1, ‘Em_b(t)=b>0, f(t)=(1—__};'—(2'm

This means that for each ¢ > 0 exists a x; < w; < w such that
a)=>1—¢, b(t)<2b forallo, <u<w.

Since [% 1/f(t) dt = ¢ — log(h(u)) for all u > w,, we have for some Ly, L > 0
1-Fu<L, exp(—(l —8) Jw 1/1(t) dt) < L(h(w))*~® .

Using (4.2) (enlarge w, if necessary) we get for all w, <u < w (choose K > 0
small enough)

r(u) = K(1 — F(u))@729 |
i.e. for all 6 > 0 there are w,(d) < w and K(5) > 0 such that
r(u) > K@)(1 — Fw)® forall o, <u<ow. 4.3)

Note that Q(1 — s) > w,(d) for all 0 < s < 54(0) (5o(6) small). Replacing in in-
equality (4.3) for all u=Q(1 —s), 0 < s < s0(d) (reduce K(6) if necessary)
r(Q(1 — s)) by c(s) and 1 — F(Q(1 — s)) by s (see part i)) completes the proof.
iii): Let 6 > 0. Applying ii) with §/2, it follows that for all sufficiently small
s>0

1Q(1 —s)Is® _ |1Q(1 — s5)|s?
<=0 = kop °

s—=0+),

since lim,_.,_u’(1 — F(u))=0 for all y >0 (see de Haan (1970, Corollary
2.5.3)). O
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Lemma 4.4: Let ¢, t € Z be a random process with sup, E(e?) < oo. For some
0<9%<lletH:=Y2,%c, Thenforalll <k <n

L 1
max Z wo < 7 8( max N Z e2p + SHO)
= <uk)<n i=

1<p(l)<---<pk)<n i 1<p(l)<--
Proof: We use the elementary inequality

r r
max Z iy S < aO max Z Ay » (4'4)
Ogpu(1)< - <u(r)<m-1 i=1 1<pu(1)< - <p(r)<m i=1

valid forg; >0,i=0,1,....m 1 <r<m.
Let
k
M(k) := max Y H,
1<p(l)< - <uk)sn i=1
k
MRes(k) := max Y &2 -

1<pu(1)<---<pk)<n i=1

and fix an arbitrary partition0 < p(l) < < puk) <n-— L.

Applying (4.4) we get
k
; @) = Z (SH u(i)—-1 +é (-)) =4 Z Hu(t) 1+ Z sn(t)

<3 max Z @ + MRes(k)
O<u(l)<---<pk)sn-—-1i=

< 3(H, + M(k)) + MRes(k) .

Maximizing the left-hand side of the inequality gives the result.
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Book Review

S. Fienberg/J. Olkin (Eds.): Log Linear Models by Ronald Christensen, Springer
Texts in Statistics, Springer-Verlag, 1990, 419 pp., DM 98,—

This book is written for advanced Master’s level statistics students. Broadly, it
discusses the use of log-linear models to analyze discrete multivariate data with
nominal-valued variates (contingency tables data), the use of logistic regression
and logistic discrimination to analyze binary response data with covariates, and
generalized linear models (GLIMs). The authors’ intention is to “fill a niche
between basic introductory texts such as Fienberg (1980) and Everitt (1977) and
advanced books such as Bishop, Fienberg, and Holland (1975), Haberman
(1974), and Santner and Duffy (1989).”

The chapter titles are as follows.
Chapter 1 Introduction
Chapter 2 Two-Dimensional Tables
Chapter 3 Three-Dimensional Tables
Chapter 4 Higher Dimensional Tables
Chapter 5 Models for Factors with Qualitative Levels
Chapter 6 The Matrix Approach to Log-linear Models
Chapter 7 Response Factors and Logistic Discrimination
Chapter 8 The Matrix Approach to Logit Models
Chapter 9 Fixed and Random Zeros
Chapter 10 Generalized Linear Models
Chapter 15 Maximum Likelihood Theory for Log-linear Models

Chapter 1 provides some motivating examples and reviews the binomial,
multinomial, and Poisson distributions.

Chaps. 2-4, 6 and 9 study log-linear models for the joint distribution of
discrete multivariate data, each of whose variates is a finite valued nominal
responses. These chapters form the heart of the book. Sections 3.5 and 6.3 also
briefly consider product-multinomial sampling, which is a prelude to the formal
distinction between response and explanatory variables emphasized beginning
in Chap. 7. Chap. 9 discusses fixed and random zeroes.

Among the book’s strengths is its inclusion of the rather recent literature on
graphical models and their use in interpreting certain log-linear models. The
book also contains an extensive discussion of model selection algorithms which
includes a nice case study illustrating the algorithms. There is also considerable
material on residual analysis and the identification of influential points. In
order to completely understand the discussion of maximum likelihood theory in
Chap. 6, the student should have a good course in linear algebra and be familiar
with the notion of column space. Similarly, the asymptotic theory discussed in
6.2 may be difficult for some applied students.

Chapter 5 describes the uniform association model for tables formed from one
or quantitative dimensions. Sections 5.1-5.2 consider the case of log-linear
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models which arise when the factor scores are known while Sect. 5.3 discusses
the case of unknown factor scores.

The study of response variables and their differentiation from ‘explanatory’
variables is introduced in Chap. 7 and Chap. 8 uses matrices to state the
models and associated inference procedures. Most applied M.S. students will
have difficulty thoroughly mastering the material in 8.2 on asymptotic results
(projections, sups, norms and the like are prerequisites.)

The primary case considered in Chap. 7 and 8 is that of a binary response
with multivariate explanatory variables. However the extension to a multi-
nomial response is considered in 7.2. Discrimination and classification based on
the logistic model are introduced in 7.4 and 8.6. Chapter 7 concludes with a
discussion of ‘recursive casual models’ which are useful when external consider-
ations suggest a hierarchy of the variables in which variables lower on the
hierarchy are considered as potential explanatory variables for variables higher
in the hierarchy.

Chapter 10 is brief 14-page introduction to generalized linear models.

The final chapter is essentially an appendix on large sample properties of
maximum likelihood estimators. Its mysterious numbering arises from the fact
that it is a reprinting of Chap. 15 from the author’s earlier book on linear
models (Plane Answers to Complex Questions: The Theory of Linear Models,
1987).

The choice of ‘discretionary’ topics covered in this book are, perhaps, of more
interest to social scientists than to biostatisticians; the latter group would be
more interested in nuisance parameter models and procedures which arise natu-
rally in the stratification of retrospective and prospective data. For example,
biostatisticians would find the discussion of conditional procedures such as
conditional maximum likelihood estimation limited or missing.

Generating interesting problem sets is one of the most difficult parts of book
writing and some instructors would find the set of problems a bit thin.

In sum, this is a well-written text with many light touches which will keep
students interested. It uses many recent innovations from the statistical literature
to help interpret the models and provide complete data analyses. However some
advanced mathematical tools are required of the students at certain points to
completely master the material; most applied M.S. students will not have this
background. Lastly, some instructors will want to supplement the basic text
material if they wish to consider specialized applications areas, such as
biostatistics.

Columbus Th. Santner



Book Reviews 321

R. V. Ambartzumian: Factorization Calculus and Geometric Probability,! Cam-

bridge University Press New York, ISBN 0-521-34535-9, 1990, X1/286 pp.,
$59.00

Stochastic geometry deals with mathematical models for describing random
geometrical structures, practical examples of which abound in all facets of
everyday life. It has emerged from the theory of geometric probability and is
closely related to integral geometry. The roots can be traced back to Buffon’s
famous needle problem in 1733.

The author of the present book, R. V. Ambartzumian, is one of the leading
experts in the mentioned fields. He has influenced the development of integral
and stochastic geometry by numerous, interesting results, new methods, and
problems, a great part of which is presented in the monograph.

Ambartzumian has realized that many of the tools and notions of integral and
stochastic geometry can be explained by the unifying concept of Haar factoriza-
tion of invariant measures on product spaces with transformation group. A
corresponding program is carried out in the book. The principle of Haar fac-
torization is fully described and consequently employed for a systematic exposi-
tion of integral geometry and for the treatment of geometric random processes
with laws which are invariant under the action of transformation groups.

Most of the explanations refer to the two- or three-dimensional Euclidean
space, even if the treatment of higher-dimensional cases seems to be possible. In
this way, a better understanding is achieved, and the reader has an intuitively
geometric access to the theory. The methods used appeal to the geometric
intuition.

In the chapters devoted to integral geometry, Haar measures on groups of
Euclidean motions and on group of affine transformations are considered. Start-
ing from this, invariant measures on sets of lines, planes, segments, and other
elementary geometric objects are determined. Moreover, the main features of
combinatorial integral geometry are developed. This discipline was established
by Ambartzumian in the 1970s and was more exhaustively represented in his
book “Combinatorial Integral Geometry” (Wiley, 1982). All the provided tools
are used for the treatment of problems within the framework of geometric
probability, and they are needed later for the investigation of geometric ran-
dom processes.

Many of these processes may be interpreted as point processes on spaces of
geometric objects. Accordingly, the theory of point processes including the
theory of Palm distributions plays a central role in the book. Stationary point
processes on Euclidean spaces as well as stationary or motion invariant line,
plane, and segment processes, Boolean models, and random mosaics are treated.
Models derived from Poisson point processes are of special interest. Finally,
sterological problems for special processes in the plane are regarded.

! This review will also be published in “SIAM Review”
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The book is highly recommended to mathematicians interested in integral and
stochastic geometry. It is very stimulating because of the abundance of interest-
ing results, models, and problems.

Jena J. Mecke

I. M. Bomze: A functional analytic approach to statistical experiments,
Longman Scientific & Technical, Harlow, Essex, UK, 1990, 116 pp., £13.00

This research note is concerned with sufficiency, optimal unbiased (bounded)
estimation, and invariance using the setup of L- and M-spaces introduced by Le
Cam. It is essentially self-contained, but a good knowledge in Banach lattices is
presumed. Although there are comprehensive books on mathematical statistics
using abstract L- and M-spaces written by Le Cam (1986), Strasser (1985) and
Torgersen (1991), there are many new things in Bomze’s booklet, for example,
most of the results are stated for generalized Banach-space-valued random ele-
ments. The research note will be of interest to researchers or graduate students
who are working in this abstract setup or want to get to know something about it.

In Chap. 1, the L- and M-spaces of a statistical experiment are introduced. If
the experiment is dominated by a o-finite measure y, L can be identified with
L'(u) and M with L*(p). In general, L is a vector lattice of measures, and M its
dual. The elements of M are “generalized (bounded) real-valued random
elements”. For a Banach space B, the elements of the space M? of all continuous
linear mappings from L to B are “generalized (bounded) B-valued random
elements”. They may also be considered as generalized bounded B-valued esti-
mators. In order to compare such estimators by means of a convex loss function,
a composition of convex functions on B and elements of M® has to be defined
which yields elements of M2,

In the dominated case, sub-g-algebras and conditional expectations can be
identified with certain subalgebras of M and projections on M, respectively. In
Chap. 2, these subalgebras and projections are defined in the general case. An
inequality which replaces Jensen’s inequality for conditional expectations and
Banach space valued random elements is given.

In Chap. 3, sufficient sub-g-algebras and the corresponding conditional expec-
tations are replaced by “sufficient subalgebras” of M and “sufficient projections”
on M. Among other things, in this setup a minimal sufficient subalgebra 4,
always exists, and for a sufficient projection there is a Jensen-type inequality,
which is useful in unbiased estimation.

Optimal unbiased estimation using estimators from M or M® is investigated
in Chap. 4. It turns out that an estimator from M is optimal iff it is contained in
the “optimal algebra” 4, = M. It is shown, for example, that the following
assertions are equivalent: A, is sufficient; 4,, = Aq; 4,, is (boundedly) complete;
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there is a complete and sufficient subalgebra in M; every (generalized) unbiased
estimable parameter pocesses a (generalized) UMV A-estimator. A criterion for
the existence of nontrivial optimal estimators is given.

In Chap. 5, experiments are studied which are, roughly speaking, invariant
under a group G of isometric lattice isomorphismus (“transitions”) on L. The
algebra 4; = M of elements which are invariant under duals of transitions from
G is sufficient. Among other things, a criterion for the equality 4, = A4,, = Ag is
given, and it is shown how to calculate the sufficient projeciton on A for groups
satisfying a kind of amenability property.

In an appendix, a representation of M according to Torgersen is discussed.

Hanover D. Mussmann

H. Bauer: Wahrscheinlichkeitstheorie, Walter de Gruyter, 1991, 520 pp.,
DM 98,—

The present book is a completely revised new edition of the well known textbook
“Wabhrscheinlichkeitstheorie und Grundziige der MaBtheorie” (which appeared
in English under the title “Probability Theory and Elements of Measure The-
ory”). The previous editions gave an introduction both to measure theory and
to probability within about 400 pages. This meant that rather little space re-
mained for probability, and perhaps the name “Measure Theory and Elements
of Probability Theory” would have been more appropriate. Now, the sections
on measure theory have been turned into a separate monograph of 250 pages
(“MaB-und Integrationstheorie”, de Gruyter, 1991), and the volume on prob-
ability now presupposes knowledge of measure theory. It can therefore treat
several additional topics and present others in more depth.

After some fundamentals, chapter III discusses the law of large numbers and
the almost sure convergence of series of independent random variables. It in-
cludes the Hewitt-Savage 0-1 law and the Chung-Fuchs theorem on recurrence
of 1-dimensional random walks.

Chapter IV gives a modern introduction to martingales. A nice feature is a
proof of the Radon-Nikodym theorem via martingales with semiordered index
sets.

Chapter V develops the theory of Fourier transforms of probability measures
on RY the basic tool for the proof of the central limit theorem in chapter VI
(Lindeberg-Feller theorem, infinitely divisible distributors, Gau8 measures in
R?). Chapter VII is devoted to the law of the iterated logarithm and includes a
portion of Strassens work and Fellers proof of Strassens result that the finiteness
of the variance is necessary in the law of the iterated logarithm.

Chapter VIII treats the construction of stochastic processes. Alter the general
theory of semigroups of kernels and of processes with stationary independent
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increments, there are sections on Brownian motion, the Poisson process, on
general Markov processes (Ornstein-Uhlenbeck process) and on Gaussian pro-
cesses. The final chapter IX studies Brownian motion in more depth (path
properties, strong Markov property) and gives a quick introduction to stochas-
tic integrals.

The aim of the author has been to give a guided tour which provides an
overview of the field and enables the student to begin reading more advanced
literature on special topics, or to explore new territories. This has been accom-
plished with the usual clarity of exposition-for which the author is well known.
The arguments are given with complete detail, and some redundancy is used on
purpose to help understanding connections between the various results. Also,
the structure of proofs is outlined before the steps of the proofs are carried
out. Therefore, reading these 500 pages may take less time than reading a shorter
but more concise presentation.

Apparently, the book does not try to give an overview over all of the principal
directions of probability. For example, important topics like stationary pro-
cesses, limit theorems for Markov chains, renewal theory, or central limit theo-
rems for martingales or other dependent processes are completely absent. The
choice of the material is mostly classical and biased towards results of interest
to pure mathematicians (existence theorems and characterization theorems).
Comparatively little is said about applications and about probability models of
real phenomena. On the other hand, the new edition includes various examples
of interesting probabilistic estimates, some of which not available in most other
texts (Cramér-Chernoff estimates on large deviations). The section on stochastic
integrals gives a very illuminating exposition of some of the fundamental ideas
behind this notion, not burdened by technicalities.

On some occasions, the general existence theorems would not be needed for
the examples to which they are applied. There are shorter direct arguments
showing the existence of Brownian motion and of the Poisson process.

A little error occurs in the section on normal number: The author calls a
number normal when the relative frequency of all digits in the decimal expansion
tends to 1/10, but for one of the results he would need the more common
definition requiring this for arbitrary blocks of digits.

There are numerous interesting historical remarks. A few of them are not quite
precise: Borel did not propose g-additivity (and would not have been the first to
do so), and his “proof” of the strong law in the Bernoulli case was incomplete.
Kolmogorov stated his strong law for variables with finite expectations in 1933;
de Moivre knew Stirling’s formula prior to Stirling, and Herglotz’ role in the
Herglotz-Bochner theorem should not be overlooked.

I propose that in future editions the author marks those sections not needed
in the sequel by a star.

This book is a very remarkable and original addition to the existing textbooks
on probability, and it is fun to read. It shall surely gain many friends.

Gottingen U. Krengel
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Accuracy of Proportion Estimators: a Simple Rule

EUGENE F. SCHUSTER

Department of Mathematical Sciences, The University of Texas at El Paso, El Paso,
Texas 79968-0514, USA

Abstract: We consider the sample survey type problem of estimating the proportion p of a finite
population of size N having a given attribute by the proportion p of successes in a random sample
(with or without replacement) of size r from the population. Our main result indicates that p + 1/\/;
is always at least a 91.0% confidence interval (C.I.) for the parameter p. We show that h(p) =
h(p; r, N) = Prob{|p — p| < l/ﬁ} is at least as large under the hypergeometric model of simple
random sampling without replacement as it is under the corresponding binomial model of random
sampling with replacement. The significance of our main result is that it is a good, easily stated
accuracy rule, holding for all r, N, and p, which can easily be understood by the layman when
assessing accuracy of the estimator p and discussing the relationship between accuracy and sample
size.

Key words and phrases: binomial; hypergeometric; confidence interval; finite population

1 Introduction and Summary

In Schuster (1978), we gave a good easily stated rule regarding the accuracy of
probability estimates:

Theorem 1.1: Let A be an event associated with a random experiment &, where
p = Prob(A). Let the random variable X record the number of occurrences of A
among r independent trials of £ and let p = X/r. Then with probability at least
0.910 (i.e. at least 91.0% of the time in the long run) the estimator p of p will be
in the interval [p — 1/\/r,p + l/ﬁ].

Noting that it is sufficient to consider p < 0.5, we proved Theorem 1.1 via
three cases: Chebyshev’s inequality easily handled p € [0, 0.1]; published results
on the accuracy of the normal approximation to the binomial inferred the
theorem for p € (0.1, 0.5] with samples sizes r > 200; finally, numerical methods
were used to analyze the remaining possibilities, 0.1 < p < 0.5and 1 < r < 200.

0026 - 1335/93/5/325-332 $2.50 © 1993 Physica-Verlag, Heidelberg



326 E. F. Schuster

Of course, the same theorem holds when estimating a binomial proportion
p by the proportion of successes p which occur in r trials, ie., p + l/ﬁ is
always at least a 91.0%; confidence interval (C.1.) for a binomial parameter p.

Several people, working with sample survey type data, have inquired if a
corresponding theorem holds in the hypergeometric case of estimating the pro-
portion p, having a given attribute (say success) in a finite population of N, by
the proportion p of successes in a simple random sample without replacement
from the population. Our main result indicates that the answer to this question
is in the affirmative:

Theorem 1.2: Let the random variable X record the number of successes in a
random sample (with or without replacement) of sizer,1 <r < N, from a popula-
tion of size N containing n successes and let p = n/N, p = X /r. Then with probabil-
ity at least 0.910 (i.e. at least 91.0% of the time in the long run) the estimator p of
p will be in the interval [p — 1/\/r,p + l/ﬁ].

Our proof of Theorem 1.2, given in Section 2, will show that h(p) = h(p; r, N)
= Prob(|p — p| < 1/\/r) is at least as large under the hypergeometric model of
simple random sampling without replacement as it is in the corresponding
binomial model of random sampling with replacement. In Schuster (1978), we
showed that the lowest confidence level under the binomial case of Theorem 1.1
occurs when r = 6 with p approaching 5/6 — 1/\/3 = 0.425085 from the left.
Here the confidence level percentage dips to nearly 91.011%,. Thus the 91.0% is
also the best overall confidence level percentage one can achieve in both cases
of Theorem 1.2. The lowest percentages again occur when r = 6 with N large
and p approaching 5/6 — 1 /\/5 from the left, i.e. when the hypergeometric model
approaches the binomial model having the lowest confidence level.

How conservative is the 91.0% confidence bound? The Central Limit Theo-
rem tells us that for large r and (usually unknown) p not too close to 0 or 1,
p+1 /ﬁ is about a 95%, C.L for p. In a related paper, Schuster (1992), we give
a new proof of the numerical part of the proof of Theorem 1.1 which enables the
exact computation of the (minimum) probability coverage

H, = inf {h(p; 1) = Prob(|p — p| < 1/y/n:0 < p< 1}

in the binomial case. In the following we discuss Tables 1 and 2 from this paper.
{H,} is not monotone in r as one might expect. There are only 2, 4, and
18 sample sizes r where the probability coverage H, falls below 0.92, 0.93, and
0.94, respectively. Six decimal digit approximations to these 18 cases are given
in Table 1. For the (1992) referenced paper, we computed values of H, for
r < 700. Except for the degenerate case r = 1, all values of H, were below
0.954500 (the asymptotic value of h(1/2; r) given by the normal approximation
to the binomial). Moreover, we observed that picking a sample size r to be a
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Table 1. Probability Coverages Below 0.94

Sample size r inf, h(p; r)
6 0.910113
2 0.914214

12 0.922074
3 0.924501
8 0.927673

20 0.929369
5 0.930495

15 0.932670

11 0.932957

30 0.934054

24 0.935862

19 0.935884

42 0.937285
4 0.937500

29 0.938338

35 0.938548

56 0.939641
7 0.939671

Table 2. Coverages for Perfect Squares

r inf h(p; r) r inf h(p; r)
1 1.0 196 0.954223
4 0.937500 225 0.954260
9 0.948609 289 0.954313
16 0.950958 324 0.954333
25 0.952342 361 0.954350
36 0.952969 400 0.954365
49 0.953398 441 0.954377
64 0.953647 484 0.954388
81 0.953833 529 0.954398
100 0.953956 576 0.954406
121 0.954053 625 0.954413
144 0.954123 676 0.954420
169 0.954180 © 0.954500
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perfect square, i.e. the square of an integer, elevates the probability coverage
quickly to the asymptotic value. For r a perfect square larger than one, Table 2
shows that the probability coverage increases with r (at least to 700), has lowest
value of 0.9375 at r = 4, a value of 0.948609 at r =9, and is above 0.95 for
squares r > 16. We believe that the pattern of Table 2 continues for larger
squares r and that the minimum probability coverage is larger than 0.95 for all
perfect squares larger than 9, but have no proof. For the present paper, we have
used the algorithm in our 1992 paper to verify this assertion for perfect square
sample sizes r to 2500 (which covers most applications). When considering
theoretical models to approximate real world problems, there is often little
practical difference between confidence levels 91% and 95%. Thus the signifi-
cance of Theorem 1.2 is that it is a good, simple, easily stated accuracy rule,
holding for all r, N, and p, which can easily be understood by the layman when
assessing accuracy of estimates and discussing the relationship between accuracy
and sample size.

We prove Theorem 1.2 from Theorem 1.1 and Lemmas 2.1-2.3 of Section 2
which follow from Uhlmann’s (1966) relations between the binomial and hyper-
geometric cumulative distribution functions (c.d.f.’s). Lemma 2.2 indicates that
(for fixed r, p, and N) the hypergeometric c.d.f. starts out and remains below the
corresponding binomial c.d.f. until it crosses at an integer close to the common
mean and then remains above until both c.d.f.’s reach one at r. This observation
sheds further light on the relationship between binomial and hypergeometric
probabilities, C.I.’s, and c.d.f.’s. Let a(p) be some function of p. Then Lemma 2.3
indicates that

Prob(|p — p| < a(p)) = Prob(|X — rp| < ra(X/r))

is at least as large under the hypergeometric model as under the corresponding
binomial model whenever

{x:|x — rp| < ra(x/r)}

contains both [rp] and [rp] + 1 ([-] is the greatest integer function). This is
easily seen to be the case for every p when a(p) = 1/\/;.

2 Proof of Main Result

Let the random variable X record the number of successes in a random sample
ofr,1 <r < N, from a population of N containing n successes and let p = n/N.
If sampling is with replacement, then X has the binomial distribution with
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parameters r and p. If sampling is without replacement, X has the hyper-
geometric distribution with parametersr,n,andm = N — n = N(1 — p). We will
use the notation Fy(c; r, n, N) and Fy(c; r; n, N) for the c.df. of X ((Prob(X < ¢))
in the binomial and hypergeometric cases, respectively. Let D(c) = D(c;r,n,N) =
Fg(c; r, n, N) — Fy(c; r; n, N). Utilizing the relation between X and r — X one
can see that D(c;r,n, N) = —D(r — ¢ — 1;r, N — n, N). We first note the trivial
cases:

— Forr =1, D(c;r,n, N) = 0 for every ¢, n and N.

-~ Forp=0orl,ie,n=00rn= N, D(c;r,n, N) =0 for every c, r and N.
- D(r;r,n, N)=0foreveryr,nand N.

- D(O;r,n,N)>Oforeveryr>1,and0 <n < N.

- D(r—1;,r,n,N)= —D(0;r, N—n,N) <Oforeveryr>1l,and0 <n < N.

The following lemma will be used to show that the sign of D(c) can be
determined for all integers c except possibly at [u] where u = E(X) = rp = rn/N.

Lemma 2.1: Assume 1 <r < Nand0<n < N. Let b =(r — 1)n(N + 1)/N? and
a=b — (r — 1)/N. Then for integer c,0 < c <r,

>0 for0<c<a

D(c) = Fg(c;r,n, N) — Fy(c;rym, N){<0 forb<c<r

Proof: Noting the trivial cases ¢ =0 and ¢ =r — 1 above, the proof follows
easily by inverting Uhlmann’s (1966, Satz 5, p. 156) relations (restated in Johnson
and Kotz (1969), p. 151) which imply that if p=n/N and c is an integer,
0 <c<r—1then

(o c
>0 for0<psr_1 DN+
Fy(c; r,n, N) — Fg(c; r; n, N)
0 f c r—c—1 )
<O o te oy SP <

O

Under the assumptions and notation of Lemma 2.1, one can use simple
algebra to observe:

() 0<b—a=(r— 1N <1.
(ii)p-b=(N—r+l)n/N2=p<l—r_1)>0.

N
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(i) a—(u—1)=N-r+ 1)(N—n)/N2=q(1 —-%)>0.
vy u—l<a<b<yp
Now (i) says that the interval [a, b] contains at most one integer. But then (iv)
indicates that the only possible integer in [a, b] is [ u].
We can now use Lemma 2.1 to analyze the sign of D(c) depending upon the

three cases for the possible position of [ 4] with respect to the interval [a, b] to
arrive at:

Lemma 2.2: Assume r, n, N are integers and c is any real number with1 <r < N,
O<n<NandO<c<r.
Case 1: If [u] = b, then the sign of D(c) is completely determined with
D(c) > 0 for ¢ < [u] and D(c) < O for c > [u] .
(Note that this case includes the cases where y is an integer.)
Case 2: If [u] < a, then the sign of D(c) is completely determined with

D(c)>O0forc<[ul+1land D(c) <O forc>[pu]l+1.

Case 3: If a < [u] < b, then D([ 1]) can be positive, negative, or zero, but

D(c) >0 forc <[u]and D(c) <O forc>[u] +1 .

(Examples where D([u]) is positive, negative, and zero are given in Table 3.)
The symmetry in the cases of Lemma 2.2 is easily explained by the identity

D(c;r,n,N)= —D(r — ¢ — 1;r, N — n, N). The following Table gives examples
of the various cases in Lemma 2.2.

Table 3.

,,
=
Z
Q
SJ

=

[u] D([p]) Case

10 315 3.85 40
10 6.23 6.93 72
10 0.07 0.77 0.8
10 392 4.62 4.3
10 238 3.08 32
10 1.80 22 2.5

—0.1411 Case 1, u = [u]

—0.2305 Case l,u>[u]>b
0.2305 Case2,[u]l <a
0.0726 Case3,a<[u]l<b

-0.0726 Case3,a<[u]l <b
0 Case3,a<[u]l<b

WL 0O 00 00 00 OO
wv A= O W
NWHEOIS
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Lemma 2.3: Assume | and u are any real numbers with | < u. If [u] and [u] + 1
are both in the (half-open) interval (I, u], then

Fy(u; r,n, N) — Fy(l; r; n, N) > Fy(u; r,n, N) — Fg(l;r;n, N) .

Proof: For1 <r < N,0<n< N and 0 < ¢ <r Lemma 2.2 indicates that

>0 forc < [u]

D(C)=FB(C;r,n,N)—FH(C;r;n,N){<0 for[4] +1<c<r

The proof is easily completed by noting the trivial cases discussed before the
statement of Lemma 2.1. [J

Proof of Theorem 1.2: Since r > 1, the proof of Theorem 1.2 follows from
Lemma 2.3 by noting that

Prob(|X/r — p| < 1/\/r) = Prob(|X — rm/N| < /r)

and that the interval

{x:lx——rpls\/;}=[rp—\ﬂ,rp+ﬁ]

will always contain [u] = [rp] and [u] + 1 = [rp] + 1 for every choice of r, N,
and p = n/N.

Remark: Note that Lemma 2.3 indicates that the hypergeometric probability of
any interval I containing both [u] and [u] + 1 is at least as large as the
corresponding binomial probability. The question then arises: does the common
textbook confidence interval for p, p + z./p(1 — p)/r have at least as large a
hypergeometric probability as it does a binomial probability? If it does not, then
there must exist r, N, p and number z such that the interval

I={x:|x—rp| SZM}

contains exactly one of [u] and [u] + 1, say a, and the binomial probability of
a is larger than the hypergeometric probability. Our Mathematica program did
not find any such cases for N < 100. We do not believe that there are any such
cases for N > 100, however we have been unable to prove this.
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Equidistribution Properties of Nonlinear Congruential
Pseudorandom Numbers

JUORGEN EICHENAUER—HERRMANN

Fachbereich Mathematik, Technische Hochschule Darmstadt, SchloBgartenstr. 7,
64289 Darmstadt, Germany

Abstract: Equidistribution properties of a general class of nonlinear congruential methods for
generating uniform pseudorandom numbers are established. The results that are obtained are
essentially best possible and show that the generated pseudorandom numbers have an equidistribu-
tion behaviour like true random numbers.

1 Introduction and Main Results

Recently, several nonlinear congruential methods of generating uniform pseudo-
random numbers in the interval [0, 1) have been introduced and analysed, which
show more favourable properties than the classical methods. A review of the
development of this area is given in the survey articles of Niederreiter (1991,
1992a, 1992¢) and of Eichenauer—Herrmann (1992) and in the excellent mono-
graph of Niederreiter (1992b).

In the present paper the following general class of nonlinear congruential
generators is considered, which has been introduced and analysed with respect
to Marsaglia’s lattice test in Eichenauer et al. (1988) and in Niederreiter (1988a).
Let p > 5 be a prime and identify Z, := {0, 1,...,p — 1} with the finite field of
order p. Let ye Z} := Z,\{0} and g:Z - Z, be a monic permutation poly-
nomial of Z, with degree s as a polynomial over Z,, where 3<s<p—2is
assumed in order to avoid uninteresting cases. A nonlinear congruential sequence
(Vw0 of elements of Z,, is generated by

ya=yg(n)(modp), n=>0.

A sequence (x,),» o of nonlinear congruential pseudorandom numbers in the in-
terval [0, 1) is obtained by the normalization x, = y,/p for n > 0. Obviously,
the sequence (y,),»o is purely periodic with maximal period length p, ie.,
{YOa Y1s "".Vp—l} = Zp'

A basic condition for the quality of the generated pseudorandom numbers is
an appropriate equidistribution of parts of the period, which can be assessed

0026-1335/93/5/333-338 $2.50 © 1993 Physica-Verlag, Heidelberg
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by the discrepancy of the corresponding point sets. For N arbitrary points ¢,
ty, ..., ty—1 € [0, 1) the discrepancy is defined by

Dy(to, ty5- .5 ty-1) = S |Fy([a, B)) — (B —a)] ,

where Fy([o, B)) is N~! times the number of points among t,, t,, ..., ty_, falling
into [a, B). For a sequence (x,),»o, of nonlinear congruential pseudorandom
numbers the abbreviation

DN = DN(xO, xl,. . ,xN_.l)

is used. The following upper bound for Dy slightly improves upper bounds
resulting from Theorem 2 in Niederreiter (1988b) and Theorem 2 in Eichenauer—
Herrmann and Niederreiter (1992). In the third section the proof of Theorem 1
is sketched for the sake of completeness.

Theorem 1: Let 1 < N < p. Then the discrepancy Dy for any nonlinear congru-
ential generator satisfies

”2<4 0.608 0.116)2 1
.

D,\,<(s—1)”T L loBp+ 038+ =4 2

In the following main result of the present paper a lower bound for Dy is

established. Its proof is given in the third section, too. For 1 < N < p and
1 /N (p—N)

O<t<z [— et
2V plp—1)

N(P—N)_4t2
' . 116\ :
(s — 1)2(;45 logp + 0.38 + (%‘08 + 0p26) — a4

Theorem 2: Let 1 < N <pand0 <t < % /_I;J){Z———IIV)—) Then for any monic per-

mutation polynomial g there are more than Ay(t)(p — 1) values of y € Z} such that
the discrepancy Dy, of the corresponding nonlinear congruential generator satisfies
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Theorem 1 shows that Dy = O(N~'p'/%(log p)?) for any nonlinear congru-
ential generator, where the implied constant is absolute. It follows from Theo-
rem 2 that the upper bound in Theorem 1 is in general best possible up to the
logarithmic factor, since there exist nonlinear congruential generators with dis-
crepancy Dy of the order of magnitude at least N~!p!/2.

If N ~ ap with 0 < a < 1, then Theorems 1 and 2 imply that for a positive
proportion of the nonlinear congruential generators the discrepancy Dy is of an
order of magnitude between p '/ and p~'/?(log p)?. It is in this range of magni-
tudes where one also finds the discrepancy of true random numbers (cf. Chung
1949).

2 Auxiliary Results

From now on, the abbreviations e(t) = e2*" for real numbers ¢ and x(z) = e(z/p)
for integers z are used. Subsequently, two known results are stated. The first
lemma is a special case of a classical result of Weil (1948) (see also Theorem 5.38
in Lidl and Niederreiter 1983) and the second lemma follows from Theorem 1 in
Cochrane (1987).

Lemma 1: Let Q: Z,, — Z, be a polynomial with 1 < deg(Q) < p. Then

< (deg(Q) — Dp'/* .

ZZ 2(Q(m)

ne

Lemma 2: Let N be an integer. Then

1

Phez;

sin(nthN/p)
sin(nh/p)

4 0.608 0.116
<—logp+038 + —— + .
) gp » P

A crucial role in the following presentation is played by certain exponential
sums. Let 1 < N < p and g be a given monic permutation polynomial as above.
Then define

N-1
Sn,e(7) = ”Zo x(rg(n))

for integers 7.
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Lemma 3: Let y € Z}. Then

4 11
|sN,,<v)|<<s—1)p”2( lc>gp+038+°—‘;9§ 0,,26)-

Proof: First, it follows as in the proof of Theorem 2 in Niederreiter (1988b) that

N-1
Swa= T x(a(n) z}, S x(h(j — )

nelZ, j=0 P he Z,

1 N-1
) ( ) x(vg(n)—hn))(z x(hj)>,
14 2 \nez, j=0

heZp

where in the last step h = 0 can be omitted since g is a permutation polynomial.
Again, as in Niederreiter (1988b), by applying Lemmas 1 and 2 one obtains

l N-1 i
ISy, < - Y. xlvg(n) —hn)|| 3 x(h)
D heZy nez, =0
172 sm(nhN/p
<(s—1Dp ;,Ezz sm(nh/p)
4 0.
<(s—l)p”2<7t logp+038+0—?—7(—)§ ;36> O

Lemma 4: There holds

\

Z ISw.s()I> = N(p — N) .

vel

Proof: Since g is a permutation polynomial, it follows at once that

Z |Sh, ) = Z |Sy,)I* — N*

velZp vel,

]

) Z 2(6(g(n) — g(m)) — N?

v€Z, n,m=0

N-1

Y Y x((gn) — g(m))) — N*

nm=0 ye Z,

=pN - N*=N(p—N). 0O
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3 Proof of the Theorems

Proof of Theorem 1: First, it follows from (3.12) in the proof of Theorem 3.10 in
Niederreiter (1992b) that

Z e(hx,)

1 1
— max
Dy <7 +Np,,bez nezz-

Z 2(h)

Jj=a

1 1
=- 4+ — max
+ Np abe Z nz‘z;

X x(hj)

j=a

[Sn.g(hY)I -
Now, Lemma 3 can be used in order to obtain

b
Y x(hi)| -

Jj=a

1 0.608 0.116
N<p+Np P pz Z

abeZ, heZ}
a<b” b

Finally, it followsas in the proof of Lemma 3 by applying Lemma 2 that

1 1(4 0.608 0.116
D"<p+Np‘”( log p +038+—p—+ = )

sin(nh(b—a+1)/p)

X ,Tf Z :L;; sin(nh/p)
asb
1 p”’( 0.608 0116)
<-+(s-)=\|—=logp+038+ — +
p TN PP =

Proof of Theora 2: First, it follows from Lemma 1 in Niederreiter (1990)
that

|S~,,(?)I :

Z txa)| =

n=0

Hence, it sufficesio show that for any given monic permutation polynomial g
there are more fan Ax(¢)(p — 1) values of y € Z¥ with |Sy ,(y)| = 2tp*/?. This
property can bejroved by contradiction, since otherwise Lemma 3 implies
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that

2 1SngIP < (1 = Ax®)(p — DAt?p + Ay(®)(p — D(s — 1)’p

yelp

4 0.608 0.116)?
x<;t—zlogp+0.38+—7—+ % ) =N(p—N)

which contradicts Lemma 4. (J
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A Semiparametric Technique to Estimate Survival
Probabilities
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Division of Statistics, Department of Mathematical Sciences, Northern Illinois University,
DeKalb, Illinois 60115-2854, USA

Abstract: The role of the so-called surplus processes in the assessment of probability of survival of a
company is well-known in risk theory and applications thereof. However, the insurance models used
in this regard ignore the fact that, in many situations, no relevant information is available for the
assessment of survival after the company goes out of business. In this paper, we revisit the classical
risk model in order to remedy this situation. Having stopped the deficit process, which is negative
of the surplus process, at the time of ruin, under two different sampling schemes, we obtain inference
procedure for ruin probabilities. As by products of our methodology, we also obtain procedures to
assess the reliability of systems whose survival depends on a cumulative damage process, which is
equivalent to the aggregate claim size process of the classical risk model.

Key Words and Phrases: Counting process, Compound Poisson process, Consistent estimator,
Damage process.

1 Introduction

In the classical risk model (Seal (1978) and Grandell (1991)) of a company that
deals with non-life insurance, the surplus process, Y(t), is given by

Y(t)=(ct +a)— Z(¢) , (1.1)
where
N@®
Z(t) = Z X, (1.2)
i=1

¢ denoting the units of premium money that the company receives per unit time,
a denoting the initial risk reserve of the company, N(t) being the number of
claims on the company during the time period (0, t] and X;’s being the successive
positive stochastic amounts of money paid out by the company. Although c is
positive in the insurance applications of this model, we shall let ¢ be non-
negative in order to subsume a special case, which we describe in the next

0026-1335/93/5/339 - 348 $2.50 © 1993 Physica-Verlag, Heidelberg
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paragraph. For convenience, we shall use the deficit process, W(t), which is given
by

W) =-Y(@) . (1.3)
Clearly, in this model, the company is ruined at the random time
T = T(a, ¢) = inf{t: W(t) > 0} (1.4)

The finite-horizon and the infinite-horizon survival probabilities, ¥(a, t), ¥(a),
can now be defined respectively by

Y(a,t)=P(T>1) (1.5)

¥(a) = P(T = ) (1.6)

The classical risk theory deals with the study of ¥(q, t) and ¥(a), which is well
documented in Grandell (1991) and Seal (1978).

A special case of (1.3) and (1.4) in which ¢ = 0 provides a useful model of
cumulative damages which can be used to study the reliability of various sys-
tems. For example, if N(t) denotes the number of shocks to a system during (0, t],
X;’s are the successive shocks inflicted upon the system, and if the system fails
when the sum of the shocks exceeds a known threshold a, then the time to system
failure, S;, can be written as

S, = inf{z: Z(t) > a} 1.7

In survival analysis, one is interested in the probability, F(t), that the system
survives beyond time ¢, namely

F,(t) = P(S, > 1) (1.8)

For more details regarding (1.8), see Barlow and Proschan (1981).

Remark 1: There are situations in which there is no practical way to inspect a
system to determine its threshold a. In this case the failure time of a system S,
say, is

S, = inf{t: Z() > V} , (1.9)
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where V is a positive random threshold, with a known probability density
function £, (x), that is independent of the process Z(t). For more details see Esary,
Marhsall and Proschan (1973). For systems of this type, the survival, F,(t), is
given by

F,(t) = P(S, > t) (1.10)

Often, we do not know the structure of the damage process Z(t) in (1.2)
and of the deficit process W(t) in (1.3), but would like to assess, in advance of
ruin(failure), ¥(a, t)(F,(t)), given the current deficit(damage) W (s)(Z(s)), up to a
time s < t, and\or the number of claims up to a time s <t¢, i.e. N(s). The
methodologies that currently exist in the literature on risk theory and survival
analysis do not address these assessment issues adequately for situations in
which the following crucial assumptions hold:

(i) No relevant information regarding survival is available after the failure of
the company(system), which stops honoring the payments on the claims-
(operating) at the time of ruin(failure), T(S, or S,).

(ii) Claims on the company(shocks to the system) are likely to arrive beyond the
time T(S, or S,).

Consequently, our main goal in this paper will be to develop procedures to
assess ¥(a, t)(F,(t)), using sample paths of the process N(t) and the following
stopped deficit(damage) process:

U() = {W(t) , ift<T

11

0, ift>T" (1.1D)
_)Z@ , ift<8§,;

MM—L, ift>5,’ (1.12)

Procedures to assess the reliabilities of systems using F,(t) in (1.10) will also be
outlined.

In order to keep our discussions non-trivial, unless stated otherwise, we shall
always assume that P(N(0) = 0) = 1 and P(Z(0) = 0) = 1 and that a version of
Z(t) process, whose sample paths are right-continuous with finite left limits at all
times, is available. Finally, we consider in this paper:

(i) The process {N(t), t > 0} is homogeneous Poisson with intensity A > 0.
(i) The sequence {X;, i > 1} consists of i.i.d. random variables with common
pdf g(x), common CDF G(x) and common survival function G = 1 — G.
(iii) The processes {N(t), t > 0} and {X, i > 1} are independent.

Now, we describe two schemes of collecting data.
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Scheme A: For estimating F, (t), provided by (1.8), we observe k independent
copies of stopped damage process and number of shocks process. The i-th
replication is observed at pre-determined epochs. More specifically, we let sub-
script i = 1, ..., k refer to the label of the system and subscript j =1, ..., M;
denote the label of proposed observations over time for the i-th system. For the
j-th observation on the i-th system, let ¢;; be the time from the initial observation
date, t;, = 0. It is assumed that all systems are initially working. It is important
to note that if U, (t;) < g, the i-th system is working at time t;;. However, if for a
given j, U,(t; ;-,) < aand U,(t;) = a, then we stop gathering data from the failed
system and record the actual time to failure of the i-th system S,;, where ¢, ;_, <
S;; < t;. Furthermore, we relabel j as m; and the corresponding proposed obser-
vation time, t;,, as S;. It should be noted that U, (t;) = a,l = m,, ..., M;. Thus,
fori=1,..., k, we observe U,(ty), j = 1, ..., M;, L; = min(S,;, t;5s,), and N(z;),
j=1..., M,

For estimating y(a, t), provided by (1.5), we observe U(t;), L; = min(T};, t;y,)
and N(t;),i=1,...,k j=1,..., M;. Here T}, is the actual ruin time of the i-th
company.

Scheme B: For estimating F, () we only observe Ui(t;) and L; = min(S,;, t;p,)s
i=1,...,k j=1,..., M, For estimating ¥(a, t) we only observe U(t;) and
Li=min(Ty;, tiy ) i=1,...,k j=1,..., M,.

This paper is organized as follows. In Section 2, we derive a semiparametric
estimations of F,(t) as well as ¥(a, t) under the sampling Scheme A. A semi-
parametric estimations of F,(t) and ¥(a,t) under sampling Scheme B were
obtained in Section 3.

2 Estimation of Survival Probabilities: Scheme A

The log-likelihood function of the data N(ty)) =n;, i=1,...,k j=1,..., M,,
1,(4) can be obtained using the structure of the Poisson process {N(t), t > 0}.
That is,

k
L(A) =Y [nmlogd—At ] +d, (2.1)
i=1

where the term d is free from A. In order to maximize the log-likelihood in (2.1),
we consider

=y (Mg ) =0 22)
da A LM, ' '
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Solving Equation (2.2), the maximum likelihood estimate of 4 is

k
5 i=1 M, M,
Iy = Z_—-k ! - M (2.3
i=1li, M,
Now, we start with describing our inference procedure for F;(t,), the reliability
of a system over a specified time period [0, ¢,).
It is known that

E(Z(t)) = pAt , (24)
and
K(s, t) = Cov(Z(s), Z(t)) = (6% + u?)A min(t, s) , (2.5)

where u = [ G(x) dx, 62 = —p? + 2 [ xG(x) dx. Given that for the ith system
we observe U (t;;), ..., Uy(tip,), i = 1, ..., k, our first goal is to predict Z;(to),
the total damages to the i-th system by time t,, i = 1,..., k. Clearly if U, (t;y,) =
a, then Z(t;) > a and if U,(t;y,) < a, then U, (ty) = Z(ty) = z;5, j= 1, ..., M;.
For the latter case, a commonly used class of predictors are linear combinations
of the form

M;

Z(to) = ,; aZ(t;) . (2.6)

The Kriging predictor, Z(t,), is the unbiased linear predictor that minimizes the
variance of the prediction error. Kriging is a method of prediction for random
field popular in mining and hydrology. (See Rendu (1978), Journel and Huijbergts
(1978) and Kitanidis (1983).) The weights a(i) = (a,, ..., ay ) defining Z,(to) are
given by

a(i) = C7'(i)c(i) + CT'(H)D')(DEHC @HDE) ' [to — DH)C ()] , (2.7)
Whel‘c D(i) = [tiI’ ceey ti.M,]’ C(i) = [K(to, til)’ ceey K(to, ti,M')], and C(i) iS Mi X
M; matrix with (j, [)-th element K(t;, t3), j, | = 1, ..., M;, c(i) has full rank and
(ay, ..., ay,) is the transpose of the vector (ay, ..., ay,). (See Goldberger, (1962)).

The prediction error is denoted by e;(t,) = Z;(t,) — Zi(to) and its variance is a2(i)
where

0%(i) = K(to, to) — ¢'()C*()c(i) [to — DHICT*(I)c(i)]

x (DEHCTHEHD' ()7 (to — DEHICT (e (@)
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The covariance function K(., .)is not specified and must be estimated from data.
Using (2.5) we propose to estimate K(., .) by

Ie(tn, ty) = (P + 62);«‘.‘1 > jizl,

where unbiased estimators of u and o2 are

1 k &
A=x 2 X V> (2.8)
1 i=1 j=1
[ (29)
- i=1 j=
respectively. Here
Ml l
d=) In;>n ;) , = (S, - S, ,
j;l ( ij ij 1) Wi ”ij—ni.j—l( 1 ;.;—x)

=Y%,d,S8, , is the total damages received by the ith system at time ¢,;, and
I 1s the mdlcator function. _
Now, using (2.6) we estimate F,(ty) = P(Z(t,) = a) by

2 1 & ~
Fi(to) = % l_; {1Zto) 2 1(Z1, ) < @) + 1(Z(t,, ) 2 A))I(Sy; > to))} -
(2.10)

Turning now to the estimation of F, in (1.10),
F,(t)=P@S,>t)=PZ{t)<V)= £ P(Z(t) < v)fy(v) dv . (2.11)

Now, for any fixed but arbitrary v <0, one can estimate P(Z(t) < v) using
techmques described earlier in this section (threshold known case) and conse-
quently F;(t) can be estimated through equation (2.11).

We close this part with a discussion of the asymptotnc properties of F1 (to). For
this part, we shall assume that M, = M, =--- = M,‘ M and the data are
equally spaced, thatis 4;; = t, —t; ;., =4,i=1,...,k j=1,..., M.
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Theorem 1: As k+ o0, then

(a) Fl(to) is a consistent estimator of F, (t,)
(b) f (F,(to) — F,(t,)) is asymptotically normal with mean zero and variance
Fy(to)(1 — Fi(to)).

Proof: 1t is clear that, in view of the assumptions of equally-spaced data and
all M; being equal, our proposed estimator is based on k i.i.d. copies of the
random vector (U,(4),..., U,(M4), N(4), NQ24), ..., N(M4), L), where L =
min(S,, M4), and therefore k i.id. copies of V = I(Z(t,) = a)[(Z(M4) < a) +
I(S; > a)I(Z(M 4) = a). Using central limit theorem, we get the resuit.

Using part (b) of Theorem 1, (1 — )% confidence interval for F,(t,) is

Filto) + z1-2) \/ﬁ 1(to) (1 - Fy(to) , @2.12)

where z, is a-th percentile of standard normal distribution.

Now, we turn to estimation of ¥(g, t). In general it should be noted that if
U(tiu ) <0, then U(t;;) = W(t;) and therefore Z(t;;) = W; + (ct;; + a), ] =1,.
M. 1T U, ) = 0, then Z(t;,, ) >ct;, +a. Using this fact we propose ¥(a, to) as
an estlmator of ¥(a, t,), where

¥(a, t,) = % i 1(Zi(to) > cto + AI(Zi(t:, ) < cty, + a)
+ (U, = 0I(T; > t,)] , (2.13)

where Z(t,) is given by the equation (2.6). It can be shown that as k — oo,
\/l;( Y(a, ty) — ¥(a, ty)) is asymptotically normal with mean zero and variance
Y(a, ty) x (1 — ¥(a, ty)). Also (1 — @)% confidence interval for ¥(a, t,) is

P(a, t,) + zl—(a/Z)\/W(a, to)( k— ¥(a, to))

Now, to see how our proposed estimators perform, we did Monte Carlo
studies of biases and mean squared errors. In our limited studies we assume
G(x) = 1 — exp(—x), and that the shocks are arriving at the rate A = S per year.
Moreover, we assume that M, = =M, =M =20, t;,—t;,; ., =4=4%,i=

s e ky j=1, ..., 20, a = 45. For a given k we generated 2000 vectors
(U1(2), ..., Ug(t)) and (N,(2), ..., Ni(¢)) and using (2.3) and (2.10) we estimated A
and F (7) respectively. Simulated biases and mean squared errors (MSE) for
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Table 1. Estimated bias and MSE

k 3 5 10 20 50

Bias(/) 1) x 1073 | (13) x 1072 | 2x 1073 | (6.1) x 10™* | (17.3) x 103
Bias(Fy(7) | 3x107 | (18)x 1072 | (7.6) x 107* | (1.3) x 107+ | (1.2) x 103
MSE(d) | (1.8)x 107* | (1.1) x 10™* | (7.8) x 107% | (1.3) x 1073 | (6.1) x 107¢
MSEF,(7) | (1) x 107* | (72) x 1075 | 3.1) x 1075 | (12) x 1075 |  (:6) x 1073

different values of k are given in table 1. It is apparent from looking at these
numbers that both bias and MSE decreases as k increases. Moreover, our
estimator performs well even for small k. We should mention also that 4 is
always an unbiased estimator of A.

3 Reliability Estimation: Scheme B

Recall that our goal is to estimate F,(t) as well as ¥(a, t,). We start with F, ().
From (2.5), it is clear that

E[gt(_t)] — iy, 3.1)
and
Var [Et(—t—):l = (62 + p?H)i . (3.2

Given that for the i-th system we observe only U,(t;;), ..., U(tiy,)s i = 1,
2, ..., k, it is clear that if U,(t;,) = a, then Z(t, ) >aand if U,(t;n,) < a, then
U,(ty) = Z(t;) = z5, j = 1, ..., M. For the latter case we use

M

Zto) = z'lajzi(n,) , (3.3)

j=

where g; is given by Equation (2.7). Similar to Section 2, the covariance function
K(., .)is not specified and must be estimated from the data. Using the equation
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(3.2) one can estimate b = (62 + p?)4 by

b= 1 Z & [[Ul(tij) - Ul(ti.j—l)] _ _1_ Azlf Ui(ty) — Ul(ti,j—l)]z

N2 - 1 i=1 j=2 (tij - ti,j—l) Nz j=2 t t

i Lij—1

(3.4)
and K(t, s) by
K(t,s) = b Min(, s) , (3.5)

where N, = Y ¥, M.
Now, using (3.3)

2 1 k ~
Fig(t) = % Zi {I(Zi(to) 2 a)I(Zi(ti,,i) <a)+ I(Z(ti,.,i) > a)l(Sy; > to)} . (3.6)

cey

Assuming that M; =M, =Mand t;;—t;;., =4,i=1,...,k j=1,.
M, we have the following theorem.

Theorem 2: If k — o0, then

a) Fip(ty) is a consistent estimator of F; (t,)

b) ﬁ(f" 8(to) — Fi(to)) is asymptotically normal with mean zero and variance
(F1(t0))(1 — Fy(to))-

Proof: The proof of theorem is similar to the proof of Theorem 1 and it is
omitted.

Using Theorem 2, (1 — «)%, confidence interval for F,g(t,) is

ﬁw(to) T2 @2 \/ﬁlﬂ(‘o)(l - Fﬁw(to)) (3.7)
3 .

_ One can apply similar argument used in the previous section to estimate
F(to)-

To estimate ¥(a, t,), one can follow the same argument used in the previous
section with replacing Z(t,) in Equation (2.13) by Zi(t,) in Equation (3.3).
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Optimal Designs for Models with Block-Block Resp.
Treatment-Treatment Correlations

KoONRAD ENGEL and SYLKE GIERER
Universitit Rostock, Fachbereich Mathematik, 18051 Rostock, Germany

Summary: In this paper we study optimal designs assuming two special covariance structures of the
observations, namely that the covariance between the observations depends only on the blocks resp.
the treatments. We show that the weighted least squares estimator equals the ordinary least squares
estimator. Then we prove that block-block correlations resp. treatment-treatment correlations do
not have any influence on the A- and MV-optimality resp. A-optimality. For the study of the
MV-optimality in the case of treatment-treatment correlations we use the idea of invariance to find
optimal C-matrices.

Key Words: Optimal designs, correlated observations, C-matrix, invariant problems, linear inference.

1 Introduction

In the theory of optimal designs it is very often assumed that the observations
are uncorrelated and have all the same variance (briefly we call this the un-
correlated case). With this article we will emphasize that also for models in which
the covariances between the observations depend only on the blocks resp. the
treatments there exists a satisfactory theory at least for the construction of
optimal C-matrices and in several cases also for the construction of optimal
designs.

Fundamental work for designs with correlated observations was done by
Kiefer and Wynn (1981), where one can find in addition some historical back-
ground. As it is also mentioned in the book of Shah and Sinha (1989), Kiefer and
Wynn proposed a two stage procedure: At stage one we look for a class of
designs which are optimal in the uncorrelated case. At the second stage we
consider the ordinary least squares (OLS) estimates and look for designs within
the class obtained at stage one which maximize the precision of these OLS
estimates with respect to the true covariance structure. In particular, Kiefer and
Wynn studied the “nearest neighbour” model assuming observations in different
blocks to be uncorrelated whereas observations in the same block are assumed
to be correlated only if they are neighbours.

Of course, if the covariance structure of the observations is precisely known,
one has to use weighted least squares (WLS) estimates to find the really optimal

0026-1335/93/5/349 - 359 $2.50 © 1993 Physica-Verlag, Heidelberg
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designs. But we shall see that in our models already the OLS estimates have the
maximum precision. Considering A- and MV-optimality, we shall prove that the
case where the covariances between the observations depend only on the blocks
can be reduced to the uncorrelated case. Further we shall see that the same holds
for treatment-treatment correlations and A-optimality. The investigation of MV-
optimality in the case where the covariances between the observations depend
only on the treatments enables the application of the concept of invariance (see
Sinha (1982)) and the method of convex functionals (Kiefer (1975)) to find
optimal designs.

Let us mention that related results for models with correlated observations
were obtained by Budde (1984), Bischoff (1992), Krafft and Schaefer (1992) where
in particular D-optimality was studied.

2 Two Models for Correlated Observations

We consider the situation where v treatments are to be compared using b blocks
each of k different treatments, that is, k < v. A block design d is a k x b array of
treatment symbols 1, ..., v where the columns represent the blocks.

The usual linear additive model specifies the expectation of the observation y;;
on treatment i in block j as

E(y;) = o; + B;

where a; is the (unknown) effect of treatment i and f; is the (unknown) effect of
the jth block,i=1,...,v, j = 1, ..., b. In matrix notation we have:

E(y) = (X,]X,) “)

where y is the bk-dimensional vector of the observations, « and f are the vectors
of the treatment resp. block effects, and X, and X, are the design matrices for the
treatment and block effects, respectively. )

Let

V = cov(y)

be the covariance matrix of y. We assume the following two special structures
for V:
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Model 1:

of (L+wy) iGH=6)),

Ccov e sn ) = :
(Vs Yiy) {02 Wy otherwise

(the covariances between and the variances of the observations depend only on
the blocks).

Model 2:

0.2 (1 + Wi,-') if(i, j) = (i” j,) ’
cov(yy» Yiry) = {62 W otherwise

(the covariances between and the variances of the observations depend only on
the treatments).

In both models the entries w;; resp. w; are known or unknown real numbers
(not depending on the design d) subject to the condition that V' is symmetric and
positive definite. To avoid too much parameters we will suppose throughout

Let I be the identity matrix. The following observation is fundamental for this
paper.

Proposition 1: a) In Model 1 we have
cov(y) = X, WX, + 1

where W = (w;;), j, j'=1,..., b.
b) In Model 2 we have

cov(y) =X, WX, + 1

where W = (w.), 0,0’ = 1,...,0. O

As mentioned in the introduction we will speak of the (usual) uncorrelated case
ifW=0.
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It is well-known that for an estimable linear combination of the treatment
effects l'a = ('|0') (;) (i.e. (/']0’) is in the row span of (X,|X,)) the WLS estima-

tor being best linear unbiased is given by
AN
la=0'10)XVIX)y XV ly )]

where A~ denotes any g-inverse of the matrix 4, X = (X,|X,), and 0 =
(0, ..., 0). For the variance of the WLS estimator we have

N\
var(l'a) = I'Cy 4 2)

where C, , = X1V 71X, — X1V X, (X5 V7 X,) HXLV X))
(Note that C, , depends on d through the design matrices X, and X,.)

If V = I, then C, , is the usual C-matrix of the design d, briefly denoted by C,,
and one can calculate C; in the following way:

1
Cd=r6—i(‘Ndel

where r® = diag(ry, ..., 1,), r; is the number of replications of treatment i in d and
N, = (ny,)) is the incidence matrix of d, n,, = 1 if treatment i is contained in the
jth block and n, , = 0 otherwise.

Throughout we will suppose that d is connected, i.e. rg C; = v — 1 which also
impliesrg Cy 4 =v — 1.

It is well-known that then /'a is estimable iff /'l = 0 where 1 =(1,..., 1), i.e.
iff I'a is a contrast.

One can easily see that in both models the columns of the matrix V(X,|X;)
are contained in the column space of the matrix (X, |X,). By a result of Zyskind
(1967) (cf. Kiefer and Wynn (1981, p. 739)) the OLS estimator equals the WLS
estimator, thus we obtain (using the Moore-Penrose g-inverse A* of the matrix
A)

Proposition 2: In Model 1 and Model 2 the WLS estimator is given by

AN
la='10)X'X) Xy=('10"X"y .

Theorem 1: a) In Model 1 we have

N\
var(l'a) = I'C; 1 .
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b) In Model 2 we have

A
var(l'e) = I'(Cy + W)l .

Proof: Since (I'|0') is in the row span of X = (X,|X,), there exists some x with

ix=1 and Xox=0.

Because X X * is an orthoprojector onto the column space of X we obtain

var(f'e) = (l’|0’)(X+VX+’)((I)>
= XXX'VXYX'x
= x'X,WXx + I'C;1

_frei ifi=2,
e +wil o ifi=1.

3 Optimality Criteria

Let L be a given set of contrast vectors, i.e. of vectors I with I'l = 0. The design
d is called A- resp. M V-optimal with respect to L (w.r.t. L) if

y var(l/’;) resp. max var(I/';) 3)
leL leL

is minimum in the class of all connected designs with parameters v, b, and k. We
consider here only such sets L for which the sum resp. the maximum exists.

Let ¢; be the unit vector with 1 at coordinate i.
IfL={e—e:1<i, j<v,i#j}the A- and MV-optimality w.r.t. L coincide
with the usual A- and MV-optimality, respectively.
If L = {e, — e;: 2 < j < v} we have the case of comparing test treatments 2, ...,
v with a standard treatment 1 (Bechhofer and Tamhane (1981), cf. Hedayat,
Jacroux, and Majumdar (1988) for an overview).
IfL = {1 I'l =0,||I|| = 1} the MV-optimality w.r.t. L is the usual E-optimality.
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The matrix W is called completely symmetric (c.s.) if it is of the form W = &I +
nJ, where J is the matrix all of whose entries equal 1.

Theorem 2: Let L be a given set of contrast vectors.

a) The design d is A- resp. MV-optimal w.r.t. L in Model 1 iff it is A- resp.
MV-optimal w.r.t. L in the uncorrelated case.

b) The design d is A-optimal w.r.t. L in Model 2 iff it is A-optimal w.r.t. L in the
uncorrelated case. If W is completely symmetric and all contrast vectors in L
have some fixed norm 6, then d is MV-optimal w.r.t. L in Model 2 iff it is
MV-optimal w.r.t. L in the uncorrelated case.

Proof: a) The statement follows directly from Theorem 1 since W does not
appear in var(/'a).
b) We have
AN
var(l'a) = I'C; 1 + I'WI
and, for W = &I + nJ and ||1]|? = 62,
ey
var(l'a) = 'Ci1 + I'(¢1 + nJ)l = I'Cy 1 + &6% .

Hence the objective functions (3) differ from the correlated to the uncorrelated
case only by the constant Y, , I’'Wlresp. £62 (which does not depend ond). [

4 MV-Optimal C-Matrices for Model 2

In the general case it seems to be hopeless to find MV-optimal designs for model
2. But using the idea of invariance, cf. Sinha (1982), we can restrict ourselves to
the study of much smaller classes of C-matrices.

First of all we have to prove the convexity of the objective function. Let € be
the class of all non-negative definite (n.n.d.) v x v matrices C with rg(C) = v — 1
and let ¢, = {C € €: C1 = 0}. Let &: €, — R be defined by

&(C) = max I'(C™ + W)I .
leL

Lemma 1: The functional @ is convex, i.e.

P(AC + (1 — A)D) < Ad(C) + (1 — A)D(D) VC,De¥, Yie[0,1].
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Proof: If we define ¥: ¢ — R by

Y(E) =max lI'(E + W) ,
leL

then ¥ is evidently convex and monotone, i.e. E < F (in the sense of F — E being
n.n.d.) implies Y(E) < ¥Y(F).
For C € €, we use the g-inverse

where C,, is the submatrix of C deleting the first row and first column. By a
result of Kiefer (1959), for 4 € [0, 1]

(ACyy + (1 = ADyy)™" < ACT + (1 — D5y

where Dy, is defined analogously as C,,. This implies by the monotonicity and
convexity of ¥

0 0
Y|P (ACyy +(1—A)Dyy)!
0
0 0 o - 0
<y |i|: c;! +(1-4 | Dif
0 0
0 - 0 0 - 0
<iw | |: cp! +(1-4¥ | |: D ;
0 0

1e.

®(AC + (1 — D) = P((AC + (1 — )D)")

<APCT)+ (1 — HP(D™) = AD(C) + (1 — )DD) .
a
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Remark 1: Though the above proof is contained implicitely in the work of
Kiefer we could not find it in the fundamental article on universal optimality by
Kiefer (1975) resp. other papers nor in the book of Shah and Sinha (1989).

Let S, be the symmetric group of permutations of {1, ..., v}. For n € S, let P,
be the v X v matrix representation of 7. Let G be a subgroup of S,. A v x v matrix
A is said to be G-invariant if

P, AP, = A VneG .

(Note that {n € S,: P,AP, = A} is a subgroup of S,.) Furthermore, the set L of
contrast vectors is called G-invariant if

PlelL Vie L,V eG .

(Note that then by I — P,/ there is given a bijective mapping L — L.) Of course,
G-invariance implies G'-invariance if G’ is a subgroup of G.

Finally, we mention that if d is a connected design corresponding to parame-
ters v, b, and k, then C, is a matrix with C; € 4, and tr C; = (k — 1)b; note our
assumption that the blocks contain k different treatments.

Theorem 3: Let the matrix W and the set L of contrast vectors be G-invariant.
Then to any matrix C € b, there exists a G-invariant matrix C € €, with the same
trace (the averaged version of C) such that

&(C) < &(C) .

Proof: First we show that & is symmetric, i.e.
®(C)=d(P,CP,) VmeG.
Note that (P,CP,)* = P,C* P, and P,WP, = W for all n € G. Now
&d(P,CP,) = rPEaLx U'(P.CP)* + W)
=%¥«&WCWEU+UU”W&D)

= max I}(C* + W)l, = &(C) .

Lel
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Now let
C=—_ 'CP,
G X PcCP,
Then C is obviously G-invariant and tr C = tr C. By the convexity of @ we have

o)< — Z (P, CP,) =

|G| z D(C) = D(C) .

lGl
a

Remark 2: We do not need the supposition that L contains v — 1 linear indepen-
dent vectors as it is assumed in the paper of Sinha (1982).

Remark 3: In the case of G-invariance of W and the set of contrast vectors L, by
Theorem 3, the investigation can be restricted to the study of G-invariant C-
matrices which enables the determination of the MV-optimal C-matrix if G is
“large”, e.g. if G = S,(1), the group of permutations with fixpoint 1.

Of course, there need not exist designs yielding this MV-optimal C-matrix.
But we propose to take designs whose C-matrix is “near” to the MV-optimal
C-matrix. Since it cannot be assumed that W is precisely known this approach
should be sufficient though an explicit calculus of errors remains as an open
problem.

5 Generalizations

In order to introduce our Models 1 and 2 we restricted ourselves to binary
designs, i.e. no treatment is contained more than once in some block. This
restriction is not essential, otherwise one has to distinguish in Model 1 and 2
only the cases where the observations are the same or not (instead of (i, j) =
(i’, j') or not). Using the covariance structures from Proposmon 1 as starting
pomt there is really no restriction to binary designs since we never needed that
(X,1X,) contains only pairwise different rows. The only difference will be that in
the case of non-binary designs the trace of the C-matrix is not fixed, given the
parameters v, b, and k. In an application of Theorem 3 one has to find such
G-invariant C-matrices which have maximum trace.

Another generalization concerns row-column designs. A row-column design is
an arrangement of v treatments in a k x b array where the rows as well as the
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columns represent the blocks of two corresponding block designs. Assume for
the bk observations the linear additive model and for V

V=XWX +1, i=123,

where the X;’s are the design matrices for the treatment, row and column effects,
respectively, and W, = (W), 1=1,....m» My = v, my = k, my = b. Using the same
arguments as in the case of block designs we have:

var(f:z) _jrai ifi=2,3,
e +wir o ifi=1.
é l ’ 1 ’ l ’ :
where C; = r° — EM"M" - kN,,Nd + AL (the C-matrix of the row-column

design in the uncorrelated case; for the derivation see Shrikhande (1951) or
Cheng (1978) for the more general context of multiway heterogeneity setting)
and M, and N, are the treatment-row and treatment-column incidence matrices,
respectively. Therefore, A- and MV-optimal designs in the uncorrelated case
remain optimal if row-row or column-column correlations are assumed. Con-
cerning treatment-treatment correlations we have the same results as in the case
of block designs. Finally, in a natural way results can be obtained for estab-
lishing the optimality of block or row-column designs in the more general model

N

V=I1+Y XWX,, n=23.

1

Acknowledgement: We would like to thank the unknown referee for many valuable suggestions
which essentially improved the presentation of the article.
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Book Review

&«

D. Feldman, M. Fox: Probability. The Mathematics of Uncertainty. Marcel
Dekker, New York, Basel, Hong Kong, 1991, XV/404 pp., $135.00

The authors consider their book as preparation for a follow-up course in mathe-
matical statistics; the students should have taken a course in advanced calculus
previously. Indeed this book gives all the definitions and theorems which are
necessary for an introduction to mathematical statistics. Sometimes more compli-
cated proofs are omitted, for example: for the characterization theorem (p. 153)
of distribution functions F it is not shown that the measure generated by F is
countably additive. The central limit theorem (p. 305) is only formulated for
identically distributed random variables and, for the proof of this, the relation-
ship between the limit of distribution functions and the limit of accompanying
moment generating functions is only cited (p. 380). Special attention must be
called to the wealth of very good examples and of useful and carefully constructed
problems.

What are the specific qualities of this book in comparison with other intro-
ductions to probability theory? The authors start from events and their relation-
ships and not from elementary events (points of a sample space). This approach
— attractive at first glance — has often been used in the past decenniums. But the
difficulties and fussinesses are important, see, for example, the laborious intro-
duction of a random variable. Add to this that the students should learn to read
the literature in the usual terminology. Perhaps understanding would be facili-
tated if the theorem of Stone (there can be associated with every algebra of
events an algebra of sets isomorphic to it) were cited and explained.

Wiirzburg W. Uhlmann
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An Identity for Expectations of Functions of
Order Statistics

Upo Kamps

Institut fiir Statistik und Wirtschaftsmathematik, RWTH Aachen, Wiillnerstr. 3, 52062 Aachen,
Germany

Lurz MATTNER

Institut fiir Mathematische Stochastik, Universitdt Hamburg, Bundesstr. 55, 20146 Hamburg 13,
Germany

Summary: We consider an identity for expectations of general functions of order statistics valid in a
parametric class of probability distributions. Corresponding characterization results are indicated.

Explicit expressions for moments of order statistics are often very complicated
and thus of minor use. Hence identities connecting them are frequently exam-
ined. For an excellent review of relations valid for specific distributions we refer
to Balakrishnan et al. (1988). Some isolated results from the literature are sub-
sumed and generalized in Kamps (1991) by considering the class of distribution
functions F satisfying

(FY© =570 077 on(0, 1) M)

for some d > 0 and integers p and q.
Special choices of p and q lead, e.g., to exponential, Pareto, power function,
and logistic distributions.

In this note we consider an identity for expectations of general functions of
order statistics. It yields as particular cases the identities for moments mentioned
above but also, e.g., identities for characteristic functions.

Let throughout this paper X, , < X, ,<-* < X, ,, n€ N, denote the order
statistics corresponding to independent, identically distributed random vari-
ables X, X,, ..., X, with distribution function F.

Theorem: Let F satisfy (1), and let k be an integer with2 <k <nand 1 <k +
p<n+q. Then

E[9(Xi,n) — 9(Xi-1,0)] = ¢ EG'(Xis p.nsq) 5 @

0026 - 1335/93/5/361 - 365 $2.50 © 1993 Physica-Verlag, Heidelberg
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where

( - )

1 k—1

c=c(k,n,p,q,d)=2 et
k
(+pﬂk+pi

holds for every absolutely continuous function g provided that the right hand
side in (2) exists.

Examples:

i) The choice g(x) = x™, m € N, yields the equalities for ordinary moments of
orders m and m — 1 obtained in Kamps (1991). Considering m = 1 we ob-
serve that ¢ = E[X, , — X, _; )

ii) Putting more generally g(x) = x*#*! with xe R, f > 0, « + B # 0, and re-
writing the result in terms of Y = (BX)"# leads to equalities for moments of
orders o« + f and « valid in a transformed, and by this enlarged, class of
distributions as shown in Kamps (1992). (The quantities g and Y to be well
defined, the support of F has to be chosen appropriately.)

Putting similarly g(x) = e** and Y = e yields identities involving moments
of order a only.

iii) Choosing g(x) = €™, t € R, we obtain

(pk,n(t) - (pk-l.n(t) = Cit(pk+p,n+q(t) ’ (3)

where ¢; , denotes the characteristic function of X;,. Such identities for
characteristic functions of order statistics may be useful since simple explicit
expressions are not available in general. The logistic distribution is an excep-
tional case with

I'k+it)yI’'n—k+1—ir)
I'k)\I'(n—k + 1)

p=q=-1 and @)=

(see Balakrishnan, Cohen 1991, p. 38).

To prepare for the proof of the theorem, and for the characterization results
indicated below, we state the following lemma, which is probably well known.

Lemma: Let ¢ be an increasing and continuous function on some open interval
(a, b), and let g be an absolutely continuous function on the range of ¢. Then,
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for every Borel function h on (a, b), we have
| hdgoo= [ h-gopdep,
(a,b) (a,b)

provided that one of the above Lebesgue-Stieltjes integrals exists.

Proof: 1t suffices to consider h = 1, 4 fora <c <d < b.
Applying the change-of-variables theorem (e.g. Royden 1968, p. 264), we have

d o(d) d
{dg o ¢ = g(o(d) — glo(c)) = {) g(x)dx=[g' opdo ,

and thus the assertion.

Proof of the Theorem: For later use of what follows let first F denote an arbitrary

distribution function. We may write, using the quantile transformation, and the
. 1 . . . . . .

density of an order statistic from a uniform distribution,

1/ n \!
c(k, 1, p, @, AVEG' (Xt ponsq) = E(k - 1) £ g'(F NP7 (1 — P de

subject to the existence of Eg'(Xyp,n+q)-

Now assume that F is strictly increasing on (F~*(0+), F~(1—)), which is the
case iff F7! is continuous. Using the joint density of two successive order
statistics (e.g. David 1981, p. 10) and the lemma above we get

E[g(Xy,n) — 9(Xi-1,2)] = (goF7'(v) —go F7'(w)

11
e retll
X l{uSv}(ua v)uk_z(l - v)n—k du dv

n! 1

11
T Dl R b s Olesn®)

x u*"2(1 — vy *d(g o F~'(t)) du dv
n 1
=< )Igl(F—l(t))tk—l(l _ t)"_k+1 dF—l(t)
k—1/%

(see Khan, Yaqub, Parvez 1983, Lin 1988 in the case of ordinary moments).
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If (1) holds, F™! is necessarily continuous, and thus we find
E[g(Xk,n) - g(Xk—l,n)] - CEg,(Xk+p,n+q)

= ( i ) ig'(F_l(t))tk_l(l — O dF () — 1t”(l —Pldn) =0 .
k—1)% d
@

Inspecting the above proof, it is obvious that, under suitable conditions, charac-
terization results may be obtained based on (2). We close this note by indicating
some of them.

Assume throughout that F is strictly increasing on (F~!(0+), F"!(1-)), and
that p, q and d are fixed.

If (2) holds for some fixed function g, with g’(x) # 0 except for isolated points,
and all k and n, then (1) easily follows from considering (4). In fact, not all k and
n are needed, applying certain complete sequences of functions. For details and
surveys we refer to Lin (1988), Kamps (1991), and Huang (1989), Lin (1989) with
respect to g(x) = x™.

If instead (2) holds for a fixed pair (k, n), and for a sufficiently rich class of
functions g, then (1) follows again. E.g., we may take all functions x e, t € R,
which amounts to assuming (3) for all ¢t € R.

Finally, an inequality for moments of order statistics, and by this a character-
ization result is evidently obtained involving only one equation in contrast to
infinite many used above. E.g., we assume that g’ is positive and {...} in (4) is
nonnegative.

If F is absolutely continuous with density f, the latter condition reads

SFO0 — FOX 70 < 1,

which for p = q = 0 (corresponding to exponential distributions) is a condition
on the hazard rate of F.

When considering other inequalities for moments, interesting characteriza-
tions result under mild restrictions. We refer to the detailed paper of Gajek,
Gather (1991) on inequalities of Holder type.

Acknowledgement: The authors would like to thank the referee for helpful remarks.
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Book Review

L. Ljung/G. Pflug/W. Walk: Stochastic approximation and optimization of
random systems, Birkhéduser-Verlag, 1992, 113 pp., sFr. 38.00/DM 44.00

Stochastic approximation is a fine family of algorithms for the optimization of
random systems. Such optimization, like minimization of risk for some observa-
tions, is a basic problem of mathematical statistics. Unfortunately, stochastic
approximation did not become the real part of mathematical statistics, since
mathematical statistics is not interested in the complexity of the algorithm
applied; in a fairly one-sided way it is interested only in the best possible infer-
ence which can be made for the given observations. So the research of stochastic
approximation was mainly the interest of probability theorists and engineers.
Engineers were (and still are) interested in it typically for fast signal processing
applications, where a microcomputer with the program of best possible inference
would be either expensive or too slow with respect to the actual data speed.

Stochastic approximation is already a well-developed theory, and there are
excellent survey articles and monographs. It is, therefore, not obvious why
anyone should write and publish an additional book like the one under consid-
eration. This book, however, gives several models and points, proving that there
are a lot of new and interesting directions in this area.

This book is not a homogeneous monograph. It consists of three individual
parts written by three leading experts in the field. Part I (Foundation of stochastic
approximation by Harro Walk) summarizes the basic properties. In the usual
works, the properties of stochastic approximation can be found if the observa-
tions are driven by a sequence of independent and identically distributed ran-
dom variables. Here the behaviour of the risk along the iteration is investigated
if the observations are driven by a time series. Part II (Application aspects of
stochastic approximation by Georg Pflug) is mainly concerned with the so-called
constant gain stochastic approximation, which is less complex than conven-
tional stochastic approximation, but it is not consistent. For small gain, it is a
homogeneous Markov chain with unique limit distribution. Recently, it was
shown that the average of this procedure is consistent and has an optimum rate
of convergence. This part contains sections on limit distribution of the conven-
tional stochastic approximation, too, and on some nice applications of the
theory. Part III (Application to adaptation by Lennart Ljung) deals with several
models and problems concerning the importance of stochastic approximation
for adaptation. The main task of adaptation is to track the changes of a stochas-
tic system. Maybe this is the most promising direction towards the fruitful exten-
sions and applications of stochastic approximation, when much more general
models of changes are taken into account.

Budapest L. Gyorfi
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Testing a Linear Regression Model Against
Nonparametric Alternatives
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Institut fiir Mathematik, Universitit Augsburg, 86135 Augsburg, Germany

Summary: As a test statistic for testing goodness-of-fit of a linear regression model, we propose a
ratio of quadratic forms measuring the distance between parametric and nonparametric fits, relative
to the estimated error variance. The test statistic is a modification of the statistic suggested by Hirdle
and Mammen (1988). The asymptotic distribution under the hypothesis is established. The finite
sample behaviour of the test is investigated in a Monte Carlo study, and is illustrated for two
applications.

Key Words: Asymptotic normality; Linear regression; Nonparametric estimation; Simulation; Test.

1 Introduction

In many fields of application linear regression models play an important role.
Let us assume that n observations Y;, (1 <i < n; ne N) follow a linear regres-
sion model with fixed design

Y= x(tn)0 + &, (I<i<n). )

The second index n indicates the dependence from the number of observations,
which is needed for asymptotic considerations in section 2. The observations are
obtained at the known design points a, <t, , <" <t,, <da,, where 4 =
[a,;a;] = R is a fixed compact interval. The regression function x: A — R?
(p € N) is known by the experimenter, whereas the unknown parameter vector
0 € R? is estimated from the data. Let us further assume that for fixed n the error
variables (g; ), <; <. are independent and identically distributed with mean 0,
variance o2 € (0; o0), and finite fourth moment. After estimating the unknown
parameters 6 and o the question arises whether the linear model fits the data
well.

Hirdle and Mammen (1988) propose a method for testing the goodness-of-fit
of a parametric regression model. They use as test statistic a weighted squared
L,-distance between the parametric and a nonparametric fit. The nonparametric

0026 -1335/93/5/367-379 $2.50 © 1993 Physica-Verlag, Heidelberg
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regression model is a generalisation of the linear model. The two models differ
in that the parametric regression function x(t)@ is replaced by an unknown
‘smooth’ function g(t), whence the nonparametric regression model can be writ-
ten as

Yi,n = g(ti,n) + 8i,n (1 S ' S n) > (2)

for some g € C2[A]. Whereas the mean function in model (1) lies in a p-dimen-
sional space, the function g of model (2) is an element of an infinitely dimensional
function space. The Hiardle and Mammen test depends on the unknown variance
o? which is estimated by a time-consuming bootstrap procedure, called ‘wild
bootstrap’.

In the present paper a new method for testing the goodness-of-fit of a linear
regression model is proposed. The test statistic is a discretisized version of that
of Hirdle and Mammen, divided by an estimate of the error variance. The
critical value no longer depends on any unknown parameters, and no bootstrap-
ping is necessary.

In section 2 the test statistic is introduced, and the asymptotic distribution
under the null hypothesis is derived. The finite sample properties of the test are
investigated in a simulation study in section 3, with a special view towards the
goodness of the asymptotic approximation of the null distribution, and the
power of the test under special alternatives. In the sections 4 and 5 the test is
illustrated with the Forbes data of Atkinson (1985), and a data set on milk yield.

Alternative methods for testing the goodness-of-fit of parametric regression
models are discussed by, e.g., Kozek (1990), and Eubank and Spiegelman (1990).
Those authors consider stochastic design points (Kozek), and use slightly differ-
ent distance measures than ours.

2 The Test Statistic

In section 1 the parametric regression model (1) and its nonparametric counter-
part (2) are introduced. Using the n x p matrix X, = (x(t; ,)'); <i<, and then x 1
vectors ¥, = (Y, ,,..., ¥, ,) and &, = (&1 ,...,€,,), the linear model (1) can also
be written as

Y,=X,0+e¢, .

We assume that the matrix X, has full column rank p, and that the components
of the regression function x are in C2[A4]. Our goal is to test the null hypothesis
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of a linear model, against the alternative of a more general nonparametric model.
More precisely, we wish to test the null hypothesis

Hy:ge My = {feC*[A]: 30 e RVt e A: f(t) = 0'x(t)} 3)
against the alternative
Hi:gé¢ #A, .

The test statistic is based on a distance measure between the fit of the linear
model and the fit of the nonparametric model. The null hypothesis H,, is rejected
for large values of the test statistic.

Let 6, = (X,X,) ' X.Y, denote the least squares estimator of the unknown
parameter vector 6. Using the ‘hat matrix’ H, = X,(X,X,) ' X, the least squares
fits and residuals can be written as ¥, = X,0, = H,Y, and R, = (I, — H,)Y,,
where I, denotes the n x n identity matrix. In the nonparametric model (2), we
estimate the regression function g using the kernel estimator of Gasser and
Miiller (1979). With s, = @y, Sy = a3, S = 3t + tir )= 1,...,n — 1) we
define

Wi,n(t)=l 5 K<t;x)dx (i=1,..,n),

bn Si-1.n n

where the bandwidth b, € (0; g) serves as a smoothing parameter. The

prescribed kernel K: R — R is assumed to have compact support [ —1; 1], to
be continuously differentiable on R, and to satisfy the moment condition
fir K(x) dx = 1. Then the kernel estimate for g € C*[A] is

ga) = ‘_[.1 Win®) Yin
Following the lead of Hirdle and Mammen (1988), we use the test statistic
n . 2
= bt 0~ 3 W08, [ a
A j=1

n 2
= nb}? j [ Z W, (DR j,,,] dt
Al j=1

= nbl2R, TR,
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where the n x n matrix A¥™ = (af{¥) is defined by afi¥f = [, W, ()W, (¢) dt.
Hirdle and Mammen actually use the Nadaraya-Watson kernel estimator in-
stead of the Gasser-Miiller estimator, and they consider a random design. For
large values of T#™ the null hypothesis H,, is rejected.

With a polynomial kernel function K we can calculate the test statistic T,/™
exactly, but for each element afj% we have to evaluate a high-degree polynomial.
Hence exact evaluation of T,"™ is rather expensive. Instead the test statistic
is computed by numerical integration. Just as well we may then consider a dis-
cretisized version of T,”™ right from the beginning, using the Riemann sum
approximation

n n 2
= nbl/Z Z [ Z Jn(tl n)Rjn] (si.n - si—l.n) .
With the n x n diagonal matrix A, = diag((s; , — 5i-; ,)) and the n x n matrix

G, = (W, ,(t; ), we rewrite T, as a weighted sum of squares of the smoothed least
squares residuals,

T, = nb,"*(G,R,Y A,(G,R,) .
Under the null hypothesis (3), T, becomes
T;x = nbnllzsr’x(ln - Hn)Gr,lAnGn(In - Hn)sn

The null distribution of T, and of T,;*™ depends on the unknown error variance
o2. Hirdle and Mammen use their ‘wild bootstrap’ method to estimate the
critical values. The major goal of this paper is to avoid this time-consuming
bootstrapping procedure.

o 1 - .
The null distribution of p; T, does not depend on a2. Hence the statistic T, is

divided by an estimator 62 of the error variance. Ideally the variance estimator
has two properties: The null distribution of T, /62 is independent of the unknown
parameters 6 and o2, and 67 is a consistent estimator of ¢ in the nonparametric
model (2).

Gasser, Sroka and Jennen-Steinmetz (1986) propose the error estimate

1
63 = n— Z (ain + bin + 1) l(aln i- Yi,n + bi.nYi+1.n)2 ’

. t; -t tin— ti- . .
witha;, = —L% 8" and b, = %1% With a symmetric n x n band-

i+1,0 — Li—1,n i+1,n — Li-1,n



Testing a Linear Regression Model Against Nonparametric Alternatives 3n

. . . 1
matrix N, we rewrite 62 as a quadratic form, 2 = — Y, N, Y,. However, the

null distribution of T, /42 depends on the unknown parameter vector 6. We can
circumvent this dependence by a slight modification of 62.
We consider the variance estimator

1
S, =

== L, — H)N,(I, — H,)Y,

1
n—2

R.N,R,

1
n—2

n-1
Z’z (aiz.n + biz,n + 1)—l[ai,nRi—1,n —R;,+ bi.nRi-H.n]z
and the test statistic

0, =

S S

In the parametric model (1), S, is a consistent estimator of a2. However, the
problem remains open whether it is consistent also in the wider nonparametric
model (2).

We now analyse the null distribution of the test statistic Q,. In the case of
normally distributed errors, the exact null distribution for sample size n is a ratio
of stochastic dependent mixtures of y2-distributions, with unknown mixing
coefficients. Therefore we turn to an asymptotic approximation.

Hardle and Mammen (1988) show under mild regularity assumptions that
THM is asymptotically normal, where the asymptotic null distribution depends
on ¢, Under similar conditions we show that Q, is asymptotically normal under
H,, and does not depend on 6 and ¢2. To be more precise, the following result
can be derived.

Theorem: Assume the following asymptotic orders, as n — co:

. 1
(i) max; gjcpsq [tin — iy nl = 0(; , where ty ,, = a, and t,., , = a,.

1 1
(i1) max; cicn|Sin — Si-1n — ;(az —ay)l=0 W) Jor some 6 > 0.

(iii) b, -0, n°b}/* — oo with & of (ii), and nb3* - co.
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(lV) supxeA lJn(t)I = O(nbn),
where Jn(t) = {l € {1,...,"} :(Si—l.n; si,n) ﬁ(t - bna t+ bn) # Q} .

(V) max; ;cp hyp=0 n)

Then Q, is asymptotically normal with mean
1
ﬁn = bn‘llz(a2 - al) _’- K(x)z dx
-1
and with variance
2| 1-u 2
62 =4(a, —a))? | [ | Kx)K(x + u) dx] du ,
oL -1

that is, (Q, — H,)/@ converge in distribution to a standard normal distribution.

Assumptions (i), (ii), (iv) are fulfilled for equidistant design points ¢;,,. Assump-
tion (v) is satisfied for a polynomial regression model with equidistant design
points. When working with a symmetric kernel K, Hiardle and Mammen derive
the same asymptotic constants in the case of a random design model. The proof
of the theorem is based on a central limit theorem for quadratic forms of random
variables by de Jong (1987) and on using the Slutsky-lemma.

We can use the result for approximating the critical value z,(«) of Q,, for a
given level of significance « € (0; 1). For large n and appropriate bandwidth b,
we get the approximation

z(0) = I, + 7071 — ) , 4

where ® (1 — «) denotes the a-fractile of the standard normal distribution.

With the quartic kernel K(x) = $2(1 — 2x? + x*)1;_,,;,(x) the values of the
integrals in the asymptotic constants f, and 52 are found to be |1, K(x)* dx =
2~ 0.7143 and (3 [ K(x)K(x + u) dx]* du = 5(— 198 + {1882 — 15504 —
324 + 18) ~ 0.2582. Thus, for a design region A = [0; 1], we obtain fi, = 3b, !/?
and 5 ~ 1.0328.

3 Simulation Results

In this section the usefulness of the asymptotic approximation of the null distri-
bution is investigated in a simulation study. We investigate the goodness of the
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asymptotic approximation (4) of the critical value z,(x), and examine the power
of the test of how it compares to the wild-bootstrap method.
We consider as a null hypothesis the straight-line regression model

gity=0,+ 6,  (6,=0;0,=1),
and the quadratic regression model
git) =0y + 0,t + 0,62 (O, =1;0,=0;0, = —1) .

We choose equidistant design points t;,, = (i — 0.5)/n, and N(0; ¢2)-distributed
errors (o = 0.1). Random samples of size n € {25; 50; 75; 100}, with bandwidths
b, e {k/20: k =1, ..., 10}, were drawn by the TURBO PASCAL 5.0 generator.
This was done for 1000 independent samples in each of the experimental settings.

The empirical quantiles of the null distribution of Q, are given in table
1. Table 2 show the percentages of the simulated values of Q, which were be-
low the asymptotic approximation (4). The asymptotic approximation works
well for some small bandwidths, but is inadequate for larger bandwidths. The
bandwidth-intervals of good approximation are small and tend to zero for an
increasing number of observations, which is in line with the assumption ‘b, —» 0’
of the theorem. They also depend on the regression model. The approximation
in the straight-line model is better than in the quadratic model.

Because of the dependence of the regression model there is no general rule
which bandwidth-interval the approximation yields good results. Thus it is
advisable to use empirical quantiles for performing the test. These critical val-
ues have to be generated for each type of a linear regression model, whereas
the bootstrapping procedure must be carried out for each instance of testing
problem.

In the remainder of this section we compare the power of the new test with
that of the wild-bootstrap method. We consider nearly the same experimental
setting as did Hardle and Mammen (1988). We want to test the null hypothesis
of a quadratic regression model (x(t) = (1; t; t2)),

Hy:ge M y={feC?[A]: 30=(6,, 6;, 0,) € R®Vte A: f(t)=0,+0,t+6,t*} .
We take as alternative regression functions the cubic polynomials
g(t) =2t — 2 + c(t — 1/4)(t — 1/2)(t — 3/4) ce{0;05;1;2} .

Note that g, € .#,. We choose level of significance a = 0.05. In the simulation
we use equidistant design points on 4 = [0; 1] and generate N(0; o%)-distributed
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Table 1. Empirical 0.95-quantiles of the null distribution of Q,. The asymptotic approxi-
mation (4) of z,(0.05) is given in the last column

(a) Straight-line regression model

Number of observations n Asymptotic
Bandwidth b, 25 50 75 100 approximation
0.05 547 542 5.07 4.84 487
0.10 4.09 3.84 3.64 3.36 393
0.15 3.46 297 2.68 2.60 3.52
0.20 235 2.26 209 1.94 327
0.25 1.94 1.85 1.55 1.60 3.10
0.30 1.65 1.34 1.25 1.26 2.98
0.35 1.26 1.06 1.03 0.93 2.88
040 0.90 0.81 0.86 0.77 2.80
045 0.75 0.62 0.61 0.56 2.74
0.50 0.53 045 045 0.42 2.68

(b) Quadratic regression model

Number of observations n Asymptotic
Bandwidth b, 25 50 75 100 approximation
0.05 4.61 4.67 481 4.61 487
0.10 3.51 3.30 3.14 3.02 393
0.15 2.83 229 2.17 2.12 3.52
0.20 1.85 1.64 1.47 1.67 3.27
0.25 1.22 1.14 1.14 1.07 3.10
0.30 0.83 0.78 0.76 0.73 298
0.35 0.60 0.57 0.53 0.52 2.88
0.40 0.39 0.37 0.34 0.35 2.80
0.45 0.25 0.24 0.24 0.24 2.74
0.50 0.16 0.14 0.15 0.14 2.68

errors (6 = 0.1). Hirdle and Mammen work with the Nadaraya-Watson kernel
estimator, and use the quartic kernel. They consider a random-design model
with uniformly distributed design points, and for each sample they perform 100
times the bootstrap resampling procedure.

For ce {0;0.5; 1;2} and bandwidths b, € {0.1; 0.2; 0.25; 0.3} we computed
1000 random samples of size n = 100. Table 3 shows the empirical power of the
new test method based on Q, and that of the Hérdle-Mammen wild-bootstrap
method. Both methods work quite well and produce similar results. The larger
the factor ¢, i.e. the greater the distance between g, and the null hypothesis, the
higher is the number of rejections of the null hypothesis. For small bandwidths
the method of Hirdle and Mammen produces slightly better results, whereas the
Q,-method is preferable for large bandwidths. The Q,-test offers the interesting
feature that the empirical power is increasing in the bandwidth. The variance
estimator S, performed quite well for each value of c. Neither test method
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Table 2. Percentages of the simulated values of Q, lying below the
asymptotic approximation (4) of z, (0.05)

(a) Straight-line regression model

Number of observations n

Bandwidth b, 25 50 75 100
0.05 92.4 91.8 93.6 95.1
0.10 93.6 95.3 96.1 97.8
0.15 95.1 97.8 98.2 99.1
0.20 97.9 98.6 99.2 99.2
0.25 98.5 99.8 99.7 99.7
0.30 98.8 99.7 99.4 99.9
0.35 99.7 100.0 100.0 100.0
0.40 99.9 100.0 100.0 100.0
0.45 99.9 100.0 100.0 100.0
0.50 100.0 100.0 100.0 100.0

(b) Quadratic regression model

Number of observations n
Bandwidth b, 25 50 75 100
0.05 95.5 959 954 96.7
0.10 96.6 98.0 98.8 99.0
0.15 97.6 99.1 99.3 99.2
0.20 99.4 99.5 99.7 99.6
0.25 99.7 99.8 99.9 100.0
0.30 100.0 100.0 100.0 100.0
0.35 99.8 100.0 100.0 100.0
0.40 100.0 100.0 100.0 100.0
0.45 100.0 100.0 100.0 100.0
0.50 100.0 100.0 100.0 100.0

produces uniformly better results. In the final two sections we apply the Q,-test
to two data sets.

4 Forbes Data

The Forbes data set consists of n = 17 observations on the boiling point T
of water at different pressures, recorded at different elevations in the Alps
(Atkinson 1985; p. 4-7). The response Y = 100 log(pressure) is modelled with a
straight-line regression

Y=90+91T+8.
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Table 3. Empirical power of the Q,-test and of the wild-bootstrap method. The latter ones are the
values obtained by Hidrdle and Mammen

c=0 c=05 c=1 c=2
Bandwidth b, Q. HM Q" HM Q. HM 0, HM
0.10 44 10.5 7.0 15.7 194 325 74.2 78.4
0.20 46 5.4 9.0 12.0 26.6 25.2 84.7 79.5
0.25 46 5.3 11.0 99 34.1 26.3 89.5 76.5
0.30 46 39 11.2 7.8 409 22.5 91.7 71.4

The analysis of Atkinson reveals that there is a strong linear relationship be-
tween T and Y. But a residual plot shows small, mostly negative residuals, and
one large positive residual. Further analysis demonstrates that there is a strange
observation which has a great influence on the fitted regression model. If this
outlying observation is omitted from the analysis, the straight-line regression
model describes the data very well.

With the Q,-method for testing the null hypothesis of the straight-line regres-
sion model we get the following results. To perform the test, we transform the
predictor variable T on the interval [0; 1] and use the bandwidth b, = 0.20. We
simulated, under the same conditions as in section 3, an empirical critical value
of 2.81, while the test statistic @, takes the value 3.53. Therefore the null hypothe-
sis is rejected.

If we drop the outlying observation then the value of Q, decreases to 2.42.
For n = 16 and b, = 0.20 we determine the empirical critical value 2.94. Thus
there is no significant evidence for rejecting the null hypothesis. These results
conform with the analyses of Atkinson (1985). The example also shows that
outlying observations can greatly influence the result of the test.

5 Milk Yield Data

Statistical analyse of milk yields plays an important role in agricultural science.
Milk yields are recorded for individual cows, at regular time intervals through-
out lactation. A common model to describe lactation curves is Wood’s curve

f(&) = Bot? exp(B,1) ,

where f(t) denotes the milk yield at time ¢t. One possibility for estimating the
unknown parameters f,, 8, and B, is to transform Wood’s equation into a linear
regression model. After taking the logarithm on both sides and introducing an
error variable ¢, we get the linear model
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Table 4. 41 Average daily milk yields per week (in litre) for cow No. 352, between 31st
week in 1989 and 26th week in 1990. Data by curtosy of Dr. H. V. Henderson,
Ruakura Agricultural Centre, Hamilton, New Zealand

Week 1 2 3 4 5 6 7

Milk yield 20.89 23.21 25.01 2344 25.66 23.76 24.45

Week 8 9 10 11 12 13 14

Milk yield 24.17 25.87 26.77 25.18 2230 23.09 24.48

Week 15 16 17 18 19 20 21

Milk yield 23.39 22.57 20.30 20.38 21.03 19.41 20.48

Week 22 23 24 25 26 27 28

Milk yield 19.46 19.65 19.47 20.42 19.11 16.69 14.41

Week 29 30 31 32 33 34 35

Milk yield 1297 11.75 12.91 9.32 7.43 6.77 7.69

Week 36 37 38 39 40 41

Milk yield 1.19 7.11 6.89 6.35 4.59 5.05

)’t=00+9110gt+92t+8‘,

where 6, = log f,, 0, = B, and 6, = B,. The variable Y, denotes the observed
milk yield at time ¢, measured on a log-scale. Elston, Glasbey und Neilson (1989)
argue that Wood’s curve is not sufficiently flexible to describe the data. Espe-
cially at the time of peak yield Wood’s curve does not give a good fit to data.

The milk yield data set consists of the average daily milk yield for an individ-
ual cow, recorded at n = 41 weeks in the years 1989 and 1990. It is shown in
table 4.

In order to test the null hypothesis of the Wood model we transformed the
predictor variable ‘time’ on the interval [0; 1], and computed empirical critical
values for different bandwidths. For b, = 0.05 the asymptotic approximation (4)
of z,(«) turned out to be quite good. For this bandwidth we got an empirical
critical value of 5.0, while the test statistic Q, takes the value 52.3. Therefore the
null hypothesis is clearly be rejected.

Figure 1 shows the observed log milk yields, together with the least squares
fit of the Wood curve (dashed line), and the fitted curve using the Gasser-Miiller
kernel estimator with b, = 0.05 (solid line). The two fitted curves differ con-
siderable. The nonparametric estimate indicates an extended high level plateau
around the time of peak yield (t = 0.1 to ¢t = 0.6, that is, week n = 3 to n = 26),
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(log scale)

Milk yield

o ) 1 L
~ 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1. Dots: 41 observed log milk yields of an individual cow.
Dashed line: Fitted Wood curve log f(t) = 4.54 + 0.398 log t — 2, 78t.
Solid line: Fitted curve of the Gasser-Miiller estimator with bandwidth b, = 0.05.

followed by a short low level plateau towards the end of the lactation period
(t =08 tot = 0.9, that is, week n = 33 to n = 38). The parametric Wood model
forces the data into a unimodal curve.

Although the Q,-test performs well in the two examples discussed here, more
practical experience is needed before general recommendations can be made.

Acknowledgement: The milk yield data set was kindly made available by Dr. H. V. Henderson from
the Ruakura Agricultural Centre in Hamilton, New Zealand.
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Book Review

A. Benveniste/M. Metivier/P. Priouret: Adaptive algorithms and stochastic
approximations, Springer, Berlin Heidelberg New York, 1990, XI/365 pp.,
DM 114, This is the English translation of the book Algorithms adaptifs et
approximations stochastiques published by Masson, Paris, 1987

Compared with its competitors, namely Theorie and practice of recursive identi-
fication by Ljung and Soderstrom (MIT Press, Cambridge, 1983) and Adaptive
filtering, prediction and control by Goodwin and Sin (Englewood Cliffs, New
Jersey), this is the most recent and the most mathematical book among them.

The book is divided into two parts. Part I (by Benveniste) is entitled Applica-
tions, but it also contains theory, theorems and proofs. This part is not easy to
read, since the reader needs some background in engineering as well as in
analysis and probability theory. The guiding example is that of adaptive equal-
ization in data transmission. The recursive algorithm

‘9n = sn-l + ynH('gn—l’ Xn) + ')’38"(311-1’ Xn) (1)

where X, stems from a Markov process controlled by 3, is the general theme of
the book. The method of comparison with ordinary differential equation (ODE
method) is the main tool for analyzing it. A guide to the analysis of adaptive
algorithms describes the different steps needed for analyzing the convergence
properties of a given algorithm. Similarly, tracking algorithms are considered,
and the practical steps described in another guide. These guides are nice
summaries of the major stages in the applicaton. Change point detection is a
further important topic, and it is also treated from an engineering point of view.
The extensive statistical literature on change point detection is not considered.
The first part closes with a very brief overview on systems theory in general
such as Kalman filter. Many exercises are contained in the first part, but I doubt
that any reader will work on them in detail, since they extend the material more
than deepen it. For instance, the whole presentation of neural networks and the
Gibbs sampler is done in exercises.

Part II, entitled “Theory” (by Métivier and Priouret) contains the main theo-
retical results about local and global convergence of algorithms of the form of
Eq. 1. The style is rigorously mathematical and, to my taste, not very user-
friendly, since numerous assumptions are distributed and cross-referenced over
several pages, which makes the reading difficult. But it is, on the other hand, the
first complete treatment of stochastic approximation algorithms with Markovian
error structure.

To summarize, the book is certainly a major step in a high-level presentation
of the mathematics of adaptive algorithms. It is not easy to read because it
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contains engineering examples which are not understandable for mathemati-
cians on the one hand and modern techniques of stochastic processes, like
martingales, mixingales, diffusion processes, weak convergence etc. on the other
hand. It is of high quality and I hope, but I am not quite sure, that this book will
be greeted by interested reader.

Vienna G. Pflug

P. Hackl (Ed.): Statistical analysis and forecasting of economic structural
change, Springer, Berlin Heidelberg New York, 1989, XIX/488 pp., DM 178,—

At the time it was completed (1989), this volume represented the latest in the
statistical analysis of structural change. The editor, Peter Hackl, deserves much
credit for organizing the volume and for being the inspiration behind the infor-
mal International Institute for Applied Systems Analysis (IIASA) Working
Group to deal with problems on the statistical analysis of economic data for
structural change. This volume represents contributions from conferences in
Lodz, Poland (May 1985), Berlin (June 1986), and Sulejov, Poland (September
1986), and contains a variety of approaches to the study of structural change.
All aspects of the field are well-represented, from the Bayesian to the conven-
tional approaches, and from the theoretical to the more applied data-analytic
studies.

Since Quandt’s 1958 paper on switching regression, the statistical community
has devoted much effort to this problem. Of course, the switching regression
problem occurs in all scientific areas; however, the economists (see Poirer 1976)
appear to have made an above-average effort to structural change problems,
which is evident upon reading the review by Hackl and Westlund (1985).

The volume is divided into four sections and contains 25 chapters that were
written by a total of 32 authors. In the introductory chapter, “What Can Statistics
Contribute to the Analysis of Economic Structural Change”, by Anderson and
Mizon, the role of statistics in the detection of structural change and the role of
respective methods in the evaluation of econometric models is discussed. Also,
this article puts the present volume into a broader perspective by bridging the
gap between the contributions by the statisticians and economists.

Identification of structural change is the topic of the second section of the
volume, and is mostly concerned with statistical tests to detect a change. For
example, Harvey and Phillips develop exact tests to detect changes in the
parameters of simultaneous equations models. An interesting study by Kramer
measures the robustness of the Chow test to autocorrelation in the obser-
vations. He shows that the Chow test is very nonrobust to changes in the auto-
correlation, thus adjustments are necessary if autocorrelation is present. Hackl
and Katzenbeisser compare several tests for detecting change and declare that
some simple ones are almost as efficient as the well-known CUSUM procedure.



382 Book Reviews

Tsurumi uses a Bayesian approach to detect structural change with an inter-
val of a Bayesian predictive density and compares the Bayesian predictive
approach with maximum likelihood and with Bayesian posterior density tech-
niques. Wasilewski develops graphical techniques using residuals, which gives
important information about the data structure and its effect on the estimation
process. The plots of the smoothed residuals show the general tendency in the
residual configuration, while with partial residual plots one can recognize the
influential subsets of data. Such techniques are quite valuable in the investiga-
tion of structural change and represent a unique contribution to the subject.

“Model Building in the Presence of Structural Change” is the topic of the third
section of the volume and gives the reader some new developments in the field.
For example, Tong introduces nonlinear time series models to the analysis of
structural change by using the threshold autoregressive class. In such a process,
the present state of the process changes between two or more regimes, depend-
ing on the previous state of the process, thus the change is state- as well as
time-dependent. Inferences are made via maximum likelihood estimation and
illustrated with some artificial data. Nonlinear dynamics also play an impor-
tant role in the article “Statistical Identification of Nonlinear Dynamics in
Macroeconomics Using Nonlinear Time Series Models” by Ozaki and Ozaki. A
mathematical model is introduced to explain the dynamics of the Hicksian
IS-LM paradigm, in which the difference between Keynesian and monetarist
interpretations of economic activity can be represented by the difference in the
parameters of the model. Models based on linear and nonlinear time series
processes are frequently used to model structural change, and in addition to the
Tong and Ozaki articles, Broemeling works with ARMA processes that have
constant mean, but changing autocorrelation and with models that have a
constant covariance structure but a changing mean value function. Some of the
articles have a computing flavor, as does the Kleffe paper “Updating Parameters
of Linear Change Point Models.” He presents a more efficient way of computing
the estimates of the regression coefficients and change point in the one-change
regression model. The method shows considerably higher speed and better
numerical stability than using the standard routines for linear regression.

There are many more articles than can be reviewed here, thus readers are
encouraged to read this book and see for themselves a most recent account of
structural change in economics. It should be mentioned that in 1991 the IIASA
produced a follow-up to the volume reviewed here. It is entitled Economic
structural change, analysis and forecasting and is published by Springer-Verlag
with Hackl and Westlund as editors.

Galveston L. D. Broemeling
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H. Kunita: Stochastic flows and stochastic differential equations. Cambridge
studies in advanced mathematics 24, Cambridge University Press, 1990,
X1V/346 pp., $69.50/£40.00

About 50 years ago, K. Ito founded the theory of stochastic differential equa-
tions (SDE’s). Since then this theory, called stochastic analysis or stochastic
calculus, has been developed extensively and it now provides us with an indis-
pensable method in probability theory to analyse sample functions of stochastic
processes.

A typical Ito SDE is given usually in the following form:

dXi=3 oi(t, X)dw'(t) + bi(t, X)de ,  i=1,...,d
a=1
XO =X (1)

where X, = (X},..., X%) is a d-dimensional continuous process and w(t) =
(wl(t), ..., w'(t)) is an r-dimensional Wiener process. This equation may be de-
noted in the following form:

dXt=A(dt, X.) s Xo=x N (2)

where A(t, x) = (A(t, x)) is defined by

A't, x) = i _t[ a'(s, x)dw(s) + j bi(s, x)ds . 3)
0

a=10

A(t, x) is a Gaussian random field which may be called a Wiener vector field or
a Wiener process taking values in vector fields. Rewriting Eq. 1 in the form of
Eq. 2 provides us with a way of extending the notion of SDE’s: We may take
more general random fields A(t, x) than given in the form of Eq. 3.

The uniqueness of the present book by Kunita is exactly in this point, namely,
a characteristic feature which distinguishes it from existing standard text books
on SDE theory is that it treats mainly SDE of the form of Eq. 2, where A(t, x) is
allowed to be a more general random field which may be called a semimartingale
with values in vector fields. Such a generalization of SDE is not a mere general-
ization but has a substantial meaning in the study of stochastic flows as will be
explained below.

Ito’s motivation in introducing SDE was to construct diffusion processes
associated to the Kolmogorov differential equations. If we denote the solution
X, of Eq. 1 by X({(t, x, w), then for each x, the map w - [t - X (¢, x, w)] defines a
random variable with values in d-dimensional continuous paths so that this
family of random paths defines a diffusion process on R%. If we consider the map
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x = X(t, x, w), however, it defines a homeomorphism on R? (or diffeomorphism
on R? if the coefficients ¢ and b are smooth enough), so that we have a random
one-parameter family (or a flow) of homeomorphisms, or difftfomorphisms when
we regard the solution as giving the following map: w - [t — [x — X(t, x, w)]].
This is called a stochastic flow of homeomorphisms or diffeomorphisms and it is
to the study of this notion and its applications that this book is primarily devoted.

It is well-known that solutions of an ordinary differential equation (or a
dynamical system) define a one-parameter group of diffeomorphisms, and hence
it is quite natural and important to study the difffomorphic properties of solu-
tions for SDE. It should be noted that the study of SDE in connection with
stochastic flows was already given in the Soviet Union in early works on the
dependence of solutions on the initial values by, e.g., Gihman, Skorohod,
Blagovescénskii, and Freidlin. In recent years, it has been studied more exten-
sively and, among others, a precise diffeomorphic property of solutions of Ito
SDE has been finally established by Kunita and Bismut. In this book, this is
further developed to solutions of general SDE in the form of Eq. 2 by a masterful
method of the author.

The notion of stochastic flows can be defined independently of the notion of
SDE. Roughly, it is a (right) invariant Brownian motion on the infinite dimen-
sional Lie group formed of diffcomorphisms. An important and interesting class
of stochastic flows has been introduced and studied by T. E. Harris. However,
this class of stochastic flows cannot be produced as solutions of Ito’s SDE, and
it is here that the SDE in the form of Eq. 2 with a more general Wiener vector
field plays a crucial role. Indeed, it was found by LeJan and Kunita that the most
general class of stochastic flows can be constructed by this class of generalized
SDE’s. In the present book, the one-to-one correspondence is established be-
tween stochastic flow and the SDE of the form of Eq. 2 generating the flow.
Furthermore, various important properties of this correspondence are studied
in detail; among others, SDE’s satisfied by the inverse flow and the composite of
flows are determined precisely.

Many important applications of stochastic flows and the SDE’s generating
them are also discussed. Among other things, we can find applications to sto-
chastic partial differential equations, Zakai and Kushner-Stratonovich equa-
tions in nonlinear filtering theory, in particular, and limit theorems in which the
following three types of limit theorems are given in a unified way: (a) approxima-
tion theorems for SDE and stochastic flows studied by many people as refine-
ment and generalization of the famous Wong-Zakai theorem, (b) limit theorems
for driven processes due to Papanicolaou-Stroock-Varadhan, (c) limit theorems
for stochastic ordinary differential equatons due to Khasminskii, Papanicolau-
Kohler and others.

In conclusion, this is the first book — and thus unique - to treat the theory
of SDE’s and stochastic flows, to establish their relationship in full generality
and in the best possible up-to-date and precise form, and to also give many
important applications. It can be highly recommended as a text for graduate
students as well as a research monograph for specialists.

Kyoto S. Watanabe
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M. Schél: Markoffsche Entscheidungsprozesse, Teubner-Verlag Stuttgart, 1990,
XV/182 pp., DM 29,-

Many treatises on Markovian decision processes exist (also called stochastic
dynamic programming, DP, or stochastic optimal control with discrete time
parameter). They range from books for practising operations researchers to
monographs on sophisticated foundational questions. The present textbook,
written by a well-known researcher in the field, introduces the reader to both an
up-to-date firm theoretical basis and the essentials of important applications.
These include inventory models, the controlled queueing system M/G/1, re-
placement problems, and optimal selection. A completely novel feature is the
unified treatment of stochastic DP, gambling, and optimal stopping, three
theories which have for a long time developed quite independently. It is not
surprising that this ambitious program can be carried out within less than 200
pages only by restricting oneself to the case of a countable state space (and by
omitting some topics such as Bayesian models). This avoids most measure-
theoretic and topological subtleties inherent in the case of a general Borel state
space. Only rarely are some standard facts from measure theory needed. Thus,
despite its high level, an introductory course on probability will suffice as a
prerequisite for nearly all parts.

The book consists of two chapters. In the first one (about one-third of the
book), basic, and some novel, facts from Markov chains with discrete time
parameter are presented in a succinct and refreshing manner, skilfully inter-
woven with the modelling of the applications mentioned above and with a first
excursion into DP, e.g. the performance of special strategies is studied. The bulk
of the book is the second chapter where many theoretical results of stochastic
dynamic programming are systematically developed and applied to the problems
introduced previously. The emphasis is on the infinite-stage model with its
several approaches.

A more detailed description of the contents is given in the following: The intro-
ductory paragraph whets the appetite with challenging gambling problems up to
the optimality of the bold strategy in a subfair game. The examples already cited
include the M/G/1 system (under three different assumptions) which is analysed
by means of an embedded branching process. After deriving the basic facts about
Markov chains, the main limit theorem is proven by a coupling method. For
finite Markov chains, the continuity of the limit matrix as function of the transition
matrix is shown, which is useful for the treatment of the average reward criterion
in Chap. II. Chapter I closes with a treatment of optimal stopping problems.

Chapter II starts with the introduction of the finite-stage model with arbitrary
action space and (deterministic) non-Markovian strategies. Throughout the
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existence of an (upper) bounding function is assumed. This ensures the existence
of the n-stage value function i — v"(i) := maximal expected n-stage reward for
initial state i. The first basic result is the validity of the optimality equation (OG)
and the existence of e-optimal Markovian strategies. Under compactness and
(semi-)continuity assumptions the existence of an optimal strategy is established.
As an interlude, the classical result about the existence of an optimal (s, S)-
ordering strategy in an inventory problem with K-convex value functions is
derived in a succinct manner.

As is well-known, in infinite-stage models there are several possibilities for
defining the value function v, e.g. as in DP by v, := sup, lim, E;u,, where u, is
the random reward of the n-stage model, or as in gambling problems by v, :=
sup; E; lim, E;u,. Some of the main problems treated are to find conditions such
that (i) v, and /or v, satisfy the OG, (ii) v, and/or v, are the (pointwise) limit of
v" for n — oo, (iii) the infinite-stage problem has a stationary (e-) optimal strategy.
The now classical cases (the negative, the discounted and the positive case) are
treated in detail under weakened conditions, which are useful also for
applications. Interesting results from the author’s research form a large portion
of the following parts of the book: (a) a section on positive models including
so-called leavable models, where in each state there is an action which freezes
the process for one period, (b) a section on undiscounted models with a new total
reward criterion (as limit of -discounted rewards for §11), (c) a section on
so-called lim-sup models which contain most of the preceding models and (d) a
section on generalized stopping problems where also one-stage rewards are
allowed. With these last sections, the author completes his program of unifying
the theories of DP, gambling and optimal stopping. It turns out that besides
the notions of a “conserving” and “equalizing” strategy, according to Dubins,
Savage and Sudderth, an additional uniform integrability condition is important
for the characterisation of optimal policies. Two sections are devoted to the
average reward criterion for the case of a finite state space and a compact action
space.

I noticed a few misprints, but all of a harmless nature. In a new edition the
inclusion of exercises would enhance the great value of the text.

Despite its high standard, the exposition is very elegant, clear and readable. It
includes useful motivations, examples and counterexamples, giving much insight
into the subtle interplay between assumptions and results and between the
stochastic development and the sequential character of the optimization prob-
lem. The book can be highly recommended for course work as well as for
seminars. Everybody who has mastered it should be very well prepared to study
literature, either of theoretical or of applied character. I think it would be worth-
while to make the book accessible to a wider audience by a translation into English.

Karlsruhe K. Hinderer
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J. Pfanzagl: Elementare Wahrscheinlichkeitsrechnung, 2nd edn., de Gruyter
Lehrbuch, Walter de Gruyter, Berlin New York, 1991, XI1/347 pp. DM 92,
(hardcover) DM 52,— (soft cover)

Despite the statements made at the beginning of its Preface, this text book
(reviewed here in its second edition) was conceived in the spirit of measure and
integration theory. The author pursues mathematical rigor and at the same time
presents a variety of applications. No wonder that a second edition became
necessary.

The difference between this edition and the first one is not large, but signifi-
cant. The author has added Chapter 12 on the distribution of extremes, in which
he discusses the asymptotic behavior of maxima and minima of random variables,
identifies the corresponding limit distributions, and applies the results to band
width and sample mean estimators. Since an introduction to basic problems of
mathematical statistics is given only in the following chapter (13), their applica-
tions, although of a very special nature, can serve as an hors d’oeuvre to the more
general but modest treatment of estimation and testing.

In the extended Preface, the author mentions that the idea of adding a further
chapter on stochastic processes occurred to him as problematic, since a satisfac-
tory exposition would have necessitated more sophisticated mathematical tools.
Although every academic teacher faces this problem, some of them are successful
in presenting at least part of the stochastic dynamics (e.g., Markov chains and
random walks) on a mathematically acceptable level.

As in all later editions of publications, in this one, too, previous insufficiencies
have been eliminated, naturally with the kind help of committed readers.

Tiibingen H. Heyer
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