C‘ U q NIEDERSACHSISCHE STAATS- UND
-~ L UNIVERSITATSBIBLIOTHEK GOTTINGEN

Werk

Titel: Manuscripta Mathematica

Verlag: Springer

Jahr: 1993

Kollektion: Mathematica

Digitalisiert: Niedersachsische Staats- und Universitatsbibliothek Gottingen
Werk Id: PPN365956996_0081

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN365956996_0081

Ubergeordnetes Werk

Werk Id: PPN365956996
PURL: http://resolver.sub.uni-goettingen.de/purl?PPN365956996
OPAC: http://opac.sub.uni-goettingen.de/DB=1/PPN?PPN=365956996

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational,
research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections
are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission
from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online
system to access or download a digitized document you accept the Terms and Conditions.

Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further
reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the
source.

Contact

Niedersachsische Staats- und Universitatsbibliothek Gottingen
Georg-August-Universitat Gottingen

Platz der Gottinger Sieben 1

37073 Géttingen

Germany

Email: gdz@sub.uni-goettingen.de


mailto:gdz@sub.uni-goettingen.de

manuscripta
mathematica

Volume 81 1993

Editors

M. Barner, Miillheim R. Oliver, Villetaneuse P. Roquette, Heidelberg

P. M. Cohn, London U. Pinkall, Berlin A. J. Sommese, Notre Dame
H. Kraft, Basel A. Prestel, Konstanz K. Steffen, Dusseldorf

Copyright. Submission of a manuscript implies: that the work described has not been published before (ex-
ceptin the form of an abstract or as part of a published lecture, review, or thesis); that is not under consider-
ation for publication elsewhere; that its publication has been approved by all coauthors, if any, as well as
by the responsible authorities at the institute where the work has been carried out; that, if and when the
manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the
publisher; and that the manuscript will not be published elsewhere in any language without the consent of
the copyright holders.

All articles published in this journal are protected by copyright, which covers the exclusive rights to repro-
duce and distribute the article (e. g., as offprints), as well as at translation rights. No material published in
this journal may be reproduced photographically or stored on microfilm, in electronic data bases, video
disks etc., without first obtaining written permission from the publisher. The use of general descriptive
names, trade names, trademarks, etc., in this publication, even if not specifically identified, does not imply
that these names are not protected by the relevant laws and regulations.

While the advice and information in this journal is believed to be true and accurate at the date of its going
to press, neither the authors, the editors, not the publisher can accept any legal responsibility for any er-
rors or omissions that may be made. The publisher makes not warranty, express or implied, with respect
to the material contained herein.

Special regulations for photocopies in the USA. Photocopies may be made for personal or in-house use
beyond the limitations stipulated under Section 107 or 108 of U. S. Copyright Law, provided a fee is paid.
All fees should be paid to the Copyright Clearance Center, Inc., 21 Congress Street, Salem, MA 01970, USA,
stating the ISSN 0025-2611, the volume, and the first and last page numbers of each article copied. The
copyright owner’s consent does not include copying for general distribution, promotion, new works, or
resale. In these cases, specific written permission must first be obtained from the publisher.

Printers: Briihlsche Universitatsdruckerei, Giessen
Printed in Germany - © Springer-Verlag Berlin Heidelberg 1993
Springer-Verlag GmbH & Co. KG, Berlin, Germany

Springer International




Contents

Accola, R. D. M.: Some loci in Teichmiiller space
for genus seven defined by vanishing
thetanulls 113

Agoston, 1., Dlab, V., Lukécs, E.: Homological
characterization of lean algebras 141

Alberti, G., Buttazzo, G.: Local mappings on spaces
of differentiable functions [1] (Erratum) 445

Becker, P.-G., Bergweiler, W.: Transcendency of local
conjugacies in complex dynamics and transcendency
of their values 329

Bergweiler, W. — Becker, P.-G.

Birkenhake, C., Lange, H., Ramanan, S.: Primitive
line bundles on abelian threefolds 299

Bonnet, A.: A deformation lemma on a C!
manifold 339

Braides, A., Notarantonio, L.: Fractal relaxed
Dirichlet problems 41

Buttazzo, G. — Alberti, G.

Chen, J. — Ding, N.

Cuartero, B., Galé, J. E., Palacios, A. R.,
Slinko, A. M.: Bounded degree of weakly algebraic
topological Lie algebras 129

Di Gennaro, V.: Generalized
Castelnuovo varieties 311

Ding, N., Chen, J.: Relative coherence and
preenvelopes 243

Dlab, V. — Agoston, 1.

Fabritiis, C. de: On continuous dynamics of
automorphisms of C2 (Erratum) 223

Faierman, M., Mennicken, R., Méller, M.: An elliptic
boundary value problem occurring in
magnetohydrodynamics 387

Fuchs, M.: The blow-up of p-harmonic maps 89

Galé, J. E. — Cuartero, B.

Garcia, A., Lax, R. F.: Weierstrass weight of
Gorenstein singularities with one or two
branches 361

Hayashi, N.: Global existence of small radially
symmetric solutions to quadratic nonlinear wave
equations in an exterior domain 15

Heimonen, A., Matala-aho, T., Vi4ninen, K.: On
irrationality measures of the values of Gauss
hypergeometric function 183

Isidro, J. M., Kaup, W.: Determining boundary sets
of bounded symmetric domains 149

Kaup, W. — Isidro, J. M.
Lami Dozo, E., Mariani, M. C.: A Dirichlet problem

for an H-system with variable H 1
Lange, H. — Birkenhake, C.

Laradji, A.: a-compactness of reduced products and
filter quotients 283

Lax, R. F. = Garcia, A.

Lukécs, E. — Agoston, I.

Manickam, M., Ramakrishnan, B.,Vasudevan, T. C.:
On Saito-Kurokawa descent for congruence
subgroups 161

Mariani, M. C. - Lami Dozo, E.

Markl, M., Papadima, $.: Moduli spaces for
fundamental groups and link invariants derived
from the lower central series 225

Matala-aho, T. = Heimonen, A.

Mennicken, R. — Faierman, M.

Moller, M. — Faierman, M.

Notarantonio, L. — Braides, A.

Ohno, M.: An affirmative answer to a question of
Ciliberto 437

Palacios, A. R. = Cuartero, B.
Papadima, §. - Markl. M.

Ramakrishnan, B. — Manickam, M.

Ramanan, S. — Birkenhake, C.

Rigoli, M., Salavessa, 1. M. C.: Willmore
submanifolds of the Mébius space and a
Bernstein-type theorem 203

Salavessa, I. M. C. — Rigoli, M.

Saneblidze, S.: Obstructions to the section problem in
fibre bundles 95

Slinko, A. M. — Cuartero, B.

Smith, R., Varley, R.: A homological criterion for
reducibility of analytic spaces, with application to
characterizing the theta divisor of a product of two
general principally polarized abelian varieties 263

Tang, S.-L.: Iwasawa invariants of imaginary
quadratic fields 379

Tarantello, G.: Multiplicity results for an
inhomogeneous Neumann problem with critical
exponent 57

Thomas, H.: Etage initial d’une Z-extension 413

Vainidnen, K. — Heimonen, A.
Varley, R. — Smith, R.
Vasudevan, T. C. = Manickam, M.

Wang, Y.: Finitistic dimensions of
semiprimary rings 79

Covered by Zentralblatt fiir Mathematik
and
Current Mathematical Publications



manuscripta math. 81, 1 - 14 (1993) manuscripta

mathematica
© Springer-Verlag 1993

A Dirichlet problem for an H-system with variable H

ENRIQUE LAMI Dozo - MARfA CRISTINA MARIANI

We give conditions on H, a continuous and bounded real function in R?®, to obtain
at least two solutions for the problem (Dir) below. H can be far from being constant in
the sense of [9]. Our motivation is a better understanding of the Plateau problem for the
prescribed mean curvature equation.

1 - Introduction

We consider the Dirichlet problem in the unit disc B = {(u,v) € IR?; u? +v% < 1}
for a vector function X : B — IR® which satisfies the equation of prescribed mean
curvature

AX = 2H(X)X, A X, in B
(Dir)
X =gondB

where X, = %%f—, X, = ox , “A” denotes the exterior product in IR® and H: IR® —

IR is a given continuous function. When H is bounded and g is in the Sobolev space
H(B, R®) wecall X € H(B, IR®) a weak solution of (Dir) if for every v € C}(B, R®)

(ol) Jo(VX Vo4 2H(X)XuAX,-p)=0
()
X € T=g+ HY(B,IR)

where H3(B, IR®) = adh: C3(B, R®)
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If H=Hy, = const. in IR orif H is near a constant, weak solutions are obtained
as critical points in T' of the following functional

Dx(X) = D(X) + 2V(X)

with .
D(x)=1 / IVXP
2/B

the Dirichlet integral and

V(X)=%/BQ(X)-X.,/\X,,

the Hildebrandt volume where the field @ on IR satisfies div Q = 3H, Q(0) = 0 (cf
6]).

For Q@ = Hy{ and g = gy =const. in IR, there is only one weak solution X = g
[r0].

For g non constant with 0 < |Ho|||g|lcc < 1 there are two weak solutions, a local
minimun of Dy in T [5][7] called a stable solution and another weak solution which is
not a local minimun called an unstable solution [3][8].

For H variable and H near Hy € IR \ {0} for the following distance

(H — Ho] = ess sup (1+ [¢|)(|H(¢) — Hol + |[VH(¢)])
+ 1Q(€) — Hof| + |dQ(¢) — Ho id |

defined in [9], there are also two solutions (stable and unstable) [4].

We will consider prescribed H far from constants and obtain conditions to have at
least two solutions.

Finally we recall that (Dir) is motivated for a better understanding of the Plateau’s
problem of finding a surface with prescribed mean curvature H which is supported by a
given curvein IR®.

Notations We denote W'?(B, IR®) the usual Sobolev spaces [1] and
HY(B, R®) = W"*(B, R?®)

For X € H'(B, R®), ”X"L’(aB,m’) = ([om |T'I'X|2)1/z where
Tr: HY(B, IR®) — L?(8B, IR®) is the usual trace operator [1] and for ¥ € L>(U, R™),
we denote

Y lleo = ess sup Y (w)|
L wevU



LAMI DOZO - MARIANI 3
Concerning Dy (resp V') we denote

Dy(X +tp) — Du(X)
t

dDu(X)(p) = lim

wherever this limit exists, (resp. dV(X)(¢))

2 - Minima in convex subsets

We find a global minimum of Dy in T when @ lies in a specific convex subset of
L*® and g is arbitrary in H!(B, IR®). When g is harmonic and regular on B we find
conditions on H ensuring that g is a local minimum in T'N W*°(B, IR®).

We give proofs based on technical lemmas from section 4.

Theorem 1 Let H : IR® — IR be continuous and bounded. If the function

Q € CY(IR®, IR®) associated to H satisfies that ||Q|le < 3/2 and -bf—' € L=(IR®)
J
for i # j, then, given g € H'(B, IR®) the functional Dy has a minimum X in T =

g+ H}(B, R*) and X is a weak solution of (Dir).

Proof. From

(1) € +n A ¢l < I€IL/2(In +I¢I7)

for vectors in IR*® we have for X € H'(B, R®) that

IDu(X)| < D(X) +2/3 /B |Q(X) - X, A X,| < D(X) +2/3QllwD(X) < 2D(X)

so Dy is finiteon T'.

From [|Q(X)|lec < £ for X € T, Dy is weakly lower semicontinuousin H'(B, IR®),
hence in T, and from X|sp = g,Dpg is coercive in T [7, Lemma 3.3, p 101]. But T is
an affine subspace of H(B, IR®), hence weakly closed, so there is a minimum X of Dy
in T.

If X € H*B, IR®), then X satisfies (Sol) by calculation (integrating by parts) of

Dy(X)(p). For X € H*(B, IR®), it follows by a density argument.

Theorem 2 Let g € C*(B, IR®) be harmonicin B. Suppose that H € C*(IR*)n
W1(IR®) and g satisfy
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) 0<|Hlwllgllw <3/2 and Q € L=( R, IR*).
ii) For some ¢ > ||Vg||e, for all £ € R®
(O] < (Aa/®)(1€] = llglloo)+
where A; > 0 is the first eingenvalue of —A in H}(B).
Then g is a local minimum of Dy in TNWH(B, IR®).

Proof. Fromii) H(g) =0 on B and g is harmonic, so (Dir) holds trivially.

Now, we choosec; > 0 and 6§ > 0 such that |Vgllw < e < ¢, 6§ <
3
z

min{c; — ||Vgl|co, MHTS llgllco } and define

M ={X € T;|X - gllo + IV(X = 9)lleo < 6}

We have that M is a nonempty, convex, closed and bounded subset of H!(B, IR®),
then M is a weakly compact subset of H*(B, Bs) , Dy is weakly lower semicontinuous
in M because

1R(X)leo < 1 H looll X lloo < 1H oo (| X = glloo + llgllo) < 3/2

for X € M [7Jemma 3.3, p 101].
Hence, there exists X € M such that

Dy(X) = )PngH(X)
Forany X e M,
A A A
[H(X)| < c—;(IXl = liglloo)+ < c—;(lxl —lgD+ < ;%IX -4l
a.e. in B and

/ZH(X)XuAX,,-(X—g)Z-/ 2[X.,/\X,,|%|X—g|22
B B

A c1\?

2y 125 _ (A2 _ 2
- /B X g 2= (2) V(X - 9l

Also [, Vg-V(X —g) =~ [3Ag-(X —g) =0, because X —g € H}(B, IR®).
Finally, from X, A X, in L*, the first equality in (Sol) holds for X and ¢ in
H}(B, IR®) since
|B

1/2
o) <3 (1) 1001 A Lollolielag
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for the same A;. So, Lemma 1 gives

02 dDu(D(X -9)> [ VX - - (2) VX -9 =

= (D) vE - gl

c

Hence X =g and M is a neighborhood of g in T N W'*(B, le) .

A class of functions H satisfying the assumptions of Theorem 1 is given by

Hy, if¢; € (a;,b;)

HO) = {0 if §; ¢ (ai —€,b; +¢)

with Hy, €, a;,b;, ¢ = 1,2,3 positive numbers such that 0 < a; — €, a; < b; and

3

Ho(Z(bi + 5)2)1/2 < 3/2. Moreover, we suppose that H € C}(IR*) and ||H||e = Ho -
=1

Now, from

Q) = ( / ® H(s,ors) ds / © Hierys,62) ds , / ® B tars) ds)

we have that s

e@is (X ([ Ho)z)’“

=1
and then, ||Q|le < 3/2
; a
Finally, Qs € L°(R?®) for i # j, i,j = 1,2,3 because oH € Co(R®)
i =1,2,3 % %
1=1,2,3.

3 - Weak solutions of (Dir) via The Mountain Pass Lemma

We search now the possibility to find other weak solutions of (Dir) in T, taking
account the case H = Hy € IR studied in [3][7].

First we give a result which is a variant of The Mountain Pass Lemma [2],[7] and
second, sufficient conditions to get from critical points of Dy in convenient closed convex
subsets of T, weak solutions of (Dir).

Again, we give proofs based on Lemmas from section 4.
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We consider a fixed data g € W, For k> 0 in IR, denote
M(k) = {X € T5[V(X — g)]loo < k}
M(k) is nonempty and convex, so, Ifm is nonempty, convex and closed, and

M(k) = {X € T; || V(X - g)lle < k}

The slope of Dy in M(k) is given, for X € M(k), by
p(X) = sup {dDa(X)(X - Y);Y € M(R)}
Finally, we define for S € IR,

Mg = {X € M(k); Du(X) < 8} and
Kg = {X € M(k); Dg(X) = B,p(X) = 0}

The following result is a variant of The Mountain Pass Lemma.

Theorem 8 Let H € L®°(IR*)NnC(R®), Q € L*(IR®, IR®) and suppose that
Xo € Wh(B, HZS) is a local minimum of Dy in T. If for some k > 0 in IR there
exists X, € M(k) such that Dy(X1) < Dg(X,), then

= inf sup D t
B L B H(v(t))
where T' = {v : [0,1] — M(k), v continuous, ¥(0) = Xy, v(1) = X,}, is attained by
Dy at X € M(k) with p(X)=0.

Remark At least one of these X is not a local minimum of Dy in T'. We will
call it an unstable p-critical point.

Corollary 1 If X, and X; arein some M (k) and both are local minima of Dy in

T, with Dg(X,) # Dg(X,) then there exists an unstable p -critical point X in M(k).

Corollary 2 If there are no unstable critical points in M(k) then the set of local
minima of Dy in M(k) is connected and Dy is constant on it.

Proof of Theorem 3. It is analogous to the one of Theorem 3.3[7] p. 125. We choose
k > 0 such that X, X; € M(k).
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For € = Dy(Xo) — Du(X;) > 0 and for any neighborhood N of the set Kz in

M(k), there exists a number ¢ € (0,) and a deformation ® with the properties stated
in Lemma 4.

If Kg = ¢, we choose N = ¢. By definition of 3, there is v € T such that

sup Dp(y(t)) <B+e
t€fo,1]

Then v, = ®(1,9) € T because v;(0) = ®(1,X,) = X from p(X,) = 0. Also
11(1) = (1,X) = X, because €= Dy(Xy) — Du(X1) < B - Du(X,).
But 7,([0,1]) C Ms_, contradicting the definiton of 8.

We end as in [7] Theorem 3.3, p. 125.

Proof of Corollary 1 and Corollary 2. Corollary 1 being immediate we proceed with the
proof of Corollary 2.

If Kz consists only of local minima of Dy in T, there exists a neighborhood N of
Kg in M(k) such that N and Mg\ Kj are disjoint and then, Mg_.N N = ¢ for any
e>0.

By Lemma 4 we can choose ® corresponding to this N, € =1 and v C Mg,..
By property iii) of & we obtain that v, = ®(1,9) € I', 1 C Mg_. U N. Hence,
71 C N and X,,X; belong to the same connected component of Kg, and in particular
Dy(Xo) = Du(X1)=8.

Now, we give sufficient conditions to get from zero slope a weak solution of (Dir).

Theorem 4 Let X € M(k) satisfy one of the following conditions:
i) X e M(k)
i) |H(X) (X -g)I<1 ae in B and [VX-Vg<0

Then, if p(X) =0, X is a weak solution of (Dir)

Proof. From |V(X—g)|leo < k, we obtain that for ¢ small enough and ¢ € C}(B, R®),
Y=X+tepeMk).

Then, dDy(X)(X — (X L ep)) = dDy(X)(Fep) < p(X) =0 and we deduce
dD(X)(p) = 0

Finally, if [|[H(X)(X — g)lo < 1 and [ VX:.Vg < 0, and we suppose that
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dDp(X)(X — g) <0, we have that

0> dDp(X)(X —g) = /B VX - V(X - g) + 2H(X)Xu A X, (X — g)

2/ |VX|2——2|X.,AX,,|—/VX-V920.
B B

Then, from Lemma 1 X is a weak solution of (Dir).

Theorem 5 Let g € C*(B, IR®) be harmonicin B. If M is a nonempty convex
subset of T such that

i) For some § >0, g+ € M for any ¢ € C}(B, IR®) with |Vp|leo < 6
i) ¢= sup ||[VX]e < +o0
XeM
and if H € C*(IR®*)NWYH(IR®) satisfies c|H(£)| < M (/€] = llglloo)+
where \; > 0 is the first eingenvalue of —A in H(B).
Then any X € M with slope p(X) =0 is a weak solution of (Dir).

Proof. From Lemma 1, X is a weak solution of (Dir) or dDy(X)(X —g) <0.

The proof that the case dDy(X)(X — g) < 0 is not possible is the same that the one
in Theorem 2.

A class of functions H shuch that Dy has a stable and unstable critical point, thanks
to Theorem 3 and 4, is as follows:

Let g(u,v) = Xo(u,v) = (0,q,0),a € IR, and let H € C*(IR®) satisfy
Hy f&+¢<Randay<& <o
H(E)-—{O fe2+¢>(R+e)orts ¢ (o —c,0p+¢)

and |H(¢)| < |Hy|, where Hy € IR, a;,a3,c, R positive will be fixed later with ¢ <
@1 < az. Then H is zero near (0,¢,0) in IR® (the image of g) for any a € IR, and
1@l < [Hol((az +)* + (R+ ).

Consider X;(u,v) = (f(v,v),q,h(u,v)) with f,h € C>(B) and f =h =0 on 8B.
We fix R? > ||fll% +a®. Then Xi, A X1y = (0,hyfy — hyfu,0) and

3V(X1) = / aHO(hufv - hvfu)
a1 <h(u,v)<as

() Q2(X1)(hufo — hofu)

1<h(u,v)Seate

“
+ / 1 Qa(X1)(hufo — hofs)

—e<h(u,v)<on
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because Q2(X1) = [ H(f(u,v),s,h(u,v)) ds =
{f: Hyds=aH, ifea; <h(u,v)<a,

0 if h(u,v) < ay — € or h(u,v) > ap + €.

Besides X, € M(E) for k> (|| + [IVAIZ)} .
We take a;,cas, f,h such that fa‘gh(u,v)Saz(h“f" — hyfu) # 0, we choose |Ho| =

- 3 . .
(”fu";o + |1h|l§°) ?, a€ IR verifying D(X,;)+ %a.Ho fmgh(u.v)sw(h“f" —hyfu) <0,
and ¢ sufficiently close to zero, so Dy(X;) < Dy(g) =0.

For ¢ € Hy(B, IR®), the formula Dy(g9+¢) = Du(9)+dDu(g)(¢)+3d* Du(g)(v, p)+
o(]IVe|iZ) holds. To prove it we remark that Dgy(g) = dDg(g)(p) = 0 and that
d*V(g) =0, because

SV (X)(p,8) = /B (VE(X) - $)Xu A X, o+ /B (VE(X)-X,)-$u A
+ [(VHX)-XJp A X+ [ B A o +ounth) - X
B B

Finally, Lemma A.8 in [3] gives

%fBQ(9+‘P)"PuA‘Pv
Vell3

‘ Dy(g + ) — 39°D(9)(9;¥) I -

2
=¢||V
“V(pug < 3‘:" (Q(g +‘P))“2’

and the formula follows from ||[V(Q(g + ¢)) |2 — 0 if ||Vl — 0, since V(Q(g)) =0.
Hence g is a local minimum of Dy in T, and Dy(X,;) < 0 = Dy(g). If M =
{X € M(E); | X - glloo < l—I}J and p is the slope of Dy in M}, from Theorems 3,4 we
obtain that there exists X; € M} with p(X;) =0, and X, is a weak solution of (Dir).
To apply Theorems 3 and 5, we take g(u,v) = (0,a,a?), the same H which is zero
in a neighborhood of (0,4a,a?) if a; —¢ > a?.

For ¢ > 0, we would want ii) in Theorem 2. To obtain it, we take a; = (a?+a%)*/2 +
A151
ez’
Denote now X;(u,v) = (f(u,v),a, 0%+ h(u,v)) and fix ¢ = ||VX;||co . The first term
in (2) is

€1 = ||glloo + €1 With €, > 0 and we choose Hy =

(3)

A
Hoalhufo = hufa) = esa [
c (¢7+u‘)i-—a3+e1<h(u,v)<a3 —a?

(hufu - hvfu)'

a1 <a?+h(u,v)<as
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Now, we fix f,h, €;,e2 to have f.}+¢.<h(u,u)<¢,(huf" —hyf.) <O.

Then, from lim|s)— 400 [(a? + at)} —a?) = 3 we can take a > 0 such that

D(Xl) + 2 Alela

a hufv - hufu <0.
3 ¢ -/(a’+o‘)§—a’+¢1<h(u,u)<q( )

Finally, we fix a; = €5+4? in(3), and ¢ sufficiently close to 0, so from (2), Dg(X;) <
Dy(g9) =0 and o; — e > a?.

As before, g is a local minimum of Dy in T, so Theorem 3 gives X with p(X) =0
in M(c) and from Theorem 5, X is a weak solution of (Dir).

Remark We can choose f(r,a) = (1—r?)r? [*sin’¢ dt and h(r,a) = (1 —r?)
in polar coordinates for both cases. Also g = (0, a,a?) and the same H are an example
for theorem 2.

4 - Technical Lemmas

Lemmal Let g € HY(B, IR®). Suppose M a nonempty subset of T such that
for some § >0, g+ ¢ € M for any ¢ € C3(B, IR®) with |Vy|le < § and such that
dDy(X)(X -Y) exists for X and Y in M. Then, any X with dDyg(X)(X —g)=0
and dDy(X)(X —Y) <0 forall Y € M, is a weak solution of (Dir).

Proof.  Given ¢ € Ci(B, R®) verifying |Vi|leo < 6,let Y = g+ ¢. Then, from
0> dDy(X)(X -Y)=dDu(X)(X — g) — dDu(X)(p) we conclude dDy(X)(¢) > 0.

Replacing ¢ by —¢, also the opposite inequality holds true, and X is a solution of
(Dir).

Lemma2 Dy, dDy and p are continuous on M(k).

Proof. Suppose X,, — X in HY(B, R®), Xm, X € M(k)
a) Dy is continuous on M (k)

" For each § > 0, by Egorov’s Theorem, there exists B C B with measure |B%| < §
and a subsecuence, still denoted X,, such that X,, — X uniformly in B\ B?. Hence,
H(X,) = H(X) and Q(Xn) — Q(X) uniformly in B\ B®, because H € L®(IR*) N
C(IR®) and Q € L*(R®, R*)nC(IR®, R®).
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From
V) = VOO £2/3 [ 1Q0Km) = QUK Xoma A K] +
B\B¢
2/3 -/B‘ 1Q(Xm) — QXN X mu A Xmo| +2/3]| Qo /B |Xmu A Xmo — Xu A Xo

we have that the first term tends to 0 if m grows for a given § > 0.

Since |Xomu A Xmo| < ¢ on M(k) with ¢ = k+ ||V]leo and |Q(Xm) — Q(X)| < 2/|Qlleo
a.e. in B, we choose § to have the second term less than a given €.

We estimate the last term by

/ | Xmu A Xmo — Xu A Xy| < 2¢ / |V(Xm — X)| < 2¢|BI?|| V(X — X)||2
B B

so it tends also to 0 with m — 4o00.

b) dDpg is continuous.
For this last assertion, we take v € Hi(B, IR®) and estimate

14V (Xm)(¢) — @V (X)(p)|
(4) < /B |H(Xm) — H(X)lel + [|H lloo2¢l| V(X — X)l2lle ]l
<[ H(Xn) = HX)|2 + 2| H |loo|V(Xm = X)|2]llell2

¢) p is continuous.

Let (X,) ¢ M(k) such that X, — X in H}(B,R®) and fix ¢ > 0. For m € N

there exists Y,, € M (k) satisfying p(Xm) < dDyg(Xm)(Xm — Ym) +€/2.
We suppose p(Xp,) > p(X), then

0 < p(Xm) - p(X) < dDH(Xm)(Xm ~Yn)+e/2—-dDu(X)(X - Ym) =
dDy(Xm)(Xm = X))+ dDy(X ) (X — Y) —dDg(X)(X — Yi) +€/2

From

[dD g (X m)(Xm = X)| S VX |2 V(X m = X2 + 26| H [|oo | Xm ~ X |11
and from

(dD(Xm) — dDE(X))(X = Ym)| < |(dD(Xm) — dD(X))(X ~ Yom)|+
2/3|(dV(Xm) — dV(X))(X — Ym)|
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using (4) with ¢ = X —Y,, € H}(B, R®), we deduce that lim p(X,) = p(X)

Now, if we denote M(k) = {X € M(k);p(X) # 0}, we call € a pseudo gradient

vector field for Dy on M(k) a Lipschitz continuous mapping € : M(k) — H'(B, R®)
such that

i) &X)+X e M(k) for X eﬁl—ﬁ
il) There exists ¢; > 0 in IR such that
a) ||&(X)|lg: < 6 with § = diameter of M(k)
b) dDg(X)(&(X)) < —min{e;?p(X)?,1}
Our slope p and pseudo gradient € being very similar to those in [7], p. 34, so we

have that there exists a pseudo gradient vector field € for Dy on M(k).
Now, we will prove that Dy satisfy a Palais-Smale type condition in M(k).

Lemma3 Any sequence (X,,) C M(k) such that lil:’t’-l p(Xm) =0 is relatively
m—-+00
compact.

Proof.  (Xm) C M(k), then || Xm —gllm; < k|B|'/? and there exists a subsequenc, still
denoted (X,,) and X € M(k) such that X,, —g — X — g weakly in H}(B, R®).
If o;n = X;n — X, we have that

dD(Xm)(pm) < P(XM)m:_';’oco-

But
dD5(Xom)(pm) = /B VX Voo +2 /H H(X) X A X * 9
= ||Vemll3 + /; VX -Von +2 /B H(Xm)Xmu A X * O
Now, [p VX -V — 0 because ¢, — 0 weakly in Hg(B, IR®) and
2 [ B QX)X A Xim o] < I ol P s
‘By the Rellich-Kondrakov Theorem ¢,, — 0 strongly in L*(B, IR®), hence

IVeml2 < p(Xm) - /B VX Vi -2 /B H(X) Xy A Xy + o _— 0

m—+o00
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and X,, — X in H(B, R%).

Now, recalling Mg = {X € M(k); Dy(X) < B}, Kg = {X € M(k);Dyg(X) =
B,p(X) = 0}; exactly as [7], Lemma 1.9, p. 36, and thanks to the preceding lemmas we
obtain the following result

Lemmad4 Let 3¢ IR, >0, andsuppose N is a neighborhood of Kg in M(k).
Then there exists a number ¢ € (0,%) and a continuous one-parameter family ® :
[0,1] x M(k) — M(k) of homeomorphisms ®(t, - ) of M(k) having the properties
i) ®(t,X)=X if t=0, orif |Dyg(X)—pB|>% orif p(X)=0.
i) Dy(®(¢, X)) is non-increasing in t.
iii) ®(1,Mps.\N)C Ms_, and ®(1,Mps.) C Mg_.UN.

Acknowledgements. We thank Michael Struwe and the referee for useful remarks and
suggestions.

References

[1] Adams, Robert: Sobolev Spaces, New York, Academic Press, 1975

[2] Ambrosetti, A. - Rabinowitz, P.H.: Dual variational methods in critical point theory
and applications, J-Functional Analysis 14 (1973) 349- 381

[3] Brezis, H. - Coron, J.M.: Multiple solutions of H-Systems and Rellich’s conjeture,
Comm. Pure Appl. Math. 37 (1984), 149-187

[4] Wang, Guofang: The Dirichlet Problem for the equation of prescribed mean curva-
ture, Analyse Nonlinéaire 9 (1992), 643-655

[5] Hildebrandt, S.: On the Plateau problem for surfaces of constant mean curvature,
Comm. Pure Appl. Math. 23 (1970), 97-114

[6] Hildebrandt, S.: Randwertprobleme fiir Flichen mit Vorgeschriebenes
mittlerer Krimmung und Anwendungen auf die kapillaritatstheorie Teil I. Fest
vorgegebener Rand. Math - Z. 112 (1969), 205-213

[7] Struwe, M.: Plateau’s problem and the calculus of variations. (Math. Notes 35,
Princeton University Press) Princeton 1989

[8] Struwe, M.: Non-uniquenes in the Plateau problem for surfaces of constant mean
curvature, Arch. Rat. Mech. Anal. 93 (1986), 135-157

[8] Struwe, M.: Multiple solutions to the Dirichlet problem for the equation of prescribed
mean curvature, Preprint



14 LAMI DOZO - MARIANI

[10] Wente, H.C.: The differential equation AX = 2H X, A X, with vanishing boundary
values, Proc. AMS 50 (1975), 59-77

ENRIQUE LAMI Dozo

Inst. Argentino de Matematica, CONICET
Viamonte 1636, ler. cuerpo, ler. piso

1055 — Buenos Aires, Argentina

Departamento de Matematica

Facultad de Ciencias Exactas y Naturales, UBA

MARfA CRISTINA MARIANI

Departamento de Matematica

Facultad de Ciencias Exactas y Naturales, UBA
CONICET

(Received April 24, 1992;
in revised form May 17, 1993)



manuscripta math. 81, 15 - 39 (1993) manuscripta

mathematica
© Springer-Verlag 1993

GLOBAL EXISTENCE OF SMALL RADIALLY SYMMETRIC
SOLUTIONS TO QUADRATIC NONLINEAR WAVE EQUATIONS
IN AN EXTERIOR DOMAIN

NAkKAO HAvAsHI

We study the initial boundary value problem for the nonlinear wave equation :

82u — (82 + 2518,)u = F(8u,0%u), teR*,R<r< oo,
*) u(0,r) = euo(r), Beu(0,7) = uy(r), R<r < oo,
u(t,R) =0, teRt,

where n = 4, 5, ug, u; are real valued functions and ¢ is a sufficiently small positive
constant. In this paper we shall show small solutions to (*) exist globally in time
under the condition that the nonlinear term F : R? — R is quadratic with respect
to 8;u and 8%u.

§1 Introduction. In this paper we study the nonlinear wave equation
(L1) { O%u — (02 + 2218, )u = F(8,u,87u), teR*,R<r< oo,
u(0,7) = euo(r), 8u(0,7) = €ou1(r), R<r< oo
with the homogeneous Dirichlet boundary condition
(1.2) u(t,R) =0, teRT,

where n = 4,5, ug,u; are real valued functions, ¢ is a sufficiently small positive
constant and the nonlinear term F : R? — R is quadratic with respect to 8,u and
0%u.

Remark 1.1. By using our method in this paper mentioned below we can treat
the more general nonlinear terms such that F(8,u,8,8,u,8?u). However it seems
that our method is not applicable to the case when F depends only on 8,u and 82u.
The codition that the nonlinear term F contains the time derivative of unknown
function is needed to prove Lemma 3.1 (3.3) which plays an important role to
derive time decay estimates of solutions.

Notation and function spaces. We let 8; = 8/0z;, 8, = 8/8r and 8, = 8/du,
where r = (17 23)'/2. The following operators are needed to obtain the result
stated below :

n—

1
r 81‘)7

L. =18, +1t8,, Q=r88,+8%+
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Lo = Tar + tat, LJ' = :L'jat + t6j.

We introduce some function spaces. S(B) = { rapidly decreasing infinitely dif-
ferentialble functions on B}, where B = {r;R < r < =}, R > 0. S§'(B)
is the dual space of S(B). L¥ = {f € S'(B);|lfl, < oo}, where |f|l, =
U2V PIPr1dr)/2 i 1< p < 00 and [flle = SUPperon ()] i P = 0.
For simplicity we let ||f|| = ||f|lz. Usual Sobolev space of order m is defined by
H™ = {f € I} ||fllmo = Lo 10{£] < co}. We let H} = {f € H'; f(R) = 0}
(f 9) = f;" f-gr*ldr, 65 = 1if j = k and §j = 0 if j # k. Different positive
constants might be denoted by the same letter C.

Our main result in this paper is

THEOREM 1.1. We assume that n = 4,5, uo € Hj N H® satisfies the compatibility
condition of order 5 and u; € H} N H® satisfies the compatibility condition of
order 4. Furthermore we assume that ||0,uol|s,0 + [|[r82uoll4,0 + [|7?82uol[3,0 < 00
y lluills,o + lIr@rurllao + [[r282uslls0 < oo and € is sufficiently small positive
constant. Then there exists a unique global solution u of (1.1)-(1.2) such that

4
8u € C(R*; H®), dwue () C*RY;HynHF).
k=0

Remark 1.2. The compatibility condition of order k means that

5{“(0,32) € H(}, (J =0,1,--- ,k).

Y.Shibata and Y.Tsutsumi (8] first considered the global existence theorem of
the exterior problem for the nonlinear wave equation

{ 0}y — Au = F(0u,8u), (t,z) € Rt x D,
u(0,z) = €uo(z), iu(0,z) = us(z), =€ D

with the homogeneous Dirichlet boundary condition
u(t,z) =0, (t,z) € Rt x 8D,

where 0u = (0yu, 014, -+ ,0,u), € is sufficiently small, D is the exterior domain of
a compact set in R™ with smooth boundary D and satisfies a certain assumption
on the shape (for details see [8],(9]). They proved that small solutions exist globally
in time provided that initial data are sufficiently small in a suitable sense and the
nonlinear term F satisfies the following growth conditions : F is quadratic with
respect to (Ou,8?u) when n > 6 and F is cubic with respect to (8u,8%u) when
3 < n < 5. They obtained the result by making use of the local energy decay of
solutions for the free wave equation in D established in [8] (see also [5],(6]) and
the technique used in [7]. In [1] Y.M.Chen obtained the result similar to that of
[8] or [9] when the nonlinear term contains unknown function u itself.

Our method in this paper is based on Klainerman’s inequality (Lemma 2.5) and
an estimate of functions on the boundary (Lemma 2.6).
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P.S.Datti [2] announced the result similar to ours. However the details of the
proof for estimates of local solutions on the boundary are omitted.

Time decay of soutions is important to the proof of the global existence theorem
of small solutions. To obtain the time decay of solutions we use Klainerman’s
inequality [4] which requires the iterative use of the operators Ly and L,. It
seems that the operator L, does not work well for the boundary value problem
apparently. However through Lemma 2.6 it becomes clear that the operator L.

is valid for our problem. We note here that Lemma 2.6 depends on the space
dimention n and does not hold for n = 3.

To prove Theorem 1.1 we introduce the function space I'r by

Ir ={f e C([0,T}; 5" (B lllflllrr = e IF®llr < oo}

where

IF®)lr

4
=Y (18:Lo7 FI| + 118: Lo7" F1| + 110- L, 07" £1| + 118, L7 £
m=0
+HIQP 1| + (1 + )7 (Ird.07 £l + |Ir07** £11))
3

+ ) (147 (1QLo 8 1| +18- L3S £11) +(14+8) * (|r8r- Lo} £ ||+ I8 Lo O} £1]))

m=0

2 3
+ 3 N (A + 070 LILET £l + | ALS £ + (1 + )| AL-OF £1])

j+k=1m=1

5
+ 31107 fllo—mo + 18-£l1s.0

m=1

and ¢ is a sufficiently small positive constant.

To simplify the argument of the proof of Theorem 1.1 we assume that the fol-
lowing local existence theorem holds.

THEOREM 1.2. We assume that conditions of Theorem 1.1 are satisfied. Then
there exists a finite time interval [0,T] with T > 2R and a unique solution u of
(1.1)-(1.2) such that

5
8ue C([0,T]; H®), e () CH(0,T); Hy n H**),
k=0

3
1
el <1, 37 187 uli% < 5

m=1
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where T' depends on the size of €.

For the proof of Theorem 1.2 see, e.g., [10].

For the convenience of the reader we now give a sketch of the proof of Theorem
1.1. From Theorem 1.2 it is clear that Theorem 1.1 follows from a priori estimates
of local solutions in the function space I't which will be proved in section 3. Our
main tools in section 3 are the first-order differential operators Lo = 79, + t3,,
L; = z;0, + t0; which have the following commuation properties [0, Lo] = 20
and [O,L;] = 0. We note here that these first-differential operators are used by
S.Klainerman first to study a global theory of the Cauchy problem for nonlinear
wave equations with quadratic nonlinearities. These operators are useful to obtain
the time decay estimates of local solutions. In fact we will prove the time decay
estimates of local solutions in section 2 (see Lemma 2.5 and Corollary to Lemma
2.5) by making use of the operators Lo, L; and Lemmas 2.1-2.4. Most part of
section 3 is devoted to prove Lemma 3.3 ((3.8), (3.10)) and Lemma 3.4 (3.31)
which are important estimates in the proof. To obtain the estimates of the left
hand sides of (3.10) and (3.31) we have to consider the term in our problem

e o]
- / B.(E(r28,0[? + r"|B,v[?)dr,
R
where v = 9*u,(m = 0,1,2,3,4). Boundary estimates of functions (Lemma 2.6)
is needed to handle the above term. The other terms in the function space I'r

will be estimated through the systematic use of Lemma 2.7, Lemma 2.8 and the
estimates (3.8), (3.10), (3.31).

§2 Preliminaries.

In this section we will give some inequalities and estimates of functions on the
boundary which are useful to derive a priori estimates of local solutions to (1.1)-
(1.2) proved in section 3.

LEMMA 2.1 (HARDY’S INEQUALITY). We have for a > —1
00 (=<}
/ |f|Predr < C/ |8 F|2r2**dr,
R R
provided the right hand side is finite.
Proof. It is easy to see that
o0 oo e )
0> / O (|f)2rtte)dr = (1 + a)/ |f)2redr + 2/ f -0 fritedr.

R R R

By this and the Schwarz inequality

J vprear s o[ 1preant ([ lo.spriteant,
R R R
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from which we have the lemma.

Q.E.D.

LEMMA 2.2. We have for any f satisfying the condition such that |f|>r™ — 0 as
T — 00

- /R 8 (f[*r™)dr < Cllo, £

provided the right hand side is finite.

Proof. We have by integration by parts

_ / 8.(|f[2r™)dr = —R™ / = o.(If[?)dr
R R

<c [lofllar < or T ousl [ Par
By Lemma 2.1 the right hand side of the above is estimated by
clofl [ lo.fPr*ar < CR oI,
Hence we have the lemma.

Q.E.D.

LEMMA 2.3 (SOBOLEV'S INEQUALITY). Let n > 4 and 0 < 8 < 1. Then we have

Ifle < Cllo-fll for feH,

Iflleo < CllO-FITB 0, £IF for feH?,
Iflleo < ClOAILIAIZ IFIS for fem

Proof. Since
(e <] {> ] > <}
0> / 8-(|f|*r™)dr =n / |47 Ydr + 4 / £20, frdr,
R R R
we get by the Schwarz inequality

o0
171 < ClI8. £I( /R |Flerm+idr)t,
Therefore,

(2.1) £ < Clid-f| sup rif|.
R<r<oo
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‘We have .
P2 = - / 8.(r2|f?)dr

= -Z/rxr|f|2dr-—2/r°°rzf6,.fdr

oo e ]
<o([ i sprtant([ " ifPrant.
R R
We apply Lemma 2.1 to the above to obtain for n > 4

r|fl < Cllo-fl.

This and (2.1) give the first part of the lemma.
We use the Schwarz inequality several times to get

172 = - / 8, (|fP)dr = 2 / f8,fdr
<o(f 1At ank( [ 1o stran?
R R
< ClIFIA( / |F148r=1dr) 4], 7|1
R

< CIAILA( /R |f[2rdr) & 10, 1

from which and Lemma 2.1 we have the second part of the lemma.
By Holder’s inequality

P = / 8.(If[*)dr < C /R 1116 fldr

oo oo
<C_sup [ofl([ " IfPrerany}( [ e Eraryh,
R<r<oo R R

Wetakeap=n-1,p=4- ﬁ% and again use Hélder’s inequality to obtain

1715 < Cllo-Fllaoll£1E2 111
This implies the last inequality of the lemma.

LEMMA 2.4. We have for f € H?,

Ifl < Cr= T || f1 ¥ 18- £112.

Proof. Because

AR = - / Ou(|f P )dr < 2 / f0.fro-1dr

Q.E.D.
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we have the lemma by the Schwarz inequality.

Q.E.D.
LEMMA 2.5 (KLAINERMAN’S INEQUALITY). We have
(2.2) 10eflle < C(1+2)~2(18, Lo Il + 18- Lr £1| + 18e£ll1,0)»
(23) 16 flle < C(1+ )10, Lofl + 18- Lo £1| + 18 £ 11,0),
(2.4)
102 fleo < CQL4)~3( D 10 LILEB | +1182 LoBef 1| +]102 Ly f || +1163 £]11,0)s
1<j+k<2

(25)  [0:8:fllo < CU+)"3( S ILILEO0:f)| + 18- [11,0),

1<j+k<2
(26) [8eflloo < C(1 +12)~8+38
(18- Lo fll + 18- Lo fll + 18eflls0 + D LGLEOB ||+ 118:8ef la,0),
1<5+k<2
@7) 18:Lo0%f - 8:Lod; f

< C(1+)73{(I10:LoBef || + 116-Lo8} £ + 110:8 £11) 10 Lo £
+(10,L587 1| + 116, Lo8; £ 1| + 16, Lo L} f| + 18- L8} £I| + 1|8- Lo} ll1,0
+110,0% f1l1,0) (1302 £1| + |1 Lo L+ 0% £1I) + [18eLoBe f |11,018: Lo82 £}
provided the right hand sides are finite, where 0 < 8 < 1.

Proof. Form the relation
1
(28) Bt == m(t[/o - 'I’L,.)

we derive

> s 0
19:£13 < /R |8ef|*r"~dr = /R |8:f|*r™1dr + /1 |8: 7|4+ dr
2

<c / (T oS a0 sup_ (001
<rloo
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Applying Lemma 2.4 to the above, we obtain
18:£113 < Ct*(IL.£II + I LoFII3) + Ct=""V)|8.£1° 19,8 f|| for t22R.

This and Lemma 2.3 give (2.2). In the same way as in the proof of (2.2) we obtain
(2.3) by using the relation

1
8,. = tz_—-—r—i(tLr - ?'Lo).
We next show (2.4). By (2.8)

|6} f| < l(lLoath + |Lr8ef))-

[t -

Hence,

sup [0} f| < Ct7([ILoBiflloo + [|Lr0:flloo)
R<r<i

from which with Lemma 2.3 and (2.3) we obtain

sup |02f] < Ct~Y(1+¢t)~i(Ha)
R<r<$

X (110-LoBef || 73 {110, L3O || + 18- Le LoBef | + 10-LoBef 1,0} 7

+18- L8 1|75 {110, Lo L1 8o f || + 10, L20:f| + 18- LB fl1,0} 77)
and by Lemma 2.4
n—-1

sup |0%f] < Ct~ T ||k f|1})10.02f)|F for t>2R.
§<r<oo

These two inequalities and Lemma 2.4 show (2.4) with § = 1
In the same way as in the proof of [4,p328] we obtain

29)  |Bafl<Clt-r"F Y |LiL¥B,8.f|| for R<r<
0<i+k<2

N o

From (2.9) and Lemma 2.4 we derive (2.5).
Lemma 2.3 yields

18 flloo < ClIOWBA L N0 12T I10e£115.

By this, (2.2) and (2.5) we have (2.6).
We finally prove (2.7). We have

i o
(2.10) looehi? = [ lgdihfEsn=tar + A \gBsh[Er—1dr.
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By Lemma 2.4
(2.11) L |98k 2™ dr < CE==D)| |18, gl[13:h]%-

From (2.8), Lemma 2.3 and (2.3) it follows that
$
(2.12) [ 98ehten=tar < e lgl (1Eobl? + L)
R

2
< Ct~10,g] ¥s 0,9 7 (| Loh|? + | LoI?)
< Gt~ 79[ 0,g]| 5 (110, Log]| + 110 Lrgl| + 18-911,0) 7 (I Lok + [IL.AI1%)
for t > 2R.
We put g = 8;Lo8:f ,h = Lod} f and B = } in (2.10)-(2.12) and use the Schwarz

inequality to obtain
8¢ Lods f - 8:Lod} £

< Ct3{(|18:LoB: £ || + 18-Lod2 f1| + 10-02 £1|)1|0: Lo B2 £
+()10- L2382 £1| + 118, Lod2 f|| + 18- Lo L 82 £|| + 18,02 f|

+8-Lod; fll1,0 + 118-0F Fll1,0)(1L3% £ + | LoL-8; £11)}-
From this and Lemma 2.4 we obtain (2.7).

Q.E.D.

COROLLARY TO LEMMA 2.5. Let f € I'r. Then we havefor0 <t < T

4
3187 flleo < C(1 + )~ 8+ E5+2¢) ||,

m=1

3 5
> 18eLodP flla + Y 18 flle < CA +8)~+2| f|Ir,
m=1

m=1

18:Lod.f - B:LoBL f|| < C(1 +t)~3+4<| 112,

where € is the same one as that given in the definition of the function space I'r.

The following lemma is important in this paper to prove the main result.

LEMMA 2.6. We have
o0 (e o}
_p / 8,18, f[r*+e)dr < CL(f) - C#2 / 8, (|£1%)dr
R R
provided the right hand side is finite, where 0 < € < 1 and

I(£) = QAN + 18- Lo fII* + 18- £IIF 0 + (1 + )*(IQSI* + 110, £1*)
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+(18- Lo f | + 1= £1)(10£11€ + lIrd- £ )0 £1I* 21 r0n £
Proof. By a direct calculation

(2.13) g2 / ” 0,10, F|2+¢)dr
R

= (2(n - 2) - E)t2 / |8,,f|2r1+¢dr — 2t2 / BrfAfr““dr
R R

= (2(n-—2)—e)t2/ |8,.f|2rl+‘dr—2t/ arfonr2+‘dr+2/ 8.f-0,Lofr3*tedr
R R R

oo oo 5
+2+e) / 16, f |73+ dr — / 810,124+ )ar = 3 4
R R

=1
By the Schwarz inequality

(2.14) Ay < t? /R |6, £|*r**2<dr + C||QfII%,

(2.15) Az < C(|8-Lo fI? + / |8, f| 23 2¢dr)
R

< C(I6- Lo fI1* + lIr8. FIP<]18, £1122),

(2.16) As < CllrorflI*l10- £ .
By Lemma 2.2
(2.17) As < C|82 1|

We consider the term A;. Integration by parts gives

1 — 42 i 2. 14€
(2.18) Az e =t /R |9, f[*r" " “dr

=¢? / Bn(fO . frite)dr — / fAfritedr 4+ (n -2 — €)t? / fO.fredr
R R R

=t2/ Br(fa,.fr”‘)dr—-t/ forl+‘dr+t/ f0,8,fr¥*edr
R R R

Lo or [ oliPrvar — Ln 2 - /°° 3p-thegr = VB,
+2(n 2 e)t/R O.(|f*r¢)dr 2(n 2 - e)e : [tf)*r dr_ZB,.

J=1
By the Schwarz inequality

o <)
(2.19) B; < —f? / 8.(18.f*r**+)dr — CBy,
R
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where ¢; is a sufficiently small positive constant determined later. We use the

Schwarz and the Holder inequalities to obtain
- [o o)
Br < CIQAI([  Iefr+2ary}
R
- oo e <} 1—e
<CIQA [ esiranT=( [ " jestr=rean)iE
R R
- il s 1
<CIQfP=([ " tsfrant - 3B
R
Applying Lemma 2.1 to the above, we obtain
- e 1
(2:20) By < Cl|QfIP°I0-FII° - 5Bs-
By integration by parts it is easy to see that

B; = / f0.(Lo — r8,)fri*edr
R

oo [>.<]
= / (f-8,Lof +(2+€)f - 8.f + |0, f|*r)r?*edr — / 8.(f - 8, fr3*e)dr.
R R
We use the Schwarz and the Holder inequalities to get

1
pl—e

Bs < C(|8- Lo f|| + l0- )| = fIl + ClIrr£lI°ll&- 11>~

-/ " O {IF7 + 18- £}

Using Lemma 2.1 , Lemma 2.2 and the fact that

Ird.£Il < lro-flI°ll6-£FII*

which follows from the Schwarz inequality , we arrive at

(2.21) By < C{(I0-LofIl + 18- £ DI, FlI°N18- £II'~* + 18- £ 0 }-
By (2.19)-(2.21)

1 —_ 42 ® 2, 1+4¢
(2.22) ——_2(n—2)-e‘4"t/3 |0, f|*r*<dr

< —gt? /R 8, (10, £ Pr?*+<)dr + Cte(I1QfI1* + 10, £II%)
+C{(I18-Lof1| + 18- FI) I FINB-FI*= + 18 £I2 o — CE /R 8,(|f*r¢)dr

< —ef? / 8,18, f[r*+€)dr + CL(f) - C8 / 8.(|f2r)dr.
R R
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In the same way as in the proof of (2.22), the first part of the right hand side of
(2.14) is bounded from above by

—f? / 8,(16, fPr**2%)dr + CL(f) — C#2 / 8.(|[2r)dr,
R R

from which and (2.14) it follows that

(223) 4 < —f? / 8,18, f*r**+2)dr + CL(f) - C8 / 8.(|f|*r*)dr.
R R
Because
~ [0, ar = <2 [ o0, ar,
R R

we have by (2.22), (2.23) and (2.15)-(2.17)

¢ / 8.(18, F2r¥+<)dr
R

[~} o0
<-fa(1+RY) [ 0.0 fPr )i+ OL() - 0 [ o
R R
The lemma follows from the above if we take ¢; such that €, (2(n—2)—€)+R¢) < 1.

Q.E.D.

LEMMA 2.7. We have

S L5012 < CUS) + 811 - /R BB |f? + 10 [2)dr)

Jrk=1

provided the right hand side is finite.

Proof. By [ 3 , Lemma 3.2] we have

Y L8 fI* < CUQSI + l8efI1* - /R B, (|L, f|*r™=*)dr)

Jk=1
. 00
< CIQSI +10:f1P = [ au(1acs P + 210, 12)ar).
Applying Lemma 2.6 to the above, we obtain the lemma.

Q.E.D.

LEMMA 2.8. We have

2 1
(2.24) Z |LjOfI* = (n - l)tzl;f'rfl2 +|L.8.f

Jrk=1
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(2.25) |L 8L fI* < C{ILoB- £ + D 1L;0cLif|}

Jrksl=1

Proof. From the relation

z,mk a:,mk

Ljak = t(ﬁjk -

)3+

L.o.

we have (2.24). By (2.24)

n

(2.26) > LB Lif* = Z{(n -1 t2| 3. Lif|* + |L.8,Lif|*}.

Jokol =1

By a direct calculation
Ty
L,-a,-Ll - T(L,B,.L,. + LOB,)
from which and (2.26) we have (2.25).

Q.E.D.

§3 Proof of Theorem 1.1.

In this section we will prove Theorem 1.1 by showing a priori estimates of local
solutions to (1.1)-(1.2) in the function space I'r. The next lemma is needed to
obtain the time decay estimates of local solutions. We note here that the right
hand sides of (3.1)-(3.3) do not contain the operator L2 explicitly. In what follows
we let I, = I for simplicity.

LEMMA 3.1. Let u be the local solution of (1.1)-(1.2) stated in Theorem 1.2. Then

n 4 4
(3.1) > S ILedrul? <€ ) (I8 ) + 187 ull?),
Jyk=1m=0 m=0

(3.2)

n 3 3 4
Y Y ILiBeLodfull® < € Y (I(LoB™u) + [18:LoBfull?) + C Y 118,67l o,
Jrk=1m=0 m=0 m=0

n 3

(3.3) Z Z 12504 i7" u|?

2 3
< C{) " (I(Lod,87u) + 1(8,8u) + I(r8°F)) + ), |10 L8] ull®

m=0 m=1
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4 3

+ 3" 107 u) + Y I(Lodfu)}.

m=1 m=0

Proof. From Lemma 2.7, (3.1) follows immediately. Using Lemma 2.7 we have
with v = 0]*u

3 IL;8eLov]l? < C(I(Lov) + |18eLov]* — / 8,(2|8,]? + |8,8,v]?)dr).
R

Jyk=1

We apply Lemma 2.2 to the last term of the right hand side of the above to obtain
(3.2). We finally prove (3.3). By Lemma 2.7 the left hand side of (3.3) is bounded
from above by

3 oo
(34) €Y {I(LiOPu) + |0 Libul? - ¢ / 8- (| Lidul? + |0, L1 u|?)dr}.
R

m=1
We consider the last term of (3.4). Since
L,&t = .’1213‘2 + 81Lo - 31 - :1213,2.

we have by Lemma 2.6

—t2/ 3-(|L18¢u|?)dr < —C’t2/ 8.(|18-Loul|® + |8,u|?)dr
R R

o0
< C(I(Low) + I(w) - / 8,16, u[2)dr).
R
We again use Lemma 2.6 to obtain
{o <]
g / 8.(|Lideu|?)dr < C(I(Low) + I(w)).
R

Hence by Lemma 2.6

o0
(3.5) g / 8. (LB u|? + |8, LB u?)dr
R

<-cr / B.(|Li8ul? + L8 ul? + 18,07 uf?)dr
R

< C(I(Lo8* u) + I(Lo8u) + I(8u) + I(87+!w)).
By (3.4) and (3.5)

n 3

(3.6) > Y L0 Loyl

3 k,l=1m=1
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< C{Z Z(I(Lza"‘u) +18.Li87u||*) + Z I8 u) + + Z I(Lod}u)}.

=1 m=1 m=0

Since

Lo = —{(Loa +(n-1)8,)0" 'u 4+ ro]* "1 F}
we have (3.3).
Q.E.D.
By Lemma 3.1 and Lemma 2.9 we have
LEMMA 3.2. Let u be the solution of (1.1)-(1.2) stated in Theorem 1.2. Then

4
> IL+8.87u|* < The R.HS. of (3.1),

m=0

3
> IL.8,Lodu|* < The R.H.S. of (3.2),

m=0

3
> IL.8,L87u|* < The R.H.S. of (3.3).

m=1

We notice that in the proofs of Lemma 3.3 and Lemma 3.4 it is clear that the
iterative use of operators Ly and d; work well for the boundary value problem.

LEMMA 3.3. Let u be the solution of (1.1)-(1.2) stated in Theorem 1.2 and let €
be the same one as that given in the definition of the function space I'r. Then we
have for0 <t < T

4
(3.7) (L+0)7 Y (I8l + |Ir0.07ul|”)

m=0

<o@+ [+ ot uoRa),

4

t 00
(38) S (18- Lo ull? + 8 LoBull? - 2 [0 s /R 8,(|8,0™+ uftr™)drds)

m=0

< The R.H.S. of (3.7),

3
(39) (1+t)7* > (IIr8eLodul]® + [Ir8,Lod7*ul|?) < The R.H.S. of (3.7) ,

m=0
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n 4
(3.10) (1+8)72> " Y " (18, L;07ull® + ||8.L;07ull*) < The R.H.S. of (3.7),

i=1m=0
Proof. Applying the operator Ly to both sides of (1.1), we obtain with v = §]*u,
G =8F

z = 19.)Lov = 2G + LoG.

(3.11) 2 Lov — (82 +

Multiplying both sides of (3.11) by r"~18,Lgv, integrating with respect to r, we
have

d
(3.12) B_t("a'Lov"z + |16-Lov||?)

—2/ 8,.(3,‘.[10'0 . 6¢Lovr""1)dr = 2(2G + LoG, atLo'v).
R

It is easy to see that

8,Lj = .’L'j(%at + %33 + 6,6,.),

8.Lj = (0} + 10, + £8,0.),

8.Ly =10,0: + 0, + 1'83,
8:Lo = 0¢ + tatz + 78,0

(3.13)

Hence by (3.13) the second term of the left hand side of (3.12) is equal to
2 / 8.({=(n — 2)8,v + t8,8,0} - 8,B8,vr™)dr
R
d e <] (>~
= (n-2)2 / 8,18, [*r™)dr — 2t / 8,(18,8¢v[2r")dr.
dt Jp R
Therefore we have by (3.12)
d e o]
1) ZUOLool + 10 Lovl? +(n=2) [~ 0100l r")ir}
2t / 8,18, 840|2r™)dr = 2(2G + LoG, 8,Lov).
R
Integrating (3.14) with respect to t, using Lemma 2.6 we obtain

t oo
(3.15) 18:Lov||? + 8- Lov||® — 2 / s / 8,(16,8,v[*r")drds
0 R

t
< C(e + 0% +| / (2G + LoG, 8, Lov)ds|).
0
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By a direct calculation we see that
6tF = 6a'uF . 3t2u + 333uF . Bfu,

O2F = a; - (82u)? + 2a; - (0 u)(8}u) + a3 - (O3 u)?

and
LoF = 85, F + LyOyu + 03‘2“F . Loatzu,

where a;,a; and a3 are constants defined by
a; = 68‘u,8.uFa az = a&u,ﬂ"uF’ az = aOZu,B"uF'
By making use of the above equalities

4 t
(3.16) S [ (oo P 0oty sl
1]

m=0

t 3 1 .
<C /0 (L+8)*(D_ (187 ulloo(L + 8)*“[lulir + 193 ulla Y 110, L587 ull) ullr)ds

m=1 3=0

t
+|/ (aaguF'Loagu, 8,L06fu)ds|.
0

Because
Lo8u = 82Lo0fu — 28%u

the last term of the right hand side of (3.16) is estimated by

t t 3
17 | [ 5(00uF - 0.Ledtu 0. L00tudel +C [ 3 10 ulelulds

m=1
Hence by Corollary to Lemma 2.5, (3.16) and (3.17)
4 t 1
(318) 3| / (LoD F,8,Lo0}"u)ds| < The RELS. of (3.7) + 7 8. Lobtul”.
m=0 V0
In the same way as in the proof of (3.18)
4 t
(3.19) > / (8™ F,8,Lod™u)ds| < The R.H.S. of (3.7).
m=0 Y0
We apply (3.18) and (3.19) to the second term of the right hand side of (3.15) to

obtain

4 t oo
(320) 3 (18- Lodull® + |8 LoBpul? - 4 / s / 8,(18,8™ uf*r")drds)
R

m=0 0
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4
< TheRHS. of (3.7)+C > ||826] u|*.

m=0

By the ususal energy estimate for 0 <m <5
t
(21)  1oPHul + 1007wl < O+ | [ (@R o s
0

In the same way as in the proof of (3.18) we have

5 t
322 3 / (67 F, 07 u)ds| < The RES. of (3.7) + 3 |3%ull.
0

m=0

By (3.21) and (3.22)

5
(3.23) Sol87+ ul* + 116,07u|*) < The R.H.S. of (3.7).

m=0

From (1.1), Lemma 2.3 and (3.23) we obtain

4 4
> lterul* < € - (18-05ul® + 1167+ ul* + |67 F|I*)

m=0 m=0
< The R.HS. of (3.7).

We iterate this argument to obtain

5
(3.24) > 67 ullE o + 18rullio < The RH.S. of (3.7).

m=1

By (3.20) and (3.24) we have (3.8).
We next prove (3.7). We have by (1.1)

n-— n—1

(3.25) d2rv— (82 + lar)rv =rG—20,v —

v.
r

Multiplying both sides of (3.25) by r"~18,rv, integrating with respect to r, we
find p N
Z(Irdell® +l18,roll*) - 2 / 8n(8,rv - yrv - v V)dr
R

n—-1

=2(rG - 20,v —

v,10;v)

from which it follows

Irdev]|® + 18-7v]* + (n = 1)]|o]|?

¢ t
< C(e§+j |8rv]|ds sup |[r6w||+l/ (rG,r8,v)ds|).
0 telo,T) 0
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4
(3.26) Y (rar*tal® + |iro. 07 ul)”)

m=0

4 t
< O+ T4+ sup 1007wl sup [0 +ul +| [ (OPFrop+iujasly)
tel0,T) telo,T) 0

m=0

where we have used the fact that
rd,v)|* + / 3 (vf*r™)dr = |18, 7v|1® + (n — 1)|lv]1%.
R

In the same way as in the proof of (3.18)

4 t
S / (r@™F,rd™u)ds|
0

m=0
4 t 1
<O+8 21 [0+ 07260 FropH sl + glrotul?
m=0

< The R.H.S. of (3.7) + -;-ura:uu’.

Therefore by the Schwarz inequality and (3.24) we have (3.7).
In the same way as in the proof of (3.26)

3
Y (Ir8Lodul* + |0, Lod7u||?)

m=0
3
<C(g+ Y _{(1+1) sup [|8-Lod]u|| sup |rd,Lod}u|
m=0 telo’Tl tE[o,T]
t
H / (rLo®™F + 187 F, 8, Lod™u)ds]}),
0

By this, (3.8) and the same argument as in the proof of (3.18) we obtain (3.9).
We finally prove (3.10). In the same way as in the proof of (3.12) we have

d n
(3.27) % S ULl +0.L;ol?)

j=1

=) / 8,(8,Ljv - 8, Ljvr"~")dr =2 (L;G,8,L;v).
j=1/R

i=1
From (3.13) and (3.27) we conclude that

d & o e
(3:28) —{D _(I8:L;w|I* +1|8-L;l|*)+ /R 8, ({(n=1)t*|0,v[* ~|9,v|*r*}r"~*)dr}

i=1
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—2t / 8.(18,0:0*r™)dr = 23 (L;G, 8,L;v).
R

i=1
Integrating (3.28) with respect to ¢, using Lemma 2.6 we obtain

n

(3.29) E(”atLj”"z + 18- Ljv|*) - /R°° 8-(|0,v|?r™)dr

i=1

< C(ég + I(v) + |i:£t(LjG, a,Ljv)d.?').

=1
By (3.7), (3.8) and (3.24) we have

4
(3.30) (1+1t)7% )" I(8u) < The R.H.S. of (3.7).

m=0

The desired estimate (3.10) follows from (3.29),(3.30) and the same argument as
in the proof of (3.18).

Q.E.D.

LEMMA 3.4. Let u be the solution of (1.1)-(1.2) stated in Theorem 1.2 and let ¢
be the same one as that given in the definition of the function space I'r. Then for
0<t<T

3
(331)  (1+)7% ) (16, L307ull* + |8.L§d7 u|’) < The R.H.S. of (3.7),

m=0

3
(3.32) (1+8)72 )" |QLed™ul® <  The R.H.S. of (3.7),

m=0

2
(3.33)  (L+)7% Y (1QLod-OTull* + 18- L3-8} ul® + 10, Lo, ul|”)

m=0

< The R.H.S. of (3.7),

2
(3.34) (1+8)7 " |Ird,Le8,0ul* <  The R.H.S. of (3.7).

m=0

Proof. Multiplying both sides of (3.11) by Lo, we obtain

n-1

82 L3v — (8% + "

8;)Liv = 4G + 4LoG + LG,
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where v = 8]*u,G = §]*F. In the same way as in the proof of (3.12) we have

d
(335) ~(l0L2o]® + 0. L3o])

-2 / 8-(8,L%v - 8;L¥vr"~')dr = 2(4G + 4LoG + LG, 8, Lv).
R
By a direct calculation we see that
8. Liv = ((n — 2)%8, + (5 — 2n)t0,0; + (t* + r%)8,0%)v

and
8 Ltv = ((4 — n)rd,d; + 2trd,.0%)v

on the boundary r = R. Hence by (3.35)

636  FUOLII 10Tl =32 =) [~ 2o 00lsm)ir

+2(n —2)? = (n - 12(4 - n)) /R ” 0.((0,0[2r")dr
+Hd—n) /R % 0.((£2 + )0, 8,0[*r™)dr — 4(n — 2)? /R ~ 0.(t6,0 - 8,8,0r™)dr}

+4 / 0, (4|0, 8,0[2r™)dr — 4 / B,(H( + 17)|,020[*r™)dr
R R

= 2(4G + 4LoG + LG, 8, L2v).
Integrating (3.36) with respect to t we obtain

18:L3vl|* + 18- Lyv||?
< C(é —/ 8- ((1 +t2)(|10.v|? + |0,0¢v|*)r™)dr
R
t oo t
_ / 8 / 8,(|0,0,v|%r™)drds + | / (4G 4 4LoG + L%G, 8,L%v)ds|).
0 R 0

Therefore by (3.8), Lemma 2.2, (3.23), Lemma 2.6 and (3.36)

(3.37) 6. L3vl|* + 116, L]

4
< The RHS. of 3.7)+C Y I(8]u)

m=0

t
+C(|020]? + [|82800]? + | / (4G + 4LoG + L2G, 8,L2v)ds|)
0

t
< C(1 + t)**(The R.HS. of (3.7)) + C| / (4G + 4LoG + L2G, 8, L2v)ds|.
0
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By the same argument as that in the proof of (3.18) we see that the last term of
the right hand side of (3.37) is estimated by

The R.H.S. of (3.7) + %IlatLgafullz.

Thus we have (3.31) by (3.37). By a direct calculation we have

QLov = 8,L3v — 8,Lov — r(2G + LoG),

QLo = 8,L%8v — 8,Lod;v — (2r0,G + r8,LoG + G),
8rLo0pv = 8;Lo8yv — 2510, Lov + 8}v — 8,.0v — (2G + LoG),
78;L¢8,v = 8,Liv — 20, Lov + 8,v — t8,Lo0yv.

Hence Lemma 3.3 and (3.31) give

3
(L+8)7% D I1QLodull®

m=0

3
< The RHS. of (3.7) + C(1 +t)72 ) (|r8]*F|* + |Ir L8} F||?),

m=0

2
1A +1)72 > (I1QLo8-87u|l* + |18, Lo,87"u||*) <  The R.H.S. of (3.7)

m=0

2
+C(1+)7% Y (Ird. 87 FI* + |Ir0-Lod" FII” + 107 F || + | Lo8}" F )

m=0
and .
(1+)72 > |Ir8:Lod"ul* < The R.H.S. of (3.7).
m=0

Applying Lemma 3.3( (3.7), (3.9)) and Corollary to Lemma 2.5 to the above
inequalities we obtain (3.32)-(3.34).

Q.E.D.
LEMMA 3.6. Let u be the solution of (1.1)-(1.2) stated in Theorem 1.2 and let €

be the same one as that given in the definition of the function space I'r. Then we
have

4
(338)  (1+1)7% S (10, L8 ul® + 1:L,8]"u|®) < The R.HSS. of (3.7),

m=0

3
(3.39) A+)7* ) |IL,8,Lod["u|* < The R.H.S. of (3.7),

m=0
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3
(3.40) 1+6)7* > |L,8.L.87ul* < The R.H.S. of (3.7).

m=0

Proof. The first part of the lemma (3.38) follows from Lemma 3.3 ((3.10)) and
the relations that _
{ 8,L; = %9,L,,
ang = -’;{-8¢L,..
By Lemma 3.2, (3.8) and (3.24)

3 3
(3.41) > IL-8:Lod7ul* < The RHS. of (3.7)+ C Y I(LoO}™u).

m=0 m=0

By the definition of I
I(Lov) = | QLov|l* + [18-LE|I* + 18- Lov]l] o

+(1+1)*(IQLov|l” + 18- Lov||*)
+(18- Lol + 18- Lovl) (1 Lov||* + |8, Lov]|)[|8- Lov||* ~*¢| I8, Lov]|‘.

Hence Lemma 3.4 and Lemma 3.3 yield

3 3
(342) Y I(Lo8[*u) < C(1+t)**{The RHS. of (3.7)} + Y |02 Lo8] u||*.

m=0 m=0

From (1.1), Lemma 3.3, Lemma 2.3 and (3.24) we see that the last term of the
right hand side of (3.42) is estimated from above by

3
(3:43) C D (18: L0 ull® + 187 ull* + 18, LoB}ul|* + 107 F|I* + || LS F*)

m=0
< The R.HS. of (3.7).

Therefore by (3.41), (3.42) and (3.43) we have (3.39).
We finally prove (3.40). In the same way as in the proof of (3.41) we obtain by
Lemma 3.4 ( (3.33), (3.34) ), (3.42) and Lemma 3.3

The R.H.S. of (3.3) < C(1+t)*{The R.H.S. of (3.7)}.
Hence (3.40) follows.
Q.E.D.
We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We prove

(3.44) lu@)lIt < C(e§ + /o t(l +8) P u (o) [2ds).
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By Lemma 3.4 and Lemma 3.5 it is sufficient to prove that

4 3
(3.45) Do 1Q8rul? + ) (IALedull® + (1 + 1) 7| AL O ul?)

m=0 m=1

t
0@+ [+ B Ras)
0

In the same way as in the proof of (3.43)
3
(3.46) > ALodu|* <  The RH.S. of (3.44).
m=1

We have with v = 0]"u )
Qv = Loat‘v - tath,
AL,8v = 8,L,0v — 8, L, 0" F + 28,0%v
= L oL,w— (83 + =t
T r

Hence by (3.46), Lemma 3.3, Lemma 2.3, (3.24) and Corollary to Lemma 2.5 we
conclude that

n—
P2

+ o -""1a .

4 3
(347 Y 1Qorul + Y (1 +)7*| AL 8 ul* < The R.HS. of (3.44).

m=0 m=1

From (3.46) and (3.47) the desired estimate (3.45) follows. By (3.44) and Gron-
wall’s inequality we have
llllllrz < Ceo-

This implies Theorem 1.1.
Q.E.D.
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Fractal Relaxed Dirichlet Problems

Andrea Braides & Lino Notarantonio

Given a self similar fractal K C R" of Hausdorff dimension a > n — 2, and
c¢; > 0, we give an easy and explicit construction, using the self similarity
properties of K, of a sequence of closed sets £, such that for every bounded
open set §2 C IR™ and for every f €L?(2) the solutions to

—Aup=f inN\E,
up =0 on 8(12\ &)

converge to the solution of the relaxed Dirichlet boundary value problem

—Au+ucl’H"|K =f in2
©u=0 on 9N

('H"l i denotes the restriction of the a-dimensional Hausdorff measure to K).
The condition a > n — 2 is strict.

1. Introduction: “Un fractal venu d’ailleurs”

In their article Un terme étrange venu d’ailleurs [4] D. Cioranescu and F. Mu-
rat showed that the sequence of the solutions of Dirichlet problems defined on
a domain with holes may converge to the solution of a Dirichlet problem with
a “strange term”. When the holes &, are the union of closed sets, with diame-
ters which tend to zero, but at the same time the number of these closed sets
increases as h — +o00, they proved that the solutions up of

—Au,=f in 2\&
(1.1)
up =0 on a(n \ Eh)

may converge to the solution of a problem of the kind

—~Au+up=f in N
1.2 {

u=20 on 402,
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involving a measure g € W~1* which is independent of 2 and f € L%(£2). In
particular they showed by a “homogenization construction” how to obtain, in
the limit problem (1.2), g equal to (a constant times) the Lebesgue measure,
or the restriction of the n — 1-dimensional Hausdorff measure H"~1! to an affine
hyperplane.

A complete characterization, in a variational framework, of the possible mea-
sures which may appear in the problem (1.2) was given by G. Dal Maso and
U. Mosco, introducing the so called Relaxed Dirichlet Problems (cf. [6]). A typi-
cal relaxed Dirichlet problem has the form (1.2), but now the measure p involved
belongs to the more general class of all positive Borel measures which do not
charge (Borel) sets of capacity zero. This class allows to introduce a suitable
notion of (weak) solution for a relaxed Dirichlet problem in a variational way.
For more details we refer to [6] and to the references therein.

The aim of this paper is to exhibit a class of measures p, namely measures
of the form

(1.3) p=cHly

(with K a fractal, and « its Hausdorff dimension), for which a direct construc-
tion of sets & is possible and the problems in (1.1) converge to the problem
(1.2). We exploit the self similar structure of a class of fractal sets introduced
by J.E. Hutchinson in [8] in order to build up the sets £, by an iterating con-
struction. It is interesting to remark that in the “trivial” case of the Lebesgue
measure (or of the n — 1-dimensional Hausdorff measure restricted to an hy-
perplane) the usual homogenization technique can be seen as a particular case
of this method. Our construction applies to fractals of dimension larger than
n — 2; this limitation is natural since Hausdorff measures of dimension less than
or equal to n — 2 charge sets of capacity zero. Note that, since we shall see as a
by-product (and it is indeed clear @ fortior:i by [6]) that the measure p in (1.3)
does not charge sets of capacity zero, the existence of a sequence of sets (€x)
for which the solutions of the problems in (1.1) converge to the solution of (1.2)
can be deduced using the results of G. Dal Maso and U. Mosco.

The proof of our main result (Theorem 3.1) is essentially based on a deriva-
tion and compactness lemma (Lemma 2.4) which is a consequence of the work
of G. Buttazzo, G. Dal Maso and U. Mosco (cf. [2], [6]). An application of their
technique reduces the proof of the convergence of the problems in (1.1) to the
study of the asymptotic behaviour of the capacity of the sets &.

The plan of the paper is as follows. In Section 2 we introduce the family of
(strictly) self similar fractals, and we recall the fundamental results proven by
J.E. Hutchinson on fractals that are constructed as fixed points of iterations of
a family of similitudes. Moreover we state the definition and basic properties
of the capacity, together with the compactness and derivation Lemma 2.4. The
construction of the sets £, which “converge” to a fractal K with Hausdorff di-
mension a, is carried out in Section 3, through an iterative procedure, starting
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from a “model” set E. The constant c; in (1.3) is explicitly given by an espres-
sion involving only the measure H*(K) and the capacity of E. Beside stating
our main result (Theorem 3.1), we provide a pictorial example of the iterating
construction. The last section is devoted to the proof of Theorem 3.1: the crucial
step is to establish a “superadditivity” result for the capacity of the sets &y;

eventually we make use of Lemma 2.4, and of some elementary properties of the
capacity to conclude the proof.

2. Notations. Fractals, Self Similar Sets, Capacity

We shall denote by #(F) the cardinality of the set E if E is finite, and +oo
otherwise. If 41 is a set function defined on the subsets of a set X and E C X, we
shall indicate by ug(A) = u(A N E) for every A C X. Moreover if f: X — Y
is a function, then we define fxu(E) = pu(f~1(E)).

We shall denote by B, (z) the open ball in IR" with centre ¢ and radius r. In
all that follows we shall assume n > 2. If E is a measurable subset of IR", and

r > 0 we shall denote by H"(E) its r-dimensional Hausdorff measure, defined
as

H'(E) = sup inf{ zm(r)(diam(E.'))' :

i€l
: F; measurable , E C U E;, diam(E;) < €},
i€l
where
r
) = 2o _L0/2)

Ir'((r/2)+1)

and I is Euler’s function. By w,_; = H"~!(8B;(0)) we denote the n — 1-
dimensional measure of the unit sphere.

The letter ¢ will denote a strictly positive constant whose value may vary
from line to line, depending only on the fixed parameters of the problem. If F(p),
G(p) are two quantities depending on a parameter p, then by F(p) ~ G(p) as
p — P we mean that the ratio F/G approaches 1 when p — .

Self Similar Sets.

We introduce now the class of (strictly) self similar fractals, as studied by
Hutchinson in [8].

We shall denote with § = {S1,...,Sn} a finite family of similitudes on R"
with common ratio p < 1. The dimension of similitude of S will be the number
a=—log, N (i.e. Np* =1).

We define the following sets of indices: C(N) = {1,..., N}N, and C,(N) =
{1,...,N}?, for every p € IN. If (i) = (i1,i3,...) € C(N), then (i), =
(41,...,3p) € Cp(N) will denote the 'projection’ of (i) on C,(N).
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For every B8 = (B1,..-,B8p) € Cp(N) we define the similitude Sg = Sp,0...0

Sp,, and sg € IR" the unique fixed point of Sg. Moreover, for every (i) € C(N)
we set

(2.1) s@) = lm_ s,
and
(22) Ks ={s): (1) € C(N)}-

The coordinate map 7 : C(N) — Ks, (i) — s(;) is continuous if we consider the
product topology on C(N).

We will say that a set E C R" is S-invariant if we have I\, Si(E) = E.

Theorem 2.1. (Hutchinson (8]) The set Ks is the unique closed bounded S-
invariant set.

If v is a regular Borel measure with bounded support and finite mass, we
define the measure

N N
1
(2.3) Sv = ;"QS‘#U = ; FS;#U;

i.e. SU(E) = =i, o (S71(E)).
On C(N) we shall consider the product measure induced by the probability

measure with mass % on each i € {1,..., N}, and we shall denote it by 7.

Theorem 2.2. (Hutchinson [8]) The measure vs = w4 (7) is the unique regular
Borel measure verifying:

i) vs has compact support (the support of vs is in fact Ks);
ii) vs is a probability measure (i.e. vs(R") = 1);

iii) vs is S-invariant (i.e. Sv =v).

We will say that a set J C IR" is self similar if there exists a family of
similitudes S as above such that
i) J is S-invariant;
ii) J has Hausdorff dimension k > 0, #*(J) > 0, and H*(S;(J)nS;(J)) =0
if i # 7.

We will say that the family of similitudes S satisfies the open set condition
(see [8]), and that Ks is a self similar fractal, if there exists a bounded open
set O C IR"” such that H*(Ks \ O) =0, S;(0) C O for every i € {1,...,N},
and S;(0) N S;(0) = @ if i # j. For a possible choiche of S and of the set O
satisfying the open set conditionfor the Von Koch curve we refer to [1].
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With this definition of self similar fractals, we recover most of the well-known
fractals obtained by an iteration construction, such as the Von Koch curve, the
Sierpinski gasket etc. (cf. [9], [7], (8] for more details and examples). Let us
remark that in this framework are included also “trivial” fractals such as the
cube [0,1]" in IR® or the k-dimensional cube [0, 1]F in R", k < n.

The following theorem is the fundamental result for self similar fractals.

Theorem 2.3. (Hutchinson [8]) If the family of similitudes S verifies the open
set condition, then Ks is a self similar set, the Hausdorff dimension of Ks is
a, 0 <HY(Ks) < +oo, and

1 a

(2.4) Vs = m% |Ks*

Capacity.

The main tool for the proof of our results will be a compactness and derivation
lemma (Lemma 2.4 below). Before stating it, we shall need to define the notions
of capacity.

Let F be an open subset of IR", and E a Borel subset of F; the capacity of
E with respect to F is

cap(E, F) = inf{ / |Du|? dz :w > 1 on an
(2.5) F

open neighbourhood of E,u € Hé(F)}

We say that a property P(z) holds for quasi every ¢ € E (or quasi-everywhere
in E) if

cap({z € E : P(z) is not verified}, F) = 0.
Note that the property of being of capacity zero is independent of the set F.

It can be proven (see [3]) that for every Borel subset E of F, there exists a
function w € H{(F) such that v € H{(F), v > 1 quasi everywhere on E, and

cap(E,F):/ | Du|*dz;
F

this function will be called the capacitary potential of E with respect to F.

For example, if we consider two concentric balls B,(z) C Bgr(z), 0 < 7 < R,
then we have

cap(B;(z), Br(z)) = (n — 2)wn_1 (rR)““2_2 for n>3

Rn—2 — pn

and
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cap(B, (2), Br(a)) = 2 (log {3) "t m=2,

Notice that from the definition of capacity, we have cap(tE,tF) = t"~2cap(E, F)
for any real number ¢ > 0.

Lemma 2.4. Let (E},) be a sequence of closed subsets of IR" and let v be a
Radon measure such that v(B) = 0 on sets B of capacity zero. Let us suppose
that the following hypotheses are satisfied:

(i) for every ¢ € R™ and for every T > 0 we have

liminf limsup cap(Bi(z) 0 Br, Br(z))
=0+ % ico v(B:(z))

e . ocap(Bi(z) N Ex, B (3)).__ :
(2.6) —htr-tl(l)llf EEI.:I;E V(B,(z;) . = ¢(2);

(i) ¢(z) < +o0 for g.e. z € R";

(iii) ¢ € LY(R",v).
Let us define the measure u = pv. Then, for every bounded open set 2 of R",
and for every f € L2(R2), the solutions (us) to the Dirichlet problem

{—Au,.=f in 2\ Ey

un € Hy(2\ En)

(2.7)

converge in L2(R2), as h — +o0, to the weak solution u of the Dirichlet problem

—Au+up=f in 2
(2.8)
v € H}(2) nLY(2, p),

i.e., the unigue function u € HY(2) N L} (92, p) such that

/DuDvdz+/ uvdu:/ fvde
N n n

for every v € C®(N) with compact support in 2 (cf. [6, Proposition 3.8]).

Proof. The existence of a measure & and of a function u which satisfy (2.8) has
been proven in the more general framework of the so-called Relaxed Dirichlet
Problem (cf. Propositions 4.9 and 4.10 in [6]). In [2, Theorem 5.2} it is proven
that g = p = ov. 0
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3. The Main Result

From now on we shall consider as fixed a family of similitudes S verifying the
open set condition, and the corresponding set K = K, as defined in Section 2.
Let us fix zg € O, and let us define

(3.1) R= —;-dist(:co, 90).
Let co > 0; for every p € IN we shall set
(3.2) R, = ReP,
and
co(RpP)*/(7=2) = ¢o(R,)*/("=2) ifn >3,
G = { (Re?) exp (- L(R?)~) = (Rp)exp (- 2(Rp)™%) ifn=2.

Moreover let us fix a set E C B1(0), with finite capacity with respect to B;(0),
and define for every 8 € Cp(N)

(3.4) Tp = Sﬂ(zo), BI}; =z + ppE,
and
(3.5) & = (B} : B € Cp(N)}.

Note that we have |z, — 3| > 2R, if 8,7 € C,(N), and B # 7; moreover, if
a > n — 2, we have for large p

(3.6) dist(B2, B%) > R,.

We briefly illustrate the construction in (3.1)—(3.6) with an example.

Figure 1 Figure 2

We take as O the larger hexagon in Fig. 1 and Sy, ..., S7 the seven similitudes
with p = 1/3 which carry O into the smaller hexagons. Fig. 2 shows a possible
choice of z¢ and R.
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In Fig. 3 it is shown & with E = B;(0) for a proper choice of cg.
We are now in a position to state the main result.

Theorem 3.1. Let K be a self similar fractal of Hausdorff dimension a > n—2,
R defined by (3.1), co > 0, E C B1(0) a set with finite capacity with respect to
B1(0), and let us set

cg‘zR",—t;l(-mcap(E, R") ifn>3
(3.7) C1 = 1 . )
coR® s=wy tllr-}l:loo (log t cap(FE, B,(O))) ifn=2.

Let £, be constructed as in (3.1)-(3.6), let 2 be a bounded open subset of R,
and f € L*(2). Then, the weak solutions u, to the Dirichlet problem

—Aup, = f in 2\ &
(3.8)
up € Hg(92)\ &)
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(p € IN) converge in L%(R2), as p — 400, to the weak solution u of the Dirichlet
problem

_A""*’Cl"'Ha]Knn =f n
(3.9)

u € H}(N2),
i.e., the unique function u € H}(£2) such that
(3.10) / DuDvdez + c1/ uwvdH* = / fvdz

n Kna n

for every v € H}(R2).
Remark 3.2. 1) If we take E = B;(0), the constant c; may be written as

Sty ep(B1(0), ") ifn>3
Cc1 =

4y Jim_(logt cap(B1(0), B(0))) ifn=2,

n-2(n-2)wy_; R .
Co g—ﬁ)a_(f)_ lf‘n 2 3

2xR* 3 —
Com if n=2.

i.e. we have

Cc1 =

2) As a particular case of Theorem 3.1, we get the results of D. Cioranescu &
F. Murat [4,§2], where they obtain in the limit the Lebesgue measure. In fact,
we can consider {2 as a subset of an n-dimensional cube Q = [T, T]". The
cube Q itself can be seen as a self similar set, by choosing the 2" similitudes
which carry it into 2™ sub-cubes of side length 7. In this case, the procedure of
iteration coincides with the usual homogenization technique. In the same way,
we can obtain as a limit the (n — 1)-dimensional Hausdorff measure restricted
to an (n — 1)-hyperplane, as in [4].

3) It will be clear from the proof of Theorem 3.1 that the same conclusion
holds true when we consider more general sets £, obtained as in (3.5) where the
Bf C Bg, are not necessarily similar to each other; it suffices that

cap(Bf, Br,) ~ c1p*PH°* (K)

uniformly in 3 as p — +o0.

4) If cap(B5, Br, (zs))p~® tends to +0o as p — +00, uniformly in 3, then
the limit problem (3.9) becomes

—Au=f in 2\ K

u € H}(2\ K).



50 Braides & Notarantonio

5) Theorem 3.1 may be interpreted in term of I'-convergence of the energy
functionals related to problems (3.8), (3,9) (cf. the recent book [5] for an intro-
duction to the theory of I'-convergence). In fact, let F, : H}(£2) — [0, +o0] be

defined as .
Jo |Dul? dz if wo\g, € HY(2\ &)
Fp(u) =

400 otherwise;

then the sequence (F,) I'-converges with respect to the L2(£2)-topology, as p —
+00, to the functional F : H§(£2) — [0, +oo] defined by F(u) = [, « |Du|?dz +
Jxnn w*dH® (see Proposition 4.10 in [6]).

4. Proof of the main result

We begin by proving two simple results regarding the structure of self similar
fractals.

Proposition 4.1. Let K = Kgs be a self similar fractal. Let V be a bounded
open subset of R" such that H*(8V N Ks) = 0. Then

(4.1) HY(VNKs)= plixfw PPOHY(Ks) #{B € Co(N): Sp(O) NV # B},
and

(42)  H(VNKs)= lim p*HO(Ks) #{8 € Cy(N): BNV # 0},

Proof. Let I ={B € Cp(N):Ss(0)NV # @}, and let us define
V, = {z € R" : dist(z, V) < p?diamO}.

We have
H*(VNKs)=H*(VNKs) = lilf H*(V,N Ks).
g—+oo

If p > ¢, then V; D U{Ss(O) : B € I} so that

HO(V;N Ks) > > H*(Ks N Sp(0)) = pP*H*(Ks) #(I).
Bel

Passing to the limit first as p — +o00, and then as ¢ — +0o we have

lim H*(V; N Ks) > limsup p*PH*(Ks) #(I)
g—+00 p—+oo

> liminf pPH®(Ks) #(I) > H(V N Ks),
p—+o0
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and hence the proof of (4.1) is achieved; in the same way we can prove (4.2). O

Proposition 4.2. Let S satisfy the open set condition. For every R > 0 there
ezists Mg > 0 such that, for every p € IN, and for every 8 € C,(N), we have

(4.3) #{1 € Cy(N) : dist(S5(0), 5,(0)) < R’} < Mr.

Proof. Fixed R > 0, let us consider the set
Dflg = {z € R : 0 < dist(z, S5(0)) < diamS3(0)+ Re* (= p*(diamO + R) ) }.

We have ID,’,fpl = cr(p”)" (with cg a constant depending only on R and O).
Let us consider

Nl = {7 € Cy(N) : dist(55(0), 5, (0)) < Rp?}.

Since O is open, it contains a ball of radius Ry, and hence each S,(O) contains
a ball of radius Ryp”. We have then

|D5| > N, (Ro)"|B1(0)]p"",

so that N5 (Ro)"|B1(0)| < cr. We can take then Mg = cg(Ro)™"|B1(0)|~ .
u]
We can proceed now in the proof of Theorem 3.1, Let us first notice that, if

a > n — 2, the measure 1 belongs to H; !(R") (and hence it is zero on all
sets of capacity zero). In fact by [10,Th 4.7.5] it is sufficient to remark that for

AT P
|k \ P z))dr dr
/0 i R C/O oi—arl < T

The next step will be to estimate the capacity in (2.6) in order to cal-
culate the limits therein. The estimate from above follows from the (strong)
sub-additivity of the capacity, while the estimate from below is proven using
the following result.

Lemma 4.3. Let V be a bounded open subset of R". There ezists a constant ¢
depending only on n, R and a such that if we define

c(diamV)x-n+2 ifn>3
§=6(V)=

c(diamV)?|log(diamV)| ifn =2

(4.4)

and we have § < 1, then for every T > 2diam(V) and for everyz € V,
cap(V N &, Br(z))

(45) > (1- 8)2#{8 € Cy(N) : BNV # D}cap(py E, B, (0))-
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for sufficiently large p.

Proof. Let us define I = {8 € Cp(N) : Bg NV # @} We claim that, if
the capacitary potential u of V N &, with respect to Br(z) satisfies u < § on
OBR,(zp) for every B € I, then the proof is achieved. In fact, let us assume
that w < 6 on dBg,(zp) for every B € I; let us define v = lelﬁj(u. —§)*. By

the definition of the capacitary potential, it is easy to see that v € H}(Br(z)),
v>1qeon VNE, and v = 0 q.e on dBg, (), for every B € I, hence we have

cap(Bh, Br,(ao)) < [ |Dofas
rp(zs

and therefore

ws) [ DY [ Dol 3 cap(B5, Br, (aa))

pel Y Bry(zp) Bel

By definition of v, we have also

1
|Dv2dz=—/ D(u —8)*|%dz
Lr(z) ‘ (1_6)2 BT(JJ)| ( ) l
(4.7)

1 /‘ 2 cap(V N &, Br(z))
< —_— Dul|*dz = .
ST Jopiey ™ G0

We obtain the assertion by (4.6) and (4.7).

Now it remains to prove that » < § on dBg, () for every 8 € I. We start
with the case n = 2.

For every 8 € I consider the function

= (100 P2\ " 1og 12— 28]
(4.8) ug(z) = (log 2T) log 5T

which is the solution to

—Aup =0 in BzT(mﬂ)
(4.9) ug =1 on 8B, (zp)
’ ug = 0 on 8By (:l:p),
and define

(4.10) 2(z) =) up(e);

Bgerl

observe that z is superharmonic on IR?, as sum of superharmonic functions.
Since, for every 8 € I, we have Br(z) CC Bar(zg), it follows that ug(y) > 0
for every y € 8Br(z) and for every 8 € I; so z > 0 on 8Br(z), hence z > u
in Br(z), since the capacitary potential is characterized to be smaller than
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to be smaller than any other positive superharmonic function which is greater
than or equal to 1 on £,NV. To achieve the proofit is sufficient, by the maximum
principle, to consider a fixed y € Bg,(zs) and prove that z(y) < 6.

By definition of z, we have

z(y) = Z (log %)_1 log -————Iy ;;M

Bel
Let I, = {8 €I:RpP~9 < |zg — y| < RpP~971}; then
-1 RoP—1
(4.11) (0) < 3 (2 (1og 22) 1w (2.
q=0

where § = g(h,p) = p— [logp (%diamV)]. Now we have
I,c{Bel:|zp—yl <RI}

so by Proposition 4.2 we get

#(Ig) < N 4{y € Cp_g-1(N) : dist(55(0), S,(0)) < RpP™I71} < MNTH,

where B € Cp_g_1(N) is determined by z45 € 55(0). Recalling that N = p=¢
we obtain

(4.12) z(y)< (.1) 21 (ZTp'I ) -qa

=0

We observe that the function
z - p e log(?RZp"") = N°® (log (?-Rzp"’) + :clogp)

is increasing in (0, g+ 1) for p large enough. Therefore we can estimate the sum
at the right hand side by an integration as follows

ilog(%pq—») P9 < /Oiﬂ log (27211 pz_,)p_,a o
q=0
o = (log1/ ”)_1 /1,, 1°8(%p"’y“)y“—ldy
<cpPe (diamV) * llog (diamV) |

From (4.12), we obtain (recalling the definition of p,)
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MN
pmPe (diamv)° Ilog (diamV) |
&5 (Rer)- ~ log (%)

2(y) < cp~P° (diamV) * |log (diamV) |

(4.14)
<c

< ¢(diamV)* llog (diamV) I

We can take then § = ¢(diamV)®

log (diamV) l

In the case n > 3 we may proceed in the same way as in the case n = 2,
using in (4.8) the functions

n-—2

pP |z...zp| 2-n )
ug(z) = -1},
a(2) T"“2~p;,"2(( T )

which verify (4.9), and defining the function z as in (4.10). We get then, as in
(4.11) and (4.12),

) S 3 I (RO

=TT T

L] 7
<ol #(I)plP VB < ¢ pplammtD S Nagln=2
g=0 g=0

7
=cpp(a—n+2)zp(n—2-a)q < cpp(a—n+2)(p —2-a)i+1 < c(diamv)a—n+2,
q=0

and we achieve the proof of the Lemma. O

We can now conclude the proof of Theorem 3.1. It will suffice to compute
the function ¢ as defined in Lemma 2.4, and show that ¢(z) = ¢; q.e. on K.

We choose v = ’H"‘l k» Bp = €, and T > 0 a fixed real number, and compute
then ¢ for every z € K using (2.6). Notice that H*(B(z) N K) > 0 for every
t > 0, and we have H*(dB;(z)N K) = 0, except for at most a countable number
of t. Let I = {8 € C,(N) : By N By(z) # @}. From (4.2) we obtain

(4.15) HY(B(z)NK) = lirf PPOHY(K) #(I).
p—+oo
Recall that, from the elementary properties of the capacity (cf. [3]), we have

cap(Bu(=) N Ep, Br(2) < Y cup(BY, B, (25)
pel
= #(I) cap(pp E, Br, (0)),
hence by (4.15) we get

N cap(B¢(z) N &y, Br(z)) . cap(ppE, Br,(0))
h’:’l.mflff.i‘:f H*(Bi(z) N K) = ,,BTOO pPPeH(K)
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By using Lemma 4.3 and (4.2), we obtain also

Jirm inf lim inf 2R(B4(2) 0 &p, Br(2))
t—0 p—+oo H*(Bi(z) N K)

— 2
> lim inf lim inf cap(pp B, B, (0)) (1 = 8(Be(z))
t=0 p—too He(K)pre
= i, 'H"(K)cap(p”E Br,(0))-

Hence the hypotheses of Lemma 2.4 are established.
If n > 3, we have

n-— -1
@(3) p— +°° 'HO’(K) cap(E, Pp BR,(O))
-2
Ra
E,R"
HG(K) C&p( )
in the case n = 2 we have
1

p(z) = p_ﬂ_w HG(K)cap(E,pp Br,(0)) = c1.

55

Finally, we remark that since %%, € H™'(£2), we have that L!(2, ;) D

H{(92); therefore formula (3.10) is valid for test functions in H}(2).
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MULTIPLICITY RESULTS FOR AN INHOMOGENEOUS
NEUMANN PROBLEM WITH CRITICAL EXPONENT

Gabriella Tarantello

In dimension N > 5, we prove the existence of three solutions for the
inhomogeneous Neumann problem with critical Sobolev exponent. One of the
solutions is obtained with a changing sign property.

Introduction

In this note we shall discuss some multiplicity results for a class of
inhomogeneous Neumann problem involving the critical Sobolev exponent.

We will place particular emphasis on the existence of changing sign
solutions which for constant data, will yield non constant solutions. More
precisely,let A > 0 and let Q IRN, N > 3 be a bounded domain with
smooth boundary 4Q. For a given function f we seek solutions for the following
problem:

*
—au + Ju = Iu|2—2u + f in Q
(1)
Bl Bu_y in 90

*
with n the outward pointing normal on dQ and 2 = N?_%- the best exponent

in the Sobolev embedding.
Even though our discussion extends to include f € ! S\tlhe dual of
2

Hl(Q)), we prefer to simplify the techniqualities and assume f € Lm (Q).

The homogeneous case, i.e. f = 0, has been treated by several authors (cf
[A-M], [C—K], [W]). They have established the existence of a positive solution for
(1)f=0 forall A > 0. It must be noticed however that when f = 0, problem

L
222,

(l)f=0 always admits the constant positive solution u = The above
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mentioned results can guarantee a non—constant positive solution only when X is
large.
The problem of finding non constant solutions for (l)f=0 has been

examined in [C—T]. There the oddness of the problem has allowed to obtain
changing sign solutions for all A > 0, provided N > 5.

Here, we extend these results to include the case where f # 0. It should
be noticed that for f # 0 problem (1); is no longer odd and the techniques used

in [C—T] become unsuitable. However, extending an approach introduced in [Ta]
for the corresponding Dirichlet problem, we are able to construct "ad hoc"
minimization problems which yield the desired solutions.

N+2
More precisely, following [Ta] let ¢y = N4_2 (N"'2) and define:
N+2
. 2 2, 4
pe= inf B {CN (I vu ll5 + Allull3 ) - fu]. (1.1)
IIUI|2* =1

The role of Bg will become clear from the discussion below. Our main result

states the following:
Theorem 1:
Let N > 5 and f £ 0. If pe > 0, then (1)f admits at least three (weak)

solutions one of which necessarily changes sign. Furthermore, if f > 0 then the
other two solutions u, and uy satisfy: 0 < u, $up -

Obviously regular data f will yield classical solutions for (1);. Also we
have, 0 < U <y incase f > 0 and f # 0. Furthermore, putting together

the results of [A—M] (see also [W] and [C—K]) and [C—T] we see that the given
Theorem continues to hold for f = 0; only that, in this case, the "smallest"
solution u, reduces to the trivial one, i.e., y = 0. So, Theorem 1 can be

viewed as a bifurcation type result. In fact, the condition B > 0 (to be

compared with (*) in [Ta]), is essentially a "smallness" condition on f, since it
certainly holds when f satisfies:

N+2
HRTcOE
N¥2
with
sy(h) = {Ivuld + Mul3} (12)

[[u II*—
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Incidentally, let us also mention that the minimization problem (1.2) attains its
infinum at a positive function in HI(Q) (cf [A-M], [C—K] and [W]).

When f = constant > 0 (not too large), the claimed two positive
gsolutions could correspond to (suitable) constants. While it follows from our
construction that this is not the case for A large, our result asserts that, in any
case, problem (1)f admits nonconstant solutions for all A > 0.

We also point out that our result holds in the subcritical case (where one
replaces the power 2" in (1) with p € (2,2 )) under both Neumann or
Dirichlet boundary condition. The proof is simpler in this situation and therefore
left to the reader.

Finally, let us mention that our approach can be applied to handle the case
A = 0 and | f = 0. Thisis done via a dual variational principle as introduced

by Clarke [Cl] and discussed in [C—K] in this context.
In this situation one finds a "dual" correspondent for the value g, as given

by:
2-N
*_ . 5
pg = inf {cy ( l[z wKw) © + inw; WeE, [[w| o =1} (1.3)
N+2
where
2 N
= {weiNZ(q). L = 0} (1.4)

and K: E — Eis theinverse of —a in E, that is:
Kf=g & —ag=1 in HY(Q) and r[g=o. (1.5)

We have: .
Theorem 2: Let N > 5. If £ # 0 satisfies i['f = 0 and p; > 0, then the

problem:
*
-M = |u|2_2u+finﬂ
(2)
Hlauw - o in 0

admits at least two (weak) solutions.
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Notice that, since J; f = 0, all solutions of (2); must change sign.
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THE EXISTENCE OF THE FIRST TWO SOLUTIONS:
This section will be devoted to prove the following:
Theorem 2.1: Let N > 5 and f # 0 satisfy s > 0. Problem (1), admits at

least two solutions u, and u,;. Furthermore, if £ > 0 then 0 ¢ u, < U -

Such a result should be compared to the analogous one obtained in [Ta] for
the corresponding Dirichlet problem. In fact, the proof is essentially the same and
we shall refer to [Ta] for several of the details.

To start, let us observe that (weak) solutions for (1); are the critical

points for the functional,

*
I(u)=%‘[|vu|2+A[u|2—§*£|u|2 —lfu;ueﬁl(n).

Denote by (-, -) the scalar product in Hl(Q) corresponding to the norm:
lal? = lvuly + Al we BYQ).
Easy computations show that I is bounded from below in the set,
A= {ueH(Q):T()u) =0}
So, in the search for solution of (1);, a first candidate would be the minimizer for
the following problem:

¢y = inf I (2.1)
A

On the other hand, to insure that < is indeed critical for I, we require that A

defines a differentiable manifold (away from zero) without boundary. This is
guaranteed if the function:

ot) = I(tu), t 20
admits a nonzero critical point for each direction u € Hl(n), ut0
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Following [Ta], this corresponds to require that:
(I'(tp(w)u)yu) >0 Vuto0

with
1
2 2| ¥
|lVU||2 + A"“"z 2-2
to(u) = ——;—-———21— (2.2)
(2 -1) |lufl®s
2
Equivalently,
* . 1
21 2 2.2 -1 | * >
* 1 12 =2 (”V“uz + A"uuz) 2-2
(2"2)[;!—] —"“'—2!!— —ifu>0,Vu#0
h llull %
2
that is, .
2 —1
2 2 |5¥
llvully + AMully |2 -2 u
lall « { ey | ——— —t[ni"—*>0\fu¢o
2

2
flull “
2
which is exactly the condition ke > 0.
A straightforward consequence of this observation is the following,

Lemma 2.1: Assume pe > 0.

For every u # O there exists unique t (u) < t+(u) such that,

(i) 0 ¢ t7(u) < to(u) < tT(w) (t,(u) givenin (2.2))
(ii) t*(u)u € A
(iii) I(t (uw)u) = min I(tw); ItH(uu) = ltn%( I(tu).

t€ [0,tF(w)]
Furthermore, t(u) > 0 if and only if i[ fus>o0. .

The proof of Lemma 2.1 follows exactly as in Lemma 2.1 of [Ta].
Next, we derive some other useful consequences from the condition b > 0.

Lemma 2.2: Set, .
- , 2 2 _ (o 2 _
Ay = {uer:|lvuly + Mullg = (2 -1 [[u]% =0}
0 2 2 9

If ﬂf >0 then,
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ny = {0} (2.3)
Furthermore, for every u € A—{ 0} thereexist ¢ > 0 anda Cl—map:
t:B, — Rt

such that,
() tw(+w) er, YweB ={weH@:|w]<e};

(i) +0) = 1and (1/(0), 4) = .
2‘[ vu-vyp + 2){ uyp - 2*1 |u|2 2y )

= - ——Vp e H().
Ivull2 + Ml - (27-1) ||u||§*

Proof
To obtain (2.3) let us argue by contradiction and assume that there exist
ueA-{0}:

lvwl? + Mull? = @ -1 uuz*.

This implies that, .

*
full > 7 forsuitable v > 0 and l[fu = (2 -2)| u||§*.
But this is impossible since, .
1
2 -1 * -~
— 2 22-1
9 o |( Hvull2 + ""ullz ) 2-2

2*
llull«
2

*
0 <7 p< Il v g (27 -2) [11—]

2 -1

*
—,[fu =@ -2 vl - i[fu = 0.
2

At this point we obtain the second part of our claim as a straightforward
application of the Implicit Function Theorex*n applied to the*function:

F(t, w) = t( | v(u+w) ) — ¢2 7 ||u+wn‘;‘* - £f(u+W)

at the point (1,0) € R x HY(Q). .
Remark 2.1:
Notice that necessarily,

*
2 2 * 2
Tott@uly + A etu g - -1 | +t@u o <o,



TARANTELLO 63

while for lf u > 0 wehave:

ot @ul? + Al @ul? - @ -1 r(u)uuz* > 0.

Another consequence of Lemma 2.2 is that the manifold A is differentiable at
every u # 0. Assertion (2.3) can be strengthened as follows:
Lemma 2.3: Assume pe > 0 andlet {u  } C A such that,
*
. 2 2 * 2
lim w2 + Al 2 - @-1) o, 1% = o
n-++w 2

then, lim inf [[u [ = 0.
n-+ow

Proof: Argue by contradiction and assume that || u || > 7 > 0, Vn.
Then,

*
*
{qun = @ =2l I + o)

and
2 2
llvuglly + Allugll
: 2 ;,2 = o(1).
(2 1) Jlugll®s
2
But this is impossible sin(ie, as above, it yields:
*
Ta <@ =2y, Iiz*—£fun+°(1)=°(1>- .
2

At this point we are ready to establish the following:
Proposition 2.1: If f satisfies pg > 0, then the minimization problem:

cg = inf I (2.4)
A

attains its infinum at a point LN which defines a critical point for 1.

Furthermore, U, >0 for f> 0.
Proof: Let £ # 0, sincefor f = 0 we have ¢ = 0 and u, = 0.
For u € A it follows that,

) = [3-2] (vl +alul}) - (1—§:)J;fu

from which we immediately derive that I is bounded below in A.
Claim 1: ¢g < 0 (2.5)
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Indeedif v € HI(Q) satisfies szv > 0, then & I(iv)|,_, = —lfv <0

and from Lemma 2.1, there exist 0 < t (v) < t+(v) such that
t (v) v € A. Thus,
g ¢ It (v)v) = min I(tv) < 0.
tef0, tT(v))
Therefore, if {u } C A is a minimizing sequence for (2.4) then, in view of (2.5)

we have,

l<ol 2, 22 -1
J;fun > = and Ju|? < -!2,-;) i[fun

for n large, which yields,
b, < llull < b, ((26)
for suitable bl’ b2 > 0.

This together with the differentiability of A at every u # 0 and Lemma 2.3
allows one to conclude that such a minimizing sequence is in fact a (P.S.)
sequence, that is

I(u,) — ¢, and ra) —o.

However, we give an alternative way of deriving such a minimizing (P.S.) sequence
by means of Ekeland’s principle. This approach will turn out useful also in the
sequel and it displies clearly the role of Lemma 2.3.

Indeed, Ekeland’s principle (cf [A—E]) applies to (2.4) and gives a sequence

{u, } ¢ A satisfying:

(a) ¢y € I(uy) < ¢y + %
(b) I(w) 2 o) - 3 luy—ull, Vu e A

*
. . 2 2 * 2
Notice that necessarily, || vu  ll5 + Alu [I5 — (2 =) [lu, [I© > 0.
We show that condition (b) implies || I’(u ) || — 0 as n — + .
To this purpose, fix n with I'(un) # 0. By Lemma 2.2 and the estimate (2.6),
for § > 0 sufficiently small, we can find t(§) > 0 such that,
/7

I (un)
1 =t -6
(1) us = (9 [un ||I’(un)||] €A
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(2) 0) = 1 and [t/(0)] ¢ 2 o -
Ivu 3 + Muglla - (2 ~Dlluyl«

(¢ > 0 suitable constant).

On the other hand, since |[u_ || 2 b;, from Lemma 2.3 also follows that,
*

lim inf [vu 2 + Mu ) - 2 -1 ol > o
n'l2 nl'2 n 2* !

n-+wm
which yields
[t (0)] < a; forasuitable a; > 0.

Thus,

1 /

g lug=upll 2 Muy) = Iug) = )l + ol fluy,—ugll)
and

lup—ugllh € [1=t(&) | lugll + 8 < by|1-t(6) | + &

Therefore,

I € 1@ 1+1) =0 s 0 — 4o

So, if we call u; the weak limit of (a subsequence of) u  in HI(Q) we have that,
u, solves (l)f. Therefore uy € A, and

1 2 2
¢ < Mug) = § (IvuglZ+Mugl?) - iqu(, ¢

< lim I(u) = c,
- n 0

Thus, u, — u, strongly in HI(Q) and u; is the desired minimizer.
Notice that, t (u)) = 1 (t7(up) as defined in Lemma 2.1). So for
f > 0, we have, t (| u [) > L
Therefore,
I6(Tug 1) Tugl) € I(Tuyl) € Iup).
which yields u, 2 0.

Remark 2.2: Arguing as in [Ta], one can conclude that U, is a local minimum for L.
Set,
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*
*
A= {uEI\:IIqu; + Mul? - @ —1)||u||§* >0} cA

The argument above, shows that, ) € At and,

¢, = infl =inf L

0 A At
Thus, in the search of our second solution, it is natural to consider the second
minimization problem:

¢, =inf I 2.7
o

where
*

- , 2 2 * 2
A= {uen:vuly+aluly - (2 —l)llull2* <0}

We start by describing some nice (topological) properties of A™.
To this purpose set T = {ue€ Hl(ﬂ) ;)| ul]] = 1}. We have,
Lemma 2.4:

The subset A~ is closed in Hl(ﬂ). Furthermore, the map: ¥: § — A
given by,

U(u) = t+(u)u (t+(u) as defined in Lemma 2.1)
defines an homeomorphism.
Proof: Note thatif u € A~ then |Ju| 2 b > 0 for a suitable b > 0. Thus,

in view of Lemma 2.3, every sequence {un} in A~ satisfies
*

. . 2 2 * 2
lim inf |Jvu |5 + Mlu |5 = (2 =1) lu [|° <0
N 4o n 12 n 2 n 'ty

which readily gives A~ closed.
The continuity of t+(u) follows immediately from its uniqueness and extremal
property. Thus, ¥ is continuous with continuous inverse given by:

v (u) = “%" "
We have:
Proposition 2.2: Let N > 5, then the minimization problem (2.7) attains its
infinum at a critical point u € A~ of 1. In addition, u 20 for £ > 0.

Proof: First of all notice that any minimizing sequence { u } ¢ A~ for (2.7)
satisfies:

0 <by <llu ll < by
for suitable b; and b,

Therefore, exactly as in the proof of Proposition 2.1, via Ekeland’s principle
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(which applies in view of Lemma 2.4) we derive a minimizing sequence
{u, } ¢ A satisfying:
I(u)) — ¢
() I — 0.
Since I involves a nonlinearity with critical growth, to be able to carry out the
final convergence argument we need some information on the value c,.
Claim: N/2
1 S
where S is the best constant in the Sobolev inequality (cf [T]).
To establish (2.8) we follow [Ta] and note that, in view of Lemma 2.4, A~
disconnects HI(Q) in exactly two components:
U ={u=0o0rut0:|uf <t* (“%n)},
+ _ . +,.u
vt = {uslul > R
and At ¢ U

As usual for this type of problem (cf.[B—N]), to obtain (2.8) we use a
suitable cut off function u ¢ of an extremum for the Sobolev inequality as given by

the function:

N-2

U - (N -2)e) T
6y N-2
(e+]x3?) 2

with € > 0 fixed sufficiently small and y € JQ chosen so that, in a small
neighborhood of y, the domain  lies on one side of the tangent plane of dQ at
y and the mean curvature of 4Q at y (with respect to the outward normal) is
positive. The existence of such a y is guaranteed by the smoothness of 99Q.

2 _ sN/? 2
As well known, [[vu, |5 = =5— + o(1) and |l ull; = o(1) as

¢ — 0. Replacing u,_ with —u, if necessary, we can assume that ’[fu e 20

and therefore .

2
4
o+ [ u,+Ru, ] ) [||u0+Rue|| ]2 P

-—vla.sR——++mande—-00+.
llug+Ru | llug+Ru ||

p
Therefore, for Ry > 0 sufficiently large and € >0 sufficiently small we have:
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“0+R“e
];RZRO, 0<e<eo}<+m.

+
A, = sup {t [————
0 llug+Rau |

Thus, for R > 2S_N/ 4 Ag + Ryand ¢ > 0 sufficiently small, we derive that,

N/2
2 2 2 2,8 2
Iv(ug+Ru) g+ Allug+Ru 52 lvuglla+Aluylls+7  R>Ap2

u,+R u
> t+ 0 €
||u0+R u6||

that is, U + Rue e Ut. Hence, we find a tg € (0,1) such that,
v€=u0+t0RueeA.
So, for a suitable constant C > 0, this yields:

* *
2 -1 2 -1
cl5I(w,'e)$I(u0)+IO(1'.0RuE)+C[IL|u0|u6 +i[|u0| u€+J; |f|u€]

where .
1 2 2 1 2
Io(w) = (livull3 + Alully) - o IIullz*.

Direct calculations show that, N
-2

’ ) 2R
t[|u0|u3—1+£|u0|2—1u6+£|f|u€=ae +of e ],a>0;

2 2
Iva I3 + Allull3 yN/2
(cf [B-N]) and max I(tu) = & [ ell2 ‘2] .
0N Ve N 2
20 "ueﬂz*
Therefore, N
2 2 )
o <o 4l ["V“5"2 + /\||u€||2]N/2 N O[eT].
P Il s

On the other hand, our choice of u ¢ Buarantees that, for N > 4, we have:
2 2
Ivacly + M i3 N/2  gN/2
2 - !!
Iluellz*

- C€1/2 + 0(61/2), C > 0,

(see [A-M], [C—K], [W]). Thus,for N > 5 we conclude:
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N-2

N/2 N/2
¢ ¢ ¢ t 1%1-5—-2-—-— 061/2 + 0(61/2) + O[GT] <c t 1%;§—2-—

for ¢ > 0 sufficiently small.

At this point, to show that the sequence {un} is precompact we use an inequality

of Cherrier [Ch] which, for every 7 > 0, gives a constant M_ > 0 such that:
S 2 2 2 1
[527N"] lolZe <ol + M iy, Vo e ma),

Since u is uniformly bounded in HI(Q), after taking a subsequence (which we
still call u ) we find u; € HI(Q) such that u, — u; weakly in HI(Q). In
particular, u; € A andso I(ul) 2 ¢

Furthermore, if we write o=+ vy with v, — 0 weakly in Hl(ﬂ), we

derive: . N/
2
1 2 1 2 1S
(o) =10) + vyl = 2 vy e + o) — o < ¢ + § S
which yields:
lim Yov 12 - L 2 < & —TSN/z (29)
n-+ o 2 n 2 2 ) N
Moreover,

0= Wlaghug) = (lahuy) + oyl = vy I + o)

that is,
2 2*

Iovpllg = vy II2* = of1). (2.10)

Putting together (2.9) and (2.10) we have that, /
N/2

. 2 S

Lim |lov 5 = 1 < =~ (2.11)

n-++ o
Next we show how (2.10) and (2.11) can hold simultaneously only if
lim |lov || =0, (e, 7=0).

n-+w

Let us argue by contradiction and assume g > 0. Take 7 > 0 such that:

[Egm—r] > 1.
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From (2.10) we have:

* 2*/2 *
2 2 [ S ]— 2
= 1) < — v + o 1
" vvn "2 " vn "2* + 0( ) - 232’N T " vn "2 ( )7

Since 7 > 0, then | vv_ ||, is bounded below away from zero. Therefore,

N/2
ol > [ 2w -~ 7] "

which, in view of our choice of 7, contradicts (2.11).
This gives u, — u, strongly in HI(Q) and so u, is the desired minimizer.

Finally, for £ > 0 we have:
16 (g )y ) € 16 uy ) ug) < max1(tu;) = Io,)

which yields u 2 0. n

Obviously u, $ u;. To conclude the proof of Theorem 2.1 set u + =

mjn{uo, ul}; we show that f > 0, f # 0 implies the existence of a solution

*
0 < uy € uy. To this purpose note that when f > 0, (f # 0) the unique

+
solution u u for the problem:

—au + Ju = uf in HY(Q)

gives a positive subsolution for (1) forall 4 € (0,1) and u, — 0 as p — 0.
On the other hand, u, = min{u,, u;} defines a supersolution for (1); So

choosing s > 0 sufficiently small to guarantee uﬂ < u, ae. in Q, by the

+
*
method of sub—super solutions, we obtain a solution u, for (l)f satisfying:

*
0<au 4 < u, <u
This concludes the proof of Theorem 2.1.

+

Remark 2.3: Notice that, if u is a minimizer for (2.7) and f#0 then

iful > 0.

To see this, observe first that if l[fu1 < 0 then I(t+(—u1) (—2y) < Iy)
which is impossible. On the other hand, if l fu; = 0 and we let i be the

minimizer for
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Ipon T' = {u#0: (I’ (u),u ) = 0} with ][fﬁ > 0,
0

then u, € T and, Ij(n)) = I(y) ¢ I(tF(@)i) ¢ [H(R)) < 1, (8).
Thus, u; would have to solve both (1); and (1);_, which is impossible for
f # 0. In conclusion, i[Iful > 0.

EXISTENCE OF CHANGING SIGN SOLUTIONS
In this section we investigate the existence of changing sign solutions for

(g

To this purpose, we need to compare between some different minimization
problems. To start, define:

+ +

A ={u=u"-u €A:u"er}
and
Ay = {u = ut—u € Ai—u €N},
where, as usual, we have denoted with ot = sup{u, 0} and v~ = sup{-u, 0}.
Set
7, = infI 2 ¢, (3.1)
M
and
7, = infl > ¢ 3.2)
2 =1 (
We have:

If 7, < c¢; then the minimization problem (3.1) attains its infimum at a
point which defines a changing sign critical point for I.

Analogously, if 79 < ¢; the same conclusion holds for the minimization
problem (3.2).

Proof: Asfor A, itis not difficult to show that the condition pe > 0 implies
that AI and A; are closed.

We start by discussing (3.1) and observe that (3.2) is handled similarly. As
for the previous minimization problems, we shall apply Ekeland’s principle to
derive a minimizing sequence {u;} C Ay with the property that I(u ) — 7
and

1 -
I(u) > Iw) = 5 |l w—ufl, Vue Ay
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We claim that, in view of the condition 7, < c¢;, necessarily Il u; Il 2b>0
for a suitable b. Indeed, if for a subsequence (which we still call unj we have
lu I — 0 then

1+ o(1) = I(u) = I(u}) + I(~u)) 2 ¢; + o(1)

which is clearly impossible.

On the other hand, since u'l'; € A, it follows immediately that || u: | is
bounded away from zero. Thus, we derive the existence of suitable constants C1
and 02 such that,

+
¢y < Il < Gy (33)
Now, for fixed n with I'(u)) # 0, take § > 0 sufficiently small to find
suitable C' — function t,(4) > 0 and t_(8) such that t,(0) = 1, and

I'(u ) 4+ I'(u -
w5=t+(6)[un—6 n ] —t__(6)[un—6 () ] € AT (see
1T Cap)Il 12 Cup)I
Lemma 2.2). In view of (3.3) and Lemma 2.2 it follows,

| t.(0) | ¢ Cq
for suitable 03 > 0,

Therefore,
1 ’
Hlws=ug Il 2 o) —Xwg) = ~I'(u), ws—u) + of || wg—u, )

I'(u) / I'(up)
= (1=t (N[ (ug),[n- 6!11/(:,1)11] - o[- 1’(:11)"]—}

+ 8 [T (u) | + ol uy— wsll)-

On the other hand, for a suitable C 4 > 0 we have:

Iwsg—upll € Co(lt,(O)=1] + |t ()-1]+4)
which yields,

C, +
N ) Il ¢ 5 (T30 |+ 14200) | + 1) +1¢5(0) (I (uy), up) +

+ $2(0) (I'(up), —up) € 3 C4(1 +2C5) = 0 as 0 — +o.

In conclusion the sequence {u } satisfies
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. 1 sN/2
()  Iu) — 1 <c¢ <+ gTy
@@ )l — o
Thus, as we have seen in the proof of Proposition 2.2, conditions (i) and (ii) are

sufficient to guarantee a convergent subsequence for {un} whose (strong) limit

will give the desired minimizer. n
Obviously, Proposition 3.1 would yield the conclusion for Theorem 1 only if
the given relations between T 19 and ¢ could be established. While it is not

clear whether or not such inequalities should hold, we shall use these values to
compare with another minimization problem.

Namely, set
A = A[ N Ay C A
and define,
gy = inf I. (3.4)
Ax

It is clear that Cy 2 . An upper bound for c, is provided by the following:

Lemma 3.1:
For fixed ¢ > 0 and y € dQ thereexist s > 0 and g € R such that
su; — ,uUe’y € A*.
In particular, for N > 5,
¢y < sggpt (s ul_tUe,y) <¢ +§gTg
for ¢ > 0 sufficiently small and y suitably fixed in Q.
Proof: We shall show that there exist s > 0 and t € R such that

+ p— — —_—
s(ul—tUe’y) €A and—-s(ul—tUE’y) EAN. (3.5)
To this purpose let,
u : u
max 1 _ min 1
b=a ™ h= g g
€,y €,y

For t € (t;,t,) denote by s +(t) and s_(t) the positive values given by
Lemma 2.1 according to which we have:

5, (t) (u; —t Ue’y)'*' €A~
and

—s_(t)(u; —t Ue,y)— € A
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Note that s +(t) is a continuous function of t satisfying:

. + ; =
lmi s, (t) = t7(u; —t; Ue,y) < 4o and lmi s+(t) = + o
t-»tl 1;--01‘,2

Similarly, s_(t) is continuous and,

lim s_(t) = +o and lim s_(t) = t¥(t, Uey—up) < o
— ?
tﬂt-{' t-'t2

Therefore, by the continuity of s,(t) we find a value ty € (t;,ty) such that
s+(t0) = s__(to) =85, > 0.
This gives (3.5) with t = ty and s = s, At this point we only need to

estimate I(su; —t U, y) for s > 0 and t € R. To this purpose we fix
]

y € 09 asin the proof of proposition 2.2 and let u e = U &y The structure of
]

I guarantees the existence of R > 0 (independent of €) such that
I(s u;—tu.) < ¢ forall & + t2 > R2. On the other hand, for

s2 + t2 < R2, we have:
N-2

T)s

N-2
T)

I(su; —tu,) < I(suy) + Iyt u) + 0(e

< maxI(su,) + maxI(tu) + 0(e
§0 L fer 0 € (
2
L plv u i+ A )2 N2
= 1(u;) +
)t r )
I I

1 sN/2 1/2 1/2 2
S+ =g —Ce/? +o(e/7) +0(e “); C>0

where we have used the estimates in [A-M], [C—K] and [W]. Hence,for N > 5
and ¢ > 0 sufficiently small we readily obtain,

1 sN/2
¢y < :ggl(sul—tue) <¢ + §gTo— -
teR

Proposition 3.2: Assume that " > ¢ and 19 2 ¢ The minimization
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problem,
Cy = ix}_f I
Ay
attains its infimum at uy € Ay which defines a (changing sign) critical point for I.

Proof: Exactly as in Proposition 3.1, by means of Ekeland’s principle, we derive a
minimizing sequence {u } C Ay satisfying:

I(u)) — ¢
I ()l — 0.
In particular, we have:
*
0 <a; <flull € a (3.6)

for suitable constant ay and 2y Thus, after taking a subsequence, we obtain
+ + 1 . 1
u — uw € H(Q) weaklyin H (Q).

We start by showing that o $ 0.

Indeed, if by contradiction we assume for instance, that u
would have:

- 0 then we

*
. 2 2
O vuglg=lug 15 = o)
and .
.. .1 02 1 o442 : +
@@ limgagllvuel |5 —=¢lul ||% = lim I(u]) ¢
n-+w 2 n 12 2 o 79 n-++ o n
. 1 sN/2
< C2 - lim I(—ll;) < 02-—01 < N7
n-+w .
But, we have already seen how condition (i) and (ii) can hold simultaneously only
iflim ||v u: | = 0 which clearly contradicts (3.6). A similar argument

-+ o

applies to u . Thus, u, = wb—u" # 0isa changing sign solution for (1)f
and in particular, I(uy) 2 ¢o-
+

Set u: =t + vy and u = uw + v with v; — 0 in Hl(ﬂ).

Note that, .
+ .2 + 2
Novy Ul = Il vy II2* = o1) (3.7

In view of (2.8) and Lemma 3.1, we also have:
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. + .
lim I(v + I(—~v ) = lim I{u )-I(uy) € ¢cg—¢c, <
(vp) + (=) am (uy) —I(uy) € cy—cy

n-++w
N/2
< §§—2—- + ¢ —¢y < %{SN/2 (3.8)
So, necessarily,
+ 1 sN/2
lim min{I(v ), I(—V;)} < N "7
n~++o n

which, in view of (3.7), yields:
IvEl — 0 or Ivgll — o0

that is, u2=u+—u_e AI or u2=u+—u"e A;

Consequently, since we are in the situation where T Y9 2 €y We conclude:
I(ug) 2 ¢

Therefore, if we write u = uy + w with w — 0 in HI(Q) we obtain,

n

*
2 2
fow, 115 = Il wy ||2* = o(1)
and

: 1 2 1 2 .
lim slvw |5 — =||w, [« = lim I(u) — I(u,) =
1ot 2 nl2 =5 nl, toto oD 2

, gN/2
$ -9 <§T

This, in the usually way, yields || w || — 0. Thus u — wu, strongly in

Hl(Q) anduy € Ay gives the desired minimizer. -

The proof of Theorem 1:

For f > 0(f < 0) Theorem 1 is a direct consequence of Theorem 2.1 and
Proposition 3.1 and 3.2. If both { and Uy change sign in {1 and the situation of

Proposition 3.1 occurs then necessarily "> and 79 > € and we would be

done. So assume that we are in the situation of Proposition 3.2. To conclude it

suffices to show that u, # u, (since, obviously, u, # up).

In fact, argue by contradiction and assume that uy, = u;. Then,
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Cg = Cp, Uy € AI n /\; and 1 =¢ = Ty On the other hand, kqu1 >0
(see Remark 2.3), thus ifu‘{' >0 or —‘quI > 0. Assume, for instance, that
i[lfu‘i' > 0. From Lemma 2.1 then we obtaina t~ > 0 such that

t u'{ e At and I(u'{) > I(t u'{')
This is clearly impossible since, t~ u'{ - uI € A, and
79 =1(n)) = Iw?) + (=) > 107 ud) + I(=u]) = 1" ud —u]) > 7
Thus, in all circumstances, a third changing sign solution for (1) £ is guaranteed. g

Sketch of the proof of Theorem 2
The proof of Theorem 2 follows by considering the (dual) functional,
2N

F(w) = %ifN'é‘[; [w N2 _ 2£WKW + Z[wa, weE

with E and K as defined in (1.4) and (1.5).

As above, the idea is to consider,
2N

/\ ={w e E, (F'(w),w)=0 a,nd%:%i!wlm—inw >0},

and
2N

A_T_:{w € E (F'(w),w)=0 andg:-%i[llwlr"'?—r[wKw <0}

* *
One shows that the condition s > 0 (s ¢ as defined in (1.3)), implies that the

corresponding minimization problem:x:

¢y = inf F (4.1)
Ay
* .
¢ = 1n£ F (4.2)
A

yield two distinct critical values for F, hence two (distinct) solutions for (2);.

For the minimization problem (4.1) this follows exactly as for Proposition
2.1 with the obvious modifications.

The minimization problem (4.2) is treated similarly to that in (2.7) and the
correspondin§ compactness argument follows by providing an appropriate upper
bound on ¢,. This can be derived using the estimates contained in [C-K]. We
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leave the details to the interested reader.

[A-M]

[A-E]

[B-N]

(Ch]

(cy

[C—K]

[C-T]
[T]

[Ta}

(W]
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FINITISTIC DIMENSIONS OF SEMIPRIMARY RINGS

Yong Wang

Let R be a semiprimary ring. We show that if the left generalized pro-
jective dimension (defined below) of g(R/J?) is finite, then the injectively
defined left finitistic dimension of R is finite.

Let R be a ring, the projectively ( injectively ) defined left big finitistic di-
mension, denoted by IFPD(R) ( IFID(R), respectively ), is the supremum of
the projective (injective ) dimensions of the left R-modules with finite projective
(injective ) dimension. The right versions of the finitistic dimensions rFPD(R)
and r FID(R) are defined similarly. It is well-known that rFPD(R) = IFID(R)
if R is a right artinian ring. But for a semiprimary ring R, one only has
rFPD(R) < IFID(R) and the inequality sign may be strict. In general, as
pointed in [1], there is no universal inequality relating rFPD(R) and IFID(R).
The readers are referred to [1] for these information.

The theory of the finitistic dimension of finite dimensional algebras ( artinian
rings ) has been attracting interests recently, but little attention has been given
to that of semiprimary rings, especially, the injectively defined finitistic dimen-
sions. In an early paper of Mochizuki (8], he studied {FID(R) for a semiprimary
ring R and gave a sufficient condition for [FID(R) < oco. In [7], an example
is given of a semiprimary ring R with J* = 0 ( J = Rad(R) is the Jacobson
radical of R ) and rFPD(R) = oo, hence IFID(R) = oo . ( Note that it
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has been shown by Green and Zimmermann Huisgen [6] that for a left artinian
ring R with J® =0, [fPD(R) < oo, where [fPD(R) = sup{Pd(rM) | M a
finitely generated left R-module of Pd(rM) < oo} ). For a semiprimary ring
R with J? = 0, it is fairly easy to see that [FID(R) < oo since the minimal
left projective resolution of R/J has the property that there are only finitely
many indecomposable direct summands (up to isomorphism) appearing in its
syzygies ( [4], Proposition 4.3 ). In this paper, we are going to extend this
result by showing {FID(R) < oo under the hypothesis that the left generalized

projective dimension ( defined below ) of R/J? is finite.

Definition. Let R be a ring. A left R-module rM is said to have a finite
generalized projective dimension, denoted by gPd(rM) < o0, in case there exists
an integer m > 0 such that Ezt}+'(M,N) =0 for any left R-module N with
Id(rN) < co. We define gPd(rM) to be the least integer m > 0 satisfying the
above condition. If there is no such a number, then gPd(rM) = co.

Generally, if an artinian ring R has the property [FPD(R) # rFPD(R), say
m = IFPD(R) < rFPD(R) ( such examples can be easily found in finite dimen-
sional monomial algebras ), then m = rFID(R) = IFPD(R) < rFPD(R) ([1]).
Take any module M with m < Pd(MRg) < oo, we have gPd(M) < Pd(M) < .
It is not our intention to discuss the generalized projective dimension in detail
in the present paper, some properties of the generalized projective dimension
as well as the generalized injective (flat) dimension, in particular, their rela-
tions with the finitistic dimensions, can be found in [9]. However, we want to
provide the following proposition to see the ubiquity of this concept. Let us
recall that a left R-module pM is said to have an projective resolution with a
strongly redundant image from an integer m > 1 in case the mth syzygy Q. has
a decomposition 9, = @;cr A: (not necessarily a finite direct sum) such that

each A; is a direct summand of a syzygy Q,, for some o; > n ([3]).
Proposition 1 Suppose R is a ring and pRM has a projective resolution

voo—= P — P — B — pM — 0



WANG 81

with a strongly redundant image from m. Then gPd(rM) < m.

Proof. The proof is similar to the one given in ( [5], Lemma 8 ).

We are going to prove Eztft'(M,N) = 0 for any module gN of finite
injective dimension. So let Id(rN) = n. Without loss of generality, we may
assume that m + 1 < n. Let §; be the ith syzygy and Q,, = ®;A; such that

each A; appears as a direct summand in some §y;,; > m. Then
Exth(M,N) = Exty ™ (Qm, N) = Exty ™ (@:Ai, N) = HEa:t"""‘ (Ai, N),
But for A;,
Ezty™(A;, N) < Exty ™ (Qg;, N) & Ext§it™™(M,N) =0
since a; + n — m > n and Ezt}(M,N) =0.
Inductively, suppose
Ezt%(M,N) = Exty}(M,N) = --- = Exty *(M,N) =0
for n — k > m + 1. Consider
Ezty *Y(M,N) & Ezty *1"™(Q,,, N)
= Extly 17" (@;A;, N) & H Ezty *=1"™(A;, N),
i

each Ezt} ¥ 1"™(A;, N) < Extl *=1"™(Qq,, N) & Ext} ¥-1-m% (M, N).
Ifa;>m+k+1,thenn—k—1-m+ o >n = Id(N), it follows that
Ea:t"-k"l_m"'a’ (M,N)=0. Ifa; < m+k+1,thenn~k < g;+n—k-m—1<n.
By induction, Ezt} *"™+* (M, N) = 0 and Ezt}; *"}(M,N)=0. O
Remark. It is easily seen that If gPd(rM) < m, then Extn**(M,N) =0
for all integers & > 1 and left R-module N with Id(N) < oo. The reason is

that each cosyzygy of a module N with finite injective dimension still has finite

injective dimension.

In the sequel, we suppose that R is a semiprimary ring. Let V = {ey,...,en}

be a basic set of primitive idempotents. We say that there is an arrow from e;
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to e; if e;(Je;/J%e;) # 0. An e; is said a sink if there is no arrow starting from

;. First we have

Lemma 2 Let R be semiprimary and {ey,...,e,} be a basic set of primitive
idempotents of R. Let M be a left R-module with Id(M) = m and

EztR(Re;/Jei, M) # 0 for some i (note such an i always ezists ). If there is an
arrow from e; to e;, then ExtR(Re;/J%;, M) # 0. Hence EztR(R/J?*, M) # 0.

Proof. By the hypothesis, Re;/Je; is a direct summand of Je;/J2e;, thus
Extf(Jej/J%e;, M) # 0.
From the exact sequence
0 — Je;j/J%e; — Re;/J%e; — Re;/Je; — 0,
we have
Ezt}(Rej/J*ej, M) — Extq(Je;/J?e;, M) — Exztp*(Re;/Jej, M) =0

exact, hence ExtF(Rej/J%;, M) #0. O

Corollary 3 Suppose R is semiprimary and R has no sinks (e.g. R is strongly
connected in the sense of [2] ) and M is a left R-module with Id(M) = m. Then
ExtR(R/J},M)#0. O

Before proceeding our next theorem, we introduce the notation A € add(rB)

which means gA is a direct summand of finitely many copies of gB.

Theorem 4 Suppose R is a semiprimary ring and J/J? has s simple modules
( up to isomorphism ) as its direct summands. If gPdr(R/J?) = m, then
IFID(R) <m+s.
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Proof. We may assume that s > 1, for otherwise, R is a semisimple ring and
IFID(R) =

If the result were false, there would be a left R-module pN with m+s+1 <
n = Id(N) < co. we are going to show this leads a contradiction.

Let {e1,...,e,} be the set such that J/J? is precisely decomposed into a
direct sum of copies of Re;/Je; (i =1,2,...,s ), that is, J/J? € add(Re;/Je;®

- @ Re,/Je,) and ;J/J? # 0 for all: =1,2,...,s; and set e = e; + -+ - +¢,.

By Lemma 2, there must be Ezt}(Re/Je, N) = 0. For otherwise, there is an i:
1 < i < s such that Ezt}(Re;/Je;, N) # 0, but e;J/J% # 0, so there exists a j:
1 < j < s such that there is an arrow from e; to ¢; , hence Ext}(R/J?, N) # 0.
This is a contradiction since gPd(R/J?) =m < n.

Next, if Ezt}?(Je/J%, N) # 0, from the exact sequence

0 — Je/J?¢ — Re/J?¢ — Re/Je — 0,

we get Exty ' (Re/J%, N) # 0, so Exty '(R/J?,N) # 0, this is contradict to
the condition gPd(R/J?) = m. Thus we must have Ext}*(Je/J%e, N) = 0.

Consider Exty *(Re/J%, N). Ifforeachi: 1 < i < s, Exty *(Rei/Jei, N) #
0, ( note, then Je; # 0), then Ext} ' (Je/J%, N) # Osince Je/J%e € add(Re/Je)
and Je/J%e # 0 ( since Je # 0 and J is nilpotent ). Thisis a contradiction.h So
we may assume that for ey, ..., e; (i1 > 1), Exty ! (Rei/Jei, N) =0 (1 < i < 41)
and for e 41,...,¢€s, Emt""(Rej/Je,-,N) #0 (i1+1 < j < s). Especially,
Je/J?e is a direct sum of copies of Re;/Jey, ..., Re;, [Je;,.

Let e) = e, + -+ + ¢;,, then Extl*(Re®/Je®), N) = 0. We claim that
i1 < s. For otherwise, e(!) = ;4 --+¢, = ¢, then Ezt}y(Re/Je, N) = 0. Note
J/J? is a direct sum of copies of Re;/Jey,...,Re,/Je,, so is J*/J¥+! for all
k > 1. Also since Ezt}!(J,N) & Ezt}(R/J,N) # 0, from the exact sequence

0 —J2— J— J/J? — 0, we get
0= Ezty ' (J/J* N) — Ezty (J,N) = Ezty }(J?, N) — Ezt}(J/J3, N) =0,

thus Exzt}1(J?,N) & Exty'(J, N) # 0. By using induction, we have
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Exty'(J',N) # 0 for all [ > 1. This is a contradiction. So there must be
1<iu<s.

In summary, we obtain
Ezty(Re/Je,N) =0, Eztp(R/J,N)#0

Ezty (ReW/[JeM,N) =0,  Exty'(Re/Je,N)#0
J/J? = (Rer/Je ) @ - @ (Re,/Je,)™,
Je/J%e = (Rey/Jer)P @ -+ @ (Re, [Jes, )P0
for some A;,B; > 0,and 1 <1; < s.

Generally, suppose the following is true:

(1) Bzt (Re® /Je®, N) = 0, Bot3™ (Ret-1/Jel=D, N) # 0 for I = 0,1,2,
..., k, where e(~1) = 1 is the identity of R, e©® = ¢, e) = ¢; + --- + ¢; ( for
[>1),and

1< <1 <---<i1<s (k<s).
. . ) S
(2) Jeli)/J2e\) = (Rey/Jer) i &-- -@(Re,-,.“/Je;m)A';u (j=-1,0,1,---,
k —1 ) for some A?),...,A,ﬁj}d. ( define 3o = s ).

Let us consider Ezt}y *"!(Je® /J2e®), N): If Exty *1(Je®)/J2%®), N) #

0, from the exact sequence
0 —s Je®/J2%e® — Rel®) [ J2ek) ;s Re® [ Je®) —, 0,

we have Ext}y = (Re®) /J%¢(¥), N) # 0, a contradiction. ( note we are assuming
k < s). So there must be Ezty*~1(Je® /J2%e®) N) = 0, Since Je®)/J2e®) is
a direct summand of Je*=1)/J2¢(*-1) and the latter is a direct sum of copies of

Rey/Jes,. .., Re;, [Je;, by our assumption. Thus
j (€2]
Te® /J%e® & (Rey [Je)™ @ --- @ (Res, [Jei, )

for some A; > 0.
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Now, if each Exts*"*(Re;/Je;,N) # 0,1 < j < ix, ( especially, Je; # 0,
hence Je®) /J2e(®) +£ 0 ), we would have Ezt}y *~(Je®)/J2e(), N) # 0. Contra-
diction. So we may assume that there is an integer i, such that 1 < ¢x4q < 3
and Ext}y* Y (Re;/Jej, N) = 0for j = 1,2,...,4x41, but Extl *"1(Re;/Je;, N)
#0for j =irg1 +1,... 0k Set e®+) =e; 4+ ... +e;,,, (k41 = 1), Thus

Ezty ¥ (Re1) [ Je+D) N) = 0

We want to prove that i,y < i;. If this were not true, then e(*+1) = (¥
and Ezt} *1(Re®/Je® N) = 0.

Claim. For any integer u > 1
(#)  Te* DTt o (Rey [ Jer) P @ - @ (Res, [ Tes, )P0

for some B; > 0.
Proof of the Claim. If u = 1, (#) is clear by our assumption. Inductively,

suppose (#) is true for any number less than u (u > 1). Consider the case u. If

Jue(k—l)
i) #0

for some number i, then there is a j satisfying 1 < j < 1x—; and
J'e;
() 40
By induction, J*~1e*-1)/J¥e(*~1) is a direct sum of copies of Re;/Je;,- -

Re;, [Je;,. So we may assume
h: Re™)@...@ Re;, i) — J¥~le; — 0

is a projective cover of J*"le;, where A; > 0. Hence h(e;J a®e...
@ eiJei, ) = e J¥; and h(J2e,) @ - @ J2e;, 4i¥)) = JuHe;. But

Jte (k-1)
RN T y) )

therefore thereis an I: 1 <1 <4 such that e;(Je;/J%e;) # 0,501 € {1,2,...,1x}.
Thus J¥e*-1)/Jutle(-1) is 3 direct sum of copies of Re;/Jey,.. .,

Re;, [ Je;,. that is , the claim is true.
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Let us return to our proof. From the claim, we especially have

Jue-1)

n—k-
(Ju+l (k-1)?

N)=0

and

Ezt""‘(Ju—_‘:(k(;—i)l), N)=
for any u > 1.

Noticing
Re(-1)

n—k— k- n—k
Eaty 1 (Je* D, N) & Eati (5,

NY#0

by our assumption and from

Jek-1)

2. (k-1 k-1
0 — J2e-1) —, Jel )———rm——»,

we obtain an exact sequence

nko1 Je®D n—k=1( 7 (k=1)
0 = Exty (J2e(k—1)’N) — Eaxty " (Je¥ Y, N) —
Jelk-1)
n—k— k— n—k —
Eaty*1(J%e*™, N) — Baty (S5 V) = 0.

So Ezty*1(J2e*-1), N) # 0 since Ext}y*~!(Je*~), N) # 0. By induction
and the above claim, we have Ezt} ¥~ (J'e(® =1 N) # 0 for all I > 1. This is a

contradiction. It follows that 1 < ix4; < ¢ and
Je®) [ J2e®) = (Re, [Jer) ™) @ - - @ (Reiy,, [T eiyy, ) Hivey)

since Exty *¥1(Je®/J2e®),N) = 0 and Ext}y*(Re;/Jej, N) # 0 for j =
ik1 +1,... 0k Also, Extly ¥ 1(Re® /Jel), N) 0.

Thus, we have proved, by induction, that
1<i,<i,-1<"'<i2<i1<8.

Of course, this is impossible. This completes the proof. O
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THE BLOW-UP OF p—-HARMONIC MAPS

Martin Fuchs

We show the following theorem of compensated compactness type: If u, — u weakly in
the space H1?(Q, R¥) and if also nlggo O5(|Vun|P~285us) = 0 in the sense of distributions
then 9, (|Vu|P~284u) = 0. This result has applications in the partial regularity theory of
p-stationary mappings Q — S¥°1,

Suppose that M is an m-dimensional Riemannian manifold and let N denote a
compact n-manifold embedded in some Euclidean space R¥. For p € (1,00) we

introduce the p-energy functional e,(u) = /MIVu[Pd vol on the Sobolev space

HY(M,N) := {u € H'""(M,R¥) : u(z) € N ae.}. In recent years much at-
tention has been paid to the partial regularity properties of locally €,~minimizing
maps u : M — N . Independently and with different methods Hardt-Lin [5], Luck-
haus [7] and the author [4] showed H — dim (Singu) < m — [p] — 1 for the set of
interior singular points. The purpose of this note is to give a complete proof of
the fact that weak limits of certain blow-up sequences are p-harmonic functions
from some domain Q C IR™ into the space R*. As demonstrated in [5] this leads
to partial regularity of minimizers but the technique can also be applied to weakly
p-stationary mappings M — S*~1. More precisely, we will prove the following

THEOREM: Let § denote an open bounded set in IR™ and consider a sequence {u,}
in H'?(, R¥) such that u, — u weakly in this space and

/n [V~ Vun - Vo dz < en - [l o)

forall p € H LN L (Q, R¥) with lim ¢, = 0. Then u is a p-harmonic mapping
Q2 — R*, ie. 0.(|VulP~28,u) = 0 in the sense of distributions.

Going through the arguments outlined in Evan’s recent paper (2] we obtain as a

COROLLARY: Assume that u € H'?(Q, $*~1) is a weakly p~harmonic map from the
domain © into the sphere $¥~! which in addition satisfies the monotonicity
inequality

p=m VulPdy > r*™ Vul? d
R [ IVePdy 2 [ VP
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for all balls B,(z) C Bg(z) C Q Then u € C}(Q-X) for a relatively closed
set £ C § such that H™?(X) =

In order to get this result one only has to replace Evan’s equation (3.13) by the
corresponding p-harmonic system which is valid for the limit on account of our
Theorem.

REMARK: As mentioned before the Theorem implies partial regularity for local e,
minima in the space H?(M, N). Since an Euler equation is also true for obstacle
problems (i.e. N # () the statement of the Theorem gives an alternative proof of
the results obtained in [4].

The proof of the Theorem is organized in several steps, we make crucial use of
earlier results due to Frehse [3] and also Landes [6)].

LEMMA 1: We have Vu,(z) — Vu(z) a.e. on  at least for a subsequence.

Assuming this we fix ¢ € C3(€,R¥) and pass to a subsequence with the property
W, = |Vu, P2 Vu, — W

weakly in LY(Q), q := 5&5 , for some function W. This implies
pn(B) > u(B), BCQ,

for the measures p, := L™L W,, g := L™ W on  and by the Theorem of
Hahn-Vitali-Saks we find

lun(B)|, |u(B)| < € (1)
for any set B C Q such that L™(B) < §,. Here ¢ > 0 is an arbitrary number
in (0,1). By Egoroff’s Theorem we find ' C Q with the property Vu, — Vu
uniformly on ' and L™(2 — Q') < §,. For n > n, we clearly have

sup|Wn —|Vulf?Vu|<e
n/

so that

| /ﬂ VP2 Vu, - Vip dz — jﬂ VupP~ Vu- Vep da|
< [ 196 [Wo = (VP2 Vil do+ [ 19l [IWal + 90 do
<L) [Vl € + [Vl (wn(@ = @)+ [ [VuP~da).
W.l.o.g. we may assume /n— ) |Vu|P'dz < €. From (1) we then deduce
hm/W thdx-/ |VulP?Vu - Vode

so that ('i,,(IVuI”‘2 9su) =0on . n

Lemma 1 is a consequence of
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LEMMA 2: Consider an arbitrary subregion * CC Q. Then we have for all a > 0

lim £ ({z € Q" : [Vun(z) - Vu(z)| 2 a}) =0. (2)

Condition (2) immediately implies Vu}(z) — Vu(z) a.e. on Q* for a suitable sub-
sequence {u}} (compare [1], 19.6) and the claim follows from a diagonal argument.

In order to prove Lemma 2 we proceed similar to [6], §4, and choose a sequence
{9} of measurable sets and a suitable subsequence of {u,} with the following
properties:

1) up, — u strongly in LP(2) and a.e.,

i) Q0 CQr, £7(Q- ) =0 ®)
=1
iii) lim [Jun — vz, = 0, especially

1
[ln — ullzoo(ay) < 7 forn >n,.

Let ©2* denote a region as in (2) and fix n € C}(Q,[0,1]) with n =1 on Q*. Suppose
that we already know
a¢ = lim s.up‘/;7 n- (IVu,.I"“2 Vu, — |Vulf~? Vu) - V(up — u)dz (4)
n—0co 73
— 0 asf{—o00.

Then ellipticity implies

limsup | 7-|Vu, — Vu[Pdz —0,
Q, {—o00

hence ([IVun —Vu| > o] :={z € Q: |[Vu,(z) - Vu(z)| > a})
limsup L™ (Q' N[|Vu, — Vu| > a])
< limsup{/m a™?-q|Vu, — VulPdz + L™(Q* — Qt)}
l—-—::O for any > 0.

In conclusion our result will follow from relation (4). We have (by the weak conver-
gene u, — u in H?(Q))

0 < limsup A (IVu,,I”"QVu,, - IVulp'2Vu)17 - V(up — u)dz
n—00 '3
= limsup A |Vun|P~2Vu, g - V(u, — u)dz
n—oo ¢

= limsup [ |VuaP ?Vunn - Viu, —u)l de =: a,
3) n—oo JO,
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. L v if o] <L ) .
where L := § and v’ = L for vector valued functionsv :  — R".
[

ifjv| 2L
We split
a < lim sup/rz | Vo P2V g - V[uy — u)tdz
+ lim sup/ [Vun|P "2 Vun g - Viu — u,)lde
n—oo JQ-Q,
=: b +dy,
be = lirnsup{/n |Vun P2V, - V(7 - [un — u])dz
- /n |Vun P Vu, - Vi @ [u, — u]de}
< limsup (cn - lIn - fun — W"||L=qy)

where we have made use of the assumption in our Theorem and also of the fact that
Jim ||(un — )Ll o) = 0 for fixed £. Since

limsup (¢ - 17 - [n = u]*[les(a)) = O
n—oo

it remains to discuss the term d;. Let GL := [|u, — u] < L] D Q4 (on account of
(3)). Then

d¢ < limsup [Vtn|?~*Vu, - V[u — un)"n do

n—oo JGL-Q,

+ limsup co.dz = e+ fr,

n—oco JQ-GL

]

I

i p—2 . —
hiris;lp/;{;-nl |VupP~*Vu, - V(u — u,)ndz

IN

i . p—2 — P2 . -
llglglpjcg—n,n [IVuaP~*Vu, — |VuP~*Vu] - V(u — u,)dz
1 . p—2 . —
+hnm—igp‘/cg_a,n |VulP~*Vu - V(u — uy)dz
< timswp [ g VuP V- V(u - up)de
< limsup ra, 7|Vu| u-V(u—u,)dz
Weak convergence Vu, — Vu in L?() gives

An(B) := /B 7VulP*Vu - V(u = Vus)ds —0

for every set B C 2. By the Theorem of Vitali-Hahn-Saks the signed measures ),
are equi absolutely continuous with respect to £™. Since L™(GE — Q) < L™(Q -
Q) l—»O we find that

—00

H H . p—2 . — —
tlirga(h"mqigp Gk—ﬂzn [Vuga[P~*Vu - V(u un)d:c) =0.
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Finally we look at
— 11 -2 . ‘7 — L
fe= hf.riil:p /n-Gg.' [VunP~*Vun - V{u — un]"ndz .

The integrand If is given by (see [6], §3 Prop. 2)

I = [Vual"? 1 Oatta- L+ Jun —ul™
[a(t = ) = (u = ) - u = wnl (B (4 = wn) - (= wn))]
[VunlP™? 0 L+ Ju = un| ™
{1V tal’ = wnl? + [atin - (= )] - [Battn - (1 = u)]

+ |u = un|* Vu, - Vu

= [Bottn + (v = )]+ [Bore - (= wa)]}
< |VuaP™ 2 L+ |u = un| 'V, - Vu

— [Vual ™20 L |u = ua|™ - [Oatin - (4 = un)] - [Qate - (u = un)] =2 vn.

From these estimates we infer

< limsu / v,| dz

fl = ln sup _ kl nl
< limsu / 21] C p-1 Uu dl’
—_ " p _ ’I; | uﬂl | |

and since |Vu,[P~! — J weakly in LF;LI(Q) for some function ¥ we deduce
/82' 17|Vun|”"1|Vu|da:'::°/;2-m?qulda:
for all subsets B of . On the other hand strong convergence in L?({2) implies

L’"([Iun—u| > L]) —0

n—o00

so that

lim (lim sup
£—o00 n—00 Q-

.p-. p-1 =
2 |Vun ||Vl dz) = 0

by the Theorem of Hahn-Vitali-Saks. This shows lim sup f; < 0 and putting together

{—o0
all our results we arrive at (4). =

REMARKS: 1) Under the assumptions of the Theorem we have
Vo i= |Vua P72 Vu, — V := |Vulf~? Vu
weakly in LP/P=1(Q) at least for a subsequence.

PROOF: Since sup || Va||Le1p-1(q) < 00 we deduce V, —: V for some function V in
neN

LP/P~1(Q)) . Quoting Lemma 1 and Egoroff’s Theorem we find Q. C © such that
LN -9Q)<e, V,—V uniformlyon ..
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Clearly
A}W—V%¢W=[p4-me¢®;30
for any ¥ € L*(f) and also

L(m-vywm;zo

so that /0 (V—-V)-¢dz =0, hence V=V ae. on Q.
Since € was arbitrary we find V = V a.e. on Q.

2) An inspection of our arguments shows that the statements of Lemma 1 and
Remark 1 remain valid under the assumptions u, — u weakly in H'?() and

/‘;|Vu"|”‘2 Vu, - Vodr < ¢ |l@llpe@) for all ¢ € HY N L>(9) with ¢ € (0,00)
fixed.
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OBSTRUCTIONS TO THE SECTION PROBLEM IN FIBRE BUNDLES

SAMSON SANEBLIDZE

ABSTRACT. For a Serre fibration with a fibre of the K(7, n)'s product type, obstructions
to the section problem in each degree are defined by means of the Hirsch complex of
fibration. This allows us to give the homotopy classification of sections (maps) as well
a8 other applications. In particular, for G-bundles, these obstructions are related to the
Aoo-module structure on the homology of the fibre and, consequently, some results in
the fixed point theory are obtained.

1. INTRODUCTION

A general idea to the section problem for a fibration being realized in the rational
homotopy theory is to consiruct a retraction in a suitable algebraic model of the fibration
and then to develop an obstruction theory to the existence of that retraction (cf. [22],
[24], [19] for instance). Unfortunately, in ordinary (integral) homotopy theory there are
not so far such good models for the fibration, especially for getting an affirmative answer
to the existence of a section. There is another approach, based on the Moore-Postnikov
decomposition of the fibration and carried out by several authors, see [23], for example, but
those computations with higher obstructions became to be difficult. On the other hand, (3]
suggests careful examination of the Hirsch model (complex) of a fibration. By definition

the Hirsch complex (with integral coefficients ) of a Serre fibration F — E £ X with

71(X) acting trivially on H.(F) is a twisted tensor product in the following commutative
diagram of complexes {cf. [12], [4], [8], [2])

C.(X) C.(E) ——  C.(F)

o] j i
O.(X) —— (C.(X)® RH.(F),8,) —— (RH.(F),d)

where k is a chain homotopy equivalence (as well kg ), (RyoHy(F),8) — Hy(F) is a free
group (Z-module) resolution of the integral homology group Hy(F), 8, = 0° + AN, h
is a twisting cochain, A € C*(X; Hom(RH.(F), RH,(F))) (see §2, for details). In fact,
originally the Hirsch complex was defined in [12] with coefficients in R, a commutative
ring with 1, for H.(F; R) a free R-module. This has been extended for arbitrary H.(F; R)
in [2].

l[n] particular, it immediately follows from [2] that if £ has a section, then in (1) there
is a chain map '

' : Co(X) — (Cu(X) ® RH.(F), 1)

with j ot = id.

* Partially supported by the Forschungsprojekt Topologie und nichtkommutative Geometrie der Uni-
versitit Heidelberg
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Briefly speaking what we do here is to show that the existence of the chain map ¢’ above
with some additional properties is equivalent to the existence of a section of ¢ provided the
Hurewicz homomorphism (the H.H.) 7.(F) — H.(F) for the fibre of ¢ is split injective,
that is F' has the homotopy type of a product of Eilenberg-MacLane spaces.

More precisely, suppose we are given a section s" : X™ -+ E on n-skeleton of the base
X of £, and let

o(s") € C™*H(X; mn(F))
be the obstruction cocycle to an extension of s” to X**!. Then we can choose a twisting
cochain h whose one component detects the image of the cocycle c(s™) under the cochain
map induced by the H.H. for the fibre (Proposition 2.4; cf. [3]). Moreover, by means of
the section s™ and the twisting cochain /& we define the subgroup

I"Y(s™ k) € B (X; ma(F)),

and denoting by o(s") the obstruction cohomological class of c(s") and by O***(€) the set
of such cohomological classes corresponding to all sections on X™ we have the following

Theorem A. By hypotheses and notations above in a fibration £ with a section s : X™ —
E, suppose the H.H. m(F) — Hi(F) is split injective for : < n. Then

O™+ (€) = o(s™) + I"*}(s™, h).

It follows from this that the subgroup I"*!(s™, h) is uniquely determined by the fibration
and we denote it by I**1(£). So O"*+1(£) can be regarded as a single element in the quotient
group H"+(X; n,(F))/I™**(£) and, consequently, we have

Corollary 2.8. There ezists a section of € on X™*! if and only if O™*1(€) = 0.

In general, I**1(¢) has a filtration by the subgroups
0=L*(¢) Cc (@) C - c R =),

and we have the following

Theorem 2.7. Let ¢ be a fibration as in Theorem A. Then there is a section, ', of € on
X"+ yith §'|xm = s™|xm, m < n if and only if o(s™) € IN¥L_1(8).

In particular, if I**(€) = 0, i.e., O™*}(§) = o(s™), then o(s™) becomes an invariant of
¢ and this situation occurs in the following theorem (cf. [16], [7]):

Theorem 3.1. Let § with a section s™ : X" — E satisfy one of the following conditions:

(i) € is a principal fibration, i.e., is induced by a map X — Y from the path fibration
QY — PY — Y (withY simply connected and the H.H. split injective in degrees < n for
QY);

(ii) The base X of € is Z-formal with H*(X) having the trivial multiplication;

(iti) The base X of € is k-formal with H*(X; k) having the trivial multiplication provided
the composition of the H.H. with the canonical homomorphism Hi(F;Z) — H;(F;k) is
injective and the image of m(F) is a k-submodule in Hy(F;k) for a field k,i < n.

Then the obstruction cohomological class o(s™) is an invariant of £, i.e., O"*1(§) =

o(s™).



SANEBLIDZE 97

This obstruction theory allows us to give the homotopy classification of sections, too.
In particular, the twisting cochain ~ above restricts to a spherical twisting cochain

v € C*(X; Hom(Rm.(F), Rr,(F)))
which defines a new differential, d,, on the cochain complex

n—-1 i
Lf = [I TI C**9(X; Rimy(F), d(= d° + 8%)), k€Z,
120 ¢=1
by therule d, = d+ v U_.
The classification has more nice form if £ is as in the following

Theorem B. By hypotheses and notations above let & with a section s™ : X™ — E satisfy
the following two conditions:

(i) The H.H. for the fibre of £ is split injective in degrees < n;
(%) € has the Hirsch model with

O(Cu(X™) ® RH(F)) C C.(X) ® RA.(F)

for some decomposition H;(F) = m;(F) @ H;(F), i < n, compatible with the H.H.
Then there is a bijection

[Xn_l) E]l = HO(L(n-l)» dv)

where [, ], denotes the set of homotopy classes of sections.

In the case of an R-formal base X (e.g. X is a suspension (cf. the proof of Corollary
3.3), H*(X; R) is polynomial, cf. [1], [9]) computations are more simple, since the cochain
complexes C*(X; ) under consideration can be replaced by the cohomology H*(X;-) (cf.
Theorem 2.10, for example).

On the other hand, because of [14] computations with the Hirsch complex and, there-
fore, with our obstructions become more convenient for G-bundles;, it is shown that an
action G x F — F induces higher order pairings

pn i ®"'H,(G;R)® H.(F;R) — H.(F;R), n=23,...,
the A.-module structure on H,(F; R) with u, the canonical induced pairing on the ho-
mology (homologies are free R-modules ). These pairings define a special twisting cochain
of the associated fibre bundle which, in particular, allows us to give in some cases criteria
for the existence of a homotopy fixed point of the action in terms of characteristic classes
of the fibre bundle (cf. Theorem 3.10).

In §2 we develop our obstruction theory, where in particular main Theorems A and B
are proved, and in §3 we give some applications.

Acknowledgement. I would like to thank prof. N. Berikashvili, prof. A. Dold and
prof. D. Puppe for useful discussions and suggestions.

2. OBSTRUCTIONS TO THE SECTION PROBLEM IN A SERRE FIBRATION WITH FIBRE
oF THE K(=,n)’s PRODUCT TYPE

Throughout this paper we consider a Serre fibration of path connected spaces
F-ELX

with the base X a polyhedron. We restrict ourself to X of finite type, i.e., it has finitely
many simplices in each dimension, although in many cases, this restriction can be avoided.
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We will also assume that 7,(X) acts trivially on the homology groups H,(F). For a
space (polyhedron) X, C(X) will denote the singular (simplicial) complex with integer
coefficients, unless specified otherwise. We use usual sign conventions for graded maps,
etc.

We begin by recalling some facts about a twisting cochain of a fibration ¢ playing a
basic role in the Hirsch complex (1). In particular, the question of estimation of freedom
in the choice of a twisting cochain, being a key point in our obstruction theory, leads to
the functor D [2].

Fix a free group (Z-module) resolution

p: (ByoHy(F),0%) — Hy(F), 9%: RiHy(F) — R H,(F),

of Hy(F). Of course, we can take 7 = 0, 1, however, it is sometimes usefull to consider res-
olutions of any length, since the functor D does not depend on resolutions used. Consider
the cochain complex

C*(X; Hom(RH.(F), RH.(F))) = Hom(C.(X), Hom(RH.(F), RH.(F)))
which will be denoted by (H, V). Here Hom(RH.(F), RH.(F), d) is the standard bigraded
complex: f**: R;Hy(F) — R4 ,Hyyo(F) i f** € Hom**(R, H.(F), R, H.(F)). Moreover,
under the composition of homomorphisms it becomes a (bi)graded differential algebra with
1 and, hence, so does (H, V) via the U-product. In fact, X is tri-graded:
H = C(X; Hom"*(RH.(F), RH.(F))),

and we refer to ¢ as the base topological degree, to 7 as the fibre resolution degree, to ¢
as the fibre weight and to n = 1 — j — t as the total degree (cf. [20], [18]). Moreover,
we refer to » = i — j as the perturbation degree, which is mainly exploited by induction
arguments below (In particular, when we can take RH.(F) = H,(F), then perturbation
degree coincides with that of base topological one). Thus, we have
H={n"}, H = [[ ®*
n=r—t
Vo HE - L

A twisting cochain, h, is an element of H of total degree 1 and at least of perturbation
degree 2 satisfying the condition VA = —~hh, i.e. h has the form

h=hR4 - +HW 4.+, RKeHn L
With respect to the perturbation degree the condition for a cochain to be twisting reads
V(RY) =0, V(h®)=—-h*h%, V(h*)=—R*R®—R%H?,. ...

Note that a single superscript to an element of H will always denote the perturbation
degree, while we denote by A,, the component of 4 in the subcomplex
C*(X; Hom(RH,(F), RH,(F))). In particular, we refer to the component ho of h as
transgressive one.

The basic fact about the Hirsch complex is the following theorem [2]

Theorem 2.1. Let & be a Serre fibration as above. Then
Ezistence. There are a twisting cochain h and a chain map k such that (1) is satisfied.
Uniqueness. If there are another such h and k, then there is an isomorphism, p, of
complezes
p: (Co(X) ® RHL(F), &) — (Cu(X) ® RH.(F), 1)
such that
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(i) p is defined by an element of H (denoted by the same symbol) of total degree 0 via
N-product and p — 1 increases the fibre weight (H.(F)-degree), i.e.,

p=]+p1+...+p'+_,,) p'E’H"'.
(1) k o p is chain homotopic to k.

In other words, twisting cochains A and h are on the same orbit with respect to an
action of the group of those automorphisms, p, which are of the form as in the uniqueness
part of the theorem, on the set of all twisting cochains, h, via

p*h=php~t + V(p)p™.

The obtained quotient set denoted by D(X; H.), H, = H.(F) (cf. [10]) is the contravariant
functor from the category of polyhedrons to the category of pointed sets (for a fixed graded
group H, ). So that in this set Theorem 2.1 still assignes to the fibration the element,
d(£), called the (homological) predifferential of £ [2].

It 18 of interest to observe that the functor D composed with the suspension functor
X — SX becomes cohomological. More precisely, we have

Theorem 2.2. There erists a natural equivalence of functors from the category of con-
nected polyhedrons to the category of pointed sets
¢:D(H)oS S [ H(5Gi)oS,

i>2
where G; = nj Hom(H,', Hj+.‘-1) (3] Ezt(Hj, Hj....‘).

Proof. Consider the standard triangulaton of a suspension, SY = C_Y UC.Y, by adding
two verteces to a triangulation of Y. Then the set,H, of those cochains in

H = C*(SY; Hom(RH,, RH.)) which annihillite on the cone C.Y is a differential sub-
algebra of K with the trivial multiplication. Moreover, the inclusion % C % induces an
isomorphism in cohomology. Let d € D(SY; H,) and let h € d be a representative. Since
h? is a cocycle, there is h? € H with V(h?) = 0, V(p!) = h® — h?, some p* € H. Put
g = (1+p*) *h. Clearly, 3> = A% and V(3°) = 7%§* = 0. Obviously, one can construct
by induction on perturbation degree another representative, &, of d with h € H. But we
have VA = hh =0, and then put ¢(d) = [Rlv € [liy; H*(SY; G:). It is easy to see that ¢
is a bijection. In order to show that ¢ is natural, it 1s sufficient to remark that for a map

f:Y’ =Y, an induced homomorphism (Sf)* : Hsy: — Hsy sends Hgsy: into Hsy. O

Note that for an arbitrary map g : SY’ — SY, we have not H(g) o ¢ = ¢ o D(g) as
shows the Hopf map S° — S52.

Example 2.3. Here we consider those elements (predifferentials) of D(X; H.,) which cor-
respond to certain principal fibrations over suspensions. Let X be a suspension, SY, with
H.(Y) a free group and H. the tensor algebra over H.(Y'). So by the Bott-Samelson the-
orem we can regard H, = H,(2SY). By Theorem 2.2 we also have the natural bijection
with respect to maps being suspensions ¢ : D(SY; H,) = [li»; H'(SY; Hom™*(H., H.)).
First consider the path fibration QSY — PSY = SY. Then a twisting cochain and the
predifferential of 7 are defined as follows. Let C,(SY) — H,(SY) be a coalgebra map
dual to the composite map of differential algebras H*(SY) — C*(SY,C,Y) C C*(SY)
inducing an isomorphism in cohomology. We have that the composite

a: Cu(SY) — H.(SY) % H.(Y) C H.(QSY)
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defines a twisting cochain, A € [l;5, C*(SY; Hom*~}(H., H.)), by h(c)(a) = ax(c),c €
C>3(SY),a € H.. Therefore, for the predifferential of 7 we have ¢(d(r)) = u with
u(b)(a) = as(b),b € H»3(SY),a € H.(RSY). Now if xs; is a principal fibration over
SY' induced from 7 by a map Sf, f : Y/ — Y, then because of functoriality of prediffer-
entials with respect to induced fibrations we simply get ¢(d(rs;)) = H*(Sf)(#(d(r))).

From now on assume that £ has a section, s, on the n-skeleton of the base, i.e. s™:
X" = E, fos"(z)==z, z € X" Let

o(s”) € C"*H(X; ma(F))
be the obstruction cocycle. Consider the homomorphism
u*: C"U(X; ma(F)) — C™FH(X; Ho(F))
induced by the H.H. for the fibre F
u:m(F) — H,(F).
On the other hand, let

(2) p*: C*(X; Hom(RH.(F), RH.(F))) — C*(X; Hom(RH.(F), H.(F)))

be a homomorphism induced by the resolution map p above. Hence, it induces an iso-
morphism in cohamology. Using the obvious isomorphism Hom(Z, G) = G for a group G,
we can regard C*(X; H,(F)) as the subcomplex in C*(X; Hom(RH.(F), H.(F))), since
RHy(F) = Z. In particular, it is shown in [3] that a twisting cochain A € d(£) can be
chosen in such a way that for the transgressive components hf one has

®3) Ry =0, r<n,

4) P (RG™) = u*(c(s"))-

Denoting by u(m,(F)) = #,(F), the subgroup of spherical elements of H.(F), we show
below in addition that there is a twisting cochain h € d(£) with coefficients those homo-
morphisms which preserve a resolution of the subgroup.

Proposition 2.4. By hypotheses and notations above let ¢ have a section s" : X™ — E.
Then there is a twisting cochain h € d(€) satisfying (8), (4) and, moreover, for each
simplez 0 € X", h'(c) : RH.(F) — RH.(F) preserves the subgroup R%.(F) C RH.(F).

Proof. Recall that an algorithm for construction of a twisting cochain for a Serre fibration
¢ is described in [2] (cf. [18]). We have that ¢ defines a colocal system of singular chain
complexes over the base X: To each simplex o € X is assigned the complex
(CulFo)yYe), Fo =€ (o),
and to a pair 7 C ¢ the induced chain map
C.(F,) — C.(F,).

Then ¢ — Hom(RH.(F), C.(F,)) also forms a colocal system over X. Define, X, canon-
ically as the simplicial cochain complex of X with coefficients in the last colocal system:

K = {K¥*}, KW* = C'(X; Hom* (RH.(F), Cu(F,)))
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(C. is regarded as bigraded via Cy. = C.,Cj>0,. = 0,). Hence, K becomes a bicomplex

via
K"vt = H K:‘;jvt,
r=i—g
5K — KT 5= O 4 oR
v KM = Ky = )

For convenience we refer to the gradings of K as in accordance with those of 7. Next

we have a natural d.g. pairing (defined by the U-product and by the composmon of
homomorphisms in coefficients)

(K,6+7)®(H,V) — (K, 6+ 17),

and, since y(kh) = y(k)h, an induced d. g. pairing
(Ky,67) @ (H, V) — (K, 6,)
where
(Kqr87) = (H(K, 1), 6,) = C*(X; Hom(REL(F), H.(F))).

Now consider the following equation
(5) (B+7k) =
with respect to a pair (k, ),

=k + &+, KX,

h=R 4. +h +..., FEH" L

We also have the following initial conditions:

(6) V(h) = —hh,

(7) vk =0, K], =e€ K2 e=p"(1), 1€H,

where we assume that for each generator a € Ro#i(F), k?(c%)(a) € Ci(Fp0) is a map,
(8%,20) = (Fp0, k§(0°)), representing p(a).
In addition, we require for k that its components (transgressive ones),

ky € C"(X; Hom(RH,(F), C,(F.))) = C"(X; C,(F,)),

be determined by a given section, s®. This means

(®) k(o) = s"or, 0" € X™,
or simply we will write £ = s" if there is no confusion. And for A,
9) h(c)(a) € R#.(F), a € RF.(F), c € X"

Note that a solution of equation (5) with initial conditions (6), (7) is given in [2], while we
show below that the existence of the section for £ specifies solutions in view of (8) and (9).
A construction of a desired pair (k, h) goes inductively on its perturbation degree. First
consider §(k°) € K*°. By hypothesis (7) we can find some k! € K with (k') = —6(k%),
but we choose k* as follows: recall that k' may have two components

kl = kl,O,l +k0,—1,1’
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and then for a generator, a € Ro#;(F), we set k}(c')(a) € Ciy1(Fs1) to be a homotopy,
G:§' x I — F,, between k{(03)(a) and kf(01)(a) (o] is the j-vertex of o) such that

Glegxr = ké'o'l (‘71)(= ")

while for a generator, b € R, #;(F), we take k""" (¢°)(b) to be a chain factoring through
the map, ay : Cf — F,0, where Cy is the mapping cone of the standard map, b : §* — V",
corresponding to the representation of the element 8%(b) in the basis of Ry#:(F) and then
ap is induced by the composite S* £, vgr KXo, Fy. Then we get a cochain (here,
for simplicity, we can assume R;5,H,(F) = 0),

9 = [6(k"), o ={gl} € K3,

with the property that for a € Ro#;(F), ¢%(c)(a) € #i41(F); indeed, the chain
d° (k}"°°)(o®)(a) factors through a map,

a: T (a) = F,, Ti'(a) = 0A% x 5 Uppaxg, A?

(A™is the standard n-simplex), and there is a map, f,, : 5*** — T'1'(a), representing the
generator of H;11(T%7(a)). f b € Ry #%;(F), it is easy to see that the class of the y-cocycle
(OF(k01) + d° (k%~11))(c)(b) is also spherical.

Now since (2) is an epimorphism and a cohomology isomorphism at the same time,
there is some V-cocycle, h? € H**, with p*(h?) = ¢° and h%(¢)(a) € R.#.(F) fora €
R.#(F), c€ X"

Next we consider k°h? — §(k'). Clearly, there is some k?> € K?? with

k) = KR = 8(k"),

but we choose k? as follows: for a generator a € Ro#;(F) we set k?(c2)(a) to be a chain
factoring through a map Z7 Ugi1 Z2 — F, which itself is formed by the maps (chains)

@;j: 2} = Fa, j=1,2,

where Z? is the (reduced) mapping cylinder of the map f,2 above and Z7 is that of the
map S'+*! — VS**! corresponding to the representation of the element h?(0?)(a) in the
basis of Ro#i41(F), and then o; are defined obviously. Analogously, k?(¢?)(b) € Ciya(F1)
is chosen for b € Ry #%:i(F). '

Suppose by induction that we have constructed a pair (=1, A(*=1)) k(n~1) = f0 4
cood k) R(=Y = B2 4. .. 4 A™L satisfying equation (5) and initial conditions (7)-(9)
in perturbation degrees < n — 1, while condition (6) in degrees < n. Then again because
of (2) we can define A* € H™"~! with V(A*) = =iy j=n+1h'R’ and p*(h") = g, g™ is the
class of the vy-cocycle, f*,

fn = s(kn—l) - kn-zhz — e — klh"'_l,
while k* € K™" by
k") = K°R" = £

moreover, for a generator, a € R7.(F), we have that A*(c")(a) € R;4n—1(F), since one
can immediately see that the chain fF(c™)(a) € Ciyn—1(F,n) factors through a map,

@ T:t»-l(a) = Lign,
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where the generator of Hiyn—1(T;%"*(a)) is defined by a map, B,n : S***~! — Tit"~(a)

(in fact, T,3"~*(a) has the homotopy type of a bouquet of spheres with only one compo-
nent of $*+"~1). Also k™ is chosen for a € R#;(F), o0 € X", by a chain k*(c)(a) factoring
through the map

Z{' Ugit+n-t Z;' — F,,
entirely analogously to k?. Thus, we obtain a pair (k, k) as desired. [

From now on assume that the H.H. for the fibre F is split injective in degrees < n. Then
for a pair (s", k), s" is a section and h is a twisting cochain from the previous proposition
( satisfying (3) and (4), in particular), we define a subgroup

I"(s™, h) € B™Y(X; 70(F))
as follows: first consider the following two short exact sequences of complexes
0 — (CR,d) — (Cayy di) = (Clamryydn) — 0
and
0— (L:u d) - (Lzu)) dl’) - (Lzu—l)’ df') —0
in which
Ck = II C*+I*+™(X; R; H,(F)),
i20
d is the total differential of the bicomplex defined by the d° and the 8%,
Cly = Mjzo MGey C*H*4(X; R H,(F)),
dp =d+ hU_, ]
Ly = Mjpo C*+*™(X; Rjmn(F)),

qu) =Tlj»o n:=1 Ch+j+q(X s Bymo(F)),
d, =d+vu_,

v is a spherical twisting cochain, the restriction of ™ to Hom(Rg,(F), Rrga(F)). Here
we identify the i-homotopy group, ¢ < n, with its image under the H.H., so we can regard
L?,, as the subcomplex of Cf,,.

éonsider the boundary operators of the corresponding long exact sequences

6n N HO(C'(,._l), dh) b Hl(cmd) = Hn+1(X; H"(F))

and

& HO(L(n—l)» dy) — H(Ln, d) = B™(X; ma(F)).
Then we set

(™, h) = 6a(N),

where N is itself the following subgroup of H°(C(n_1),ds): observing that some fixed
splitting H;(F) = n;(F) ® Hi(F), i < n, (compatible with the H.H.) induces a decompo-
sition Cf,,y = L{,, @ B,y of the graded group C,,), we have a sequence of homomorphisms
(defined below)

$1: {am) € L°2)|d,,(a(,)) =0} — B,

$2: {am) € L(a)ldu(a(s)) =0} —Bj,...,

$i+ {cGar) € Clanldnleen) =0, (i) = agan) + Gy aj41 € L, b5 € BY,
bj = ¢j-a(agj-n) + b)), 0S5 < i} = Bl i=1,...,n-2
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and, by definition,

N= {[c(n—l)] € HO(C(n—l)) dh)ldh(c(n—l)) =0, C(n=1) = G(n-1) + b(n—l)v
bj = @j-a(a-1) + b-2)), 3< i <n—1}

Now we begin the construction of the ¢; by induction. Consider the fibration £ over
X x I induced from € by the projection X x I — X. To define ¢, first we consider
equation (5) for ¢’ and show that for a d,-cocycle a() € L?z) (ie., d(a;) = 0,d(a;) = v2a,
i ag) = a1 + az,a; € L) there is a solution (', k') such that (k’,R)|xx0 = (k, ), a
solution of (5) for &, kj|xix1 = °, a section X* — E of ¢, "o x I) = agz)(o). Fix
the pair (k,h) on X x 0. In fact, we are interested in transgressive components of an
extension pair of (k, k). For convenience, we use here for the space X x I, the cochain
complex (algebra) C*(X X I;-) corresponding to the standard cellular decomposition of
the cylinder. Put, for example, ¥5(X° x 1) = k3(X° x 0), &’3(c® x I) = *, the constant
map at the vertex o°, while realize a cochain k'y(X* x 1) as a section s'* : X! — E of ¢
such that the difference cochain, d(s?, s"*), is just p*(a;). Then we will have

golo* x I) = [6(K'o)ly(* x 1) = p(a1)(0"),
and we can take A'3(c x I) = a;(0). Next define k’3(c* x I) as a homotopy between
§(k'y) and KR5(c* x I), while K'3(X x 1) = &%, a section ¢’ : X3 — E extending s"
(such section exists, since 0 = d°(d(s!, s")) = c(s"")); moreover, we can choose s’ with
g'a(0® x I) = [6(k'3)]y(0® x I) = p*(az)(c?), and then define A'3(c x I) = a;(c). Also we
have c(s") = 0, so s” extends to a section, s’* : X3 — E, and choose s”, i.e., K3(X® x 1),
with /5(0> X I) = [6(k'3)](0° X I)|ay(ry = 0. Then (recalling p*(h"") = ¢") define ¢, with

$1(a)(0) = Ky(o x I), 0 € X™.
Suppose we have defined ¢; for j = 1,...,1 — 1, and for the dj-cocycle c(;) € CE’,-), 8 pair

(K, k) with k74" (X**+1 x 1) = 8"+, a section s"*! : X**1 — E, and A5 (o xT) = cgy(o).
Then for dj-cocycle c(41), we have that
o(s"™*h) = P (WHE)™*? = p* (hey)™*? = —p"(dlaisr)) = &€ (aisa).
So we can canonically change s"**' by p*(a;41) to define a section s"*2, i.e., k52 (X**3x 1),
with
570 x I) = [5(Ks (0" X Dleiyaqry = 0.
Next define ¢; by .
$ilcgrn)o) = He (o x I), 0 € X™.
Thus, the construction of ¢;’s is finished.

Note that N does not depend on a splitting of H.(F) above; moreover, if 4 has the
property that for a € RA<,(F), h(s)(a) € RA.(F), ¢ € X", then it is easy to see that

(10) I'*(s", B) = 6,(B° (L), d))-
Now let O™**(£) denote as in §1. Then we have the following main theorem:

Theorem 2.5. By hypotheses and notations above in a fibration § with a section s :
X" — E suppose the H.H. x;(F) — H;(F) is split injective for i < n. Then
(i)
0™*1(€) = o(s™) + I"*(s™, h);
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(i) If in addition the twisting cochain h satisfies h(c)(a) € RA<n(F) fora € RA.(F),
g € X", then

0™*4(8) = o(s™) + 8,(H° (Ln-r), du))-
Proof. (i) Let ™ : X™ — E be another section of ¢&. Consider the fibration ¢’ over X x I
(see the construction of the ¢’s above ) and equation (5) for it. In the initial conditions

we fix the solution (k, k) for £ on X x 0 and &’y = s on X™ x 1. Then for an obtained
twisting cochain A’ € d(£), by putting

en-n)(0) = H§P (o X 1),
we will have that di(c(a-1)) = 0 in C(a_1), [c(n-1)] € N, and
o(s") = o(s") + bn([c(n-1)])-
Conversely, if v € I"*'(s", h), then the definition of N shows that there is a section
§™ : X™ — F such that
o(s™) = o(s™) + v.
(i) Follows from (i), because of (10).

From this it easily follows that the subgroup I"*!(s", h) is uniquely determined by the
fibration ¢ and we denote it by I"*!(£). Hence, O™*!(£) defines the element in the quotient
group H"(X; x,(F))/I"*'(£), and then there is

Corollary 2.8. There ezists a section of & on X™*! if and only if O™*1(€) =0. O
Note that I"*1(£) has a filtration by the subgroups
0=L"@) c ) C - CRLE =T"(),
as follows. Consider a filtration of the Cf,_,) by the subcomplexes (C,’;,,‘_l, d), m<n,
where CF .\ = TL;50 [I3on— s C¥*/*9(X; R;H,(F)) and d’ is the restriction of dj to

C;n-1. Then we have the induced filtration 0 = No C Ny C :++ C Ny = N of the N,

and I%*(€) = 6,(Nym). It is easy to see from the proof of Theorem 2.5 that we have the
following

Theorem 2.7. Let £ be a fibration as in Theorem 2.5. Then there is a section, ¢, of ¢
on X" with §'|xm = s™|xm, m < n if and only if o(s™) € I*L_,(€).

The following theorem provides the case when condition (3) is also sufficient for the
existence of a section.

Theorem 2.8. Let £ be as in the part (ii) of Theorem 2.5 and let the fibre of £ have the
homotopy type of a product of Eilenberg-MacLane spaces. Then

(i) & has a section on X™*! if and only if there i3 a twisting cochain h € d(£) with zero
transgressive components in perturbation degrees < n+1, ie, hf =0, r<n+1;

(1) &€ has a section (on X ) if and only if ho = 0.

Proof. (i) Given a section of £ on X", the existence of such twisting cochain follows from
Proposition 2.4. Conversely, let o(s"),r > 1, be the first non-zero obstruction class (the
Euler class) to the extension of s” on X"*!. Then 0(32 = o*(he*') and k) = 0, < r,
for some A (cf. (3), (4) ); moreover, we can choose k with h(c)(a) € RHca(F), for
a € RH¢.(F),0 € X", too. Now consider equation (5) for the fibration &' over X x I,
and fix the solution (k, k) on X X 0, while the solution (k, ) on X X 1. Then we obtain a
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twisting cochain A’ € d(¢’) such that for ap,-y)(0) = A"™(o x I)| .y, we will have that
dv(a(n-l)) =0in L(n—l), and
o(s") = 6, ((agn-)])-

Thus by Theorem 2.5 (ii) a section exists on X™*!;

(i) From the proof of the existence of a pair (k, h) for equation (5), one derives that
the sections s* provided by (i) can be chosen with s**!|x» = s™. So a global section on
X is defined. O

Now we will consider a question about the homotopy classification of sections. We have
the following classification theorem:

Theorem 2.9. Let ¢ be as in the part (ii) of Theorem 2.5. Then there is a bijection
[Xn-l) E]l ~ HO(L(u-l)) d,,),
where [, |, denotes the set of homotopy classes of sections.

Proof. First define the map
UK [Xn_la E]o i Hﬂ(L(n—l)) dv)

as follows: Let s" : X™ — E be another section of £. Consider the fibration £’ over X x I
induced from ¢ by the projection X x I — X. Then we consider equation (5) for & with
the initial conditions where we fix a given solution (k, k) for ¢ on X x 0, while k' = "

on X x 1. Let (k’, &’) be an obtained solution for £, where we require by the choice of £/
that

Koo x 1) = ()0 x 1)
in which f**! is as in the proof of Proposition 2.4 and x is some fixed homomorphism,
x : (X x I; ZC(F,)) — C*H(X x I; Ciga(Fy)),
defined by y(x(c**))(c**!) = ¢**! — k%[c**1],, ZC denotes the cycles of C. Then define a
sequence of cochains
{a'(n—l)}o‘) a; € Lg)
by a;(c) = K5+ (o x I)| Ry(F)- 1t i8 easy to see that condition (6) for 4’ implies

dv{a(n—l)}o"’ =0.

in L,_y). Moreover, if t™™ is a section homotopic to s'", then we consider the fibration £”
over X x I x I induced from ¢ by the projection X x I x I — X. Consider again equation
(5) for ¢” with the initial conditions where we fix the solution (s, #’) for ¢ on X x I x 0,
the solution (¢™, &') for £ on X x 0 x I, a homotopy between s and t™" on X x I x 1, the
constant homotopy for s™ on X x 1 x I. Let h” € d(£”) be an obtained twisting cochain.
Then for cochains, §; € Lj'l, defined by

6i(0) = K'3**(0 X I X Dlgeyry, 0S5 Sn=1,
we have that
du(g(n—l)) = {a(n-l)}l"' - {a(n—l)}t""
Thus the assignment s — {a(n1)}.~ induces the map ¥ above.
Conversely, we assign to a d,-cocycle, a(n-;) € L?,,_l), a section of £ on X™ as follows.

We have that the argument of the proof of Theorem 2.5 defines a section, s : X" — F
{up to homotopy, since we again use the fixed homomorphism x above), such that if we
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fix s* and s respectively on X x 0 and X x 1 in the initial conditions of (5) for ¢,
then there is a twisting cochain /' € d(¢) with K'§™(0 X I)|gr.(r) = G(n-1)(0)-

If agn-1) were a d,-boundary, then by considering the fibration £” over X x I x I we
would get that s’ is homotopic to s". Therefore, a map,

HO(L(n-l),dv) hd [Xn-l) E]u
i8 defined which is obviously the converse of 3. O

Now we obeerve the case of an R-formal base of the fibration. A space, X, is said to
be R-formal with respect to a ring R if there exist a differential graded algebra, A, over
R and maps of differential graded algebras

C*(X;R) — A— H*(X;R)

inducing an isomorphism in cohomology (i.e., C*(X; R) and H*(X; R) are weak equiv-
alent as algebras, cf. [1], [9]). Using the argument similar to that of the proof of the
comparison theorem for the functor D [2] (see also Theorem 4.1 [18]) the algebra maps
above transfer a (spherical) twisting cochain, h € H, into a (spherical) twisting element,
K, in H*(X; Hom*(RH,(F), RH,(F))) such that we have on X a natural isomorphism

H*(Ctny, dn) ~ H*(H(C(ny, d°), 8).

So that we can replace singular cochain complexes C*(X;-) by H*(X;-) above. Details
are left to the reader. In particular, we get from the previous theorem the following

Theorem 2.10. If € is as in Theorem 2.9 and the base of € is Z-formal, then there is a
bijection
[X”-la E]o ~ HO(H‘(L(n—lbdc)’ 8:?'))

where V' i3 induced by the spherical twisting cochain v.

Remark 2.11. If the composition of the H.H. with the homomorphism H(F;Z) —
Hi(F;k) induced by the canonical map Z — k is injective and the image of m(F) is
a k-submodule in H;(F; k) for a field k, then we can obviously replace Z by k, and respec-
tively, RH.(X; Z) by H.(X;Kk) in all statements above.

3. APPLICATIONS

Throughout of this section by F — E £, X will be denoted a Serre fibration as at the
beginning of §2 and, in addition, the H.H. m;(F) — H;(F) for the fibre will be required
to be split injective in degrees < n, unless specified otherwise.

First we consider the cases when for the fibration £ with a section s" : X — E, the
obstruction cohomological class o(s") € H"*1(X; n.(F)) is an invariant of {, i.e., does not
depend on a section (in our terminology this means that I"*(£) = 0 or O"*}(€) = o(s");

of. [16], [7]).

Theorem 3.1. Let & with a section s™ : X™ — E satisfy one of the following conditions:

(i) € is a principal fibration, i.e., is induced by a map X — Y from the path fibration
QY — PY — Y (withY simply connected and the H.H. split injective in degrees < n for
),

(ii) The base X of £ is Z-formal with H*(X) having the trivial multiplication;

(ii3) The base X of € is k-formal with H*(X; k) having the trivial multiplication provided
the composition of the H.H. with the canonical homomorphism Hi(F;Z) — Hi(F;k) is
injective and the image of mi(F) is a k-submodule in Hi(F;K) for a fieldk,i < n.
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Then the obstruction cohomological class o(s™) is an invariant of £, i.e.,, O™ (€) =

o(s™).

Proof. (i) Since there is a section s”, the restriction of £ to X" is fibre homotopy equivalent
to the trivial fibration, so there is a twisting cochain h € d(¢) with A" = 0,r < n. Hence,
by Theorem 2.5 we get O™*1(¢) = o(s");

(i) Since C*(X) and H*(X) are weak equivalent, we can use the comparison theorem
(2] for computation of the set D(X; H(F)), and since H*(X) has the trivial multiplication,
we then deduce that there is a bijection {(cf. Theorem 2.2)

D(X; H.(F)) = H B(X;G),
D0
where
Gy = [1; Ezt(H;(F), H;+.(F)),
Gi =T1; Hom(H;(F), Hj+i-1(F)) ® Ext(H;(F), H;4:(F)),i > 1.

Hence, we have the inclusion [],5o H™*'(X; H,(F)) C D(X; H.(F)). In particular, the
class of A3*! in H**}(X; H,(F)) does not depend on a twisting cochain from d(¢). Then
(4) completes the proof.

(iit) Is analogous to (ii) in view of Remark 2.11. O

Remark 3.2. As we can see from the above proof, in fact, to an arbitrary Serre fi-
bration over the base satisfying (i1) (or (iii)) of the theorem, o sequence of elements,
b € H'(X;Hi1(F)),¢ = 2,3,..., determined by the transgressive component hy of
a twisting cochain h of the fibration, is assigned. If the fibration has a section, s®,
on the n-skeleton, then it follows that b; = 0, 1 < n, and bpyy = u*(o(s™)), where
v H*(X;m(F)) — H*(X; H,(F)). If, in addition, the condition of the theorem for
the fibre holds (or, more generally, if the homomorphism u* is only injective!), then the
triviality of the invariants b; is also sufficient for the eristence of a section (cf. Corollary
2.6).

Corollary 3.3. Let £ with a section s™ have the base X being a suspension over a path
connected space. Then O™*1(€) = o(s™).

Proof. In view of Theorem 2.2 the proof is similar to that of Theorem 3.1 (ii). However,
the proof of Theorem 2.2 shows that a suspension, SY, is R-formal for any principal ideal
domain R. In fact, since there is the trivial subalgebra C*(SY, C.Y; R) C C*(SY; R), we
have R-module maps

C*(SY,C.Y; R) — RH*(SY; R) — H*(SY; R),

where in the middle there is a free R-module resolution of the R-module H*(SY'; R), being
algebra maps at the same time (by regarding the complexes with the trivial multiplication)
and inducing isomorphisms in cohomology. This means that C*(SY; R) and H*(SY; R)
are weak equivalent as algebras, so SY is R-formal. O

It is of interest to decide when the elements b; in Remark 3.2 are natural with respect
to induced fibrations. It follows from Theorem 2.2 that this is satisfied for a fibration
induced by a suspension map; but not, for example, for the Hopf map f : $* — 52, since
we have b3(7) = 0 but bs(7y) is the generator of H3(S*; H3(25?)) = Z, where 7; denotes
the induced fibration from the path fibration 7 by f (cf. Example 2.3).

Thus from Theorem 2.2 and Remark 3.2 follows



SANEBLIDZE 109

Theorem 3.4. Let f : Y' — Y be a map, where Y’ is a polyhedron of dimension < n+1
and the homomorphism u* : H'(Y’, m(QSY)) — H'(Y'; H(QSY)) is injective for i < n
(e.g. H(Y') and m(QUSY') are free groups for i < n). Then the suspension map Sf is
homotopic to zero if and only if 0 = f* : H*(Y;G) — H*(Y'; G) for all finitely generated
groups G.

In particular, since the loop space of any simply connected rational space has the
homotopy type of a product of Eilenberg -MacLane spaces, one gets the result of [15]:

Corollary 3.5. For a map f:Y’ — Y, the suspension map Sf is rationally homotopic
to zero if and only if 0= f*: H*(Y;Q) — H*(Y'; Q).

For the homotopy classification of sections, we have considered in [17] the free loop
fibration X — AX — X, since it satisfies the hypotheses of Theorem 2.9 at least X

is rational. Here we want to state the following theorem which immediately follows from
Theorem 3.1.

Theorem 3.8. Let £ be as in Theorem 8.1 with a simply connected fibre. Then there is
a bijection
n—1

(X" El, = [] B (X; m(F)).

=1
In particular, for the free loop fibration over a suspension we get

Corollary 3.7. Let QSY — ASY — SY be the free loop fibration with Y simply con-
nected and the H.H. split injective in degrees < n for QSY. Then there i3 a bijection

[(SY)", ASY], = [] H(SY; 7i41(SY)).
=1
From now on we consider the case of £ a fibre bundle /' — ExgF £ X associated with

a principal G-bundle G — F Lx by an action G X F — F. Then computations with
a twisting cochain of ¢ are provided by the method of [14] which yields a special twist-
ing cochain in the Hirsch complex of ¢ involving the A.-module structure on H,(X;k)
(assuming k is a field). Namely, the action above induces not only the natural pairing

ug : H.(G; k) @ H.(F; k) — H.(F;k),
but a sequence of higher order pairings
tin : @ H(G; k) @ H.(F; k) — H.(F;k), n=2,3,...,
which for F = G convert into A-algebra structure in the sense of Stasheff on H,(G; k)
[21):
my : @"H(G; k) — H.(G;k), n=2,3,....

To the principal G-bundle ¢ a cochain,
(11) pE H CY(X; Hi(G; k),

i>0
satisfying

#(p) = Tmymi(pU- -+ U )
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(where m? : C*(X; ®"H.(G; k)) — C*(X; H.(G;k)) is the map induced by m,),
a twisting cochain in the sense of [14], is assigned. It actually defines an ordinary twisting
cochain h € d(£) by

h(o)(a) = Ens1m((p U+ Up)(0) ®a), 0 € X, a € H.(F;k).
Now we have the following

Theorem 3.8. Let F be a path connected G-space having the homotopy type of a product
of Eilenberg-MacLane spaces, K(mn,n)’s, m, a vector space over a fized field k, G a path
connected topological group, and let for an induced Ao, -module structure on H,(F;k),

(@7 H(Gi k) @ H>0(F)) C Bu(F), n=2,3,...,

for some decomposition H,(F;k) = m,(F) ® H.(F) compatible with the H.H.. Then
(i) The fibre bundle F — E xg F — X associated with the principal G-bundle G —
E — X has a section if

(@ H(Gk)®1) =0, 1€ Hy(F;k) =k, n=2,3,...;

(11) The fibre bundle F — EGxgF — BQG, where G — EG — BG is the universal
bundle for G, has a section if and only if the condition of (i) holds.

Proof. (i) From the hypotheses of the theorem and the definition of the twisting cochain
by the A.-module structure above we have that there is a twisting cochain of £ satisfying
the condition of Theorem 2.8, so the statement follows;

(ii) If the fibre bundle has a section, then it is not hard to see that there is some G-map
EG — F, so that the naturality of an A,-module structure with respect to G-maps
finishes the proof. [

Computations with this theorem simplifies in the case H*(BG;k) = k[wy, wy,...] is
polynomial. In fact, denoting by w the dual of the transgressive element of w we will
have that the Pontrjagin algebra H.(G;k) = E[w;,Ws,...] is an exterior one (cf. [11])
and then using k-formality of BG one can easily show that the twisting cochain (11) for
the universal bundle G — EG — BG is defined by the following twisting element

Tns>1Ws ® Wy, € H**(BG; k)®H.(G; k).
Consequently, we have
Theorem 3.9. By the hypotheses and notations above let for a G-space F,
fin(i81 ® +++ ® Wy ® H>o(F)) C Hu(F), n=2,3,....
Then the fibre bundle F — EGxgF — BG has a section if and only if
a1 @ @ Wy ®1) =0, 1 € Hoy(F;k) =k, n=2,3,....

An action F x G — F is said to have a homotopy fized point if there is a G-map
EG — F. 1t is easy to verify that this is equivalent to the existence of a section in the
associated fibre bundle. So, Theorem 3.9 implies the following

Theorem 3.10. Let F be a G-space as in Theorem 3.9. Then the action has a homotopy
fized point if and only if

(D1 ® @ W1 ®1) =0, 1€ Ho(F;k) =k, n=2,3,....
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Note that any action G x F' — F induces a diagonal one on SP™F, the nth symmetric

power of F, and then the assiciated fibre bundle provides an example of a fibration with
the H.H. for the fibre split injective in degrees < n, in view of [6] (see also [5]).

Remark 3.11. Using the technique similar to that of [13], one can extend the Ao,-module
structure to the integral homologies of G-spaces and, consequently, the statements above

to the integral coefficients.
REFERENCES
1. D. Anick, 4 model of Adams-Hilton type for fibre squares, Ill. J. Math., 29 (1985), 463-502
2. N. Berikashvili, On the differentials of spectral sequences (in Russian), Proc. Thilisi Math. Inst., 81
(1976), 1-105
3. y On the obstruction theory in fibre spaces (in Russian), Bull. Acad. Sci. Georgian SSR, 125
(1987), 473475
4. EH. Brown, Twisted tensor products,], Ann. Math., 89 (1959), 223-246.
5. A. Dold, Ramified coverings, ordit projections and symmetric powers, Math. Proc. Camb. Phil. Soc.,
99 (1986), 65-72
6. A. Dold and R. Thom, Quasifaserungen und unendliche symmetrische producte, Ann. Math., 67
(1958), 239-281
7. A. Dold and H. Whitney, Classification of oriented sphere bundles over 4-complez, Ann. Math., 69
(1959), 667-677
8. V.K.A.M. Gugenheim, On the chain complez of a fibration, Il. J. Math., 16 (1972), 398414
9. VK.AM. Gugenheim, L.A. Lambe, and J.D. Stasheff, Algebraic aspects of Chen’s twisting cochain,
I J. Math., 34 (1990), 485-502
10. V.K.A.M. Gugenheim and H.J. Munkholm, On the eztended functoriality of Tor and Cotor, J. of
Pure and Appl. alg., 4 (1974), 9-29
11. 8. Halperin and J.D. Stasheff, Differential homological algebra in its own rite, Proc. Adv. Study Inst.
Alg. Top., Aarhus (1970)
12. G. Hirsch, Sur les groups d’homologies des espaces fibres, Bull. Soc. Math. de Belg., 8 (1953), 76-96
13. J. Huebschmann and T. Kadeishvili, Small models for chain algebras, Math. Z., 307 (1991), 245-280
14. T. Kadeishvili, The predifferential of a twisted product, Russian Math. Survey, 41 (1986), 135-147
15. J.-M. Lemaire and F. Sigrist, Sur les invariants d’homotopie rationnelle lies a la L.S. categorie,
Comment. Math. Helv., 568 (19881), 103-122
16. L. Pontrjagin, Classification of some skew products, Dokl. Acad. Nauk. SSSR, 47 (1945), 322-325
17. S. Saneblidze, Homotopy classification of sections in the free loop fibration, J. of Pure and Appl. slg.,
to appear
18. , The set of multiplicative predifferentials and the rational cohomology algebra of fibre spaces,
J. of Pure and Appl. alg., 73 (1991), 277-308
19. , Filtered model of a fibration and rational obstruction theory, Manuscripta Math., 76 (1992),
111-136
20. M. Schlessinger and J.D. Stasheff, Deformation theory and rational homotopy type, preprint
21. J.D. Stasheff, Homotopy associativity of H-spaces,I,1I, Trans. Amer. Math. Soc., 108 (1963), 275-312
22. D. Tanre, Homotopie rationnelle: models de Chen, Quillen, Sullivan, Lect. Notes in Math., 1025
1982
23. %} Th)omaa, Postnikov invariants and higher order cohomology operations, Ann.Math., 885 (1967),
184-217
24. J.-C. Thomas, Rational homotopy of Serre fibrations, Ann. Inst. Fourier, 31 (1981), 71-90
Mathematical Institute of the

Georgian Academy of Sciences,

Z.

Rukhadze Str.1, Thilisi, 380093,

Republic of Georgia

(Received January 3, 1993;
in revised form June 5, 1993)






manuscripta math. 81, 113 - 127 (1993) manuscripta

mathematica
© Springer-Verlag 1993

Some loci in Teichmiiller space for genus seven
defined by vanishing thetanulls*

Robert D. M. Accola

Let 6[e](u) be a theta function for a Riemann surface W of genus seven. Suppose 8[¢](u)
vanishes at u = 0 for 4 half-integer theta characteristics [ei], ¢ = 1,2,3,4 to orders 2,
2, 2, and 3 respectively and (&1 + €2 + €3 + €4) = (0). Then W is hyperelliptic, elliptic-
hyperelliptic or W lies in the closure of a locus in Teichmiiller space of Riemann surfaces
which admit plane models where the four half-canonical linear series corresponding to the
theta-vanishings are clearly evident.

1. Introduction

Let W, be a compact Riemann surface of genus p. Let T, H,, (€ — H), stand for, re-
spectively, Teichmiiller space for genus p, the hyperelliptic locus in 7, and the elliptic-
hyperelliptic locus in T,. Our primary interest is the case p = 7. Then H; has pure
codimension 5 in 77, and (£ — H)7; has pure codimension 6. In this paper we shall give
local defining equations for Hz, (€ — H)7, and a third locus, A7, in terms of the vanishing
properties of the theta function.

The vanishing properties are as follows. Let a canonical homology basis be chosen for
W+, and so corresponding theta functions with half-integer theta characteristics, 8[e](u),
are defined. Let [¢;], ¢ = 1,2,3,4, be theta characteristics so that (i) 8[e;](u) vanishes at
u = 0 to orders 2, 2, 2, and 3 for : = 1, 2,3,4, and (ii) (e1 + €2 + €3 + €4) = (0).

By Riemann’s vanishing theorem ([12, p. 459], and [13]), these vanishing properties
are equivalent to the existence on Wy of 4 complete half-canonical linear series, g3, hl,
k}, and £2 whose sum is bicanonical. Such a set of 4 half-canonical linear series will be
called a quartet and £2 will be called the leader. We shall state our theorem in terms of the
existence of a quartet.

By the known vanishing properties of fheta functions for hyperelliptic and elliptic-
hyperelliptic Riemann surfaces of genus 7 ([12, p. 459], [10, Ch. VII], and (3, p. 51]) many

* The author thanks Alan Landman for valuable discussions concerning the material in this paper
AM.S. Mathematical Subject Classification 1991. Primary 14H45. Secondary 30F10. Key Words:
Riemann surface; theta function; half-canonical linear series
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quartets exist on such surfaces. The third locus, A7, will be the closure in 77 of Riemann
surfaces which have a distinctive plane model which will now be described.

Let A1, A2, A3 and A4 be the 4 points in P%(C), (£1,41,1). Let P, @ and R be the
points (1,0,0), (0,1,0), and (0,0, 1), the 3 diagonal points of the quadrangle A; A;A34,.
Let Cg be a plane curve of degree 9 with singularities only at these 7 points, and each
singularity is an ordinary singularity of multiplicity 3, or any other singularity of multi-
plicity 3 which contributes 3 to the é-invariant of Cy. Cy has genus 7 and the dimension
of such curves, Cy, in 77 is 12. The quartet is as follows. The leader, £Z, is cut out by
cubics passing through all 7 singular points. The other 3 linear series are cut out by lines
passing through the 3 diagonal points P, @, and R. The closure in 77 of Riemann surfaces
admitting such models will be denoted V7. Models of the above type will be called general
in contradistinction to non-general models now to be described.

Consider a general model as described in the preceding paragraph. Perform an elemen-
tary quadratic transformation with fundamental points Az, A3, and A4. The transformed
curve, Cy, is again of degree 9 with an ordinary singularity of multiplicity 3 at A} (the trans-
form of A;) and with (what we shall call) a (3,6)-point at P/, @', and R’ (the transforms
of P, Q, and R.)

Definition. A (3,6)-point is a singularity of multiplicity 3 where all branches have a
common tangent (the (3,6)-tangent) which intersects the curve at least 6 times at the
singularity. (A (3, 6)-point will contribute at least 6 to the §-invariant.)

On C} all 3 of the (3 — 6)-tangents will pass through A}. The points P, @', and R’ are
not collinear. £Z is cut out by cubics through all 4 singularities and tangent at P, @', and
R’ to the (3-6)-tangents. g3 will be cut out by conics through P’, @', and R’ and tangent
to the (3-6)-tangent at P’. Similarly for A} and kj.

But for a plane curve like Cj, there is no reason why the 3 points P/, @', and R’ cannot
be collinear. If they are, the corresponding W7 will be said to admit a non-general model.
In this case £2 is cut out as before, but the other linear series are now cut out by lines
passing through P', @', and R'.

We shall also see that in A7 there are Wy’s which are 3-sheeted coverings of tori. Any
3-sheeted covering of a torus will be called elliptic-trigonal and the locus of such surfaces in
T will be denoted (€ —T')7. By the Riemann-Hurwitz formula, each component of (£ ~T)r
has dimension 12.

We now state the theorem.

Theorem. Suppose W7, A Riemann surface of genus 7, admits 4 complete half-canonical
linear series gi, hi, ki, and €% whose sum is bicanonical. Then one of the following possi-
bilities holds:

(i) Wz is hyperelliptic
(i) Wr is elliptic-hyperelliptic
(i) Wy is in N7.
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Since Wr’s in ‘Hz or (£ — H)7 admit several half-canonical linear series of dimension 2,
we see that if £2 is unique then W7 ¢ A7.

In 77 it is known that H; and (€ — H)7 are closed and disjoint. Examples show that
(€ — H)7 and N7 are not disjoint. (See the appendix.) We suspect that H; and A7 are
disjoint but we have no proof.

The existence of a complete half-canonical £2 is a codimension 3 condition on 77 ([1],
[11], and [14]), and the existence of a complete half-canonical gi is a codimension one
condition. Consequently, the four loci in 77 corresponding to the existence of a quartet
intersect transversally on (£ — H); and N7 since these 2 loci have codimension 6.

This paper is the latest in a series by the author ([2], [3, Part III], [7]) which have
considered loci in Teichmiiller space for Riemann surfaces of low genus where the hope
has been to define, at least locally, each locus (usually H, or (£ — H),) by equations, the
number of which is equal to the codimension of the locus. Through genus 6 this has been
successful except for (€ — H)y, a case that has defied any characterization in these terms.
In genus 6 a third locus, somewhat analogous to N7, has appeared.

In the present paper, where genus 7 is considered, to obtain the correct count for the
codimension of the locus, we have found it necessary to substitute for 3 dimensions in the
codimension count the vanishing of 8[¢](u) at u = 0 to order 3, where [¢] is an odd theta
characteristic. Using such a vanishing property, or equivalently, the existence of a complete
half-canonical linear series, Gf,_ 1, on a Riemann surface of genus p, we obtain some other
characterizations as follows.

For p = 5, the existence of a complete half-canonical G? is equivalent to Wy being
hyperelliptic: (Clifford’s theorem).

For p = 6, the existence of complete half-canonical linear series G2 and G} is again
equivalent to We being hyperelliptic.

For p = 7, the existence of two complete half-canonical linear series G2 and H¢ is
equivalent to Wz ¢ Hy U (€ —H)7. The codimension count is correct for (€ — H)7 {3, p. 74].

For p = 8, the existence of two complete half-canonical linear series G2 and HZ? implies
Wi € HgU(€ —H)s or Ws admits a plane model somewhat analogous to those determining
N7 for p = 7, and conversely. For Ws’s admitting such models and Hg the codimension
count is again correct. [6, p. 254].

These cases exhaust all cases known to the author in the search for the correct count
of the codimension of H, and (£ — H), by the existence of complete half-canonical linear
series of dimension one or two.

2. Definitions, notations, and some known results

Let us first recapitulate the subvarieties of 77 (dimension = 18) which will be of interest.
‘Hz - the hyperelliptic locus of pure dimension 13.
(€ — H)7 - the elliptic-hyperelliptic locus of pure dimension 12.
N7 - The closure in 77 of surfaces admitting a general model, of pure dimension 12.
V7 - We’s admitting a quartet. Components of Vy will have dimension 12 or more.
We shall also need to consider:
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(€ — T)r - elliptic-trigonal surfaces; that is, Wy’s which are 3-sheeted coverings of tori.
This locus is also of pure dimension 12.

Our discussion of plane algebraic curves and linear series will follow Walker [15]. In
particular, for a plane curve C of degree n and genus p we have the formula

_ (n—1)(n-—2)
2

where 6(C) will be referred to as the §-invariant. On a plane curve a singularity of mul-
tiplicity n will be referred to as an n-fold point on C. An n-fold point on a plane curve
will be called “ordinary”, with parentheses, if it contributes precisely n(n — 1)/2 to the
§-invariant.

All linear series will be considered to be complete unless otherwise stated. We shall use
the notation g¢, A}, ki, and €2 always to refer to the half-canonical linear series in a quartet.
Other linear series will be denoted with capital letters, e.g., GL,, H}, or small letters g7,
where (r,n) # (1,6),(2,6). For a (complete) linear series G7, we have the Riemann-Roch
theorem: r = n—p+i where 1 is the index of specialty of G7,. The Brill-Noether formulation
of the Riemann-Roch theorem concerns complements with respect to the canonical series
K = G5, namely

-46()

GL+GL LM =K
For example, when we show that a Riemann surface, W7, does not admit a G} then W5
also will not admit a G3.

Concerning (3 — 6)-points for a plane curve we will have to admit the possibility that
the (3 — 6)-tangent has more than 6 intersections with the curve at the singularity. Thus a
(3—6)-point will have a singularity in its first neighborhood and perhaps other singularities
in further neighborhoods.

An n-point on a Riemann surface will be an integral divisor of degree n. 2-points will
be called pairs and 3-points will be called triples. If D; and D, are two integral divisors,
(D1, D;) will denote the greatest common divisor. (Dy, D2) = 0 will mean they are disjoint.

Considering that the 4 linear series in a quartet sum to the bicanonical series we have
the following:

g5 +h=ki+6
g9 + ks =hi+6
gs+l=hs+ks

where the identity sign in the above equations stands for linear equivalence. We shall also
write :
a=D

to mean

% =|D|.

o . 0 ! 3
We will say a linear series G}, imposes t (linear) conditions on a linear series Gy,, if

v _ r r'—t
Gl =GL+GIt
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If G and H, are linear series we say a divisor D is common to GT, and HT, if there
are divisors E, F in G%, and HY,, so that ((E, F),D) = D.
We also need the fact that if G2, and H2 are simple linear series, then

Gn+H,=Glr, (620)

unless G2, = HZ. [4, p. 364].

We need the fact that if g]_, is half-canonical and m < 2r +1 then a g}, without fixed
points imposes at most [m/2] conditions on g;_, [5, p. 11]. Thus if £ is half-canonical on
W+ it must contain any G} or G} without fixed points.

If Wp — W, is a t-sheeted branched covering of closed Riemann surfaces, the fibers of
the covering will be called an involution and denoted -,. We will say that a (composite)
gr, on W, is compounded of the involution -y, if there is a G}, on W, and the lift of G7, to
W, Gim, is the fixed-point free part of gj.

We will also need a special case of the inequality of Castelnuovo-Severi. If (ny,n2) =1
and W, covers Wy, in n;-sheets, 1 = 1,2 then

p < niq1 + nagz + (n1 — 1)(n2 — 1).

We use this inequality to show that a W7 cannot be simultaneously hyperelliptic and
elliptic-trigonal.

Finally we give a characterization of an “ordinary”n-fold point on a plane curve Cr, of
degree m. If W is the Riemann surface for Cy, then on W there is a simple g2, giving rise
to the plane model C,,,. f D is an n-fold singularity on C,,, then on W there is an n-point
D corresponding to D where D imposes one condition on g2, and ¢%, = D + gL, _,, g% _.
being fixed point free. Then D is “ordinary”if and only if for all E in g1,_, the degree of
(D, E) is one or zero. (This is a restatement of the fact that there are no singularities in
the first neighborhood of D.)

3. Preliminary results

For this section and the next assume we have a Riemann surface W7 which admits a
quartet, but W7 is not hyperelliptic or elliptic-hyperelliptic.

In this section we show that £Z is simple, and that a divisor common to two of the four
linear series in a quartet must be a triple. Also we show that we may assume no two of
the four members of a quartet are compounded of the same involution.

Lemma 1. W7 is not trigonal.

Proof. If W7 admits a G} then £2 = 2G} and 4G} is canonical. Moreover, every complete
half-canonical G§ is G3 + D3 when D; is a fixed divisor of degree 3. Since 2D; + 2G} =
2G} = 4G}, we have 2D3 = 2G}. Now a simple argument leads to the contradiction
D3 = Gé. (m]

Lemma 2. The leader £% is simple and without fized points.
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Proof. If £2 were composite then W7 would be hyperelliptic, elliptic-hyperelliptic, or trig-
onal, all possibilities now excluded. If £2, now known to be simple, had a fixed point, then
the genus of W7 would be 6 or less. u]

Lemma 3. The leader £% is the unique G2 on Wr.

Proof. I G?% is a second such linear series then the argument of Lemma 2 shows it is
simple. Also
6 +G; =Gy,

where s > 6. Thus s = 6 and G%, is canonical. Since £2 is half-canonical, we have £2 = G2.
[u]
Because our W7 is not trigonal, elliptic-hyperelliptic or hyperelliptic, it admits at most
3 Gy’s, all withouf fixed points. Since £Z is simple we have a plane model of degree 6, Cs,
for Wr. 6(Ce) = 3; that is, Cs has 3 double points suitably counted. The G}’s are cut out by
lines passing through the double points of Cg, and their sum is canonical. Two or possibly
three of the G1’s may be equal depending on the nature of the double points of C.
Now we consider the possibility that one of our half-canonical G3’s has a fixed point.

Lemma 4. If g3 has a fized point, then it has 2 fized points.

Proof. Suppose g3 = G} + z where G} is without fixed points. Since G} imposes at most
2 linear conditions on our half-canonical £2, we see that £ = G} + y where y # z. But
2g¢ = 2¢% or 2z = 2y. This means that W7 is hyperelliptic, a contradiction. u]

Lemma 5. It is not true that all the linear series g3, h}, and k} have fized points.

Proof. If g} has a fixed point then g3 = g} + P, deg P = 2, and 2g} + 2P is canonical.
Now £2 = g1+ Q where (P, Q) = 0, and 2P = 2Q = h}; so 2¢% = 2¢g} + hl. Thus W7 admits
at most two distinct G}’s. If A} = M} + R, then 2M} + h} is canonical and so M} = g}
and 2P =2Q = 2R =h}.

Now assume k3 = g1+, where 25 = h}. Since g3 +h} = ki +£% we have P+R = 5+Q.
Similarly P + S = R + Q. Consequently, we have 3 distinct G}’s, namely |2P|, |P + R),
|P + S|. Contradiction. o

Lemma 6. None of the linear series g3, hi, and k} has a fized point.

Proof. Suppose g2 = G} + P and £2 = G} + Q where 2P = 2Q = H} and 2G} + H} is
canonical. Since

0] gs + ks = €5 + hs

we have
P+Gi+ké‘—_—Q+G}+hé

or
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(2) P+ki=Q+h3=Gy (P,Q)=0,

where s > 2. (If s = 1, h} and k} would have a g} in common, violating Lemma 5.)
Thus Gj is special, and so P C k} and @ C h} since these linear series are half-canonical.
Interchanging the roles of A} and k2 (1) shows that P C A} and Q C h}. Thus there are
4-points F; and F; so that
K=P+F=Q+F
and P + F; + Q + F» is canonical.
By (2) above it follows that

héEP-{-FgEQ-I-F]

Now suppose h{ is without fixed points. (h} or k3 must be without fixed points by Lemma
5.) Consider
0 =Gi+h
=Gi+Q+H
If s = 3, F; imposes one condition on G3; = G} + hl. Since we can find a divisor in
h} with no points in Fj, it follows that F; = G}, a contradiction. If s = 4 then G}, is

special and G} C h}, so that again h} has fixed points. This final contradiction proves the
lemma. n]

Lemma 7. No 2 of the 4 linear series in a quartet have a 4-point in common.

Proof. Suppose g2 = Q + P and h} = Q + R where (P,R) = 0 and deg P = deg R = 2.
Then
P+ki=02+R=G3

a special linear series. Consequently, there is a G} so that G} + P + k} = K. This implies
that k} = P + G contradicting Lemma 6.

Now suppose that gi = Q + P, £2 = Q + R where (P,R) = 0 and deg P = deg R = 2.
Then

P+Q+R=G;.

Again, this implies the existence of a G} where G§ + G} = K. Thus g§ has fixed points.
Contradiction. 0

Lemma 8. If g3 and h} have @ pair P in common then P is part of a common triple.
Proof. Suppose gi = P+G, h} = P+ H where (G, H) = 0 and deg G = deg H = 4. Since
gs + ki = €2 + h} we have

G+ki=C+H=G} (s=3).

Since (G, H) = 0, G}, is without fixed points. If s = 3 then H imposes one condition on
2, and so H C ki, contradicting Lemma 7. If s = 4 then G{, is special and so H C £3,
again contradicting Lemma 7. O
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Lemma 9. Suppose there are triples A, B, and C so that g = A+ B and k} = A+ C
where (B,C) = 0. Then there ezists triples D and E so that

hi=B+D=C+E

and

=B+E=C+D.
where (D,E) =0. Also (A,D)=(A,E)=0.
Proof. Since g3 + h} = k} + €2 we have
B+hl=C+E=G}
and G} is without fixed points. Therefore, there is a triple D so that D + G3 = K; that is,
hl=B+D and £=C+D.
Now considering g& + ¢2 = h} + k} or
B+Z=h+C=H

we derive the existence of E.
That the various g.c.d.’s are zero follows from Lemma 7. ]

Lemma 10. Suppose there are triples A, B, and C so that gt = A+ B and €2 = A+ C,
(B,C) = 0. Then there ezists a triple D so that

¢e=C+D and £=B+D
where (A, D) = 0. Also B C h} and C C k} or C C b} and B C k}.

Proof. B+ A+ C =G = B+£2=g}+C. G} is without fixed points. Thus s = 3 and
there exists D so that A + B+ C + D = K. The first part of the lemma now follows.
Now consider g3 + h} = k! + £2. Then

B+hi=ki+C=Gj

If s = 3, G§ is special and B C h} and C C k}.
If s = 2 then B and C both impose one condition on G§, and so B C k} and C C k.
w}

Lemma 11. If g} and h} are compounded of the same involution then Wy is elliptic-
trigonal. If W7 — W, is the 3-sheeted cover and 3 is the set of fibers of this cover, then
gi, hi, ki and a one-dimensional subseries of £% are all compounded of v3.

Proof. Suppose Wy covers a Riemann surface W, in t sheets and g§ and h§ are lifts of
linear series g} /e Ry e on W By Lemma 8 ¢ must equal 3, and since W, then admits
2 distinct g3’s it follows that ¢ = 1. Thus the fibers of the 3-sheeted cover W7 — W;
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form an involution 43 of which ¢ and hl are compounded. By Lemma 9 it follows that
k& is compounded by 73 and that €2 contains an infinite number of divisors made up of
2 divisors from 1. Also, a triple common to any two divisors in the quartet must be in

7. o

Lemma 12. If g} and h} are compounded of the same involution on Wr, then in Ty
arbitrarily close to Wy there is a W} admitting a quariet where the g; and hy on Wi are
not compounded of the same tnvolution.

Proof. The existence of a quartet (or equivalently, the vanishing of the theta function at
certain half-periods to orders 2, 2, 2, and 3) defines in 77 a variety, which we have called
V7, each component of which has dimension 12 or more. To prove Lemma 12 it suffices
to show that Wy’s satisfying the hypotheses of Lemma 11 lie in a proper subvariety of
(€ = T)7, that is, in varieties of dimension 11 or less. To do this we will show that in every
component of (€ — T)7 there are W7’s which do not satisfy the hypotheses of Lemma 11.
Since the image of (€ — T)7 in moduli space for genus 7 is irreducible, it suffices to exhibit
a Riemann surface in (€ — T)7 which does not admit a quartet.

Assume the contrary; that is, assume that all elliptic-trigonal W+’s satisfy the hypothe-
ses of Lemma 11. Let 7 : W7 — W be a 3-sheeted cover with 5 branch points of multiplicity
3 and 2 branch points of multiplicity 2. Let B be the branched locus in W7 of the cover,

B=2r1+2z+ -+ 2z5 +z6 + 7

a canonical divisor. Now g on W is lifted from a g3 on Wi, and so 2¢3 is lifted from
2¢3(= ¢3); that is 7~1(g¢3) = K7, the canonical series on W5. If zj = n(z;), j = 1,2,...,7,
then

n(B) =221 4222+ - + 225 + 26 + 27

and 7(B) = 3¢3. It now follows that
3K7 = 7 n(B) = 621 + 622 + - + 625 + 226 + Y6 + 2T7 + Y7
where 2z; + y; is the fiber of = containing z;, j = 6,7. But
3K; =3B =6z; + 6z2 + - -+ + 625 + 36 + 3z7.

Therefore we see that ys + y7 = z¢ + 7; that is, W7 is hyperelliptic. Since a W7 cannot
be simultaneously hyperelliptic and elliptic-trigonal, we have reached the desired contra-
diction. 0

Since Hy and (€ — H)7 are closed varieties in 77 we can assume that the W7 of Lemma
12 is not in Hz or (£ — )7 and admits a quartet where gi and h§ are not compounded of
the same involution. In the next section we show that such a W? is in A7 by showing W
admits a general or non-general model as discussed in the introduction.
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4. Proof of the Theorem

We assume our Riemann surface W7 is neither hyperelliptic nor elliptic-hyperelliptic. More-
over W7 admits a quartet, no two of which are compounded of the same involution.

Lemma 13. There are siz triples P, Q, R, P', Q', R' such that
%=Q+R=Q+R
hi=P+R =P +R
KR=P+Q =P +Q
=P+P'=Q+Q =R+R
where (P,Q) = (P,R) = (Q,R) = 0 and 2P = 2Q = 2R and (P',Q') = (P",R') =
(Q',R') =0 and 2P' =2Q' =2R'.
Proof. By [9, p. 282] g2 and £2 have 12 triples in common. Let R be such a triple. Write
do=R+Q and =R+ R
By Lemma 10 there exists a triple @ so that
R=R+Q and £=Q+¢

Also we may assume (by relabeling the linear series, if necessary) that R' C h} and Q' C kj.
Then there is a triple P so that k§ = Q' + P. Applying Lemma 9 to

do=Q'"+R and K =Q+P
we have 2 triples P’ and A so that
hM=R+P =P+ A

and
Ll=R4+A=P+P

Since €2 = R+ R’ we see that A = R'. Finally
22=Q+Q +P+P =2k,

so
K=Q+P=Q+P.

All the assertions about g.c.d.’s follow from Lemma 7. The other assertions follow since all
members of the quartet are half-canonical. (8]
We now consider three cases for the remaining g.c.d.’s for the triples in Lemma 13.

Case i). All 6 divisors of Lemma 13 are mutually disjoint or possibly an equality of the
following type holds: deg(P,Q') = 1.
Case ii). An inequality of the following type holds: deg(P, P') > 1.
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Case iii). An inequality of the following type holds: deg(P,Q') > 2. Lemma 15 will
show that Case iii) is impossible.

Lemma 14. If deg(P,P') > 1 in Lemma 18 then P = P', Q = Q', R = R' and there ezist
a triple S so that

%#=Q+R=P+S

hg=P+R=Q+S

k=P+Q=R+S

L2=2P=2Q=2R=2S

Proof. Since h§ = P+ R' = P' + R and deg(P, P') > 1 we see that the divisors P + R’
and P' + R are equal. But (P, R) = 0; consequently, P = P'. It follows that R = R' and
Q= Q'. I P+ Q + R is special the conclusion follows immediately.

So assume P + Q + R = G%. Now

Gi=P+gi=Q+hi=R+k

so that G} is without fixed points. It also follows that if G2 were composite then gi and h}
would be compounded of the same involution, contradicting our hypotheses. Consequently,
G? gives rise to a plane model, Cy, of degree 9 in P2. P, @, and R correspond to 3-fold
singularities of Cy all lying in a line, Lg.

We assert first that these 3 singularities (call them also P, @, and R) are “ordinary”.
Suppose P is not “ordinary”. Since GZ = P + g}, there is a divisor in g3 containing 2
points of P, say z1 + 3. Since g} is half-canonical g} + z; + 2o = G§ where G is special
and G§ C G%. Consequently s = 2 and we have contradicted the fact that G2 is without
fixed points. The assertion is proved.

The é-invariant of Cg is 21 and the 3-fold points P, @, and R contribute only 9. Cy
must have further singular points not on the line Ly. Such singularities will correspond to
n-points common to g3 and h} and so must be 3-fold singularities.

Let A be a further 3-fold singularity not on Lg. Then A corresponds to a triple (again
call it A) common to ¢g¢ and h}. f g} = A+ B and b} = A+ C, (B,C) = 0, then by
Lemma 9 we have two triples D, E so that k} = B+ D = C + E. Since kj is cut out by
lines through R on Cy, it follows that B, C, D, E all correspond to 3-fold singularities of
Cy not on Lg. A is also a triple in k}. Thus for every singularity, A, not on Ly, there are 3
further singularities on the 3 lines AP, AQ, AR. This leads to too many singularities for
Cy. This contradiction concludes the proof. n]

Lemma 15. In Lemma 13, deg(P,Q') < 1.

Proof. If deg(R,R') > 0 then the result follows by Lemma 14. If (R,R') = 0 and
deg(P, Q') 2> 2 then it follows from Lemma 13 that P = Q' since only triples are common
to two members of a quartet. Considering £2 in Lemma 13 we see that P' = Q. Then we
have
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%=Q+R'=Q+R
k} =2Q'=2Q =2R'=2R
Counting multiplicities, g3 and k} now have 8 triples in common. Since g} and k} are
not compounded of the same involution, the maximum numbers of triples common to g}

and k} is 6. We have reached the desired contradiction. o
Let us summarize the results so far.

Proposition. At least one of the following two cases holds.
(1) There are 6 distinct triples P, Q, R, P', Q', R' so that

A=Q+R=Q +R
hg=P+R =P +R
k=P+Q =P +Q
E=P+P =Q+Q =R+R

For any 2 of the 6 triples, A, B, we have (A, B) =0 unless it is of the type (P', Q) where
the degree is at most one. Thus no 2 of the 6 triples have a pair in common. Also

2P=2Q =2R and 2P'=2Q =2R'.
(2) There are § mutually disjoint triples P, Q, R, S and
9e=Q+R=P+S
Rl=P+R=Q+S
kk=P+Q=R+S
L2=2P=2Q=2R=2S

Lemma 16. In case (1) of the Proposition P + Q' + R is not special.

Proof. Suppose P+ Q'+ R is special. Then there exists a triple S’ so that P+ Q'+ R+ S5’
is canonical and g} = P + §'. Since £2 = P + P', Lemma 10 yields a triple S so that
ge=P +Sand i =5+5" Now S+P +Q+ R is special and we have

"=Q+R =Q +R=S+P' =5+P

K=P+Q =P +Q=S+R=5+R
Also 2k} = K = P+ Q' + S+ R'. Consequently

R=P+R =P +R=5+Q =5+0@Q.

By repeating previous arguments we see that no 2 of these 8 triples have a pair in
common, and we have reached the desired contradiction. O
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Proof of the theorem

Suppose we are in case (1) of the Proposition. Let Cg be the plane curve determined by
G:=P+Q +R=P+g} That P is an “ordinary”singularity follows by the argument
of the third paragraph of Lemma 14. Now

Gl=P+gl=R+k =P+Q+R =Q+h}

and the same argument shows that @Q and R are “ordinary”singularities for Cq.

First we show that there are no further 3-fold points on the triangle PQR. Suppose,
on the contrary, that Q' is a 3-fold point of Cg. Then h} = Q' + A where A is a further
3-fold point. If A = @' and h} = 2Q' (= 2P') then 2P’ = P' 4+ R and we arrive at the
contradiction P’ = R. Thus A is not on the triangle PQR. By Lemma 9 there are further
3-fold points, B, C, so that g8 = A+ B and k} = A + C. By again applying Lemma 9 we
see that the only way to avoid having too many 3-fold points is for B = P’ and C = R'.
Then the 7 3-fold points of Cy an P, Q, R, P!, Q', R' and A. Now £2 is the unique G% on
Wo; therefore, €% is cut out on Cy by cubics through the 7 singularities of Cy. The 3 lines
PQ, Q'Q, and RQ together form such a cubic cutting out 2Q. Therefore £ = 2Q = Q+Q'.
Thus we arrive at the contradiction @ = Q'. Thus any further singularity of Cy besides P,
@, R must not lie on the triangle PQR.

Now let A be a 3-fold point of Cy not on the triangle PQR and let g3 = A + B. Then
by Lemma 9, B must be a triple in k} and so must correspond to a singular point of Cy.
Thus the singularities of Cg, other than P, @, and R, lie in pairs on lines through P, Q,
and R. Since there can be at most 4 additional singularities (all 3-fold), they must be the
vertices of a quadrilateral for which P, Q, and R are the diagonal points. Thus case (1) of
the Proposition leads to the general model for a Riemann surface in N7.

Now suppose we are in case (2) of the Proposition.

First suppose that there is a 5** triple, A, common to g and A}, g8 = A+ B and
k} = A+ C where (B,C) = 0. By Lemma 9 there exist triples D and E so that h§ =
B4+ D=C+Eandf =B+ E=C+ D. None of these triples have points in common
with P, Q, R, or S. Then g and £2 have the triple B in common. We now repeat the
argument of Lemma 13 and obtain 6 triples as in the statement of Lemma 13.

If case ii) following Lemma 13 holds for these 6 triples, we obtain by Lemma 14 4 more
triples common to g¢ and k} in addition to P, @, R, and S. This is too many. Consequently
we are led to case i) following Lemma 13 which is case (1) of the Proposition, and again
we have the general model.

So now we assume, finally, that only the triples P, @, R, and S are common to the 4
linear series in the quartet as in case (2) of the Proposition. We must analyze how these
triples are multiply counted in the linear series of the quartet. To do this we first prove
our final lemma.

Lemma 17. Suppose P, Q, R, and S are the only triples common to the linear series in
the quartet as in case (2) of the Proposition. If Q = Q1 + Q2 + Q3'then Q1 + Q2 impose
two independent conditions on £2; that is, a divisor in €2 containing Q1 and Q2 must be

20.
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Proof. Suppose not. Then €2 = Q1 + Q2 + g1 = Q1 + Q2 + Q3 + Q. Consequently
Q3 + @ = gi. But g} = @ + R. Thus g} and ¢} have the triple Q in common. This gives
the contradiction g} C g3. u]

We continue by deriving a plane model, Cy2, of degree 12. Let F (resp K) be a mero-
morphic function on W7 with polar and zero divisors in g} (resp k3). Assume these polar
and zero divisors together with P, @, R, and S are all mutually disjoint. Consider the map
¢ : W7 — P? given by

¢(z) = (F(z), K(z), F(z) + K(z)).

This gives our plane model, Cy2, with two singularities, Y and Z, of multiplicity 6. Y and
Z must be “ordinary”; otherwise, we would be led to a fifth triple common to gi and
ki. Lines through Y (resp Z) cut out g} (resp k3) on Ci2. Ci2 also has the singularities P',
@', R', and S’ corresponding to the triples P, @, R, and S on W7. C;2 has no further
singularities. P', @', R', and S’ determine a quadrangle, two of whose diagonal points are
Y and Z. Since the contribution to §(Ci2) outside Y and Z is 18, we see that one of the
3-fold singularities, say @', has a singularity in its first neighborhood.

We now transform C;2 by an elementary quadratic transformation with fundamental
points at Y, Z and @’ to obtain a curve Cy of degree 9. P”, Q", R", and S” will denote the
transforms of P', @', R', and S'. P" and R" are (3,6)-points with (3, 6)-tangents passing
through S”. Q" lies on the line of P" and R" and accounts for at least a 2-fold singularity
on Cy. Lines through S cut out 2P" and 2R" and so cut out a one-dimensional subseries
of £2. But the line through S" and the singularity in Q"' cuts out a divisor in £ containing
2 points of @, and so, by Lemma 17, this line must cut out 2Q. Consequently, Q" is also
a (3,6)-point with the (3,6)-tangent passing through S”. We have the non-general model
inMN7. qed

(In the triples suitably counted, common to g and kZ, P, R, and S are counted once
and @ is counted 3 times.)

5. Appendix: A generalization of quartets for some Riemann surfaces of
higher genus

The Riemann surfaces occurring in Ay are part of a sequence of Riemann surfaces admitting
4 half-canonical linear series whose sum is bicanonical.

For n > 1 let C3, be a curve of degree 3n with ordinary n-fold singularities at the
7 points A1, A2, As, A4, P, @, R as in the general model for A7. The genus of C3n is
n?—-n+1.

If n = 2m + 1 curves of degree 3m with m-fold singularities at the 7 points cut out a

2
g,',"_;" ™. Curves of degree 3m — 2 with an m-fold singularity at one of the diagonal points,
say P, and with (m—1)-fold singularities at the other six points cut out one of 3 g;*

If n = 2m we have 4 g;":l' s by considering curves of degree 3m—3 with an (m —2)-fold
singularity at one of the A;’s and (m — 1)-fold singularities at the dther six points.

For n =1 let C;, Cs, and C3 be 3 cubic forms corresponding to 3 independent cubics

passing through the 7 points (e.g., C1 = z(y? — 2?)). Then if fn(X,Y,Z) is a form of

2
m 1+m l’S.
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degree n, fn(Ci,C2,C3) = 0 will define a curve of degree 3n with n-fold singularities at
the 7 points. The family of curves arising from the fn(C1,C2,C3)’s will have dimension
n(n + 3)/2. These latter types of curves will be invariant under the elementary quadratic
transformation T: ¢ — yz, y — 2z, 2 — zy. Thus T will define an involution on such
curves with fixed points at A;,...,As. The quotient Riemann surface will have genus
(n—-1)(n-2)/2.

For n = 2 we obtain a family of curves of genus 3 and the curves f3(C;,C2,C3) =0
are hyperelliptic.

For n = 3, the case considered in this paper, the f3(C1,C2,C3)’s give a 9-dimensional
family of elliptic-hyperelliptic Riemann surfaces in NV7.
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Bounded degree of weakly algebraic topological
Lie algebras

Bienvenido Cuartero, José E. Galé, Angel Rodriguez Palacios and Arkadii M.
Slinko

We prove in this paper that a weakly algebraic Lie algebra A which is also a
topological Baire algebra over a complete non-discrete valuated field K must
be in fact algebraic of bounded degree. Similar results are also proven for p-
algebraic restricted Lie p-algebras, and for algebraic non-associative algebras.

0. Introduction

It was noticed a long time ago that under some topological conditions every
algebraic algebra A over a field K becomes algebraic over K of bounded de-
gree. Ostrowski [14, 15] showed this for a field A with a complete valuation
that extends a complete valuation of K, and Mazur [13] proved the same for a
commutative Banach algebra A over K = IR or C. Kaplansky [10] established
the corresponding theorem for a complete, metrizable, associative algebra A
over an arbitrary field K of type V, giving a proof which required heavy use
of the Jacobson’s structure theory. Also, Slinko [16] proved an analogous theo-
rem for a Jordan algebra A in just the same formulation but relying upon the
Shirshov’s combinatorial technique. A much simpler proof that works even for a
power-associative algebra A was recently discovered by Cuartero and Galé [8].

The result of Cuartero and Galé cannot be applied to Lie algebras as the
notion of algebraic element in a Lie algebra differs from that of the algebras
mentioned above. The aim of this note therefore is to extend the quoted results
to the Lie case by proving Theorems A and C below. The technique developed
also allows us to obtain some previously unknown results for Jordan algebras
which will be discussed in section 5.

Finally, we prove that power associativity in the paper [8] can be removed
by considering an appropriate definition, due to Albert [1].
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1. Formulations of the main results

All the algebras considered in this paper are algebras over a field K.

Definition 1. A subset V of a Lie algebra L is said to be weakly algebraic over K
if for any z € L, y € V there exists a non-zero polynomial f(t) = f; ,(t) € K[t]
depending on z and y such that zf(ady) = 0, where ady : ¢ — [z,y] is
the adjoint representation of the Lie algebra L. Moreover, if L itself is weakly
algebraic and for some positive integer n the inequality deg f; y < n holds for
all z,y € L and for some z,y € L the equality deg f. , = n takes place, then L
is said to be weakly algebraic over K of bounded degree n.

Definition 2. A Lie algebra L is said to be algebraic over K if for any 2 € L
there exists a non-zero polynomial f(t) = fz(t) € K[t] depending on z such that
f(ad z) = 0. Moreover, if for some positive integer n the inequality deg f, < n
holds for all z € L and deg f, = n for some z € L, then L is said to be algebraic
over K of bounded degree n.

Clearly, every algebraic Lie algebra is weakly algebraic but not viceversa.

By a valuated field we shall mean a topological field whose topology is defined
by a valuation or an absolute value in the sense of [5, Chapter 6].

Recall that a (Hausdorff) topological space X is of the second category
in itself if it cannot be represented as a countable union of closed sets without
interior points. Moreover X is a Baire space if the intersection of each countable
family of open dense sets is dense or, equivalently, if every non-empty open set
is of the second category in itself ([6, Chap. IX §5 No. 3]).

Complete metrizable vector spaces are Baire spaces. They are, of course, the
objects of our primary interest inasmuch as Banach spaces are complete and
metrizable.

Theorem A. Let L be a Baire Lie algebra over a complete non-discrete valuated
field K. If a non-emply open set V of L is weakly algebraic over K, then L is
algebraic over K of bounded degree.

One important corollary is worth mentioning. To do this, we recall two more
definitions.

Definition 1°. A subset V of a Lie algebra L is said to be weakly Engel if for
any £ € L, y € V there exists a positive integer n depending on z and y such
that z(ad y)" = 0.

Definition 2’. A Lie algebra L is said to be Engel if for any z € L there exists
a positive integer n depending on z such that (ad )" = 0. Moreover, if for some
positive integer n this equality holds for all ¢ € L, then L is said to be Engel of
bounded index.
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Then Theorem A implies the following.

Corollary B. Let L be a Baire Lie algebra over a complete non-discrete valuated
field K. If a non-empty open set V of L ts weakly Engel, then L is Engel of
bounded indez.

E. I. Zelmanov proved [17, 12] that, over a field of characteristic 0, every Lie
algebra which is Engel of bounded index must be nilpotent. Thus Corollary B
can be strengthened in this case.

For restricted Lie algebras we have also another definition of algebraic ele-
ments. Recall that a Lie algebra L over a field K of characteristic p > 0 is said
to be a restricted Lie p-algebra if it has a mapping z — z?] satisfying

(i) (adz)? = ad(z/) for all z € L;
(ii) (az)Pl =a? .zl forall a € K, z € L;
(iii) (z + y)lP) = 2lP) 4yl 4 Zf;ll si(z,y), where is;(z,y) is the coefficient
of t*~! in z(ad(tz + y))p"1

Note that s;(z,y) is homogeneous of degree i in z and of degree p — i in y.

Definition 3. Set z[% = z and zlP*] = (:c[”k-f])["] for k > 0. If for z € L and
some nonzero a; € K an equality Z?:o a;zlP'] = 0 holds, the element z € L
is said to be p-algebraic. If n is the minimal positive integer for which such an
equality holds then we shall say that the degree of z is equal to p". The notions
of p-algebraic restricted Lie algebra and p-algebraic restricted Lie algebra of
bounded degree now come up in an ordinary manner.

Theorem C. Let L be a Baire resiricted Lie p-algebra over a complete non-
discrete valuated field K of prime characteristic p > 0. If all elements of some

non-emply open set V of L are p-algebraic over K, then L is p-algebraic of
bounded degree.

Although it can be derived from Theorem A our method allows us to prove
Theorem C directly.

Our last result shows how the arguments in [8] can be adapted to extend
its main result to general nonassociative algebras. Following [1], we shall say
that an element z in a (nonassociative) algebra A over a field K is algebraic
(over K) if the subalgebra A(z) of A generated by z is finite-dimensional (over
K). When this is true for every z in A, we say that A is algebraic. If in fact
dimg A(z) < mfor all z € A and some integer m depending on A only, then the
algebraic algebra A is called of bounded degree, and the smallest such a number
m is called the (bounded) degree of A. Thus we can prove the following.

Theorem D. Let A be an (nonassociative) Baire algebra over a complete non-
discrete valuated field K. If all elements of some non-emply open set V of A
are algebraic over K, then A is algebraic of bounded degree.
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Taking K = IR or C, we get the following consequence.

Corollary E. Every real or complez algebraic (nonassociative) complete normed
algebra 1s of bounded degree.

2. Weakly algebraic and algebraic operators

In this section K is an arbitrary field.

Definition 4. A linear operator ¢ : E — E on a vector space E over a field
K is said to be weakly algebraic (or locally algebraic, see [11]) if for every
z € E there exists a non-zero polynomial f(t) € K[t] depending on z such that
zf(p) = 0. Denote such a polynomial of minimal degree by f;(t). If for some
positive integer n the inequality deg f.(¢) < n holds and n is minimal with
this property, we say that ¢ is weakly algebraic of bounded degree n. A linear
operator ¢ is algebraic if there exists a non-zero polynomial f(t) € K|[t] such
that f(p) = 0. If f(t) is of minimal degree, then n = deg f is called the degree
of algebraicity of ¢.

Proposition 1. Let ¢ : E — E be a weakly algebraic linear operator of bounded
degree on a vector space E over an arbitrary field K. Then ¢ is algebraic.

Proof. In a usual way we can consider E as a K[t]-module letting

z- f(t) = zf(p).

Since ¢ is weakly algebraic, F is a torsion module over a principal ideal domain
K(t] and according to [4, Chapter VII, §2, Theorem 1] E = 3~ E,(;), where

Eypy={z€E:z-x"(t) =0 for some n > 1}

and 7(t) runs over the set of all irreducible polynomials of K[t]. As ¢ is weakly
algebraic of bounded degree only a finite number of such E,(,y is nonzero and
in this case ¢ is algebraic. o

Remark 1. Similar arguments can be found in [2, Chapter 4, §4.8, p. 141]

Remark 2. For an algebraically closed field K see also [11, Lemma 14, p. 41].
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3. Weakly linearly dependent sequences of continuous functions

Definition 5. Let K be a field and E, F be two vector spaces over K. We
shall say that a sequence of functions F = {f,, : E — F}nen is weakly linearly
dependent on a subset Fy C F if for any z € Ej there exists a positive integer
n depending on z such that the set of vectors {fi(z),..., fa(z)} is linearly
dependent. The minimal integer with this property will be called the degree of
F at a point z and it will denoted by degxz(z). The sequence F will be called
weakly linearly dependent if it is weakly linearly dependent on F and weakly
linearly dependent of bounded degree if there exists an integer N such that
degr(z) < N for all z € E. In this case we shall call degree of the sequence F
the minimal integer N(F) with the above property.

Definition 6. Let F = {f, : E — F},en be a weakly linearly dependent
sequence of functions of bounded degree N. A point z¢ is said to be regular if
the set of vectors {fi(zo),...,fnv-1(z0)} is linearly independent. Let Reg(F)
stands for the set of all regular points of F. For any ¢ € Reg(F) we can uniquely

define functions a;(z),...,an_1(z) with values in K such that
N-1
n@) =) am(@) fm(2). (6)
m=1

The following lemma which is of paramount importance is a nonmetric ver-
sion of a well-known result of Kaplansky [10].

Lemma 2. Let K be a complete non-discrete valuated field and let E be a
topological vector space over K. Let (z;5)icr(1 < n < N) be a finite set of nets
in E converging to linearly independent vectors zy,...,zn € E. Suppose that
for every indez ¢ € I there is a linear combination y; = Z,‘Nﬂ AinZin such that
the net (yi)ier converges to some y. Then for each n the net (\; n)ier converges
in K.

When K is discrete, the same result is true if we demand F 1o be locally
balanced, i.e., to have a base of O-neighborhoods V such that K.V =V.

Proof. See [7, Lemma 4 and Lemma 6]. m]

Lemma 3. Let E, F be two topological vector spaces over a complete valuated

field K, so that F is locally balanced in the discrete case. Let F = {fp : E —

F}nen be a sequence of continuous functions. Then for each N € IN the set
En = {z € E | degz(z) < N}

1s closed in E.

Proof. Let (z;)ier be a net of z; € En converging to z. Then {fu(zi) : 1 <

n < N} is linearly dependent for every i € I. As the functions f,,n=1,..., N,
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are continuous, the nets (f,(z;)) converge to (fo(z)), n =1,..., N and so, by
Lemma 2, {f.(z) : 1 < n < N} is also linearly dependent, i. e., z € EN. O

Note. If moreover F = {f, : E — F},en is weakly linearly dependent of
bounded degree, then the set Reg(F) is open, because Reg(F) = E \ En_1,
N = N(F).

Theorem 1. Let E, F' be two topological vector spaces over a complete valuated
field K so that F is locally balanced in the discrete case and let F = {f, :
E — F}nen be a weakly linearly dependent sequence of continuous functions of
bounded degree N. Then o; : E — K,i=1,...,N—1, are continuous functions
on Reg(F).

Proof. Let x € Reg(F) and (z;)ier be a net in Reg(F) converging to . Then

N-1
fn(e) = ) am(@i) fm(2:)- (8)

m=1

The nets (fm(a:;))'.el converge to fm(z),m = 1,...,N—1,and {fi(z),..., fn-1(2)}
is a linearly independent set of vectors. Moreover, the net of linear combinations

,'Z;i am(xi)fm(-'ﬂi)). | converges as
i€

Y am(@i) fm(2:) = fn(2:) = fn(2).

N-1
m=1

By Lemma 2 the nets (am(xi))iel converge for all m = 1,..., N — 1. Passing
to the limit in (8) we deduce that am,(z;) — am(z). o

Definition 7. Let E,F be two vector spaces over a field K. A sequence of
functions F = {f, : E — F}nemn is said to be extremal if for every n € IN and
for every z,y € E the set

An(z,y)= {) € K | degx(z + Ay) < n} 9)
is finite or the whole of K.

Example. Recall that a mapping Q@ : E — F is said to be a homogeneous
polynomial of degree n if it is the restriction to the diagonal of some n-linear
mapping from E" to F. It follows that Q(z + Ay) is a polynomial function of
A, and using Lemma 2 bis of [8] we can assert now that if for every n € IN the
function f,, is homogeneous of some degree, then the sequence F = {f, : E —
F}nen is extremal.

Theorem 2. Let E be a Baire topological vector space over a complete non-
discrete valuated field K, F be an arbitrary topological vector space over K and
F ={fa : E — F}nen be a eztremal sequence of continuous functions. If F is
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weakly linearly dependent on a non-emply open subset V C E, then it is weakly
linearly dependent of bounded degree.

Proof. By Lemma 3 the set
E, = {z € E | degz(z) < n}

is closed for each n € IN. Define V,, = VN E,. It is clear that V = UV,,. Since
an open set of a Baire space is of the second category, we conclude that some
V» has an interior point a € V,; and hence there exists a neighborhood of zero
U C E such that a4+ U C V,, C E,,. Since K is not discrete for arbitrary b € £
there exist an infinite number of A € K such that A(b—a) € U and thus the set
Ap(a,b—a) defined by (9) is infinite. As F is extremal we have Ap(a,b—a) = K
and by letting A = 1 we obtain degx(b) < n. Since b is arbitrary the theorem is
proved. a

Proof of Theorem C. Set F = {f, : £ — z[?"1}. A Lie algebra L is p-algebraic
if and only if F is weakly linearly dependent and L is of bounded degree if F
is. Now Theorem C follows from Theorem 2 since f,, is homogeneous of degree

p". a

Definition 8. Let us say that a sequence of functions F = {f, : £ — F}uen
is pointwise finite-dimensional if for every € E the linear subspace spanned
by the set {fs(z)}nemn is finite-dimensional. We shall say that F is pointwise
finite-dimensional of bounded degree N if N is the least upper bound for the
dimensions of all the subspaces mentioned.

This notion is close to weak linear dependence but different in some situa-
tions. An analog of Theorem 2 can also be proved for it.

Theorem 3. Let E be a Baire topological vector space over a complete non-
discrete valuated field K, F be an arbitrary topological vector space over K and
F ={fn: E — Flaen be a extremal sequence of continuous functions. If F
15 pointwise finite-dimensional on a non-empty open subset V C E, then it is
pointwise finile-dimensional of bounded degree.

Proof. As in Lemma 3 we can prove that the set
E(iy,...,in)={z € E: f;,(z),..., fi,(¢) is linearly dependent}

is closed for every n € IN and each choice of i; < ... < i,, so the sets E,
of vectors z in E such that the linear subspace spanned by fj(z), j € IN, has
dimension < n is also closed, for

En= () E(i,...,in).
i1<...<iqn

Now the proof of Theorem 2 can be repeated to obtain that £ = E, for
some n, and this completes the proof. 0
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4. Continuous operators on Baire spaces and topological
representations of Baire algebras

Proposition 2. Let ¢ : E — E be a continuous linear transformation of a
Baire topological vector space E over a complele non-discrete valuated field K.
Then ¢ is algebraic as soon as it is weakly algebraic.

Proof. Set fo(z) = z¢", z € E,n € IN. Then F = {f,} is a extremal sequence
of continuous functions. It is weakly linearly dependent if and only if ¢ is weakly
algebraic and F is weakly linearly dependent of bounded degree if and only if
o is weakly algebraic of bounded degree. By Theorem 1 ¢ is weakly algebraic
of bounded degree and thus algebraic by Proposition 1. O

For Banach spaces see again [11].

Let K be a topological field and M be a topological vector space over K.
Let A be a topological algebra over K of an arbitrary variety of algebras and
(m,a)— m-a € A, m€ M, a € A, be a mapping continuous in each variable
which is linear in m and is homogeneous of some degree in a. We shall say that
M is a topological module over A although actually this is a much more general
object as the product may not be jointly continuous and the product may not
be linear in a. By letting p, : m — m - a we obtain a continuous representation
p: A v Endg(M) of A by endomorphisms of M, where the vector space
Endg (M) is endowed with the topology of the pointwise convergence.

Definition 9. We shall say that a representation p is weakly algebraic (al-
gebraic) if for every a € A the operator p, is weakly algebraic (algebraic). A
representation p is said to be algebraic of bounded degree if all operators p, are
algebraic and the degrees of algebraicity of these operators are overall bounded.

Theorem 4. If p is a weakly algebraic representation of a Baire algebra A over
a complete non-discrete valuated field K by endomorphisms of a Baire module
M, then p is algebraic of bounded degree.

Proof. By Proposition 2, p is algebraic. Moreover, the functions f, : z — p2
are continuous. They are also homogeneous and thus the sequence F = {f,} is
extremal. Now Theorem 4 follows from Theorem 2. o

Proof of Theorem A. This is a direct consequence of Theorem 4. Consider
pz =adz. o
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5. Applications to Jordan algebras

Let J be a Jordan algebra over a field K and M be a Jordan module over J.
Define an operator m — mU, = {gmz} = 2(mz)z — mz?, me€ M, z € J. The
quadratic representation U : z — U, is known to play a very important role in
Jordan theory [9]. Theorem 4 allows us to obtain the following.

Corollary 1. Let J be a Baire Jordan algebra over a complete non-discrete
valuated field K and M be a Baire Jordan module over J. Then if the quadratic
representation U is algebraic, it is algebraic of bounded degree. (u]

There is another interesting quadratic operator in Jordan algebras [9],
namely m — mN, = (m,z,z) = (mz)z — mz?. Using this operator it is possi-
ble to define associator nil and associator algebraic algebras. Of course, for this
notions a statement similar to the preceding corollary can be proved.

6. Arbitrary nonassociative algebras

Let Fi(z) be the free nonassociative algebra over K generated by one element
z. Elements of Fk(z) are said to be nonassociative polynomials, those obtained
without use of summation and multiplication by scalars are said to be nonas-
sociative monomials. Let A be an arbitrary (not necessarily power associative)
algebra over K. Given a € A and p € Fk(z), respectively, we will denote by
p(a) the image of p under the unique homomorphism Fg(z) — A which maps
z to a. We note the intuitively obvious fact that, if A is a topological algebra,
then for each p in Fg (x) the mapping a € A — p(a) € A is continuous. This can
be formally verified by writing p as a linear combination of elements in the “free
monad” generated by {z} and then reasoning by induction on the “degree” of
such elements (see [9] for details).

Proof of Theorem D. Write down in a sequence F = {fi(z),..., fu(z),...}
all non-associative monomials of Fk(x). Now consider fu(z) as a continuous
function on A. Since f,(x) is homogeneous F is extremal and Theorem 3 can
be applied. o

An immediate consequence of Theorem D (and Lemma 2 for the “if” part)
is the following.

Corollary 2. Let A be a Baire algebra over a complete non-discrete valuated
field K and B be a dense subalgebra of A. Then A is algebraic if and only if B
is algebraic of bounded degree. Moreover, if this is the case, then A is of bounded
degree that is equal o the one of B.

As a consequence, the completion of a normed algebra A is algebraic if and
only if A is algebraic of bounded degree. It is easy to see that, if K is an al-
gebraically closed field, then every nonzero algebraic algebra over K with no
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nonzero zero-divisors is isomorphic to K. Also, by a result of Bott and Milnor
([3]), every finite-dimensional nonzero real algebra with no nonzero zero-divisors
is of dimension 1, 2, 4 or 8, hence algebraic real algebras with no nonzero zero-
divisors are of bounded degree less than or equal to 8. Now we have also the
following corollary.

Corollary 3. Let A be a Baire real algebra containing a dense algebraic sub-
algebra with no nonzero zero-divisors in itself. Then A is algebraic of bounded
degree less than or equal 1o 8.

In particular, the completion of a normed algebraic real algebra with no
nonzero zero-divisors is algebraic of bounded degree less or equal 8.
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Homological Characterization of Lean Algebras

ISTVAN AGOSTON!, VLASTIMIL DLAB? AND ERZSEBET LUKAcCs!

Certain classes of lean quasi-hereditary algebras play a central role in the rep-
resentation theory of semisimple complex Lie algebras and algebraic groups.
The concept of a lean semiprimary ring, introduced recently in [1] is given here
a homological characterlzatxon in terms of the surject1v1ty of certain induced
maps between Ext!-groups. A stronger condition requiring the surject1v1ty of
the induced maps between Extf -groups for all £ > 1, which appears in the
recent work of Cline, Parshall and Scott on Kazhdan—Lusztlg theory, is shown
to hold for a large class of lean quasi-hereditary algebras.

Throughout the paper R will denote a basic semiprimary ring with iden-
tity; thus the (Jacobson) radical J of R is nilpotent and R//J is a finite product
of division rings. Let us fix a complete ordered set of primitive orthogonal
idempotents (ej,ez,...,e,) and define for 1 < i < n the idempotent elements
gi=¢e;+eiy1+...+e,; set e,41 = 0. Thus, we have fixed an order on the set
of the corresponding simple (right) R-modules S(i) and their projective covers
P(i) ~ e;R, 1 < i < n. The corresponding left R-modules will be denoted by
S°(%) and P°(7), respectively.

The (right) standard modules A(7) are defined by A(¢) ~ e;R/e; Rei41 R.
The submodule e;Re;+1 R will be denoted by V(¢). Thus we have the exact
sequence 0 — V(i) = P(i) = A(¢) — 0. Similarly, we can define the left standard
modules A°(7) and the corresponding kernels V°(3).

The module A(3) is Schurian if Endg (A(i)) is a division ring. It is easy
to see that A(7) is Schurian if and only if A°(¢) is Schurian.

1991 Mathematics Subject Classification. Primary 16E99, 16599. Secondary 17B10

! Research partially supported by NSERC of Canada and by Hungarian National
Foundation for Scientific Research grant no. 1903

2 Research partially supported by NSERC of Canada



142 AGOSTON et al.

The ring R is quasi-hereditary (see [2]) with respect to the order
(e1,€a,...,e,) if A(3) is Schurian for every 1 < i < n and the regular module
Rp has a filtration Rg = X; D X2 D ... D X¢ D Xy41 = 0 such that every
factor X;/Xi4+1, 1 < i < £ is isomorphic to a standard module A(j) for some
1 € j € n. For basic facts concerning quasi-hereditary algebras we refer the
reader to [3] and [4].

Let us now recall the definition of a top embedding ([1]). Let X and Y be
arbitrary (right) R-modules. An embedding f : X =Y is called a top embed-
ding if it induces an embedding f : X/rad X = top X —topY =Y/radY. In
this case we write X é Y. Note that, for a submodule X C Y, the condition
XéY is equivalent to rad X =radY N X. A filtration X = X, 2X;2...2
Xm 2 Xm41 = 0 of a module X is called a top filtration of X if X; éX for
every 2 < i< m. If M is a class of modules, then we will say that X has a top
filtration by M if X has atop filtration X = X; D X322 ...D2 X D X1 =0
such that the factor modules X;/X;4+; belong to M for 1 <i < m.

The semiprimary ring R is called lean with respect to the order
(e1,€2,...,€en) if e;J%ej C eiJemJej for m = min{i,j} and 1 < ¢,j < n.
Theorem 2.1 of [1] asserts that A is lean if and only if V(z)(i: rad P(7) and
Ve(i) ¢ rad Po(i)forall1 <i<n.

Lemma 1. Let X be an arbitrary R-module and S a semisimple submodule of
rad X. Denote by Y the factor module X/S. Then the following statements
are equivalent:

(a) S é rad X;
(b) there ezists an extension ( € Ext!(topY,S) such that the following dia-
gram is commutative:

¢:0 — § — X — Y — 0

L

¢(:0 — S — X' — topY — O

(¢) there exists a semisimple module T and an extension p € Ext!(T,S) such
that the following diagram is commutative:

pf:0 — S — X — Y — 0

I G |

p:0 — § = X" — T — 0.

Proof. To prove (a) = (b), observe that since S is semisimple, S ct_: rad X implies
that S is a direct summand of rad X. Let C be a direct complement of S in
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rad X. Then we have the following diagram with the natural maps:

c = C

L

06— S5 — X — Y — 0

b

0 — S — X/C — Y — 0.

Note that Y/ ~ X /(C® S) = X/rad X = top X ~ topY.

Since the implication (b) = (c) is trivial, we have to show only that
(c) = (a). We need that XJ2NS = 0. Let us assume that 0 # S’ = XJ2NS.
Then 0 # «(S') = p(S') C p(XJ?) = p(X)J?%. But p(X) C X" and X"J? =0,
a contradiction. Thus S é rad X. ]

Proposition 2. Let Pr be an indecomposable projective R-module and

V Crad P. Denote by W the factor module P/V. Then the following are

equivalent:

(a) Vérad P,

(b) Ext!(top W,S)— Ext' (W, S) is an epimorphism for every simple mod-
ule S.

Proof. (a) = (b) Consider a non-split exact sequence 0 —S— X — W —0;
thus S C rad X. Using the projectivity of P we get the following commutative
diagram:
0 -V - P - W — 0
[} [}
oo
0 —-— S - X - W — 0.
Here v is an epimorphism, since S C rad X. It follows that ¢ is also an
epimorphism. We get that S é rad X since V(EradP by assumption. Thus,
by Lemma 1, the sequence 0—S— X —W —0 is a lifting of a sequence
0—S—X'—top W —0 along the natural map W —top W, so it is in the
image of Ext!(top W, S) — Ext! (W, S).
(b)) = (a) To prove that VéradP, it is sufficient to show that
704 _tc_rad P/V' for an arbitrary maximal submodule V' of the module V.
Hence consider the following commutative diagram:

0O - VvV - P =W =0

L

0 — V/V! — PV = W — 0.
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Since V/V’ is simple, (b) implies that there is a commutative diagram

0 — V/V' = PV - W — 0

I | |

0 — V/VI —- Z — topW — 0.
By Lemma 1, we get that V/V’éradP/V’. a

Using Proposition 2 and the left dual version of it, we get immediately the
following characterization of lean semiprimary rings.

Theorem 3. Let (ey,ea,...,e,) be a complete set of primitive orthogonal
idempotents of the semiprimary ring R and let all standard modules A(i)
be Schurian. Then R is lean with respect to the given order of idempo-
tents if and only if the natural maps Ext' (S(3), S(j)) — Ext! (A(3), S(j)) and
Ext! (5°(i), S°(j)) — Ext! (A°(i), S°(j)) are epimorphisms for all 1 < i,j < n.

Proof. Proposition 2 implies that the surjectivity of the maps given above is
equivalent to the condition that V(i)érad P(i) and V°(i) c rad P°(i) for all
1< i < n. In turn, by Theorem 2.1 of [1], this is equivalent to the fact that R
is lean. o

In what follows, let us restrict our attention to the case when R = A is a
finite dimensional K-algebra, where K is a field. For every 1 < i < n, denote
by V(%) the K-dual of A°(3), and call the modules V(7) the (right) costandard
modules. Using this terminology, we get the following characterization of lean
quasi-hereditary K-algebras.

Corollary 4. Let A be a quasi-hereditary K-algebra with respect to the
order (ej,es,...,en). Then A is lean with respect to the same order
if and only if the natural maps Ext! (S(i),S(j)) —Ext! (A(i), S(j)) and
Ext! (S(j), S(3)) — Ext! (S(j), V(i)) are epimorphisms for 1 < i,j < n.

In their contributions to the Workshop on Representation Theory
held in Ottawa in August 1992, B.J. Parshall and L.L. Scott emphasized
the importance of the surjectivity of all natural maps Ext* (S(i),S(j)) —
Ext* (AG),S(j)), k> 1, for the Kazhdan-Lusztig theory. In this connection,
the following theorem and its corollary seem to be of some interest.

Theorem 5. Let A be a quasi-hereditary K -algebra with respect to the or-
der (ey,ez,...,en) such that V(i)érad P(i) for 1 < i < n. Suppose that for
every 1 < i < n, the module V(i) has a top filtration by A(j)’s and P(j)’s,
i+1<j<n. Then the natural maps Ext* (5(i), S(j)) — Ext* (A(), S(5))
are surjective for all1 <i,j<n and k > 1.
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For the proof of Theorem 5 we shall need the following simple lemma.

Lemma 6. Let 0= X 5Y —Z—0 be a short ezact sequence with a top
embedding u. If, for a module S and for some k > 1, the natural maps
Ext¥(top X, S) — Ext*(X,S) and Ext¥(top Z,S)— Ext*(Z,S) are surjective,
then so is the natural map Ext*(topY,S)— Ext*(Y, S).

Proof. The bottom sequence of the following commutative diagram

0O - X - Y - Z =0

! ! !

0 — topX — topY — topZ — 0

clearly splits. Thus, applying the functor Hom(—, S), we can derive easily the

following commutative diagram from the long exact sequences:

Ext*~!(X,S) — Ext¥(Z,5) — Extf(v,5) — Ext*(X,S) — Ext**'(Z,5)
I [ Je [ [

0 — Extf(topZ,S)— Extf(topY,S) — Ext*(top X,S) — 0.
Since « and v are surjective, we get that § is surjective as well. u]

Proof of Theorem 5. We proceed by induction. Proposition 2 implies that the
statement holds for £ = 1. Thus assuming the statement for some k > 1, we

want to show that for every exact sequence
(%) 0—=SU)—=X1—...= X = Xpy1 = A1) =0

there is a commutative diagram of exact sequences with the natural projection
A7) — S(q):

0 — SU) - " — ... - Vi = PE) — A@F — 0
] L
0 = S@U) — 2 — ... = Zy — Zrypn — S(EH — 0,

in which the first row is equivalent to (x).

Let us write (x) as the Yoneda composite of the following exact sequences:

0'*5(])‘—'X1—’_’Xk—’N—’0 and 0'—*N—-*Xk+1—»A(g)-+()
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In view of the commutative diagrams

0 — V(@) — PG — AG — 0

| | [

0 = N — Xgpu — AG) — 0

and
0 — SG) - v - ... = Y — VG — 0
[ L
0 - S - X4 —» ... = X - N —= 0

the sequence (x) is equivalent to
0—SG)—=Y1—...=Y,—P(H)—A®#)—0.

Now, by the induction hypothesis and by repeated use of Lemma 6, we get
a commutative diagram of exact sequences

0 = SG) = Y1 — ... = Y = V@G — 0
] | |
0 — SG) = 21 — ... = Z — topV(i) — 0.

Furthermore, in view of Proposition 2, there is a commutative diagram of short
exact sequences

0 - V@ = Pl — A@G — 0

! Lo

0 — topV(i)) - Z — A@l) — 0

" Lo

0 — topV(i) — Zxyg1 — S@i) — 0.

Hence the theorem follows. O

Corollary 7. Let A be a shallow, medial or replete quasi-hereditary algebra
with respect to (ey,ez,...,e,). Then the natural maps Extf (S(),83G)) —
Ext* (A(1),S(j)) and Ext* (S°(i), 5°(j)) — Ext* (A°(5),S°(5)) are surjec-
tive forall1 <i,j<nandk > 1.

The definition of shallow, right medial, left medial and replete algebras
can be found in [1]. For the convenience of the reader, we wish to recall that
these algebras are defined by the fact that V(i) ¢ rad P(i), V°(5) ¢ rad P°(i)
and, respectively, V(i) and V°(i) have top filtrations by A(j)’s and A°(j)’s, by
A(j)’s and P°(j)’s, by P(j)’s and A°(j)’s and, finally, by P(j)’s and P°(j)’s.
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Remark. Let us point out that, in general, lean quasi-hereditary algebras do
not satisfy the above surjectivity conditions for higher Ext-groups. Here is a
simple example.
Let A be the path algebra of the graph
1

modulo the relations aj4045 = 0 and az1014 = az3a34 (Where a;; denotes the
arrow from i to j). Thus the right regular representation of A can be described
by the following charts of composition factors:

AA=},®123®§®§®5.

One can check easily that A is lean. On the other hand Ext? (5(2), S(5)) = 0,
while Ext® (A(2),5(5)) # 0.
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Determining Boundary Sets of
Bounded Symmetric Domains

José M. Isidro*:** Wilhelm Kaup*

We consider bounded symmetric domains in complex Banach spaces. It is known that each
of these domains can be realized as open unit ball D of a uniquely determined complex Banach
space E and that every biholomorphic automorphism g of D extends holomorphically to the
closure D of D in E. We study subsets S of D (and in particular of the boundary 8D) such
that every automorphism g is already uniquely determined by its values on S. We also consider
subsets S with the analogue topological property: For every sequence (gn) of automorphisms
converging uniformly on S to g the convergence is already uniform on D.

0. Introduction

Consider the open unit disc A C € and denote by G the group of all biholomor-
phic automorphisms of A. Then it is easily verified that every g € G is uniquely
determined within G by its values at any pair of two different points 27,2, € A. It
is also classical that every g € G is linear fractional and extends to a biholomor-
phic transformation of the Riemann sphere € U {oo}. Therefore every g € G also
is uniquely determined by its values on any triple of different points 21, 23, 23 in
the boundary A of A with pairs not sufficing in this situation.

As a consequence of Schwarz Lemma also every g € G is uniquely determined
by g(a) and ¢'(a) for given a € A. Again, in case a € A the automorphism g can
only be recovered within G from the three derivatives g(a), g'(a) and g"(a) in a.

A natural generalization of the open unit disc A C € to higher (and even infi-
nite) dimension are the bounded symmetric domains in their standard realization.
These are precisely the open unit balls D of complex Banach spaces for which the
group G of all biholomorphic automorphisms acts transitively on D.

In this note we study determining sets S C D in the closure of the bounded
symmetric domain D for the full automorphism group G = Aut(D), the connected

* Supported by Accién Integrada Hispano-Alemana
** Supported by Xunta de Galicia, project Xuga 20702 B 90
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identity component G° of G and also for the corresponding infinitesimal group, i.e.
the Lie algebra g of all complete holomorphic vector fields on D. The case where S
contains a point @ € D is conjugate (mod G) to the case 0 € D which reduces the
problem to a linear one (every g € G fixing the origin is well known to be linear).
We are therefore mainly interested in the case of determining sets S C 8D.

1. Preliminaries

Let D be a bounded domain in a complex Banach space E. By definition, a function
f:D — E is called holomorphic if for every a € D the Fréchet derivative f'(a) €
L(E) exists as a continuous linear operator on E. A bijection g: D — D is called
biholomorphic or an automorphism of D if g and g~! are holomorphic. Denote
by G:= Aut(D) the group of all biholomorphic automorphisms of D and endow
G with the topology of local uniform convergence in D. The domain D is called
symmetric if to every a € D there is an automorphism s = s, € G with s? = id
having a as isolated fixed point. Then it is known that G acts transitively on D and
that there is a complex Banach space E (uniquely determined up to an isometric
isomorphism) such that D is biholomorphically equivalent to the open unit ball of
E (compare [7] for details).

A complex Banach space E is called a JB*-triple if the open unit ball D C
E is symmetric, or equivalently if the automorphism group G:= Aut(D) acts
transitively on D. Then there exists a uniquely determined continuous ternary
operation (called the Jordan triple product on E) (z,y,z) ~ {zyz} from E® to E
such that, by writing zoy for the linear operator z — {zyz} on E, the following
axioms are satisfied

(J1) {zyz} is symmetric bilinear in the outer variables z, z and conjugate
linear in the inner variable y

(J2) [zoz,yoy] = {zzy}oy + yo{yzz}
(J3) zoz is hermitian and has spectrum > 0

(J4) {zzz}l = ll=|I®
for all z,y € E and [, ] being the commutator product of linear operators.

On the other hand, every complex Banach space E admitting a continuous
mapping {,, } with (J;) — (J4) is a JB*-triple.

It is known [3] that for every z,y,z in a JB*-triple the following estimate
holds

(1.1) H{zyz}l < ll=zll - llyll - ll=ll-
A trivial but usefull consequence is
(1.2) (1 +z00)7| < (1=rlzl)7! < (1-r)7"

for all z € D and r: = ||a|| < 1.

For instance, every C*-algebra A is a JB*-triple. The triple product then is
given by

(1.3) {zyz} = (zy*z + 2y*z)/2.
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Also for every pair H,K of complex Hilbert spaces the space L(H,K) of all
bounded linear operators H — K endowed with the operator norm and triple
product (1.3) is a JB*-triple.

A linear subspace F C E is called a subtriple if {FFF} C F holds. Every
closed subtriple clearly is a JB*-triple itself. The subtriple F is called an ideal in
Eif {EEF}U{EFE} C F holds. For every closed ideal F C E also the quotient
E/F is a JB*-triple.

For every a € E the odd powers a?"*! of a are defined as (ana)”a. The
closed linear span E, of all odd powers of « in E is a subtriple, called the closed
subtriple generated by a € E. Then E,oE, is a commutative set of operators in
L(E) by [2] p.102. Denote by T the spectrum of the operator ana|E, € L(E,)
and consider Q:= {t > 0:t2 € £}. Then there is a unique (isometric) JB*-triple
isomorphism 7: E4 — Co(2) such that h: = 7(a) is the function h(w) = w on .
For every f € Co(f2) we denote the element 7=1(f) € E4 by f(a). Corollary (3.5)

in [7] implies

(1.4) I f(a)eg(e)ll = IIfgl

for every f,g € Co(f2). As an example, tanh: E — D is a real analytic (not holo-
morphic) mapping with analytic inverse tanh™': D — E.

It is known that G = Aut(D) is a real Banach Lie group in the topology of
locally uniform convergence in D. The subgroup K:= {g € G : g(0) = 0} is the
group of all (surjective) linear isometries of the Banach space E (restricted to D,
clearly) and coincides also with the group of all linear triple automorphisms of E
(for this and the following compare [7]). It is an algebraic subgroup of GL(E) in
the sense of [5] (over IR). The Lie algebra g of G can be identified with the space
aut(D) of all complete holomorphic vector fields on E. By definition, a holomorphic
function f: D — E is called a complete holomorphic vector field on D if for every
z € D the differential equation

ohy

(15) o = f(b)

has a solution h¢(z) € D to the initial value ho(z) = 2 for all real t. Then {h; :
t € R} is a one parameter subgroup of G. We conceive vector fields as differential
operators and write also X = f(z)Z instead of f and exp(tX) instead of h;.

The Lie algebra g has a decomposition as direct sum of closed linear subspaces
(1.6) g=tdp

where ¢ is the Lie subalgebra of all triple derivations of E and p is the Lie triple
system of all constant-quadratic vector fields X% = o — {202}5@;, a € E. By
definition, a linear operator §: E — E is called a triple derivation if

8{zyz} = {(62)y2} + {=(8y)2} + {=y(é2)}

holds for every z,y,z € E. Every derivation of E is automatically continuous [1]
and every § = i(ana) is a derivation by (J3).
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The analogue of the decomposition (1.6) on the group level is
G=KP=PK with P: = exp(p).

P is a closed real-analytic submanifold of G and exp: p — P is bianalytic. To every
a € D there is a unique p € P with p(0) = a. We denote this automorphism p by
ga in the following. There is a unique vector field X* € p with g, = exp(X®). The
elements a and a generate the same closed subtriple of E and they are related
by the formulas @ = tanh(a), @ = tanh™!(a) in the above sense of continuous
functional calculus. In particular go = id and g_, = g;! for all a € D.

The Lie group K acts by inner automorphisms on G thereby leaving the
subsets P and K invariant. In particular kg,k~! = g, holds for every a € D and
k € K. Every g € G has a unique representation of the form g = g,k with k € K
and hence a = ¢(0). Furthermore, the mapping

G—-sDxK defined by g+ (a,9-a9), a:= g(0)

is a K-equivariant isomorphism of real analytic manifolds.

We need several asymptotic estimates on g as g\(O) approaches the origin:

1.7 Proposition. Let g € G be an arbitrary automorphism and put a:= g(0),
r:= ||al| and A: = ¢'(0). Then g extends holomorphically to a neighbourhood of D

and for every z,w € D the following estimates hold
() A1
(i) llg(2) = M2) —all < r/(1—71)

(iii) llg(2) = g(w)ll < |lz —wll/(1—7)*.
Proof. (i) is obvious from the integral formula A(z) = (2mi)™" f,_, t~2g(tz)dt
valid for all z € D. As a consequence of [7] p. 132 one has

(1.8) g(2) =a+ A1+ zoa)" 2

for all z € D. This implies with (1.2) that g extends holomorphically to D. (ii)
follows with
g(2) = M(z) —a = =\(zoa)(1 + zoa)7'2

and (iii) follows from
g(z) —g(w) = M1+ zoa)™! ((z —w)+ ((z - w)Da)(l + wua)'lw) . O

1.9 Proposition. Let g,h € G be arbitrary automorphisms and put a:= ¢(0),
b:= h(0), A\:= ¢'(0), p: = h'(0) and r: = ||a||, s:=||b||. Then for all z € D

1 1
lo(z) = h(z)|| < (1+m)|]a~b|| + A=l

Proof. Equation (1.8) for h reads h(z) = b+ pu(1+ zo0b)~!2. Then
9(z)=h(z) = (a—b) - pu(1+z0a)7 (z0(a=b))(1+208) 7'z + (A=p)(1+z0a) 7 2
immediately gives the statement. O

As a consequence we get a result already contained in [11]
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1.10 Corollary. On the group G = Aut(D) the topology of local uniform con-
vergence coincides with the topology of uniform convergence on D.

Notice, that (1.9) also contains a quantitave version of the topological Car-
tan’s uniqueness Theorem: For every a € D the map g — (g(a),g'(a)) defines a
homeomorphism of G to a subspace of D x GL(E). By a result of Vigué this is
even true for arbitrary bounded domains in complex Banach spaces. For boundary
points a € 8D it is known [7] that every g € G is uniquely determined by the three
derivatives g(a), ¢’(a), 9" (a).

1.11 Theorem. Let g € G be an arbitrary automorphism and denote by k: =
g-ag € K the corresponding isometry of E where a = g(0). Then for every z € D
and r: = ||a||

2r

1—r"

llg(2) - k(2)|| <

Proof. Since k is an isometry of F it is enough to show the result in the special
case ¢ € P and k = id. Fix an arbitrary « € E with |ja|| = 1 and consider
hy:= exp(tX?*) € P, a;:= h(0) = tanh(ta) € D and Ay:= hy(0) € L(E) for all
t € IR. Since h; solves (1.5), i.e.

Oh

'al = a—(h,ua)ht
we get by differentiation that A solves

ox
(1.12) 6_; = —2(a;0a));

to the initial value Ao = id. This equation has the explicit solution (compare [8])
t
(1.13) A¢ = exp(—2A(t)) with A(t): = / (asoa)ds.
0

The function tanh is non-decreasing on the real line. Therefore a, = tanh(sa)
implies ||a;oal| = tanh(s) by (1.4) and hence

IA@)| < /o tanh(s)ds = In cosh(t)

for all ¢t > 0. We derive

IAe = Xoll < exp(2Incosh(t)) =1 = cosh(t)’ — 1
(1.14) tanh(t)? _ lael|?
1 —tanh(¢)2 = 1-—|a?’

giving for g: = g, and A: = ¢'(0) the estimate

lg(z) =zl < llg(2) = A=) = all + llall + lIA(z) -2
r 2 2r a

r
—_—<
1—r+r+ 1—-72 = 1-r

<
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With r: = ||a]| and A: = g, (0) the estimate (1.14) reads

2
1—r2’

On the other hand, A(a) = a — {aaa} implies ||A\(a) — a|| = ||{aaa}|| = r?||a]|, i.e.

A —id|| <

(1.15) rr < |A=id| .

We conjecture that equality holds in (1.15).

A JB*-triple E is called abelian (or commutative) if the set of operators
EoE C L(E) is commutative, or equivalently, if F is isomorphic to a subtriple of
a commutative C*-algebra. In this case

ga(2) =a+ (1 —aoa)(l +zoa) 2
= (14 zoa)7!(z + a)
holds for every a € D.

A JB*-triple E is called special or a JC*-triple if it is isomorphic to a subtriple
of a C*-algebra (with triple product (1.3)). These spaces were first studied by
Harris [4] under the name of J*-algebras. In case E is special the automorphisms
g = ga can be expressed in the C*-algebra product as

da(2) = a+ (1 — aa*)'?(1 4 za*) " '2(1 — d'a)'/?
= (1 - aa*)'?(1 4 za*)~(z + a)(1 — da) /2

(compare [4] and also [7] p. 526).

2. Main results

In the following let E be a JB*-triple and D the corresponding bounded symmetric
domain, i.e. the open unit ball of E. Denote by G:= Aut(D) the automorphism
group, by G° the connected identity component of G and by g: = aut(D) the Lie
algebra of all complete holomorphic vector fields on D. Then G and G° are (real)
Banach Lie groups with Lie algebra g and G° is the subgroup generated by exp(g)
in G.

For every subset S C E denote by B(S) the Banach space of all bounded
continuous functions f:S — E with the norm || f||: = sup{||f(s)|| : s € S}. Every
automorphism g € G extends as a holomorphic function to a neighbourhood of the
closure D, i.e. G may be considered as a subset of B(D). It is known [11], compare
also (1.10), that the topology on G is the one induced from B(D). The same is
true for g which is a closed IR-linear subspace of B(D).

2.1 Definition. Let F be one of the spaces G, G° or g. A subset S C D is called
determining ( resp., topologically determining) for F if the restriction operator
F — B(S) is injective (resp., a homeomorphism onto its image). Denote by [F]
(resp., by [[F]]) the set of all subsets of D that are determining (resp., topologically
determining) for F.

We will use the following Lemma mainly in the group case and f =id
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2.2 Lemma. Let f € F be an arbitrary but fixed element and let S C D be a
subset. Then the following are equivalent

(i) S is topologically determining for F, i.e. S € [[F]]

(if) Every sequence (fy,) in F converging to f uniformly on S also converges to f

uniformly on D.

Proof. Since F is metrizable we may use sequences instead of nets. The case
F = g being trivial we may assume F = G or G°. Suppose (ii) holds and suppose
(g=) is a sequence in F converging to ¢ € F uniformly on S. Then the sequence
(fn) defined by fn:= fg~1g, for all n converges to f uniformly on S since fg~!
is uniformly continuous on D by (1.7.iii). But then lim f, = f by (ii) and hence
limg, = g in F. 0

2.3 Corollary. The automorphism group G = Aut(D) acts on the power set
of D in a natural way and clearly leaves all the sets [[G]], ([G°]], [[a]l, [G], [G°], [g]
invariant.

Proof. In case F = g use the fact that for every g € G also the derivative g’ is
uniformly continuous on D. a

2.4 Proposition. For every bounded symmetric domain D in its standard real-
ization and G: = Aut(D), g: = aut(D)

(G c (¢ ([g]]
n n n

Gl c [G°) c g

holds. In general none of the inclusions is an equality.
Proof. The inclusions are obvious. The last statement is clear with the following
examples (2.6) - (2.8). O

2.5 Remark. We do not know wether the inclusion [[G°]] C [[g]] also holds.
The proof of the inclusion [G°] C [g] is a simple consequence of the fact that
X (a) = 0 implies g(a) = a for every a € D, every X € g and g: = exp(X) € G°.
Unfortunately the topological analogue is not true: In case D = A and a € A
there exists a sequence (X;) in g with lim X,,(a) = 0 but limg,(a) # a for g,: =
exp(Xn)

2.6 Example. Let §2 be a compact topological space and ¢: Q) — § a (surjective)
homeomorphism with ¢ # id. Then E:= C(2) is a commutative C*-algebra with
unit e and ®(f)(w):= f(¢(w)) defines an automorphism ® € G fixing every ele-
ment in S: = {0, ¢}, i.e. S & [G]. Consider a sequence (gn) in G® with lim g»(0) = 0
and lim g,(e) = e. Then there are an,c, € E with

cp2 + an

g,,(z) - AnCnz + €

for all n, 2. Therefore lima, = limg,(0) = 0 and limc¢, = limg,(e) = e imply
limg, =id, i.e. S € [[G°]].

2.7 Example. Let H be a complex Hilbert space of dimension > 1 with inner
product (|) and orthonormal basis £:= {e; : 1 € I}. Then to every z € L(H)
there is a unique 2’ € L(H) with (2'e;lej) = (zejle;) for all 4,5 € I and
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E:= {z € L(H) : 2’ = 2z} with triple product (1.3) is a JB*-triple. Denote by S
the set of all 2 € D that are diagonal with respect to £, i.e. such that every e; is
an eigenvector of z. Every X € g is of the form

X(z) = t(uz+2u’) + (a—za*2)

with suitable a € E and u € L(H) hermitian. This implies easily S € [g]. On the
other hand, there exists an element u € S with u # u? = id. The automorphism

g € exp(g) C G° defined by z — uzu leaves every point in S invariant without
being the identity on D, i.e. S ¢ [G].

2.8 Example. Consider E:= Co(I) for I'= {t € R : 0 < t < 1} and set
S:= {0,a} with a € E defined by a(t) = t. Consider an automorphism g €
G fixing S pointwise. Then ¢ is a linear isometry of E and hence of the form
9(2)(t) = c(t)z(p(t)) for all z € E and t € I where ¢ is a homeomorphism of I
and c is a continuous complex valued function on I with |c¢(t)| = 1. Evaluation
of g(a) = a implies p(t) = ¢, c(t) = 1 and hence g = id, i.e. S € [G]. For every
n € IN choose a real valued function b, € E with ||bs]| = 1 and ||bpa| < 1/n.
Then X,(z):= ibyz defines a divergent sequence (X,) in g with lim X,(a) = 0,
ie. S & [[g]]- The sequence (exp X,) in G° shows that also S ¢ [[G°]]. It is clear

that every element of [[g]] must be an infinite set.

In the preceding examples the presence of the origin in S reduces the problem
essentially to a linear one. This is true also in a more general situation

2.9 Proposition. Let S C D be a subset with 0 € S and let (g,) be a sequence
in G converging uniformly on S to the identity. Then
(1) limga(c) = ¢ for every c in the closed subtriple generated by S in E.
(ii) (gn) also converges uniformly to the identity on the subset {SSS} C D.
(ili) (gn) converges to the identity in G if the closed, convex circled hull of S in E
has an inner point.

Proof. By assumption lim g,(0) = 0 holds. Therefore, by (1.11) there is a sequence
of isometries k, € K C GL(E) such that (gn — kn) converges to 0 uniformly on
D, i.e. also (kn) converges to the identity uniformly on S. Every k, is a triple
automorphism. Together with (1.1) this implies that (k) converges to the identity
uniformly on {SSS} and this implies (ii). Now (i) and (iii) are also clear. a

Statement (iii) in (2.9) can be improved in the following way: Denote by ccc
the operation of forming the closed, convex, circled hull and define for every S C E
inductively

St = cee(S)
S™HL = cee(S™ U {SSS"IU{SS"S})
se:=[Js".

It is clear that the closed linear span of S is a JB*-triple. Under the assumption
of (2.9) the sequence (gn) converges uniformly to the identity on every S™ by (ii).
Therefore, if S contains an inner point, every S™ contains an inner point for n
large by the Theorem of Baire, i.e. (g95) converges to id € G.

2.10 Example. Let E be the JB*-triple of all n x n-matrices over C (considered
as operators on the Hilbert space C" with standard inner product). Let d € E be
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a diagonal matrix with diagonal entries d;,dz,...,d, satisfying 0 < |d1| < |d2| <

. < |ds| and let s = (s;;) be the shift matrix defined by s;j = d;i4+1. Then
S:= {d, s} generates E as a JB*-triple. For instance, in case n = 3, it is easily
checked that S? does not span E whereas S® has an inner point.

2.11 Proposition. Supposea € D and ¢ € D are different but linearly dependent
over C. Suppose furthermore that (g,) is a sequence in G with lim g,,(a) = a and
lim gn(c) = c. Then also lim g,(0) = 0 is true.

Proof. We may assume that a = tc for some t € C. Denote by F C E the closed
subtriple generated by c. The automorphism h:= g_, € G maps F N D onto
itself and the sequence (g») defined by Gn:= hg,h™! satisfies limg,(0) = 0 and
lim gn(d) = d for d: = h(c). We claim that d generates F' as a JB*-triple. For this
we identify F with Co(£2), @ C IR a locally compact subset with @ > 0 and QU {0}
compact, in such a way that c is the function ¢(w) = w for all w € Q. Then d is
the function

d = = (1-1)

1—-1ac

and it is enough to show that e: = c/(1 — cc) generates F, or equivalently (apply
Weierstrass Approximation Theorem) that the function

T 1=t (1 - tce)

€ee

does not vanish on § (this is obvious) and separates the points of Q. For this
T

consider the function
@)= a5

for all z € R with 0 < z < ||c||®. Then |tz| < |tce|| = ||ac]| < 1 implies f'(z) > 0
for all 0 < z < ||c||?, i.e. f is strictly increasing. Therefore also €€ separates the
points of Q and our claim is clear. With (2.9.i) we derive lim §,(—a) = —a = h(0)
and from this lim g, (0) = 0. a

So far we always needed for the study of S a point a € D. In section 0 we
already pointed out that three different points in the boundary T = A of the
open unit disk A C C are determining for the group Aut(A). Let us call every
subset Tu C E, u # 0, a circlein E.

2.12 Proposition. Let S C 0D be a subset containing three different points on
a circle and let g € G = Aut(D) be an automorphism fixing S pointwise. Then g
is linear and in particular g(0) = 0 holds.

Proof. g can be written as

9(2) = a+ A1+ 20a)7'2
for a:= ¢(0) € D and X\: = ¢'(0) € GL(E) - compare (1.8).
fe)i= (1 + 200" (a=2) +2
defines a polynomial map f : E = E of degree < 2 with

fz)=01+ zoa)A "} (g(2) - 2)
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for all z € D. By assumption, f vanishes on three different points on a circle in E,
i.e. 0 = f(0) = A7!(a) and hence a = 0. O

The question arises wether (2.12) is also true in the topological sense. Unfor-
tunately we have only a partial answer

2.13 Proposition. Suppose E is an abelian JB*-triple and S C 8D contains
three different points on a circle. Suppose furthermore that (g,) is a sequence in
G with limg,(s) = s for all s € S. Then also limg,(0) = 0 is true.

Proof. For every n € IN there is a unique representation

gn(z) = (1 + kn(2)8an)" (kn(2) + an)

with a, = gn(0) and k, € GL(E) an isometry. By assumption there are pairwise
different to,t;,t; € T and v € 8D with tyu € S for k = 0,1,2. Put

bpi=kn(u) —u, cn:=—{kn(u)anu}

and define fn: € = E by fn(t): = an + tb, + t?c,. Since the Vandermonde matrix
(t)o <j k<a 18 Tegular we can solve the three equations

an + tibn +t2c, = fo(te) k=0,1,2
k

and obtain in particular every a, as a linear combination of fn(to), fn(t1), fn(t2)
with complex coefficients not depending on n. It is easily checked that

fat) = (1 + kn(tu)oas )(gn(tu) — tu)

holds for all t € T. This implies lim,, f,(tx) =0 for k = 0,1,2 and hencelima, =0
as required. a

For every JB*-triple F with open unit ball B and for every compact topo-
logical space 2 also C(?, F) with norm || f||: = sup,, || f(w)]| is a JB*-triple. Let us
assume in the following that E = C(2, F). Then D = C(Q, B) and C(Q2, Aut(B))
may be considered as a subgroup of G = Aut(D) (simply define gf € E for f € E
and g € C(Q,Aut(B)) by w — g(w)f(w) ). By [10] G° C C(Q,Aut(B)) is true.
From this the following is easily derived

2.14 Lemma. Suppose Q C Q is a dense subset and S C D has the property
that for every w € Q the subset S(w): = {s(w) : s € S} of B is determining for the
group Aut(B)°. Then also S is determining for the group G°.

In contrast to the 1-dimensional situation (compare section 0) it is possible
in the higher dimensional case that a two point boundary set is determining for
G. We use a variation of (2.14) to give an example in every dimension > 1:

2.15 Example. Let E = C(T') where T C R is a compact set containing 0 as an
isolated point with inf T = 0 and supT = 1. Then S:= {a,b} C 0D with a the
characteristic function of {0} C T and b(t) =t is determining for G.

Proof. Let g € G be an automorphism fixing @ and b. T can be identified with
the space of all maximal triple ideals of E (compare [7]). Therefore there is a
homeomorphism ¢ of T and for every t € T an automorphism g; € Aut(A) such
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that (gf)(t) = g¢(f op(t)) for all t € T and f € E. Evaluating this for f = a gives
¢(0) =0, go(1) = 1 and g4(0) = 0 for ¢ > 0. Evaluating for f = b implies go(0) =0
and g:(¢(t)) =t for all ¢ > 0. But this only is possible if ¢ = id and g; = id for all
t € T, i.e. g is the identity in G. (]

For the special case T = {0,1} in (2.15) we get E = C? with norm ||z|| =

max(|z1], |22]) and a = (1,0), b = (0,1).
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ON SAITO-KUROKAWA DESCENT FOR
CONGRUENCE SUBGROUPS

M. Manickam, B. Ramakrishnan and T. C. Vasudevan

The conjecture made by H. Saito and N. Kurokawa states the existence of
a “lifting” from the space of elliptic modular forms of weight 2k — 2 (for the full
modular group) to the subspace of the space of Siegel modular forms of weight
k (for the full Siegel modular group) which is compatible with the action of
Hecke operators. (The subspace is the so called “Maal spezialschar” defined
by certain identities among Fourier cocflicients). This conjecture was proved
(in parts) by H. MaaB, A.N. Andrianov and D. Zagier. The purpose of this
paper is to prove a generalised version of the conjecture for cusp forms of odd

squarefree level.

1. Introduction
The conjecture, made on the basis of numerical calculations of eigenvalues
of Hecke operators, formulated independently by H. Saito and by N. Kurokawa

[12], asserted the existence of a “lifting” from the space of elliptic modular



162 MANICKAM ET AL.

forms of weight 2k — 2 for the full modular group to a subspace of the Siegel
modular forms of weight k for the full Siegel modular group of degree 2 which
is compatible with the action of Hecke operators. (This subspace, defined by
certain identities among Fourier coefficients, is called the “MaafBl spezialschar”).
Most of this conjecture was proved by H. MaaB ([13]-[15]), another part by
A.N. Andrianov [1] and the rernaining part by D. Zagier [21]. The conjectured

correspondence is the composition of three isomorphisms

“MaaB spezialschar” C My (T'2)

i

Jacobi forms of weight k£ and index 1

I 0

Kohnen’s “+ space” C Mi._1/2(T0(4))

I

Map-o(Ty)

In the above diagram (1), instead of considering the full modular group,
if one considers a congruence subgroup of arbitrary level, there is still no clear
picture about this conjecture. Here we list some of the attempts made so far
(to our knowledge) in this connection. In 1980, M. Eichler submitted a paper
in which he proved the above correspondence for arbitrary level N, but the
level of the forms in the bottom of the above diagram was left open.(In this
connection one can refer [3],p.6). . Kojima [8]-[10], in his papers obtained a
correspondence between Siegel cusp forms (in the MaaB space) and cusp forms
of half-integral weight. He proved that the existence of common eigensub-

spaces of all Hecke operators for these spaces (with normalisation condition on
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the Fourier coefficients) would imply an isomorphism between these common
eigensubspaces.

In this paper we will prove a generalised version of the Saito-Kurokawa
conjecture when the level of the congruence subgroup is an odd squarefree
natural number and also we restrict ourselves to the case of cusp forms. The

idea is to obtain the following diagram

The space of “newforms” in “MaaB spezialschar” C  Sk(Ti(M))

I

The space of Jacobi (cusp) newforms of weight k,level M and index 1

i @)

Kohnen’s “newform” space C S:__l/2([‘o(4M))

1
S2E25(M)
where M is an odd squarefree natural number.

The first part of the above diagram (2) follows exactly in the same way
as in the previous case. The last one is the isomorphism due to W. Kohnen
[6]. For M = 1, the middle part was proved in [3]. We prove the second
isomorphism in the diagram in a different way. Actually, we define the map
as done in [3] and obtain the isomorphism by proving that it really maps the
corresponding Poincaré series indexed by fundamental discriminants. We also
set up the parallel theory of newforms for the spaces of Jacobi cusp forms and
the space of “Maafl spezialschar” contained in the space of Siegel cusp forms
to obtain the isomorphism.

We remark that N-P. Skoruppa [20] used the methods of [3] to give a

correspondence between Jacobi forms of weight. k, index m for the full Jacobi
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group and a subspace of modular forms of half-integral weight. Finally we note
that our Theorem 5 along with the Theorem in § 4. of [6] generalise Satz 7 of
[11], which states that the dimension of the space of Jacobi forms of weight
k € N, index 1 and level £ (£ an odd prime) is equal to the dimension of the
space of modular forms of weight 2k — 2 and level ¢, when restricted to the

space of cusp forms where the level is a squarefree natural number.

2. Preliminaries

Let H be the upper half-plane and H; be the Siegel upper half-space of
degree 2,consisting of 2 x 2 matrices Z with positive definite imaginary part.
We often write Z = (1’ z,).

z T

Let us denote by C, R, Q, Z and N, the field of complex numbers , the field
of real numbers , the field of rational numbers ,the ring of rational integers and
the set of natural numbers respectively.

For a natural number M, let T'o(M) be the congruence subgroup (of level

M) of the full modular group I'; = SLo(Z) and let

on={(4 5)er

where Ty = Sp,(Z) is the group of integral symplectic 4 x 4 matrices and

To(M)? = T'o(M) x Z* be the subgroup (of level M) of the full Jacobi modular

C = 0(mod M)}

group Iy x Z2.

For a natural number k, we write Sx(M) for the space of elliptic modular
cusp forms of weight k for ['o(M) ; Sp(T3(M))) for the space of Siegel modular
cusp forms of weight k, for T3(M) ; Ji,n(M) (resp. Ji'8P(M)) for the space
of holomorphic Jacobi (resp. Jacobi cusp) forms of weight k, index N € N for
To(M)’ ; S,'c"_l/z(l‘g(4l\/l)), for the Kohnen’s ‘+ space’ of the space of modular
cusp forms of weight k — 1/2 for the group T'o(4M).

Let p be a prime. Let us denote by T(p),p f M, U(p), p| M, the Hecke
operators in the space Si(M) ; T+(p?) ,p [ M, U(P*), p| M denote the
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Hecke operators on S:_I/Z(FO(M/I)) ; and for n € N, Ts(n) denote the Hecke
operator on Si(T3(M)).

We define the Petersson scalar product { - ,-) on Si(M), SZ'__I/Q(I‘O(4M)),
JeN' (M) and Si(T3(M)) in the usual way. For details we refer ([2]-[6]).

3. Correspondence between MaaB spezialschar and Jacobi forms
Let ¢(7,2) € Ji,m(M) and denote by ¢(D,r) its (D, r)—th Fourier co-
efficient. We define the linear operator Vy, N € N, the Hecke operators

Ti(p),p f mM, Us(p), p|M, as follows.

DN r r?— D
— . k=1 r
é| Vv = E E x(d) d c( P ’(l) e<4mN 1'+rz)

D<o,r€z d | (N,r)
Dz r2(4mN) D= r2(4mNd)

(3)

. P2~ D
¢ | Ti(p) = D;ﬂ ¢ (D,r)e< yP r+1~z> , for pfmM (4)
Di_r'z(‘m)
where
C*(D’r) = c(pzD,pr) + pk-2 ('l’?") C(D,?’) + PZk-SC ('pD_z» 1’5)
(here ¢(D,r) = 0if D =r%—4nm is not an integer) and

-

4m

¢|Us(p) = Z ¢(p® D, pr) e(

D<o,rez
D= r2(4m)

Dr+rz), for p| M (5)

Remark 1.
Note that the operators Vu, Ty(p),» f mM, and U;(p),p| M preserve
the space of cusp forms and Ty(p),p | mM is hermitian with respect to the

Petersson product. Also for p|M,

Vv Us(p) = Us(p) Vv on Ji, (M) (6)
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Let S;(T3(M)) be the subspace (called the MaaB spezialschar) of

Si(T3(M)) consisting of Siegel modular forms

E A(n,r,m) e(nt+rz+mr') = Z Sm(7, 2) e(m7')

n,r,meZ m>1
r3 < anm

satisfying

A(n,r,m) = Z d*F-1A (2;—2,1,:—1, 1) forall n,r,m
d| (n,r,m) R

which is called the MaaBl relation.
Proceeding exactly on the same lines as in ([3],§6) we obtain the connection

between Maal spezialschar and the space of Jacobi forms in the following

Theorem 1. Let F € S;(T3(M)) and write the Fourier expansion of F in

the form

F(r,z,7') = Z dm (1, 2) e(m7’)

m=1

Then
F(r,z2,7') = Y (1 [Vim) (7, 2) e(m7’)

m=1

where ¢1 € J''P(M). The association F ~— ¢, gives an isomorphism between

S;(T3(M)) and J'7P(M).

4. Connection between Jacobi forms and Modular forms of

half-integral weight

In this section, we will construct a linear map between Ji'{'?(M) and
S;'_l/z(ro(‘lM)), where M is an odd squarefree natural number. Since it is
known that J;'YP(M) = {0} if k is odd (cf.[3]), we restrict ourselves to the
case when k > 2 is even.

For each discriminant D < 0(D = r* - 4n), we denote by Pp (7, z), the
(D, r)-th Poincaré series in Ji'" (M) defined by
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Ppry(r,z) = -;— Z e ey (1,2)
¥ €T o \ To(M)’

where e™" = e?mi(nT+ra) «|. s the stroke operator as in [3] and

te = (s ) 00) o)

Then we have the following proposition

Proposition 1.  (cf.[4],[18]).

i)
Ppr(12) € JP(M)
ii) For
7"2"' ' / cus
¢ = Z e(D',7') e ] € JeyP(M)
D'<0,r'eZ
D'=r'*(4)
we have
(6, Pp,ry) = ok IDI'k"“/2 e(D,r),
where
_ T(k—3/2)
T 9gk-3/2
iii)
2 /
- D
Por(m2) = Z g(D.v')(D'.T")e(r 4 7'+r'z)
D'<0,r'eZ
D'=r'*(4)

where

g(D,r)(D',r’) = §(D,r, Dl,1") + i""'m/‘f(D’/D)"’zJM
(m/D’D) ‘

x 3 Hue(D,r,D',v') Jp_gy2

M
e21 ¢

with

oy J1 D =D, r=1r(2);
6(D,7,D,r)_{0

otherwise
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and

H(D,r, D' 1) = ¢=3/?

2_ D ,/2_D/
chc<p“(/\2+7v\+7 y )+r’/\+7 , p)

X eZc(—rr,)

Let Do = r§ —4ng be a negative fundamental discriminant. Let A > 0 be
a discriminant divisible by Dg such that both A and A/Dg are squares modulo
4. Let xp, be the genus character defined on integral binary quadratic forms
[a,b,c] with discriminant A.

We put for am € N,

samadg) = 5y ([en 522wt @

b(2a)
b2mA(da)

where A = DoD, D = r? — 4n.
Then the following proposition is proved in [4] in connection with corre-

spondences between Jacobi forms and elliptic modular forms.

Proposition 2. For a,m > |,

D 2
Sa(mi &, Do) = Y (—dﬂ) (a/d)'*Haja (Do%,ro?,um) (8)

dj(a,m)

For a negative discriminant D | let us denote by P3(r), the D-th Poincaré

series in .S':'_l/z(Fo(4M)). Then we have the following
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Proposition 3.  (cf.[7],Proposition 3).

PE(r) = D ap(D')e(|D|r)

D’'=0,1(4)
where
go(ID')) = -50 D+ 2”\/_ — 2Dy DykI2=314
v D'D
XZHMc(DIeD)Jk_;;/g( Mo )
c21
with
1 ifD'=D
6 =
bp {0 otherwise
4 1 4e —4 k-1/2
/ —_ —(— k—=1_. 4c -4
waor= -t o () 3 (6) ()

5(4¢)°
x exe(ID15 + DI5)

where 6~ € Z, with 66! = 1 (4c)
Proposition 4.  (cf.[7],Proposition 5).  For a,m>1 and for all negative
discriminants D, we have,

Sa(m; Dy D, Do) = Z (%—) (a/d)l/zHa/d(D Dom?/d?) (9)
d|(a,m)

Remark 2.
Note that the function Sa,p,,p(DoD,m) defined in ([7],p.246) coincides
with the function Sq(m; Do D, Do) defined by (7) in our case.

Putting m = 1 in (8) and (9) we obtain

Ho(Do,ro,D,7) = Hqa(D,Dg) forall a>l (10)

Theorem 2. The linear map § defined hy

r? —
> ame(SPre)  — X D) edlDi)

D<o,re€z D<o
D.,Z(.') D=0,1(4)
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maps the (Do, ro)-th Poincaré series in J\'P(M) (upto a multiplicative con-

stant) to the Do-th Poincaré series in .S’,:,*_l/.-,([‘o(flM)) where Do = v} — 4ng is

a negative fundamental discriminant.

Remark 3.

Since the Fourier coefficients ¢(D, ) of a Jacobi form of index 1 depends
only on the value of the discriminant D we write ¢(|D|) instead of ¢(D,r).
Proof.

Using Proposition 1, the image of Ip, »)(7, z) under the map § is given

by

Poosa)lS = Y 9(Dore(IDDe(IDI7) (11)
D<o
D=0,1(4)
Clearly
6(00,7'0: D,T’)=5(Dn,7‘o,D,—1')= 6Dn.n (12)
and

H¢(Dg,7o,D,r) = He(Do, 7o, D, —7) = He(D, Do) (using (7)) (13)

Now using (12) and (13) in (11), and using the fact that i=% = (=1)*/2 we
have

3
P(Do»"n) IS = :2- 33'0

This completes the proof.

We shall now extend the result of Theorem 2 for negative discriminants
relatively prime to M.
Let D = r%(mod 4) be a negative fundamental discriminant. Then for

(n, M) = 1, we have the following
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Pp,)|Tas(n) = n®+3 3~ ( )d'k_SP(Dn?/a’,m/a)

din
(d,M)=1

and

P' ||T+(n2)_ n2k+3 Z ( )d—k SPJ)'"?/dT

din
(d. M)=1

The above two equations along with Theorem 2 and the fact that

STYp?) = Ty(p) S pIM

will give the following

3
P(D,r) lS = E P]T)]

where D = r? (4),D < 0 and (D,M) = 1.

5. Theory of newforms on J;'7 (M)

171

(14)

(15)

(16)

(17)

Let M be an odd squarefree natural number and let k be even. Define

szllap,old A/[) Z qu.vp ) | Uj(d)

rd|M
1€r<M

and put Ji'PP" (M) to be the orthogonal complement of .IE:‘]””"”(M) in

T (M) with respect to the Petersson product.

W — operator

For p | M, we define the W-operator on Ji'{'"" (M) as follows.

w3 (T ) o),

u, A, u(p)
where a,b, ¢ € Z satisfying pa — beM /p = 1.

We now state the following Propositions and Theorem which can easily be

proved.
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Proposition 5. The operator W, is independent of the representatives a, b, ¢
and W, preserves the space J“"”(M). Also W, is hermitian with respect to

the Petersson scalar product.

Proposition 6. Forp | M,
) Usp) + o2 W, o JETP(M) JieP(M/p) and we have

Us(p) + P72 W, =

{Tx(p) on J'y*(M/p) (18)

0 on JC“SP nCW(M)
ii) W, preserves the space J;' """ (M)

Theorem 3. The space J;' LT (M) has a basis of eigenforms with respect

toTs(p),p A M,Us(p),p | M and W,,p| M.

If V is the linear span of P(p ,y, where D = r? (mod 4) is negative with

(D, M) =1, we will show that V = J*P(M) in the following

Proposition 7.
i) V isisomorphic to .S';,"_llg(l‘(,(/IM )) under the linear map § and is invariant
with respect to Uy (p) , p|M
0V o Jeemetm) = J‘"’" "Y(M)
i) V. 0 JEePi (M) = Ui (M)

Proof.

Using Theorem | of [19] for the case M squarefree and x trivial, we see
that the space S,':_l/?(l"o(tiM)) is spanned by all Pl*l'”, where D < 0Ois a,
discriminant with (D, M) = L. Since § is injective, this proves the first part of
i), using (17). The proof of the second part of i) is clear using the first part
and the fact that SZ'_]/Q(FQ(/-!M)) is invariant under U(p?) and also using the

following fact

SU@) = Usp) S plM (19)
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To prove ii), let U denote the orthogonal complement of V N J¥P™ (M)
in JOP Y (M). Since Uy (p), pIM is hermitian (in J. 5" (M), we see that

U is invariant with respect to {/;(p). Let. ¢ € U and let

¢|Us(p) = & pIM (20)

Then (¢, Ppry) = Oforall D < 0, D = 1? (4), (D,M) = 1. Denoting

the (D, r)—th Fourier coefficient of ¢ as ¢g(D,r), we have

cs(D,r) = 0 forall D < 0,D = r*(4),(D,M) =

il

Also from (20), we obtain that

it

cg(D,v) = 0 forall D < 0,D = »2 (4),(D,M) > 1

This means that ¢ = 0, proving ii).

Since

Syl (Co(aM)) = @D S5 (Po(dd)) | U(r?),
rd|M
d< M

using induction on the number of prime factors of M and also (19), we see that

cu'p old }Vf) = @ qucp new (l) | UJ(T)

rd|M
A<M

and clearly by ii)

Jaup old(M) I S+ol7.,([‘0(4M))

and the pre-image of SZ'_’_"]";Q(FO(MVI)) under § is a subset of V, proving iii).

Thus we have established the following
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Theorem 4. The spaces J;'y"""*“(M) and S 172 (Co(4M) are Hecke equiv-

ariantly isomorphic.
We summarise the results of this section in the following

Theorem 5.
i)

J;:zsp /V’) = @ Jrusp new IUJ d)
rd|M

ii) The spaces J;'F"*“(M) and “"Z_'_"l'/';([‘o(“/[)) are Hecke equivariantly
isomorphic. i.e., the isomorphism commutes with the action of Hecke
operators.

iii) The space J;'y'"""““(M) has a basis of eigenforms with respect to the Hecke
operators T;(p) , p AM and Us(p) ,p| M. If ¢ € JTP"(My)
and ¢z € JYP"(My) be two eigenforms having the same eigenvalues
for almost all Hecke operators, then C ¢y = C ¢2, M| = My. (M1 and M»
are odd squarefree natural numbers). In particular, “strong multiplicity
17 theorem holds in J'{"""“(M).

iv) If ¢ € J{YP"Y(M) is a newform, then we have

d|Us(p) = £p*"%¢ forall p| M.

6. Newform Theory in S;(T3(M))

Let ]’Ig’ be the Hecke algebra for Siegel cusp forms of degree 2 and level
M and let ]_[y be the Ilecke algebra for Jacobi cusp forms of index 1 and level
M. Then it is known that [T is generated by Ts(p), Ts(p®),p M and
Ts(p), p | M and HIJ" is generated by Ty(p) ,p A/ M and Uy(p),p| M.
(cf.[2],[3),(8],[9],[10},[17)).

For F € Si(T3(M)) and p | M we have
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F|Ts(p) = Z A(nup,rp,mp) e(nt + rz + m7') (21)
where
F = Z A(n,r,m)e(nt +rz + mr')
2

(Refer [17])
Also if F € S;(T'3(M)), we have

F | Ts(p) € Si(Fa(M)) for p|M

ie.,
kel g (T
A(n,r,m) = Zd 1(I?'d’)
dl(n,r m)
(d. A1) =1
and
_ - nmp? p
A(np,rp,mp) = ,,(;,,,, d*~*A ( R 1) (22)
(d,l\:l)'=l
Remark 4.

We observe that the Hecke operator Ts(p), p | M on S;(T3(M)) can be
explicitly given by

I/p 0 v/p (p—2Av)/p
- A1 1
TS(p)sz 4 Z 0 0 l,; "‘P/\
N0 00 1

Let

¢ = Z e(D,r) e(rQZD

D < 0,r€2
DEr?(4)

'r+1'z> € Jc""p(M)
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and let V be the inverse map from J'"?(M) to S} (T§(M)) of Theorem 1. Then

using (3),(5),(21) and (22), we have for p|M,

- Dmp® rp
— k-1
6| Us(p)| V= E E d c( P 'd>

D<o.m,rez di(m,r).(d,A)=1
DgEr3(4m) D&r2(4md)

(1""— D ,)
X e T+ rz+mr
4m

=¢ |V |Ts(p)

For p | M, we put

Ts(p) =Ts(p)® — Ts(p®)

Let ¢ € JZ''P(M) and let ¢|V = FF € Sp(T3(M)). Put Fy = F | Ts(p) and
Fy = F | T¢(p) Let ¢1,¢2 € J,f"‘l"'(M) be such that

Fi = 6|V
Fo = ¢a2|V

Then proceeding exactly on the lines of [3],we can prove that

61 = o | (Tu(p) + p*~' + p*?)

and

g2 = & | ("' + ) Tu(p) + 7% + p*)
Thus we have established the following

Theorem 6. The mapV : J''P(M) — S;(T3(M)) is Ilecke equivariant in
the sense

SIVIT = ¢|(T) |V,
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¢ € P(M), Te T14, with respect to the homomorphism of the Hecke

algebras ¢ : []g —»HJM defined on generators by

UTs(p)) = Tu(p) + P71 +p** piM
(Ts(p))

U(Ts(p)) = Us(p) pIM

1

P Tu(p) + 207+ Rt pIM

Newform Theory

In S;(T3(M)), we define

ST = 3 SHTEM)) | Us(d)

rd|M
1<r<M

and put ;" (T3(M)) to be the orthogonal complement of S,:"’M(I‘S(M)) in
Sp(T3(M)) with respect to the Petersson product. Since V : c"”’(M)
S;(T3(M)) is an isomnorphism (by Theorem 1), using the isomorphism V and

Theorem 4, we have the following

Theorem 7.
i)
Sy(T3(M)) = €D Sp™(T3(r) | Us(d)

rd| A
ii) Sy (T3(M)) is Hecke equivariantly isomorphic to J'YP"¥(M).(i.e.,
the isomorphism commutes with the action of Ilecke operators).
iii) The space Sy (P3(M)) has a basis of eigenforms with respect to the
Hecke operators Ts(p), T;(p),p I M and Ts(p), p | M. If two eigenforms
€ Sp" Y (TE(M)) and Fy € Sy (T3(Ma)) (My, M2 are odd square-
free natural numbers) have the same eigenvalues [or almost all Hecke oper-
ators then C Fy = C Fy and My = M,. In particular “strong multiplicity
17 thedrem holds in Sp™* (T3(M)).
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iv) If F € Sy (T3(M)) is a newform (i.e., a hasis element)then for p | M,

we have

F|Ts(p) = £ p**F.

7. Generalised Saito-Kurokawa Conjecture

Let F € S;(T3(M)) be a Hecke eigenform.Then the Andrianov zeta func-

tion Zp(s) has the Euler product expansion

Zr(s)=T] = p)”

p|M

- 2k~ —-2s 2k -3--3s -4 - -1
X H (1—mp ‘+(7,’,—1qu Np=2 — qpptF 3 4 plk-amds)
plM

where

F|Ts(p) = % F; F|Ts(p) =7 F p[Mand F|Ts(p)=7F ,p| M.

Let F € S;"*Y(T3(M)) such that F = ¢ |V where ¢ € Ja‘lap,new(M)
with

$1Tp) =Moo, p M

$1Usp) = M, pIM
Using Theorem 4 and the isornorphism of Kohnen ([6],Theorem 2), there is a 1-
1 correspondence between eigenforms in S3¥,(M) and J''P"(M). Assume
that f € S5¢¥,(M) be the normalised ITecke eigenform (with eigenvalue A,)
corresponding to ¢ € J.'\""" (M),

Consider
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Ze(s) =[] (1= »™)

plM

- Ve - —~3-3s —d -1
x H (1—‘7pP s+(7,l)_p-k 4)p 25_7Pp2k 3 3.+p4k 4 4:)
pXM

Then using Theorem 6,

Yo = App | M and forp [ M 4, = A+ 4p* "2 and 4, = (¥ +p*3)N +
9p2k=3 4 p2k-1,

Therefore, for p | M,

(1 - ,ypp-—s + (7,!’ - pf.'k-—fl)p-h - ,Ypp?k-s-.'is + p4k—4-4s)

=(1=p*p=) (1 =p*2p~*) (1 = App~* 4 pPk-3-2)

Hence

Zr(s) = H (I=Xp™*) -

p|M
X H pE=1-9) (] __pk_'.,)_s)"l(] W +p2k-3-2,)—1
p M
=TT =7 (=pF2 7" Ly()
P | M
where
b= L™ T1 (s agioso)”
M p M
Put
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Then it is clear, from the above equation, that

Zp(s) = C(s=k+1)¢(s=k+2) Ls(s)
Thus we have established the following

Theorem 8. (Generalised Saito—Kurokawa Conjecture).

The space S;""“(T3(M)) is in I-1 correspondence with SPEY,(M)
where M is an odd squarefree natural number. For a Hecke eigenform
F e 5p™(T4(M)) and a normalised Hecke eigenform f € S3E¥,(M), the

correspondence is given by

Zi(s) = C(s—k+1)¢(s—k=2) Ly(s)
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ON IRRATIONALITY MEASURES OF THE VALUES
OF GAUSS HYPERGEOMETRIC FUNCTION

ARI HEIMONEN, TAPANI MATALA-AHO AND KEIJO VAANANEN

The paper gives irrationality measures for the values of some Gauss
hypergeometric functions both in the archimedean and p-adic case.
Further, an improvement of general results is obtained in the case of
logarithmic function.

Introduction

We shall consider the irrationality measures of the values of Gauss hypergeo-
metric function

1,0
c

o Fo=a (1)) = 5 eun

n=0

where b,c # 0,—1,—2,... are rational parameters, and (b)o = 1, (b)n = b(b +
1)...(b+n—-1),n=1,2,.... Theirrationality and linear independence measures
of the values of F are considered in many works both in the general case and in
some interesting special cases, see [1] [2], [4], [6], [7], [8], [9], [10], [11], [13], [14],
[15], [16], [17], (18], [19], [20] and [23]. Also the transcendence of the values of F'
at algebraic points is considered in the important papers [3], [5] and [24].

In the present work we first give using Padé type approximations an irrationality
measure for F(r/s) with certain values r/s € @, both in the archimedean and p-
adic case. In many special values of b and c these general results can be sharpened
by the careful consideration of the arithmetic properties of the coefficients of the
approximation polynomials. This idea was first realised for the binomial function
by Chudnovsky (8], and then in some other cases in [10], [13], [14] and [20]. Here
we shall deduce a general criterion to find a common factor for the coefficients of
our approximation polynomials and then apply this criterion to the logarithmic
function to obtain a generalisation of the nice work of Rukhadze {20].
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Results and notations

We shall denote by @, the v-adic completion of @, where v € {co, primes p},
in particular Qo = IR. For an irrational number 6 € Q,, we shall call an irra-
tionality measure m,(6) of 6 the infimum of m satisfying the following condition:
for any € > 0 there exists an Hq = Hy(e) such that

-2

for all rationals P/Q satisfying H = max{|P|,|Q|} > Ho. In the following we
denote moo(8) = m(6). All our measures are effective in the sense that Hy can be
effectively determined.

Throughout this paper we shall assume that ¢ > b6 > 0, b = a/f, ¢ = g/h,
where a, f, g, h are natural numbers such that (a, f) = (¢9,h) = 1. Let us denote
B=b—-1=E/F,C=c—b—-1=G/H with E,GeZ, FH €N, (E,F) =
(G,H) = 1. Further, let L =l.c.m.(F, H), and use H* to denote the denominator
of h/H (therefore H* | H). We shall also need the notations

>H ™ ™¢

v

’ P

h

ur =[] o757, A = %Z

PIF =
(i,h)=1

.| =

to state the following result.

Theorem 1. Ifr/s € (-1,1) is a non-zero rational number satisfying

(rs)=1, LH'uppme® (Vs—v5-1)" <1,

then

m (F (r)) <q_ 2In (Vs+vs—=r) + Ah) + In(LH*prpp-)
= 2In|y/s — Vs —r|+ Ah) + In(LH*prune)

As a p-adic analogue of this result we state the following sharpening of [17].

Theorem 1p. Suppose that p is a prime such that p [ fh. If r/s > 1 is a rational
number satisfying

lr/slp <1, (T‘,S) =1, LH*”L/“H‘ e,\(h)rlth) <1,

then

r 2In|r|,
e (F( )) 2ln|r|, +1Inr + Mh) + In(LH*prpa+)
(in writing m,(f(...)) we always think of f as a corresponding p-adic series).

If b=1, ¢ =2, then Theorem 1p implies for the p-adic logarithm the following
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Corollary 1p. Ifr/s > 1 is a rational number satisfying
Ir/sl, <1, (r,s)=1, crlrlf, <1,

then

e (log (1 B g)) = 21ln |r2|:n+|1ilfr +1

In particular, for all p' > e we have

2llnp
m, (log (1 _p’)) < m

For the real logarithm we obtain, by Theorem 1, the well-known result

T In(y/s -
m(log (1- 1)) s1- ST

if r/s € [~1,1) is a rational number satisfying
<a(\/§—\/s—-7')2 <1

To get a sharpening of this result we define, for a rational a = u/v € (0,1}, u,v €
IN, (u,v) =1, the subsets I; and I, of {1,...,v — 1} such that

iel iff [ai]+1=[ai+%], il iff [ai]:[ai+%].

=15 (0 (40) () S (52D (),

where ¥ is the digamma function (see e.g. [12], pp. 15-20). Further with a given
rational f > a we define

(p+121)(p + 2| = sgnz)")

Ala,p,z) = min ( T

0<p<|z|+3(1~sgn z)

forall 2 >1or 2<0, and

~ t(1-t)»
R fo2) = mmax =

for all z € [-1,1).



186 HEIMONEN ET AL.
Theorem 2. If

= 2—a—-rn(a)],.|2—a f _ 2—a—1(a)],.12 — C
Qo) = P4 (2 1,2), Ra)=e rfs™ R (@ 1,7)

(o1 3)) s - 2R},

where inf* means that for a given non-zero rational r/s € [—1,1) the infimum is
a
taken over all rationals a € (0, 1] satisfying R(a) < 1.

then

As numerical examples we give the following list, where u.b. means the obtained
upper bound for m(log(1 —r/s)).

: a wb. wb.(a=1)
-1 g 3.891399 ... 4.6221 ...
-2 1 9.7551 ... 11.1449 ...
~3 3 53.8149 ... 90.7656 ...
-3 1z 3.3317 ... 3.5474 ...
-3 1 3.1105 ... 3.2240 ...
-3 Lup 619.5803 ... 1798.6314 . ..

] §18 2.3854 ... 2.3862 ...
is g 2.6411 ... 2.6535 ...

% 8 5.7392 ... 5.7977 ...

In the first row of this list we have Rukhadze’s [20] measure for log 2. However
we note that in some other cases, e.g. if r/s = —1/2, —1/3, we are not able to
reach the measures announced in [20].

Padé type approximations

We use I, m and n to denote positive integer parameters satisfying [ < min{m,n}.
In the proof of our theorems 1 and 1p we shall use only the choice | = m = n,
but in some interesting cases like in Theorem 2 some other choices are better.
Therefore we give our next lemmas in the general form.

Let us define the polynomial A;m n(z) by

l
@ Amalz) = :a‘ﬁl‘:zjc?rl. (di) ("B (1 = 2)™*0),

i £ )05

_(—m——C)z n m—1 -n—B, -l|z-1
=7 2M(1-2)""" R l+m+C=1| = /)

I
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Thus the polynomial Aj m,» is of degree < n+m—1 and has a zero of order > n—1.
By defining

1
Qim,n(2) = zn+m_lAl.m.n (;>

_ Em =0 m=t -n-B, -

= l‘ (Z— ) F1 1+m+C—11 z
_(=m-n-B-C) el -n—B, -l
- I (z=1)"%h -n—-m-B-C

’)
we get a polynomial of degree < m, where the last equality is obtained using the
formula 2.10 (1) of [12].

The function F(z) has for all |2| < 1 an integral representation

© F&)=F®E%§w) D w =g

Therefore, for all 0 < |z| < 1,
__ T( ! Qum,n(2)w(t)
QmnDFE) = so=pray |~ 1oat &

LT (et [ Auma(1/2) = Amn(®)
‘r@—mmw( / T3 (8)dt

+zn+m—l /1 Alym,n(t)w(t)
0 1-—2zt

dt) = zn+m-l_131,m,n(1/z) + R(_m,n(z)

with obvious definitions of the polynomial B m » and the function Ry m n.
We next consider more closely the remainder function Rymn. If

f(z) = 2"B(1 - 2)™C,

then, by partial integration and our assumption ! < min{m,n},

P(C) gntm=l f(')(t)
(4) Rl m n(z) F(C — b)l"(b) i [J 1- Zt

,—_...—w fl+m/

I'(c - )I'(b) U—ZW“
— n mF(C)F(mJ"c“ )F(n+b) 141, n+b
—("l)lz + (e b)I‘(b)l"(n+m+C)2 1( n+m+e z).
=( 1)1 n+m(b)"(c b)m2F (I'l'l , n+b z>.

()ntm n+m+c
Therefore the Taylor expansion of Ry, » has rational coefficients and vanishes at
z =0 at least to the order n + m.
By the above considerations we now have the approximation formula

(5) Rimmn(z) = Ql,m,n(Z)F(‘z) - Pl,m,ﬂ(z)’
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where

- 1
(6) Piimon(2) = "™V By ()

is a polynomial of degree n + m — [ — 1. Thus (5) is an identity with rational
coefficients, and therefore we can use it also in other metrics if the series converge.

The estimation of the polynomials and the remainder term

Let us suppose that | = [an], m = [#n], where @ and 3 are rationals satisfying
0 < a < min{1, 8}, and let us denote

Pp(2) = Pimn(2),  Qn(2) = Qum,n(2), Ra(z) = Rim,n(2).

We shall first estimate the remainder term R,(2). Let § = é(v) be 1, if v = oo,
and 0, if v = p. By ¢1,¢2,... we shall denote positive constants independent of n.
We now obtain the following

Lemma 1. If |z|, < 1 and in the finite case v [ fh, then we have

|Ru(2)]s < ein? ~° (|21} R(e, 8,2)°)"

for all n > ¢;. In the archimedean case the bound on the right-hand side of this
inequality is an asymptotic for |Rn(z)| (n — o0).

Remark 1. In the archimedean case the bound holds at the point z = —1, too.

Proof. In the archimedean case the result follows immediately from the integral
representation (4) of Ry m n(z).
To prove the finite case we denote

Qn(2) =) q;z',  F(z)=) fi7.

=0 =0

By (5) we then have

Rn(z) = Z (Z quk—i) Zk =™t Zekzka
k=0

k=m+4n \ j=0
where

m
ek:ijfk+m+n—j, k=0,1,....

i=0

Because ¢; are v-integers (i.e.|gj|y < 1), it follows that

lexlo < ogljagxm {|fk+m+n-j|v} .

Here

hk+m+n—ja(a+f)...(a+(k+m+n—j_1)f)
fermtn=ig(g+h)...(9+(k+m+n—j—1)h)’

fk+rn+n—j =
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and therefore |ex|, < p"*) (v = p), where

r(k) < max Z ([_____k+m+n—]]+1_[__—_k+m+n—]]>
<J<m Ini k4+m+4n)h p” p“
<_(L£LﬂW+_)_l
< Inh(jel +k+(1+B)n)
— lnp b

k=0,1,....
Thus
leklo < h(le] +k+(1+B)n), k=0,1,...,

which implies the estimate
|ekzk|v < h(lel+k+(1+B)n)zf <en

for all n > ¢;. This proves our lemma. O

The function f(t) = ¢"+B(1—¢)™*C is analytic in a complex domain D obtained
by cutting the plane from 0 to infinity and from 1 to infinity. We choose these
cuts in such a way that they avoid the point z. To estimate the polynomials P,(2)
and Qn(z) we first consider the polynomial A,(2) = Ai,m,n(2) by using Cauchy’s
integral formula to get

1 1(d 1 f(t)
(7 An(2) = ;_(—z)—al' ( > f(z) = 21rz zB(1 - z)C f;, (t — z)I+1 dt,

where T is a simple closed curve in D.

Lemma 2. If|z] > 1 or z = —1, then

Anloll < & (Ao 4R (a,83) ),

and if -1 < z <0, then

n —an 2‘. .]_' 1 o
|An(2)| < cq (A(a,ﬂ,z) +(1-2) R(ﬂ’ﬂ’l—-z) )

In the case a = 3 =1 we have

|An(z)| < esn?
for all 0 < z < 1, if ¢ = max{B,C} > —3.

Proof. We divide our proof into four cases. Let first z > 1. Then we cut the
plane along the real line from 1 to —oo, and take I' = 43 U v U 3 U 4, where
T :|t—2=p < zandys:|t— 1| =e with some € > 0 (see Picture 1). Then

1 f(t) (p+2)"*B(p+2-1)*C
st 8, o < :

< (p+2)B(p+ 2~ 1) 1An) ((p+ 2p+z= 1)"")"
P {an} p°
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oe
—e

Picture 1.

(this is all we need if p < 2 —1). In the case z — 1 < p < z we have (with small ¢)

LS
o §, ] <

<
T (z-1-¢g)H?

! f(t)

/ = oy ‘”l

! L) dt < -8 R(a l)n
aﬂ"— .

<
72wl Jy (1= R T [zfen

1 -1 (1 +€6i¢)n+B (Sei¢)m+c
Zr—z-/,, (1 +eei® — z)i+1
(1 +€)n+B€m+l+C

edo

— 0, when ¢ — 0.

Further it follows that
t

omi ), t—2y 1 | T 2

These estimates give the truth of our lemma in this case.
The cases z < —1 and —1 < z < 0 are analogous.
In the case @ = § = 1 our polynomial is connected with the Jacobi polynomial

P,(,B’C)(z) by the formula

An(z) =PBO(1-22), 0<2<1.
Therefore our result follows immediately from Theorem 7.32.1 of [22]. O
Lemma 3. If |z| < 1 and R(e, B,2) < |2|7*A (e, 8, 1), then

s {1Qa(o) P < o (121004 (@8, 1))

Ifa=p8=1andz>1, then

max {|Qn(2)l, |Pa(2)|} < can*?|2|".

Fa=f=1,2<-1, and R(l,l —-‘—) < A(1,1,1), then

2z
z—1 ) z—-1

max {1Qn(2)], |Pa(2)]} < co (|z|A (1, 5 1))
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Remark 2. Since (5) holds in the archimedean case at z = —1, the first part of our

lemma is true at z = —1.

Proof. Since
Qo) =t (1),
z
the bounds for Q,(z) follow from Lemma 2. By (5)
Qn(2)F(2) = Pa(z) = Rn(2)

for all |z| < 1. If |Pa(2)| > c10 (J2]' TP~ A(q, B, l;))n with a suitable ¢;o we have
a contradiction with our hypothesis R(a,f,2) < |z|7*4 (a, B, %) This proves
Lemma 3 in the case |z| < 1.

Next we assume that a = f =1, z > 1. From the definition of P,(2) it follows
that

_ n- 1 ___T@ ' An(u) — An(t),
P.(z)=2z""'B, (;) , Ba(u)= e = O J, — w(t) dt.

If 0 < u < 1, we give the integral in the form (¥ < v < 15%)

say. For |I;| and |I3| we have the upper bound 2¢;1n?/v by Lemma 2. Further,
by the mean value theorem

uty
L= / Al (v)w(t) dt,

-y
where v = v(t) is some point between u and ¢. Here
! d 1(B,0) 8,0
4,(v) = =P - 20) = -2 (P,, , ) (1-2v),
and from Theorem 7.32.4 of [22] we obtain
IA;(v)' < Clznmax{2+B,2+C,%} < clznq+2.

The case z < —1 can be considered in an analogous way. Thus Lemma 3 is
true. O

On the properties of the coefficients of P, and @,

Let p be a prime and r € @, r # 0. As usual we define vy(r) by r = p*»(DR/S,
where (R, S) = (R,p) = (S,p) = 1. In the following we shall also need the notation

pe(i) = T p.

p|F
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Using this notation we see that the coefficients

«= ("))

1
Aq(2) = Z(—l)majz""j(z - 1)m—-l+j

3=0

of the polynomial

satisfy

1
€ WE- Ipp(i)pa(l - j)

where L = l.c.m.(F, H). Since

(8) Z and aj;€ j=0,1,...,1,

1
—_—77
Llpr(l)

Qn(z) =2z"™7'4, ( ) Z( 1)™aj(1 — z)™ 1,

i=0
it follows that
. _ g\ym—!
) Qn (';) € (;’;;—L—%z.
The polynomial A,(z) can also be given in the form

ntm—l

(10) An(x)= 30 &(l-2),
j=m—l

where
j—m+l

— n+m-—1I1—j+1
¢ = Z =™ Jaj—m+l—i( ; I )
i=min{0,j—m}
By (8) we have
(11) cj € 1 Z and c;€
1€ Tt  Hin (G —m + Dan(l) y
j=m-—-1,....n+m-—1

1
..___.._Z,
Liur(D)

Next we investigate the polynomial

P.(z) ="tm"!"1B, (%) = ntm-i-l I‘(b)g((z)— 5 / z1 n(t) w(t)dt.

z

By (10)

! An () A(t _ U S LT+ e b)
e e e R I Ml e

j=m-l =0
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where we have used the notation 7 = 1 — 1/z. Therefore we immediately obtain

n+m-—I{ J-1 .
—_ _ntm=i-1 ) sj=1m—i (C+1)...(C+1)
Pp(z) = -z Z c,Zz Tt D). cri D

j=m-l i=0

By the Gauss formula (see {12], p. 104, and [15])

—t, a (b—a)
o7y ( b 1) = @)
we get
Rl _(g/h=(g/h=1))
glg+h)...(¢+ (- 1)h) (g/h);
N : (D __g—h 1
=12 ()75 < awm®

where di(g,h) = l.em.{g,9 + h,...,g + (i — 1)h}. Since h and di(g, k) have no

common prime factors this implies

(C+1)...(C+1) R (s)
cle+1)...(c+i—1) € H"uH(i)di(gah)Z‘

Combining these facts we are led to the result

r 1
12 P,l-) € /A
@) P (D) € T e T o)

where H* denotes the denominator of h/H.
We now use (9) and (12) to obtain the following

Lemma 4. If

Qu = "L (D (n + m = Ddasmoi(g, b),

then
r

20Q. (5), P (5) ez

S

Approximation sequences

The above considerations are performed to find good approximation sequences
(gn,pn,rn) for F(r/s), i.e. to find integers gn, pn such that

r
@ F (’s‘) — Pn = Tn,

where r,, tends to zero as n — oo.
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In considering the general case we note that

norhy o < ut
BF < pr(n) < pp

and, by [1], Lemma 1,

1 Ao 1
nh_r}go;lndn(g,h)=m ; 7 = Ah).

(i,h)=1
We now use Lemma 4 to obtain the integers
r

02 =2Qn (5), Pa=WPa ().
By denoting

w(a, B) = LOH* A=y, A= e(1+A—aA®)
v(a,B) = Ir|**f=e4 (a,ﬁ, ;) »

= |pi+B g~ :
Wa,B) = Ir s R (2,8, %)

Qe 8) = w(e, B)v(a, B), R(e,B) = w(e, B)p(a, B),
we get, by Lemmas 1, 3 and 4, the following

(13)

Lemma 5. Let € > 0 be given.
(i) If |r/s] < 1 and R(a,B) < min{l,Q(e, )}, then the above gn,p. and
Tn = gnF(r/3) — pn satisfy
max{|pnl, |ga} < Q(a, B)1F",
R(a, )1 +™ < |ra| < R(a, )79
for all n > cy3.
(ii) If p is a prime such that p [fh and |r/s|, < 1, then

Iralp < erlrlSHA=E"

for all n > c¢y4.
(iii) Suppose that a = 8 =1. If r/s > 1 then
max{|pal, lgal} < (w(1, 1)Ir))*",
and if r/s < =1 and ;5 R(1,1,r/(r — 8)) < A(1,1,s/r), then
max{|pal; lga]} < Q(1,1)0+",
for all n > c¢i5.

Some determinants

In the archimedean case we have an asymptotic formula for the remainder term
T, in the lemmas above. On the other hand it seems difficult to obtain such a
result in the p-adic case. Therefore we need the nonvanishing of the determinant

— Qn(2) Py(2)
Balz) = Qn+1(2)  Pny1(2)

in the p-adic considerations.
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Lemma 6. If a = =1orl=m =n, then we have

_ n (b)"(c - b)" -n-—¢ n
A,,(z) —(—1) —m——( n+1 )22 .

Proof. Clearly An(z) is a polynomial in z of deg A,(z) < 2n. Since Qn(2)F(2) —
P,(z) = Rnp(z), we have

An(z) = Qni1(2)Rn(2) — Qu(2) Rata(2).

Thus ord,;=oAn(2z) > 2n and our lemma follows from (2) and (4). O

Proof of Theorem 1 and 1p

In the archimedean case we may use following well-known result (see e.g. [8],
Corollary 3.3). Let £ > 0 and y < 0 be given. Suppose that for each ¢ > 0 there
exists a constant cj¢ and rational integers pn,q, satisfying for all n > c¢;6 the
inequalities

1
'7; lnma'x{lqﬂlv lpﬂl} <z+eg,

1
y—e< ;lnlrn|<y+e,

where 7, = ¢ F(r/3) — pp. Then the number F(r/s) has an irrationality measure
m(F(r/s)) not greater than 1 — z/y.
If |z| < 1, then we have

R(1,1,2)=(1+vV1-2)"% 4 (1,1, %) _(tvi-2f “’Izll_zz

Therefore, if z = r/s, then (13) implies
QL1 =w(1,1) (Vs +vs—71)’,
2
R(1,1) = w(1,1) (ﬁf/———s———;) =w(1,1)(Va-vs=T1)".

The assumption LH*uppg+e*® (/s — /s —rtz < 1 means that R(1,1) < 1.
Thus the use of Lemma § gives us an upper bound

InQ(1,1)
" InR(1,1)

for the irrationality measure of F(r/s). This proves our Theorem 1.
To give our p-adic results we prove the following simple lemma.



196 HEIMONEN ET AL.

Lemma 7. Let § € Q, be such that there exists a sequence (gn,pn) of integers
satisfying for all n > ¢17

max{|gn|,[Pnl} S Q(P)", Pnlnt1 = gnPns1 #0, |ralp < c1R(p)",
where r, = ¢n0 — pn. If Q(p)R(p) < 1, then 6 has an irrationality measure

m In R(p)
W0 < B RG) + m Q)

Proof. We shall find a lower bound for |L|, = |Q8 — P|,, where (@, P) is a non-
trivial pair of integers with H = max{|Q|, |P|}. Since Q(p)R(p) < 1, the inequality

(14) 5%,— < (Q(p)R(p))"

has only a finite number of solutions n € IN. Let @ denote the greatest of these.
We choose H large enough, say H > Hy, to satisfy @ > c17. From the assumption
Pngn+1 — gn+1Pn 7 0 it follows that there exists a natural number N either = 741
or = 71 + 2 such that

A=

aN —pwi_‘qn N

Q -P|7|Q@ L

is a non-zero integer. Hence
1<AllAl, < 2HQ(P)N lgvL - Qrl, -
By our choice of N we have
2HQ(p)" |Qrn|, < 201 H(Q(p)R(p))V <1,

and therefore, by (14),

> 1 H™ 1+ @)/ In(QPIR())

1
> D

This proves our lemma. O

By (ii) and (iii) of Lemma 5 we may use Lemma 7, where

Q) = (1, D) = (L ppun-®r) ™, R(p) = 2.

Since € > 0 may be chosen arbitrarily small, our Theorem 1p follows immediately.
The assumption r/s > 1 is of course not necessary. To consider other cases we
only have to use part (i) or the second part of (iii) of Lemma 5.

A common factor of the coefficients of P, and @,
It turns out that in many cases the coeflicients of the polynomials P, and Q,,

have a big common factor which must be eliminated to get sharp irrationality
measures. This kind of idea appears already in Siegel’s [21] paper, and it was used
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in an ingenious way by Chudnovsky [8] to consider certain binomial series, see also
[11]. Later this idea combined with Padé-type approximations is used e.g. in [13],
[14] and [20]. We shall now introduce a general criterion (see Lemma 10 below) to
find a common factor of the coefficients of P, and @, and then this criterion will
be applied to the consideration of the logarithms. Using (2) and the definition of
Qx(z) we see that each common factor of

(15) (ntB)(";sz) i=0,1,...,1,

is also a common factor for all the coefficients of @, and P,. Therefore we shall
find out which primes p > c194/n divide the numbers (15). It was Chudnovsky’s
(8] observation that only these big primes are really important here. To find a
criterion for primes dividing the numbers (15) we first give two lemmas.

To state our lemmas we use for a rational number r the notations p|r or r =0
(mod p), if vp(r) > 1. Further, if v,(r) > 0, then there exists a unique 7 €
{0,1,...,p — 1} satisfying ¥ = r (mod p).

Lemma 8. Let r = R/S € Q, (R,S)=1,5 > 0,1 € IN, and let p be a prime
satisfying p [S, p* > max{i, 1n<1a2(.{|R+ (j =1)S|}}. Let i = Ap+i. Then
<j<i

vp((r)i)=A+1 ifandonlyif =r <.

)

Proof. First we suppose that 0 < i < =r. Then

Further
14

if and only if ¥ < 1.

vp ((r)i)) = vp (R(R+5)...(R+ (i - 1)5))
=v,(R(R+S)...(R+(4p - 1)S))
+vp (R+ApS)...(R+(Ap+i—-1)S)) =A+0=4

because R+ (—r)S = 0 (mod p). On the other hand we have
vp (R+ ApS)...(R+ (Ap+:1-1)S)) =1,

if =7 < 1. Thus we have v, ((r);)) = A + 1 in this case. This proves the first part
of our lemma.
To prove the second part we note that

()=t

Then vp ((=7)i)) = A+1 if and only if ¥ < 7 by the above consideration. Moreover
vp(i!) = A, which completes the proof. O
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Lemma 9. Let r; = R1/S1, r2 = Ry/S, denote rationals satisfying (Ry,S1)

(R2,S2) =1, 1 > 0 and S; > 0, and let p be a prime satisfying vp(ry) >
0, vp(ry) > 0 and

p*> max{l,lrg?gl{iRl + (G -DS1LIR+ (G - 1)52”} .

If

(16) P14+ +1<1,

()( ) i=0,1,...,L

Proof. Let us suppose that | < 7. Then we have, by our assumption (16),

then

T+1<FH +7+1<1<0
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