C‘ U q NIEDERSACHSISCHE STAATS- UND
-~ L UNIVERSITATSBIBLIOTHEK GOTTINGEN

Werk

Titel: Elemente der Mathematik

Verlag: Birkhauser

Jahr: 1969

Kollektion: Mathematica

Digitalisiert: Niedersachsische Staats- und Universitatsbibliothek Gottingen
Werk Id: PPN378850199_0024

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN378850199_0024

Ubergeordnetes Werk

Werk Id: PPN378850199
PURL: http://resolver.sub.uni-goettingen.de/purl?PPN378850199

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational,
research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections
are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission
from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online
system to access or download a digitized document you accept the Terms and Conditions.

Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further
reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the
source.

Contact

Niedersachsische Staats- und Universitatsbibliothek Gottingen
Georg-August-Universitat Gottingen

Platz der Gottinger Sieben 1

37073 Géttingen

Germany

Email: gdz@sub.uni-goettingen.de


mailto:gdz@sub.uni-goettingen.de

ELEMENTE DER MATHEMATIK

REVUE DE MATHEMATIQUES ELEMENTAIRES
RIVISTA DI MATEMATICA ELEMENTARE

REDAKTION:

E.TROST - P. BUCHNER

24. JAHRGANG
1969

BIRKHAUSER VERLAG BASEL



INHALTSVERZEICHNIS

Abhandlungen Seite (Nr.
BeHnzAD, M., and CHARTRAND, G.: Line-Coloring of Signed Graphs . . . . . 49 (3)
Bieri, H.: Extremale konvexe Rotationshalbkérper im V, F, M-Problem des Rs . 121 (6)
BoTTEMA, O.: A Theorem of BOBILLIER on the Tetrahedron . . . . . . . . . . . 6 (1)
DEBRUNNER, H. E.: Zerlegungsihnlichkeit von Polyedern . . . . . . . . . . . . 1 @
HarBorTH, H.: Diagonalen im reguldaren n-Eck . . . . . 104 (5)
HEeicL, F.: Elementare Ableitung der Laplaceschen Formel der Wahrschemhchkelts-
rechnung . . . 53 (3)
Hew, E., und KRAUTWALD W Kon]uglerte Durchmesser und extremale Vlerecke
konvexer Bereiche . . . . 97 (5)
INEICHEN, R.: Anschauliche Behandlung eines Verzwexgungsprozesses (branchmg
process) . . . o010
KRrevszig, E.: Dle Realtell- und Imagmartellﬂachen analytlscher Funktlonen L. 25 (2
MaLy, J.: Allgemeine Gestalt einer geradenerhaltenden Abbildung . . . 57  (3)
S1EBER, H.: Uber das invariante Rechtwinkelpaar einer schiefen Affinitat und dessen
Zusammenhang mit der JakoBischen Konstruktion der Achsen einer Ellipse . . . 31 (2)
TAUBER, S.: On S¢ Functions . . . e e e e 85 (4)
ZEITLER, H.: Inhaltsmasszahlen fiir hyperbohsche Rotatmnskorper B < I )

Kileine Mitteilungen

ABRAMSON, M.: An Elementary Set Partition Problem . . . .. .. 128
BraNPAIN, M. E.: Sur ’équation diophantienne (#2—1)2+ 1)2 = (z2 1)2. L. 134
BorLoBAs, B.: k-Tuples of the First » Natural Numbers. . . . . 133
BREJCHA, J.: Die Wallaceschen Geraden und die Feuerbachschen Krelse in einem
Sehnenviereck . . . A S b |
CrLay, J. R.: A Note on Integral Domams that are not nght sttrlbutlve oo .40
Domiaty, R. Z.: Eine Bemerkung zum Verfahren von Leverrier . . . . . . . . . 35
FrLapt, K.: Zur Mébiusinvolution der Ebene . . . . [ 62
GOLDBERG, M.: Two More Tetrahedra Equivalent to Cubes by Dlssectlon ... 130
GUGGENHEIMER, H.: Bemerkung zur Aufgabe 493 . . . . . B
HaveL, V.: Eine Bemerkung iiber mehrdimensionale Axonometrlen Ce e ... 64
KanoLrp, H.-J.: Uber «Super Perfect Numbers» . . . B 1
Kanorp, H.-J.: Ein einfacher Beweis der Stirlingschen Formel e e e e e o109
Lajos, S.: On (m, n)-Ideals in Subcommutative Semigroups . . . . - )
MAKOWSKI, A.: Angles of a Parallelogram with Vertices in Lattice Pomts oo .. 114
MaxowsKi, A.: On Hall’s Third Definition of Group . . . . . . . . . . . .. . 115
SURYANARAYANA, D.: Super Perfect Numbers . . . . . 16

‘WiAiscHE, H.: Eine Bemerkung zur eindeutigen anfaktorenzerlegung in Halbgruppen 37

Ungelioste Probleme

Hinter der Nummer des Problems steht die Seitenangabe in Klammer Nr. 6 (126)

Aufgaben

Hinter den Nummern der Probleme steht die Seit be in Kla n

3383

=

o~~~
AW NNO

o~~~ o~
U 1 N U1 W W
Rad b B B I SRS s

—~ e~ o~
N
— —

Lésungen zu den Nummern : 564—567 (17) ; 569-572 (41) ; 573576 (65) ; 577-580 (90); 581584 (116);

545, 585-588 (136).

2ABY. 52FF



Inhaltsverzeichnis

Neue Aufgaben

Hinter den Nummern der Aufgaben steht die Seitenangabe in Klammern.

Seite (Nr)

Nummern: 589-592 (20); 593-596 (43); 597-601 (68); 602605 (93); 606-609 (117); 610-613 (139).

Bevichte und Mitteilungen

7. Osterreichischer Mathematikerkongress in Linz.

13. Mathematikgeschichtliches Kolloquium im Mathematlschen Forschungsmstxtut
Oberwolfach (Schwarzwald) . Ce

IMUK-Seminar in Echternach (Luxemburg)

Mitteilung der Redaktion .

Literaturiiberschau

Ar~oLD, B. H.: Elementare Topologie (J. M. Ebersold) . .

ATHEN, H.: Wahrscheinlichkeitsrechnung und Statistik (R. Inelchen) . .

ALBrECHT, R., LINDBERG, E., and Mara, W.: Computer Methods in Mathematlcs
(E. R. Brandli) .

BEHNKE, H., BERTRAM, G., COLLATZ L SAUER R und UNGER H Grundzuge der
Mathematik Band V (R. Ineichen) . .

BEeLL, S, BLuy, J. R, LEwis, J. V., and ROSENBLATT ] Introductory Calculus w1th
Algebra and Trigonometry (A. Hiusermann) .

BELL, S., BLuwm, J. R, LEwis, J. V., and ROSENBLATT, ] Modern Umver51ty Calculus
(R. Conzelmann) .

Boas, Mary L.: Mathematlcal Methods in the Physu:al Smences (Peter Fuchs)

BERGE, C.: Théorie des graphes et ses applications (S. Plccard)

BoL, G.: Projektive Differentialgeometrie (M. Jeger) .

BURCKHARDT, J. J.: Lesebuch zur Mathematik (Hans Loeffel)

BUSACKER, R. G., und Saaty, T. L.: Endliche Graphen und Netzwerke (E Trost)

CHINN, W. G., and STEENROD, N. E.: First Concepts of Topology (J. M. Ebersold)

CHUNG, K. L.: Markov Chains with Stationary Transition Probabilities (H. Bithlmann)

CrowE, M. J.: A History of Vector Analysis (E. Trost) e

DewMING, W. E.: Some Theory of Sampling (Hans Loeffel) . .

FfLix, LucienNE: Elementarmathematik in moderner Darstellung ( M ]eger)

FfLix, LuciENNE: Géometrie. Terminales C et T (S. Piccard)

FickeN, F. A.: Linear Transformation and Matrices (W. Holenweg)

FourGeaup, C., et FucHs, A.: Statistique (S. Piccard) e

FrREUDENTHAL, H.: Educational ‘Studies in Mathematics (E. Trost) .

GABRIEL, P., and ZisMAN, M. : Calculus of Fractions and Homotopy Theory (H Vogele)

GNEDENKO, B. W., BELJAJEW, J. K., und SoLowjEw, A. D.: Mathematische Methoden
der Zuverlissigkeitstheorie (R. Ineichen)

GUGGENHEIMER, H. W.: Plane Geometry and its Groups M ]eger)

HaDLEY, G.: Introduction to Probability and Statistical Decision Theory (H Loeffel)

HavLBErsTAM, H., and INGRAM, R. E.: The Mathematical Papers of Sir William Rowan
Hamilton (Herbert Gross) . . .

HaMEL, G.: Theoretische Mechanik (J M Ebersold) .

HarRrARy, F., NorMAN, R. Z., et CARTWRIGHT, D.: Introductloné,la théorle des graphs
orientés (S. Piccard)

HEeLLER, R.: Manuel de statxst!que blologlque (R Inelchen) .

Hermes, H., und MITTENECKER, E.: Enzyklopddie der gexsteswxssenschafthchen
Arbeitsmethoden 3. Lieferung (R. Ineichen) . . .

HiLBerT, D., und AcKkERMANN, W.: Grundziige der theoretlschen Loglk (P Fuchs) .

Hirton, P. J.: Studies in Modern Topology (J. M. Ebersold) . e e e e e e

24

46
48
144

69
142

144

142

22

22
70
96

143

118

119
72

120

118

141
44

142

140
96
45
20

69
93
23

46
69

143
120

95
95
141

@)

(2)
)
©)

P
CICICICICICIC K AN

ERESISR
2o

®3)
@)

2
®3)

(6)
)

“
)
(6)



4 Inhaltsverzeichnis

Hortes, H.: Digitalrechner in technischen Prozessen (E. R. Brandli) . ..

Jonnston, J. B., PrIicg, G. B, und vaN VLECK, F. S.: Sets, Functions and Proba-
bility (R. Ineichen) .

KAUFMANN, A.: Introduction a la combmatorlque en vue des apphcatlons (S Plccard)

KeMENY, J. G., and Kurtz, T. E.: Basic Programming (E. R. Brandli) .

KERrTEsz, A.: Vorlesungen iiber Artinsche Ringe (E. Trost)

KLINE, M.: Mathematics in the Modern World (E. Trost) .

KREIN, S. G., und Uscaakowa, V. N.: Vorstufe zur hoheren Mathematlk (R Inelchen)

Kuratowski, K.: Introduction a la théorie des ensembles et a la topologie (S. Piccard)

LABOUREUR, M., CHossAT, M., et Carpor, C.: Cours de calcul mathématique moderne
(S. Piccard) .

LENSE, J.: Analytxsche pr01ekt1ve Geometrle (G Aeberh) .

MasseRra, J. L.: Linear Differential Equations and Function Spaces (A Muller)

MUNROE, M. E.: Ideas in Mathematics (E. Trost) . .

PeTROVSKI, I. G.: Ordinary Differential Equations (A. Hausermann)

Ranporrs, J. F.: Calculus — Analysis — Vectors (R. Conzelmann).

R#vesz, P.: Die Gesetze der grossen Zahlen (R. Ineichen) .

ScHUBERT, H.: Topologie (J. M. Ebersold) .

Sz&sz, G., GEHER, L., KovAcs, 1., and PINTﬁR L Contests in ngher Mathema‘ucs
(E. Trost) . . . . R

Tierz, H.: Lineare Geometrle (M ]eger)

Youse, B. K.: Algebra and the Elementary Functlons (W Holenweg)

ZDM - Zentralblatt fiir Didaktik der Mathematik (R. Ineichen)

Nachdruck verboten
Druck von Birkhiuser AG, Basel. Printed in Switzerland
Birkhéduser Verlag Basel, 1969
©

Seite (Nr.)

95

46
45
70
119
71
94
143

119

21
45
21
22
144
141

72
43

140

)
(2)

e~~~
QY P W U W

QO == N = WwWWn

AW N W
= ==



ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare
Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

Publiziert mit Unterstiitzung des Schweizerischen Nationalfonds
zur Forderung der wissenschaftlichen Forschung

El. Math. Band 24 Heft 1 Seiten 1-24 10. Januar 1969

Zerlegungsihnlichkeit von Polyedern

Herrn Huco HADWIGER in Dankbarkeit zum 60. Geburtstag gewidmet

1. Ubersicht

Die Zerlegung von Polyedern in polyedrische Teilstiicke spielt in der Geometrie
seit je eine wichtige Rolle. Aber erst im Zusammenhang mit einer kritischen Be-
griindung der Inhaltslehre ist diese Operation selber Gegenstand mathematischer
Uberlegungen geworden. So hat auf HILBERTS Anregungen hin DEHN [1] zu Beginn
dieses Jahrhunderts Ansdtze zu einer Theorie der Polyederzerlegung geliefert, indem
er notwendige Bedingungen fiir die Zerlegungsgleichheit von Polyedern herleitete
und als deren spezielle Anwendung nachwies, dass ein reguldres Tetraeder mit keinem
Wiirfel zerlegungsgleich ist. Diese Bedingungen sind, besonders durch SyDLER [3],
erfolgreich weiteruntersucht und als hinreichend fiir Zerlegungsgleichheit nachge-
wiesen worden. Die speziellen Gegebenheiten iiberschreitend, hat HADWIGER eine
Anschaulichkeit und Allgemeinheit in besonders gliicklicher Weise verbindende
Theorie der Zerlegungsgleichheit k-dimensionaler Polyeder beziiglich ausgewihlter
Bewegungsgruppen begriindet. Ein m. W. bisher unbeachteter reizvoller Sachverhalt
bei der Zerlegung zweier Polyeder in paarweise dhnliche Teilstiicke schafft die Ge-
legenheit, die von HADWIGER entwickelten und in [2], Kap. 1 und 2, dargestellten
Methoden soweit vereinfacht anzuwenden, dass unsere Darlegung fiir dreidimensionale
Polyeder in sich abgeschlossen und ohne spezielle Vorkenntnisse verstdndlich ist,
zugleich aber doch wesentliche Ziige der Hadwigerschen Zerlegungstheorie zur Ent-
faltung bringt. Es handelt sich um die folgende, vorerst iiberraschende Bemerkung:

Satz: Zwei beliebige Polyeder A bzw. B konnen stets so im Sinne der Elementargeometrie
in endlich viele Teilpolyeder A, ..., A, bzw. By, ..., B, zerlegt werden, dass diese
paarweise, je A, mit B, fiir i = 1, ..., n, dhnlich und dhnlich gelegen sind.

Dieser Sachverhalt gilt fiir eigentliche Polyeder des k-dimensionalen euklidischen
Raumes. Den ebenen Fall & = 2 illustriert Figur 1 mit der Zerlegung eines Quadrats
und eines parallel gelagerten gleichseitigen Dreiecks in je 6 paarweise dhnliche Stiicke.
Wir fithren den Beweis des Satzes, um nicht weit ausholen zu miissen, nur fiir drei-
dimensionale Polyeder, doch iibertrigt er sich unter Verwendung der in (2], Kap. 1,§3,
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zusammengestellten Eigenschaften k-dimensionaler Polyeder ohne jede wesentliche
Anderung auf den Fall von Dimensionen % + 3.

1 2
3 I
il k ]

Figur 1

2. Zerlegungsihnlichkeit

Wir legen vorerst die Bezeichnungen fest und erinnen an einige in der Zerlegungs-
theorie niitzliche Definitionen. Durchwegs betrachten wir Polyeder A4, B, ... des
dreidimensionalen euklidischen Raumes R3, dessen Punkte wir mit ihren Ortsvektoren
# beziiglich eines festgewdhlten Ursprungs identifizieren. Polyeder sollen als « Kérpery,
nicht als Seitenflichen- und Kantengeriist aufgefasst werden, und sollen «eigentlich»
sein, d.h. nur aus nicht entarteten Teilstiicken bestehen. Als Polyeder bezeichnen wir
demgemiss Punktmengen in R3?, welche sich als Vereinigung endlich vieler abge-
schlossener, nicht entarteter Tetraeder gewinnen lassen. Eine ausgezeichnete Rolle
wird in unserm Zusammenhang der Normwiirfel W spielen, das ist ein festgewahlter
Wiirfel von fixierter Kantenlinge und Position. Ist 4 ein Polyeder und ¢ ein beliebiger
Vektor des R3, so erhalten wir durch B = {t 4+ p | p € A} ein zu A4 translationsgleiches
Polyeder. Der elementargeometrischen Zerlegung eines Polyeders in Teilpolyeder
entsprechend filhren wir eine kommutative und assoziative Summenbildung ein:
sind 4,, ..., 4, Polyeder, deren offene Kerne A9, ..., AY paarweise disjunkt sind,
so heisst die Vereinigungsmenge der Mengen 4,, ..., 4, Summe der 4; und wird mit
Ay + -+ + A, bezeichnet; die Nebenbedingung beztiglich der offenen Kerne wird bei
Verwendung der +-Schreibweise stets stillschweigend als erfiillt vorausgesetzt. Ist
dariiber hinaus jedes der Polyeder 4,, .., 4, zu einem festen Polyeder 4 translations-
gleich, so schreiben wir auch # - A an Stelle von 4, + -+ + A,; die genaue rdumliche
Lage der Teilpolyeder bleibt bei dieser Anschrift als im vorliegenden Zusammenhang
belanglos dahingestellt, einzig die Nebenbedingung beziiglich der offenen Kerne wird
wiederum als erfiillt vorausgesetzt. Von » - 4, der n-fachen Auslegung von 4, ist die
Schreibweise fiir das mit beliebigem reellen « > 0 bildbare dilatierte Polyeder « A
= {a p | p € A} zu unterscheiden.

Wir betrachten nun die Gruppe Iy der Streckungen des Raumes von individuellen
Zentren aus, also die Gruppe der Abbildungen ¢: R® - R3, welche durch ¢(p)
= o p + a mit beliebig widhlbaren « > 0 und a € R? gegeben sind. Die Gruppeneigen-
schaft ist leicht zu verifizieren. Fiir ¢ € I'y bezeichnet ¢(4) = {p(p) | p € A} ein zum
Polyeder A Ghnliches und dhnlich gelegenes Polyeder. Wir nennen zwei Polyeder 4
und B zerlegungsihnlich, geschrieben A ~ B, wenn es eine natiirliche Zahl », Polyeder
Ay,...,A,, By, ..., B, und in der Gruppe I'y Abbildungen ¢,, ..., g, so gibt, dass
A=A4,++A4, B=B;+++ B,und B, =¢,(4,) firi =1, ..., n gilt.
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Aus dieser Definition entnimmt man, dass die Zerlegungsihnlichkeit eine mit der
Summenbildung vertréigliche Aquivalenzrelation ist, so dass also folgendes gilt:

A~A; ausA ~Bfolgt B~A; ausA ~Bund C ~Bfolgtd ~C; (1)
aus C; ~D; fir j=1,...,m folgt C;+-++C,~D,++++D,, (2

und insbesondere
ausC ~Dfolgtm-C~m-D. (2"

Die Verifikation dieser nachfolgend ohne spezielle Verweisung verwendeten Beziehun-
gen geht einzig fiir die Transitivitdt iiber die Substitution der Definitionsgleichung
und die Berticksichtigung der Gruppeneigenschaft von I'y hinaus: 4 ~ B, C ~ B
bedeutet 4 = 4, + -+ A4,, B=B,+ '+ B,= By + -+ B,, und C = C;
+ -+ C,, mit B, =g¢,(4,) und B; = y;(C;); nach eventueller simultaner Weiter-
unterteilung darf man annehmen, alle beteiligten Stiicke 4;, B;, Bj und C; seien
konvex; man bilde nun die Polyeder B; N B;, soweit sie nichtleer und nichtentartet
sind, und setze 4;; = ¢;* (B; N B)), C;; = ;"' (B; 0 B;); dann ist A die Summe aller
dieser 4;;, C die Summe aller dieser Cj;, und es gilt C;; = ;' ¢,(4,,), also 4 ~ C.

Da Iy die Translationsgruppe umfasst, ist die Zerlegungsidhnlichkeit eine Ab-
schwédchung der von HADWIGER eingehend untersuchten translativen Zerlegungs-
gleichheit =&, bei welcher an die Stelle von I'y die Translationsgruppe I tritt und fiir
welche die Regeln (1) und (2) (mit ~ anstatt ~) genau gleich herleitbar sind. Wir
vermerken diesen Sachverhalt symbolisch durch die Aussage

aus A=~ B folgt A~B. (3)

Anderseits enthilt I'y die Dilatationen, so dass
xd~A fir a>0 ()
gilt. Wir formulieren nun drei tieferliegende Eigenschaften der Zerlegungsidhnlichkeit:
aus A+C~B+D und C~D folgt A ~B (Subtraktionseigenschaft); (5)
aus m + A ~ W folgt A ~ W (Divisionseigenschaft); (6)
esgilt A ~ W fiir jedes Polyeder 4 . (7)

Die letzte Eigenschaft (7), in welcher W wie in (6) den Normwiirfel bezeichnet, besagt
in Verbindung mit der Transitivitit, dass je zwei beliebige Polyeder zerlegungsdhnlich
sind. Die Richtigkeit des eingangs formulierten Satzes wird also mit dem im nichsten
Abschnitt gefiihrten Beweis fiir (5), (6) und (7) bestétigt sein.

3. Beweisfiihrung

Wir bezeichnen mit P, die Menge aller Polyeder des R3, welche sich als Summe
endlich vieler Parallelotope darstellen lassen, mit B, die Menge aller Polyeder des R?,
welche sich als Summe endlich vieler Prismen mit dreieckigen Grundflichen dar-
stellen lassen, und mit B, die Menge aller Polyeder, welche sich als Summe endlich
vieler Tetraeder darstellen lassen. Die erwihnten Prismen diirfen schief sein, und
zwischen den Grundflichenstellungen der verschiedenen Summanden braucht keine
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Beziehung zu bestehen. Weil jedes Parallelotop in Prismen der genannten Art und
jedes Prisma gleich wie jedes Polyeder in Tetraeder zerlegbar ist, gilt By= B, = Py,
und B, ist die Menge aller Polyeder des R®. Unserm Beweis liegt nun ein von HaD-
WIGER in seiner Bedeutung erkannter Zusammenhang zwischen Dilatation und
Zerlegung zugrunde, ndmlich:

Ist m natiirlich, 1€ {1, 2} und 4eP,, sogilt
mA=xmi-A+ A, fiir passendes 4,€ P, ;. (8)
Die zwei Fille ¢ = 1 und ¢ = 2 werden fiir m = 2 durch Figur 2 dargestellt. Da sich
jedes 4 € %B; als Summe von Tetraedern bzw. Prismen mit dreieckiger Basis schreiben

lasst, ergibt die analoge Figur fiir beliebiges natiirliches m in Verbindung mit der (2)
entsprechenden Relation fiir die translative Zerlegungsgleichheit den allgemeinen

Nachweis fiir (8).

i=1 i=2

Figur 2

Wir fithren nun die Beweise fiir (5), (6) und (7) durch Induktion nach abnehmendem
1 fiir den Fall 4, Be ;.

Fiir 4, B € B, folgen alle drei Behauptungen aus der Aussage, dass jede Summe
endlich vieler Parallelotope zum Normwiirfel zerlegungsdhnlich ist. An diesen wohl-
bekannten Sachverhalt erinnert Figur 3 durch die Darlegung der Methode, a) wie die
Grundfliche eines Parallelotops in ihrer Ebene zu einem Rechteck, b) wie ein Recht-
eck mit Seitenverhiltnis 1/4 << A < 4 mit einer an den Gnomonsatz ankniipfenden
Zerlegung zu einem parallel gelagerten Quadrat und c) wie ein Quadrat mit einer an
den bekannten Zerlegungsbeweis des pythagordischen Lehrsatzes anschliessenden

. Konstruktion zu einem Quadrat vorgeschriebener Basisrichtung translativ zerlegungs-
gleich erwiesen wird. Durch iterierte Verwendung dieser Zerlegungen fiir Prismen iiber
den gezeichneten Polygonen lassen sich, wie man sich leicht vollstindig iiberlegt,

- Parallelotopsummen in Summen von parallel zum Normwiirfel gelagerten Wiirfeln

verwandeln, und unter anschliessender Beiziehung der Dilatation erweist sich jede
solche Summe als mit einem Quader und dieser wiederum mit dem Normwiirfel zer-
legungsidhnlich. Wir vermerken noch den nachfolgend stillschweigend verwendeten

Spezialfall m « W ~ W. ”

Nun nehmen wir induktiv an, es sei ¢ < 3, fiir Polyeder 4, B € B,,, seien (5), (6)

und (7) schon als richtig erwiesen, und gegeben seien jetzt Polyeder A, Be B,,

welche die Voraussetzungen von (5), (6) bzw. (7) erfiillen.
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Nachweis von (5): Es gilt a) B ~2 B ~ 2i- B + B, fiir passendes Bye P, ,,;
entfernt man aus B, 2’ geniigend kleine, paarweise disjunkte, zu D dhnliche Polyeder
und benennt das Restpolyeder mit Q, so wird dies formelméissig durchb) By~2i-D+ (Q
beschrieben. Substitution der Beziehung b) in a) gibt unter Beriicksichtigung der
Voraussetzung und der Induktionsannahme die Schlusskette ¢) B ~2i- B + B,
~2-B+2-D+Q~2-(B+D)+Q~2-(A4+C)+Q~2-4+21-C+¢Q
~2-A4A4+2-D+Q~2-A+By~20-A+W~2i-A+ Ay ~24 ~4, wo
Ay € B,,, ein Polyeder ist, fiir welches 2 4 ~ 2i - A + A, gilt. Da ~ eine Aquivalenz-
relation ist, besagt ¢) auch 4 ~ B, wie behauptet.

/’/7\

a)

o777 ,

| ~

| SN 2

7 //
2 3 rad 3
b)
G145
3 ] 8
4 7 !
2 4 7
) 5 f
g2 1
2
8 3 9
7 4 3\ 8

615

¢)
Figur 3

Nachweis fiir (6): Aus m -+ A ~ W folgt mit (8) und mit der auf 4, angewandten
Induktionsvoraussetzung A ~mA~mi+ A+ Ag~mi-1. (m-A)+W~mi-V- W+W
~ W, wie behauptet. ~

Nachweis fiir (7): Gilt 2 4w 2 - A + A, mit 4,€ P;,, gemiss (8), so folgt mit
der Induktionsvoraussetzung die Schlusskette (2 —1)- A+ W+ 4 ~21- A+ W
~2 A+3 W~2A+Ag+2 - W~2A4+2-W~2-W+ A.Mit den schon
bewiesenen Eigenschaften (5) und (6) folgt bei Subtraktion von W 4 A4 an beiden
Enden dieser Kette vorerst (2! — 1) - A ~ W und daraus 4 ~ W.
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Nach zweimaliger Anwendung des Induktionsschrittes erhalten wir die Giiltigkeit
von (5), (6) und (7) fiir beliebige 4, B € ,, also fiir beliebige Polyeder, womit die
ausstehenden Beweise vollstindig erbracht sind. H. E. DEBRUNNER, Bern
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A Theorem of BOBILLIER on the Tetrahedron

1. Almost one and a half centuries ago BOBILLIER [1] gave the following theorem:
any plane through the midpoints of two opposite edges of a tetrahedron divides it in two
parts of equal volume. This statement may be found in some texts for secondary
schools and in books of higher level such as MOLENBROEK [2], HADAMARD [3], HoLz-
MULLER (4], ALTSHILLER-COURT [5] and the Exercices of F.G.M. [6]. The last two
authors add a generalization on which we will return at the end of this paper.

S

S

Ay
Figure 1

We consider (Fig.1) an arbitrary transversal P Q of the opposite edges 4, 4, and
Az A, of the tetrahedron 4, 4, 44 4, and study the ratio of the volumes of the two
parts in which it is divided by a variable plane « through P Q. P is given by the ratio
A P:PAy=pand Q by 430:Q A, = ¢, so that p > 0, ¢ > 0. Two sets of planes o
have to be considered, one consisting of planes (such as in Fig.1) which intersect the
edges 4, Agand 4, 4,in S, and S, respectively; the other set consists of planes having
points of intersection S; and S; with 4, A, and 4, 4,. We consider for the time being
the first set; a plane of this set is given by-the position of S, that is by 4, S;:5; 45 =
x, x =0. R
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S; Q and S, P have a point of intersection S, lying on the line 4, A,. MENELAUS’
theorem, applied to the triangle 4, A5 A, gives us

SA;:SA4,=¢qx:1. 1)

If ¢ x > 1 we have the situation as shown in Fig. 1, S lying on the extension of 4, 4,;
for ¢ x = 1 S is at infinity and for ¢ x <C 1 S is on the extension of 4, 4,. In all three
cases the following derivation is essentially the same. If we apply MENELAUS to the
triangle 4, A, A, we obtain

Ay Sp: Sy Ay =pigx. (2)

One of the parts in which « divides the tetrahedron is the polyhedron 4, PS; 4,0S,,
which is the difference between the tetrahedra S 4; P S, and S 4,Q S, having
respectively the trihedra 4, and 4, in common with 4; 4, A; 4,. If the volume of the
latter is unity, the volume J, of 4, P S; 4, Q S, is therefore

Jo=- 4% o _ b P 1

1 gx—1 x+1 p+1 gx—1 gx+p q+1 l 3)
@t NgR@rtp) -+ )W+ 1) ]
gx—1 P+ @+1gr+p) x+1)

As could be expected ¢ x — 1 is a factor of the numerator and the result is

a9+ D)2+ P+ 1)@+ x4+ (p+1)
T R s VN Py N 4)

The other part has the volume J, = 1 — J; and we obtain for the required ratio

I _ _p g0 () g Drt (o )
AT AR L U i o VY i ey AR )

So much for the first set of planes «. We denote the planes of the second set by the
ratio 4, S;:S; Ay =y, y = 0. The two sets have two planes in common: x = 0 and
y = 0, giving the plane 4, 4, Q and x = oo, y = oo the plane A, 4, P. It is obvious
that we obtain the ratio according to which the planes of the second set divide the
tetrahedron if we replace in (5) x by v and ¢ by ¢~1. Moreover we have to keep in mind
that “the’ ratio of two volumes is an ambiguous concept, because it can be inter-
changed with its inverse. As will be clear from the figure, in order that the ratio for
x = 0 and y = 0 be the same, we must take for the ratio of the second set

JolJi =g, b, 9) =0, b, g7 . (6)

By (5) and (6) for all planes « through P Q the ratio of the volumes is given. We remark
that f(oo, 9, q) = 9, g(oo, p, ¢) = 1/p, so that there is a discontinuity for the plane
through A4 4,. That is what we expect: if x goes from oo to 0 and then y from 0 to oo
we have at the end the same plane as at the start, but it has rotated through an
angle 7.

2. We discuss now our results (5) and (6).

For p = ¢ = 1 we see that f and g are independent of x and y, and each equal to
one. That is BOBILLIER’S theorem.
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If P does not coincide with the midpoint M of 4, A,, neither Q with the midpoint
N of A4 A,, then we may without any loss of generality suppose p > 1, ¢ < 1, because
this can always be arrived at by interchanging 4, and 4,, or 4, and 4, if necessary.
The derivative of f reads, if N(x) stands for the denominator of (5):
af(p, 4, %)

02 PN (p 4 1) (g DAl Dk DM Dk (1) ()

and its sign is therefore that of the last factor.
Hence, putting

X=0p—-1/1-9q), (8)
%, being a positive number, we have
a af(x d
d£>0 for 0=<x<x,, —%;;“—):0, f<0 for x > x,.

The function f is therefore increasing from the value f(0) = 1/g to its maximum

¢ —pa+3p-qg—1
—fp . 20-D+2(1-9-(-1(1-4g
¢ 20-)+2(0-g+@-1(1~-q
and then decreasing to f(oc) = p. The minimum value of f(x) being the smaller of the
numbers 1/¢ and p, each more than one, there is among the planes of the first set no
one which bisects the tetrahedron.

The derivative of f(y, p, ¢71) is obtained by replacing in (7) ¢ by ¢~ and is therefore
always positive; that means that f(y, , ¢~1) increases if y goes from zero to infinity.
The conclusion is that g(y, p, ) is a decreasing function of y, starting with the value g1
and ending with p~1. Hence there is one value of y, the positive root of the quadratic
equation g(y, p, g) = 1 for which the corresponding plane divides the tetrahedron in
two equal parts. We remark that

af0) _ @@+ 1y @p—-1) ag(0) _ @+ (-1 .

ax pq Tody p ¢ '

hence the derivation of our ratio is discontinous for « coincident with 4, 4, Q.

Summing up we have the following statements. If in the tetrahedron A, Ay A3 A,
we constder the pencil of planes o through the transversal P Q (Pon Ay Ay, Ay P:P A, =
p>1,00m Az Ay, A30Q0:Q0 Ay = q < 1), starting with the plane A3 A, Q, rotating it
around P Q through the angle 7t and ending therefore at the initial position, then the ratio
of the volumes of the parts of the tetrahedron (taken in a certain order) starts with the
value p, increases to the value m given by (9) and then decreases to the value p=1.

There 1s always one and only one plane through PQ which bisects the tetrahedron.

Independently of the order of the two parts the maximum of the ratio equals m
and the minimum is m~1.

The border cases p = 1 or ¢ = 1 are easily dealt with. Forp = ¢ = 1wehavem = 1.

3. An attractive generalization of BOBILLIER’s theorem given by LEVY [7] has-been
reproduced several times in the course of the years, inter alia by F.G.M. and by
A1rTSHILLER-COURT. It reads as follows: if a transversal P Q divides 4, A, and 43 4,

&)
l
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in the same ratio, then each plane through P @ divides the tetrahedron in the same
ratio. That would mean that f(x), given by (5) would be independent of x if p = ¢. This
is immediately seen not to be the case, f being a constant only if p = ¢ = 1. Therefore
the generalization can not be correct. If we check the proof given by the authors just
mentioned we see that they consider the two parts of the tetrahedron (Fig.1) as the
sum of 4;. PS;QS,and A4; 4,Q S, and that of 4,. PS;QS,and 4, 430 S;. The
first terms have the ratio 4; P: P A, = p. The second terms are tetrahedra which
have respectively the trihedra 4, and 4, in common with 4, 4, A; A,; hence their
ratio is

Ay S, A,Q | AySy | 439

A4A2 A4A3 ' A3A1 A3A4
that is for p = ¢ equal to

1 T 1 b
T+x p+1 T1+x 7

511 =1:p.

The second terms have therefore the same ratio as the first but unfortunately in the
wrong order, so that the conclusion is not valid. The generalization is obviously too
good to be true.

4. We consider in five-dimensional affine space a simplex 4, A, ... 44 and the
midpoints P;, P,, P; of three mutually skew edges 4; 4,, A3 44, 45 44 1f we intro-
duce barycentric coordinates x,(¢ =1, ..., 6), then P, = (110000), etc. Hence the
equation of any four-dimensional space V through P,, P, and P; reads

Ay (% — %g) + Ay (%3 — %) + A3 (%5 — %) = 0. (10)

The point of intersection of V' and the line 4; 4; will be denoted by S;;. Without loss
of generality we may suppose 4; > 0. Hence 4,, 4,, A; are on one side of V and 4,,
Ay, Ag on the opposite side. A point S, ; is on an edge if ¢ and j have different parity.
One of the two parts in which the simplex is divided by V is the polyhedron
A; A3 A5 S;j, 1 # § (mod 1), which is the sum of the three simplices

Al S12 S14 516 Sl.’i 515 4 A3 534 536 532 535 S31 ’ AS 556 552 554 551 553 . (11)

From (10) it follows that S;;, = (4,002, 00) and thus 4, Sy4: 4, 4, = A1 (A4 + 45);
furthermore S;3 = (—4,00 4, 00) and therefore A, S;3: 4, 43 = A;:(A4, — 4,). If the
volume of the simplex 4; is unity then that of the first simplex of (11) is

1 A A A A 1 2

1
2tk A M=k —d 2 (B (R
and as
24 24 A -
m-maE- T umma-n T a-nm-n 0
the sum of the three simplices (11) is seen to be 1/2. The argument can be applied to
any space with an odd number of dimensions. Hence we have proved the following
generalization of BOBILLIER's theorem: If in a space of (2 n — 1)-dimensions a simplex
A Ay ... Ay isgiven, P, (i = 1,3, ... 2 n — 1) being the midpoints of a set of n mutually
skew edges such as Aqy—y or(k =1, ... n), then all (co"?) (2 n — 2)-dimensional spaces
through P, divide the simplex in two parts of equal volume.

O.BotTEMA, Technische Hogeschool, Delft
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Anschauliche Behandlung eines Verzweigungsprozesses
(branching process)

Verzweigungsprozesse (branching processes) geben eine mathematische Darstel-
lung der Entwicklung einer « Bevélkerung» (population), bestehend aus irgendwelchen
Elementen, die sich nach Wahrscheinlichkeitsgesetzen fortpflanzen und nach Wahr-
scheinlichkeitsgesetzen sterben. Sowohl die Elemente dieser Gesamtheit als auch die
Art des Fortpflanzungsvorganges kénnen in sehr verschiedener Art gewihlt werden;
indessen diirfen sich die Glieder gegenseitig weder hemmen noch férdern. T.E. HARRIS
hat in den letzten Jahren in [2] eine zusammenfassende Theorie dieser Prozesse gege-
ben. — In den folgenden Zeilen soll fiir einen besonders einfachen Verzweigungsprozess,
den Galton-Watson-Prozess, zunichst ein Urnenschema entwickelt werden; aus die-
sem sollen in anschaulicher Weise einige Folgerungen gezogen werden, die nachher vor
allem auf das Problem des Aussterbens der Geschlechter angewendet werden.

1. Ein Urnenschema

Wir denken uns eine mit Kugeln gefiillte Urne. Jede Kugel trage eine nichtnegative
ganze Zahl z als Nummer; im {ibrigen seien alle Kugeln gleich und 0 < z < w. Die
Wabhrscheinlichkeit, aus der gut durchmischten Urne eine Kugel mit der Zahl z als

Nummer zu ziehen, sei p,. Es ist dann 2 p.=1,und esseip, # Ound p, # 1. Nun
werde folgendes Spiel gespielt: #=

1. Akt: Es wird eine Kugel gezogen und ihre Nummer z = z, notiert. Dann wird sie
zuriickgelegt, und die Urne wird wieder gut durchmischt.

2. Akt: Nun werden nacheinander z, Kugeln gezogen. Dabei legen wir jede Kugel,
nachdem wir ihre Nummer notiert haben, wieder zuriick und mischen, bevor die
nichste Kugel gezogen wird («Ziehen mit Zuriicklegen»). Wir bilden die Summe z, der
in diesem Akt notierten Nummern.

3. Akt: In analoger Weise ziehen wir jetzt z, Kugeln, wieder mit Zuriicklegen, und
bilden die Summe z4 ihrer Nummern, #sw.

Sobald eine der Summen z; = 0 ist, brechen wir das Spiel ab; wir setzen in nahe-
liegender Weise in diesem Falle 2,,, =0fir £=1,2,3,....

Wir stellen jetzt die Frage: Wie gross ist die Wahrscheinlichkeit g,, dass z, = 0
ist? g, ist also die Wahrscheinlichkeit dafiir, dass unser Spiel spdtestens mit dem n-ten
Akt abbricht.
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2. Die Berechnung von ¢,

Natiirlich ist g, = p,. Wie gross ist g, fiir » > 1? Wir kénnen diese Wahrschein-
lichkeit rekursiv berechnen, indem wir die nachfolgenden Ereignisse E,, E;, E,, ... E
betrachten, die sich alle gegenseitig ausschliessen:

E,: Es wird im ersten Akt eine Kugel mit der Nummer 0 gezogen. Esist also z; = 0,
und das Spiel bricht bereits mit dem ersten Akt ab: P(Eg) = ,.

E,: Es wird im ersten Akt eine Kugel mit der Nummer 1 gezogen, und das Spiel
bricht spitestens mit dem n-ten Akt ab. Es ist also z; = 1. Wenn wir nun im zweiten
Akt 1 Kugel ziehen, so kénnen wir diese Fortsetzung des Spieles als Beginn eines
neuen Spieles betrachten; dieses neue Spiel soll nun aber bereits nach spitestens
(n — 1) Akten abbrechen. Deshalb ist P(E;) = p,q, _ ;.

E,: Es wird im ersten Akt eine Kugel mit der Nummer 2 gezogen, und das Spiel
bricht spitestens mit dem n-ten Akt ab. Es ist also 2, = 2. Wenn wir nun im zweiten
Akt 2 Kugeln ziehen (mit Zuriicklegen!), so kénnen wir diese Fortsetzung unseres
Spieles als Beginn von zwei neuen Spielen betrachten, die wir uns der Einfachheit
halber auch an zwei Urnen der oben beschriebenen Art fortgesetzt denken kénnen;
beide Spiele sollen nun aber bereits nach spatestens (# — 1) Akten abbrechen. Somit:
P(Ey) = po 45 _ .

Analog definieren wir die weitern Ereignisse; E; bedeutet also fiir 0 < j < w: Im
ersten Akt ergibt sich 2z; = 7, und die Fortsetzung des Spieles betrachten wir als Beginn
von j neuen Spielen, die wir uns auch an 7 Urnen der obigen Art fortgesetzt denken
kénnen und die alle nach spétestens (» — 1) Akten abbrechen sollen. Also ist P(E;) =
Di@n 1

Wir erhalten somit

2]

[

qi=po und fir n>1: g, =3 P(E)='p;q 1. (1)
-0 i-0

Mit welcher Wahrscheinlichkeit wird unser Spiel im Laufe der Zest iiberhaupt einmal
abbrechen ? Um diese Frage zu beantworten, betrachten wir die durch (1) gegebene

Folge ¢4, 93, ¢, - - -:

7 =120
Ge=tottrqi T D:i Fhqi o +Hp.q = flg)
gs = po + P1 92 +qu§ +Paqg +o b, g = flga)

Die Untersuchung der Frage, mit welcher Wahrscheinlichkeit unser Spiel im Laufe
der Zeit abbricht, lduft nun auf die Untersuchung von’}i_gnooqn hinaus. Aus (2) folgt
zundchst

Po=01 <flg) =9 <flg)) = s < -+ <fgu-1) = 0 <f@) = Gus1 <+ (3)

die Folge der g, ist also monoton wachsend. Da die ¢, Wahrscheinlichkeiten darstellen,
ist sie auch nach oben beschrinkt. Somit existiert der Grenzwert ¢ dieser Folge, und
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es ist
¢g= lm g¢,=lim g, ,) oder g¢=fg).

Die Wahrscheinlichkeit q, dass unser Spiel im Laufe der Zeit abbrichs, ist somit ge-
geben als eine Losung der Gleichung

*=f(¥) = po+ 1%+ pax® + p3x®+ ... + p, 2" . 4)

3. Die Berechnung von ¢q

Gleichung (4) hat als eine Wurzel sicher 1, da nach der Definition unseres Spieles

2 p, =1 ist. Hat sie im Intervall 0 < x =< 1 noch weitere Wurzeln ? Diese Frage
z=0

kann — in Weiterfithrung eines Gedankens, der sich bei A.LoTkA in (4] und W.FELLER
in 1] findet — wie folgt anschaulich behandelt werden: Wir betrachten die Graphen
der beiden Gleichungen y = x und y = f(x), wobei f die bisherige Bedeutung habe.
Wegen 1 = f(1) schneiden sich die beiden Graphen im Punkte (1/1), und wir haben zu
untersuchen, ob sich im Intervall 0 < x < 1 noch weitere Schnittpunkte befinden;
solche wiirden uns weitere Losungen von Gleichung (4) ergeben. Fiir x = 0 ist nun der
Graph von f konvex, und somit sind nur die drei Fille denkbar:

a) Zweiter Schnittpunkt ausserhalb 0 < x < 1:

Ji
y=flx)
yx
; P
Py
7 ¥
Figur 1
b) Beriihrung im Punkte (1/1):
YA y-1)
y=x
/ P
Py
¥

Figur 2
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In diesen beiden Fillen ist also 1 die einzige uns interessierende Wurzel von Glei-
chung (4), und die Wahrscheinlichkeit ¢, dass unser Spiel im Laufe der Zeit abbricht,
ist in diesen Fillen ¢ = 1; das Spiel bricht sicher ab, wenn es lange genug gespielt
wird.

c) Zweiter Schnittpunkt innerhalb 0 < x < 1:

y y=f(x)
y=x
I P
P
] X
TFigur 3

Nur in diesem Falle hat Gleichung (4) eine von 1 verschiedene Wurzel £ im uns
interessierenden Intervall; es ist — wie aus der Figur sofort ersichtlich — ¢, = py<< &
< 1. Daraus folgt nun aber sofort f(g,) = ¢, << f(§) = & usw., also auch f(g,_,) =
g, < f(§) = &. In diesem Falle hat also die Folge der ¢, dieses § < 1 zum Grenzwert.
Er stellt die Wahrscheinlichkeit g dafiir dar, dass das Spiel im Laufe der Zeit abbricht ;
1 — g > 0 st dann die Wahrscheinlichkeit dafiir, dass das Spiel niemals abbricht.

Nun wollen wir beachten, dass die ersten beiden Fille, a und b, durch f'(1) <1
und der dritte Fall, ¢, durch f'(1) > 1 charakterisiert sind.

Was bedeutet f'(1) =1p, +2p,+ 3 pg+ --- + w p,? Wir betrachten eine zu-
fallige Variable Z, die die Werte 0, 1, 2, 3, ... mit den Wahrscheinlichkeiten p,, $4, P,
Ps, ..., beziehungsweise p, annimmt; Z ist also gegeben durch die Nummern der
Kugel, die bei einem Zug aus unserer Urne erscheinen kénnen. Dann ist f'(1) gerade
der Erwartungswert E(Z) dieser zufilligen Variablen Z, und wir haben das Ergebnis:
Die Wahrscheinlichkeit q, dass das Spiel im Laufe der Zeit abbricht, ist genau dann <1,
wenn E(Z) > 1.

4. Beispiele

4.1 Wir denken uns einen mdnnlichen Neugeborenen als Stammuvater eines Geschlech-
tes; er reprdsentiere die 0. Generation. Die Zahl seiner médnnlichen Nachkommen, die
als Stammbhalter fiir den Fortbestand des Geschlechtes sorgen, wollen wir als Wert
einer zufdlligen Variablen Z auffassen; fiir die Werte z von Z gelte 0 < z < w. Die

zugehorigen Wahrscheinlichkeiten seien 2,; 2 p.= 1. Diese minnlichen Nach-

kommen bilden die 1. Generation. Unabhanglg von Einfliissen der Vererbung, der
Zeit oder der Umwelt bestehe nun fiir jeden méannlichen Neugeborenen der 1. Genera-
tion wieder die Wahrscheinlichkeit p,, im Laufe seines Lebens genau z ménnliche
Nachkommen zu haben. Diese mdnnlichen Nachkommen der 1. Generation bilden die
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2. Generation. Wiederum bestehe fiir jeden von diesen — unabhingig.von den genann-
ten Einfliissen — die Wahrscheinlichkeit $,, im Laufe seines Lebens genau z ménnliche
Nachkommen zu erhalten, usw. Offensichtlich ldsst sich die Entwicklung dieses Ge-
schlechtes durch unser obiges Urnenschema darstellen. Das Ergebnis des zweiten
Abschnittes gibt uns jetzt die Moglichkeit, die Wahrscheinlichkeit dafiir zu berechnen,
dass in einer Generation 0 midnnliche Nachkommen sein werden, mit andern Worten,
die Wahrscheinlichkeit dafiir zu finden, dass das Geschlecht ausstirbt. Diese Wahrschein-
lichkeit ist gerade durch unser ¢ gegeben. Der oben eingefiihrte Erwartungswert E(Z)
erhilt nun ebenfalls eine sehr anschauliche Bedeutung: E(Z) stellt den Erwartungs-
wert der direkten (ménnlichen) Nachkommen fiir ein Element irgendeiner Generation
dar, also etwa die «mittlere Anzahl von direkten (mannlichen) Nachkommeny» etnes Ele-
mentes irgendeiner Generation. Und das Ergebnis unserer Untersuchung besagt: Die
Wahrscheinlichkeit, dass das Geschlecht im Laufe der Zeit ausstirbt, ist genau dann
kleiner als 1, wenn die «mittlere Anzahl von direkten (minnlichen) Nachkommen»
eines Elementes grosser als 1 ist. Genau in diesem Falle besteht also eine von 0 ver-
schiedene Wahrscheinlichkeit dafiir, dass das vom Stammvater hoffnungsvoll be-
griindete Geschlecht weiterbliiht ...

Es ist vielleicht angebracht, nochmals auf die wesentlichsten unserer vereinfachenden
Annahmen fiir die Entwicklung eines Geschlechtes hinzuweisen: Wir haben die p, als
zeitlich konstant vorausgesetzt; die Statistiker weisen indessen darauf hin, dass zunichst
infolge des Riickganges der Sterblichkeit immer mehr Neugeborene das heiratsfihige
Alter erreichen und dass ferner eine sikulare Zunahme der Heiratsfihigkeit festgestellt
werden kann. (Man vergleiche dariiber z. B. A.MosER [5].) Wir haben weiter auch voraus-
gesetzt, dass die p, nicht davon abhingen, ob das Element, das Nachkommen erzeugt,
etwa aus einer Familie mit viel oder wenig Nachkommen stammt.

In diesem Zusammenhange mogen Schitzwerte fiir die p, und fiir E(Z) interessie-
ren. Soviel uns bekannt ist, lassen sich solche Schitzwerte nicht ohne weiteres aus
bereits vorhandenen statistischen Unterlagen gewinnen. Wir sind dieser Frage in [3]
nachgegangen. Eine Untersuchung in Luzern (durchgefiihrt fiir Korporationsbiirger)
ergab nach Ausgleichung die folgenden Schitzwerte:

po = 0,605; P, ~ 0,654.¢0%72 fiirz=1; E(Z) = 0,635.

In Deutschland sind vor einem Jahrzehnt Erhebungen tiber die «ideale Familien-
grosse» durchgefithrt worden; es ist dabei auch auf die gute Ubereinstimmung zwi-
schen der «idealen», d.h. der gewiinschten, und der tatsichlichen Kinderzahl hinge-
wiesen worden. Fiir Geschlechter, die sich nach diesem «Idealfall» entwickeln, lassen
sich ebenfalls Schitzwerte fiir die p, errechnen, wenn noch einige naheliegende weitere
Annahmen gemacht werden:

po = 0,43; p, = 0,30; p, = 0,21; p3 &~ 0,053; p, = 0,005; p; =~ 0,002; E(Z) =~ 0,91.

Fiir alle Einzelheiten und weitere Schiatzwerte sei auf die bereits genannte Arbeit
[3] verwiesen. In den beiden genannten Fillen ist also E(Z) geschitzt kleiner als 1;
Familien, die sich so entwickeln, sterben mit Sicherheit aus. — A.LoTkaA gibt in [4]
entsprechende Schitzwerte, die auf der amerikanischen Bevolkerungsstatistik des
Jahres 1920, die weisse Rasse betreffend, basieren; hier ergab sich fiir E(Z) = 1,260
und eine Wahrscheinlichkeit von etwa 829, fiir das Aussterben einer solchen Linie.
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4.2 Unser Urnenschema ist aber nicht nur fiir dieses Problem aus der Familien-
statistik anwendbar. So hat E.ScHRODINGER in [6] derartige Betrachtungen an
Kettenreaktionen angestellt: Durch ein Neutron der geeigneten Energie (0. Generation)
wird mit der Wahrscheinlichkeit p ein schwerer Kern gespalten, dabei mogen m Neu-
tronen entstehen. Diese bilden die 1. Generation. Nun denken wir uns den Prozess
fortgesetzt, wobei fiir jedes dieser Neutronen wieder die Wahrscheinlichkeit p bestehe,
neue Kerne zu spalten usw. Hier ist also py=1— ¢ und p,, = p; fiir z # 0, m ist
p. = 0. In gewissen einfachen Fillen kénnte unser Schema ferner auf Warteschlangen
angewendet werden: An einem Arbeitsplatz, an welchem immer nur ein Stiick repa-
riert werden kann, befinde sich ein Stiick in Reparatur (0. Generation). Alle Stiicke,
die wahrend der Zeit eintreffen, da dieses Stiick repariert wird, gelten als seine «Nach-
kommen» und bilden die 1. Generation. p, ist dann die Wahrscheinlichkeit dafiir, dass
wihrend der Zeit, da das Stiick der 0. Generation instand gestellt wird, genau z weitere
Stiicke eintreffen und warten miissen. Alle Stiicke, die eintreffen, wihrend ein Stiick
der 1. Generation wiederhergestellt wird, bilden die 2. Generation usw. Sobald eine
Generation 0 Stiicke umfasst, werde die Arbeit eingestellt. — Hinweise auf analoge
Problemstellungen bei gewissen chemischen Kettenreaktionen oder bei Fragen der
Genetik finden sich z.B. bei T.E.HARRIS in [2].

5. Der Galton-Watson-Prozess

Unser Urnenschema stellt, wie in der Einleitung erwihnt, einen sogenannten
Galton-Watson-Prozess') dar, den wir im Anschluss an T.E.HARRris [2] wie folgt
definieren konnen:

a) Wir denken uns Objekte, die weitere Objekte derselben Art, ihre Nachkommen,
erzeugen koénnen.

b) Die am Anfang gegebene Menge solcher Objekte nennen wir die 0. Generation,
ihre Nachkommen bilden die 1. Generation, deren Nachkommen die 2. Generation
usw.

c) Die Anzahl der Objekte in der i-ten Generation ist ein Wert einer zufélligen
Variablen Y}, =0, 1, 2, ... . Wir setzen stets Y, = 1; die Wahrscheinlichkeit, dass
Y, =2 mitz=0,1, 2, ... 0w, bezeichnen wir mit p,:

P(Yy=2)=p,, D p.=1.
z2=0

d) Fiir jedes Objekt in irgendeiner Generation sei nun die Wahrscheinlichkeit, im
Laufe seines ganzen Lebens z Nachkommen zu haben (2 = 0, 1, 2, ... w) wieder durch
diese p, gegeben.

Die Y; bilden dann offenbar eine (einfache, homogene) Markoffsche Kette: Die
Wabhrscheinlichkeit, dass in der (# + 1)-ten Generation % Objekte vorkommen, hingt
nur davon ab, wie gross die Zahl der Objekte in der n-ten Generation ist:

P(Y, ,=kY,=))=w,; 1 kn=012.. Y,=1.

n
1) Nach dem Botaniker F.GALTON, der sich ebenfalls mit dem Prozess des Aussterbens der Geschlechter
befasst hat, und H. W.Wartson, der eine erste mathematische (unvollstindige) Losung dieses Problems ge-
geben hat (1874). Watson hat die mogliche Existenz einer Wurzel & = ¢ < 1 iibersehen.
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(Diese Ubergangswahrscheinlichkeiten w, , sind als bedingte Wahrscheinlichkeiten nicht
definiert fiir jene g, fiir die P(Y, = 7) = 0 ist.)

Diesen Galton-Watson-Prozess, der also eine spezielle Markoffsche Kette darstellt,
haben wir in unseren obigen Betrachtungen daraufhin untersucht, dass er spitestens
in der #-ten Generation abbricht, wofiir wir die Wahrscheinlichkeit

.= P(¥,=0)
durch (1) angegeben haben. Ist aber Y, = 0, so folgt aus der Definition des Prozesses

P(Y,,1=0/Y,=0) = wp=1.
Das heisst aber, dass mit der #-ten auch alle spitern Generationen 0 Objekte haben:
Die Linie erlischt, das Geschlecht stirbt aus. Der Zustand Y, = 0 stellt einen absorbie-

renden Zustand dar; er kann nicht mehr verlassen werden. — Mit ¢ = lingo g, haben
n—

wir weiter die Wahrscheinlichkeit dafiir berechnet, dass die Linie im Laufe der Zeit
erlischt.

Soll unser Prozess in anderer Richtung untersucht werden, indem wir z.B. nach
der Wahrscheinlichkeit fragen, in einer bestimmten Generation eine gewisse Anzahl
von Objekten vorzufinden, so bieten sich als geeignete mathematische Hilfsmittel er-
zeugende Funktionen an; es sei dafiir auf [1], [3] oder [4] verwiesen.

RoBERT INEICHEN, Luzern/Fribourg
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Kleine Mitteilungen

Super Perfect Numbers

A positive integer # is called a super perfect number if o(a(n)) = 2 n, where o(#n) is the
sum of all the divisors of ». The problem of finding super perfect numbers is similar to that
of finding perfect numbers.

In this note we prove the following theorem concerning even super perfect numbers and
pose the existence of odd super perfect numbers as a problem:

Theorem. An even integer » is super perfect if and only if % is of the form 27, where
2r+1 — 1 is a prime.

Proof. Firstly, let n = 27, where 27+1 — 1 is a prime. Then o(a(n)) = o (211 — 1) =
2rtt = 2, so that » is a super perfect number. .

Secondly, let #» be any even super perfect number. Then we can write » = 27 g, where
¢ is odd. Since % is super perfect, we have

2t g =2n=o0(o(n) = o ((2* - 1) 6(q) . (1)
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If ¢ > 1, then (21 — 1) g(g), o(q), (2"** — 1) and 1 are distinct divisors of (271 — 1) a(g),
so that from (1), we have

24g > (2 = 1) a(g) + a(g) + (27 — 1) + 1 =27+ (a(g) + 1) > 27+ ¢,
a contradiction. Therefore ¢ = 1, so that from (1), we have 2! = ¢ (2t1 — 1), which
implies that 2r+! — 1is a prime. Hence » = 27, where 2'+! — 1 is a prime. Thus the theorem
is proved.

Problem. Are there odd super perfect numbers ?
D. SURYANARAYANA, Waltair, India

Bemerkung zur Aufgabe 493

In den Anwendungen der Aufgabe [1] wurde gezeigt, dass die unimodular zentro-affine
Kriimmung eines Ovals relativ zum Schwerpunkt einem Vierscheitelsatz geniigt.

Es sei nun P ein innerer Punkt eines Ovals K. Die polare Reziproke von K beziiglich
des Einheitskreises mit dem Mittelpunkt P sei K¥. Wenn F den Flicheninhalt bezeichnet,
so ist F(K) F(KP) eine affine Invariante [2]. Die Bestimmung des Minimums dieses Aus-

drucks, d.h. . .
min min F(K) F(KF)
K PeK

ist eine ungeloste Frage. Das Minimum ist allgemein = 27/4 (angenommen fiir ein Dreieck
beziiglich seines Schwerpunkts) und = 8 fiir ein symmetrisches Oval?l). Die Stiitzfunktion
von K, gemessen von P, sei k(0). Hier ist 6 der Stiitzwinkel. Dann ist 4~1(6) der Radius-
vektor von KP als Funktion des Polarwinkels 0. SaNTALO [2] hat bewiesen, dass
F(K) F(KP) ein einziges Minimum in K hat und dass der entsprechende Punkt P durch
27 2_7:

/h“’(ﬂ) sin 9 z/ J-%(6) cos8 46 = 0

0 0
charakterisiert ist. Man iiberzeugt sich leicht, dass dies bedeutet, dass P der Schwerpunkt
von KP ist. Die letztere Bedingung definiert also einen einzigen Punkt in K.

Wenn K einen stetigen euklidischen Kriimmungsradius R(6) besitzt, so ist die uni-
modular zentro-affine Kriimmung gleich £(6) = (R h3)~! = h~3/R. Aus Aufgabe 493 folgt
sofort: Die unimodular zentro-affine Kriimmung eines Ovals velativ zum Minimalpunkt von
F(K) F(KP) geniigt einem Vierscheitelsalz.

(Research partially supported by NSF Grant GP-5760.)
H. GUGGENHEIMER, University of Minnesota, Minneapolis, Minn.
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Aufgaben

Aufgabe 564. Ein Gliicksspiel wird nach folgender Regel gespielt: In einer Urne
befinden sich » Kugeln, die die Nummern 1, 2, ..., » tragen. Ein Spieler darf nach Ent-
richtung eines Einsatzes diese Kugeln einzeln nacheinander aus der Urne ziehen, und
wenn darunter » Kugeln sind, die beim sten Zug die Nummer s trugen, erhilt er den
rfachen Betrag seines Einsatzes zuriick.

Man beurteile die Gewinnchance des Spielers unter der Voraussetzung, dass alle
moglichen Ausfélle gleich wahrscheinlich sind. O. REUTTER, Ochsenhausen
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Lisung: Der Erwartungswert des Gewinnes des Spiclers ist gleich seinem Einsatz, den
wir als 1 annehmen. Zum Beweis bedeute f(s) die Anzahl derjenigen Permutationen von
s Zahlen, bei denen keine einzige Zahl ihren urspriinglichen Platz beibehilt. Die Wahr-
scheinlichkeit, dass der Spieler beim Ziehen der » Kugeln genau rmal die «richtige» Kugel
genommen hat, ist offenbar

wi) = o (M) 1= 1) (1)

n! \r
Der Erwartungswert des Gewinnes ist

=2rw(r)=~'v27(f)f(n—7). (2)
r=0 )

r=1
Durch Abzihlen aller Permutationen von # — 1 Zahlen erhilt man die Bezichung

n-1

1= ("7 )
oder e

fo-n === ("7 ). (3

—1_
~ \n 1

Setzt man (3) im ersten Summanden der Summe in (2) ein, so folgt wegen

n—1 ) _n— i n
(M —1—14) " u (n - z)
sofort E = 1. H. MEe1L1, Winterthur
Weitere Losungen sandten G. Bacu (Braunschweig) und P. HoHLER (Dietikon).

]
Aufgabe 565. Man zeige, dass in einem orthonormierten Koordinatensystem die
Gleichung
(0 — Hax)2 + (43 — 23 1) + (4] — wy4yp)? =t

cine Drehfliche darstellt. Man bestimme die Drehachse und eine Meridiankurve.

L. KiEFFER, Luxemburg

1. Lésung: Die gemeinsamen Punkte P(x,, x,, ;) der gegebenen Fliche
F: 2 —x;3%;0)=1¢ct

und einer zur Geraden g: x, = x, = x; senkrechten Ebene E: X, = 3¢ (Parameter ¢
beliebig reell) bilden einen Kreis mit dem Mittelpunkt M (¢/¢/t), dessen Radius » der
Beziehung 3 »* + 36 #2 #% = 4 ¢* geniigt. Da dies fiir alle # gilt, ist F eine Drehfliche mit
der Drehachse g.

Beweis: Es ist

MP =S, — )2 =243 —2tZx;4+ 382 =22 - 322,
also
3MP +362MP =3 (Z42—38) (Za%+ 9.

Wegen Z'x; = 3¢tist a2 + 2 X x, x,,, = 9, somit

Tt —382=(2/3) (Tt —Zx;x; ) und T2+ 9082 =2 (X% + T, 5.,
folglich

SMP + 36 B MP =4{(Z4)2 — (Ta;x,4)2} =42 (%% — 2,1 %;,9)2 = 42

Bei festem ¢ ist demnach M P konstant fiir alle P e EN F, und es ist M e gN E, womit
obige Aussage bewiesen ist.
Aus 3 7% 4+ 36 12 #2 = 4 ¢4 ist zu entnehmen, dass eine Meridiankurve vom Typus einer
Konchoide ist; sie nihert sich fiir || -> oo asymptotisch der Drehachse g und nimmt fiir
= 0 ihren grossten Achsenabstand c¢(4/3)!/4 an. O. REUTTER, Ochsenhausen
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2. Losung : Unter Beibehaltung der v,-Achse drehen wir die x,-Achse in die Halbierende
des 1. Quadranten der x, x,-Ebene. Das neue System heisse XYZ. Bei fester Y-Achse
drehen wir sodann die Z-Achse in die urspriingliche Gerade x, = x, = x,, die sich in der
Bezeichnung z-Achse als Drehachse der Rotationsfliche erweisen wird. Das endgiiltige
System heisse xyz. Insgesamt liegt jetzt vor

2 Wz—1jyz o\ (X Wz—-1//2 o 13 o V2/3

)=tz wwzo Y=z w20 o 10
¥y 0 0 1 z 0 o 1/ \=Vz3 o /3] \z
/6 —1y2 13\ ([«
= Ve 1z 13|y
V23 o 13/ \z

Die Flichengleichung lautet dann 4 c¢* = 3 (x2 + ¥2) (x2 + 9% 4 4 2%). Es liegt also wie
angekiindigt eine Drehfliche z = f (¥2 4+ ¥2?) vor. Der Meridian x = 0 hat z. B. fiir ¢* = 3/4

die Gleichung z = (1/2) J/y~% — y2. 1. PaascHE, Miinchen
Weitere Losungen sandten C. BINDscHEDLER (Kiisnacht) und K. ZacHAR1As (Berlin).

Aufgabe 566. In einer Ebene, in der ein Kreis K und ein Punkt 4 gegeben sind, wird
jedem Punkt P derjenige Punkt P’ auf der Geraden A P zugeordnet, der zu P beziiglich
K konjugiert ist. Man beweise: Fasst man alle Geraden der Ebene, die durch die Ab-
bildung P - P’ in zueinander dhnliche Kegelschnitte iibergehen, in eine Schar zusam-
men, so sind die Enveloppen dieser Scharen konzentrische Kreise. Diejenigen Geraden,
die in gleichseitige Hyperbeln iibergehen, bilden das Biischel durch das gemeinsame
Zentrum dieser Kreise. C. BINDSCHEDLER, Kiisnacht

Lésung: Der Bildpunkt P’ des Punktes P der Geraden g ist der Schnittpunkt von 4 P
mit der Polaren p von P. p lauft durch den Pol von g und steht senkrecht auf MP (M =
Mittelpunkt von K). Die Geraden 4 P (P € g) und die zugehorigen Polaren p bilden daher
zwei projektive Strahlenbiischel mit dem Kegelschnitt g’ (= Bild von g) als « Schnittkurven.

Die Ferngerade der Ebene wird auf den Thaleskreis 7" mit dem Durchmesser AM ab-
gebildet. Wegen (P’)’ = P sind die Urbilder der Fernpunkte von g’ die (reellen oder
komplexen) Schnittpunkte S;, S, von g mit T. Die Bildpunkte Sj, S; liegen auf A4S, 4S,.
Alsoist X S;4S, der « Winkel» zwischen den Fernpunkten von g’. Zwei Kegelschnitte sind
dhnlich, wenn ihre Fernpunkte denselben (reellen oder komplexen) Winkel einschliessen.
X 5,48, ist Peripheriewinkel auf dem Thaleskreis T. Es werden somit diejenigen Geraden
als dhnliche Kegelschnitte abgebildet, die (nach dem Peripheriewinkelsatz) gleichlange
Sehnen aus T ausschneiden, die also einen zu T konzentrischen Kreis einhiillen. (Im Fall
gleichseitiger Hyperbeln ist <« S,4S, = n/2, d.h. S,S, Durchmesser von T.)

) W. VinzeENz, Miinchen

Weitere Losungen sandten K. GrRUN (Linz/Donau) und L. Ki1errFer (Luxemburg).

Aufgabe 567. Man beweise: Eine Zahl « ist genau dann rational, wenn die Zahlen-

folge o, @ + 1, « + 2, ... eine wenigstens dreigliedrige geometrische Teilfolge enthailt.
E. TeurFEL, Korntal/Stuttgart

Losung: Ist o = p/q (p und g natiirliche Zahlen), so sind o, a + pund a + 2p 4+ p ¢
in geometrischer Progression. Wenn « rational, aber nicht positiv ist, wende man das
obige auf die positive rationale Zahl « — [a] + 1 an.

Sind umgekehrt o, « + % und « + # + m in geometrischer Progression (n und m natiir-
liche Zahlen), so ist a = %2/(m — =) rational. A. BAGER, Hjerring, Ddanemark

Weitere Losungen sandten C. BINDSCHEDLER (Kiisnacht), P. Bunpscausn (Freiburg/
Br.), P. HoHrLEeR (Dietikon), W. JANICHEN (Berlin-Zehlendorf), H. MEiL1 (Winterthur),
O. REUTTER (Ochsenhausen).
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Neue Aufgaben

Aufgabe 589. In einer Ebene sind drei Kreisbiischel gegeben. Man konstruiere drei
zueinander orthogonale Kreise, von denen jeder einem dieser Biischel angehort.
C. BINDSCHEDLER, Kiisnacht

Aufgabe 590. Gegeben sind die Ausdriicke

A—~n 1|2 ()k” und B, = n+1)'2 ()k"“

Man zeige A, = B, =nfirn=20,1, 2,...,. I. PaascHE, Miinchen

Aufgabe 591. Fiir welche reellen Zahlen « gilt die Implikation

n "
Exixgxﬁ —Zx=a» (v 7 € N) Ex"”:——a,
im1 i-1

1=1 1=1
wobei x; (i = 1, 2, ..., n) reelle Zahlen sind? D. VELjAN, Zagreb

Aufgabe 592. Fiir £ =1, 2, ... bezeichne (n, m), den grossten gemeinsamen Teiler
von #» und m der Potenz %, o (%, m) die Teilerfunktion

-3
tak —m
und cif)(m) die verallgemeinerte Ramanujansche Summe

ng)(m) — B2nirm/nk .

1§r§nk
(r, k) =1

Man beweise die fiir R(s) > 1/k giiltige Darstellung
(k)
®, ¢, (m)
Oa(k, m) = L(ks)m™t } ' —
n= l
worin ¢ die Riemannsche Zetafunktion bedeutet. E. KrATZEL, Jena

nk.r T

Literaturiiberschau

Calculus of Fractions and Homotopy Theory. Von P. GABRIEL und M. ZismaN. Ergebnisse
der Mathematik und ihrer Grenzgebiete, Band 35. X und 168 Seiten mit 114 Figuren.
DM 38.—-. Springer-Verlag, Berlin, Heidelberg und New York 1967.

Dieses Buch vermittelt eine in sich abgeschlossene Darstellung der semisimplizialen
Topologie. Es wird dabei durchweg ausfithrlicher Gebrauch der Kategoriensprache ge-
macht. Der Leser findet zu Beginn des Buches eine Zusammenstellung der fundamentalen
Begriffe und Konstruktionen in der Kategorientheorie.

Hauptanliegen des Buches ist die Konstruktion der sogenannten homotopischen
Kategorie H und ihre Beziehung zu andern wohlbekannten Kategorien. Insbesondere
wird gezeigt, dass die Kategorie H dquivalent ist zur Kategorie der CW-Komplexe modulo
Homotopie. Ausgangspunkt der Konstruktion von H ist die Kategorie 4°E der semi-
simplizialen Mengen. In dieser wird eine Homotopie erkldrt und in der entsprechenden
Kategorie 4°E der semisimplizialen Mengen modulo Homotopie eine spezielle Klasse 4
von Morphismen ausgezeichnet. Geometrisch gesprochen ist 4 die Klasse derjenigen
Morphismen in A°E, deren geometrische Realisierung invertierbar ist. Die homotopische
Kategorie H geht nun aus A°E dadurch hervor, dass die Morphismen der Klasse 4 formal
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invertierbar gemacht werden. Dieser Prozess wird auch als Lokalisierung der Kategorie
AE beziiglich des Systems A bezeichnet.

Kapitel I handelt vom Problem der Lokalisierung einer Kategorie C beziiglich einer
Klasse 2. Es wird gezeigt, dass die Lokalisierung besonders iibersichtlich beschrieben
werden kann, wenn die Klasse 2 einen «calculus of fractions» zuldsst. In diesem Falle wird
das Problem der Lokalisierung in enge Verkniipfung gebracht mit der Existenz adjungier-
ter Funktoren. In Kapitel I werden die semisimplizialen Komplexe besprochen und die
Poincaré-Gruppe eingefiihrt. Kapitel III handelt von Milnors Realisierungsfunktor | ?|.
Es wird gezeigt, dass falls der Bildbereich von | ? | die Kelley-Raume sind, dieser Funktor
mit direkten und endlichen inversen Limites kommutiert. In Kapitel IV wird nach dem
in Kapitel I entwickelten Konzept die homotopische Kategorie eingefiihrt. In Kapitel V
und VI wird eine einheitliche, selbstduale Beschreibung einiger in der algebraischen
Topologie bekannten exakten Sequenzen gegeben. Kapitel VII schliesslich bringt als
Hauptergebnis die Aquivalenz der semisimplizialen und der topologischen Theorie. Im
Anhang I ist die Theorie der Uberlagerungen besprochen. In Anhang II wird die Aquivalenz
der Homologie eines semisimplizialen Komplex mit der singuliren Homologie der zuge-
horigen Realisierung gezeigt und die Spektralsequenz einer Faserung diskutiert.

Ein mit der Kategorientheorie nicht vertrauter Leser wird den Aufbau dieses Buches
als sehr abstrakt und den Stoif als schwierig zu bewéltigen finden. H. VOGELE

Linear Diffevential Equations and Function Spaces. Von JosiE Luis MAsseEra und
JuaN JORGE ScHAFFER. XX und 404 Seiten. $16.00. Academic Press, New York and
London 1966.

Der Hauptteil des Buches enthilt die Ergebnisse der neueren Untersuchungen der
Autoren iiber die lineare Differentialgleichung

v+ Ax=f

In dieser Gleichung sind x(#) und f(f) Funktionen iiber R, = [0, + co) mit Werten in
einem Banachraum X. A ist eine Abbildung von R, in den Raum der beschrinkten
Operatoren iiber X. Im ersten Teil werden die notwendigen Grundlagen fiir die folgende
Theorie zusammengestellt. Die Geometrie der Banachrdume, verschiedene Klassen von
Funktionenrdumen und grundlegende Eigenschaften der linearen Differentialgleichungen
werden behandelt. Der zweite Teil enthidlt die Theorie der linearen Differentialgleichungen.
Zur Charakterisierung des Verhaltens der Lésungen der homogenen Gleichung werden die
Begriffe «Ordinary Dichotomy» und «Exponential Dichotomy» eingefiihrt und diskutiert.
Ein Paar von Funktionenriumen wird in bezug auf eine inhomogene Gleichung als zu-
lassig definiert, wenn zu jeder Funktion f des ersten Raumes eine Losung x aus dem zweiten
Raum existiert. Das folgende Kapitel behandelt die Zusammenhinge zwischen dem Ver-
halten der Losungen der homogenen Gleichung und der Zuldssigkeit bei der inhomogenen
Gleichung. Anschliessend wird die Abhingigkeit der untersuchten Eigenschaften von der
Operatorfunktion 4 studiert. Den Abschluss des Hauptteils bildet eine Untersuchung iiber
verschiedene Probleme der linearen Gleichungen iiber R = (— oo, + o0). Der dritte Teil
enthilt verschiedene Erginzungen und Spezialfille der allgemeinen Theorie (Gleichungen
mit periodischem oder fastperiodischem-4, Gleichungen héherer Ordnung). Dem Buch
ist ein ausfiihrliches Literaturverzeichnis beigegeben.

Obwohl die Theorie der Banach- und Hilbert-Riaume, soweit sie fiir die vorliegenden
Untersuchungen benotigt wird, am Anfang kurz zusammengestellt ist, sind fiir das Ver-
stindnis des Buches gewisse Kenntnisse aus der Funktionalanalysis, insbesondere der
Theorie der Banachrdume, notwendig. A. MULLER

Ordinary Diffevential Equations. Von I. G. PETRovsKI, X und 232 Seiten mit 45 Figuren.
Prentice-Hall, Englewood Cliffs 1966.

Blittert man auf den ersten Seiten in dieser fliessend, von R. A, SILVERMANN besorgten,
englischen Ubersetzung der 1964 in Moskau erschienenen russischen Originalarbeit, so
fallt zunichst die bekannte Reihenfolge der Grundthemen dieser Vorlesung auf. Bei
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genauerem Durchlesen entdeckt man aber bald die sehr sorgfiltig aufgebaute Theorie mit
griindlicher Diskussion einiger Typen expliziter (reeller) Gleichungen erster Ordnung und
die strengen Beweise der zugehorigen Theoreme. Dem Studierenden sind am Ende grosserer
Abschnitte Probleme beigefiigt, die von einfacheren Berechnungen, Aufsuchen von Bei-
spielen zur Theorie bis zu sehr anspruchsvollen, rein theoretischen Fragen reichen.

Den Hauptraum dieses Lehrbuches (etwa 160 Seiten) nimmt die allgemeine Theorie
ein, die in jedem der behandelten Kapitel: Funktion 9’ = f(x, ¥) — Systeme gewo6hnlicher
Differentialgleichungen — lineare Systeme — lineare Systeme mit konstanten Koeffizienten
— Autonome Systeme — in einheitlicher Art aufgebaut ist, nimlich zuerst Existenz der
Losung — Eindeutigkeit — das Cauchy-Problem — Implizite Form der Gleichung usw.
Zahlreiche wichtige Eigenschaften sind kurz dargestellt: Stabilitit der Losung (nach
Lyarunov), kanonische Form der Losung usw. Nur als Zusatz beschliesst ein Abschnitt
(33 Seiten) iiber partielle Differentialgleichungen erster Ordnung das beachtenswerte
Werk. A. HAUSERMANN

Introductory Calculus with Algebva and Trigonometry. Von S. BeLL, J. R. BrLum,
J. V. Lewrs, J. RoseNBLATT. XXIV und 309 Seiten mit 193 Figuren. $9.35. Holden-Day,
San Francisco 1966.

Dieses Werk erfiillt zwei Aufgaben: es ist einerseits ein Lehr- und Ubungsbuch fiir
einen einjihrigen Kurs in eine «moderne» Infinitesimalrechnung, und auch andererseits
eine Einfiihrung in das zweite Buch « University Calculus» derselben Verfasser, auf das oft
fiir genauere Begriindungen hingewiesen wird. Die Darstellung unseres Buches ist durch-
aus anschaulich und bevorzugt Beispiele technischer oder physikalischer Vorgidnge; von
modern axiomatischer Darstellung oder einer Terminologie der Mengenlehre ist nichts zu
spiiren.

Es wird offenbar mit sehr unterschiedlichen Vorkenntnissen der Leser gerechnet, wird
doch hier auf fast einem Drittel des Lehrstoffes der «background» in Kiirze aufgefrischt,
aber auch auf Fragen der Genauigkeit eingegangen und von elementaren Funktionen die
Umkehrung (Arkusfunktionen) und die Komposition behandelt. Etwa 360 Aufgaben
(teilweise mit Losungen) sind fiir diese «Repetition» bereitgestellt.

Die Begriffe der Ableitung und des bestimmten Integrals sowie der Fundamentalsatz
werden mit physikalischen Uberlegungen entwickelt, daran anschliessend verallgemeinert,
aber ohne ausfiihrliches Eingehen auf die Grenzwertbildung, und erst nachher die geometri-
sche Bedeutung der Begriffe angezeigt. Ausfiihrlich sind aber die sehr zahlreichen Beispiele
und Ubungen dargestellt. Eine kurze Einfithrung in Ableitung und Integral von Funktionen
mit zwei freien Variablen beschliessen das eigenwillige Werk. Fast 400 Aufgaben zeigen
dem Studierenden die Technik und die Anwendungsgebiete der Ableitung und des Integrals.

A. HAUSERMANN

Modern University Calculus. Von S. BELL, J. R. BLuMm, J. V.LEwis und J. ROSENBLATT.
905 Seiten. $12.95. Holden-Day, San Francisco 1966.

Dieses dicke Buch ist der zweite Teil eines Werkes, welches Anfingern die Elemente der
Infinitesimalrechnung — und soweit ndtig — auch mathematische Logik, lineare Algebra
und analytische Geometrie vermittelt. Die Verfasser haben sich sehr darum bemiiht, die
Gedankenschritte stets zu motivieren und die Theorie anhand einfacher Beispiele zu ver-
anschaulichen. Gross ist die Zahl der «drill exercises» sowie der angewandten Aufgaben,
und wo letztere nicht zur Verfiigung stehen, erfinden die Verfasser «lebensnahe» Beispiele
iiber Autos, Sport, hiibsche Méddchen u.a. R. CONZELMANN

Calculus  Analysis  Vectors. Von Joun F. RanporpH. XI und 681 Seiten. s 88—.
Dickenson Publishing Company, Belmont, California 1967.

Auch dieser Autor schreibt fiir Anfinger. Das Anschauliche wird der abstrakten
Theorie vorgezogen, und schwierige Beweise werden auf spéter verschoben. Der Lehrgang
behandelt auch die Analysis der Funktionen von mehreren Variablen und schliesst mit je
einem Abschnitt iiber unendliche Reihen und Differentialgleichungen. Dass Kegel und
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Zylinder im Schragbild oft falsch gezeichnet sind, spielt fiir das Verstdndnis keine Rolle.
Der Student wird besonders die vielen Ubungsbeispiele schitzen, deren Losungen er im
Anhang des Buches findet. R. CONZELMANN

Introduction to Probability and Statistical Decision Theory. Von G. HADLEY. X und
580 Seiten. $11.85. Holden-Day, Inc., San Francisco 1967.

Der rund 600 Seiten fassende Band vermittelt eine Einfiihrung in die moderne Ent-
scheidungstheorie. In praktischen und wissenschaftlichen Angelegenheiten besteht fast
immer die Notwendigkeit iiber Ereignisabldufe zu entscheiden, wobei die Auswirkungen
der Entscheidungen nie mit Sicherheit vorausgesagt werden konnen. In vier Kapiteln
wird deshalb der Wahrscheinlichkeitsrechnung, als mathematisches Modell der Unsicher-
heit, gebiithrende Beachtung geschenkt.

Ein spezieller Abschnitt befasst sich mit der modernen Nufzentheorie (theory of rational
decision making), die das Verhalten des Entscheidenden bei Unsicherheit beschreibt.
Hierbei werden die Axiome von Luck und RAIFFA zugrunde gelegt. Die statistische Ent-
scheidungstheorie (vor ca. 10 Jahren massgebend von A. WALD entwickelt) wird in den vier
letzten Kapiteln dargestellt, sowohl in klassischer Sicht, als auch nach der sog. Bayes-
schen Methode (Verwendung subjektiver A-priori-Wahrscheinlichkeiten).

Ein Ausblick in sequentielle Entscheidungsverfahren (z.B. «Roll-back»-Analyse)
beschliesst das Werk, das sich vor allem an Studierende der Wirtschaftswissenschaften
richtet. Rund 800 z.T. praxisnahe Aufgaben erleichtern das Eindringen in die moderne
(fiir viele Anwendungsgebiete eminent wichtige) Entscheidungstheorie. HaANs LOEFFEL

Mathematikgeschichtlich interessante Nachdrucke in Verlag G. Olms,
Hildesheim

Das Leibniz-Jahr 1966 hat Gelegenheit gegeben, eine Reihe wertvoller Nachdrucke
herauszubringen. Die im nachfolgenden aufgefiihrten Werke waren schon lingst vergriffen
und nur mehr an Bibliotheken zugdnglich, nur im Gliicksfall auch antiquarisch aufzu-
treiben. Fiir den Mathematiker sind aus dem Angebot des riihrigen Verlags Olms folgende
Werke von Interesse:

G. E. GUHRAUER: G. W. Leibniz, eine Biographie, Breslau 1846 (2 Binde). Nachdruck:
XXIX, 373 und 80 Seiten, 1 Bildnis, 1 Handschriftenprobe; VII, 374 und 121 Seiten.
In Leinen je DM 59.80.

Diese Lebensbeschreibung (die Erstausgabe erschien 1842, die zweite ist eine Titel-
auflage mit neuem Vorwort und hinzugefiigtem Register) ist zwar veraltet, enthilt jedoch
einige Originaltexte, die anderweitig noch nicht abgedruckt und daher von unverindertem
Interesse sind.

EmiLe Ravier: Bibliographie des (Euvres de Leibniz, Paris 1937. Nachdruck: V und
703 Seiten. In Leinen DM 88.-.

Diese Bibliographie ist zwar nicht ganz vollstindig und in geringfiigigen Kleinigkeiten
erginzungsbediirftig, jedoch von unschiatzbarem Wert, weil sie nicht nur iiber die Original-
ausgaben der Leibnizschen Verdffentlichungen und die spiteren Drucke aus den Hand-
schriften Auskunft gibt, sondern auch iiber die Nachdrucke in den verschiedenen spiteren
Ausgaben.

EDpUARD BODEMANN: Die Leibniz-Handschriften dev kgl. 6ffl. Bibliothek zu Hannover,
Hannover 1889. Nachdruck: IV und 339 Seiten. In Leinen DM 48.—.

Derselbe: Dev Briefwechsel des G. W. Leibniz in der kgl. dffl. Bibliothek zu Hannover,
Hannover/Leipzig 1895. Nachdruck: II und 415 Seiten. In Leinen DM 58.—.

Wer sich iiber die Leibniz-Handschriften in Hannover aus gedruckten Angaben
orientieren will, muss noch immer zu diesen beiden Katalogen greifen. Sie sind seinerzeit

ohne Register herausgegeben worden und zeigen vom modernen Standpunkt aus erhebliche
Unvollkommenheiten, sind jedoch noch nicht durch Gleichwertiges ersetzt. Besonders
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verdienstvoll sind die von GiseLa KRONER und HEINRICH LACKMANN zu beiden Nach-
drucken hinzugefiigten Erganzungen (S. 341/42 bzw. 418/21), ausserdem das fiir beide
Nachdrucke gemeinsame Namenregister (S. 343/83 bzw. 423/63), das die Nachsuche
wesentlich erleichtert. Jedem der Bidnde ist ein wohlausgewogenes Vorwort von KARL-
HEeinz WEIMANN beigegeben (S. XI), das sich auf die Art und Einrichtung der Kataloge
usw. bezieht. Wer die Leibnizsche Mathematik wirklich verstehen will, kann sich nicht nur
auf das bisher Gedruckte allein beziehen ; er muss unbedingt auch Handschriften erginzend
ansehen. In ihnen ist, wie ich selbst immer wieder feststelle, eine Summe bisher unbekann-
ter Dinge enthalten, teils nur gelegentlich auftauchende Gedanken von Augenblickswert,
teils Vorwegnahme viel spater auftauchender Grundvorstellungen, teils auch neue Ideen,
auf die meines Wissens bisher noch niemand verfallen ist. J. E. HOFMANN

Bericht

VII. Oesterreichischer Mathematikerkongress
Linz, 16. — 20. September 1968

Trotz der politischen Unruhe in der Néhe Osterreichs fand auch dieser Kongress wicder
reges internationales Interesse. Ohne die begleitenden Personen zu zihlen, betrug die Zahl
der Teilnehmer etwa 400. )

Der Ort des Kongresses war die Hochschule fiir Sozial- und Wirtschaftswissenschaften,
die erst vor zwei Jahren den Studierenden ihre Tore 6ffnete. Mit der Griindung dieser
Hochschule ging ein lang gehegter Wunsch der Stadt Linz in Erfiillung. Die Errichtung
der Bauten fiir eine mathematisch-naturwissenschaftliche Fakultit, die der Hochschule
angegliedert werden soll, ist bereits im Gange. Mit dem Kongress wurde auch das Rechen-
zentrum der Hochschule eréffnet.

Gegliedert in die Sektionen Algebra und Zahlentheorie, Analysis, Geometrie und
Topologie, Angewandte Mathematik, Wahrscheinlichkeitstheorie und Statistik, Numeri-
sche Mathematik und Informationsverarbeitung, Geschichte und Philosophie, fanden iiber
200 Vortrige zu je 20 Minuten statt, wobei etwa drei Viertel auf die ersten drei Sektionen
entfielen. Wenigstens eines Vortrages soll hier gedacht werden. G. RINGEL sprach iiber die
Losung des Heawoodschen Kartenfirbungsproblemes. Sei x(p) die kleinste Zahl von
Farben, mit der jede Karte auf einer orientierbaren geschlossenen Flache vom Geschlecht p
zulissig gefarbt werden kann; Heawood hat schon 1890 nachgewiesen, dass fiir p > 0

x(p) = [——~

Es steht jetzt fest, dass hier das Gleichheitszeichen gilt. Um dies zu beweisen wurde das
verwandte Fadenproblem von # Punkten gelost. Es zeigte sich als notwendig, die ver-
schiedenen Restklassen von # modulo 12 zu unterscheiden. Nachdem Ringel und andere
schon 9 dieser Restklassen untersucht hatten, haben Ringel und Youngs gemeinsam im
Friihjahr 1968 die letzten drei behandelt. Drei Einzelfille fiir kleines #, die noch iibrig
geblieben waren, wurden von J. Mayer, Professor fiir franzosische Literatur, der sich fiir
Graphentheorie interessierte, gelost.

Es sei erwidhnt, dass die Probleme der Studienreform an Hoch- und Mittelschulen auch
mehrfach beriihrt wurden.

Einige gesellschaftliche Anlédsse lockerten den Kongress auf. So die Kepler-Feier der
Osterreichischen Mathematischen Gesellschaft verbunden mit einem Empfang von Stadt
und Land im Landhaus in Linz, in welchem seinerzeit Kepler gewirkt hat, der Kongress-
ausflug auf der Donau und der traditionelle Schlussabend. .

Den Herren Adam und Bruckmann und ihren Mitarbeitern, in deren Hinden die
Organisation lag, sei fiir das gute Gelingen des Kongresses herzlich gedankt.

o J. M. EBERsOLD
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Die Realteil- und Imaginirteilflichen analytischer Funktionen

1. Einleitung
Einer komplexen Funktion

f&) =ulx,y)+ivxy) (EF=x+1y) (1.1)

kann man verschiedenartige reelle oder komplexe Flichen zuordnen. Bekannt und
eingehend untersucht sind z. B. die Betragflidchen [2, 6, 7, 9, 10]. In der vorliegenden
Arbeit nehmen wir an, f(2) sei analytisch, und ordnen f(z) die Realteilfliche R(f),
definiert durch

%%, 9) = (% 9, u(x,9), (1.2)
und die Imagindrieilfidiche I1(f), definiert durch
%%, 9) = (%, 9,v(%9), 1.3)

zu.

In Abschnitt 3 und 4 beweisen wir, dass beide Flichen in einem beliebigen Punkt
jeweils dieselbe GauBsche Kriimmung haben, dass aber diese identische Abbildung
fiir nichtkonstantes f nicht isometrisch ist. Die Frage nach der Existenz isometrischer
Abbildungen fiihrt auf das komplizierte System (4.3) bzw. (5.4). In einzelnen Fillen
(u.a. €7, z%) sieht man sofort, dass R(f) und I(f) isometrisch sind. In anderen Fillen
(z.B. Inz, sinz, cosz) besteht keine Isometrie, wie gezeigt wird. Wie man Aussagen aus
den genannten Systemen in systematischer Weise gewinnt, wird in den letzten beiden
Abschnitten erortert.

Interessanterweise fiigt sich WANGERINS klassisches Beispiel [8], das von Uberle-
gungen bei Drehflichen herriihrt, auch in unsere funktionentheoretisch motivierte
Untersuchung ein.

Meinen Mitarbeitern, Herrn Doz. Dr. H. KNaPP und Herrn Dr. K. ECKER, danke
ich fiir Diskussionsbemerkungen im Rahmen unseres differentialgeometrischen Se-
minars.

2. Hilfsformeln

Die Darstellungen (1.2) und (1.3) haben die Form
%(x,y) = (%9, h(x,5)) -
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Fiir eine solche Darstellung hat die erste Grundform die Koeffizienten
2 2
gu=1+1%,, g12=hxhy' €22=1+hy» (2.1)

also die Diskriminante

g=1+H+hr. (2.2)
L 3
Die zweite Grundform hat die Koeffizienten
bu=hlfg, bu=hole, bu=h,le, (2.3)
also die Diskriminante
1
b= Rypyp = ra (hee by, — H2,) (2.4)

Dabei ist R,,,, der kovariante Kriimmungstensor. So erhalten wir die GauBsche

Kriitmmung
K=§=i2(h by, — ) . 2.5)

g xx7yy xy

3. Gauf3sche Kriimmung

Fir die Realteilfliche R(f) folgt aus (1.2), (2.1) und den Cauchy-Riemann-Glei-
chungen

gn=1+ (Ref)? gu=—Ref Imf, gp=1+ Imf)? (3.1)
wobei der Strich die Ableitung nach z bedeutet. So wird
g=1+ |f' lz. (3.2)
Die zweite Grundform hat die Koeffizienten
bu= w8, ba=u,le,  bu=u,le, (3.3)
also wegen A« = 0 und (3.2) die Diskriminante
e
b= TFF (3.4)
Aus (2.5) erhalten wir die GauBsche Kriimmung
e
K(Z) - (1 + !f’ !2)2 ° (35)

Wie wir aus (3.5) sehen, haben f(z) und

i) =€7fle) + ¢ (yreel)
dieselbe GauBsche Kritmmung. Fiir y = —7/2 und ¢ = 0 liefert dies den

Satz 3.1. Die Realteilfliche R(f) und die Imagindrtesifiiche I1(f) einer analytischen
Funktion f(2) haben in entsprechenden Punkien dieselbe Gaufsche Kriimmung.

Aus (3.5) und Satz 3.1 folgt ferner:

R(f) und I(f) sind mit Ausnahme der Punkte, in denen f"(z) = 0 ist, hyperbolisch
gekriimmi, .
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4. Isometriebedingung

Der Satz 3.1 legt es nahe, der Frage der Isometrie von R(f) und I(f) nachzugehen.
Bekanntlich gilt allgemein der

Satz4.1. a) Ist eine Abbildung A: F - F* isometrisch, so stimmt die Gaufsche
Kriimmung in esnem Punkt P € F und in seinem Bild P* = A P € F* diberein. b) Ha-
ben zwei Flichen dieselbe konstante Gaufsche Kriimmung, so sind sie (lokal) isometrisch.

Aus (3.5) und Satz 4.1b folgt im vorliegenden Fall sofort das triviale Ergebnis,
dass fiir die lineare Funktion f(2) = a z + & die Flichen R(f) und I(f) isometrisch sind.

Der Abbildungen wegen, die wir betrachten wollen, setzen wir z* = x* + ¢ y* und
schreiben (1.3) in der Form

aF(x*, y*) = (2%, y*, v(x*, y*)). 4.1)
Es gilt dann der folgende
Satz 4.2. Eine Abbildung
o =afx,y), y*=pxy) (4.2)
der Realteilfliche R(f) einer analytischen Funktion f(z), z = x + 1 y, auf die Imagindr-
tedlfliche 1(f) [vgl. (4.1)] dieser Funktion ist genau dann isometrisch, wenn

a) L ul = (L+ ud) o — 20,0 0, B + (1 + 1) B2,
b) Uy My = (]‘ + M:.) &y ay — U uy" (a’x ﬂ'y + my ﬁx) + (1 + ufz") ﬂx ﬂy ) (43)
c) T+up= (14w o —2uuu.a,f,+ (14 ul) 2

gilt. Hierbes bedeuten Indizes partielle Ableitungen nach den betreffenden Variablen, die
partiellen Ableitungen auf der linken Seite und von o und § sind an der Stelle (x, y) zu
nehmen, die tibrigen an der Stelle (x*, y*).

Beweis. Die Abbildung (4.2) ist genau dann isometrisch, wenn die zu (1.2) bzw.
(4.1) gehorigen ersten Grundformen in entsprechenden Punkten iibereinstimmen,
ds*? = ds?. Hieraus folgt

gn=ghos+ 2¢gha B, + g5 B2
usw. Dabei hat ds*? die Koeffizienten
gh=1+%, gh=v. Vo, Gaa=1+10%0. (4.4)
Mittels der Cauchy-Riemann-Gleichungen ersetzen wir Ableitungen von v(x*, y*)
durch solche von #(x*, y*) und erhalten (4.3).
Wir vermerken noch folgendes: Aus (4.4) ergibt sich

gh =14+ (Imf)?% gf=Ref Imf, g=1+ (Ref)? 4.5)
wobei der Strich die Ableitung nach z* bezeichnet. Im Falle der Abbildung
*=x, yr=y (4.6)

stimmt die GauBsche Kriimmung von R(f) und I (f) in entsprechenden Punkten iiber-
ein (Satz 3.1). Aus (3.1) und (4.5) folgt dann

gh=8n, =82 E&nr=~Eu, 4.7
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und wir sehen, dass (4.6) fiir nichtkonstantes f(z) keine isometrische Abbildung ist.
Dies kann man auch mittels (4.3) und der Cauchy-Riemann-Gleichungen bestétigen.

5. Spezielle Ansitze

Unsere einfache Uberlegung im Zusammenhang mit (4.6) zeigt, dass eine Methode,
Aussagen aus (4.3) zu gewinnen, darin besteht, die Abbildungsfunktionen (4.2) in
spezieller Weise anzusetzen und dann #(x, y) und damit f(z) zu bestimmen. Wir wollen
dies fiir zwei weitere Fille erldutern.

Bei einer Translation

*=x, y*=y+£k (5.1)
erhalten wir aus (4.3) zunédchst

u %, y) = ku, (x,y+%,
u (%, y) u,(x,y) = —u, (%, y + k) u, (v, y + &),
u,(x,y) = Fu, (x,y + k) .
Der Produktansatz «(x, y) = F(x) G(y) liefert beim Einsetzen
F'(x) G(y) = £ F(x) G’ (v + &)
usw. Separation und Integration ergibt F = ¢¢*. Das zugehorige G(y) bestimmt man

am einfachsten aus A« = 0. So erhalten wir insgesamt das Ergebnis:

Bei f(z) = e, ¢ reell, sind R(f) und I(f) tsometrisch, sogar kongruent, und kinnen
durch die Tmnslatton (5.7) mit k = 5|2 c ineinander dibergefiihrt werden.

Um die Rotation in dhnlicher Weise behandeln zu kénnen, gehen wir zu Polar-
koordinaten 7, ¢ und »*, ¢* iiber, die durch
x=rcos¢, y=rsing, x*=r*cosd*, y*=r*singd*
definiert sind. Wir schreiben einfach
Hz) = u(r, ¢) +iv(r, @) . (5.2)

Wie Satz 4.2 ergibt sich.der
Satz 5.1. Eine Abbildung

=yr.¢), ¢*=o0lg) (5.3)

der Realteilfliche R(f) einer analytischen Funktion (5.2) auf die Imagindrtesifidche I(f)
dieser Funktion ist genau dann isometrisch, wenn

a)  l4ul =1 +r2u) ) — 2w gy, 0+ 72 (14 4) o]
b)  w,uy = (1+4r*2 ug) 7, Vg — U Uge (¥, g + 74 ©,) ]
2 (5.4)
+ 72 (1 + u,.) 0, w0y, ]
o) Phug=(147"2ul) i — 2u. ugys 05+ 72 (1 +45) 0f

gilt, wobes Indizes partielle Ableitungen bedeuten. Die partiellen Ableitungen auf der
linken Seste und von y und w sind an der Stelle (v, ¢) zu nehmen und die iibrigen an der
Stelle (r*, ¢*).
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Im Falle einer Rotation

r¥=7r, ¢*=¢+4 (5.5)
folgt aus (5.4)

u(r, §) = £r 1 uy (r, ¢ +9),
r@)=—u (r,d+0)us(r.,4 +9),

)= Fru,(r,¢ +9).

Der Produktansatz u(r, ¢) = R(r) D(¢) ergibt

() D(p) = £ R(") D' (6 +0),
(P D(P) =—P(+0)P ($+9),
R(r)P'(§) = Fr R() D (¢ +9) .
Separation und Integration fithrt auf R = #°, und @ bestimmt man am einfachsten
vermoge Au = 0. Weiter folgt
DPp+0)=—-DPP—9).
So erhalten wir das Ergebnis:

Bei f(z) = z°, ¢ reell, sind R(f) und I(f) isometrisch, sogar kongruent, und konnen
durch die Rotation (5.5) mit § = n|2 ¢ ineinander tibergefiihrt werden.

Dasselbe gilt auch fiir % z¢. Weiterhin hat man die folgenden Transformationen,
bei denen die Isometrie erhalten bleibt: Translationen und Rotationen in der 2-Ebene,
Addition einer Konstanten zu f(z). Hieraus folgt:

Fiir f(2) = a 22 + b 2 + ¢ sind R(f) und I(f) isometrisch.

S

6. Zwei weitere Methoden

Notwendige Bedingungen fiir Isometrie sind die Gleichheit von K, von VK und
von AK in entsprechenden Punkten. Um festzustellen, ob fiir eine bestimmte Funk-
tion f(z) Isometrie von R(f) und I(f) vorliegt, bieten sich die folgenden beiden Wege
an, die wir gemischte bzw. Minding-Methode nennen wollen.

1. Gemischte Methode: Man benutzt Satz 4.1a, um (4.2) gewisse Bedingungen auf-
zuerlegen, und geht dann in (4.3) ein.

II. Mindings Methode [3]: Man benutzt die obigen notwendigen Bedingungen al-
lein, also (4.3) iiberhaupt nicht, und sieht zu, ob man daraus Bedingungen oder Wider-
spriiche beziiglich der gesuchten Abbildungsfunktionen erhilt.

Wichtig ist in beiden Fillen die Annahme, dass die betrachteten Fldchen durch
ganz bestimmte Darstellungen gegeben sind. Die Methoden sind nicht verwendbar,
wenn wir f(z) noch ganz beliebig lassen, also Klassen von Fldchen betrachten. Selbst
wenn man sich auf ein Paar ganz bestimmter Flichen beschrinkt, hat man im allge-
meinen mit erheblichen Schwierigkeiten zu rechnen. Deshalb wurde frithzeitig ver-
sucht, wenigstens fiir Drehflichen unter Benutzung der Symmetrie praktische Resul-
tate zu erzielen; vgl. P. STACKEL [5]. Durch diese Arbeit angeregt, hat dann A. WaAN-
GERIN [8] sein bekanntes Beispiel angegeben, das zeigt, dass Gleichheit der GauBschen
Kriimmung nur notwendig, aber (im nichtkonstanten Fall) nicht hinreichend fiir Iso-
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metrie ist. Interessanterweise ordnet sich dieses Beispiel in unsere gegenwirtigen von
der Funktionentheorie bestimmten Untersuchungen ein, indem wir es folgenderma-
Ben betrachten:

f(2) = Inz hat die Realteilfliche ¥ = (x, y, In7) und die Imaginirteilfliche s* =
(x*, y*,¢%). Hierbei ist z=r7r¢® bzw. 2* = r* ¢#". Fiir die GauBsche Kriimmung

findet man
1 1
K== P2 K0 == e
Aus K = K* folgt r = »*. In (5.4) ist wegen » = In7 nun u, = 0, ug = 0 sowie y, = 0,
und (5.4b) gewinnt die einfache Form 0 = (% 4 1) w, w,. Dann wire aber , = 0, da
anderenfalls die Funktionaldeterminante der Abbildung identisch verschwinde. Aus

(5.4a) folgte dann 1 +1/7% = 1, ein Widerspruch. Also lautet unser Ergebnis:
Bei f(z) = Inz sind R(f) (Drehfliche der Logarithmuskurve) und I(f) (Schrauben-
fliche) nicht isometrisch.
Im vorliegenden Falle ist auch Mindings Methode brauchbar und liefert dasselbe
Ergebnis: Aus K = K* folgt » = r*. Statt VK betrachten wir einfacher
V2 = g1l (27)2 = Vp*2 = gli* (2 %)2

Diese Gleichung ist wegen
gl = 7
1472

gi* =1, rf=v

unvertraglich. R(f) und I(f) sind also nicht isometrisch.
Inz und e? zusammen zeigen:

Awus der Isometrie oder Nichtisometrie von R(f) und I(f) folgt nicht die entsprechende
Awussage fiir die Umkehrfunktion.

Ubrigens ist K bei e ebenfalls so einfach, dass die Methoden I und II ohne Schwie-
rigkeiten angewendet werden kénnen. Man hat ndmlich
5 g2k

K=—W)—z— und K*=_(T:F—BE}TF.
K = K* ergibt x = x*. Weiterhin wird
e2* | et*sinty

= 2%
Ver = gl g2 = s

und wegen x = x*
ex + etx COS’y*

1+ 62+
So erhalten wir siny = 4 cosy*, also y* = F /2, in Ubereinstimmung mit unserem
vorigen Ergebnis.

Schwierig wird die Anwendung der Methoden, wenn K von beiden Variablen ab-
hingt. Ein typisches Beispiel ist f(z) = cosz. Hier hat R(f) die GauBsche Kriimmung

K—=— cosh? y — sin?x

" (cosh®y + sin®x)?
Unter Benutzung der Tatsache, dass eine isometrische Abbildung geodatlsch sein
muss, erhielt H.-W.Pu [4] das Ergebnis:

Bei cosz und sinz sind die Realteil- und die Imagindrteilfidche nicht isometrisch.

ErwiIN KREYSZIG, Universitdt Diisseldorf

Ver* — gllt p2xk —
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Uber das invariante Rechtwinkelpaar einer schiefen Affinitit
und dessen Zusammenhang
mit der Jakosischen Konstruktion der Achsen einer Ellipse

Eine perspektive Affinitdt sei durch ihre orientierte Fixpunktgerade (f) = (f’)
und durch ein Paar zugeordneter Punkte P - P’ gegeben. Zur Beschreibung der
Abbildung legen wir (f) durch einen Einheitsvektor i fest, konstruieren den Bild-

punkt E’ eines Punktes E, der den Abstand + 1 von (f) besitzt, und geben den Bild-
vektor 0’ E' = i=xi+ Z] (A # 0) des Originalvektors OE = i an (siehe Figur 1).

Die Abbildung ist durch i’ oder durch die Paramter » und A eindeutig festgelegt
(vgl. [3, S. 17)).

() m=(f)
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Da die Frage nach dem invarianten Rechtwinkelpaar fiir x = 0 (Identitét, nor-
male Geradenspiegelung, normale Affinitit) uninteressant ist, soll » # 0 voraus-
gesetzt werden. Fiir % # 0, A = 1 erhalten wir eine Scherung, fiir % # 0, A= — 1
eine Schrigspiegelung, fiir » # 0, |A| # 1 eine eigentliche schiefe Achsenaffinitat.
Unsere Untersuchungen fiir % # 0, 4 # O schliessen also die Sonderfille Scherung
und schiefe Geradenspiegelung ein. In bekannter Weise konstruieren wir zunichst
das invariante Rechtwinkelpaar 7,’ und 7," einer solchen perspektivaffinen Punkt-
verwandtschaft (siehe Figur 2; vgl. z. B. [2, S. 78]) und berechnen dann die zu 7,’
und 7,’ gehdrenden, auf (f) = (f’) bezogenen Richtungswinkel g¢," und g,’ aus den
Skalaren » und A.

—_ - - - (n=(f)
RO=0" i H EXY::

29\ K

o M E
L« % | momw S
x 2 EA=RE N\

Figur 2

1. Die Richtungswinkel des invarianten Rechtwinkelpaares

Wegen p," = g," 4 90° geniigt es, einen der beiden Winkel mit Hilfe von » und
A auszudriicken.

Nach dem Satz vom Mittelpunktswinkel ist ¢ R, M E' = 2 p,’ (sieche Figur 2).
Da cot2g, = cot2p, ist, gilt fir jeden Richtungswinkel g,/ des invarianten
Rechtwinkelpaares cot 2 o/ = ME,|Ey E'. Nun ist Hy E,/ = x/2. Wegen
ME, = HyE, — HyM = ([2) — [ ist cot 29, = ((%/2) — )/A mit | = Hy M. Aus
tano = FE'|EF = (A — 1)/% und tan « = H,M|H,H = 21/(1 + A) ergibt sich = (A2
— 1)/2x. Also gilt:

y 1 (2 A2 —1
Durch Spezialisierung von (1) fiir A= + 1 (Scherung) und fiir A= —1 (Schrig-
spiegelung) erhalten wir fiir diese Abbildungen:

Scherung: cot2p= x/2 x#0 1"
Schrigspiegelung: cot 29 = —x/2 ®#0 "

Das Rechtwinkelpaar einer Schrigspiegelung mit Parameter » ergibt sich aus
dem Rechtwinkelpaar einer Scherung mit demselben Parameter und derselben
Achse durch Normalspiegelung an dieser Achse. Geometrisch ist das evident, da
sich diese Schrigspiegelung durch Hintereinanderausfithrung der Scherung und der
Normalspiegelung ersetzen lisst. A
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In der Literatur wird eine schiefe Affinitit hiufig nicht durch die Para-
meter » und 4, sondern durch « und A angegeben (« gibt die Affinitdtsrichtung an,
A heisst Affinitdtsverhiltnis oder Affinitdtsfaktor). Mit tan « = (A — 1)/» oder
%= (A—1)-cota wird (1) zu:

A—1

cot29§=—;—(———z——-cota—l—11-tana) A#0; a#0°090° (2)

2, Zur Konstruktion des invarianten Rechtwinkelpaares

Fiir die Scherung liefert die Beziehung (1') unmittelbar eine einfache Kon-
struktion des invarianten Rechtwinkelpaares (siehe Figur 3).

\)=(f')

Figur 3

Esist dieselbe Konstruktion, diein [3, S. 25/26] durch rein geometrische Betrachtungen
gewonnen worden ist. Wir wollen untersuchen, ob sich aus der allgemeineren Be-
ziehung (1) eine Konstruktion fiir das Rechtwinkelpaar einer eigentlichen schiefen
Affinitdt herleiten ldsst.

Durch Umformung von (1) ergibt sich:

, 1 (% A—1 A+1 %
COtZQiz—E(T— p” . ” T) %,J.#O
Fithren wir Winkel ¢, ¢, g, mit
tan(p=%, tan(p1==—;:—;—1, tan%zljl

ein (siehe Figur 4), so wird (1) zu
1 — tan @, - tan ¢,

c0t2@£ = 2tang

(f)=(t")
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Daraus folgt:

tan 2 g'f — 2tang _ _tang, +tang, 2 tang

1 —tang, - tan ¢, 1 — tan ¢, tan g, tan @, 4 tan ¢,

DaE' E' =FE’ E' ist E, E’ das arithmetische Mittel von E; E’ und E,’ E'. Daraus
folgt, dass tan ¢ = 1/, (tan ¢, + tan @,) und (2 tan ¢)/(tan ¢, + tan g@,) = 1 ist.
Damit wird tan 2 ;" = tan (p; + @), und es gilt der
Satz: Die beiden Rechtwinkelrichtungen sind die Winkelhalbierenden der Geraden
O E’ und O E’ (siehe Figur 4).

3. Der Zusammenhang mit der Konstruktion von R. JAKOBI

Mit Hilfe der Konstruktion von Figur 4 kénnen wir die Richtungen der Achsen
einer Ellipse koustruieren, von der zwei konjugierte Durchmesser gegeben sind
(siehe Figur 5):

¢A20A,-¢A20Az--’-2i
|
S, = SA5 =b ~ s, “ 7/,/\
0S; = a -
2 SR

(f)=(f)

Es seien A, Ay =2 o und B, B, = 2 b, konjugierte Durchmesser einer Ellipse
(e), die sich gegenseltlg in O halbieren. Dann bildet die eindeutig bestimmte perspek-
tive Affinitit mit Achse B, B, die Punkt B in den Bildpunkt A, iiberfithrt, den
Kreis um O mit Radius 7 = b, in (¢) ab. Das invariante Rechtwmkelpaar dieser
Affinitit liefert die Richtungen der Ellipsenachsen. Unterwerfen wir die zu dieser
Affinitit gehérende Figur 4 einer zentrischen Streckung mit Zentrum O und Streck-
faktor b,, so gehen die Punkte E, E’, E’, E' von Figur 4 in die Punkte B, Ay, A, A,
von Figur 5 iiber, und aus der Konstruktion von Figur 4 wird die Konstruktion von
R. JaxosI

Die Lingen der Ellipsenachsen a und b ergeben sich aus O 43 =a — b und

(0] Z, = a + b. Diese Lingen lassen sich durch abbildungsgeometrische Uberlegun-
gen oder auch durch einfache Rechnung gewinnen.
Nach dem Lehrsatz von Pythagoras ist:

04, = OC" + C4, | 04,=0C’ + C4,
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Es sei ¢ CO 4, = g; mit 0C=a cos ¢ und C Ay = a, sin @ ergibt sich:
0—4: = a? cos® p + (a; sin ¢ — b,)? a: = a2 cos® p + (a, sin ¢ + b,)*
=a+ b —2a bsing =al+b+2a,bsing

Nun ist aber 24, b, singp =2ab (Flichentreue!) und a2, + b% = 4% + b?; damit
ergibt sich:

0dy— (a—b)? | 04;— (a+b)? g.e.d.

R. Jaxkosr hat seine Konstruktion im Jahre 1952 verdffentlicht und durch kine-
matische Betrachtungen bewiesen (vgl. [1]). O. TAMASCHKE gab 1963 einen elemen-
targeometrischen Beweis (vgl. [4]). H. SIEBER fithrte 1967 zwei abbildungsgeome-
trische Beweise, die nur Drehungen, Parallelverschiebungen und Geradenspiege-

lungen verwenden (vgl. [3], S. 37-39). HermuT StesEr, Boblingen
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Kleine Mitteilungen

Eine Bemerkung zum Verfahren von Leverrier

Verschiedene mathematische und technische Probleme fiihren auf die Berechnung des
charakteristischen Polynoms
pyA) =det(AE — A4),

wobei A eine beliebige Matrix aus M,(K), dem Ring der komplexen # X #-Matrizen, und
E die Einheitsmatrix ist. Entwickelt man diese Determinante in iiblicher Weise als Summe
von Produkten ihrer Elemente und ordnet dann nach fallenden Potenzen von A, so erhilt

man das Ergebnis
n

pa) = (—1)¢c, A" "7,

w=0

wobei ¢y =1, ¢, =det4 und firallej=1,2,...,n — 1
ayyy o aVle

¢ = E det | : :
vy -+ vjleK; Ayjry =+ Ayyyj

ist. K; ist dabei die Menge samtlicher Kombinationen j-ter Klasse ohne Wiederholung:
o rdcl...,n]und 1 <y, < ... <y = ([6], S.114).
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Diese direkte Berechnung der Koeffizienten des charakteristischen Polynoms ist sehr
aufwendig und fiir grosse Werte von # nur von theoretischem Interesse. Ein anderes Ver-
fahren, das die Berechnung der Koeffizienten von p 4(1) gestattet, ist unter dem Namen
«Verfahren von LEVERRIER» bekannt [1]. Es stellt wohl die 4dlteste Methode dar, wenn man
von der obenerwihnten direkten Berechnung absieht. Vor allem besitzt das Verfahren von
LEVERRIER gegeniiber verschiedenen anderen Verfahren den Vorzug, dass an die betrach-
tete Matrix 4 keinerlei zusitzliche Forderung gestellt werden muss. Dieses Verfahren wur-
de wiederentdeckt von HorsT [2], schliesslich verbessert und verallgemeinert von SOURIAU
(3], FADDEEV-SoMminsKir [5] und FrRAME [4]. Alle diese Uberlegungen beruhen auf den so-
genannten Newtonschen Formeln, die die Berechnung der Koeffizienten des charakteri-
stischen Polynoms auf die Berechnung der Spuren der » aufeinanderfolgenden Matrix-

potenzen 4, 4%, ..., An und die Lésung eines gewissen linearen Gleichungssystems zuriick-
fithren.
Setzen wir
n
Pl = 2"+ 3 pui®"® und s=Spdrk (k=1,2,...,%), 1)
w=1

so lauten die Newton’ schen Formeln

Skt Sk—1P1t+ Sk—gPet A+ S1 P+ EPE=0 (k=1,2...,m). (2)

Wir kénnen (2) auch in Form eines linearen Gleichungssystems fiir die Koeffizienten

pl’ vt P’l

Lp=r (3)
schreiben, wobei
1
S 2 O
L= Sy Sy 3 , p=col(py ..., pn) und

Sn-15n-254-3--m

¥ = col(— sy, ..., — Sp) zu setzen ist. Eine Moglichkeit, das System in (3) nach p aufzuldsen,
ist die Bestimmung von L-!; dann ist p = L~1 7. Wir wollen uns jetzt iiberlegen, wie man
die explizite Berechnung der Matrix umgehen kann, indem wir die spezielle Form von L
ausniitzen.

Zuerst setzen wir R = L — D mit D = diag(1, 2, ..., #), dann D! R = B = (by). Mit
dieser Bezeichnung ist L = D (E + B) und daher

L= (E+ B)-1 D1, @)

Aus der Struktur der Matrizen D und R findet man leicht, dass die Elemente der Matrix B
den Bedingungeti
bu=0 1=k (5)

geniigen. Nach (5) besitzt B daher nur den n-fachen Eigenwert 0 und erfiillt somit die
Gleichung B# = 0, woraus trivialerweise

Brti=0 j=0,1,2,... (6)
folgt.
Nach einem bekannten Satz (siehe z.B. [8], S.98, Satz 49) gilt dann fiir die Matrix B
o0
(E+ B)t= 3 (—1)°B”. (7)
w=0

Mit (6) reduziert sich die unendliche Summe auf der rechten Seite in (7) auf eine endliche
Summe ’

n-1
(E+ B)t=J (-1)°B°. ®)

=0
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Schliesslich folgt aus (4) und (8) das Ergebnis

n 1
L) = 2;‘ (- )" B” D1,

w -0
In (3) cingesctzt, crhalten wir fiir die Unbekannten py, ..., py,

n -1

b= col(py, ooy pa) = D) (1) B D71y,

w--0

Wir haben damit dic Inversion der Matrix L auf Multiplikationen von Matrizen (derselben
Ordnung) zuriickgefiihrt. R.Z.Doxiary, Graz
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Eine Bemerkung zur eindeutigen Primfaktorenzerlegung in Halbgruppen

Es sei H cine kommutative Halbgruppe mit neutralem Element e. Sie sei ferner regu-
lar, d.h. in H gelte die Streichungsregel (@ ¢ = b ¢ = a = b fiir alle a, b, ¢ € H). Wie iiblich
heisst a Teiler von b (in Zeichen a | b), wenn es ein ¢ € H mit a ¢ = b gibt. Das Element e
soll keine Teiler # e haben, d.h. also H \ {¢} ist eine Unterhalbgruppe. Ein Element a € H
heisst irreduzibel, wenn es ausser a und e keine Teiler hat. p € H heisst Primelement, wenn
fiirallea,be Hgilt: p|ab = p|aoder p|b. Bekanntlich ist jedes Primelement irreduzi-
bel.

Hilfssatz: Gibt es in H eine assoziative Verkniipfung * mit den Eigenschaften :

axbla, axb|b (firallea,beH) (1)
axblc, cila, c¢clb=>c=axb (firallea, b, cecH) (2)

so gilt: ;
cla, clb=cjaxb (firallea, b, ceH). (2)

Beweis mittels (1) und (2):
Ausc|a,c|bergibtsicha * ¢ = ¢, b * ¢ = ¢, wegen der Assoziativitit also (a * b) * ¢ =
a@* (b*c)=axc=cund daher nach (1) c|a * b.
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Bekanntlich besagen (1), (2’), dass a % b der ggT von a, b (und somit * assoziativ) ist.
Daraus ergibt sich): Jedes irreduzible Element ist Primelement.

Setzt man nun noch dic Giiltigkeit des Tcilerkettensatzes voraus (das heisst: im Falle
a,., | a,, fiiralle n € N ist stets {a, | » e N} endlich), so folgt bekanntlich?) weiter, dass jedes
Element von H bis auf die Reihenfolge eindeutig als Produkt von Primelementen darge-
stellt werden kann. Eine Verkniipfung % mit (1), (2) kann man nun leicht angeben, wenn
in H eine Relation « <» mita | b = a < b (fiir alle a, b € H) existicrt, beziiglich der stets
T'(a) n T(b) (mit T(a) als der Menge der Teiler von a) ein maximales Element 2) hat. Ordnet
man jetzt jedem Paar a,b als Verkniipfungsergebnis a * b ein maximales Element von
T(a) N0 T(b) zu, so erfiilll % offenbar dic Bedingungen (1) und (2).

Die im Vorstehenden an die kommutative Halbgruppe H mit deimn neutralen Element e
und die Relation « <» gestellten Forderungen (mit Ausnahme der Assoziativitit von %)
sind nun erfiillt, wenn man «<» als eine mit der Halbgruppcnverkniipfung vertrigliche
(d.h. @ < b= ac < bc) Wohlordnung voraussetzt. Offenbar ist dann H reguldr. Man
zeigt ferner, dass e klcinstes Element ist. Aus a < e wiirde ndmlich a << a»~! (» e N) folgen,
im Widerspruch dazu, dass die Kette {a" | 2 € N} ein kleinstes Element haben muss. Wegen
e <cgitnuna <acunddahera|b=a <b.

Jedes Element von H hat jetzt nur endlich viele Teiler. Im anderen Italle wiirde es
nimlich b,, ¢, e H (veN) geben mit b,¢, =a und pu < v = b, <b, (u,veN), daraus
wiirde aber u < v = ¢, > ¢, (u, » € N) folgen, so dass {c, | v € N} kein kleinstes Element
haben konnte. Es gilt also der Teilerkettensatz, und T'(a) N T(b) hat stets ein grosstes Ele-
ment. Dann wird wie oben a x b als dieses grosste Element von T(a) 0 T(b) gewihlt. Setzt
man jetzt noch die Assoziativitit von % voraus, so ist jedes Element von H bis auf dic
Reihenfolge eindeutig als Produkt von Primclementen darstellbar.

Satz: In einer kommutativen Halbgruppe mit neutralem Element ¢ ist genau dann
H\{e} Unterhalbgruppe und jedes Llement eindeutig (abgesehen von der Reihenfolge) als
Primelementeprodukt darstellbar, wenn es eine mit dev Halbgruppenverkniipfung vertrdgliche
Wohlordnung gibt und diejenige Verkniipfung assoziativ®) ist, die jedem Elementepaar den
beziiglich der Wohlordnung grossten gemeinsamen Teiler zuovdnet.

Beweis: Es wurde gezeigt, dass die Bedingung hinreichend ist. Die Notwendigkeit wird
so bewiesen: Die Menge ) der Primelemente von H sei wohlgeordnet. Es sei f,: P >N
eine Abbildung von D in Nmita= [ [ p'a®, wobei f,(p) # 0 fiir endlich vicle p € . Die

pe

Elemente a, b € H werden antilexikographisch geordnet nach dem beziiglich der Wohlord-
nung von J) grossten Element p e P, fiir das f,(p) von f,(p) differiert?). Diese Ordnung ist
cine Wohlordnung. Man zeigt das unter Benutzung bekannters) Uberlegungen. Wegen
fap = 1o + 1 ist diese Wohlordnung vertriglich mit der Halbgruppenverkniipfung. Jedes
Elementepaar a,b besitzt einen ggT, und die ggT-Bildung ist assoziativ. Der grosste ge-
meinsame Teiler von a,b ist aber zugleich das beziiglich der Wohlordnung grosste Element
a * b von T(a) 0 T(b). Damit ist die Notwendigkeit der Bedingung bewiesen.

H.WiscnHe, Liibeck
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On (m,n)-ideals in subcommutative semigroups

Let S be a semigroup?). Following the terminology of the theory of rings we say that S
is subcommutative if in S the equation

ab=ca (1)

always has a solution ¢ given a and b. Obviously every commutative semigroup is sub-
commutative. We show by an example that there exists a subcommutative semigroup
which is not commutative:

0 1 2 3

010 0 0 0
110 1 0 1

212 2 2 2

312 3 2 3

The semigroup S of four elements 0, 1, 2, 3 with the above multiplication table is sub-
commutative but not commutative.
It is easy to sce that the following assertion is true.
Proposition 1. A semigroup S is subconnmutative if and only if the velation a S < S a
holds for each element a in S.
The Proposition 1 implies the
Proposition 2. In a subconnnutative semigroup S every left ideal is a two-sided ideal.
As the author introduced (see e.g. [2]) a subsemigroup 4 of a semigroup S is called an
(m,n)-ideal of S, if the inclusion
AmnSAn< A (2)
holds, where m,n are arbitrary non-negative integers and 4™ is suppressed if m = 0. Con-
cerning the (m, n)-ideals of semigroups the author proved, among others, that a semigroup
is a group if and only if it has no proper (m, n)-ideals, where m, % are fixed positive integers
[3]. Let @ be a finite sequence ny, ..., 7, of the symbols / and 7. A subsemigroup 4 of S is
said to be a n-ideal if
A=55.,<...€5=S5 (3)

holds, where S, is a left [right] ideal of S; _, if m; = I [+¥] (i =1, ..., ¢). In the sequence z let
m[n] be the number of occurrences of [I]. The author proved that a subset A of a semigroup
S is a n-ideal if and only if A is an (m,n)-ideal of S. If S is a regular semigroup (i.e.ac€a Sa
for each a in S), then a subset A4 of S is an (m, n)-ideal if and only if it is the intersection of
an (m,0)-ideal and a (0,#)-ideal of S (see [2]).

In the theory of (m,n)-idcals the Proposition 2 may be easily generalized as follows.

Proposition 3. In a subconmutative senigroup every (i, n)-ideal is at the same time an
(m + 1,n — 1)-ideal.

This statement has some consequences.

Corollary 1. In a subconuwnulative semigroup every (0,2)-ideal is a bi-ideal.

Corollary 2. In a subcommutative semigroup every (m,n)-ideal is an (m + n,0)-ideal.

Corollary 3. In a subcommutative semigroup every (0,m)-ideal is a (p,q)-ideal, where p,q
are arbitrary non-negative integers such that p + q = n.

It is easy to show that the subcommutative semigroups have the following property,
too.

Proposition 4. In a subcommutative semigroup every quasi-ideal is a vight ideal and
conversely. S.Lajos, Budapest, Hungary

1) For the terminology we refer to [1].
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A Note on Integral Domains that are not Right Distributive

The following are threc well known or easily proven results about integral domains.

Theorem I1: If (R, |-, *) is an integral domain with characteristic m > 0, then m isa
prime and all the non-zero elements in R have order m.

Theorem II: [f (K, +, *) is an integral domain and R is finite, then (R, +,-) is a
divisian ving.

Theorem II1: [f (R, +, ) is an integral domain and ee R is a non-zero idempotent,

then e is an identity for (R, +, -).

Tt is the purpose of this note to show that analogous results can not be obtained if just

one of the distributive laws hold in (R, +, ).

Recall that (N, +, *) is a near-ring if (N, +) is a group (not necessarily abelian), if (V, )
is a semi-group, and if whenever a,b,ce N, thena- (b+ ¢) = a-b+ a-c. ForJack of a
better name, a near integral domain is a near-ring (N, -, ) such that if N* are the non-zero
elements of N, then (N*, -) is a semi-group. Similarly, a near-field is a near-ring (N, +,)

such that (N*, ) is a group.

The following result shows that analogucs to Theorem I, Theorem IT and Theorem ITI

do not hold for ncar integral domains.

Theorem A: Let (G, +) be a group (not necessarily abelian). Let * and - Le binary
operations defined on G as follows: a * b = b for any paira,beG; a-b=>b for any pair
a, beGifa # 0,and 0-b =0 for any b € G. Then (G, -+, ) and (G, +, *) are near integral

domains.

This result follows immediately from [2], or from Theorem 1.8 of [1], or it can easily
be proven by the reader.

It is interesting to note that the two near integral domains defined in Theorem A are
the only ones definable on (Z,, +), (Zs, +), and (S, +) where (Z,, +) denotes the cyclic
+) denotes the symmetric group on #» letters, the operation
written additively instead of the usual o for composition. (These results are observed from
Section II in [1].) For all other non-trivial groups of order less than eight there are addi-
tional near integral domains. Below are non-trivial examples for (Z;, +) and (Z;, +).

group of order #, and (S

n

*10 1 2 3 4
040 O 0 0 O
1fo 1 2 3 4
210 4 3 2 1
3j]0 1 2 3 4
410 4 3 2 1

*

0
1

o 1 2 3 5 6
o o0 o0 0 0 0
0 2 4 6 3 5
0o 4 1 5 6 3
o 4 1 5 6 3
o 1 2 3 5 6
0 2 4 o6 3 5
o 1 2 3 5 6

.
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Based upon empirical evidence and efforts to show the contrary, the author makes the
following
Conjecture. If (N, +, ‘) is a near integral domain with characteristic > 0and if - is
not one of the two binary operations defined in Theorem A, then m is a prime.
JamEes R.Cray, University of Arizona, Tucson, Arizona, U.S.A.
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Aufgaben

Aufgabe 569. Gegeben sind ein Tetraeder 4, 4, 4, A, mit den Seitenflichen «;, a,,
a3, o, und ein Tetraeder B, B, B; B, mit den Seitenflichen f,, 8,, f;, 8,. {; ist die Senk-
rechte von 4; auf §;, m; die Senkrechte von B, auf «; (i = 1, 2, 3, 4). Man zeige: Wenn
die Geraden /; durch einen Punkt gehen, dann gehen auch die Geraden m; durch einen
Punkt. O. BoTrTEMA, Delft

Lisung: Der gemeinsame Punkt der Geraden /; sei L. Das Tetraeder By B; B; By sei
zu A, A, A; A, polarreziprok inbezug auf eine Kugel mit Zentrum L. Da seine Flichen
parallel zu 8, B,, B3, B4 sind, ist es &hnlich und in dhnlicher Lage zum Tetraeder B, B, B; B,.
Die Lote von den Ecken B (¢ = 1, 2, 3, 4) auf die Flichen «; gehen durch einen Punkt
(ndmlich L) ; also gilt dasselbe von den zu ihnen parallelen (und damit in jener Ahnlichkeit
homologen) Geraden m;. (Die Aufgabe findet sich auch bei J. HaApamaRD, Legons de
géométrie élémentaire, vol. II, 7 éd., Probléme 559. In Probléme 1215bis wird eine inter-
essante Eigenschaft eines solchen Tetraederpaares angegeben.)

C. BINDSCHEDLER, Kiisnacht

I. PaascHE (Miinchen) zeigt, dass die entsprechende Aussage auch beim ebenen
Simplex gilt.

Aufgabe 570. Démontrer qu’il existe une infinité de nombres naturels k2 pour lesquels
il existe seulement un nombre fini > 0 de nombres triangulaires qui sont sommes de %

nombres triangulaires consécutifs. W. SIERPINSKI, Varsovie
Solution: - 1)k Gk \
1 - +1
T L e e
Let k [a® + k a + (k% — 1)/3] = m (m + 1), therefore
3 _
@m+ 12—k (@2at k)= —"i—-.—‘%ﬁii.

Let & be an even perfect square 4 ¢2, £ > 1, that is not divisible by 3.

64 18 — 16 2 + 3

3 ’
gives4t(2a+ 412 = (644 —16%)/30r2a+ 412 = (164 — 4¢)/3hencea = — 21 +
(8 #8 — 2¢)/3 an integer. Further we have 4 m = (64 #* — 16 #)/3 or m is an integer.

Hence there will be at least one solution and at most a finite number of solutions if %
is so chosen. G. WuLczyN, Bucknell University, USA

2m+1+2t2a+ 48 = 2m+1—2¢(2a+48) =1

P. Bunpscuul (Freiburg i. Br.) bewies die Aussage der Aufgabe fiir £ = 9 (2¢ — 1)?
(t=1,2..).
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Aufgabe 571. 1. Let F denote the finite field of odd order g. Show that if b € F but
not a square in F then

H[(x+a)2—b]=(xa_x)s—4b.

aeF

2. More generally if F is a finite field of order ¢ and # | ¢ — 1, evaluate the product
I [(* + a)» — b], where b € F. L. Cartitz, Duke University, USA
aeF

Solution by the Proposer:
1. Put b = 2, where € GF (¢?). Then p? = — f and

Tlix+ar—b1=][(x+B+a) (x—B+a)

acF aeF
=[x+ p1—-(F+ Pl —H?— (» - P)]
= (1 — 5+ f1— ) (50— 5 — i+ )
=¥ —-—x—-20)(¥M—x+2B)=@H—x2—40b .
2. Put b = ", where f is in some GF (¢"). Put ¢ =n k£ + 1; then g9 = frk+1=pk g,

Also let 1, w, ..., w" 1 denote the n—n-th roots of unity in F. Then
[[ix+a—e1 =[x+ am— g7
aeF aekF
n-1 %-1
=[[[[G+a—owp)=]]lx—ap?— - wp)
j=0 aeF i=0

n-1 n-1

=[] —x— o (Br—p=[[ 15— 5 — o (¢5— 1) ]
j=0 =0

= (2 — )" — b (bF — )" .

Aufgabe 572. Wenn in einem Dreieck die Ecktransversalen die Gegenseiten im
Verhiltnis der x-ten Potenzen der anliegenden Seiten teilen, dann schneiden sie sich in
einem Punkt, und dessen Abstinde von den Seiten sind dann zu deren (¥ — 1)-ten
Potenzen proportional. Dabei kann # eine beliebige reelle Zahl sein.

Man beweise die Richtigkeit dieser Aussage und ihrer Umkehrung.

O. REUTTER, Ochsenhausen

Ljsung: Entsprechend der Unterteilung in Abschnitte 4, o setzen wir die Seite
a=oa+ A usw. Aus a: A4 = b*: ¢* usw. zyklisch folgt a fy: 4 BC = 1, also existiert
ein Ceva-Schnittpunkt. Er teile die Transversalen in die Abschnitte U (bis zur Ecke) und
u (bis zur Seite) usw. und habe von a den Abstand &, usw. Der Satz von H. vaN AUBEL
p:B+Ciy=U:u=(h,— &) : &fihrt mittels h,=2F:qauf § = a*1 2 F: (a* 4 b* + ¢¥)
usw., q.e.d.

Liegt umgekehrt ein Cevatransversalen-Schnittpunkt mit den Abstinden &, 7, { =¢a*"},
t b1, t ¢! von den Seiten a, b, ¢ vor, so gilt offenbar §a+ nb+ {c=2F, also t =
2 F: (a* + b* + ¢*), das heisst es liegt genau derjenige Cevatransversalen-Schnittpunkt
vor, der durch die Seitenteilung a = « + 4 mit «: 4 = b*: ¢* usw. erzeugt wird, q.e.d.

Die bekanntesten Spezialfille sind # = 1 (Inkreiszentrum) und » = 0 (Gravizentrum).

I. PaascHE, Miinchen

Weitere Losungen sandten J. FEHER (Pécs, Ungarn), E. FRUH (Kradolf), W. JANICHEN
(Berlin), L. KierrER (Luxemburg), S. KLEVEN (Steinkjer, Norwegen), E. WIDMER (Biel).
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Neue Aufgaben
Aufgabe 593. Gegeben ist die Sturm-Liouvillesche Differentialgleichung
¥+ Apt)x=0,a <t <b, pit) >0.
Die Eigenfunktionen seien g,(¢), i =1, 2, ....
&ilt)  g(t)

gi(ts)  ga(ts)
H. GUGGENHEIMER, Polytechnic Institute Brooklin, USA

Behauptung : 0 P
3 = 1 =13

Aufgabe 594. Es sei V ein Rechtsvektorraum vom Range > 4 iiber dem (nicht notwendig
kommutativen) Kérper K. Mit L(V) bezeichnen wir den Verband aller Unterrdume von V,
d.h. die zu V gehorige projektive Geometrie. Sind U und W Unterrdume von V mit
V =U @ W, so bezeichnen wir mit I'(U, W) die Gruppe aller Kollineationen von L(V),
die sowohl U als auch W punktweise festlassen. Wir sagen, dass L(V) ein (U, W)-transitiver
Raum ist, falls es zu zwei verschiedenen Punkten P und Q von L(V) mit P, Q ¢ U, W und
(P+Q)NU=* {0} (P+ Q)N W stets ein y e I'(U, W) mit Py = Q gibt. Ist U ein
Punkt und daher W eine Hyperebene von L(V), so folgt aus der Giiltigkeit des Satzes von
Desargues, dass L(V) ein (U, W)-transitiver Raum ist. Man zeige: In L(V) gilt genau dann
der Satz von Pappos, falls es zwei Unterrdume U und W von V mit V= U @ W und
r(U) > 1 < »(W) gibt, so dass L(V) ein (U, W)-transitiver Raum ist.

H. LUNEBURG, Mainz

Aufgabe 595. Show that
((:) k) -1 (h=n<=2k

if and only if £ = p°, where p is prime and s = 1.
L. Carritz, Duke University, USA

Aufgabe 596. Das ebene Dreieck mit den Seiten a, b, ¢ besitze den Umfang 2 s, den
Umkreisdurchmesser %4 und den Inkreisradius ¢. Man zeige

(be)® + (ca)® + (ab)* = (s* —@* — 20 h)* + (22 9)*.

I. PaascHE, Miinchen

Literaturiiberschau

Lineave Geometrie. Von Horst Tierz. X und 202 Seiten mit 18 Figuren. DM 30.-.
Verlag Aschendorff, Miinster (Westfalen) 1967.

Das vorliegende Buch ist aus einer 2semestrigen Anfidngervorlesung iiber lineare
Algebra hervorgegangen, wie sie an den meisten Hochschulen fiir die Mathematiker und
Physiker gehalten wird. Mit dem gewiahlten Titel will der Autor betonen, dass er dem
geometrisch motivierten Teil der linearen Algebra in einer Anfingervorlesung eine gewisse
Prioritit zuschreibt. Daneben lisst das Buch noch weitere didaktische Anliegen erkennen.
Wer sich in die Lektiire vertieft, wird eine erfreuliche Feststellung machen: Es gibt trotz
Boursaki noch Dozenten, die sich der Tatsache bewusst sind, dass mit einer unvermittelt
anhebenden abstrakten Breitseite auf die Studenten im ersten Studiensemester der
Wirkungsgrad des Mathematikstudiums nicht unbedingt erh6ht wird. T1ETz stellt seinem
Buch ein Kapitel iiber den 3dimensionalen Anschauungsraum voran, in dem er die naive



44 Literaturiiberschau

Vektorrechnung und die elementaren Teile der analytischen Geometrie in vorwiegend
empirischer Manier entwickelt. Fiir die Studierenden fillt damit etwas ab, das sie in der
Physikvorlesung sofort verwenden kénnen. Dieses einleitende Kapitel bildet aber zugleich
auch eine anschauliche Motivation fiir die anschliessende Theorie.

Das Buch vermittelt eine solide Einfithrung in die Begriffswelt der heutigen Mathematik
und in die fundamentalen Theoreme der linearen Algebra. Dieses Programm entspricht
dem Lehrziel, das der Vorlesung iiber lineare Algebra innerhalb des Studiums aufgetragen
ist; sie hat den Zugang zur Mathematik freizulegen.

Die einzelnen Kapitel des Buches fiihren folgende Uberschriften: 1. Der Anschauungs-
raum, 2. Der Vektorraum, 3. Dualitit, 4. Abbildungstheorie, 5. Orthogonalitit, 6. Lineare
Punktriume.

Das Buch ist sehr iibeisichtlich gestaltet und ist leicht lesbar. Es kann als Parallel-
lektiire zu einer Vorlesung iiber lineare Algebra wie auch zum Selbststudium bestens
empfohlen werden. M. JEGER

Elementarmathematik in moderner Daystellung. Von LucienNE FtrLix. Ubersetzung aus
dem Franzosischen, besorgt von Ivo Steinacker. XV und 558 Seiten mit 54 Figuren.
DM 39.—. Verlag Vieweg & Sohn, Braunschweig 1966.

An sich ist die Ubersetzung des Exposé moderne des mathématiques élémentaires aus
dem Jahre 1961 sehr zu begriissen. Die bekannte Autorin gibt darin eine Darstellung des
Unterrichtsstoffes der hoheren Schule unter dem Gesichtspunkt der Vereinheitlichung.
Dies lduft auf die Heraushebung einiger wesentlicher Strukturen und auf das Aufzeigen
der Durchgingigkeit in den Methoden hinaus. Die Hauptabschnitte des Buches tragen
folgende Uberschriften: Fundamentale Strukturen, Arithmetik und Algebra, Analysis,
Die Geometrien.

Der Leser erwartet von einer modernen Darstellung des Schulstoffes prizise Begriffs-
bildungen, eine tiefere Einsicht in die einzelnen Stoffgebiete, eine Herausarbeitung der
Querverbindungen zwischen verschiedenen Gebieten und nicht zuletzt einen sinnvollen
Anschluss der Schulmathematik an die h6here Mathematik. Diese Erwartungen werden
leider nur teilweise erfiillt. Fundamentale Begriffe sind hédufig nur sehr unklar definiert
(Relation, Struktur, Transformation, Funktion, Ereignis, um nur einige wenige zu nennen).
Die bewusst gepflegte Vielologie (vieles wird geboten!) bewirkt oft eine Oberflichlichkeit,
die zahlreiche wichtige Gegenstidnde nur gerade anklingen lisst und damit kaum zu einem
tieferen Verstdndnis ausreicht. Im weitern sind verschiedene Riickfille in die traditionelle
Sprechweise zu vermelden (auf Seite 299 tauchen neben den gewdhnlichen Funktionen
noch implizite Funktionen anf; im Zusammenhang mit dem Doppelverhiltnis wird auf
Seite 385 die Zahl oo eingefiihrt). Die Darstellung der Geometrie wird vom Vektorraum
her vollzogen und wirkt reichlich vertheoretisiert, was sich auch darin kundtut, dass aus-
gerechnet bei der Behandlung des klassischen Schulstoffes (Seiten 403-474) die Figuren-
dichte das absolute Minimum 0 erreicht. Die Begriindung fiir den Verzicht auf Figuren auf
Seite 340 ist mir schleierhaft. Der Formalismus wird des oftern sehr willkiirlich gehand-
habt: Wihrend z.B. auf den Seiten 10/11 fiir das direkte Produkt von Mengen das
Zeichen X und fiir eine innere Operation auf einer Menge das Zeichen O eingefiihrt
werden, benutzt die Autorin spiter fiir die Verkniipfung von affinen Abbildungen das
Zeichen X . Dass hier wiederum eine innere Verkniipfung auf einer Menge vorliegt, geht
fast vollkommen unter (Querverbindung!). Die Kongruenzgruppen in der Ebene und im
Raum sind trotz eines ausgiebigen Vorstosses in die Spiegelungsgeometrie nur schlecht
herausgestellt. Eine Schlussbemerkung auf Seite 449, die auf die Gruppenstruktur anspielt,
ist vollig missraten: « Die Menge der Ebenenspiegelungen bildet die Gruppe der Isometrien».
Eine Reihe von sprachlichen Unklarheiten wie gerade an dieser Stelle ist wohl auf das
Konto der Ubersetzung zu buchen. Bei einem Werk mit vorwiegend didaktischem Ein-
schlag diirfte man aber erwarten, dass die Ubersetzung sorgfiltiger iiberwacht wird.

Die Absichten der Autorin, die sich mit der Popularisierung der Bourbaki-Ideen im
Hinblick auf die Schule einen guten Namen gemacht hat, verdienen grundsitzlich ein
weites Interesse. Es ist aber zu beachten, dass ihr Exposé moderne einer relativ frithen
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Phase in der Reformbewegung angehort und dass seither auch im deutschen Sprachraum
aus den Bemiihungen um die Didaktik der Mathematik auf der h6heren Schule eine reich-
haltige Literatur hervorgegangen ist. Was die begriffliche Prizision und die Grundlagen
der Elementarmathematik anbetrifft, ist auf der andern Seite des Rheins sogar hervor-
ragende Arbeit geleistet worden. Es fehlt heute nur noch an einer zusammenfassenden
Darstellung auf einem gesunden Niveau. M. JEGER

Intvoduction a la combinatorique en vue des applications. Par A. KAUFMANN. Préface par
M. CLAUDE BERGE. 606 pages. Dunod, Paris 1968.

Les méthodes nombreuses et variées d’analyse combinatoire trouvent d’importantes
applications aussi bien dans 'art d’ingénieur que dans le domaine de la recherche opéra-
tionnelle. C’est en vue de ces applications que M. KAUFMANN, professeur a l'Institut
polytechnique de Grenoble, a écrit ce nouvel ouvrage qui met a la disposition des praticiens
une importante documentation concernant le dénombrement, 'emploi des fonctions
génératrices, les graphes, 1’énumération et I'optimisation. Deux annexes complétent
I'ouvrage. L’'une d’elles est consacrée a 1’Algébre de Boole, aux anneaux des classes
résiduelles modulo # et au corps de Galois de caractéristique p. La seconde annexe est
consacrée au codage et aux codes correcteurs. On trouve dans cet ouvrage nombre de
figures, d’exemples et d’exercices. Cet exposé clair et précis s’adresse a un vaste public.

S. PiccArRD

Ideas in Mathematics. Von M. E. MUNROE. 264 Seiten mit 89 Figuren. 59s. Addison-
Wesley, London 1968.

Einige Vorstellungen iiber die wichtigsten mathematischen Begriffe und Methoden
sollte sich heute jeder Gebildete erwerben. Das vorliegende Buch kann dafiir ein guter
Helfer sein, denn es gibt nicht nur sorgfiltige und ausfiihrliche Etklirungen der Begriffe
und Definitionen, sondern auch viele einfache Beispiele, die die Rechenmethoden illu-
strieren. Hier ist natiirlich eine intensive Mitarbeit des nichtmathematischen Lesers
vorausgesetzt. Entsprechend dem mehr induktiven Charakter der Darstellung werden
Beweise gelegentlich weggelassen. Der Vertiefung dienen Aufgaben (zum Teil mit Losun-
gen) in jedem Abschnitt. Einem einleitenden Kapitel iiber Mengen, Funktionsbegriff und
lineare Funktion folgt ein Abschnitt iiber mathematische Logik. Dem umfangreichsten
Kapitel «Calculus» schliessen sich Abschnitte iber Wahrscheinlichkeit, Lineare Algebra,
Lineare Programmierung und Abstrakte algebraische Systeme an. Das letzte Kapitel
enthilt eine Einfithrung in die Programmiersprache FORTRAN. E. TrosT

Educational Studies in Mathematics. Editor: H. FREUDENTHAL. Vol. 1, No. 1/2.
246 Seiten. Dfl. 45.—. D. Reidel Publishing Company, Dordrecht 1968.

Der Zweck dieser neuen internationalen Zeitschrift ist die Publikation substantieller
Arbeiten iiber Fragen des mathematischen Unterrichts. Ein hohes Niveau diirfte durch
den Herausgeber, den derzeitigen Prisidenten der ICMI (IMUK), und die Redaktions-
kommission, der bekannte Mathematiker angehdéren, garantiert sein. Pro Jahr soll ein
Band von ca. 500 Seiten in vier Heften erscheinen (Subskriptionspreis Dfl. 80.—, Einzel-
heft Dfl. 22.50).

Das vorliegende Doppelheft enthilt 21 Referate, die am ICMI-Kolloquium in Utrecht
(August 1967) gehalten wurden (Autoren: H. Behnke, A. Brailly, A. Delessert, A. Engel,
T. J. Fletcher, M. Glaymann, H. B. Griffiths, J. M. Hammersley, M. Histad, M. S. Klamkin,
A.Z.Krygovska, R. C. Lyness, C. Pisot, H. O. Pollak, A. Revuz, A. Roumanet, W. Servais,
H. G. Steiner, J. Tavernier, R. C. Walker, G. Young). Es ist im Hinblick auf die fort-
schreitende Modernisierung des Mittelschulunterrichts in Richtung der Strukturen sehr
zu begriissen, dass Professor Freudenthal die Frage «How to teach Mathematics so as to
be useful» in diesem Kolloquium zur Diskussion gestellt hat. Diese Berichte und die
Wiedergabe einer «Panel Discussion» zeigen die ganze Problematik der Vermittlung von
«brauchbarer» Mathematik auf, sie geben aber auch eine Menge wertvoller Hinweise und
viele schone konkrete Beispiele. Als besonders wichtiges, aber schwer erreichbares Ziel des
Unterrichts erscheint die Fihigkeit, eine gegebene « Situation» zu mathematisieren. Diese
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fiir die Anwendungen wesentliche Tédtigkeit kann man aber auch an innermathematischen
Situationen lernen und iiben.

Der Start der drucktechnisch alle Anspriiche erfiillenden Zeitschrift ist vielver-
sprechend. E. TrosT

The Mathematical Papers of Sir WiLLiaAM RowaN HawmirTon, Vol. III: Algebra.
Herausgegeben von H. HALBERsTAM und R. E. INGRaAM. Cunningham Memoir No. XV.
XXIV und 672 Seiten mit 1 Abbildung. $ 37.50. Cambridge University Press, London,
New York 1967.

Es handelt sich um den dritten Band der Werke Hamiltons. Band 1 (1931) behandelt
die Optik, Band II (1940) die Dynamik; der vierte und letzte Band soll die Arbeiten
Hamiltons zur Geometrie und Analysis enthalten. Der vorliegende Band ist den Arbeiten
zur Algebra gewidmet. Teil I behandelt die komplexen Zahlen als Spezialfall einer zwei-
dimensionalen kommutativen und assoziativen Divisionsalgebra iiber den reellen Zahlen.
Teil IT umfasst die Arbeiten zu den Quaternionen. Teil I1I bringt die Untersuchungen zur
Gleichungstheorie (insbesondere also die Hamiltonsche Verbesserung des Abelschen Be-
weises iiber die Unlésbarkeit der allgemeinen Gleichung 5. Grades durch Radikale). Teil IV
enthdlt die Ausfithrungen zum «Ikosaeder Kalkiil» und seine Anwendungen auf Weg-
probleme auf den fiinf Platonischen Koérpern. Das vorliegende Buch enthilt eine vorziig-
liche Einleitung; nebst drei kurzen Appendices der Herausgeber bring ein vierter Appendix
ein weiteres neulich entdecktes Manuskript Hamiltons iiber ganze Quaternionen.

HEeRBERT GROSS

Sets, Functions and Probability. Von J. B. JouNsTON, G. B. PrICE und F. S. VAN VLECK.
VIII und 376 Seiten. 89s. Addison-Wesley Publ. Comp., Reading (Mass.) 1968.

Das Buch gibt eine solide, ausfiihrliche Einfiihrung in die im Titel genannten Gebiete,
wobei die Behandlung der Mengen, der Relationen und Funktionen, die Darstellung der
Differenzengleichungen und die Kombinatorik durchaus eigenstindig ist und nicht etwa
nur im Hinblick auf die in der zweiten Hilfte des Buches behandelte Wahrscheinlichkeits-
rechnung vorgenommen wird. Es stellt eine vollstindige Neubearbeitung eines Teils der
vor einigen Jahren von denselben Verfassern herausgegebenen «Introduction to Mathe-
matics» dar. — Die Wahrscheinlichkeitsrechnung umfasst nur die elementaren Gebiete
dieser Disziplin. — Besondere Beachtung verdienen die zahlreichen interessanten Beispiele
und Aufgaben aus der Biologie und aus dem Wirtschafts- und Sozialleben.

R. INEICHEN

Bericht

13. Mathematikgeschichtliches Kolloquium
im Mathematischen Forschungsinstitut Oberwolfach (Schwarzwald),
20.-26. Oktober 1968

Die diesjahrige Tagung stand unter der gemeinsamen Leitung von J. E. HoFMANN
(Ichenhausen) und C. J. ScriBa (Hamburg). Als Ehrengast durften die Leiter Herrn
Kurt VoGEL (Miinchen) begriissen, der eben das achte Lebensjahrzehnt vollendet hatte.
Mit warmen und gerechten Worten wiirdigte J. E. HorMaANN das umfangreiche und bedeut-
same Schaffen des Jubilars. Zur besonderen Freude gereichte dem Tagungskollegium die
Prasenz der beiden andern Senioren S. HELLER (Schleswig) und K. FLapt (Calw), die mit
dem Gefeierten ein 250 Jahre Mathematikgeschichte repriasentierendes Trio verkérperten.

Die Vortragsthemata umspannten den respektabeln Zeitraum von den Babyloniern
bis Euler, wenn auch die Antike — numerisch beurteilt — etwas zu kurz gekommen sein mag.
Ihr waren bloss zwei Vortriage gewidmet:

E. M. Bruins (Amsterdam) gab an, dass auf erhaltenen babylonischen Tafeln Quadrat-
und Kubikwurzeln (YBC 6295) «zerstiickelt» werden mit Hilfe von Divisionen, aus der
letzten Stelle ersichtlich. Analog kénnen Reziprokwerte multiplikativ berechnet werden.
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Der Vortragende entwickelte zwei multiplikative Verfahren zur Wiederherstellung der
grossen Reziprokentafel (Physis IX, 1967, p. 373—-392). — B. L. VAN DER WAERDEN (Ziirich)
zeigte, wie im fiinften vorchristlichen Jahrhundert in einer Gruppe von Pythagoreern ein
System von vier Wissenschaften entwickelt wurde: Arithmetik, Geometrie, Harmonik
und Astronomie. Zu diesem System gehort eine pythagoreische Erkenntnistheorie, die
Plato im «Staat» kritisiert. In der Diskussion wagte VAN DER WAERDEN die Hypothese,
dass wahrscheinlich nicht nur das ganze zweite Buch der Elemente Euklids, sondern auch
das dritte, vierte und siebente pythagoreisch seien. Das achte Buch kénnte auf Archytas
zuriickgehen. — Uber das astronomische System der persischen Tafeln sprach J. J. BURCK-
HARDT (Ziirich) im Sinne eines Berichts iiber eine mit B. L. VAN DER WAERDEN gemeinsam
verfasste Arbeit, die im Cenfaurus erscheinen wird. Von Ibn Hibinta sind 16 Horoskope
des Mashallah (ca. 800 AD) iiberliefert, die sich auf die Jahre — 3320 bis + 928 beziehen.
Diese Horoskope werden mit verschiedenen Methoden nachgerechnet und es wurde ver-
sucht, daraus Riickschliisse auf die persische Astronomie zu ziehen. — Ebenfalls in die
Welt der Muslime fiithrte uns Frau Y. DoLp-SampLoNIUS (Neckargemiind). Der Mathe-
matiker Al Sigzi gibt in einem Jugendmanuskript (Paris Nr. 2457) eine Losung des Winkel-
trisektionsproblems mittels Einschiebung von Proportionalen. In diesem Manuskript
fiihrt er verschiedene iltere Verfahren an von Abi’l Hasan el-Semsi Herawi, ab Kuhi und
Tabit ben Qurrah. — M. FoLKERTs (GOttingen) beschiftigt sich mit ungedruckten Euklid-
ausgaben. Neben den Hauptvertretern des Euclides Latinus bis zum 13. Jh. (Boethius,
Adelhard) gibt es einige Mischfassungen, die aus Adelhard und Boethius kontaminiert
sind. Zwei derartige Versionen aus dem 12. Jh. wurden auf klare und interessante Weise
vorgestellt. Die eine wird in bloss einer einzigen Handschrift liberliefert, wihrend von der
anderen drei Bearbeitungen bekannt sind. — H. L. L. BusarDp (Venlo) fiihrte aus, wie im
zweiten Viertel des 14. Jhs. der Traktat De motu des Gerhard von Briissel zum Ausgangs-
punkt fiir die kinematische und dynamische Behandlung der Bewegung durch die sog.
Oxfordschule wurde. In Paris wurden diese Probleme zuerst von Buridan, dann etwa um
die Jahrhundertmitte von seinen Schiilern Oresme und Albert von Sachsen in Angriff
genommen. Letzterer hat sich damit in seinem Physikkommentar und im Tractatus
proportionum, der sich stark an die Traktate von Bradwardine und Heytesbury anlehnt,
eingehend beschiftigt. — Mit Alhazens Problem befasst sich J. A. LoaNe (Flekkefiord).
Er zeigte, wie Ibn al-Haitam (965 ?-1039) den Reflexionspunkt eines sphérischen Spiegels
mittels Einschiebungen konstruiert hat. Erwahnt wurden die Vorarbeiten des Ptolemius,
die vereinfachte Konstruktion von Harriot sowie dessen Verwendung einer Schnecken-
kurve zur Losung des Problems von Alhazen.

Mehr als die Hailfte aller Vortrige waren Themen der neueren Zeit gewidmet.
I. ScHNEIDER (Miinchen) referierte iiber Proportionalzirkel. Versteht man unter einem
solchen einen irgendwie gearteten Zirkel, auf den unter Beriicksichtigung der Proportionen-
lehre eine oder mehrere Funktionsleitern aufgetragen sind, so ist die Entstehung dieses
Instrumentes in die Mitte des 16. Jh. anzusetzen. Der Proportionalzirkel vom Typ
desjenigen von Galilei wurde bis zum Ausgang des 18. Jh. benutzt. — Von J. VERDONK
(Bussum) erfuhren wir, dass Petrus Ramus und Simon Stevin dhnliche Ideen hatten iiber
Didaktik, Theorie und Praxis, Methode, Natur und Logik, philosophia prisca und Er-
fahrung. Die Untersuchung des Einflusses von Ramus auf Stevin ist lohnend. Als Illustra-
tion ist eine (damals neue) Definition der Zahl gegeben worden, die sich erstmals bei
Ramus findet und die bei Stevin zum Ausgangspunkt fiir die Ausdehnung des Zahl-
begriffes bis auf die reellen Zahlen genommen wurde. — J. GRisaRD (Paris) trug iiber
Fr. Viéte vor, dessen gesamtes Werk fast durchgiangig Schwierigkeiten im Hinblick auf die
formale Darstellung aufweist. Dies wird im einzelnen ersichtlich beim Studium seiner
Versuche, eine Formeltabelle zur sphirischen Trigonometrie aufzustellen. Man bemerkt
hier dieselben Mingel, die die meisten seiner Arbeiten kennzeichnen: Schwerfilligkeit und
Mangel an Klarheit in der Darstellung. Diese Dinge erschweren das Verstindnis von
Viétes Werken sehr und bewirkten nicht zuletzt, dass sie in der Folge in Vergessenheit
geraten konnten. — Im wahrsten Sinne des Wortes problemgeschichtlich war der Vortrag
von J. E. HormaNN (Ichenhausen) iiber die geometrische Behandlung einer Fermatschen
Extremalaufgabe (Bestimmung des Punktes, der von drei gegebenen minimale Abstand-
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summe erhilt) durch Italiener des 17. Jh. B. Cavalieri (1647) gewann den gesuchten Punkt
unter Verwendung einer Ellipse, deren sich auch E. Torricelli in dhnlicher Form bediente.
V. Viviani gab spiter einen Beweis auf Grund allgemeiner Uberlegungen, die von
C. Renaldini adoptiert wurden. Bei allen Autoren handelt es sich um direkte geometrische
Ansitze, die aus Weiterfithrung der von Pappos (Collectiones, lat. 1588) angedeuteten
Methoden hervorgegangen sind. — L. v. MACKENSEN (Miinchen) stellte anhand eines bisher
unbekannten Leibniz-Manuskriptes zur Mechanisierung der Multiplikation dar, wie ein
zunédchst verworren und fliichtig erscheinender Entwurf nach eingehender Deutung als
notwendige Vorstufe zur Erfindung der ersten digitalen 4-Spezies-Rechenmaschine durch
G. W. Leibniz angesehen werden kann. Dabei wurde die Leibnizsche Erfindungskunst
durch ein konkretes Beispiel verdeutlicht. — Ebenfalls im Zusammenhang mit Leibniz
orientierte R. W. Laur1 (Riehen/Basel) iiber einen Umstand, den man beinahe als eine
bibliographische Neuentdeckung werten kénnte. Es handelt sich um eine deutsche Uber-
setzung der Leibnizschen Physica nova (1671), die im Zusammenhang mit einer Bearbei-
tung der Pseudodoxia epidemica des englischen Arztes Thomas Brown durch Christian
Peganius alias Rautner im Jahre 1680 erschienen ist. Diese Ubersetzung ist (bzw. war)
ersten Leibnizforschern deshalb unbekannt, weil sie in der Leibniz-Bibliographie (Ravier)
lediglich unter einem rosenkreuzerischen Pseudonym (Knorr von Rosenroth) aufgefiihrt
ist! — Einen Beitrag zur Entwicklungsgeschichte des Limesbegriffs gab P. BOCKSTAELE
(Heverlee) durch eine Analyse der Geometrica inquisitio (1688) des Jesuiten Ignatius de
Jonghe. Bemerkenswert an diesem Buch ist die Art und Weise, wie de Jonghe den Limes-
begriff anwendet. Dies geschieht allerdings nicht immer richtig. So fithrt ihn der Trug-
schluss, lim » (1 — A/%) verschwinde fiir unendlich grosses %, zum Glauben, dass die
Quadratur eines Segmentes der Hyperbel xy = ¢ unmdéglich sei. — W. HESTERMEYER
(Paderborn) legte dar, dass die Aretologistik Erhard Weigels von 1687 die wahrscheinlich
fritheste deutschsprachige Didaktik der Mathematik ist. Das Ziel einer GewShnung zum
«tugendhaften» (= sachgerechten) Handeln scheint Weigel iiber die Sprache nicht erreich-
bar, hingegen iiber das Rechnen mit seinen Gesetzen. Ein Fortschritt gegeniiber den zeit-
iiblichen Rechenbiichern liegt im methodisch iiberlegten Vorgehen, dem Aufzeigen der
Zusammenhidnge und im Beweisen der behandelten Regeln. — Die Béstimmung bogen-
gleicher Kurventeile und Kurven durch Mathematiker des 17. Jh. war das Thema von
H. KrI1EGER (Moéssingen). Ausgehend von dem Problem, algebraische Kurven zu finden,
die einer gegebenen bogengleich und inkongruent sind, geben Johann Bernoulli eine allge-
meine (motus reptorius), Leibniz und John Craig unterschiedliche L&sungen an. Die Be-
ziehung der Bogengleichheit der archimedischen Spirale und der Parabel wird von
Cavalieri, Gregorius a St. Vincentio, Roberval, Pascal, Fermat und anderen mit verschie-
denen Methoden verifiziert. — Mit Beispielen aus Eulers zahlentheoretischem Briefwechsel
bildete C. J. ScriBa (Hamburg) — auch chronologisch — einen wiirdigen Abschluss. Die
(kiirzlich neu herausgegebene) Korrespondenz Eulers mit Goldbach umspannt 35 Jahre
und beinhaltet 196 Briefe. Aus den vielen darin behandelten zahlentheoretischen Problemen
wurde — nach einer allgemeinen Ubersicht — die Entdeckung Eulers vorgefiihrt, dass
2%° 4 1 einen Teiler 641 besitzt.

Als ganz besonders fruchtbar und lehrreich erwiesen sich — quod erat exspectandum —
die oft ausgiebigen Diskussionen, welche die Vortrige einrahmten, doch vor allem die
direkten personlichen Kontakte der Teilnehmer untereinander, die den speziellen Reiz und
Gewinn dieser einzigartigen Tagung ausmachen. E. A. FELLMANN, Basel
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Line-Coloring of Signed Graphs’)

Introduction

A signed graph or sigraph is a graph in which some of the lines have been designated
as positive and the remaining as negative. Sigraphs have been studied extensively by
CARTWRIGHT and HARARY (see [2] and [5]) in their theory of balance. When drawing
a sigraph it is customary to indicate positive lines by solid lines and negative lines by
dashed lines. Thus, the sigraph S of Figure 1 has 3 positive and 2 negative lines.

Figure 1

CArRTWRIGHT and HARARY [3] have defined a sigraph S to be colorable if it is
possible to assign colors to the points of S so that two points joined by a negative line
are colored differently while two points joined by a positive line are colored the same.
It was shown in [3] that a sigraph is colorable if and only if it contains no cycle with
exactly one negative line. It is the purpose of this paper to define and study line-
colorable sigraphs and present some of their properties. In particular, we give a
characterization of line-colorable sigraphs and determine the ‘ line chromatic number’
of special classes of sigraphs.

The chromatic number y(S) of a colorable sigraph S is the smallest number of colors
needed in a coloring of S. If one were to regard an ordinary graph G as a sigraph S all
of whose lines are negative, then y(G) = x(S). Indeed, if S is a complete colorable
sigraph, then the ordinary graph G obtained by converting all negative lines to ordi-
nary lines and deleting all positive lines has the same chromatic number as S. Thus,
in a certain sense, complete colorable sigraphs and ordinary graphs are related, where
negative lines correspond to ordinary lines and positive lines correspond to ‘ no lines’.

The line-graph L(G) of a graph G is that graph whose points can be put in one-to-
one correspondence with the lines of G so that two points of L(G) are adjacent if and
only if the corresponding lines of G are adjacent. In order to propose a natural defini-

1) All definitions not given in this article may be found in the books [4, 5].
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tion of the * line-sigraph’ of a sigraph, we again consider a complete sigraph S. Cer-
tainly, there must be a one-to-one correspondence between the points of L(S) and the
lines of S. Since there is a strong resemblance between the negative lines of a sigraph
and the lines of an ordinary graph, the sigraph R of S induced by its negative lines
should have only negative lines in its line-sigraph, while all other lines in L(S) should
be positive. We are thus led to the following definition. The line-sigraph L(S) of a
sigraph S is that sigraph whose points can be put in one-to-one correspondence with
the lines of S in such a way that two points of L(S) are joined by a negative line if and
only if they correspond to two adjacent negative lines of S and are joined by a positive
line if they correspond to some other two adjacent lines of S.

Since coloring the lines of an ordinary graph is equivalent to coloring the points
of its line-graph, it seems natural to make the following definition. A sigraph S is
line-colorable if its line-sigraph L(S) is colorable, i.e., if it is possible to assign colors to
the lines of S so that two adjacent negative lines are colored differently and any other
adjacent lines are colored the same.

A Characterization of Line-Colorable Sigraphs

If v is a point of a sigraph S, then the positive degree degtv of v is the number of
positive lines of S incident with v. The negative degree deg—v of v is defined analogously.
We can now present the principal result of this section.

Theorem 1. A sigraph S s line-colorable if and only if the following two properties
are satisfied :

(P1) There exists no point v of S with degtv =1 and deg~v = 2,
(P2) there exists no cycle having exactly two consecutive negative linzes.

Proof. We first show the necessity of (P1) and (P2). If a point v of S is incident
with one positive line and two negative lines, then these 3 lines induce a triangle in
L(S) having exactly one negative line so that L(S) is not colorable and S is not line-
colorable. Similarly, if S contains a cycle C having exactly two consecutive negative
lines, then the lines of C generate a cycle in L(S) having exactly one negative line, so,
again, S is not line-colorable.

To prove the sufficiency of (P1) and (P2), we employ induction on the number of
positive lines in a sigraph. If S has no positive lines, then S is certainly line-colorable.
Assume that every sigraph having » positive lines, # = 0, and satisfying (P1) and
(P2) is line-colorable. Let S be a sigraph with # + 1 positive lines having properties
(P1) and (P2). The removal of a positive line x = # v from S results in a sigraph S’
having # positive lines. Since S’ obviously satisfies (P1) and (P2), S’ is line-colorable
by the inductive hypothesis.

Assume that x is a bridge. If there are no lines other than x incident with « or v,
then x may be colored arbitrarily in S. Otherwise, if necessary, the colors used for the
component in S’ containing # may be easily changed or permuted so that all lines
incident with » are colored the same as those incident with ». Hence, x may be given
that color thereby showing that S is line-colorable.

Suppose, on the other hand, that x is not a bridge. Then x belongs to a cycle C
whose line-sequence is ¥, %;, %y, ..., ¥, = . If, in a liné-coloring of S’, the colors of %,
and x,_, are the same, say «, implying that all lines incident with « or v have color ,
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then x may be replaced and colored « also. If x; and x,,_, are colored differently, then
there must exist at least 2 consecutive negative lines in C. Thus, let 7 be the least integer
such that x; and x, | , are negative, and let 7 be the largest integer such that x; , and x;
are negative. By (P2), x; and #, are not adjacent. Let § be a color not used i m coloring
S’,andleta,, k=71,7, be the color of x,. Also, let W, be the set consisting of x, and all
lines colored &, which lie on a common path with x,. No negative line of W, is adjacent
to a negative line of W, for, otherwise, there would exist a cycle with exactly two
consecutive negative lines, contradicting (P2). Now if the colors of the linesin W, y W,
are changed to f§, then by replacing x and coloring it §, we have a line-coloring for S.

1.2 A -
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Figure 2

In Figure 2, S, is line-colorable and can be line-colored as indicated, S, is not line-
colorable since (P1) does not hold, while S, is not line-colorable since (P2) does not
hold.

The Line-Chromatic Number of a Sigraph

The line-chromatic number y'(S) of a line-colorable sigraph S is the minimum num-
ber of colors required in a line-coloring of S. Clearly, '(S) = %(L(S)).

Now we present formulas for special classes of line-colorable sigraphs, beginning
with trees. Since a tree contains no cycles, by (P 1) a tree is line-colorable if and only if
it has no point v with degtv = 1 and deg-v = 2.

Theorem 2. For any line-colorable signed tree T, y'(T) = max deg=v ¢f T has nega-
tive lines and y'(T) = 1 otherwise.

The proof of this theorem is straightforward and will be omitted.

A complete sigraph S, has every pair of its points joined by either a positive or
negative line. For p = 2, S, is obviously line-colorable if it has no adjacent negative
lines, in which case y'(S,) = 1. Should S, possess adjacent negative lines, then in order
to satisfy (P1), there must be a point incident only with negative lines, but then to
satisfy (P2) in addition, all lines must be negative. However, in this case, as we have
seen, x'(S,) has the same value as the line-chromatic number of the ordinary complete
graph K, which is 2 {2} — 1, as noted in [1]. We summarize this below.

Theorem 3. Let S, be a line-colorable complete sigraph with p = 2 points. Then

’

J 1if S, has no adjacent negative lines.
2'(Sp)

- l 2{p/2} — 1if S, is all-negative.

We now investigate complete bipartite sigraphs or complete sibigraphs S,, , whose
point set V, where | V| = m + n, can be partitioned into subsets V; and V,, with
| Vi| = m and | V| = n, such that every point of V, is joined to a point of V, by
either a positive or negative line but no two points of the same subset V; are adjacent.
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In order to determine which of the sigraphs S,, , are line-colorable, we first consider
the casem = n = 3. Again, if no two negative lines are adjacent, S,, , is line-colorable,
and, in fact, y'(S,, ,) = 1. Otherwise, S,, , has adjacent negative lines and in order to
be line-colorable and thereby satisfy (P1), it must have a point #, incident only with
negative lines. If all other lines were positive, then there would exist a cycle (for
example, %, v, #, v, #,; see Figure 34) having exactly two consecutive negative lines.
Hence, S, , must have at least one more negative line, say at v;, but then all lines at
v, are negative (see Figure 3b). However, if all lines at #, and v, are negative, then
S is all-negative, for otherwise any positive line u; v; implies the existence of
another positive line u; v,, which would produce the cycle u; v; u; v, u, having exactly
two consecutive negative lines. Therefore, if S,, ,, m = n = 3, is to be line-colorable
and have adjacent negative lines, it has only negative lines. In this case, (S, ,) =
max (m, n) (see Konig [6], p.171).
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For S,, 5, m =3 and S, ,, m = 1, the situation can be handled similarly to S,, ,,
m = n = 3, and identical results are obtained. This leaves the sigraph S, , to consider.
If S, , contains adjacent negative lines but not all negative lines, then the only line-
colorable sigraph has 3 negative lines in which case its line-chromatic number is easily
seen to be 2. These results are stated in the following theorem.

Theorem 4. A complete sibigraph S,, , is line-colorable if and only if
(1) 4t has no two adjacent negative lines,
(2) it has only negative lines, or
(3) m = n = 2 and 1t has 3 negatives lines.
If S, , is all-positive, then y'(S,, ,) =1, while if S, , is line-colorable but not all-
positive, then y'(S,, ,) is the maximum negative degree.

M. BeHzAD, Pahlavi University, Iran and G. CHARTRAND 2)
University of Michigan and Western Michigan University
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Elementare Ableitung der Laplaceschen Formel der
Wahrscheinlichkeitsrechnung

Den Abschluss der elementaren Wahrscheinlichkeitsrechnung bildet die Unter-
suchung der grundlegenden Gesetzmassigkeiten, die eines der wichtigsten Schemata
der Wahrscheinlichkeitsrechnung, das Schema einer Folge unabhingiger Versuche,
beherrschen. Die Tatsachen, die man an diesem Schema bemerkte, waren richtung-
weisend bei der Untersuchung komplizierterer Schemata, die man in der Wahrschein-
lichkeitsrechnung betrachtet. BERNOULLI hat eine Folge unabhingiger Zufallsgrossen
fiir den Fall untersucht, dass nur die komplementiren Ereignisse 4 und 4 mit den
Wahrscheinlichkeiten w(4) = p, w(fi) =g =1— p eintreten. Die Wahrscheinlich-
keit, dass das Ereignis A bei #» unabhingigen Durchfiihrungen des Experimentes ge-
nau x-mal eintritt, ist gegeben durch die nach NEwTON bezeichnete Formel

w,(x) = (Z) prgn-r (x=0,1,2,...,m).

Die so bestimmte diskrete Verteilung heisst Bernoullische oder binomische Verteilung.
Sie spielt in den Anwendungen eine grosse Rolle. Da die Newtonsche Formel fiir grosse
# numerisch schwer zu handhaben ist, ist es notwendig, eine asymptotische Formel
aufzustellen, die es gestattet, w,(x) auch fiir grosse # in einfacher Weise und mit hin-
reichender Genauigkeit zu berechnen. Diese Formel hat als erster LApLACE 1812 fiir
beliebige 0 << < 1 angegeben. Sie zdhlt zu den wichtigsten Resultaten der Wahr-
scheinlichkeitsrechnung, denn hier tritt zum erstenmal das Exponentialgesetz oder
die Normalverteilung auf, die in der Wahrscheinlichkeitsrechnung grosse Bedeutung
hat. Bei der Ableitung der Laplaceschen Formel werden aber vielfach kompliziertere
Hilfsmittel benutzt, wie Reihenentwicklungen, Stirlingsche Formel, charakteristische
Funktionen, zentraler Grenzwertsatz. Hier soll aufgezeigt werden, wie man mit ein-
facheren Hilfsmitteln der Infinitesimalrechnung den Grenziibergang zur Laplaceschen
Formel durchfiihren und die gleichméssige Konvergenz der Newtonschen Formel ge-
gen die Laplacesche Formel in jedem abgeschlossenen Intervall nachweisen kann.
Der Beweis setzt die Kenntnis der statistischen Masszahlen Erwartungswert E(X)
und Streuung D?(X) einer binomisch verteilten Zufallsgrosse X voraus. Es gilt [1]

E(X)= &= yu)=np,

DXX)=0c=EX—-§P=npg, @P+g=1).

Ordnet man nach Misgs [2] der diskreten Variablen x die Variable y zu durch die
Transformation
y=x—np, (1)
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betrachtet man also die Zufallsgrosse
Y=X—np, 19

so ist E(Y) = O fiir alle n, wiahrend D?(Y) unverindert gleich % p ¢ ist. Die Transfor-
mation (1’) wird nun so abgeédndert, dass nicht nur E(Y) von # unabhingig wird, son-
dern auch D?(Y). Dies leistet folgende Transformation:

Z=h(X-—-np), (2)

wobei & ein positiver Parameter ist. Die Zufallsgrosse Z hat dann den Erwartungswert
E(Z) = 0, die Streuung D*(Z) = h? n p q. Setzt man

1

2 S
k Tnpqg’

= (3)
wobei 7 ein beliebiger fest gewihlter positiver Parameter ist, so gilt D%(Z) = 1/, die
Streuung ist also unabhingig von #.

Deutet man die w,(y) als Massenpunkte, die in den Punkten x = 9 konzentriert
sind, so kann E(X) als Schwerpunkt, D?(X) als Trigheitsmoment der Massenvertei-
lung beziiglich des Schwerpunktes gedeutet werden. Daraus folgt, dass der Schwer-
punkt der Verteilung von Z fiir alle » im Nullpunkt liegt, wobei die Massenpunkte um
den Schwerpunkt so angeordnet sind, dass alle Verteilungen dasselbe Trigheitsmo-
ment um den Schwerpunkt haben.

Transformation (2) hat noch folgende bemerkenswerte Eigenschaften: Da z =
h (x — n p) ist, gilt :

x=mpt s, xtl=np+ r“—};fh—,

d.h. dndert sich x um 1, so dndert sich die entsprechende Grésse z um 4. Ist nun »
geniigend gross, so ist A nach (3) entsprechend klein. Das bedeutet, dass die w -Werte,
als Funktionen der diskreten Verdnderlichen z aufgefasst, mit zunehmendem # immer
mehr um den Nullpunkt zusammengeschoben werden, so dass die Streuung konstant
bleibt. Man kann daher erwarten, dass sich fiir die oberen Begrenzungspunkte der w,-
Werte fiir # - oo eine kontinuierliche glatte Kurve ergibt, deren Gleichung nun er-
mittelt werden soll.

_Der Beweis stiitzt sich auf einige bekannte Eigenschaften der Exponentialfunk-
tion. Es ist

. X \*
nll{lgo (1 + n) =,

wobei 7 irgendeine divergente Zahlenfolge durchlduft. Die Folge der Funktionen
fal®) = (1 + (x/m))" fiir n = 1, 2, 3, ... konvergiert monoton gegen ¢*, sofern 1 + (x/n)
> 0 ist. Durch Wahl geniigend grosser # kann diese Ungleichung fiir alle x aus einem
abgeschlossenen Intervall erfiillt werden. Man kann nun zeigen, dass eine in einem ab-
geschlossenen Intervall J = (a, b) mit a < b monotone beschrinkte Funktionenfolge
in J sogar gleichmissig konvergiert. Um dies fiir unseren Fall zu beweisen, setzt man

0,(x) = e* — (1 + (x/n))".
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Es ist dann zu zeigen, dass d,(x) < ¢ wird fiir # > N(g), wobei NV von den x aus J un-
abhingig ist. Betrachtet man einen Punkt x, aus [, so sei §,(%;) << ¢/2 fiir » > N(x,).
Da aber §,,(x) eine stetige Funktion fiir alle x aus [ ist, insbesondere fiir x = x,, so gibt
es eine abgeschlossene Umgebung U(x,) von %, so dass die Schwankung von d,(x) fiir
alle x aus U(x,) die Grosse ¢/2 nicht iiberschreitet. Es ist dann §,(x) < ¢ fiir alle x aus
U(x;) und » > N(x,). Die abgeschlossene Punktmenge aus J lisst sich durch endlich
viele Umgebungen U(x,) (1 =1,2,3,...,m) so lickenlos iiberdecken — wobei teil-
weise Uberlagerungen der einzelnen U (x ,) nicht ausgeschlossen sind —so dass fiiralle x
aus den U(x ) jeweils d,(x) << e wird, sofern nur # > N(x ) ist. Ist N = Max [N(x,),
N(%,), ..., N(x,,)], so ist §,(x) < e fiir alle x aus J, d.h. die Folge der f,(x) konvergiert
fiir alle x aus J gleichmissig gegen e*.

Da der Ausdruck fiir w,(x) infolge der darin vorkommenden Binomialkoeffizienten
schwer zu handhaben ist, betrachtet man den Quotienten w, (x + 1)/w,(x). Es gilt
wegen (2) und (3)

k4

W, (x+1) nm—x p _ 1,_:"—"7,
w®)  m+1l g 2t
1+ whp
Daraus folgt
Inw, (¢ + 1) = Inw,() = In (1 - ) —In (1+ 552,

Fiir x # » sind die Argumente der Logarithmen > 0. Mit der Abkiirzung Inw,(x) =
v.(2) werden nun die Quotienten

gebildet, die nur fiir solche diskrete Werte z definiert sind, fiir die das Argument von
w, eine ganze Zahl ist. Da nach (3) #?=1[/tnpgqist, alsonhg=1/tph, nhp=1[tqh
ist, gilt
Dol E M=) (v ph g —In(+ T gh (4 W)

Die Argumente der Logarithmen stellen wegen (3) fiir » = 1, 2, 3, ... zwei Folgen in z
dar, die nach den obigen Feststellungen fiir # - oo gleichmissig gegen ¢~ ? * bzw.
e~77* konvergieren. Infolge der Stetigkeit des Logarithmus konvergieren also auch
die Quotienten gleichmassig, und zwar gegen —7p 2z —7¢g2=—77dap + ¢=11ist.
Die gesuchte Grenzfunktion der y,(z) fiir n - oo, die mit y(z) bezeichnet wird, geniigt
daher der Differentialgleichung y'(z) = —7 z, daher ist y(z) = — (t/2) 2% + konst. Da-
mit ist

2mlEEM =0l 4 rgl <o fur n> N(e) )
und alle z etwa aus dem Intervall | = (—a,a — h),sodass | 2| < a,|z+ h| < aist.
Verbindet man nun die Endpunkte jeweils benachbarter Ordinaten y,(z) geradlinig
(s. Abbildung), so entsteht ein stetiger Kurvenzug der kontinuierlich verdnderlichen
Grosse 2.
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A

0ir
Wylx) i o7
hi@

0 2=hix-1p)

=t g%

Mit der so definierten Funktion, die mit y,(z) bezeichnet wird, betrachtet man die
Integralfolge

z

/-Z"ii%)—j’@—dt (n=1,23,..). (5)
Dabei sollen z, und z (2, << 2) positiven ganzzahligen x entsprechen. Deutet man das
bestimmte Integral als Fliche, so ergibt sich aus der Abbildung fiir (5) die Darstel-
lung: v, (z + (#/2)) — ¥, (2o + (#/2)). Da (4) auch dann gilt, wenn man y, durch y,
ersetzt, erhidlt man

/(—————-—7"(t+h)—7”(t) +rt)dt! <e(z—2) <e-2a.

; |

Die Integralfolge (5) konvergiert also gleichmissig gegen die Grenzfunktion
2z
—/rtdt:— «%-22—%- -;v'z?,.
2

Daraus ergibt sich die gleichmissige Konvergenz der Folge y,(2) gegen die Grenz-
funktion — (7/2) 22 + konst. Dasselbe gilt auch fiir die Folge y,(z), denn ,(z) = v,(z)
fiir solche 2, denen positive ganzzahlige x entsprechen, und das ist das wesentlichste
Ergebnis der ganzen Untersuchung.
Da y,(2) = Inw () ist, folgt
i _la—npp
w,(x)=C-¢e 2 =C.e 2"?1¢

unabhingig von 7.
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Die Konstante C berechnet sich aus der Forderung, dass w,(x) fiir # - oo eine

Dichtefunktion der Variablen x sein muss, d.h. [w,(x) dx muss gleich 1 sein. Da

[e*dx = Yuist, folgt C = 1)) 2anpq.

Zusammenfassend erhilt man also den Satz von Laplace:

Wenn die Wahrscheinlichkeit fiir das Auftreten des Ereignisses 4 in # unabhingi-
gen Versuchen konstant gleich p (0 << p < 1) ist, so geniigt die Wahrscheinlichkeit
dafiir, dass in diesen Versuchen das Ereignis 4 genau x-mal eintritt, fiir # - oo der
Beziehung

1 _Eonp)
wy(x) = = e 2MPO
V2mnp q
und zwar gleichmadssig fiir alle «, fiir die sich die nach (2) entsprechende Grésse z in
einem endlichen Intervall befindet. F.HEeicL, Weiden BRD
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Allgemeine Gestalt einer geradenerhaltenden Abbildung

In der folgenden Abhandlung soll gezeigt werden, dass eine stetige geradenerhal-
tende Abbildung der Ebene auf sich projektiv sein muss. Zu diesem Zweck wird zu-
nichst Satz 1 bewiesen.

Satz 1: Es gibt genau eine projektive Abbildung der Ebene auf sich, die 4 Punkte
A4, B, C, O in allgemeiner Lage?!) in 4 Punkte P,, P,, P,, P, in allgemeiner Lage iiber-
fithrt, wobei 4 in P,, B in P,, C in Py und O in P, iibergeht.

Beweis: Den folgenden Uberlegungen sind homogene Koordinaten zugrunde ge-
legt. Die gesuchte projektive Abbildung werde in der Gestalt

QX =dapU+apvtayw,
T: OV =gy U + Age U + Agg W ,
02 =0ay U+ dgpV+apw

angesetzt. Das Koordinatendreieck wollen wir dabei so wihlen, dass seine Ecken mit
4, B, C zusammenfallen, wihrend O der Einheitspunkt ist, was stets moglich ist, da
ja 4, B, C und O in allgemeiner Lage sind. Fiir die Koordinatendarstellung von 4, B,
C und O gilt dann:

A(1,0,0), B(0,1,0), C€(0,0,1), 0(1,1,1).

1) 4 Punkte heissen «in allgemeiner Lage», wenn keine drei auf einer Geraden liegen.
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Setzen wir nun die Koordinaten von Pj(x;, y;, %), Pa(%Xs, Vo, 2s), Pa(%X3, Va3, 23),
P,(x4, ¥4, 25) und die Koordinaten von 4, B, C und O in T ein, so folgt

kx,=ay, I %y =ay,, m Xy = dyy, ‘
ky, =ay, Ly, =ay, mys = dog, 1)
k2 =ag, lzy = agy, m 2 = dgg . ‘
7 Xy = Gy + g5+ dg3, ]
Yy = Ay + Agp + Agg, (2)
N2y = gy + Agg + Ag3 . J

k, I, m und » sind dabei von Null verschiedene noch niher zu bestimmende Proportio-
nalitidtsfaktoren.
Setzt man die Beziehungen (1) in (2) ein, so folgt

Nxy=Fkx + Lxy+ mxg, l
nyy=ky+ilys+my,, 3)
nzg=kz +1zy +mzg. ]

Zur Abkiirzung fithren wir ein

Xg Xg Xy X1 Xg Xy X1 Xg Xy X1 Xg Xg
Dy =993 |» Dy = | y1Y3Y4 |s Dy=1| 919294 |, Dy= | y19593 |-
2y 23 24 21 33 2 3y % 24 31 %9 23

Dann folgt aus den Beziehungen (3)
R:l:m:n = Dy:(—Dy):Dy: D, .

Da die Punkte P,, P, P, und P, nicht zu je dreien in einer Geraden liegen, sind die

4 Determinanten D,, D,, Dy und D, von Null verschieden. Das Verhiltnis der von

Null verschiedenen Proportionalititsfaktoren %, /, m und # lasst sich daher eindeutig

bestimmen. Es ist jetzt noch zu zeigen, dass die Transformation T eindeutig umkehr-

bar ist. Zu diesem Zweck muss gezeigt werden, dass die Determinante | a;, | # 0 ist.
Aus den Formeln (1) entnimmt man

Xy Xp Xg
|aip | =k-1-m- | v19,95 | +0,

2y 2y Z3
womit alles gezeigt ist.
Satz 2: Jede umkehrbar eindeutige stetige Abbildung der Ebene auf sich, die
Gerade in Gerade iiberfiihrt, ist eine Projektivitit.
Bewers: Durch die homogenen stetigen Funktionen

¥ =hHxy2, ¥V=fxy), Z=fy2 “)
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sei eine umkehrbar eindeutige und geradentreue Abbildung der projektiven Ebene auf
sich gegeben. Gegeben sei nun das Rechteck 04 B C. Die Eckpunkte dieses Rechtecks
0ABC werden durch die Abbildung (4) in die Punkte Q,, Q,, Q,, Q, iibergefiihrt. Q,,
Qs @3, Q4 sind 4 Punkte in allgemeiner Lage. Wiirden némlich etwa die Punkte Q,,
Q2 Qg in gerader Linie liegen, so miisste dasselbe wegen der Geradentreue fiir die
Punkte O, 4, B gelten, im Gegensatz zur Voraussetzung, dass 04 B C ein Rechteck ist.

v 2,
&

(o]

C

¥ &
a Figur 1 b

<o
.,

Nun existiert nach Satz 1 genau eine lineare umkehrbare Transformation, die die
Punkte Q,, Q,, Q3, Q4 in die Punkte O, 4, B, C iiberfiihrt. Fiir diese mogen die folgen-
den Formeln gelten:

o0u = by X + by + by s,
0V = by X' + bop V' + bgg 2’ , B=|by|=*0.
QW = by X' + by ¥ + by 2",
o ist dabei ein von Null verschiedener Proportionalitdtsfaktor. Durch die Funktionen
ou = by fr+byfo + by fs,
00 = by fi + bas fo + bas f5, )
0w ="by fr+ bg fo+ bs3 f5

werden daher die Punkte O, 4, B, C auf sich abgebildet. Es handelt sich hier also um
eine Abbildung mit 4 Fixpunkten O, 4, B, C.

y
¢ 83 B 8, B
G M M Gy

< —

A A A A ¥

Figur 2

Da die Geraden OB und AC bei der zusammengesetzten Abbildung in sich tiber-
gehen, ist ihr Schnittpunkt M ebenfalls ein Fixpunkt der Abbildung. Die Fixgeraden
OC und A4 B schneiden sich in ihrem Fernpunkt, der deshalb ein Fixpunkt der Abbil-
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dung sein muss. Das gleiche gilt fiir den Fernpunkt der Geraden OA4 und CB. Die
Gerade M A4, parallel zur Y-Achse ist ebenfalls eine Fixgerade, da M ein Fixpunkt ist
und die Gerade M A4, auch durch den Fixpunkt von OC und A4 B hindurchgeht. Daher
sind auch 4, und B, Fixpunkte der Abbildung. Analog zeigt man, dass auch C; und
C, Fixpunkte der Abbildung sind. Weitere analoge Betrachtungen kann man bei den
Rechtecken 04, B,C und 4,4 BB, vornehmen. Man erhilt dadurch weitere Fixpunkte
Ay und 4, auf der X-Achse zwischen den Punkten O und 4.

Durch Fortsetzung dieses Verfahrens (fortgesetztes Halbieren) erkennt man sofort,
dass die Fixpunkte der Abbildung auf den Strecken 04 und OC iiberall dicht liegen.
Wir wollen nun zunichst zeigen, dass jeder Punkt der Strecke O4 Fixpunkt ist.

\y

X sei ein beliebiger Punkt der Strecke OA4. Wir nehmen zunichst an, er sei kein
Fixpunkt der Abbildung. Der ihm entsprechende Punkt auf der X-Achse sei U, und es
sei | U — X | = d. U konnte auch ausserhalb der Strecke OA liegen.

Nach den obigen Betrachtungen kann man nun X durch fortgesetztes Halbieren
so zwischen zwei Fixpunkte F, und F,,, einschliessen, dass gilt:

|X—-F|<é, |X-F,|<6é,

wobei 6 wegen der fortgesetzten Intervallhalbierung beliebig klein gemacht werden
kann. Wegen der Stetigkeit der Abbildung miisste dann auch | U — F,| und
| U~ E,,,| beliebig klein gemacht werden koénnen. Fiir beide Absolutbetrage gilt
aber stets

|U—F|>d—8 ud |U—-F, ,|>d-9,

was einen Widerspruch gegen die vorausgesetzte Stetigkeit der Abbildung darstellt.
Samtliche Punkte der Strecke 04 sind daher Fixpunkte der Abbildung. Analog zeigt
man, dass simtliche Punkte der Strecke OC Fixpunkte der Abbildung sind.

Nunmehr verbinden wir einen beliebigen Punkt V' der X-Achse mit OV > 04 mit
dem Fixpunkt M durch eine Gerade. Diese Gerade schneidet OC in dem Fixpunkt W.
WMV ist also eine Fixgerade. Da die X-Achse eine Fixgerade ist, ist auch V ein Fix-
punkt der Abbildung. Siamtliche Punkte der positiven X-Achse und, wie man analog
beweist, der positiven Y-Achse sind also Fixpunkte. Ebenso zeigt man, dass auch die
negative X- und Y-Achse aus lauter Fixpunkten besteht.

Z sei nunmebhr ein beliebiger Punkt der X Y-Ebene. Zwei beliebige Geraden g und
h durch Z schneiden die X- und Y-Achse in Fixpunkten, sind also selbst auch Fix-
geraden. Thr Schnittpunkt Z muss also ein Fixpunkt der Abbildung sein. Wir sehen
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X
Figur 4
also: Jeder Punkt der XY-Ebene ist ein Fixpunkt der Abbildung. Die durch die For-

meln (5) vermittelte Abbildung muss also die identische Abbildung sein.
Es muss also gelten:

ex=0byfi+biafo+ bisfs,
0V =Vbufi+bafs+bsyfs,

0z =Dy fr+bgfs+ bslfs.
Wegen B # O folgt daraus

% byp byg 011 % byg biy bia %
flz’%' Y bag bo |, fa= g bar ¥ bas | fs = %ﬂ bar b |-
2 byy byg bgy 2 bag byy bss 2

Die gesuchten Abbildungsgleichungen sind daher linear und homogen.
J.MALL, Miinchen
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Kleine Mitteilungen

Uber « Super perfect numbers »

In Band 24, S. 16-17 dieser Zeitschrift, hat Herr D. SURYANARAYANA eine kleine
Mitteilung verdffentlicht mit dem Titel « Super perfect numbers». Er betrachtet natiirliche
Zahlen », welche

a(a(n)) =2n (1)

geniigen, wobei o(n) die Summe aller (positiven) Teiler von # bedeutet. Eine solche Zahl
wird «super perfect number» genannt. Wir wollen kurz s.p.n. schreiben. In der obigen
Mitteilung wird der folgende Satz bewiesen: «Eine gerade Zahl » ist genau dann eine s.p.n.,
wenn # = 27, und 2+ — 1 eine Primzahl ist.»

In diesem Beweis ist eine kleine Ungenauigkeit, welche aber leicht zu beheben ist.
Im zweiten Teil des Beweises wird behauptet, dass (27t — 1) o(q); o(q); 2"*? — 1 und 1
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verschiedene Teiler von (21 — 1) o(g) sind. Das ist aber nur richtig, wenn o(q) # 21 — 1
erfiillt ist. (Gegenbeispiel: ¢ = 25, » = 4).

Man kann aber den Beweis so fithren: Ist ¢ > 1, so sind (2! — 1) o(q); o(g); 1 ver-
schiedene Teiler von (2! — 1) o(q). Es folgt

g = (2 — 1) o(g) + a(g) + 1 > 21 a(g) .

Weil o(q) > g, ergibt sich ein Widerspruch.
Am Schluss wird die Frage nach der Existenz einer ungeraden s.p.n. gestellt. Dazu
gilt der

Satz. Ist n eine ungerade s.p.n., so muss n eine Quadratzahl sein.

k
Beweis. Essein =[] p:% in der kanonischen Zerlegung gegeben. Dann gilt
x=1
k

1
o(n) = IT (1 put oot £77) = ITg3H» (2)
s Z
wobei der letzte Ausdruck die kanonische Zerlegung von o(n) sein soll. Fiir eine s.p.n.
gilt nach (1)

l k
o(o(n) = IT (L + ga+ oo+ @) = 2n=2 [] p=. (3)
olo(m) o) _ } L SUUTE S WO: oy 1T\
o(n) n __A]=]1<1+ 'R ot qil) xgl<1+ P oot p:x>_2' 4)

Ist » ungerade und keine Quadratzahl, dann folgt a(n) = 0 (mod 2), d.h. 0.B.d.A.
4= 2. (5)

Aus (3) folgt weiterhin 0.B.d.A.
pr 1424 . 22kt (6)
Nach (4) und (6) erhalten wir

Bkl , ! 1 k 1
2 ,;;Mg‘__m 1 py+1 ,112<1+...+ ﬁ).) . I] (1+...+ ﬁ%>

2f 2 A q; x=2 M
2ﬁ|+1_1 2!314‘1
R R = e R (7)
Hieraus ergibt sich sogleich
k=1=1, a=1und p,=20+1_1, (8)
Dann folgt
on) = p,+ 1=28%1 gom) =22 _1=2p,, (9)
worin der Widerspruch ersichtlich wird. H.-J. KanNoLp, Braunschweig

Zur Mobiusinvolution der Ebene

7. Herr STRUBECKER hat in einer Abhandlung gleichen Titels [1] einen ausfiihrlichen
Bericht iiber zwei sich bei einer Mébiusinvolution darbietende Probleme gegeben: 1. das
Problem, ihre beiden Fixpunkte und 2. bei zwei gegebenen Punktepaaren (4, 4’) und
(B, B’) zu einem weiteren Punkt C den Bildpunkt C’ zu konstruieren. Es gelang ihm, fiir
das 2. Problem eine ganz besonders einfache Losung in zweierlei Gestalt zu finden:

Bezeichnen (A B’C), (A’BC), (ABC), (A’B’C’) die Kreise durch die drei eingeklammerten
Punkte, und (AB’C) - (A’BC) = D, (ABC) - (A’B’C) = D’ die Schnittpunkte der einge-
klammerten Kreise, so ist entwedey (ABC) - (A’B’D) = C’ oder auch (AB’D’) - (A’BD’) = C’.

Die Einfachheit der Konstruktion legt nahe, einen ebenso einfachen Beweis fiir sie zu
suchen, ohne die Theorie der harmonischen Quadrupel (H. Wiener) oder raumliche Be-
trachtungen dafiir (K. Strubecker) in Anspruch zu nehmen.
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2. Eine Mébiusinvolution ist zunidchst in komplexen Koordinaten durch eine Gleichung

Az + B_

2= Croa 8

gegeben, wo 4, B, C komplexe Konstanten mit nichtverschwindender Determinante
— A? — B C + 0sind. Bezeichnet man zwei entsprechende Punktepaare von (1) mit (a, a)
und (b, b), so lautet die durch sie gegebene Involution
2z 2+ 71,
;Ma+dH=0. (2)
bbb+ b1
Wir bezeichnen nun die Koordinaten der in 7. angegebenen Punkte 4, A’; B, B’; C, C’;

Dmita,a;b,b:z zund u. Nach der angegebenen Konstruktion sollen «, a, b, z auf einem
Kreise liegen, also muss das Doppelverhiltnis (DV)

n-—a.27% (3)

veell sein, namlich gleich dem DV der Strecken 1,75/;—; : z_a_/g (die Umfangswinkel iiber ;lz)
in # und ¢ sind gleich).

Genau so miissen die Gleichungen gelten:

u—a z—a Z‘Z;?_b_ 4
u:vbv'z—b_'u—%.z_a )
u—a zZ—a , ua - zb
W i TN T ©)
ufziﬂ , ﬁj _z:b-

& -8 _ ., ©)
w-b z-b " W@ ’
Aus den linken Seiten von (3) bis (6) ldsst sich nun der Hilfspunkt % sofort eliminieren und
es kdme, wenn die Gleichung (7) A u = A” u’ gelten wiirde, sofort die Gleichung

7—a z—b z2—a z—0b
e A 8
z—a  2—0b zZ—a Z-—0 ®)
Diese ist aber nichts anderes als die Gleichung der Mébiusinvolution, die nach Abscheidung
des Faktors z — z #+ 0 in die einfache Gleichung (2) iibergeht. Die Gleichung (7) aber lautet

2I_BE, :
20+ 24 Za « Za
und sie gilt tatsdchlich. Da ndmlich die Zuordnung
z>% a>d,a>a b>b b>b

gilt, so ist die linke Seite von (9) die bekannte Inversionsinvariante, oder, da sie ebenso
fir Bewegungen und Ahnlichkeitstransformationen gilt, Mobiusinvariante von vier
Strecken zwischen vier Punkten. Damit ist aber die Strubeckersche Konstruktion auf
sehr einfache Weise bewiesen.

K. FrapTt, Calw

LITERATURVERZEICHNIS
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Eine Bemerkung iiber mehrdimensionale Axonometrien

Definitionen: Eine lineare Abbildung = von E, auf E,, C E, heisst (n, m)-Parallelpro-
jektion, wenn P e a1 P fiir jedes P € E,, gilt. Ist a=1 P | E,, so bekommt man eine (%, m)-
Normalprojektion. Eine (n,m)-Parallelprojektion n:E, - E, zusammen mit einem festen
orthonormierten #-Bein (ny, ..., n,) in E, heisst eine (r, m)-Axonometrie. Eine (n,m)-Nor-
malprojektion n: E, - E, gemeinsam mit einem festen orthonormierten #-Bein (n,, ..., n,)
in E, heisst (n,m)-Normalaxonometrie. Weiter setzen wir

a;=|nn;|, t1=1,...,n und o ;= <N, TN fir 4,j=1,...,n.
L.A. JazxkewITSCH zeigte in [2], dass in jeder (%,m)-Normalaxonometrie
ai+ -4 ad =m, a1+~--+an$l/h17n
gilt. Dagegen bewies J.ScHoPP in [3], dass in jeder (#,7 — 1)-Axonometrie
ai+ - +aiz=zZn—-—1<a+:-+a,

in Kraft ist. Im folgenden mochten wir diese Beziehungen noch verallgemeinern.
Behauptung 1. In einer beliebigen (n,m)-Axonometrie gilt fiiv die Suwmme s, samtlicher
k-Hauptminoven dev Matrix || a; a; cose,; || die Ungleichung

—1)" "= (’Z) 1<k <m.
Dabei gilt das Gleichheitszeichen genau im Falle dev (n, m)-Novmalaxonometrie.

Der Beweis ergibt sich unmittelbar aus folgendem Satz ([4]): Es sei (ay, ..., a,) ein
Vektor-n-tupel in E, C E,. Eine (n,m)-Axonometrie n:E, > E,  mitan, = q;,i=1,...,n,
existiert gevade dann, wenn fiiv die (notwendig veellen) Eigenwerte 4, = ... = A, von | ;- a; ||
die Beziehungen An_pyy = -+ = A, =1, Apyy = --- = A, = 0 gelten. Hierbei chavakterisievt
der Fall Aoy = -+ = &, = 1 gevade die (n,m)-Normalaxonometrien. Es geniigt jetzt, die be-

kannten Eigenschaften der elementarsymmetrischen Polynome zu verwenden (vgl. [1],
S.83), um die Behauptung 1 zu gewinnen. Fiir £ = 1 erhdlt mans; = a} + --- + a2 = m
(vgl. [3]) und s, = a? + :-- + a% = m gilt genau im Falle der (u,m)-Normalaxonometrie
(vgl. [2] und [3]). Einen einfachen direkten Beweis der in jeder (»,m)-Normalaxonometrie
geltenden Gleichung a} + -+ + a% = m bekommen wir auch so: Es sei

E, ={#*,..o%) | ¥mpy=+=2,=0 und n;=(¢y,....,¢,), i=1..,n.

Hieraus ergibt sich

AN = (€;1 s €y 0,...,0, i=1,...,n.
n—m
Weil || ¢,; || eine orthogonale Matrix ist, so ist auch || ¢;; ||T eine orthogonale Matrix, woraus
folgt
m n
2 =1+ +1l=m
1=11i=1 \—’;ﬂ‘—_—’

Behauptung 2. I'n einer beliebigen (n, m)-Axonometrien: E, > E, gilta, + --- + a, > m.
Beweis. Es sei # eine (n,m)-Normalaxonometrie. Dannist |z n; | <|n;|,d.h. a; < 1;
1 =1, ..., n. Gleichheit kann hier héchstens in m Fillen auftreten. Also ist

al<a; d=1,...,n und a}+--+ai<a;+-:--+a,.
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Aus af + -+ + a} = m ergibt sich m < a, + --- + a,. Ist nun z nicht die (%, m)-Normal-
axonometrie, so verwenden wir eine m-Ebene EX | n~! P, P e E, und die (%, m)-Normal-
axonometrie n*:E, - EX* mit demselben orthonormierten #-Bein (n,, ..., n,) wie 7. Nach
vorigem ist hier af 4 .-+ + a¥ > m, wo a¥ =|a*n;|, i=1,...,n Es ist aber auch
a;>af, i=1,...,n, weil a* (x n;) = a*(n,), ¢ = 1, ..., n. Hieraus folgt a; + --- + a, >
af + ... + a¥ sodass a; + -+ + a, > m, was zu beweisen war. VAcrLav HavEL, Brno

LITERATURVERZEICHNIS
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Aufgaben

Aufgabe 573. Man konstruiere (mit Zirkel und Lineal) a) ein beliebiges rechtwinkliges,
b) ein beliebiges nichtgleichseitiges, gleichschenkliges Dreieck aus den Schnittpunkten
seiner Mittelsenkrechten, seiner Hohen und seiner Winkelhalbierenden.

K. KoprFERMANN, Hannover

Lisung: Bezeichnungen: Umkreismittelpunkt O, Inkreismittelpunkt 7, Hohenschnitt-
punkt H.

a) Wegen HO? — OI?2 = HO - HI - 212 kann jede Seite des Dreiecks OHI aus den
beiden andern berechnet werden, weshalb wir voraussetzen, dass O, H und I «richtig»
liegen.

Der Kreis um O mit Radius OH (Umkreis) wird von der Geraden durch H und I ein
zweites Mal in P geschnitten. Der zu PO normale Durchmesser ist die Hypotenuse, H die
Rechtwinkelecke des Dreiecks.

b) I ist innerer Teilpunkt von OH, Y der I harmonisch zugeordnete dussere Teilpunkt.
Der Mittelpunkt P des Kreises (Apolloniuskreis) mit dem Durchmesser 1Y liegt auf dem
Umkreis des Dreiecks. Die Schnittpunkte von Umkreis (Radius OP) und Apolloniuskreis
inzidieren mit den Endpunkten der Dreiecksbasis, womit das Dreieck gezeichnet werden
kann.

Bemerkungen: Y ist der Mittelpunkt des Ankreises, welcher die Basis des Dreiecks
beriihrt. I darf nicht Mittelpunkt von OH sein. F. LEUENBERGER, Feldmeilen

Weitere Lésungen sandten M. Bacamann (Kiisnacht), P. BunpscHuH (Freiburgi. Br.),
J.FeuER (Pécs/Ungarn), H. FriscHKNECHT (Berneck), K. HopeL (Wédenswil), I. PAAscHE
(Miinchen), O. REUTTER (Ochsenhausen), E. WIDMER (Biel).

Aufgabe 574. Sei » der Inkreisradius, s die Summe der (orientierten) Abstinde des
Mittelpunktes des Feuerbachkreises von den Seiten des Dreiecks.

Man beweise oder widerlege: Jedes nichtgleichseitige Dreieck, fiir das s = 3 7 ist, ldsst
sich aus den Schnittpunkten der Mittelsenkrechten, der Hohen und der Winkelhalbieren-
den (mit Zirkel und Lineal) konstruieren. K. KopFErRMANN, Hannover

Losung des Aufgabenstellers: Es gibt unendlich viele konstruierbare und unendlich
viele nicht konstruierbare Dreiecke dieser Art.
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In der Terminologie der Arbeit K. KoPFERMANN, Uber Dreiecke, El. Math. 23, 49-60
(1968) : Die Schnittpunkte der Winkelhalbierenden konstruierbarer, wie nicht konstruier-
barer Dreiecke liegen auf dj (siehe a.a.0. S. 57) dicht.

Beweis: Die Punkte (p, g) € D’ der Ahnlichkeitsklassen derjenigen Dreiecke, fiir die
s = 37 ist, sind durch (siehe S. 54)

=3p—p—1 &)

charakterisiert. Fiir rationale p, g ist die Konstruktionsaufgabe genau dann durchfiihrbar,
wenn das kubische Polynom

2
BhArtpxtr mit A=—(p+1), w=Li4psd v, 2
unter der Nebenbedingung (1) iiber den rationalen Zahlen reduzibel ist. Die rationalen
Reduzibilititsstellen sind genau die rationalen Punkte (beide Komponenten sind rational)
auf den Tangenten an die Diskriminantenkurve (siehe S. 54)

g=3p—pr—1+)1-2p" 0<p<1j2 3)

in den rationalen Punkten dieser Kurve. Nun ist (p,, q,) genau dann ein rationaler Punkt
dieser Kurve, wenn 1 — 2 p, rationales Quadrat ist. Dann sind die rationalen Punkte (p, q)
auf der Tangente in (p,, ¢,) an (3) genau durch

3—-2p,F 31 = 2py = (g — Q)/(po — p), 1 — 2p, rationales Quadrat
charakterisiert. Mit 62:=1 — 2 p, und d := p, — p erhdlt man daraus
0+ 3do 4+ d*=0. (4)

Umgekehrt fiihrt jedes rationale Paar (o, d), das dieser Gleichung geniigt, zu Werten
p = po — d mit 2 py = 1 — g2, fiir die das Polynom (2) (¢ werde nach (1) gewahlt) iiber den
rationalen Zahlen reduzibel ist.

Die Gleichung (4) verschwindet genau fiir die rationalen Paare (g, d), fiir die die
Diskriminante 9 0% + 4 o3 dieser in d quadratischen Gleichung rationales Quadrat ist und ¢
rational ist. Fiir diese ¢ erhdlt man

2p=2py—2d=1—0a*+306+0)/9—40, 0<2p<1.

Man rechnet leicht nach, dass fiir o : = m/n die reduzierte Bruchdarstellung von 2 p stets n?
im Nenner enthilt, wobei # bzw. 2 # stets Quadratzahl ist. Sowohl die Briiche p, die diese
Eigenschaft haben, als auch die, die sie nicht besitzen, liegen in dem Intervall 0 < 2p < 1
dicht.

Also haben wir dichte Mengen rationaler Punkte (p, ¢), die auf der Kurve (1) liegen,
gefunden, aus denen die cosa und cosf konstruierbar bzw. nicht konstruierbar sind. Das
gilt dann erst recht fiir alle (p, g) auf (1).

Also gibt es unendlich viele Dreiecke mit s = 3 #, die sich aus den Schnittpunkten der
Winkelhalbierenden, der Hohen und der Mittelsenkrechten konstruieren wie nicht
konstruieren lassen. Bei festgehaltenen Schnittpunkten der Hohen und der Mittelsenk-
rechten liegen die Schnittpunkte der Winkelhalbierenden derjenigen Dreiecke, die sich aus
diesen Punkten konstruieren wie nicht konstruieren lassen, auf by dicht, q.e.d.

Eine weitere Losung sandte O. REUTTER (Ochsenhausen).

Aufgabe 575. Man beweise: Ist P das Produkt von #» natiirlichen Zahlen mit dem
grossten gemeinsamen Teiler D und dem kleinsten gemeinsamen Vielfachen M, so sind die
Quotienten P/(D** M) und (D Mn1)/P ganzzahlig. W. JANICHEN, Berlin-Zehlendorf

Losung n natiirliche Zahlen a; = H pfii;i=1,2,...,m; ,; = 0, haben den gréssten
gemeinsamen Teiler

D=]I PR, 202, oo Bmf)
j=1
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das kleinste gemeinsame Vielfache
m
M = [T px(n, o2, %n, )
;1
und das Produkt

m
P = [ pfritozit T o,
71

Die Ganzzahligkeit der Quotienten folgt dann aus den leicht als richtig zu erkennenden

Ungleichungen, die sich aus den Exponenten der Primzahlen pjergeben (j = 1,2, ..., m):
n
(n — 1) min (ay,;, og,;, .-, @,,;) + max(...) §‘21a,.,j;
1
X n
(n — 1) max(ay,;, g, ..., &,,;) + min(...) ;Exa“'
i-

H. HarBORTH, Braunschweig

Weitere Losungen sandten A. Bager (Hj¢rring), PP. BunpscHUH (Freiburg i. Br.),
J. FErEr (Pécs/Ungarn), M. D. GerHARDTS (Wuppertal), P. HonLERrR (Dietikon),
A. Makowsk! (Warschau), H. MEiL1 (Winterthur), 1. PaAascHE (Miinchen), O. REUTTER
(Ochsenhausen), D. VELjaN (Zagreb), E. WipDMER (Biel), G. WuLczyN (Bucknell Univ.,
USA), ferner die folgenden Studierenden der Wake Forest Univ.,, USA: D. ASHCRAFT,
P. M. CoBLE, C. CunNINGHAM, S. Howarp, G.-Y. Kwok, L. M. R. Louben, L. V. Oor,
M. A. STEELE, W. M. WarTtTs, D. WiLsonN, L. ZiNzow.

Aufgabe 576. Eine Ecktransversale, die ein Dreieck in zwei umfanggleiche Teildrei-

ecke zerlegt, werde Umfanghalbierende genannt. Man beweise:

(1) Die drei Umfanghalbierenden eines Dreiecks 4,4,4; schneiden sich in einem Punkt U
im Innern des Dreiecks.

(2) Die Linge der Umfanghalbierenden 4; P,, P; € 4;, , A;,, wird durch U im Ver-
hiltnis a;: (s — a;) geteilt. (ai =A;,1A4;,4:25= kZ a,\.

(3) Der Punkt U, der Schwerpunkt S und der Inkreismittelpunkt I liegen auf einer Ge-
raden, sofern das Dreieck nicht regulir ist, und es ist US = 2 ST.
O. REUTTER, Ochsenhausen

1. Losung: (1) folgt aus dem Satz von CEvA. Denn wegen 4, P, = A; P, (i  j) gilt
(A P: 4y Py) - (A3 Py: Ay By) - (4, Py 4, By) = 1.
(2) erhilt man aus dem Satz von MENELAOS, angewendet z. B. auf Dreieck 4;  , P; 4;:

Aus(Pi—lf:Ai U)- (Aipi+2:Ai+1Pi+2) . (Ai+1Ai+2:PiAi+2) = — 1folgt (WegenAi+1Ai+2= a;

und 4, , 4;,,=s5—a) P,U:A4U=—(s—a;):a;,dh.4,U: 4, P;=a;s.

(3) U hat von der Parallelen zu a; durch 4; nach (2) den Abstand #; = hq, - a;:s =
2 - Fg,4,4,:5 = const. Also ist U der Inkreismittelpunkt desjenigen Dreiecks, dessen
Seitenmitten 4,, 4,, 4, sind.

Angewendet auf das Dreieck der Mittelpunkte M; der Seiten a; heisst das, dass der
Inkreismittelpunkt I von Dreieck 4,4,4, der Schnittpunkt der Umfanghalbierenden Uy
von Dreieck M, M,M, ist. Dreieck M;M ;M und Dreieck 4,4,4, liegen dhnlich mit dem
Verhiltnis 1:2. Ahnlichkeitszentrum ist S. Da dem Punkt U der Punkt Uy = I entspricht,
liegt S auf der Geraden UUy = UI und es ist US = 2 SUy = 2 ST.

W. ViNzeNz, Miinchen

N

—

2. Losung: Wir setzen wie iiblich
A Ay Ay PPy Pyaga,ay5-a,5-8y5-a3=ABCPQR abcs,s,s,.
Es handelt sich um einen im 19. Jahrhundert und z.T. vorher bekannten Sachverhalt:
(1) P, Q, R sind offenbar die Ankreisberiihrpunkte auf a, b, ¢, weil s, = BR = CQ usw.
zyklisch gilt. U ist daher innerer Cevapunkt fiir die Abschnittsprodukte s,s,s, = s,s.s,
auf den Seiten a, b, ¢, q.e.d. Bekanntlich heisst U Nagelpunkt.
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(2) Der bekannte Satz von H. van Aubel lautet im vorliegenden Spezialfall CU/RU =
CP/BP + CQIAQ = s,[s, + s,/s, = c[s,, q.e.d.

(3) Die folgenden je 4 harmonischen und &hnlich gelegenen Punkte mit Abstdnden
(Zwischenraumen) im Verhiltnis 2:1:3 liegen auf der

Eulergeraden Nagel-Longhurstgeraden
Umkreiszentrum Inkreiszentrum

Gravizentrum Gravizentrum

Feuerbachzentrum Umfangsschwerpunkt (Spiekerpunkt)
Orthozentrum Nagelpunkt

Damit ist die Aufgabe geldst.

Litevatur :
H. BAUER, Besondere Punkte im Dreieck, Prax. Math. 9 (1967), S. 265-270, Fig. 6.
TH. SPIEKER, Lehrbuch dev ebenen Geometrie, 21. Aufl., Potsdam 1894, S. 178-181.
H. DORRIE, Mathematische Miniaturen, Breslau 1943, S. 73, Nr. 69.
CHR. RENNER, Planimetrie, 4. Aufl., Minchen 1952, S. 152, Aufgabe 91 und 92.
Prax. Math. 4 (1962), S. 133-135, Problem 108 mit zahlreichen Literaturangaben.
Prax. Math. 6 (1964), S. 134, Problem 180.
(Prax. Math. 6 (1964), S. 49-51, Problem 171 ist verwandt.)
ARCHIMEDES 75 (1963), S. 22, Aufgabe 768 von J. E. Hofmann. 1. PaascHE, Miinchen

Weitere Losungen sandten A. BAGER (Hj¢rring), J. FEHER (Pécs/Ungarn), H. Friscu-
KNECHT (Berneck), W. JANICHEN (Berlin-Zehlendorf), L. KiEFFER (Luxemburg), D. VELJAN
(Zagreb).

Neue Aufgaben

Aufgabe 597. Es sei G eine Gruppe und U eine Teilmenge von G, die mindestens zwei
von 1 verschiedene Elemente enthilt. Ist dann U-1 x = U fiir alle von 1 verschiedenen
x e U, so ist U eine Untergruppe von G. HEeinz LOUNEBURG, University of Illinois, USA

Aufgabe 598. Let p be a fixed prime. Show that the integer » has the property

p/‘/ (Z) 0 <k <n)
if and only if '
n=ap+p—1 (0<a<p; s=>0.
L. Carritz, Duke University, USA

Aufgabe 599. Es sei

Fx= X (7).
1<i<j<x
Dann ist
2 3
Fy(x) = ;;—Cl% +0(), Fr) =3 f((sz)) + 0(x Inx),
x.r+1 C(S)

F(s) =

s

+ O@x) (s> 2).
E. TeurreL, Korntal/Stuttgart

CES TS

Aufgabe 600. In O greifen drei koplanare Krifte OA, OB und OC gleicher Grésse
so an, dass 4, B und C das Dreieck 4 bilden. Man zeige, dass die Resultierende genau dann
zu einer Seite von 4 parallel ist, wenn 4 nicht stumpfwinklig ist und die Seitenléingen des
Hohenfusspunktdreiecks von 4 zudem eine arithmetische Folge (1. Ordnung) bilden.

F. LEUENBERGER, Feldmeilen
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Aufgabe 601, Nach SurYANARAYANA (vgl. EL Math. 24, 16-17 (1969)) heisst eine
natiirliche Zahl % superperfekt, wenn ¢(a(n)) = 2 n gilt. Dabei bedeutet o(k) die Summe
aller Teiler der natiirlichen Zahl 2. Man beweise: Ist n = p2%, p eine ungerade Primzahl,
so ist # nicht superperfekt. P. BunpscHus, Freiburg/Br.

Literaturiiberschau

Mathematische Methoden dev Zuverldssigkeitstheorie I. Von B. W. GNEDENKO, J. K.
BeLjajEw und A. D. SoLowjew. Band XXI der II. Abteilung der Mathematischen Lehr-
biicher und Monographien. XII und 222 Seiten mit 37 Abbildungen und 3 Tabellen.
Akademie-Verlag, Berlin 1968.

Unter der Zuverldssigkeit eines Erzeugnisses versteht man dessen Fihigkeit, seine
Qualitdt unter bestimmten Nutzungsbedingungen zu wahren; Zuverldssigkeit ist also
tibev die Zeit evstreckte Qualitdt. Aus dem Bestreben, die Zuverldssigkeit industrieller
Erzeugnisse zu erhéhen, hat sich im Laufe der letzten Jahrzehnte eine eigentliche Zuver-
lassigkeitstheorie ergeben, an der Ingenieure, Okonomen und Mathematiker interessiert
sind. Die vielseitigen Probleme dieser Theorie erforderten die Schaffung eines eigenen
mathematischen Apparates; das vorliegende Buch bringt die mathematischen Methoden
einiger Teile des bereits weit verzweigten Gesamtgebietes. Im Teil I, der hier anzuzeigen
ist, werden behandelt: Elemente der Wahrscheinlichkeitsrechnung und der mathemati-
schen Statistik (mehr im Sinne eines Uberblickes iiber die benétigten Grundlagen), die
Charakteristika der Zuverlidssigkeit und schliesslich die Probleme der Reservierung mit
und ohne Erneuerung. Der II. Teil soll weitere statistische Ausfithrungen und vor allem
auch die Darstellung der statistischen Qualitdtskontrolle bringen. — Wer um das Geschick
Gnedenkos weiss, statistische Probleme knapp und doch sehr verstindlich darzustellen,
wird die Lektiire dieses Buches mit Freude beginnen. Er wird sicher nicht enttduscht werden.

R. INEICHEN

Elementare Topologie. Von B. H. ARNOLD. (Aus dem Amerikanischen iibersetzt von
H. FrReuND, G. HoLLAND und A. KirscH.) 189 Seiten mit 91 Figuren. DM 19.80. Vanden-
hoeck & Ruprecht, Gottingen 1964.

Dieses kleine Werk ist vorziiglich geeignet, einem Anfinger einen Begriff zu geben,
was Topologie ist. Der Verfasser appelliert an das anschauliche Intuitionsvermégen des
Lesers und verzichtet bewusst auf eine axiomatische Grundlegung. So kommt der Leser
rasch in Kontakt mit den eigentlichen Problemen. Natiirlich handelt es sich bei den
gegebenen Beweisen mehr um Beweisideen und -skizzen.

Im ersten Teil (Kapitel 1-5) werden unter anderem folgende anschauliche Probleme
erortert: Netze und Landkarten, Vierfarbenproblem, Klassifikation der Flichen, Euler-
scher Polyedersatz, Siebenfarbensatz fiir den Torus, Jordanscher Kurvensatz.

Der zweite Teil (Kapitel 6--8) ist der Einfiihrung in die Grundbegriffe der mengen-
theoretischen Topologie gewidmet. Er enthilt die Kapitel: Mengen, Abbildungen, Rdume.

Jedem Abschnitt sind einige anregende Aufgaben beigefiigt, die es dem Leser erleich-
tern, sich in die behandelten Fragen einzuarbeiten. J. M. EBERSOLD

Theovetische Mechanik. Eine einheitliche Einfiihrung in die gesamte Mechanik. Von
G. HaMmEL. Band 57 der Grundlehren der mathematischen Wissenschaften. Berichtigter
Nachdruck. VIII und 796 Seiten mit 161 Figuren. DM 84.—. Springer-Verlag, Berlin,
Heidelberg und New York 1967.

Es handelt sich hier um den berichtigten Nachdruck des 1949 erschienenen Werkes.
Es stellt ein Lehrbuch, nicht ein Handbuch, der klassischen Mechanik dar, das sich an mit
den mathematischen Methoden bekannte Leser wendet. HaAMEL gibt hier eine Einfiihrung
in die gesamte klassische Mechanik, in der es ihm besonders darauf ankommt, diese als
eine einheitliche Wissenschaft darzustellen und den Aufbau konsequent auf das Prinzip
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der virtuellen Arbeit, das d’Alembertsche Prinzip und das Lagrangesche Befreiungs-
prinzip abzustiitzen.

Das Werk zeugt von der grossen Erfahrung, die HAMEL in seiner Lehrtitigkeit er-
worben hat. Besonders wertvoll wird es auch durch den umfangreichen zweiten Teil
(263 Seiten), der aus durchgerechneten Aufgaben und Problemen besteht. J.M.EBERsoLD

Mathematical Methods in the Physical Sciences. Von Mary L. Boas. XIX und 778 Seiten.
90s. John Wiley & Sons, London 1967.

Das iiber 700 Seiten umfassende Buch von M. L. Boas vermittelt dem Naturwissen-
schafter geniigend mathematische Grundlagen, um die Methoden der Mathematik in
naturwissenschaftlichen Féachern, im Ingenieurwesen und insbesondere in der Physik zu
verstehen und anzuwenden. In Fachvorlesungen wird der Student oft mit zwei Problemen
konfrontiert: Erstens geht es um das Verstindnis der fachlichen Materie und zweitens
werden gleichzeitig mit der Einfiihrung neuer Gebiete auch neue mathematische Methoden
angewandt. Ist man aber mit solchen Methoden, wie zum Beispiel mit dem Losen von
gewohnlichen und partiellen Differentialgleichungen, der Tensoranalysis, den Reihen-
entwicklungen und den Problemen der Statistik, nicht vertraut, besteht keine Moglichkeit,
den dargebotenen Stoff kritisch durchzuarbeiten und zu verstehen.

Im vorliegenden Buch, das trotz des umfassenden Stoffprogramms auch fiir den An-
finger leicht lesbar ist, wird ein sauberer Kompromiss gemacht: Erstens werden von den
verschiedenen mathematischen Teilgebieten nur Grundlagen vermittelt und zweitens sind
die Sdtze und Formeln zwar exakt, aber nicht immer in ihrer allgemeinsten mathemati-
schen Formulierung eingefiihrt. Dies hat drittens eine Vereinfachung der Beweise zur
Folge. Bei schwierigeren Problemen werden sie sogar gelegentlich weggelassen. Da aber
der Giiltigkeitsbereich eines Satzes, einer Methode oder einer Formel immer genau fest-
gelegt ist, und auch ihre Anwendungsmoglichkeiten anhand von guten Beispielen geiibt
werden, erreicht das Buch durchaus sein Ziel, nimlich dem Studenten der Naturwissen-
schaften eine Ubersicht iiber die Methoden der Mathematik zu geben und ihm deren
Anwendung zu erleichtern.

Der Inhalt ist in 15 Kapitel aufgeteilt und erstreckt sich iiber unendliche Reihen,
Komplexe Zahlen, Determinanten und Matrizen, partielle Ableitungen und mehrfache
Integrale, Vektoranalysis, Fourier Reihen, gewohnliche und partielle Differentialgleichun-
gen, Variationsrechnung, Spezielle Funktionen, Formeln und Integrale, Koordinaten-
transformation und Tensoranalysis, Funktionentheorie, Legendre-Polynome, Besselfunk-
tionen, Laplacetransformationen usw. bis zur Wahrscheinlichkeitsrechnung.

In der Einleitung des Buches wird erklirt, welche vorangehenden Gebiete fiir das
Verstdndnis eines Kapitels bekannt sein miissen. Der Fortgeschrittene kann aber die
einzelnen Kapitel auch unabhingig von den iibrigen lesen. Jedes Kapitel beginnt mit einer
guten Einfithrung, in der jeweils ausgefiihrt ist, in welchen Zusammenhang das zu be-
arbeitende Gebiet gehért und wo es hauptsichlich angewandt wird.

Auch dem Mathematiker ist dieses Buch als Nachschlagewerk zu empfehlen. Es enthilt
neben vielen gut ausgewidhlten Beispielen 893 abstrakt mathematische und angewandte
Ubungsaufgaben, deren Losungen sich zum Teil auf den letzten Seiten des Buches finden.

PeETER Fucas

Basic Programming. Von JoHN G. KEMENY und THomAs E. Kurtz. VIII und 122 Seiten.
44s. John Wiley & Sons, Inc., New York, London, Sydney 1967.

«Basic» ist eine einfache Programmiersprache, die vor allem fiir den Anfinger im
Programmieren und als Konversationssprache in einem Teilnehmersystem gedacht ist.
In ihrer elementarsten Form unterscheidet sie nur neun Befehlsarten. Dazu kommen in
einem weitern Ausbau acht Befehle, die zum Beispiel die Definition einer arithmetischen
Funktion oder den Sprung zu einem Unterprogramm erlauben. Ferner existieren bequeme
Makroinstruktionen fiir das Operieren mit Matrizen. Ein weiterer Ausbau ist vorgesehen.
Wenn man dies liest, zieht man vielleicht den Vergleich mit einem Kleinwagen, der mit
jedem neuen Modell etwas grosser wird und schliesslich-Gefahr liauft, seinen Hauptvorteil
gegeniiber einem Normalauto zu verlieren. Hochentwickelte Programmiersprachen wie
ALGOL und FORTRAN existieren schon lingst. Es braucht keine weitere derartige
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Sprache. «Basic» ist iibrigens zu den beiden genannten verwandt. Der Vorteil der Sprache
«Basicy liegt in ihrer Einfachheit, die es z.B. ohne grossen Zeitaufwand ermoglicht, diese
Programmiersprache im Mittelschulunterricht einzufiihren.

Es ist erstaunlich, wie viele zum Teil schon anspruchsvolle Probleme sich mit dieser
elementaren Sprache programmieren lassen. Es gibt auch kaum ein Buch iiber das
Programmieren wie das besprochene, das auf so knappem Raum eine solche Fiille interes-
santer Beispiele aus verschiedenen mathematischen Disziplinen enthidlt. E. R. BRANDLI

Mathematics in the Modern World. Readings from Scientific American with Introduction
by Morris KLINE. 409 Seiten mit 374 Figuren. 84s. (gebunden), 54s. (broschiert).
W. H. Freeman and Co. Ltd., London 1968.

Mancher Leser wird sich noch an das priachtige Septemberheft 1964 der Zeitschrift
Scientific American erinnern, das dem Thema «Mathematik in der modernen Welt» ge-
widmet war. Man findet alle Beitrige dieses Heftes mit einer Ausnahme (Control Theory)
in der vorliegenden erweiterten Sammlung von 50 Artikeln fithrender Mathematiker aus
den Jahren 1948-1968 wieder. Die Aufsitze sind in fiinf Kapitel eingeteilt: The Nature of
Mathematics (3), Biography (9), Some Chapters of Mathematics (13), The Foundations of
Mathematics (6), The Import of Mathematics (19). Sehr lesenswert sind auch die Ein-
leitungen von Morris KLINE zu den einzelnen Kapiteln. Wir geben den letzten Satz der
Einleitung zum ersten Kapitel wieder, der das Ziel dieses Buches in eleganter Weise aus-
driickt: A series of articles by different authors on many different subjects is not the
substitute for systematic study and technical mastery, but rather a kaleidoscope, whose
varicolored, bright flashes of light may illuminate, excite, and inspire — and this is the
primary objective of all education. E. TrosT

Algebra and the Elementary Functions. Von BEvaN K. Youse. IX und 297 Seiten.
Dickenson Publishing Company, Belmont, California 1966.

Das Buch dient als Ubergang von der «High-School»- zur «College»-Mathematik. Auf
kleinem Umfang werden neben der elementaren Algebra und der Trigonometrie auch eine
Einfithrung in die Wahrscheinlichkeitsrechnung, die analytische Geometrie und die
Vektoralgebra gegeben. Der Autor hat sich folgende Ziele gesetzt:

1. Den Stoff in korrekter, interessanter und leichtfasslicher Form darzustellen.

2. Die Einfiihrung der neuen Ideen so friith als moglich in den Text einzubauen.

3. Ubungsaufgaben so auszuwiéhlen, dass nicht nur das soeben Gelernte vertieft, sondern
auch der bereits bearbeitete Stoff repetiert wird (gebietsweise).

4. Den Stoff moglichst unabhingig darzustellen, so dass der Leser in der Auswahl der ver-
schiedenen Gebiete frei ist.

Diese Ziele wurden weitgehend erreicht, wenn auch — durch die Kiirze der Darstellung

bedingt — grundlegende algebraische Aspekte (algebraische Strukturen, ausser geordnete

Korper; Klasseneinteilungen usw.) unerwahnt bleiben.

Nach dem Studium der ersten vier Kapitel: Mengen, reelle Zahlenmenge, Ungleichungen
und absoluter Wert, Relationen und Funktionen, kénnen die Abschnitte: Exponential-
und Logarithmusfunktion; Mathematische Induktion und Folgen; Wahrscheinlichkeit
(geschrieben von JonN D. NEFF); Komplexe Zahlen und elementare Gleichungslehre;
Analytische Geometrie, Lineare Gleichungen und Determinanten (geschrieben von
TrevorR Evans) und Vektoralgebra in beliebiger Reihenfolge bearbeitet werden. Viele
Beispiele und iiber 650 Ubungsaufgaben dienen zum bessern Verstindnis. Die Losungen
der ungerade numerierten Aufgaben sind am Schluss des Buches beigefiigt. In einem
Anhang findet man Tabellen fiir vierstellige Logarithmen; Trigonometrische Werte und
ihre Logarithmen; Quadrate, Kubik- und Wurzelwerte der Zahlen von 1 bis 100.

W. HOLENWEG

Amnalytische projektive Geometrie. Von JosEF LENSE. 303 Seiten mit 100 Abbildungen.
DM 48,~. R. Oldenbourg, Miinchen 1965.

Dieses schéne Buch ist aus Vorlesungen entstanden, welche LENSE (bis 1961 Direktor
des math. Instituts der TH Miinchen) iiber projektive Geometrie gehalten hat.
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Man bemerkt, dass sich der Autor durchwegs der Koordinatenschreibweise bedient und
z.B. auf Matrixmultiplikation verzichtet. Er beschrinkt sich auf die Dimensionen = 3.
Die geometrischen Grundgebilde werden rein analytisch definiert. So ist ein Punkt die
geordnete Folge von Verhidltnissen, die man aus 4 komplexen projektiven Koordinaten
bilden kann. Ebenen und Geraden werden durch Komplexe von linearen Gleichungen
zwischen solchen Koordinaten definiert. Trotz der analytischen Definition im komplexen
Raum ldsst der Autor die Anschauung nicht zu kurz kommen, was die 100 Figuren be-
zeugen.

Neben der iiblichen Darstellung der Kurven und Flidchen 2. Ordnung, bei denen man es
hédufig bewenden lasst, findet sich ein Exkurs iiber ebene Kurven #. Ordnung. Bemerkens-
wert ist dann die Ausfiihrung dieser Theorie im Falle der Kurven 3. und 4. Ordnung.
Dabei werden nicht Sonderfille, sondern stets nur der allgemeine Fall dargestellt. Von den
Fliachen werden noch diejenigen 3. Ordnung behandelt.

Voraussetzung fiir das Verstdndnis des nicht immer leicht zu lesenden Buches sind
Kenntnisse in folgenden Gebieten: Lehre von den Determinanten und den Systemen
linearer Gleichungen, analytische Geometrie, Algebra und Analysis. G. AEBERLI

First Concepts of Topology. Von W. G. CHINN und N. E. STEENROD. Band 18 der New
Mathematical Library. 160 Seiten mit 116 Figuren. $ 1.95. Random House, New York
1966.

Dem Anfinger bietet dieses Biichlein eine ausgezeichnete Einfiihrung in die mengen-
theoretische Topologie. Er gewinnt einen Einblick in ihre Methoden und lernt ihre Be-
deutung fiir andere Zweige der Mathematik kennen.

Wie der Untertitel sagt, beschranken sich die Verfasser auf die Geometrie der Ab-
bildungen von Strecken, Kurven, Kreisen und Kreisscheiben im Euklidischen Raum.

Der Ausgangspunkt von Teil I (Existence Theorems in Dimension 1) bildet folgender
Satz der Analysis: Die reellwertige Funktion f(x) sei fiir das reelle Intervall a < ¥ < b
definiert und in diesem stetig; dann besitzt die Funktion einen Minimalwert » und einen
Maximalwert M und fiir jedes y mit m < y < M besitzt die Gleichung y = f(x) in
a < ¥ < b mindestens eine Losung x. Um diesen Satz zu beweisen, werden nun die not-
wendigen Begriffe sorgfdltig entwickelt: Mengen, Funktionen, Umgebungen, Stetigkeit,
usw. Nachdem dann der Beweis erbracht ist, folgen einige Anwendungen.

In Teil IT (Existence Theorems in Dimension 2) werden analoge Fragen in der Di-
mension 2 behandelt. Dabei ist der Kernpunkt die Erarbeitung des Begriffes der Umlauf-
zahl. Bei den Anwendungen werden unter anderem das Sandwichtheorem und der
Fundamentalsatz der Algebra bewiesen.

Zu fast allen der 37 Abschnitte sind instruktive Aufgaben gestellt, deren Losungen den
Schluss des Werkes bilden. J. M. EBERSOLD

Contests in Highev Mathematics (Hungary 1949-1961) in Memoriam Miklds Schweitzer.
Herausgegeben von G. Sz4sz, L. GEHER, 1. KovAcs und L. PINTER. 260 Seiten mit 36 Fi-
guren. $ 10.—. Akadémiai Kiado, Budapest 1968.

Der im Titel genannte Wettbewerb findet seit 1949 alljahrlich in Ungarn statt und soll
den Mathematikstudenten Anreiz zu selbstidndiger Forschung bieten. Die ca. 10 von
filhrenden Mathematikern gestellten Aufgaben werden zu einer bestimmten Zeit an den
Anschlagbrettern der mathematischen Institute und der lokalen Gruppen der mathemati-
schen Gesellschaft Janés Bolyai bekanntgegeben. Zur Losung stehen 7-10 Tage zur Ver-
fiigung. Ein Bericht des Komitees mit den Losungen der Probleme erscheint jeweils in der
Zeitschrift Matematikai Lapok. Diese Berichte liegen dem vorliegenden Band zugrunde.
Er enthilt 145 Aufgaben aus den Gebieten Algebra, Kombinatorik, Funktionentheorie,
Geometrie, Zahlentheorie, Wahrscheinlichkeitsrechnung, Funktionen reeller Variabeln,
Folgen und Reihen, Mengenlehre. Zu 141 Aufgaben werden ausfiihrliche Losungen (zum
Teil mehrere) mit Erginzungen und Literaturhinweisen gegeben. Eine Wiirdigung des im
Alter von 22 Jahren verstorbenen vielversprechenden Mathematikers M.Schweitzer, dessen
Namen der Wettbewerb trigt, beschliesst diese sehr wertvolle und anregende Aufgaben-
sammlung. E. TrosT
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Inhaltsmasszahlen fiir hyperbolische Rotationskérper
1. Einleitung

Wird eine ebene Kurve % um eine Gerade z, die Rotationsachse, gedreht (drehen ist
dabei als fortgesetztes Spiegeln an den Ebenen des durch z bestimmten Ebenenbii-
schels zu definieren), so beschreibt % eine Rotationsfliche. Diese Fliche bestimmt fiir
sich allein oder zusammen mit anderen Rotationsflichen (etwa Ebenen, die auf der
Drehachse senkrecht stehen) Rotationskorper. In der vorliegenden Arbeit werden
speziellen Korpern dieser Art im Bereich der hyperbolischen Geometrie Inhaltsmass-
zahlen zugeordnet?).

Alle Untersuchungen werden im (speziellen) Poincaré-Modell durchgefiihrt. Wir
beschrinken uns dabei auf Drehkérper, bei denen die Ausgangskurve % im Modell
einen euklidischen Kreis oder eine euklidische Gerade darstellt.

2. Hyperbolische Masszahlen im Poincaré-Modell

Im Poincaré-Modell gilt fiir die hyperbolische Léinge s einer Strecke P, P, (Figur 1,
links) bekanntlich:

-k 1 1+ cosay 1+ cosaz] _ tan (ay/2)

$=7 [1 —cosa, 1 —cosay] tan («,/2)

5 In (1a)

Falls die hyperbolische Gerade gleichzeitig euklidische Gerade ist (Figur 1, rechts),
wird daraus:

5= kil

s—kln(zl) (1b)
k ist dabei ein positiver Faktor, dessen Wert von der Wahl der Lingeneinheit ab-
hingt. Die hyperbolischen Lingen von Strecken werden, zur Unterscheidung euklidi-
scher Lingen, im Folgenden immer mit einem Querstrich versehen.

Aus der Lingendefinition heraus ergibt sich ein Ausdruck fiir das hyperbolische

Volumelement. im Poincaré-Modell:

. dx dy dz
av = k3. — (2)

1) Einzelne der sich ergebenden Formeln finden sich bei H.LIEBMANN, Nichteuklidische Geometrie,
Leipzig 1904.
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%, ¥, % sind dabei euklidische Koordinaten eines Modellpunktes (z > 0). Die hyper-
bolische Inhaltsmasszahl ist damit ganz allgemein als Funktion euklidischer Gréssen
dargestellt.

A
Pz 2
Z,
P h 2
]
[\
Figur 1

Die Lingenmasszahl im Poincaré-Modell

3. Auswertung von Integralen

Das schraffierte Flichenstiick der Figuren 2 und 3 rotiert um die Achse z. Wir
ordnen dem dabei entstehenden, sich ins Unendliche erstreckenden Rotationskorper
nach (2) eine Masszahl V zu:

—k"// dxdydz _ k3 /‘ dx dy
2

vy,

I. Die Ausgangskurve % ist ein euklidischer Kreis (Figur 2). Kreisgleichung:
(x —uR):+ (z—» R)?>= R? dabeigilt: 0 S p < o0, v> —1.

AR
Z| A bi
<l 4
AN
8 (a
Z
Bi X
Y
Figur 2

k ist ein euklidischer Kreis

Wir ftihren jetzt an Stelle von #, y als neue Integrationsverinderliche den Dreh-
winkel ¢ der Rotation und den Erhebungswinkel <t S M P = « ein. Dann gilt fiir die
Koordinaten eines Punktes auf der durch Rotation des Kreises  entstehenden Fliche:

%= Rcosp(u—cosa), 2z=R(¥+sina). y= Rsimp(y—cbsa) .
Die zur Transformation benétigte Funktionaldeterminante hat den Wert

R?sina (u — cosa) .
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Damit erhalten wir fiir unsere Masszahl:

23]
_ R /’/‘ sma(,u——cosa) dpda _ /( sina do _ s sina cosa do
v

(v + sina)? + sina)? ] T+ sino)?
0 o 0y

Bei der spiteren Verwendung dieses Integrals ist darauf zu achten, dass der Inte-
grand auch negativ werden kann.

Wir werten dieses Integral mit den iiblichen Methoden aus und unterscheiden
dabei vier Fille.

A. y>1 3)

Vo 2u _ v+ A2 (z+ vY)
— = [— ot 1) {AarctanA (z4+» 1)-i—m;:,)—ﬂ}

. oy

_ln|v+smoc|—v+sm]al,

B. v+0, |v|<1 )
14 _[ 2p {21 \B(z+»—l)—1 B2(z+v—1)——y}

nkd Ly (1 -7 Blz+v )+ 1| Bigtvrii—1
: 4 L3
—ln\v—+—smcx|—-v+si;0?m
“ v=0 )
v = (] z | —In|sinx ]2
v=1 (6)
Vv 2(14 32) 1 s
nk"‘—[— 3(1+ 7)3———1n|1+smoc‘ 1+sina]a'
Dabei gilt:
o v v
s =tan (3), A=yt By
Z‘ /]
<
7 k
R h

3
Q\\
>
N |

Figur 3
k ist eine euklidische Gerade

I1. Die Ausgangskurve £ ist eine Gerade (Figur 3). Geradengleichung:
z = (x + m) tand, § # m/2.
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Wir fiihren jetzt an Stelle von #, y als neue Integrationsverénderliche den Dreh-
winkel ¢ der Rotation und die Strecke O Q = A ein. Dann gilt fiir die Koordinaten
eines Punktes auf der durch Rotation der Geraden entstandenen Fliche:

x=2Acosp, y=Asing, z=(1+ m)tand.

Die zur Transformation benétigte Funktionaldeterminante hat den Wert A. Damit
erhalten wir fiir unsere Masszahl:

_ R Adepdi 3 2 A dA
// A+ m)? tan?d kncotgé A+ m)?

Integration liefert:

Vs = cotg2o [0 2+ m | + Hm]”’ (7)
Damit sind alle in den folgenden Abschnitten benétigten Integrale bereitgestellt.

Fiir die weiteren Untersuchungen ordnen wir, wie aus den Figuren 2 und 3 ersicht-
lich ist, jedem Punkt P; auf dem Kreis bzw. auf der Geraden & bestimmte Werte
o Bir 2; bzw. 4, By, z; zu.

Wir wollen jetzt fiir einige hyperbolische Rotationskorper die Inhaltsmasszahlen
bestimmen. Die Tatsache, dass die einzelnen Korper bei den folgenden Untersuchun-
gen im Modell spezielle Lagen haben, bedeutet dabei keine Einschrankung.

4. Hyperbolische Kegel

Fiir » = 0 liegen die Mittelpunkte der euklidischen Kreise 2 auf der Achse des
Modells, sie stellen also hyperbolische Geraden dar. Wir kénnen in Analogie zur eukli-
dischen Geometrie die durch Rotation von 2 um z entstehenden Flichen als Kegel-
flichen bezeichnen. Je nach der gegenseitigen Lage der hyperbolischen Geraden % und
z sprechen wir von einer Horo-, einer Hyper- oder einer eigentlichen Kegelfliche.

Figur 4
Der Horokegel

4.1 Der Horokegel. Fiir u = 1 sind k und z randparallel, und wir erhalten Figur 4.
Nach (1a) gilt fiir die Linge g der hyperbolischen Strecke P, T

-k 14 cosfy
¢e=7Mn 1 —cosB, °
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Daraus folgt:
tanh (o/k) = cosf,, cosh(p/k) = 1/sinf,, sinh(g/k) = cotgp, . (8)
Wegen 2 8, = 7 — «, ergibt sich also:

cosh (g/R) = 1/cos (ay/2) .

Der durch Rotation der einfach schraffierten Fliche entstehende Korper hat also nach
(5) den Inhalt:

V =z k3 (Intan(o/2) — Insinalg?

=g k3 [Insin (¢/2) — Incos(«/2) — In2 — Insin (x/2) — Incos («/2)]5
= —2 7 k3 Incos (xy/2) = 2 7 k3 Incosh (p/k) .
Damit kennen wir den Inhalt zweier kongruenter Horokegel, die durch Spiegelung an
der durch %, erzeugten Ebene ineinander iibergehen. Die Spitze des einen ist der
(euklidisch unendlich ferne) Punkt S, die des anderen der Punkt P, = 0. Hyperbolisch
gesehen liegen beide Spitzen im Unendlichen. g ist der Radius der Kegelgrundfliche.
Fiir einen einzigen solchen Kegel gilt also:

V = 7 k3 Incosh (g/k) . 9)

Rotiert in Figur 4 das doppelt schraffierte Flachenstiick um z, so entsteht ein Horo-
kegelstumpf. Fiir seine Inhaltsmasszahl gilt mit (9):

V =z k3 (Incosh (o/k) — Incosh (gy/k)) .
gund él sind dabei die Deckflachenradien P, T und P, T. Der Figur 4 entnehmen wir:

sinfly = (2,/r1) ,  sinfy = (z/75) .
Mit (8) ergibt sich

_ SNy et Z% _pa(1n f8 _ 1n T2
Veakin S0 —akin 20 =k (m : lnrl).

Nach (1b) erhalten wir:

V=nk(s—h). (10)

s ist dabei die Mantellinie, # die Héhe des Horokegelstumpfes.

Figur 5
Der eigentliche Kegel
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4.2 Der eigentliche Kegel. Fiir y << 1 (u # 0) schneiden sich % und z, und wir erhal-
ten Figur 5. Durch Rotation des schraffierten Fldchenstiicks ergibt sich ein Kérper,
dessen Inhalt mit (5) berechnet werden kann. Der Horokegel iiber T P, hat den Inhalt
(9). Subtraktion beider Masszahlen ergibt den Inhalt eines eigentlichen Kegels.

V=umnk? (,u In
Mit (8) und (1a) folgt

tan (oy/2) sin o,

tan (o, /2) sina,

— Incosh (E/k)) .
vz=nw(y%~—mgﬁ%gﬁgy
Dabei ist s die Kegelmantellinie P; P,. Der Figur 5 entnehmen wir:

cosy =cosoy =, Sinfy=2fr,, sino,=2/R, sina; =2z/R.
Damit ergibt sich:
szzka( — cosy — In _:L)

1

ENE

Mit (1b) erhalten wir

V =mnk?(scosy —h). (11)

% ist die Kegelhdhe P, T.

Ganz genauso lautet die Formel fiir den Stumpf eines eigentlichen Kegels. s ist
dann die Mantellinie und % die Hohe des Kegelstumpfs. Fiir ¥ - 0 wandert die Kegel-
spitze P; ins hyperbolisch Unendliche. Aus dem eigentlichen Kegelstumpf wird ein
Horokegelstumpf. Formel (11) geht in (10) iiber.

Figur 6
Der Hyperkegel

4.3 Der Hyperkegel. Fiir u > 1 sind % und z iiberparallel und wir erhalten Figur 6.
An die Stelle der Kegelspitze tritt jetzt eine Ebene, welche durch Rotation des gemein-
samen Lotes # der Geraden % und % um z entsteht ( ist dabei das Spiegelbild von &
an 2). Diese Ebene soll jeden Hyperkegel begrenzen.

Durch Rotation der schraffierten Fliche in Figur 6 entsteht ein Hohlkorper, dessen
Volummasszahl nach (5) berechnet werden kann. Zu dieser Masszahl addieren wir
zunichst den Inhalt des Horokegels iiber T P; (Grundflichenradius g) und subtra-
hieren schliesslich den Inhalt des Horokegels tiber T, P, (Grundflichenradius g,)
unter Verwendung von (9). So erhalten wir den Inhalt eines Hyperkegels:

_ tan (op/2)
Ve=nk (,u B tan (a,/2)

sin o, - -
—In 32% + Incosh g/#) — Incosh (gl/k)) )
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Mit (1a) und (8) wird
s sino, sin
V=nkd (Iu— — ln-—lg—ﬂ—‘).

k sina, sinf,
Dabei ist s die Kegelmantellinie P, P,.
Der Figur 6 entnehmen wir:

. 2y . 2y . z . z
sinay = 2, sinfy =%, singg =5, sinf, = 7:—,
n
1 . 1
cosoy = — = sinf; = ———-.
u cosh (g/k)

Damit ergibt sich:
V=nk3( cosh—%—lni).

"n

s
&
Mit (1b) wird

V = q k2 (s cosh (g/k) — %) . (12)

h ist die Kegelhdhe T T;.

Ganz genauso lautet die Formel fiir den Stumpf eines Hyperkegels. s ist dann die
Mantellinie und % die Hohe des Kegelstumpfs.

Fiir g > 0 rutschen die Geraden %, k immer enger zusammen. Aus dem Hyper-
kegelstumpf wird ein Horokegelstumpf. Formel (12) geht in (10) iiber.

5. Hyperbolische Segmente und Zonen

Fiir u = 0, » > 1 stellt % einen hyperbolischen Kreis dar, der bei Rotation um z in
sich iibergeht. Es entsteht also eine hyperbolische Kugel. Wir bestimmen jetzt die
Volummasszahl fiir das Kugelsegment, fiir die Vollkugel und schliesslich fiir die
Kugelzone.

Figur 7
Das Kugelsegment

5.1 Das Kugelsegment. Durch Rotation des schraffierten Flachenstiicks in Figur 7
ergibt sich ein Kérper, dessen Volummasszahl nach (3) bestimmt werden kann. Wir
wihlen zunichst /2 << a; < z. Der Horokegel iiber P, T, hat den Inhalt (9). Subtrak-
tion liefert das Volumen eines Kugelsegments:

v & ino) — 2o |
— = Incosh 5= — [— In(v + sina) v + sino ](nl2)
~ ncosh & ina) - e
= Incosh k' + In(v + sina;) — In(v + 1) + v+ sina; v+ 1°
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Aus Figur 7 entnehmen wir:
cosh (g;/k) = 1/sinB; = 4,/(v + sina;),
(Rcosa)?+ (» R+ Rsina,)? =4 R?  also  sina; = (A2 — 42— 1)/2v.
Fiir die hyperbolische Lange der Strecke 7; T gilt mit (1b):

ki (w1)2— a2
also sth = Z2i6FD

=k 211

1

Mit diesen drei Aussagen formen wir unser Ergebnis um und erhalten:

Vv —In (»+ 1) (v + sina;) g 1 — sinoy
ks A; (v + sinay) v+ 1) (v + sinay)
__k % Wr1-22 T
=% T Gismey)  ZAw¥1) & Tooshsinh .

Bezeichnen wir die Segmenth6he mit k und den Radius des Segmentgrundkreises mit
o, so gilt also:

V=nks (— —Zi— + cosh —i— - sinh %) (13)

Wie sich leicht zeigen lésst, bleibt diese Formel auch noch richtig fiir 3 /2 > «; > .
5.2 Die Kugel. Lauft « von 7/2 bis 3 7z/2, so vereinfacht sich die Rechnung ganz

wesentlich, und wir erhalten den Inhalt einer Kugel. g verschwindet, und aus h wird
der Kugeldurchmesser 2 R.

V =m k® (— (2 RJk) 4 sinh (2 R/k)) . (14)

5.3 Die Kugelzone. Werden aus der Kugel zwei Segmente mit den Héhen h_,-,
hy (kg > hy) und den Grundkreisradien g;, g, ausgeschnitten, so entsteht eine Kugel-
zone. Unter Verwendung der Ergebnisse iiber das Kugelsegment ergibt sich als In-
haltsmasszahl:

V_(}E_’_ v _v)_(_ftl_+ v _v)
ak®  \ & v+ sina, v+ 1 B T w4singg v+ 1

_ 7 sino, — sina,
o = =% T o isinay) o+ sineg)
h = hy — h, ist dabei die Zonenhéhe.
Es gilt:
F—klnh mh A _ 1 A-4
h=FkIn 7 also  sinh E= 7 A

Verwenden wir zur Umformung die aus Figur 7 bereits entnommenen Ausdriicke, so
erhalten wir zunéchst
sinoy, — sinay, = (A2 — 2A3)/2»
und weiter
(A2 —23) M Ay
2 (v + sinoy) (v + siney) 4, 4, °

W
R TR T
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Damit ergibt sich fiir den Inhalt der Kugelzone:

V=n ks(—— % + sinh % cosh % cosh —g—ki) ) (15)

> N
U
b))
> N
L

v=] I<y<l
Figur 8
Horosphiren- und Hypersphirensegmente

5.4 Segmente und Zonen bes Horo- und Hypersphire. Fir y = 0 und » = 1 bzw.
|v| <1, v # 0 ergibt sich bei Rotation von £ um z eine Horo- bzw. Hypersphire.
Figur 8 erldutert die Entstehung von Segmenten in diesen zwei Fillen. Die Herleitun-
gen in 5.1 und 5.3 lassen sich wortlich {ibernehmen. Fiir die Inhaltsmasszahlen der
Segmente und Zonen von Horo- und Hypersphire gelten also wieder die Formeln (13)
und (15). Ein Analogon zu Formel (14) existiert nicht. Die Masszahl des Horosphéren-
segments wichst ndmlich fiir , > 0 (Figur 8) unbeschrédnkt, ebenso die des Hyper-

sphédrensegments fiir », - 7, (Figur 8).

6. Hyperbolischer Torus

Fir 4 = 1, v > 1 stellt & einen hyperbolischen Kreis dar, der bei Drehung um 2
einen Torus (Figur 9) erzeugt. Durch Rotation der schraffierten Flache in Figur 9

Z)
4s
N
N
AR
14
Figur 9
Der Torus

(« 1duft von 0 bis ) entsteht ein Koérper, dessen Volumen V, nach (3) bestimmt werden
kann. Nimmt man zu der schraffierten Fliche noch die Kreisfliche dazu, so ergibt
sich bei Drehung ein zweiter Kérper. Mit (3) lasst sich auch sein Volumen V,; ermitteln
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(o« lduft jetzt von 2 & bis ). Subtraktion liefert das Torusvolumen V.

V. V.-V,  2a
—_—nks —“W‘_v_(vz—l) {A arctan — +A—+'V}

A4 Zn,u

Fiir den hyperbolischen Durchmesser 2 R des hyperbolischen Kreises & gﬂt nach (1b):

2R= kl”+i,

daraus folgt

cosh 2R _ 1 .
Weiter erhalten wir mit (1b):
R=kIn — k27
v—1
und daraus folgt A2 = »% — 1.

Fiir den hyperbolischen Abstand @ des hyperbolischen Kreismittelpunktes N von z
ergibt sich nach (8):

sinh (a/k) = cotgy = /A = /4/‘/1’2 —1.

Durch Einsetzen bekommen wir schliesslich als Inhaltsmasszahl eines Torus:

V = a2 k3 sinh % (cosh % — 1) (16)

R ist dabei der Kreisradius und a der Abstand des Kreismittelpunktes von der Dreh-
achse.

7. Kegelartige Rotationskorper

Die Gerade % in Figur 3 kann als ein Hyperzyklus gedeutet werden, der mit z einen
hyperbolisch unendlich fernen Punkt gemeinsam hat. Wir wenden uns zunéchst dem
Spezialfall zu, dass sich £ und z auch noch in einem endlichen Punkt P, (Figur 10)
schneiden.

Z
f K
WZ22.5)
J 7 7]
ik
) b
m 72
Figur 10

Kegelartiger Drehkorper

Durph Rotation der schraffierten Fliche in Figur 10 entsteht ¢in Kérper, dessen
Volumen nach (7) berechnet werden kann. Der Horokegel iiber P, T hat den Inhalt
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(9). Subtraktion beider liefert die Volummasszahl eines kegelartigen Korpers. Sie soll
jetzt genauer untersucht werden.

m A Q_
——] — Incosh 5

|4

nk
Daraus ergibt sich nach (8):

Vo 2 Ay +m . Ay 2
ah cotg?d In —a T Insin §, — PN cotg?d .
Mit den Bezeichnungen der Figur ergibt sich weiter:
V _ _ cote?s1n 22 gy (M d) Dy
7 — °otg oln - + In R~z (m +72—)~cotg6
B T T 2 e
=1 PR + In R4 cotgd .

Mit (1b) und (8) folgt weiter:
14 ¢ 1 7 t

Wk Tk sinis — p  cotgdcotgfy =

2@ b0 ,5
cosh i A sinh L sinh P

Fiir die Lange des Hyperzyklenbogens P; P, gilt bekanntlich s = t cosh (a/k), damit
erhalten wir fiir das Volumen unseres kegelartigen Rotationskorpers:

ok (S cosh ® — P _inh @ . i 2)
V=nk (k cosh 7 A sinh 7 smhk .

Daraus ergibt sich sofort eine Formel fiir den zu diesem Koérper gehdrenden Stumpf:

V=nk? (—;— cosh :- — Z — sinh z (sinh -%2~ — sinh %‘—)) .

Dabei sind § die Mantellinie, 4 die Hohe, o, und g, die Grundfliachenradien des Stumpfs.
Genau die gleiche Formel erhalten wir fiir den Fall, dass Hyperzyklus und Dreh-
achse nur einen einzigen, nimlich den unendlich fernen Punkt gemeinsam haben.
Fiir = /2 wird @ = 0 und es ergibt sich die Formel (10) fiir den Horokegelstumpf.
Haben Hyperzyklus und Drehachse zwei unendlich ferne Punkte gemeinsam, so
bedeutet das m = 0 und weiter a = g; = g, = p. Die Stumpfformel vereinfacht sich
zu:

V = k2 (s cosh (g/k) — h) .

8. Spezielle hyperbolische Rotationskdrper

Um auch noch fiir die Integrale (4) und (6) Anwendungsbeispiele zu haben, be-
rechnen wir das Volumen zweier ganz spezieller Rotationskérper.

8.1 Spezialkorper, erzeugt durch Rotation eines Horozyklus. Ein Horozyklus beriihrt
zwei randparallele hyperbolische Geraden in den Punkten P, P, (Figur 11). Durch
Rotation der einfach schraffierten Flache um eine dieser Geraden entsteht ein sich ins
Unendliche erstreckender Kérper. Zur Bestimmung seiner Inhaltsmasszahl verwen-
den wir (6). Dabei gilt u = » = 1. Der Winkel « lduft von 0 bis 77. Wir erhalten V =
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(2/3) 7 k8. Lasst man die durch P; P, bestimmte hyperbolische Gerade mitrotieren,
so liefert das doppelt schraffierte Flichenstiick einen weiteren Korper. Zur Bestim-
mung seiner Inhaltsmasszahl verwenden wir (5). Dabei gilt » =0, y = 1/1/5. Der
Winkel « 1duft von /4 bis 3 #/4. Zusammen mit dem vorigen Ergebnis erhalten wir:

V=ai(f2In)2+1) — (2/3)

Z%
g

\_ ¢

Figur 11
Spezialkérper mit Horozyklus

8.2 Spezialkorper, erzeugt durch Rotation eines Hyperzykius. Ein Hyperzyklus be-
rithrt zwei randparallele hyperbolische Geraden in den Punkten P, P, (Figur 12). Die
durch P, P, bestimmte hyperbolische Gerade soll den Hyperzyklus unter einem Win-
kel von 30° schneiden. Durch Rotation des einfach schraffierten Flichenstiicks um

z

302

Figur 12
Spezialkorper mit Hyperzyklus

eine der beiden Geraden entsteht ein sich ins Unendliche erstreckender Korper. Zur

Bestimmung seiner Inhaltsmasszahl verwenden wir (4). Dabei gilt u =1, v = 1/;/5.
Der Winkel « lduft von O bis 7z. Wir erhalten:

V=n#((32))6In(3+)2 -3).

Lisst man die hyperbolische Gerade durch P, P, mitrotieren, so liefert das doppelt
schraffierte Flichenstiick einen weiteren Korper. Zur Bestimmung seiner Inhalts-
masszahl verwenden wir (5). Dabei gilt » = 0, u = }/3/2. Der Winkel « lduft von 7/6
bis 5 #/6. Zusammen mit dem vorigen Ergebnis erhalten wir:

V=ak(/3In@2+)3) - @32 )6mn(3+)2) +3).
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9. Schlussbetrachtung

Ziel der Arbeit ist es, an Beispielen eine Methode vorzufiihren, die es gestattet, die
Inhaltsmasszahlen gewisser hyperbolischer Rotationskérper zu ermitteln. Die Aus-
wahl der Beispiele erfolgte nach zwei Gesichtspunkten. Einmal sollten alle in Teil 3
ausgewerteten Integrale bei der Bestimmung von Masszahlen tatsidchlich vorkommen.
Zum andern aber wollten wir vor allem solche Drehkérper behandeln, die in der eukli-
dischen Geometrie ein Gegenstiick haben. Es ist besonders interessant, in diesen Fil-
len den Ubergang von der hyperbolischen zur euklidischen Formel durchzufiihren.
Wir zeigen das am Beispiel des Torus. In Formel (16) werden die vorkommenden
hyperbolischen Funktionen in Reihen entwickelt:

a 1 (a\s 1 (2R\2
V=ati (Gt g () ) (e (50 )+ )
Wichst jetzt & unbegrenzt, so ergibt sich das Torusvolumen der euklidischen Geo-
metrie V =n2a -2 R2. H.ZEI1TLER, Weiden

On S¢ Functions
Introduction

In this paper we prove that the Dirac Delta and all its derivatives can be repre-
sented by sequences of constructed discontinuous functions. Although this result is
stated in [1] it is not formally proved.

We then prove that by using this definition of the #-th derivative of the Dirac
Delta its Laplace Transform is s”. This result again can be considered as * classical”’
(see for example [3]) but is not proved either.

We feel that although the results are known the approach is new and our proof is
rigorous which justifies the contents of this paper.

Definition of the n-th Derivative of a Function

Let V = [v;, vy, ..., v,] be an n-dimensional vector. We say that the vector tends
basewise to zero if the components v, tend to zero successively. We write symbolically

V—>0. (1)

Geometrically speaking this means that the end point of V describes a polygonal
line whose sides are parallel to the axes of the basis.

We shall use the notation IT ¥V = ﬂ v, for the product of the components of the
vector. m=1

Let f(£) € C"[b, c] be the class of functions that are defined and continuous as well
as their derivatives up to and including the order n ford < ¢ < c. Leta, k=1,2,..,,
n, be such that (¢ + «, ,) € [b, ¢], where a, , represents the sum of any 4 of the n
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numbers a,, and b + ¢ < < ¢ — ¢, ¢ being a given positive number. Clearly
Dft) = Jim, (1jay) [f (¢ + @) — )],

D?f(t) = lim, (Layag) [f (¢ + a1+ ag) — [ (E+ ar) — f (¢ + a9) + /)],

as—0
.................................................. )
"
Drf(t) = lim (/11 a) D) (—1)*+Eg,,
B k=0

where,

()
a“‘[“l»“z» :an]’ q)k_Ef(t+akm)r ak,m:asl+a:,+"’+da‘k’

m=1

sps;=12,..,n, s;*s, 4,7=12..,k.

Since g, is symmetric with respect to the a,’s, D"f(¢) is independent of the order
in which the different a,’s tend to zero, this is why no specific order is necessary when
a vector tends basewise to zero.

Ifina s 0 we make a change of variables in the a,’s, change defined by

b-—Ha, 3)

where H is a X n matrix, this change of variables corresponds to a rotation of the
reference system. When a s 0, the last leg of the polygonal line described by the end-

point of a is a straight line. With respect to the new reference system, when a tends to
zero basewise then b tends to zero, although #of basewise. Under these conditions,
considering (3) all the b,’s, components of b will tend to zero simultaneously.

We may thus assume without loss of generality that in (2) all the a,’s tend to zero
simultaneously. In addition we may assume that all the a,’s are equal to 4. This cor-
responds to a special choice of the matrix H in (3) that would make all the b,’s equal.

It follows that we can define the #n-th derivative of the function f(¢) by the ex-

pression
n

a3 (— 1)k (Z) ft+ka). )

k=0

3

Dof(t) =i

.

fo0<60=<1 and 08, =1, k=1,2,...,n, we can write according to the
mean-value theorem

fU+k+0)al=f@+ka)+abDf[t+ (k+ B0 al,

so that by substitution into (4) we obtain

”

Drf() = lim a=n 37 (=1)r+* [f [t + 6) a] — a 6 Df [t + (k + B, 6) a)] .

k=0

where the second term in the sum tends to zero with a.
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We can thus write for the n-th derivative of f(f)

D) = lim, (— 1 a=n 37 (— 1) () 1+ (+6) al. (5)

0
a— =

This is the form we are going to use in the next section.
Remark. (5) can easily be checked by writing

i+ (k+0)a] = f@) + Zn_; l(m!)‘1 am (k + )™ D™{(¢)
m=1

+(k+0raDft+ B (k+0)aln!, 0= =1,
thus substituting into (5)

Drf(t) = Jim, (— 1) a=n 3 (—1)* (3) o + 5 (mi)-tam (k + 6 Df(e)

k=0 m=0

+ ()t ar (k+ 60)" Df [t + By (k + 0) a]]

"

2 (= () G+ O

k=0

(=% (3) + X ony am Do

+ )t DY [+ B b+ 0) @) (=10 (7) e+ o
Since é\iv(_ 1)k (:) (B + 6)m = (—1)nn! 6™,

where & is the Kronecker Delta, it follows that all the terms on the right hand side,
except the last one, cancel out, so that

Drf(9) = Jim, (—1)" a=" (n!)~* a" DY [t + By (b + 0) a] ! (— 1),

which clearly is an identity.

3. The accordeon function

We shall use the following notation for the Heaviside-step function:
0 for ¢t<T,

u(t—T)={1 for i>T. HT7) =0, (TH=1,

so that for T < 6, and f(¢) € C°[T, 6],
| 0 for t<T,

f&y for T <t<@,
lO for 0 <t,

p(T) =0, @(TH=HT"), @O6)=/f0), @b)=0.

@) = 1t) [w (¢ — T) — u (¢ — 6)]
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Under these conditions, with a > 0, we define the following accordeon function:

Ac(t,n, a) = a—"—li'(-— 1)m (;) [w(t—ma)—u(t— (m+1)a),

n+1

e F e ma () + () g

n+1

Y —12 "'("+1)u(t—ma),

where use has been made of the classical properties of the binomial coefficients and

(21)-o.

If we let > 0 in (6) we obtain a generalized function in the sense of MIKUSINSK1
(cf. [2] and [3]). It is easier in this case not to use the notion of distribution in the sense
of ScHwARTz. We shall call this generalized function a squeezed accordeon and shall
write

lim Ac(t, n,a) = Sc(t, n) . (7)

For any function f(f) defined and continuous over a sufficiently large neigh-
bourhood of ¢ = 0 we have, using the classical notation for the inner product
+00
Sc(t, n), f(t)> = / 1(6) Sc (¢, n) dt
- 00
+o0

=/f( [ah_‘Po a-n-1 E‘l (t — ma) (" - 1)]dt

- 00

Since the integration is independent of 4 and of m we can change the order of the
operations and write, using (6)

" + 0o
Sc(t, n), f)> =Jima—r—t 3 (~1)m (%) / fO) [t —ma) —u(t— (m+1)a)]dt.
m=0 Yoo
The integral can be written
+ 00 (m+1)a

Jlowe-—ma—u@—m+naja— [ fodt—ation+06,)a

=aflm+6+p,)al=alf((m+0)a]+ap,Df((m+6+n,0,) all,
where 0 < 6,, < 1, 6 is a fixed number such that

0<6 <min(0,, 0y, ...,6,), 0,=0+p8,, thus0<p, <1, 0<py,<1.
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It follows that
) . ud n
Sc(t, n), {t)> = Jim a=n 37 (= 1) (") {f [0 + 6) a] + @ ,, Df [(m + 0 + 1, B,,) aT},
m=0
where the second term in the sum tends to zero with a so that
(Sc(t,n), {(t)> =lim a=" 3 (— 1) (Z) fl(m+6)a],
m=0

which according to (5) gives

<Sc(t, n), f#)> = (=1)" D(0) . )
(9) shows that Sc(¢, ») is identical to the #-th derivative of the Dirac Delta, i.e.
Sc(t, n) = 8™ (¢#), as it is usually considered (cf. [4]). In particular for n = 0,

<Sc(t, 0), 1(8)> = f(0) = <), 1(t)>, (10)
i.e. Sc(¢, 0) = d(f), the Dirac Delta.

4. Laplace Transforms

We clearly have

+ 00
CSc(t, n)] = / =5t Sc(t, n) dt (1)
0+

where the integration starts on the positive side of zero. Thus

+ o0
[ nLt n+1

C[Sc(t, n)] =/e-“ lim a—n—lzo' (—1ym ( M ) w(t—m a)} dt .
o+ "=
Since the integration is independent of 4 and m we may change the order of opera-

tions, i.e.
n+1 T

CiSelt, m)] = Jim a1 37 ("F1) (— 1) f st ({ — m a) dt

n+1
Jmana 3 (") 1w e = ma)

n+1

uli_l;no a—n—l,é; (n :}; 1) (__ l)m e—ma:/s

Il

= lim (1 —e )" s antt = 5"
It follows that
L(Sc(t,n)]=s",

or,
Sc(t, n) = 0v(t) = L1s".
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Thus the Sc(t, #) function, i.e. the z#-th derivative of the Dirac Delta is the inverse
Laplace Transform of 's”. This result is considered classical and can be found for
example in [4]. S.TAUBER, Portland State University USA
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Aufgaben

Aufgabe 577. K. RapziszEwskl (Ann. Univ. Marie Curie-Sklodowska 4 10, 57-59,
1956) hat bewiesen: Es sei P der Flicheninhalt des Rechtecks, das einem gegebenen Oval
umschrieben ist und das eine Seite in der Richtung 6 hat. Der Flicheninhalt des Ovals
sei S. Dann ist

2n
15<ﬁmL/PM
n 2

0

mit Gleichheit nur fiir den Kreis. Man beweise : Es sei S* der Flacheninhalt der Fusspunkt-
kurve des Ovals fiir einen beliebigen inneren Punkt. Dann ist

Pgis*
T

mit Gleichheit nur, wenn das Oval durch eine Rotation von 90° in sich iibergefiihrt werden
kann. S* hat ein einziges Minimum, wenn der Aufpunkt im Inneren variiert. Fiir glatte
Ovale wird das Minimum im Kriimmungsschwerpunkt angenommen.

H. GUGGENHEIMER, Polytechnic Institute of Brooklyn, USA

Losung des Aufgabenstellers: Das Oval habe die Stiitzfunktion #(6), gegeben als
Funktion des Tangentenwinkels. Dann ist

ﬁ=v%7:mh(m+%)w.
0

Wenn der Nullpunkt des Koordinatensystems ein innerer Punkt des Ovals ist, so ist die
Fusspunktkurve die Kurve deren Polargleichung 7(¢) = %(6) ist, § = ¢ + n/2. Daher ist

2n
9=%/www.
(1]

Die gefragte Ungleichung folgt sofort aus der Schwarzschen Ungleichung fiir das Integral P.
Gleichheit besteht, wenn %(0) = A (0 + =/2) fiir alle 6.
Eine Translation des Aufpunktes resultiert in einer Anderung der Stiitzfunktion

h(6) > h(0) + a cos® + bsinb .
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Daher wird S* - S* + linearer term in a, b + positiv definiter term in a2, b2. Das Ver-
schwinden des linearen Terms charakterisiert das einzige Extremum, das ein Minimum
sein muss. Die linearen Terme verschwinden, wenn die beiden ersten Fourierkoeffizienten
von k(0) verschwinden (siehe z. B. meinen Artikel in «Lectures on Calculus», Holden-Day,
San Francisco 1967). Dies charakterisiert den Kriimmungsschwerpunkt.

Aufgabe 578. Show that

m n

(€)r+s _ (C)m+n
22 () () @0, 0 =@y =0, P = O (0125

r=05=0
where
(@,=a(@+1)..(a+n—1).
L. Carritz, Duke University, USA

Solution by the proposer: By Vandermonde’s theorem

©res _ "5 (= 1k (—
@, s &= kL (e)x
Then since (a), = (— 1)" (— a — n + 1),, we get

(0)r+sM

2300 @0, 0, @0, e

(= m)r (= n)s (a)r (b)s (= ")k (— )
= G a0, gmﬁﬁ)ﬂb —a—n+1), ; k!k(c)k :

(= m)k (= n)x (@) (b)
= (b —a),(@—10), ; EU(e); (@ —»bim«}-kl)k(,;—lf—n+l)k

—_
S

‘271( - bt ) Zs! -

(@—b—m+k+1), (b—a—-—n+k+ 1),

(= m)k (= ) (@) ()
=(®—a),@-0b), zk\j k1 (0), (@ — b—km—i- 1)kk (bk— ak——n+ 1),

(—b—m—i—l)m_k (—a—"-{-l),,_L_

"a—b—mtkt 1), , G—a—n+tk+1),

v (= m)x (= n)x (@)k (O)x
nad k(o) @a—b—m+1),00-a—n+1),

=)Ao+ R) g (@ )

— O @, I RS = Onle 555

=(@—-a,@-"?

Aufgabe 579. Trouver tous les nombres naturels ¥ pour lesquels chacun des six
nombres %, ¥ + 2, ¥ + 6, ¥ + 8, x + 12, ¥ 4+ 14 est premier. W. SierprINsKI, Varsovie

Solution: The five numbers x, x + 2, ¥ + 6, ¥ + 8, ¥ + 14 form a complete system of
residues, modulo 5, and » + 12 = x + 2 (mod 5).

If x is 2 or 3, one of the numbers is divisible by 5. If x is a prime greater than 5, one
of the numbers must lie in the residue class 0 (mod 5), and is therefore not a prime. Only
when ¥ = 5 are the six numbers all primes.

L. M. R. LoupEeN; Wake Forest University, USA



92 Aufgaben

Weitere Losungen sandten A. BAGER (Hjérring, Ddnemark), P. BunpscHUH (Freiburg/
Br.), H. HArBORTH (Braunschweig), P. HoHLER (Dietikon), F. LEUENBERGER (Feld-
meilen), H. MEYER (Birker¢d, Danemark), O. REUTTER (Ochsenhausen) sowie die folgenden
Studenten der Wake Forest University, USA: D. AsaHcRAFT, C. CUNNINGHAM, S. GOSSETT,
G.-Y. Kwek, L. van Oor, B. PEELER R. PETTYsoHN W.M. WarTts, D. WiLsoN, L. ZiNnzow.

Aufgabe 580. Sei
. 0 fir 7 <k,
1,k=0,1,2,... und a;,= {(i—— k)!(ﬁ)’ fir i >k,
Man zeige
i
Z @;p @y (— 1)n—k = Qli=Hl
n=0
1. PaascHE, Miinchen

1. Losung: Firi =2 n = k ist

(i1)2 (nl)2 il\2 1
Finnk = 2 (i — )1 EDE(m— R)T (H) G—ml(n— k)"

Daraus ergibt sich nach Erweiterung mit (¢ — &)! die Darstellung
ANV .. .
A Oy = Bl (k) (n—k) fiir 1

a;,a,,=0 fiir ¢1<n oder n<k. (2)

v

n=k, (1)

wihrend

i
In der Summes;, = 3 a;, a,,(— 1)*~* verschwinden im Fall ¢ < % nach (2) alle Summan-
n=0

den, sodass s;; = 0 ist fiir + < &.
Wenn andererseits ¢ = % ist, gilt nach (1) und (2)

il (i) (i —k e il S ik il (i -
se=n () 2 62w o = () 20 com- () oo
0 fir i>k
Tl fiir =k O. REUTTER, Ochsenhausen
2. Losung: Es handelt sich um den Spezialfall » = — 1 der fiir alle rationalen » 2 0

giiltigen Matrizenidentitdt (a;,)" = (a,;; #''~*), die dhnlich wie in El. Math. 79, S. 40-41
(1964) leicht fiir alle ganzrationalen » durch vollstdndige Induktion nach » bewiesen wird:
Die Behauptung (a;,*"~*) (a;,) = (a;; (» + 1)'~*) enthdlt fiir ¢ = » = & links in
einem Element (Zeilen-Spaltenprodukt) den Summanden a;, 7'~ "a,,, der bei Entwick-
lung des entsprechenden Elementes der rechten Seite dem Summanden a;, ,f:ﬁ) yi-n
gleich ist, wie die leicht verifizierbare Identitdt

(i —n)! (;)2 (n — k)! (:)2 = (=R (2)2 (Z:Z)

zeigt. Weiterhin kann der einfache Beweis a.a.O. fiir a;, = (2) wortlich auf die neuen a;

iibertragen werden. 1. PaascHE, Miinchen

Weitere Losungen sandten P. BunpscHUH (Freiburg/Br.), J. FEn£r (Pécs/Ungarn),
H. HARBORTH (Braunschweig), E. WIDMER (Biel). *
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Neue Aufgaben
Aufgabe 602. Es sei p eine Primzahl, R={0,1,2,..,p — 1}, ne R\{0}, ae R,
¥;eR(i=1,2,..,n).
Ma,n = {(#;, %5, ..., 4,)}

sei die Menge der n-Tupel, die den Bedingungen

X+ a4+ . +x,=amodp), O0=x s <..Zx, Sp—n
geniigen. Man zeige | Ma,n| — 1 (15)
@nt = p \n)” E. Trost, Ziirich

Aufgabe 603. Man zeige, dass die Anzahl der echten Teilerketten
Lldy|dy|...|d,_1|d,=a

k
der Lange » der natiirlichen Zahl a = [T pt'.‘*' (p1s Pgs ..., P, verschiedene Primzahlen)
gleich i=1
C | -y +r—7—1
oG I (™ )
,é: | 1 :/Z "
ist. H. Scueip, Mainz

Aufgabe 604. Es sei 0 < p < 1. Man zeige

n

n 1 1
lim Y (= 1)k+1 ( ) 1
ey kRl k+p—kp P H. BRANDLI, Ziirich
Aufgabe 605. Man beweise
1 1 111
1 1 1 1 211 111
1 4 1 1 2 1 = 311 213 111
11111 1 1 3 3 1 411 3l6 2!7 111
Kummer Pascal Fakultdt - Stirling 11
Vgl. Aufgabe 41 (El. Math. 3, 83 (1948)). 1. PaascHE, Miinchen

Literaturiiberschau

Plane Geometry and its Groups. Von HEINRICH W. GUGGENHEIMER. 288 Seiten mit
168 Figuren. $ 9.35. Holden-Day, Inc., San Francisco, Cambridge, London, Amsterdam
1967.

Dieses Buch ist ein bedeutsamer Beitrag zur Elementarmathematik vom hdéhern
Standpunkt aus. Zwischen dem von HILBERT und BACHMANN vorgezeichneten axiomati-
schen Aufbau der ebenen Geometrie und den Moglichkeiten der Schule liegt ein bisher nur
schwach bebautes Feld, durch das der Weg zu einer modernen Schulgeometrie hindurch-
fiihrt. Zwar gibt es einen scheinbaren Ausweg, der um dieses Feld herum geht: man kann
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die Schulgeometrie nach dem Vorschlag bestimmter Reformer der linearen Algebra unter-
stellen. Soll jedoch mit dem Geometrieunterricht wie bis anhin eine Schulung der Raum-
vorstellung verbunden bleiben, so kann diese Art der Modernisierung kaum ernsthaft in
Erwigung gezogen werden.

GUGGENHEIMER vollzieht in seinem Buch den Anschluss der Schulgeometrie an die
Ideenkreise von HILBERT und BAcHMANN. Es steht auf dem Niveau einer Hochschulvor-
lesung iiber Elementarmathematik, konzipiert fiir angehende Mathematiklehrer und ist
getragen von der Absicht, fiir die spatere Schultidtigkeit moglichst viel Brauchbares darzu-
bieten. Dieses Ziel hat der Autor meines Erachtens in idealer Weise erreicht. Hier liegt jene
Vorlesung in Buchform vor, die jeder Lehrer gehort haben sollte.

Das Buch behandelt die klassische Planimetrie von einer hdhern Warte aus und unter
den Aspekten des Abbildungs- und des Gruppenbegriffes. Der Autor beschreibt einen voll-
stindigen axiomatischen Aufbau der Kongruenz-, der Ahnlichkeits- und der Mé&bius-
geometrie sowie der hyperbolischen Geometrie. Es ist lingst bekannt, dass im Hilbertschen
Axiomensystem fiir die Euklidische Geometrie die Kongruenzaxiome durch geeignete
Spiegelungsaxiome ersetzt werden konnen. Auf diese Weise lassen sich die Begriffe und
Methoden der Spiegelungsgeometrie integrieren, womit fiir die Abbildungsgeometrie im
Schulunterricht eine saubere, logische Basis geschaffen ist. Das deduktive System ist aber
im Guggenheimerschen Buch nicht Endzweck; zur Freude des Schulmathematikers steht
die geometrische Substanz ganz eindeutig im Vordergrund. Der Leser begegnet dem ganzen
klassischen Bestand an geometrischen Sdtzen, wobei allerdings durch die Akzentuierung
der Transformationsgruppen vollig neue Zusammenhinge zutage treten. Die Gruppen-
struktur wird auch in den Beweisfithrungen kraftig eingesetzt. An zahlreichen Beispielen
lernt der Leser die Methode des Beweisens durch Rechnen mit Abbildungen kennen.

Es ist zu begriissen, dass der Autor in Abweichung von den Gepflogenheiten der
Spiegelungsgeometer die Objekte (Punkte, Geraden, Kreise) und die Spiegelungen an
diesen Objekten durch verschiedene Bezeichnungen auseinanderhilt. Die Unterscheidung
dringt sich wohl auf im Hinblick auf die iibrigen vorkommenden Abbildungen (Drehungen,
Streckungen u.a.), die nicht unmittelbar von einem Grundobjekt abgeleitet sind. Sie ist
aber auch vom Standpunkt der Schule aus vorzuziehen. Nicht befreunden kann sich der
Rezensent mit den hiufig benutzten Abkiirzungen in den Symbolen fiir transformierte
Abbildungen; das Weglassen von Klammern ist gelegentlich so weit getrieben, dass die
Formeln zu Rétseln werden.

Dem Text sind rund 500 Aufgaben beigefiigt, die zum Teil Ergidnzungen bringen, zum
Teil aber auch zu weiterfiihrenden Untersuchungen anregen sollen. Zum schénen und
originellen Buch von GUGGENHEIMER miissen leider in bezug auf den Aufgabenteil einige
Vorbehalte angebracht werden; die Aufgabenstellungen enthalten auffallend viele Fehler,
die dem Autor bei einer priziseren Darstellung der Losungsansitze sicher nicht entgangen
wiren. So sind zum Beispiel die Aufgabenstellungen 4a, 5, 12, 13 und 16 auf den Seiten
212/213 und ebenso die Aufgabenstellung 8 auf Seite 218 (vgl. El. Math. XXII/Heft 5,
Aufgabe 533) auf Tatbestinde gerichtet, die offensichtlich falsch sind. M. JEGER

Vorstufe zur hoheren Mathematik. Von S. G. KReIN und V. N. UscHakowa. Lehrbuch
fiir Studierende aller Fachrichtungen im 1. und 2. Semester. 153 Seiten mit 178 Ab-
bildungen. DM 6,80. Vieweg & Sohn, Braunschweig 1968.

Diese Schrift behandelt in einfithrender, anschaulicher Darstellung die Analysis der
elementaren Funktionen mit den folgenden Abschnitten: Elementare Funktionen — Grenz-
werte — Linearisierung der elementaren Funktionen — Anwendung der Ableitung fiir die
Untersuchung von Funktionen — Implizit gegebene Funktionen einer Variablen. — Es ist
schade, dass die an sich sehr klar geschriebene Darstellung — eine Ubersetzung aus dem
Russischen — nicht etwas besser der «westlichen Terminologie» angepasst worden ist, so
vor allem, was den Begriff der Variablen, der Grosse, der Funktion anbelangt und sodann,
was die Verwendung des Begriffes der «infinitesimal kleinen Funktionen» betrifft.

: . R. INEICHEN
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Enzyklopddie dev geisteswissenschaftlichen Arbeitsmethoden, 3. Lieferung: Methoden dey
Logik und Mathematik — Statistische Methoden, dargestellt von Hans HErMES und EricH
MITTENECKER. 141 Seiten. DM 22,—. R. Oldenbourg Verlag, Miinchen 1968.

Der erste Hauptteil, Methoden der Mathematik und der Logik (HERMES), bringt eine
knappe, aber gut lesbare Ubersicht iiber den Gegenstand der Mathematik und die logischen
Aspekte, die sich bei der Betrachtung der Mathematik ergeben. Der mehr orientierend
gehaltene Text wird durch zahlreiche Beispiele bereichert und gewéhrt eine schéne Uber-
sicht iiber das Gesamtgebiet. Der zweite Hauptteil, Statistische Methoden in der Psycho-
logie und den angrenzenden Wissenschaften (MITTENECKER), bringt eine Einfiihrung in die
beschreibende und in die induktive Statistik mit Formeln, Beispielen und einfach ge-
haltenem erlduterndem Text. Von Herleitungen ist aus naheliegenden Griinden im allge-
meinen abgesehen worden, so dass eine allgemein verstidndliche Darstellung entstanden ist.

R. INEICHEN

Digitalvechney in technischen Prozessen. Von HELMUT HoTEs. 313 Seiten. DM 48,—.
Walter de Gruyter & Co., Berlin 1967.

In der ersten Hilfte des Buches ist die Programmierung eines Digitalrechners unter
Verwendung einer maschinenorientierten Symbolsprache behandelt. Die zweite Hilfte ist
den Organisationsprogrammen fiir Prozessrechner gewidmet. Dieser Teil allein rechtfertigt
den Titel des Buches.

In Steuer- und Uberwachungsprogrammen spielt im Unterschied zu Rechenprogram-
men nicht nur die Reihenfolge der Operationen eine Rolle. Meistens ist auch die zeitliche
Staffelung wesentlich. Dies bedingt die Beriicksichtigung eines oder mehrerer Uhrwerke.
Bei der Priifung von Fehlernieldungen wahrend des Betriebes ist der Unterschied zwischen
einer Storung im Prozess und einer solchen einer einzelnen Messeinrichtung mit moglichst
grosser Wahrscheinlichkeit festzustellen. Das betreffende Stérprogramm muss sehr sorg-
faltig aufgebaut sein.

Wenn ein Prozessrechner eingesetzt ist, besteht die Moglichkeit, technische Regler
durch Programme des Rechners zu ersetzen. Damit lassen sich wesentlich kompliziertere
Regelungen durchfithren als mit den konventionellen Reglern. E. R. BRANDLI

Grundziige dey theovetischen Logik. Von DaviD HILBERT und W. ACKERMANN. 5. Auflage.
VIII und 188 Seiten. DM 38.—. Springer-Verlag, Berlin, Heidelberg, New York 1967.

Nach der Meinung KaNTs war mit der Aristotelischen Schlusslehre die Logik abge-
schlossen und vollendet. Die neuere Entwicklung der mathematischen Logik, deren An-
finge in der ersten Hilfte des 19. Jahrhunderts zu suchen sind, hat diese Vermutung
widerlegt. In Wirklichkeit erweist sich die deduktive Logik schon bei ziemlich einfachen
logischen Zusammenhingen als unzulédnglich.

Im vorliegenden Buch werden zusétzlich bedeutsame Ergebnisse, die bis heute auf dem
Gebiete der mathematischen Logik erzielt worden sind, besprochen. So, wie die Mathe-
matik ihre grossen Fortschritte einem leistungsfihigen Formalismus verdankt, ist die
Entwicklung der theoretischen Logik auf den Logikkalkiil zuriickzufiihren. Wie konnen
Sitze charakterisiert werden, die aus gegebenen Voraussetzungen iiberhaupt gefolgert
werden kénnen ? Wie ldsst sich feststellen, ob ein Satz aus rein logischen Griinden richtig
ist ? Solche Fragen kénnen mit dem Logikkalkiil behandelt werden.

D. HiLBERT, der urspriingliche Verfasser dieses Buches, hat seit den zwanziger Jahren
versucht, iiber den Logikkalkiil einen neuen Aufbau der Mathematik zu finden.

Die 5. Auflage, die inhaltlich eine unveranderte Ausgabe der 1959 erschienenen 4. Auf-
lage darstellt, ist in vier Kapitel aufgeteilt:

Das erste Kapitel ist mit « Der Aussagenkalkiil» iiberschrieben. Hier wird auf eine feine
logische Struktur der einzelnen Aussagen verzichtet. Eine Aussage wird als Ganzes be-
trachtet und ist als Ganzes richtig oder falsch. Der Aussagenkalkiil erlaubt die Unter-
suchung der logischen Verkniipfung von einzelnen Aussagen.

Der «Klassenkalkiil» des zweiten Kapitels geht nun auf die logische Struktur einer Aus-
sage ein, die in der Beziehung zwischen Subjekt und Préddikat wiedergegeben wird. Jeder
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Eigenschaft von Dingen entspricht die Klasse der Gegenstinde, die diese Eigenschaft
besitzen.

Das dritte Kapitel fithrt mit dem «engeren Pradikatenkalkiil» iiber die traditionelle
aristotelische Schlusslehre hinaus. Es bringt Beziehungen zwischen mehreren Gegen-
stinden, die mit der deduktiven Logik nicht erfasst werden kénnen, zum symbolischen
Ausdruck.

Im vierten Kapitel wird schliesslich gezeigt, warum der Formalismus, der in den ersten
drei Kapiteln mit dem Aussagenkalkiil, dem Klassenkalkiil und dem Pridikatenkalkiil
gebildet wurde, noch nicht abgeschlossen ist und einen erweiterten Pridikatenkalkiil not-
wendig macht. Dazu werden sogenannte Quantoren fiir Pradikatenvariable eingefiihrt.

Die vierte Auflage des Buches weist gegeniiber fritheren Ausgaben wesentliche Neuerun-
gen auf, die mit der Entwicklung der mathematischen Logik Schritt halten. So musste z. B.
die Hilbertsche Symbolik einer moderneren weichen. Zudem wurden nebst vielen Ver-
besserungen im ersten Kapitel zwei neue Paragraphen hinzugefiigt, die besonders philo-
sophisch interessierte Leser ansprechen diirften.

In der Einleitung wird erwdhnt, dass die Anwendung der formalisierten Logik nicht
auf die Mathematik beschriankt sei. Sie lasse sich iiberall dort anwenden, wo Disziplinen
oder Teildisziplinen vorliegen, die einer axiomatischen Begriindung fahig sind. Leider wird
aber darauf nicht ndher eingegangen.

Besonders wertvoll sind schliesslich die vielen Ubungen und Beispiele, die auch dem
fachlich nicht spezialisierten Leser das Verstindnis der dargebotenen Theorie stark er-
leichtern. P. Fuchas

Théovie des graphes et ses applications. Par CLAUDE BERGE. Collection universitaire de
mathématiques, deuxiéme édition, nouveau tirage. 269 pages. Dunod, Paris 1967.

Créée par le mathématicien hongrois D. K6N1G qui lui consacra, en 1936, un important
ouvrage: Theorie der endlichen und unendlichen Graphen, la théorie des graphes a pris de
nos jours une large extension dans diverses disciplines (topologie, physique, psychologie,
économie, etc.) et M. CLAUDE BERGE est un de ceux qui ont le mieux contribué a son
développement. I1 donne dans son excellent livre un apergu des résultats obtenus, dispersés
dans de nombreuses revues scientifiques et présente les résultats de ses propres recherches.
Illustré d’exemples concrets, ce livre qui ne nécessite pour sa lecture que la connaissance
des mathématiques générales, intéressera de nombreux lecteurs: mathématiciens,
physiciens, spécialistes de la théorie des jeux, de la recherche opérationnelle, des sciences
du comportement. L’ouvrage compte 21 chapitres, dont un consacré aux jeux sur un
graphe et un autre consacré aux réseaux de transport sont d’un intérét trés général.
On trouve a la fin de I’ouvrage une copieuse bibliographie, la liste des symbole et le lexique
des termes employés. S. PicCARD

Statistique. Par C. FOURGEAUD et A. Fucas. Collection universitaire de mathématiques
dirigée par M. HENRI HiERCHE. 325 et XIV pages. Dunod, Paris 1967.

Préfacé par M. R. ForTET, professeur a la Faculté des Sciences de Paris, qui s’exprime
dans des termes trés élogieux a I'égard des deux auteurs qui ont le goit du «travail bien
fait», 'ouvrage de MM. FOURGEAUD et FucHs se compose de 4 parties, dont la premiére est
consacrée aux éléments du calcul des probabilités, la seconde aux distributions d’échantil-
lonnage, la troisi¢me a la théorie de la décision et I’estimation et la derniére a la théorie des
tests. La théorie d’estimation des paramétres et celle des tests sont présentées ici dans le
cadre d’une théorie moderne plus générale, notamment celle de la décision. Une place
importante est réservée a la théorie des échantillons issus d’une population normale a un
nombre > 2 de dimensions. L’auteur utilise I'intégrale de SIEGEL pour traiter cette question.
Les divers modes de convergence stochastique sont traitées avec soin dans cet ouvrage qui
s’adresse aussi bien aux mathématiciens et aux ingénieurs qu’aux étudiants du second et du
troisiéme cycle. On trouve, a la fin de ce livre, les tables indispensables, une bibliographie
sommaire et un index des termes utilisés. S. Piccarp
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Konjugierte Durchmesser und extremale
Vierecke konvexer Bereiche

§ 1. Definitionen und Einfiihrung

Ein konvexer Bereich B sei eine beschrinkte, abgeschlossene und konvexe Menge
in der Ebene. Eine Sehne von B, d.h. ein Schnitt einer Geraden mit B, heisst Durch-
messer, wenn es keine parallele Sehne von B grosserer Linge gibt. Eine Gerade g
heisst Stiitzgerade von B, wenn sie B trifft und wenn B in einer der beiden durch g
bestimmten abgeschlossenen Halbebenen liegt. Zwei nicht parallele Durchmesser
heissen konjugiert, wenn es in den Endpunkten des einen Stiitzgeraden gibt, die
parallel zum anderen sind und umgekehrt. Hierbei handelt es sich offenbar um eine
Verallgemeinerung der konjugierten Durchmesser einer Ellipse. Doch gilt nun i.allg.
nicht, dass einem Durchmesser genau ein konjugierter Durchmesser zugeordnet ist.
Ein Viereck heisst dem Bereich B einbeschrieben oder Inviereck, wenn seine Ecken
auf dem Rande 0B von B liegen, es heisst umbeschrieben oder Umviereck, wenn seine
Seiten Stiitzgeraden sind. Dabei verstehen wir unter einem Viereck stets ein konvexes
Viereck, lassen aber zu, dass es zu einem Dreieck entartet. Diese Begriffe und alle
folgenden Uberlegungen gehéren zur affinen Geometrie. Wir benutzen lediglich ein
Inhaltsmass als Hilfsmittel.

Die Existenz eines Paares konjugierter Durchmesser ist verschiedentlich als
Beweismittel benutzt worden. Laugwrtz [5] zeigt, dass ein konvexer Bereich mit
Mittelpunkt mindestens zwei verschiedene Paare konjugierter Durchmesser besitzt.
Dieser Beweis benutzt die von Rapon [9] angegebene Parameterdarstellung des
Randes. Nach Funk [3] findet man konjugierte Durchmesser, wenn man ein kleinstes
(d.h. flichenkleinstes) Umparallelogramm, nach BLASCHKE [1], wenn man ein
grosstes Inviereck aufsucht.

Wir zeigen, dass man so fiir jeden konvexen Bereich B zwei verschiedene Paare
konjugierter Durchmesser findet. Hieran schliessen sich einige weitere Uberlegungen
an.

§ 2. Existenz zweier Paare konjugierter Durchmesser

1. Durch einige einfache Kompaktheitsschliisse beweist man, dass es ein grosstes
Inviereck und ein kleinstes Umparallelogramm des konvexen Bereiches B gibt.
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Behauptung 1: Die Diagonalen eines grissten Invierecks sind konjugierte Durch-
messer.

P,P,P,P, sei ein grosstes Inviereck. Die Diagonalen P, P, und P,P, sind Durch-
messer. Denn wire etwa P, P, nicht Durchmesser, gibe es also eine parallele Sehne
P/ P grosserer Lange, dann hitte das Inviereck P/P,P/P, grosseren Inhalt. Die
Durchmesser P,P; und P,P, sind konjugiert. Denn gibe es etwa in P, keine Stiitz-
gerade parallel zu F,P;, dann gibe es einen Randpunkt P/, so dass PP,P,P,
grosseren Inhalt hdtte. Damit ist Behauptung 1 bewiesen.

Figur 1

Behauptung 2: Auf jeder Seite p, (1 =1, ..., 4) eines kleinsten Umparallelogramms
gibt es einen Punkt P, von 0B, so dass die Strecken PP, und P,P, konjugierte Durch-
messer sind.

Fir P,ep, sind PP, und FB,P, stets Durchmesser. Ist nun bei jeder Wahl der
Randpunkte P, auf p, und P, auf p; der Durchmesser P, P, niemals parallel zu p,
(und p,), so gibt es Punkte P, und 13; auf p, bzw. p,, aber nicht auf 0B derart, dass
die Strecke P, P, parallel zu p, ist und die Punkte P, und P, trennt. Dann kann man
$1 und pg um P, und P, drehen, so dass diese Seiten parallel bleiben, aber keinen
Punkt von B mehr enthalten. Dabei bleibt der Flicheninhalt ungeindert, doch
berithren nun zwei Seiten des Parallelogramms B nicht mehr, so dass es also ein
kleineres Umparallelogramm gibt. Das ist ausgeschlossen, und Behauptung 2 ist
bewiesen.
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Behauptung 3: Die beiden so erhaltenen Paare konjugierter Durchmesser sind ver-
schieden oder es gibt unendlich viele Paare.

Jedem Durchmesser 4 von B ordnen wir ein grosstes Inviereck V(d) zu, das d als
Diagonale hat. Dann gibt es Stiitzgeraden durch die 4 Ecken von V(d), die ein
Umparallelogramm W (d) bestimmen, welches dann notwendig den doppelten Inhalt
wie V(d) hat. Ist nun V(d,) ein absolut grosstes Inviereck, so gibt es entweder

a) Vierecke V(d) mit kleinerem Inhalt oder
b) alle Vierecke V' (d) haben gleichen Inhalt.

Im Fall a) ist W(d,) kein kleinstes Umparallelogramm, so dass die in Behauptung 1
und 2 erhaltenen Paare konjugierter Durchmesser verschieden sind. Im Fall b) ist
W (d,) ein kleinstes Umparallelogramm, und es gibt unendlich viele Paare konjugierter
Durchmesser.

Im Fall a) gilt sogar, dass kein Durchmesser des einen Paares parallel zu einem
Durchmesser des anderen Paares ist. Denn sind zwei Durchmesser parallel, so sind sie
gleich lang und zugehérige Umparallelogramme haben gleichen Inhalt. Es gilt also:

Satz 1: Jeder konvexe Bereich B besitzt mindestens 2 Paare konjugierter Durch-
messer, die alle verschiedene Richtung haben.

2. Wir hitten auch die eben benutzte Schar V(d) von Invierecken benutzen kénnen,
um 2 Paare konjugierter Durchmesser zu erhalten. Ein grosstes und ein kleinstes
Viereck dieser Schar liefert jeweils ein Paar konjugierter Durchmesser.

Dies lisst sich besonders einfach zeigen, wenn man voraussetzt, dass 0B iiberall
eine Tangente besitzt und keine Strecken enthilt. Die 4 Ecken von V(d) sind dann
eindeutig bestimmt und lassen sich als differenzierbare Funktionen ,(¢),7 =1, ..., 4,
darstellen, wobei d die Verbindung der Ecken &, und «, sei. Der Inhalt F(¢) ldsst sich
durch die Determinante

2 F =[% — %3, % — %,

berechnen. Fiir die Extremwerte von F(¢) gilt
2F = [#% — %, % — &) + [% — &, % — %] =0.

Nach Konstruktion von V(d) verschwindet die erste Determinante. Da die Para-
meterdarstellung so gewihlt werden kann, dass &, + 0 ist, und da #, und ¥; entgegen-
gesetzt gerichtet sind, ist &, — &; + 0, und folglich sind &, und &, parallel zu &, — %,.
D.h.: die Diagonalen sind konjugierte Durchmesser. Da eine stetige auf einer kom-
pakten Menge definierte Funktion Maximum und Minimum annimmt, erhélt man so
2 Paare konjugierter Durchmesser.

Die oben unterschiedenen Fille a) und b) sind hier durch F =0 und F=0
gekennzeichnet.

§ 3. Beispiele

Die Bereiche, fiir die in § 2 der Fall b) eintritt, besitzen zu jedem Durchmesser
einen konjugierten. Sie sind auch dadurch gekennzeichnet, dass ein kleinstes Um-
parallelogramm doppelt so grossen Inhalt hat wie ein grosstes Inviereck. Die Rand-
kurven solcher Bereiche nennen wir nach BLascHKE [1] P-Kurven. Die P-Kurven
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mit Mittelpunkt (Symmetriezentrum) werden dort R-Kurven genannt. Sie sind als
Radonsche Kurven in der Literatur bekannt (nach Rapon [9]).

Die einfachsten Beispiele fiir P- und R-Kurven liefern affin-regulire m-Ecke,
und zwar sind die (2 # + 1)-Ecke P-Kurven ohne Mittelpunkt und die (4 #» + 2)-Ecke
R-Kurven (rn =1, 2, ...). Dies erkennt man leicht durch einige Winkelberechnungen
an den euklidisch-reguldren m-Ecken.

Weitere Beispiele fiir P-Kurven sind die Gleichdicke (Orbiformen). Das folgt aus
der bekannten Tatsache, dass deren Normalen Doppelnormalen sind.

Betrachten wir die Bereiche, die in cartesischen Koordinaten durch

x|t + |yt <1, p=>1,reell, (1)

gegeben sind. Fiir p = 1 erhalten wir die Parallelogramme, die nur zwei wesentlich
verschiedene Paare konjugierter Durchmesser besitzen. Fiir p > 1, p * 2 existieren
genau zwei Paare. Der Fall p = 2, d.h. der Fall der Ellipsen, ist unter den folgenden
Bereichen enthalten:

1
P
|9+ |y|7<1 fir xy<0|p>1

|x|p+ |ylp <1 fir xy >0 +%:1

(@)

Die Rinder dieser Bereiche sind R-Kurven, einschliesslich des Grenzfalles p = 1,
g = oo, der das affin-regulire Sechseck angibt. Dass durch (2) R-Kurven gegeben
sind, folgt aus der von RADON [9] angegebenen Erzeugung der R-Kurven mittels einer
Polaritit aus einem «Viertelbogen» (siehe auch BLascHKE [1] und LNz [7]) und aus
der Polaritit der in (2) angegebenen Viertelbogen (sieche SaLmon [11], Artikel 91).
Dann sieht man auch leicht, dass die Bereiche (1) nur zwei Paare konjugierter Durch-
messer besitzen.

M4+yt=1firxy >0
|27+ [y [*°

=1firxy < 0
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§ 4. Erginzungen und Anwendungen

1. Stiitzparallelogramme. Ist P ein innerer Punkt des konvexen Bereiches B, so
kénnen wir die folgende Schar ¢ von Dreiecken betrachten: Zu allen Randpunkten P,
werden die Dreiecke mit der Basis PP, gebildet, die in B und links von PP, liegen
und grésstmoglichen Inhalt haben. Der Inhalt a(P) ist eine stetige Funktion von P,,
und es gibt daher Dreiecke in ¢, fiir die « maximal bzw. minimal ist.

STEIN [12] und LAuGwiItZ [6] haben «Stiitzparallelogrammen relativ zu P betrachtet
und gezeigt, dass es stets zwei verschiedene gibt. Ein Parallelogramm PP, P*P, heisst
Stiitzparallelogramm zu P, wenn P,, P,€ 0B und die Seiten P,P*, P*P, auf Stiitz-
geraden liegen.

Figur 4

Behauptung 4: Es gibt ein kleinstes und ein grisstes Dreieck in @, die sich zu Stiitz-
parallelogrammen erginzen lassen.

Hieraus folgt dann der Satz von STEIN und Lavcwitz. Wir skizzieren den Beweis.
Zunichst ist klar, dass es fiir jedes Dreieck aus @ eine Stiitzgerade in P, gibt, die
parallel zu PP, ist. Zu zeigen bleibt also, dass es ein kleinstes und ein grosstes Dreieck
in @ gibt, so dass in P, jeweils eine zu PP, parallele Stiitzgerade existiert. Die absolut
grossten Dreiecke mit der Ecke P, die in B liegen, gehéren zu @. Da fiir sie die ge-
wiinschte Eigenschaft vorhanden ist, brauchen nur noch die kleinsten Dreiecke aus ¢
betrachtet zu werden. Sei PP, P, ein kleinstes Dreieck aus ¢ und nehmen wir an, dass
es in P, keine zu PP, parallele Stiitzgerade gibt und dass das fiir alle anderen (még-
licherweise vorhandenen) Dreiecke aus ¢ mit der Basis PP, gilt. Bewegt man nun den
Punkt P, auf 0B nicht zu weit in Richtung des Schnittpunktes der Geraden PP, mit
den Stiitzgeraden in P,, so verkleinert sich der Dreiecksinhalt « echt, wie man nach
einigen einfachen Schliissen erkennt. Damit ist dann Behauptung 4 bewiesen.

Der Kreis, in dem P nicht Mittelpunkt ist, zeigt, dass es genau 2 Stiitzparallelo-
gramme geben kann. Ist P Schnittpunkt konjugierter Durchmesser, so gibt es offen-
bar 4 Stiitzparallelogramme.

Stiitzparallelogramme und allgemeiner Stiitzparallelepipede wurden von TAYLOR
[13] in der Minkowski-Geometrie betrachtet. Sie liefern orthogonale Basen. Auch die
Funktion « spielt in der Minkowski-Geometrie eine gewisse Rolle, vgl. PETTY [8].

2. Eine Kennzeichnung der Radonschen Kurven. Sei V) ein grosstes Inviereck,
W, ein kleinstes Umparallelogramm und W, ein kleinstes Umviereck, die Inhalte seien
mit | V;| usw. bezeichnet. Die Kennzeichnung der P-Kurven, die sich oben ergeben
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hat, kann man nach LENz [7] auch in der folgenden Form angeben:
2 |Vy| = |W,]; Gleichheit genau fiir P-Kurven.
Fiir R-Kurven gilt, wie LENZ vermutet hat, eine entsprechende Kennzeichnung:
2 |Vy| = |We|; Gleichheit genau fiir R-Kurven. (3)

LENz hat gezeigt, dass Gleichheit hochstens fiir Mittelpunkts-P-Kurven, also fiir
R-Kurven eintreten kann, wobei er allerdings Eckenfreiheit voraussetzt. Gleichheit
tritt fiir alle R-Linien ein, wenn die kleinsten Umparallelogramme zugleich kleinste
Umvierecke sind. Dies ist in der Tat der Fall. Denn DowWKER [2] hat gezeigt, dass
unter den kleinsten umschriebenen 2 n-Ecken eines konvexen Mittelpunktsbereiches
stets eins mit demselben Mittelpunkt ist. (Hierzu auch PeTtY [8], S. 276, und Nr. 3
dieses Paragraphen.) Weitere Ungleichungen zwischen |V,|, |W,|, |W,;| und |B|
findet man bei LEnz [7].

3. Dualitit. In den Uberlegungen der §§ 2, 3 zeigt sich eine gewisse Dualitit
zwischen gréssten Invierecken und kleinsten Umparallelogrammen. Nun lidsst sich
zwar der Inhaltsbegriff i.allg. keinem Dualitétsprinzip einordnen. Wir werden jedoch
zeigen, dass fiir konvexe Bereiche mit Mittelpunkt M eine vollkommene Dualitit
zwischen grossten In- und kleinsten Umparallelogrammen besteht. Die Einschrinkung
auf Parallelogramme ist hier unwesentlich, weil es nach der schon genannten Arbeit
von DOWKER [2] unter den kleinsten Umvierecken ein Parallelogramm mit dem Mittel-
punkt M gibt und unter den grossten Invierecken ebenfalls. Das erste folgt auch
mittels Behauptung 5 aus dem zweiten, das zweite ist direkt einfach einzusehen. Denn
von einem grossten Inviereck ausgehend, dessen Diagonalen nach § 2 konjugierte
Durchmesser sind, findet man ein gleichgrosses Inviereck, dessen Diagonalen durch M
gehen und das daher selbst den Mittelpunkt M hat.

Die Dualitdt wird durch Polaritit an einer Ellipse mit Mittelpunkt M vermittelt,
die wie iiblich Punkte in Geraden und Geraden in Punkte iiberfiihrt. Der Rand 0B als
Punkt- bzw. Stiitzgeradenmenge wird dann in eine Stiitzgeraden- bzw. Punktmenge
iibergefiihrt, die wieder einen konvexen Bereich B* begrenzt. Parallele Geraden
werden in Punkte einer Geraden durch M abgebildet und umgekehrt. Daraus folgt:
Ein Umparallelogramm von B mit zugehorigen konjugierten Durchmessern durch M
wird in ein Inparallelelogramm von B* mit konjugierten Durchmessern durch M
abgebildet und umgekehrt.

Behauptung 5: Ein kleinstes Umparallelogramm eines konvexen Bereiches B mit
Mittelpunkt M wird durch eine Polaritit beziiglich M in ein grisstes Inparallelogramm
von B* abgebildet und umgekehrt.

Zum Beweise bemerken wir zundchst, dass fiir ein Parallelogramm V' mit Mittel-
punkt M und sein polares Parallelogramm V* stets |V | |V*| = 8 gilt, wenn die
Ellipse, die die Polaritit bestimmt, den Inhalt » hat. Denn man iiberlegt sich leicht,
dass dann | V| | V*| stets denselben Wert hat. Die Zahl 8 ergibt sich etwa als Produkt
der Inhalte von In- und Umquadrat des Einheitskreises. Ist nun V, ein grosstes
Inparallelogramm von B und V} ein kleinstes Umparallelogramm von B*, so gilt fiir
A A

el < Wl IV <|Vi]
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und
8=l [V <[V <N =8,
also
Vel =l [V =V,
was zu zeigen war.

4. Anwendungen. Die in der Einleitung erwihnten Arbeiten von Funk [3] und
Lauewrrz [5] benutzen konjugierte Durchmesser, um Aufgaben der Finsler- bzw.
Minkowski-Geometrie zu losen. Oben haben wir schon das Auftreten der Funktion «
in der Minkowski-Geometrie erwihnt. RaApoN [10] benutzt konjugierte Durchmesser,
um eine gegebene konvexe Kurve in einem Koordinatensystem einfach darzustellen.
Damit wird eine Aufgabe aus der zentralaffinen Differentialgeometrie geldst (hierzu
auch HEe1L [4]).

5. Weiterfithrungen. Unsere Untersuchungen lassen sich in verschiedenen Rich-
tungen weiterfithren. So legt das grosste einbeschriebene Viereck auch bei beliebigen
Jordankurven konjugierte Durchmesser fest. Im Raum kann man an Stelle der Vier-
ecke Oktaeder und Parallelepipede betrachten. Das folgende Ergebnis, auf das wir
spater zuriickzukommen hoffen, steht in engem Zusammenhang mit den bekannten
Sétzen von BLASCHKE iiber Flichen mit ebenen Selbstschattengrenzen und Variations-
probleme mit symmetrischer Transversalitdt (siehe z. B. BLASCHKE [1]):

Sei B eine beschrinkte, abgeschlossene konvexe Menge mit Mittelpunkt. Liegen
die Ecken eines gréssten B einbeschriebenen Oktaeders auf den Seitenflichen eines
kleinsten B umschriebenen Parallelepipeds, dann ist B ein Ellipsoid.

E. HEiL und W. Kravtwarp, TH Darmstadt
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Diagonalen im reguliren #-Eck

Zeichnet man in einem konvexen #-Eck alle méglichen Diagonalen, so kann man
nach den Anzahlen der entstehenden Teilflichen F(%), der Seitenlinien K () und der
Eckpunkte E(n) fragen (vgl. [1, 2]). Es soll dabei beriicksichtigt werden, dass sich
mehr als zwei Diagonalen in nur einem Punkt schneiden kénnen.

Bedeutet E,(n) die Anzahl der Punkte, in denen sich genau » Diagonalen schneiden,
so folgt

En)y=mn +2E,,(n) . (1)

Mit F(n) als der Anzahl von v-Ecken ergibt sich auf zwei Arten die Summe aller

Ecken der Teilvielecke
[n/2]

ZvF n(n—2)+ ) 2vE,n) ()
Die Winkelsumme aller Teile berechnet sich ebenfalls auf zwei Arten zu
n [n/2]
n)(v—2) FEn) =n—2)a+2r) E,n). 3)
V= y=2
Mit (2) und (3) folgt
" S [n/2]
Fo) =Y Em) = (") + Yo -1 Em. )
v=3 v=2
Fiir K(n) gilt
2K(n)=mn —I—Zv E(n), (5)
»=3
mit (2) also
n [n/2]
Kin) = (5) + L v E ). (©)
v=2

Im weiteren sollen nur regulire n-Ecke betrachtet werden. Ist # eine Primzahl
bzw. eine ungerade Zahl, so wird in [3] bzw. [4] gezeigt, dass ausser den Eckpunkten
keine Schnittpunkte von drei oder mehr Diagonalen auftreten. Da zu je vier der

n Eckpunkte genau ein Diagonalschnittpunkt gehért und umgekehrt, und da man
aus # Ecken auf ( Z) verschiedene Arten vierauswihlen kann, folgt fiir reguldren-Ecke

mit # = 1 (mod 2)
Em=n+(3); Foo=(";7)+(}): Em=(3)+2(}). ©

Ist # = 0 (mod 2), so werden die Anzahlen fiir » = 6 kleiner; dann gilt ndmlich
wegen des Mittelpunktes

E,pn) =1, )
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und, da sich die #/2 Diagonalen in (néZ) Punkten schneiden kénnten, folgt
— 2
En) < (}) - 02 ©

Fiir gerades # mit (#, 3) = 1 soll nun die Anzahl von Diagonalschnittpunkten exakt
bestimmt werden.

Die Losungen von w" — 1 = 0 in der komplexen Zahlenebene seien die Eckpunkte
des reguldren n-Ecks. Jede primitive n-te Einheitswurzel erzeugt alle iibrigen durch
Potenzieren. Seien a, b, ¢, d, g, h ganze Zahlen modulo »# und z = exp (27 ¢/n), so
sind drei beliebige Diagonalen durch

(@,0): w=u+1v=2"+1¢ (2> — 29,
(c,d): w=u+1v=2 41, (2¢—2), (10)
(g, h): w=u-+1v=28+1; (2" — 28)

dargestellt. Durch Addition und Subtraktion des konjugiert Komplexen lassen sich

die reellen Parameter ¢, , #,, ¢3 eliminieren. Als notwendige und hinreichende Bedingung
fiir einen gemeinsamen Schnittpunkt der drei Diagonalen ergibt sich dann

1 zo+b ze 4 b
2 (2b — 29) (24 — 29) (2% — 28) 1 z0+d o4 gd| —Q. (11)

20+b zc+d zg+h

1 ze+h g8 4 2t
Wegen a =+ b, ¢ + d, g + h muss die Determinante D(z) verschwinden. Wird o.E.d. A.
g = 0 gesetzt, so muss mit D(z) = z* 4(z) gelten
AR)=1—2)(1 —24) 1 — 22404 — (1 — 29 (1 = 2%) (1 — z¢+9-%) = 0. (12)

Da (n, 3) =1, ist z® primitive n-te Einheitswurzel und daher muss auch 4(z%) =0
erfiillt sein. Aus

A() — (14 20+ 229) (1 + 20+ 229) (1 4 z0+b=h 4 2@+0-0) A(z)

—(1—29)(1—2) (1 —z+d=#) B(z) = 0 (13)
folgt
B(Z) —_ (1 + o€ + ch) (1 _|_ zd + z2d) (1 + za+b—h + z2(a+b-h))

_ (1 __|_ 29 + ZZa) (1 _|_ Zb + sz) (1 + zc+d—h + 22(c+d—h)) — 0 , (14)

weil fiir a = 0 oder b = 0 der Schnittpunkt Eckpunkt ist, und fiir ¢ + d = & die
Diagonalen (c, 4) und (0, 4) parallel sind, sich also nicht schneiden. Es folgt

2B(z) + A%(2) + 2 (1 — 29 (1 — 2%) (1 — zc*9—") A(2)

' + 3 (224 2P et dh oo 4 28 20tb R A (2) = 3 Cy(2) Co2) =0 (15)
mit Cylz) = 26+ + (2° + 24) 20 +b—h — za+b _ (30 4 gb) gotd=h (16)
Cafz) = 2 4 28 + 2040 =h (1 26 4 29) + 20 20+ zo+d=h (1 4 20 4 29)

+ zetd 4 goth, (17)
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Wenn C,(2) = 0, dann muss auch
Cie) A+ 2%) — 28 A(x) = — 27" M,(2) = 0, (18)
My(e) = (2 + ) (2 + 249 — (& + ) (@4 + 2+7)

= (2% — 2°) (22% — 20+9) — (29 — 29) (22h — 2b+¢) =0 (19)
und wegen (n, 3) =1

Ml(za) _ (2211 + z2b _ za+b) (ZM + z2(c+d) — zc+d+2h) Ml(z)
= (2 + 29) (22 + 20+%) N,(2) = 0 (20)
mit
N,y(2) = (229 4 220 — z8+0) (780 4 g2+ _ go+d+2h)

— (226 + 2211 — zc+d) (z4h + z2(a+b) _ za+b+2h) (21)

erfiillt sein. 2° + 2 = 0 und M,(2) = 0 haben ¢ = d 4+ (#/2) und a = b + (n/2), also
den Mittelpunkt des n-Ecks, oder ¢ =d + (#/2) und 24+ (n/2) =c + d, also h =4
bzw. A = ¢ und damit einen Eckpunkt, als Schnittpunkt zur Folge. Entsprechend
folgt aus 22# 4 20+ = 0 und M,(2) = O ein Eckpunkt (A = b bzw. & = a) oder zwei
parallele Diagonalen (@ + & = ¢ + d). Der dritte Faktor in (20) N,(z) = 0 ergibt nun
auch

2N,(2) + Mi(2) + 2 (2 + 27) (2" + 247) My(2) — 3 (2 + 2°) (2" + 22 *) My (2)
=3 (2% — 29) (22% — 2°*+) Pi(z) =0 (22)
mit
Py(2) = (2% + 29) (2% + z0+4) — (29 + 29) (2% + z0+¢) (23)
In (22) bedeutet 2¢ — 22 = 0 wiederum einen Eckpunkt (¢ = d). Aus 22" — ztc =0

und M, (2) = O folgt entweder b = ¢ (Eckpunkt) oder 2 4 = a + d = b + c. Die letzten
beiden Beziehungen in A4(z) = O eingesetzt ergibt (vgl. (12))

A(z) = 2= O+t (gh — g0) (b — z4) (z6+4 — 220) (1 + 2) = 0 . (24)

Die ersten drei Differenzen bedingen Eckpunkte (h=c¢, h=d, b=d) und aus
1+ 2 = 0 folgt A = n/2, so dass in diesem Fall Schnittpunkte von drei Diagonalen
vorliegen:

g=0;, h=nl2;, a=—d;, b=—c. (25)
Mit P,(z) = 0 aus (22) wird schliesslich noch
P(2) + My(2) = — 2 (2¢ — 2b) (2% — 22t9) = 0. (26)

Diese Differenzen entsprechen denjenigen in (22), wenn man bedenkt, dass A(z) in
und b symmetrisch ist.

Aus Cy(2) = 0 wird nun in analoger Weise gefolgert:

(2840 — 26+4) Cy(2) + (29+0 + 26%4) A(2) = 22-% My(z) = 0, (27)
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M 2) = (29 Zb za+b+h _ 22(c+d) _ (o d c+d+h __ y2(a+b)
o(8) = (27 + 2) ( ) — e+ 2 (2 erh)
—_ (Zh + zb+c) (z2a+b — ZC+2d) _ (Zh + Za+d) (z2c+d _ za+2b) =0 , (28)
Mz(za) . (z2a + 226 Za+b) (z2(a+b+h) + 24(c+d) + za+b+2(c+d)+h) Mz(z)
= (4 29) (aeHdHh — 20 D) Nyz) = 0, (29)
Nz(z) = (z2a + 220 za+b) (22(a+b+h) + Zac+d) + ga+b+2(c+d)+h)
_ (z2c + 22d zc+d) (22(c+d+h) + 24@+b) + z2(a+b)+c+d+h) 3 (30)

In (29) ergibt 2¢ + z¢ = 0 mit M,(z) = O entweder den Mittelpunkt (c = d + (n/2),
a=>b+ (nf2))oder c =d + (n/2)und a + b + h = 2 (c + d), woraus durch Einsetzen
in (12)

Az) = (24 — z3) (z24=a — 1) (24— 4 1) = 0 (31)

folgt. In (31) ergeben sich aus den ersten beiden Faktoren mit a —d=4d — A,
d—b=—d, c=d+ nf2) bazw. d—a=—d, b—d=d—h, c=d+ (n/2) zwei
Fille von Schnittpunkten, die sich durch Umbenennung der Diagonalen (a, b), (b, c),
(0, in (¢'—a',d' —a'), W —a',—a'), (0,0'—a’) bzw. in (@' —a',c’ —a'),
(W —a’',—a"), (0,0 — a’) als in (25) enthalten erweisen. Ist der dritte Faktor in (31)
Null, so sind wegen a + b= 2 (c + d) — h=4d — h = h die Diagonalen (a, b) und
(0, h) parallel.

Aus dem zweiten Faktor von (29) z¢+d+h — 22(@+h) = O und M,(2) = O wird durch
Vertauschen von (4, b) mit (c, d) der mit (31) diskutierte Fall, oder es folgt # =
2(a+b)—(c+d)=2(c+d)— (a+b),sodasssichwegen (n,3) =1la+b=c+d
ergibt (parallele Diagonalen).

Es muss nun nach (29) N,(z) = 0 gelten und damit auch

2 Nfa) + MFE) + 2 (2 ) (5444 — 20 0) M)
— 3 (zh — zb+e) (g2a+b 4 zo+2d) Mo(z) = 3 (2h + 29+9) (22¢+d — za+28) Py(z) (32)
mit
PZ(Z) — (Zh — Zb+c) (22a+b + 26+2d) _ (zh — zﬂ+d) (z2t+d + za+2b) . (33)
Aus z# + 20+4 = 0 und M,(z) = O ergibt sich entwederh =a +d + (n/2), h=b+c+
(n/2) oder h=a+d+ (n/2), 2a + b= c + 2 d. In (12) jeweils eingesetzt ergeben sich
die Bedingungen
A(Z) = g—(a+b+h) (]_ + zh) (zh _ za+b) =0 , (34)

A(2) = (22 — 29) (1 — 2729) (1 4 27449 = 0, (35)

Gleichung (34) bedingt einmal 4 = /2, also mit den anderen Beziehungen Schnitt-
punkte vom Typ (25), und zum anderen a + b = 4, d.h. parallele Diagonalen. In (35)
bedeutet die erste Differenz einen Eckpunkt (2 = d), wihrend 1 — 2¢-2¢ = 0 Schnitt-
punkte von drei Diagonalen zur Folge hat:

g=0; h=a+d+ n2);, c=2a;, b=2d. (36)
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Der dritte Faktor von (35) 1+ z¢t4-2=0 ergibt ¢ = a — d + (n/2). Ersetzt man
hierin und in A=a+d+ (n/2) und b =d — a + (»/2) die Diagonalen (a, b), (c, d)
und (0, 4) durch (' —d’, —d’), (b’ —d',a’ —d’) und (0, ¢’ — d’), so erkennt man
durch Auflésen nach 4’, ¢’ und &', dass Schnittpunkte vom Typ (36) vorliegen.

Aus (32) folgt weiter z2¢+4 — 29426 — O und mit M,(z) = 0 ist entweder 2¢ + d =
a+2b, h=>b+ c+ (n/2), was sich durch Vertauschen von (a, b) und (c, d) gleich
dem durch (35) betrachteten Fall erweist, oder 2c +d=a 4+ 2b,2a+b=c+ 2d.
Durch Addition folgt 3 (@ + 8) = 3 (¢ + d) und wegen (n,3) =1a+b=c+d, d.h.
(a, b) ist parallel (c, d).

Zuletzt wird in (32) noch P,(z) = 0 und daher

Py(2) + My(2) = — 2 (2" + z0+49) (22c+d — 26 +20) = (| (37

Durch Vertauschen von a und b ergeben sich die gleichen zu diskutierenden Ausdriicke
wie in (32).

Setzt man in (36) & = »/2, so zeigt sich, dass (25) in (36) enthalten ist. Es gilt

somit der

Satz: Ist n = 4 2 (mod 6), so schneiden sich im veguliren n-Eck ausser in Eck-
punkten und Mittelpunkt hichstens drei Diagonalen in etnem Punki.
Es werden nun zunidchst die Dreifachschnittpunkte gezihlt, die (25) erfiillen

Egl)(n) _ n["/'izl;l WZV;J_I l—n [_"%i] (!21 _ %j]), (38)

a=1 b=a+1

Dabei bedeute [7] die grosste ganze Zahl kleiner oder gleich 7. Die iibrigbleibenden
Punkte von (36) liegen auf Kreisbégen um z* mit dem Radius |2? — 1|. Damit kein
Punkt doppelt gezihlt wird, muss A= (#/2) + a+d <nf2undd—c=d—2a > n/2,
also 2a+ nf2)+1=d<n—a—1und 1 <a =< [(n— 4)/6] gelten; ausserdem
miissen noch [1/2 (1 + [(» — 4)/6])] Punkte abgezogen werden, die fiir b —a =
2d — a = n/2 in (38) schon enthalten sind. Es ergibt sich

[(n—-4)6] #n-a-1

Efy=n 3 3 1-a[l=fltl]

a=1 d=1+2a+ (n/2)
"_—_i (n—-Z 3[n+2]> n[ﬁﬁizi)/_?l] (39)

und zusammen
Ey(n) = E{(n) + EP(n) . (40)

Da drei Geraden sich in drei Punkten schneiden kénnten, folgt unter Beriicksichtigung
von (8) und (9)

Ey(n) = (”) _ 22 3. (41)
Aus (1), (4), (6) und (40) erhdlt man nun fiir n = 4 2 (mod 6)

B =n+(}) ~ 208 2Ew), (42)
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Foy = ("5 ')+ (5) - =200 g, (43)

K = (5) +2(%) - 2" 3 Em) (44)

mit

E3(n)=l~%8—n(n——2) (5n—38), wenn #n =4 2 (mod 12), )

178«%(%—4)(5n—28), wenn 7 = 4 4 (mod 12) .

Ist # = 0 (mod 6), so sind alle Punkte aus (25) und (36) Schnittpunkte von min-
destens drei Diagonalen. Fiir # > 6 treten Schnittpunkte von mehr als drei Diagonalen
auf, wie sich zum Beispiel durch Einsetzen von a=1, b= (2#/3) —1,c¢=3,d =
(57/6) — 1 und 4 = /2 in (12) und Beachten von (25) zeigt. (42), (43) und (44) mit
Eg4(n) aus (40) stellen also fiir diese regulidren n-Ecke echte obere Schranken dar.

Heiko HARBORTH, Braunschweig
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Ein einfacher Beweis der Stirlingschen Formel

Die bekannte Stirlingsche Formel, welche » ! durch eine geeignete einfache Funktion
von # abschitzt, soll hier aus zwei sehr elementaren Hilfssitzen (vgl. [1]) hergeleitet
werden.

. 1\*+05

Hilfssatz 1. Fiir x > 0 gilt e < (1 + 7) .

Beweis. Es ist

1 1 o 1 1 2(x+ 0,5 + 1
1(x+08) _ = .
e =t o5 Yz r o0 +v§ YR 2 T P g
1 ad 1 1 6224+ 75%+ 2,5 1
- —. 14 —.
+ 6 (¥ + 0,5)3 7; 4i (x 4+ 0,5)7 1+ x 6x24+ 7,5x+4 3+ (3/8%) <l+ x (1)

Nun setzen wir zur Abkiirzung

nletn " %=y n=1,273,..). (2)
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Es folgt
Yars _ (m4 1) en” TP e

Vn (1" TS (L 1m)ntOS

Die y, bilden eine streng monoton abnehmende Folge. Daraus ergibt sich

Pr=e> Yy > yy... 50l < (n/e)"ﬁe fir n=23,....
Weil die y, alle positiv sind, existiert

limn!e"n "% = limy, = y.

n—>00 7 —>00
Jetzt soll ¥ auch nach unten abgeschitzt werden.
. . 1 \z+0,5- (1/42)
Hilfssatz 2. Fiir ¥ > 0 gilt (1 + —;) <e

Beweis. Wir haben fiir ¥ = 0,5 stets ¥ + 0,5 — (1/4 ) > 0 und

1 1 1
<1 1/(x+ 0,5 (1/42))

Mt <Yt o5 —(An T ZEros (A ¢ '
weil

1\2 1
2(1+0,5—U)<2x(x—+—0,5-—47)+x, 1<4x.

Fiir 0 < » < 0,5 ist

1\#+05-(1/42) 1\*
(1+-~) <(1+—)<e.
x x
Hiernach ergibt sich aus (3)
n
Yn+1 ( 1)—1/411' e? . e? ( 1)—1/41'
S > 4+ ; = > = 1+ — .
Vn 7 14} 2]/2 Ynt1 ZI/Z ,‘,I;Z "

Fithren wir die Bezeichnung
n

1\1/»
H=(1+T) = P,

=2
ein, dann wird
" "
1 1 1 1 1 1 3
log P, =’§710g(1+7) <v;2‘~v-f <'4'+~2—j?+ﬁ+"'—~4—_.
Nach (8), (9) und (10) ist
o 316 (2916
> —e = > 2,12,
R PYTp 2V2

Damit ist die in (5) definierte Konstante y abgeschitzt:

829/16
L2 < —=xsy<e<?272.

22

n ! besitzt die Grossenordnung e~ n" + %8

(10)

(11)

(12)

Der wahre Wert von y betrigt bekanntlich /2 n ~ 2,5066. Durch etwas grdsseren

Rechenaufwand ldsst sich y elementar genauer als in (12) bestimmen.

H.-J. KanoLp, TU Braunschweig
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Die Wallaceschen Geraden und die Feuerbachschen Kreise
in einem Sehnenviereck

Die Punkte A,(i = 1, 2, 3, 4) in der natiirlichen Anordnung seien die Eckpunkte, «; die
Innenwinkel eines Sehnenvierecks. Es seien weiter Q;, Q7 die Fusspunkte der Senkrechten,
die vom Eckpunkt 4, auf die Seiten gefillt sind, die nicht durch den Eckpunkt 4; gehen.
Q; seien die Fusspunkte der Senkrechten, die aus dem Eckpunkt 4; auf die Diagonale ge-
fallt sind, die nicht durch diesen Eckpunkt geht. Die Punkte Q,, Q;, Q; liegen, wie bekannt
ist, auf der Wallaceschen Geraden s,, die dem Eckpunkt 4, in bezug auf das Dreieck, das
durch die drei iibrigen Eckpunkte gebildet ist, zugeh6rt. Dann gilt:

Satz 1. Die Wallaceschen Gevaden s; (1 = 1, 2, 3, 4) schneiden einander in einem Punkte
S.

Satz 2. Die dvei Punkitequadrupel {Q.}, {Q:}, {Q}} liegen auf dvei konzentvischen Kreisen
mit S als Mittelpunkt, sie bilden die Ecken dveiev Sehmenvievecke, die dem gegebenen Vieveck
{4} gegensinnig dhnlich sind. Die vier Strecken Q; QJ sind einander gleich.

Beweis: Da Q7 und Q; auf dem Kreis iiber dem Durchmesser 4, A4, liegen, gilt
X4, Q10 = ¥4, 4, 43= $4,4,45..., (1)

Figur 1
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also Q] Q3 || 43 A, und ebenso

Qslldad;, QQuilldi4y, QuQilld:4;5... (2)

das Viereck {Q; Q3 Qi Qi} ist also gleichwinklig mit dem Viereck {4, A, A5 4,}, und da
die Diagonale Q7 Q3 mit Q7 Q; nach (1) den gleichen Winkel bildet wie die homologen
Stiicke 4, A, und A4, A4,, so folgt der Hilfssatz: Durch die Zuovdnung A; > Q; ist eine
gegensinnige Ahnlichkeitsabbildung dev Ebene auf sich bestimmd.

Es sei jetzt O der Mittelpunkt, » der Halbmesser des Umkreises des gegebenen Sehnen-
vierecks {4, A, A3 A,}.

Wir zeigen, dass den vier Geraden O 4; bei dieser Abbildung die vier Geraden s; ent-
sprechen. Nun ist der Winkel zwischen s, und Q7 Q; nach (2) gleich dem Winkel zwischen
s; und 4, A, und damit (Sehnenviereck 4, 4, Q, Q1) gleich dem Winkel 4, 4, Q7, der das
Komplement von < A, 4, A, darstellt (der Hilfte des Zentriwinkels 4, O 4,). Die
Gerade s, bildet also mit der Seite Q] Q; denselben Winkel, wie die Gerade 4, O mit der
Seite 4, A4,.

Die Geraden s; gehen also alle durch einen Punkt S, der in jener Abbildung dem Punkt
O entspricht, womit Satz 1 bewiesen ist. Indirekt kann man auch die Umkehrung dieses
Satzes beweisen.

Entsprechend (2) gelten

Q1Q2||A3A4’ Q2Q3”A4All Q3Q4”A1A2’ QAQI“A2A3
und die analogen Relationen
1Qellds 4y, Qe Qslldady, Q3011 4:4,, 1 Q11142 4.

Soweit es sich hier nicht um Identititen handelt, sind sie wie (2) zu beweisen. Es gilt also
der Satz 2.

Satz 3. Dev Schnittpunkt S dev Wallaceschen Gevaden s; des Satzes 1 ist dev gemeinsame
Punkt der vier Feuerbachschen Kreise F,, die durch die Dreiecke {A; Ay A,} bestimmt sind
(4, 7, k, m eine beliebige zyklische Peymutation dev Zahlen 1, 2, 3, 4).

Figur 2

Beweis: Bezeichnen wir mit O; ; den Mittelpunkt der Seite 4; 4 » mit F; den Feuer-
bachschen Kreis des Dreiecks {4; 4, 4,}, mit X, seinen Mittelpunkt (, §, k, m eine belie-
bige zyklische Permutation der Zahlen 1, 2, 3, 4).
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Da z.B. Q; Hohenfusspunkt im Dreieck {4, 4, A,} ist, so ist der Kreis durch O,,, O,,,
Q; der Feuerbachsche Kreis F, dieses Dreiecks, sein Radius also gleich #/2. Um zu zeigen,
dass S auf diesem Kreise liegt, dass also < Q3 S 0,3 = < Qj Oyp Oy,, beachte man, dass
der erstere als Hilfte des Zentriwinkels Q, S Q; wegen der Ahnlichkeit der Vierecke
{4;} und {Q;} auch die Hailfte des homologen Zentriwinkels A, O A,, also gleich dem
Peripheriewinkel A, A; A3 = X A, 0y5 Oy3 = X Qp 044 Oy ist.

Bemerkung: Betrachten wir noch ein gegebenes Sehnenviereck {4}, i =1, 2, 3, 4.
Lassen wir z. B. die Eckpunkte 4, 4,, 4, fest und auf dem Umkreise wihlen wir statt des
Eckpunktes 4, einen anderen Eckpunkt 4;. Es sei S” der Schnittpunkt der Wallaceschen
Geraden s; des Vierecks {4, 4, A; A3}. Nach Satz 3 liegt dieser Schnittpunkt auf dem
Kreise Fj, der, weil die Punkte A,, 4,, A, fest sind, mit dem Feuerbachschen Kreis F,
identisch sein muss. Es gilt also

Satz 4. Wenn dev Punkt A, bei fest gegebenen Eckpunkten A,, Ay, Ay den Umkveis dieses
Dretecks durchlduft, so beschveibt dev Schnittpunkt S der Wallaceschen Geraden s; des Vievecks
{4}, i=1, 2, 3, 4, den Feuerbachschen Kveis des gegebenen festen Dreiecks {A;}, i =1, 2, 3.

Die Mittelpunkte X; (¢ = 1, 2, 3, 4) der Feuerbachschen Kreise F, liegen offensichtlich
auf dem Kreise um S, mit dem Halbmesser »/2.

Nach der Konstruktion ist

SO0, L 232, S0y 1 2,2 ;
fiir die Grosse des Innenwinkels < X, des Sehnenvierecks {2} erhalten wir
XXy =2R— X 043S0,y,.

Weiter gilt wieder nach der Konstruktion

012A2:012 Qé» Op3 Ay = Oy3 Q2
daraus folgt
A Op3 Q3 019 =2 A Oy3 4, 0,, (3. Kongruenzsatz)
und daher
X 0530201, = X 0y34,01,= 0,

Da die Punkte O,3, Q,’, S, O,, auf dem Feuerbachschen Kreise F, liegen, folgt augenblick-
lich
X 0530201, = K 0g3 SOy =0ty
Dann ist
X2, =2R— 40,3 S0,=2R—0y=u04.
Ahnlich erhalten wir
XZi=a, IL=0, LZ=o0.

Das Viereck {Z;} ist also dem Viereck {4} winkelgleich; dass dieses Viereck dem Vierecke
{4} dhnlich ist, ergibt sich aber leicht, wenn man beachtet, dass nicht nur die homologen
Seiten, sondern auch die homologen Diagonalen parallel sind (Ahnlichkeitsverhiltnis =
1/2).

Es sei noch K der Kreis um S, der alle vier Feuerbachschen Kreise F; in den Punkten
T; berithrt. Man kann leicht zeigen, dass das Viereck {4} mit dem Viereck {7;} kongruent
ist:

SE:5T,=1:2; E5\T,T;,, T, 1,=2%2Z =124;4,.

Der Satz 2 kann also so erweitert werden:

Die Punktequadrupel {Q;}, {Q:}, {Q4}, {Z}, {T;} liegen auf fiinf konzentrischen Kreisen
um S; sie bilden die Ecken von fiinf Sehnenvievecken, die dem gegebenen Vieveck {A} dhnlich
sind. Die vier Strecken Q; QF sind einander gleich, die Vievecke (A}, {T;} kongruent.

JoseF BrejcHA, Brno
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Angles of a Parallelogram with Vertices in Lattice Points

In the book [1] the following theorem is proved (p. 9).

Let four lattice points be the vertices of a rhombus (being not a square) and « — its angle.
Then «/n is an irrational number.

Here we prove the following generalization of this theorem:

Let four lattice points be the vertices of a parallelogram and o — its angle < n2. Then afn
is an trrational number or o = 2 n/n, where n = 4 or 8.

Proof. The area S of such a parallelogram is given by the formula S = x y sin«,
where x and y are the lengths of non-parallel sides of a parallelogram. It is known that the
area of any polygon with vertices in lattice points is a rational number g (with denominator
1 or 2). Hence

g=xysina. (1)

» and y as the distances between lattice points are square roots of integers: » = Vr,
y=Vs. Substituting these values into (1) we get sina = }/g?/r s = }/¢, where ¢ is the rational
number ¢2/r s and we see that sina is an algebraic number at most of the second degree.

Let « be a rational multiplicity of #: « = 2 = k/n, k, » — positive integers, (&, n) = 1,
1 < k& < n/4. As follows from the theorem of LEHMER ([2], p. 37-38), for » + 4 the number
2sin 2 @ k/n is an algebraic integer of degree ¢(n), p(%)/4 or p(n)/2 according as (», 8) < 4,
(n, 8) = 4 or (n, 8) > 4. We must find all values of # such that sin 2 n £/» is an algebraic
number of degree 1 or 2, i.e. £ = 2sin 2 = k/x is an algebraic integer of degree 1 or 2.

1. Suppose 2 + n. Then (n, 8) = 1 < 4 and & is an algebraic integer of degree g¢(n).
The only odd integers » such that ¢(n#) = 1 or 2 are 1 and 3.

2. Suppose 2 | » and 4 + #n. Then (, 8) = 2 < 4 and & is an algebraic integer of degree
@(n). The only integers » such that 2 | %, 4 + » and ¢(n) = 1 or 2 are 2 and 6.

3. Suppose 4 | #n and 8 + n. Then (n, 8) = 4 and & is an algebraic integer of degree
@(n)/4. The only integers » such that 4 | », 8 + » and ¢(n) = 4 or 8 are 12 and 20.

4. Suppose 8 | n. Then (n, 8) = 8 > 4 and £ is an algebraic integer of degree ¢(x)/2.
The only integer » divisible by 8 and satisfying ¢(#) = 2 or 4 is 8.

Because it must be # > 4, it remains to consider only the cases » = 4, 6, 8, 12, 20.

Evidently #n = 4 is possible, because « = 2 n/4 is an angle of the unit square. Similarly,
n = 8 is possible as the acute angle of the parallelogram with vertices (0, 0), (0, 1), (1, 1),
(1, 2) is equal to 2 /8.

Now we exclude the values » = 6, 12 and 20. Suppose that (0, 0), (¥, 2), (y,?) and
(¥ + ¥, 2z + t) are the vertices of a parallelogram with the angle 2 n/6 at the vertex (0, 0);
¥, ¥, 2, t are integers (evidently #2 + 22 > 0, 2 + #2 > 0). Then

Y oA __EytEf
2 6 l/x”+z’l/y’+ 2
Hence
#2422 4 2L PR =4 yR L Byt 4 422082
or

M- 2xy2t+9222=3(x2y3+ 2xy2t+ 212
and (¥t — y 2)? = 3 (¥ y + 2z¢)2. This implies
xt—yz=0, xy+2t=0.

We multiply both sides of the first equation by x, both sides of the second by z and add;
we obtain (#% + 2%) ¢ = 0. Similarly, multiplying by — z and », we get (42 + 2%) y = 0.
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Because #% 4 22 > 0, we get ¢t =y = 0, which is impossible. The angle 2 n/12 is also
impossible, because if (0, 0), (a, ¢), (b, d), (@ + b, ¢ + d) are vertices of a parallelogram
with the angle 2 #/12 at the vertex (0, 0), then the parallelogram with vertices (0, 0),
(¢, — a), (b,d), (b + ¢, d — a) has an angle 2 n/6, which has been shown to be impossible.

n = 20 is impossible, because sin 2 #/20 = (/5 — 1)/4, which is not of the form }/¢ for
rational ¢.

We observe that the theorem may be stated in the following equivalent form:

If a = 2w k/n (R, n — positive integers, n > 4, k < nf4, (k, n) = 1) is an angle between
two straight lines passing through a lattice point and on each of them theve ave other lattice
points (evidently, infinitely many), then n = 4 or 8, k = 1, i.e. a = 90° or 45°.

It is evident that the hypothesis, that the straight lines have one lattice point in
common, is not essential (we may translate one line).

ANDRzZE] MAKoOwsKI, Warsaw, Poland
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On Hall’s Third Definition of Group

MARSHALL HALL, JR. in [1], p. 6, gave a definition of group in the terms of operation /
defined on the pairs of elements of the set S. This operation satisfies the axioms

L1 aja=0>bb L2 a/bfb)=a
L 3. (a/a)/(bc) = c[b L 4. (afc)/(bjc) = alb.
It may be observed that L 3 is superfluous: L 4 and L 1 imply L 3. We putin L 4 ¢ = a:
(a/a)/(b]a) = a[b;
in virtue of L 1 a/a = d/d, therefore
(d/d)/(bla) = afb,
which is L 3.

Now we prove that any of L 1, L 2, L 4 is independent of the others.
Let S = [0, 1] and we define operation / by the following tables:

1. |01 2. |01 4. |01
000 0[00 0[10.
111 1/00 111

The operation defined by the table # (n = 1, 2, 4) does not satisfy L » and satisfies the
remaining two axioms. For #» = 1 and 2 it is evident. In the case # = 4 it is also evident
that L 1 and L 2 are satisfied; if we put in L4 a = ¢ =0, b = 1 the left-hand side is
equal to (0/0)/(1/0) = 1/1 = 1 and the right-hand side is equal to 0/1 = 0.

A. Makowsk1, Warsaw

REFERENCE

[1] MarsHALL HaLL, JR., The Theory of Groups (Macmillan, New York 1959).
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Aufgaben

Aufgabe 581. Man beweise: Eine natiirliche Zahl p > 1 ist genau dann Primzahl,

") = 1 (modp) fiir alle natiirlichen Zahlen » mit p <#n < 2 p.

wenn ( b
E. TeurreL, Korntal/Stuttgart

Losung: 1. Wenn 1 < g < p — 1, p Primzahl, so hat man

P+ p+g—1)...(p+1) =q! (modp).
Wegen (¢!, p) = 1 kann man hier mit ¢! teilen und bekommt

(1’; q) =1 (modp) .

2. Wir setzen nun » = p" g, p 1 ¢, p Primzahl, p < %. Dann ist

(n:p) _ (n;p) — pr-1g+ 1) ("Zf;l).

Ganz wie oben schliesst man, dass

-1
(n—;f 1 ) = 1 (mod ")
und daher

(n: P) =pr~lqg+ 1 (modp).

Wire nun (n;i; p) = 1 (mod#), so wire auch (";‘; p) =1 (modp’), also p™~1g+ 1=

1 (mod ") und daher p | ¢, im Gegensatz zur Voraussetzung. Somit ist (" ;t p) # 1 (modn)

und der Beweis ist beendet. A. BAGER, Hjé¢rring/Danemark

Weitere Losungen sandten L. Carritz (Duke University, USA), J. FEHER (Pécs,
Ungarn), H. MEIL1 (Winterthur), H. MEYER (Birker¢d, Dinemark), O. REUTTER (Ochsen-
hausen), D. VELJAN (Zagreb).

Aufgabe 582. Man bestimme die Orthogonaltrajektorien der Kreise mit Radius R
und mit dem Mittelpunkt auf einer festen Geraden. T. KOETSIER, Delft

Lésung: Da die Tangente in jedem Punkt einer solchen Trajektorie durch den Mittel-
punkt des zu ihr normalen Kreises geht, und da diese Mittelpunkte auf einer festen Geraden
liegen, ist jede Kurve eine Traktrix mit der Zentralen der Kreisschar als Leitlinie und der
konstanten Tangentenstrecke R.

I. PaascHE (Miinchen) sandte 17 Loésungen und Literaturhinweise, von denen einige
auch von anderen Lesern mitgeteilt wurden.

__Aufgabe 583. Man beweise: Der Rauminhalt eines Tetraeders betrigt nicht mehr als
V2/12 der Quadratwurzel aus dem Produkt seiner Kanten. D. VoicuLescu, Bukarest

Lésung: Von den Kanten a; des Tetraeders T sind je zwei, die einander gegeniiber-
liegen, Diagonalen in Gegenflichen des T umschriebenen Parallelepipeds. Die Gegen-

kanten a; und a, von T bilden den Winkel «; und haben den Abstand 4;. Dann ist das
Volumen von T gegeben durch

1

V= Y d; aj a;sina; .
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Damit ergibt sich

V3 = 216 <Hd smoc)(ﬂa)_ 216<Hd)( ’ ) —21157

womit die Behauptung verifiziert ist. In der ersten Ungleichung gilt das Gleichheits-
zeichen genau dann, wenn P rhomboedrisch ist, in der zweiten nur, wenn T regulir ist.
F. LEUENBERGER, Feldmeilen

Eine weitere Losung sandte D. VELJAN (Zagreb).

Aufgabe 584. Man beweise: Fiir einen beliebigen Punkt eines sphirischen Dreiecks
(auf der Einheitskugel) mit Seiten < m/2 ist die Summe der (sphirischen) Eckenabstidnde
héchstens gleich der Summe der beiden grésseren Dreiecksseiten. G. WEGNER, G6ttingen

Lésung des Aufgabenstellers: Die Ungleichung ist trivial, wenn der beliebige Punkt P
ein Randpunkt des Dreiecks ist (wobei dann das Gleichheitszeichen eintreten kann).
Es sei daher im folgenden P ein innerer Punkt des Dreiecks.

Hilfssatz: Im sphérischen Dreieck 4 BC mit den Seiten < =/2 sei y = 120°. Dann
ista4+b<c+ h,.

Beweis: Wir wahlen D zwischen 4 und B so, dass |AC| = |AD| ist und E zwischen
B und C so, dass | BD| = | BE|. Wir definieren «’ und " durch 90° — («’/2) := < ADC,
90° — (B’/2) := < BDE. Wegen des sphirischen Exzesses ist < ADC > 90° — («/2),
X BDE > 90° — (f/2), also o’ < a und g’ < 8. Ist ¥:= |EC| = a + b — ¢, so folgt nach
leichter Rechnung

sinx o + p o’ B
Sy (e w ).

Die Behauptung des Hilfssatzes ergibt sich, wenn o’ 4 B’ < 90°. Man iiberzeugt sich
von der Richtigkeit dieser Ungleichung durch Bestimmung des Minimums von cos (« + f)
unter der Nebenbedingung cosy = —cosa cosf + sina sinf cosc, y = 120°, ¢ < n/2 und
fest. Es ergibt sich « = fund a« = 8 < 45°, also a’ + ' < 90°.

74 und 7p seien die Abstdnde des inneren Punktes P von 4 und B. Ohne Beschrinkung
der Allgemeinheit sei <¢ APB = 120° und b = a. Aus dem Hilfssatz folgt r, + 5 < ¢
+ k,. Trifft der Bogen PC denBogen AB in E, so gilt 4, < |EP|und |EC| < b. Hieraus
folgt va+vp+rvc Sc+ h,+vc <c+ |EP|+7c <c+ b, w.z.b.w.

Neue Aufgaben

Aufgabe 606. Eine notwendige Bedingung fiir die Existenz von drei linear unabhéngi-
gen periodischen Lésungen von
v ey - Boam0, pUtw)=p0, PO +0
ist

/l/1+p2dt>2n.

0
H. GUGGENHEIMER, Polytechnic Institute of Brooklyn

Aufgabe 607. Sind X und Y Teilmengen einer Menge M, so definieren wir X + Y
durch X + Y= (XUY)\ (XNY), dh X+ Y besteht aus all den Elementen von M,
die in X oder Y jedoch nicht im Durchschnitt von X und Y liegen. Es sei nun M eine
endliche Menge mit |M| = » Elementen. Ferner sei k eine gerade ganze Zahl mit

2 <k <n—1. Zeige: Es gibt n — 1 Teilmengen B,, ..., B,_, von M mit den Eigen-
schaften: a) |B;| =k firi=1,2,...,n — 1. b) Ist XC M und ist | X| gerade so gibt
es eine eindeutig bestimmte Teilmenge I von {1, 2,...,# — 1} mit X = ' B

iel

H. LUNEBURG, Mainz
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Aufgabe 608. Unter Verwendung von Kollineationen konstruiere man eine Parabel
durch vier gegebene Punkte (ohne Verwendung einer Involution). K. PRACHAR, Wien

Aufgabe 609. In der Gauss’schen Zahlenebene werde dem «Punkt» z = x + 7y der
Punkt
. t_ﬂ_, y + 0; « B,y komplexe Zahlen
Yz — a
zugeordnet. Welches ist die Bahn eines variablen Punktes, dessen Bewegung in jedem
Moment auf den jeweils zugeordneten Punkt hin gerichtet ist?
C. BINDSCHEDLER, Kiisnacht

Literaturiiberschau

Lesebuch zuv Mathematik (Quellen von Euklid bis heute). Von J. J. BURCKHARDT.
79 Seiten mit 34 Figuren. Fr. 13.80. Riber-Verlag, Luzern und Stuttgart 1968.

Die Einzelschriften zur Gestaltung des mathematisch-physikalischen Unterrichts
widmen sich in erster Linie aktuellen Fragen der Unterrichtsgestaltung.

Das «Lesebuch zur Mathematik», als Heft 5 erschienen, nimmt eine gewisse Sonder-
stellung ein. Anhand sorgfiltig ausgesuchter Quellen wird dem Leser mathematisches
Ideengut in moglichst originaler Form vermittelt. Koryphden wie Euklid, Euler, Gauss
und Hilbert kommen dabei zu Wort, und der geniale John von Neumann spricht im
XVII. Kapitel in fast uniiberbietbarer Weise iiber das Wesen mathematischer Forschung.
Ein Stiick Geschichte der Mathematik wird so auf unkonventionelle und lebendige Weise
vorgetragen.

Wir stehen in einer Zeit des Umbruchs und sprechen von «moderner» Mathematik.
Um diese aber wirklich verstehen zu kénnen, muss die geschichtliche Entwicklung mit
einbezogen werden. Das genannte Lesebuch schliesst damit eine seit langem (zumindest
was die Mittelschule betrifft) bestehende Liicke. Die 18 originalen Kurzabhandlungen
dienen der mathematischen «Allgemeinbildung» vortrefflich. Eine Flut hochspezialisierter
Fachpublikationen ergiesst sich heutzutage iiber jeden Mathematiker. Um so mehr tut es
Not, in mathematischen Mussestunden seinen Horizont zu erweitern. Das in ansprechender
Form gedruckte Biichlein sollte zumindest in keiner Fachbibliothek eines Mathematik-
lehrers fehlen; denn fiir ihn und die ihm anvertrauten Klassen bieten sich ideale Ansatz-
punkte und Impulse zu Querverbindungen mit andern Fachern. Aber auch dem Mathema-
tiker schlechthin kann das Studium einzelner Abhandlungen (z.B. der Aufgabe iiber
kollineare Punkte) Schénheit und Eleganz mathematischer Denkweise vor Augen fiithren.

Hans LoOEFFEL

A History of Vector Analysis. Von MicHAEL J. CROWE. 270 Seiten. $ 12.95. University
of Notre Dame Press, Notre Dame, L.ondon 1967.

In diesem interessanten Buch wird die Entwicklung der Idee eines vektoriellen Systems
in drei Perioden eingeteilt. Die erste Periode beginnt mit den Untersuchungen WESSELS
iiber die Natur der komplexen Zahlen gegen Ende des 18. Jahrhunderts. Der Schwerpunkt
dieser Periode liegt in den Arbeiten HaMILTONS (Quaternionen) und GRASSMANNS (Aus-
dehnungslehre). Die nach dem Tod HaMiLToNs (1865) beginnende zweite Periode, die
einen Ausbau der grundlegenden Ideen HaMiLTOoNs und GRASSMANNS brachte, ist durch
die Namen Tair, PEiRcE, MAXWELL und CLIFFORD gekennzeichnet. Am Anfang der
dritten Periode (1880-1910) steht die Formulierung der modernen Theorie der Vektoren
durch GiBBs und HeAvVISIDE, die nach der Jahrhundertwende von verschiedenen Autoren
in Lehrbiichern verbreitet wurde.

Die Frage, ob die Quaternionen oder die Ausdehnungslehre fiir die moderne Auffassung
der Vektoren grissere Bedeutung hatten, zieht sich durch das ganze Buch hindurch. Der
Verfasser vertritt und belegt die Ansicht, dass einerseits ein direkter Weg von den
Quaternionen herfiithrt, dass aber andererseits auch die Ausdehnungslehre alle Moglich-



Literaturiiberschau 119

keiten einer weiteren Entwicklung durch Modifikation geboten hitte. Die Studie kon-
zentriert sich auf die Geschichte der grundlegenden Aspekte der Vektorrechnung im Raum:
Addition und Subtraktion, die verschiedenen Produkte, Division (soweit im System vor-
handen), Spezifikation der Vektortypen. Die Analysis (Differentiation von Vektoren,
Vektorfunktionen) wird nur gestreift. Zur Abrundung der Darstellung dienen die Aus-
fithrungen iiber die Lebensumstinde und die Personlichkeit der wichtigsten Forscher.

E. TrosT

Cours de calcul mathématique moderne. Par M. LABOUREUR, M. CHossAT et C. CARDOT.
Tome 1. Théorie et exercices; tome 2. Applications pratiques et compléments. Dunod,
Paris 1968.

Le premier volume parait en seconde édition revue et complétée. Il s’agit d’un cours
mettant sous une forme aussi claire que possible I’essentiel des mathématiques modernes
a la portée des praticiens. La matiére de ce premier volume est répartie en six livres:
I. Calcul vectoriel, II. Calcul matriciel, III. Calcul opérationnel, IV. Calcul tensoriel,
V. Calcul des probabilités et statistique, VI. Les méthodes dérivées de la théorie des
ensembles. On trouve dans le livre VI des notions sur la Théorie de 'information et celle
des jeux de stratégie. L'exposé assez succint est illustré d’applications pratiques et 'on
trouve a la fin de ce premier volume un ensemble de 34 exercices dont les solutions sont
données dans le second volume et en forment le livre I. Dans le livre 11, tome 2, intitulé:
Applications générales il est question de fonctions eulériennes, des fonctions de Bessel, de
celles de Green, des polynomes de Légendre, d’équations intégrales, de transformations de
Laplace, de Fourier, de Mellin et de Hankel, de programmation linéaire, des applications
générales de la statistique et des treillis distributifs. Le livre III, tome 2, intitulé: Appli-
cations usuelles donne des applications des théories qui précédent aux mathématiques, a la
mécanique, a la physique, a I’électricité, a la recherche opérationnelle ainsi qu’a I’économie
proprement dite, a I'industrie et a I’agriculture. Le livre IV du second volume est consacré
aux outils du calculateur. Il parle des calculatrices numériques, des calculateurs analo-
giques et des tables numériques dont il donne des extraits. On trouve en appendice de ce
second volume quelques compléments sur les théories de 1'algébre moderne.

S. Piccarp

Vorlesungen iiber Avtinsche Ringe. Von A. KERTEsz. 281 Seiten. $ 7.50. Akadémiai
Kiado, Budapest 1968.

Als artinschen Ring bezeichnet man einen Ring, bei dem jede absteigende Kette von
Rechtsidealen nach endlich vielen Gliedern abbricht (Minimalbedingung). ARTIN hat be-
merkt, dass sich die wesentlichen Ergebnisse der Strukturtheorie der assoziativen Algebren
endlichen Ranges iiber einem Korper auf Ringe mit Minimalbedingung iibertragen lassen.
Diese Entdeckung hat die Ringtheorie sehr befruchtet und zu einer Fiille interessanter
Ergebnisse gefiithrt. Das vorliegende Werk ist zur Einfithrung in diese moderne Theorie
nichtkommutativer Ringe hervorragend geeignet, da die Darstellung sorgfiltig und durch-
sichtig ist und vom Leser ausser einer gewissen Vertrautheit mit der abstrakten Algebra
keine speziellen Vorkenntnisse verlangt werden. Zu jedem Kapitel gehéren Ubungsauf-
gaben, wobei fiir die schwierigeren Anleitungen zur Lésung am Ende des Buches gegeben
werden. Das Literaturverzeichnis umfasst mehr als 200 Titel und ermoglicht ein vertieftes
Studium. Inhalt der einzelnen Kapitel: I. Mengen, Relationen; II. Der Ringbegriff;
III. Ringkonstruktionen; IV. Moduln und Algebren; V. Das Radikal; VI. Allgemeines
iiber artinsche Ringe; VII. Ringe linearer Transformationen. VIII. Halbeinfache Ringe
und vollstindig primire Ringe. IX. Moduln iiber halbeinfachen Ringen; X. Die additive
Struktur der artinschen Ringe; Anhang: Abelsche Gruppen. E. TrosT

Endliche Graphen und Netzwerke. Von R. G. Busacker und T. L. SaaTvy. 410 Seiten
mit 180 Abbildungen. DM 74,—. R. Oldenbourg Verlag, Miinchen 1968.

Die Theorie der Graphen hat sich in den letzten Jahren stark entwickelt, da sie neben
interessanten theoretischen Fragestellungen zahlreiche Anwendungsmaéglichkeiten in den
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verschiedensten Gebieten bietet. Diesen Anwendungen ist mehr als die Hilfte des Umfangs
des vorliegenden Werkes gewidmet, was schon beim Erscheinen der amerikanischen
Originalausgabe 1965 als Vorzug bezeichnet wurde. Zum Verstidndnis der grundlegenden
Begriffe und Methoden geniigen einige Kenntnisse aus der Mengenlehre, der Theorie der
Vektorrdume und der Matrizenrechnung. Da die Verfasser der Darstellung die Form einer
«relativ zwanglosen Diskussion der zentralen Begriffe» gegeben haben, eignet sich das
Buch sehr als erste Einfithrung. Eine Hilfe beim Selbststudium sind auch die zahlreichen
Aufgaben mit Losungen. E. TrosT

Markov Chains with Stationary Transition Probabilities. Von Ka1r Lar CHUNG. Die
Grundlehren der mathematischen Wissenschaften, Bd. 104. 2. Auflage. XIT und 301 Seiten.
DM 56,—. Springer-Verlag, Berlin, Heidelberg und New York 1967.

Dieses Buch handelt von Markov-Ketten; das sind Markovsche Prozesse mit abzihl-
baren Zustandsrdumen. Dabei wird im ersten Teil der Zeitparameter als diskret, im
zweiten dagegen als kontinuierlich vorausgesetzt. Ausserdem werden die Ubergangs-
wahrscheinlichkeiten durchwegs als zeitunabhingig angenommen.

Im ersten Teil geht man aus von den einstufigen Ubergangswahrscheinlichkeiten p, T
Die n-stufigen Ubergangswahrscheinlichkeiten ﬁﬁ.;.') geben allgemein die Wahrscheinlich-
keit dafiir an, dass sich das System nach # Zeiteinheiten im Zustand ; befindet, vorausge-
setzt, dass es sich zu Beginn im Zustand ¢ befindet. Eine Verallgemeinerung davon sind die
Tabu-Wahrscheinlichkeiten Hpg.;?). Wenn H irgend eine Menge von Zustinden bezeichnet,

so bedeutet Hpﬁ.;.‘) die Wahrscheinlichkeit dafiir, in » Ubergingen von 4 nach § zu gelangen,
ohne dabei einen Zustand aus H zu passieren. Das Grenzverhalten von pg;‘) und Hpﬁ.;.’) fiir

n > oo wird studiert. Weiter wird etwa die Verteilung der Zeit des erstmaligen Eintritts
von einem Zustand 7 in einen Zustand j untersucht. Ergodensitze und Varianten des
zentralen Grenzwertsatzes werden aufgestellt.

Dem zweiten Teil liegt eine Ubergangswahrscheinlichkeitsmatrix P(f) = (p; ;(®),
0 <t < oo, zugrunde. Die folgenden Axiome sollen dabei gelten:

(8) P00 =0, (B) 72 pit) =1,
. 1firi=jg
©  Zrul =Py, O Jmey= ot

Analoge Fragestellungen wie im diskreten Fall erfordern hier viel subtilere Methoden.
Daneben werden aber eine Reihe von Fragen behandelt, welche fiir den kontinuierlichen
Fall spezifisch sind. Ein Beispiel dafiir ist etwa das Problem, wann die Vorwérts- und
Riickwartsgleichungen gelten.

Das Buch bringt eine sehr sorgfiltige und ausfiihrliche Theorie der Markov-Ketten.
Auch neueste Forschungsergebnisse sind in sie miteinbezogen ; auf noch offene Fragen wird
in Bemerkungen hingewiesen. Erwdhnen wir zum Schluss, dass der Standpunkt dieses
Buches sehr abstrakt ist; auf die Anwendungsmoglichkeiten der Markov-Ketten wird
nicht eingegangen. H. BUHLMANN

Manuel de statistique biologique. Von R. HELLER. XIII und 296 Seiten mit zahlreichen
Figuren. 38 F. Gauthier-Villars, Paris 1968.

Das Buch ist von einem Biologen fiir die Bediirfnisse der Biologen geschrieben. Die
Darstellung ist leicht fasslich; die mathematischen Herleitungen sind iiberall dort durch-
gefiihrt, wo sie sich ohne zu grossen mathematischen Aufwand geben lassen. Aber auch
dort, wo sie fehlen miissen, ist Wert darauf gelegt worden, die Voraussetzungen genau
herauszuarbeiten. Inhalt: La présentation des données numériques — Calcul des pro-
babilités et distributions théoriques — Problémes d’échantillonnages et d’estimation —
Séries statistiques doubles. — Missverstindlich scheinen uns die Formulierung des Theorems
von Bernoulli (pg. 92) und jenes iiber die « Fréquence limite» (pg. 43), die beide den Eindruck
erwecken konnen, es handle sich um Konvergenz im Sinne der Analysis. R. INEICHEN
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Extremale konvexe Rotationshalbkérperim 1]/ M-Problemdes R ;')

Herrn Prof. Dr. H. HADWIGER in Freundschaft zum 60. Geburtstag

Eine Ebene senkrecht zur Rotationsachse schneidet einen beliebigen konvexen
Rotationskdrper (wenn iiberhaupt) in einer Kreisscheibe. Lisst man die Ebene den
Koérper von einem Ende zum andern monoton durchlaufen und ist die Folge der
Radien monoton?), so bezeichnen wir den Korper als konvexen Rotationshalbkirper.
Sein grosster Radius, am Rande liegend, heisse a. % ist die Lange des eventuell vor-
handenen Randzylinders.

Die vorliegende Note bringt 8 Ungleichungen fiir die oben definierte Korper-
klasse H,. Aus den ersten 4 lassen sich die Extremalkorper herleiten, welche bei vor-
gegebenem Integral der mittleren Kriimmung M und ebensolcher Oberfliche F das
absolute Maximum des Volumens V aufweisen. Es sind dies

a) Kappenkoiper des Halbkugelzylinders von der festen Zylinderlinge A* =
a (2 — w/4),

b) Halbkugelzylinder mit 2* 2> 7 > a (n — 2)/2 = h**.

Interessanterweise sind die Kappenkorper der Halbkugel nicht extremal3).

1. Fiir die Korperklasse H, hat Herr H. HADWIGER eine einheitliche Integral-
darstellung der Masszahlen M, F, V angegeben, welche die bequeme Herleitung von
8 linearen Ungleichungen gestattet. Sie lautet:

nf2 1)
2
M = f(a—rsinzq)) CO:; +ﬂ2a+nh,
0
7f2 d
F:n/(eﬂ—rzsin(p) cosq; +7rat+2makh, (1)
0
a2 nf2>¢ =0
V=3 (a3—r)cosz +math, a=rg) =0,
0 h>=0.

1) Die Anregung zu dieser Note stammt aus einer Vorlesung von Prof. H. HApwicer: Elementar-
mathematik vom hohern Standpunkt aus, Sommer 1963.

?) Durch passende Wahl der Durchlaufungsrichtung lasst sich immer erreichen, dass die Radienfolge
monoton nicht zunehmend ausfillt. Bei der gewihlten Definition sind Koérper mit zylindrischem Endstiick
inbegriffen.

3) Obschon die Halbkérper die einfachsten Korper sind, liegen die Verhéltnisse doch wesentlich kompli-
zierter als in der vollen Klasse K, aller konvexen Rotationskorper: Dort einerlei Maximalkérper, ndmlich
die Kappenkorper der Kugel sowie monotones y(x), hier zweierlei Maximalkdrper, und y(x) weist ein inneres
Maximum auf.
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2. Durch geeignete Kombination der Ausdriicke (1) erhalten wir die 8 linearen
Ungleichungen?)
la F<2aM—n(n+1)a?, ?)
2a 3V<3a®M —n(8+ 3n)a’2,
33 6V <3aF—-5mna3,
4a 3V<2aF—-a*M—n(4—n) a2,

M>=2n(#r/2+2)a

52 FzaM—n(n—2)a?, 9
6a 3V =a®M — a2ad,

72 3V >aF —2nad3,

8 V=aF—aM+an(x—2) ad.

Die ersten 4 sind gegeniiber den entsprechenden der Note?) modifiziert und etwas
unhandlicher. Die letzten 4 konnten unverdndert iibernommen werden, weil die dem
Gleichheitszeichen zugeordneten Koérper Halbkorper sind.

Das Gleichheitszeichen steht in den Ungleichungen 1a bis 3a fiir den Halbkugel-
zylinder, insbesondere also auch fiir die Halbkugel, in 4a dagegen allgemeiner fiir
Kappenkirper des Halbkugelzylinders, insbesondere also auch fiir die Kappenkorper
der Halbkugel. In den Ungleichungen 5a bis 7a gilt das Gleichheitszeichen fiir die
Kreisscheibe, in 8a dagegen allgemeiner fiir Zylinder.

3. Es ist sehr zweckmassig, die Ungleichungen (2) auf Koordinaten im Blaschke-
diagramm umzurechnen, wobei man den Formkoeffizienten

A=4malM (0< A< 4[n)

M >n%a

einfithrt. Man erhilt:

1b xgzz—i%ﬂlﬂ,
2 y<3p— B30 5
2 . 0<1<8/(n+4)

3b v <=5 — =28,

M 2 8
4 y<24-x—z2— B g

©)

sboxza- T2,
6b y}ﬂz——'}l",
- 2 0<i<4n

y>}~‘x 7»
8b y>34.-x—32+ 0= 3

4) H. Hapwicer: Elementare Studie iiber konvexe Rotationskorper. Math. Nachrichten, 2. Bd.,
Heft 3/4, Marz/April 1949. Die vorliegende Note stiitzt sich auf diese Publikation, die alles Grundsitzliche
enthilt. Insbesondere werden die Bezeichnungen zum grossten Teil iibernommen. Die Darstellung ist abge=-
kiirzt gehalten.

5) Herr HADWIGER hat auch fiir das restliche Intervall 7 (#/2 + 2) @ > M > #® a Ungleichungen ge-
funden, die allerdings nicht linear sind.

8)8) 1a—4a sowie 8a sind auszichinvariant, 4a ausserdem kappeninvariant.

%) 5a-7a sind durch Herrn HADWIGER noch wesentlich verschirft worden.



H. Bierr: Extremale konvexe Rotationshalbkérper im V, I, M-Problem des R, 123

Mit dem Gleichheitszeichen handelt es sich bei den Ausdriicken 3) um Strecken.
Dieselben beranden in der Diagrammebene einen von A abhingigen Sechseckbe-
reich Pyg() (Figur 1).

Fiir festes A ist nun zwar Pg(A) festgelegt, nicht aber der genaue Bildbereich aller
zuldssigen Korper, Teilbereich von Pg(4). Zwar lost 4b mit der Aussage iiber die
Korper, welche das Gleichheitszeichen beanspruchen sowie unter Beriicksichtigung von
1b und 5b das Maximumproblem von y(x). Unsere Kenntnisse tiber das Minimum von
y(x) aber sind sehr liickenhaft, gehért doch nur gerade der Bildpunkt des durch a und
A eindeutig bestimmten Zylinders zum scharfen Bildrand. Fortan lassen wir das Mini-
mum aus dem Spiel und beschiftigen uns ausschliesslich mit dem Maximum von y(x).

4

£

(A
Figur 17)

Figur 2

4. Es geht jetzt darum, den obern Rand des Vereinigungsbereichs aller Pg(4) zu
ermitteln. Zu diesem Zweck studieren wir die Abbildung

y=24x—2—(* )R,
A (1‘{—3) B<x<2i— (3—}1) a, 4)
0<i<—,
Enveloppenbildung liefert:
N T Y N N B R e 5)

Beide Koordinaten wachsen mit A monoton. Wegen dy*/dx* = 2 4 ist die Enveloppe
von untzn konvex und liegt deshalb ganz nicht unterhalb der betrachteten Strecken-
schar (4). Also gehort sie (mindestens teilweise) zum obern Bildrand. Fiir die Enveloppe
gelten die Relationen:

4F=4aM+ 37 (4 —m)a?,

6
3V=a’*M+n (4 —mn)ad. (©)

7) Pg(A) ist nicht maBstéblich gezeichnet. Fiir die Halbkugel gilt speziell:

L T

S lmr o YSTava’

4b < 10 x 128 . 5b x>
YSava (m+ 48"
256

b > X — ;  8b
™y>oTy (0 + 4)3

oy 12, 3
n+ 4 (7w + 4)2
8 (8—nm) . 64 (4;7})_;
(e + 4)% (r + 4)3
24 192 (8 — m)
VIR T Tma
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(6) ist kappeninvariant. Es geniigt deshalb, die Masszahlen dcs Halbkugelzylinders

7 a®

=5 (2+39,
F=nma*(3+4+2q), qg=hla>0, (7)
M=mna(r?2+q) .

V=

in (6) einzusetzen, um das auf den ersten Blick iiberraschende Ergebnis

| g*—2— s (8)

|

zu erhalten. o

Nun zeigt sich aber, dass die gefundenen speziellen Kappenkérper des Halbkugel-
zylinders nur das Teilintervall 0 << A < 16/(16 + n1) beanspruchen. Im restlichen
Teilintervall 16/(16 + zn) << A < 8/(4 + @) umbhiillt (5), wie man leicht nachpriift,
nicht mehr die betrachteten Strecken, sondern ihre rechtsseitigen Verlingerungen.
Es ist deshalb die von A4 (Figur 1) beschriebene Kurve ins Auge zu fassen, also die
Bildkurve der Halbkugelzylinder. Fiir sie gilt:

e 2= 0 g
9
. (84 3 =) . 16 8

y**—3l2——~—8—13, T \<l<4+—n,

Die Kurve (9) durchlduft fiir A4, = 16/(8 + 3 x) einen Scheitel beziiglich der x-Achse,
hernach fiir A; = 4/(1 + #) einen Scheitel beziiglich der y-Achse und miindet mit
A = 8/(4 + =) in den Bildpunkt der Halbkugel ein (Figur 3). Da von S, an die Kurve

riickldufig ist und kein Doppelpunkt existiert, fallt der Teilbogen §3—I; fur das
Maximum von y(x) aus?®).

Endlich ist noch das Restintervall 8/(4 + ©) > 4 > 4/n zu erledigen®). Eine weit-
laufige, in dieser Note wegzulassende Untersuchung zeigt, dass (Figur 2) nicht 4,
der dem Extremalkorper zugeordnete Punkt, sondern B entscheidet. Die Koordinaten
der B-Kurve fallen mit wachsendem A monoton, und diese Kurve verlduft weit unter
dem obern Bildrand (somit auch die 4-Kurve).

Damit kénnen wir folgendes Schlussergebnis formulieren:

Im Intervall 0 << x < x, besitzen spezielle Kappenkorper des Halbkugel-
zylinders, im Intervall x, < x < x, Halbkugelzylinder mit 4* > k > h** (10)
bei vorgegebenem x das absolute Maximum von y (Figur 3).19)

#) Dass kein anderer Rand in Frage kommt, folgt aus der Untersuchung von y; = 0. Uberdies kann
direkt berechnet werden, dass die Steigung der Halbkugelzylinderkurve im zulissigen Intervall kleiner ist
als 2 A, die Steigung der Strecken. Ferner kann man zeigen, dass die beiden Kurven in S, tangential an-
schliessen, so dass keine Ecke auftritt.

9) Vergleiche H. HapwiGger: Math. Nach. 2, 114 (1949); 13, 19 (1955); 14, 377 (1956); Math. Annalen
122, 175 (1950); Abh. math. Sem. Hamburg. Uni. 18, 38 (1952); El. Math. 12, 101 (1957).

10) In (5) und (9) liesse sich noch A eliminieren, und man erhielte Ungleichungen in x und y. Dieselben
fallen aber im Gegensatz zum analogen Problem in der vollen Klasse Kgkompliziert und sogar irrational aus,
weshalb wir darauf verzichten. '
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Punkt A x y q

16 | 32(14—a) 256 (32 — 3 ) B

St Tega {16 + =)? (16 + )® Z—m4>1
16 32 (6 + @) 256

Se 8§+ 3n (3n+ 8)? (8 + 37)? w4 <1

4 4 8(3x— 2) _

Ss 1+ =n 1+n T+ n)® w2 =1
8 48 256

Tl ava | wewr | dsap 0

<Ay <Ay <Ay; Xy < Xy < Xy < Xg.
k(1)

iil |
il
0(g0) A— Pgh%)  Kxx]

Figur 3 (maBstiblich)

Damit ist aber auch bewiesen, dass die gefundenen Extremalkdrper bei vorgegebenem
M und ebensolchem F grosstes Volumen V' aufweisen?).
H. Bigri1, Bern

11) Es stellt sich noch die Frage, ob man die Klasse der Vergleichskorper auf konvexe Nichtrotations-
korper erweitern konnte. Dies ist zu vermuten und kann in einem (y, z)-Diagramm mit Hilfe der Schwarz-
schen Abrundung in gewissem Umfang bewiesen werden.
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Ungel6ste Probleme

Nr. 51. Es bezeichne A < R einen eigentlichen konvexen Koérper des drei-
dimensionalen euklidischen Raumes R und A’ den Normalriss von 4 in eine hier
fest gewdhlte, und auch nachfolgend stets gleichbleibende Ebene E < R. Da A innere
Punkte aufweist, trifft dies auch fiir den Eibereich A’ beziiglich seiner Trigerebene E
zu. Bedeuten V und F bzw. f und / das Volumen und die Oberfliche von 4 bzw. den
Flacheninhalt und den Umfang von 4’, so ist offenbar V, F, f, 1 > 0.

Es liegt auf der Hand, die Quotienten ¢ = F/V und ¢’ = [/f, also die Verhiltnisse
von Mass und Randmass des Kérpers A und seiner Projektion A’, miteinander zu ver-
gleichen. Fiir einige einfache Testfille sollen die Befunde festgestellt und in der nach-
folgenden Tafel eingetragen werden.

I. A = Kugel vom Radius 1; II. 4 = Wiirfel der Kantenlinge 1, E parallel zu einer
Seitenfliche; III. A = regulidres Tetraeder der Kantenlinge 1, E parallel zu einer
Seitenflache; IV. 4 = Kegel vom Radius 1 und der Héhe 1, E parallel zur Grund-
fliche; V. 4 = Kegel vom Radius 1 und der Héhe 1, E orthogonal zur Grundfldche.

A q q

I 3 2

II 6 4

111 6/6 4y3

v 34 3)2 2

v 3+ 3)2 2+ 2)2

Wie unmittelbar ablesbar, gilt in diesen Fillen stets ¢ > ¢’ und viele weitere Experi-
mente wiirden die Vermutung bekriftigen, dass hinter diesem Erfahrungsresultat ein
allgemein giiltiger Satz stehen konnte, wonach fiir den dhnlichkeitsinvariant ange-
setzten Quotienten

p=4qlg' = Fi[Vi (1)

stets p > 1 gelten diirfte. Ein Indiz liefert auch die Feststellung, dass dies fiir
rotationssymmetrische Eikorper jedenfalls dann zutrifft, wenn E orthogonal zur
Rotationsachse gewidhlt wird. In der Tat gilt nach einer bekannten Ungleichung?)
6V <a(3F —4ma?, wobei a den Aquatorradius von 4 anzeigt. Der Normalriss
A’ ist dann kongruent mit einem Aquatorkreis von A, sodass also f=ma? und
l=2ma gilt. Mit einfacher Umrechnung resultiert jetzt p > 1+ (2w 4a3/3 V),
wobei Gleichheit fiir ein Zylotop, d.h. fiir einen Zylinder mit zwei aufgesetzten Halb-
kugeln besteht.

1) Math. Ann. 722 (1950); Seite 175 (Ib).
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Wir prizisieren nun die aufgeworfene Frage, indem wir mit dem Ansatz
po = inf p = inf (Ff/V1) (2)

das Problem aufzeigen, das auf alle eigentlichen Eikorper A des gewdhnlichen
Raumes R bezogene Infimum p, des Quotientenverhiltnisses

b= p(4) = [F(A)[V(A)]/UA)F(A)] 3)

zu ermitteln.
Zunichst kann man leicht erkennen, dass

po<1 #)

ausfallen muss. Ist nimlich 4 ein gerader Kreiszylinder vom Radius 1 und der Hohe 4
und wihlt man E orthogonal zur Rotationsachse, so ergibt sich p = (1 4 A)/A, sodass
mit 4 - oo auf (4) geschlossen werden kann.

Nach der eingangs erorterten Hypothese, wonach stets p > 1 gelten miisste,
wiirde andererseits p, > 1 sein, sodass sich mit p, = 1 die vollstindige Lésung des
aufgeworfenen Problems kennzeichnen liesse.

Leider ist aber die Vermutung, die sich mit der Musterung vieler Beispiele auf-
dringt, falsch!

Dies wollen wir nachfolgend zeigen: Es sei K ein Kreisbereich vom Radius 1,
D ein in der parallelen Ebene E im Abstand % liegendes reguldres Dreieck der Seiten-
linge 2)/3, derart, dass die Verbindungsgerade des Zentrums von K mit dem Schwer-
punkt von D auf E orthogonal steht. Der Normalriss von K in die Ebene E fillt dann
mit dem Inkreis von D zusammen. Die konvexe Hiille von K und D im Raum R ist
ein allgemeines Prismatoid P mit der Deckfliche K, der Grundflache D und der Hohe %
(vgl. hierzu die Figur).

Fiir die erforderlichen Rechnungen ist es niitzlich, das Prismatoid P durch die
Schnittbereiche S(¢) zu kennzeichnen, die von den Ebenen parallel zu E im Abstand
th (0 <t < 1) von der Grundebene E aus P ausgeschnitten werden. Es ist nimlich
S(t)= (1 —1¢) D+t K, wobei die angeschriebene Verbindung die Minkowskische
Linearkombination bezeichnet. S(¢) ist der dussere Parallelbereich eines reguldren
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Dreiecks der Seitenlinge 2)/3 (1 — ¢) der Spanne ¢ Fiir Flicheninhalt und Umfang
ergeben sich die Formeln

) =331 —8) +at U)=6y3(1—1+2nt.

Offensichtlich sind f= f(0) = 3)/3 und ! = /(0) = 6}/3 die Masszahlen des Normal-
risses P’ von P. Mit passender Integration gewmnt man
V=[6)3+n)/3]k,

n/3

F=3V§(1+h)+n+3/;/1+h2—4cosw (I = cosw) dw .

Mit naheliegender einfacher Abschitzung resultiert
F<@BY3+a)Q+y1+m),

sodass sich gemiss (1)

P <

9Y3 + 3a <1 + VW)

12)/3 + 2n h

ergibt. Mit 4 > oo schliesst man nach (2) auf
< (9Y3 +37)/(12)3 + 27) ~0,924..., (5)

sodass also jedenfalls p, < 1 ausfillt.

Schliesslich wollen wir noch darauf hinweisen, dass sich die Frage nach dem Wert
von p, nicht etwa dadurch trivialisiert, dass p beliebig kleine Werte annehmen kann,
sodass p, = 0 wire, sondern dass gezeigt werden kann, dass stets p > 1/2 gilt. Der
Nachweis kann an dieser Stelle nicht gefithrt werden. Im Hinblick hierauf wird mit
Sicherheit

> 1/2 (6)
gelten. Das hier vorgelegte ungeldste Problem lautet also: Welches ist der Wert des
mit (2) angesetzten Infimums p, (0,500 < p, < 0,924)? H. HADWIGER

Kleine Mitteilungen

An Elementary Set Partition Problem

In an earlier note R. SCHNEIDERREIT [2] considers the problem of distributing the
numbers 1, 2, ..., n into two boxes so that not more than m consecutive numbers are in
the same box; permuting the numbers in a box or interchanging the boxes does not give
a new distribution. If F, (n) denotes the number of such distributions it is shown that

F,m=F, n—-1)+4+...4+ F, (n—m), n>m (1)
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with F (n) = 2"=1for 1 <# < m. In the particular case m = 2 relation (1) with F,(n) =
f(n) becomes f(n) =f(n — 1) + f (n — 2) with f(1) = 1, f(2) = 2, f(n) being the well-
known Fibonacci number.

By treating the above problem as a partition problem a more general result is herein
obtained. Indeed, the method of proof is quite elementary and direct.

Denote by g,,(n, #), m, n, 7 positive integers, the number of partitions of {1, 2, ..., n}
into # non-empty mutually disjoint subsets or parts such that no part contains more than
m consecutive integers. Equivalently g, (#, #) is the number of ways of distributing »
unlike numbered objects 1, 2, ..., # into # like cells such that no cell is empty and no cell
contains more than # consecutively numbered objects. Clearly g, (%, #) = 0 when # < 7.

Assume m < n. In a partition counted by g, (%, #), either object % is in a part not
containing object #» — 1, or object » is in a part containing object » — 1 but not object

n — 2, or object » is in a part containing# — 1, # — 2butnot®# — 3, ..., or objectnisina
part containing# — 1, » — 2, ..., n — m + 1 but not » — m. Now the number of partitions
such that #, » —1,...,n —4+ 1 but not » —4, 1 <¢ < m, are in the same part is

G (0 — i, 7 — 1) + (r — 1) g, (n — 7, 7) 2)
since the first number counts those partitions for which #, » — 1, ..., % — i 4+ 1 are in
the same part with no other objects and (» — 1) g,, (» — 14, #) counts those partitions for
which#,# — 1,...,# — i + 1 but not » — ¢ are in the same part with that part containing

at least one other object. Summing (2) over all4, 1 <1 < m we have for m < % the relation

gm(n,r)zgm(n—l,rw1)+gm(n——2,7—1)+~+gm(n—m,7—1)—|—
+—-1)[g,m—-1,7+g,n—2,7+ - +g,(n—m7)]. (3)
With » = 2 in (3) we have

Letting F, (n) = g,(n, 1) + g,,(», 2), i.e. the number of partitions of {1, 2, ..., n} into at
most two parts with not more than m consecutive integers in any part, then for m < #,
gm(n, 1) = 0 and from (4) we obtain relation (1).

Defining g,,(n, ) = 0 when » < 0, then relation (3) holds for all positive integral
valaes of m. When m > n — r there are no restrictions on the partitions and g,,(x, 7) is
simply the number of partitions of a set of » elements into » non-empty, mutually disjoint
subsets or parts. With m = » — » 4+ 1, and S(n, ¥) = g,,(n, #) we have from (3) the relation
Sm,7)=Sn—1,r—1)+Snm—-2,r —1)+--+Sr—1,r—-1) +

=[S —1,)+SH—-27)+ +SFr—17)]. (5)

Since the number of ways of distributing » unlike objects into » unlike cells with none
r—1

empty is easily seen to be, by the principle of inclusion and exclusion, 2 (— 1)/ (;) (r—1)n,
7=0

we have the known expression (cf. [1])

. 1 '3 v .
St 1) = 7y X 1 (7) =
Therefore for m = n, F,(n) = S(n, 1) + S(n, 2) = 2"~ as noted in [2]. It is easy to see
that (5) is equivalent to the relation
Sm,r)=Sn—-1,r—1)4+7rS(n—1,7) (6)

where S (n — 1,  — 1) counts those partitions with % in a part by itself whiler S (» — 1, 7)
counts those partitions with % in a part containing at least one other element. Of course
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the numbers S(n, ) with », » integers, S(n, ) = 0 for » > » and » < 1, are the well known
Stirling numbers of the second kind (cf. [1]) sometimes defined by

n
ZS(n, A =, n>o0
r=1

where " = x (v — 1) ... (v — v + 1).
MorTtoN ABRAMSON, York University, Toronto, Canada
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Two More Tetrahedra Equivalent to Cubes by Dissection

Some tetrahedra can be divided by plane cuts into a finite number of pieces which can
be assembled to form a cube. A tabulation of the known cases was published by the
author [1]. Itincluded the findings of HiLL [2] and SYDLER [4]. Since then, a supplementary
list of five new tetrahedra was published by LENHARD [5]. The list is not complete. Two
more cases, described in the following, were discovered in connection with another problem.

A classic problem in polyhedra is the determination of those polyhedral shapes which
can fill space by replication of a single shape. As a special case, SOMMERVILLE derived the
space-filling tetrahedra [6]. Another modification is the allowance of the use of isometric
tetrahedra; that is, those tetrahedra which are mirror images of each other. These were
described recently by Davigs [7].

The following definitions and symbols will be used in the preparation of a tabulation
of the solutions.

DEFINITION : A space-filling tetrahedron (designated by SFT) is one which, together
with other congruent tetrahedra, can fill space without overlapping.

DEFINITION: A space-filling twin-tetrahedron (designated by SFTT) is one, which
together with congruent tetrahedra and their mirror images, can fill space without
overlapping.

Table 1. Tabulation of space-filling tetrahedra

No. Description Type Illustrated by

SOMMERVILLE [6] Davigs [7]

1 Hir, first type SFTT Top. p. 51
2 HivLy, first type, o = 7/3 SFT Figure 7 Top. p. 51
3 Hiry, second type, a = /4 SFT Figure 9 Bot. p. 51
4 Hirr, special SFT Figure 8 Bot. p. 51
5 SOMMERVILLE SFT Figure 10 Bot. p. 51
6 Daviges (1/2 of SOMMERVILLE) SFTIT Bot. p. 51

Replications of the foregoing space-filling tetrahedra, Nos. 2 to 5, can be assembled
to form a parallelepiped. Therefore, each such tetrahedron is also dissectible to form a
cube, as was shown by SYDLER [3, pp. 269—-270]. Another exposition of this proof is given
by Bortvanskil {11, pp. 60-63]. The tetrahedron, designated as No. 6, can be cut into
twelve pieces to form its isomer, as was shown by Bricarp [8]. Hence, two tetrahedra of
this type can be made into one of No. 5. Therefore, all of the tetrahedra in Table 1 are
dissectible to form cubes. However, Numbers 5 and 6, described by SOMMERVILLE and
Davies, have been overlooked in the previous tabulations of dissectible tetrahedra.
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The list of all the tetrahedra which can be dissected to form cubes, known at the
present time, is given in Table 2. It is not known whether this list is exhaustive. BRICARD [8]
and DEBN [9] have shown that a necessary condition on the dihedral angles 4, B, C, D,
E, F, now known as one of Dehn’s conditions, requires that

mA+myB+mgC+myD+m;E+mgF=Fkumn,

where the m; and % integers. SYDLER [10] has shown that this condition, plus another
DEenN condition on the lengths of the edges, is sufficient. However, it should be noted that,
in Table 2, at least two of the dihedral angles of each tetrahedron are rational fractions of x.
Furthermore, in all of these cases, m X' A = k n. This is a stronger condition than the
DEnN condition on the angles in which the coefficients may be different integers. It is an
open question whether this stronger condition is necessary.

An excellent summary and exposition of the earlier papers on the subject of the
dissection of polygons and polyhedra to form other polygons and polyhedra is given by
BoLrtyanskir [11].

In the table, 7 = (V—S_ + 1)/2, « is a free variable,

o &~ 50° tana,=)7/5; cos2a; = — 1/6;
%y~ 65° tanoy= /9 — 2)/5; cos4a, = — 3()/5— 1)/20 = — 3 -1/10;

ag ~ 75° tanag=}/9 + 2/5; cos4ay = 3(/5 + 1)/20 = 3 7/10;

ay & 101°, tana,= — 3 — J/5 = — 2 73;
oy &~ 117°, tanag= — 2;
ag ~ 143°, tanog= — 3 + J/5 = — 2772 a, + o5+ ag = 360°;

o, A~ 48° cosa, = 2/3.
M. GoLDBERG, Washington, D.C.
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k-Tuples of the First n Natural Numbers

In connection with the problems of infinite sets investigated by ErRpGs and HayNaL
in [1], ErRDOs proposed a problem of the k-tuples of a finite set. This problem in its most
general form can be formulated as follows. Take a system of k-tuples of the first #» natural
numbers. Suppose that the set of the 4,-st, i,-nd, ..., i,-th (/< & — 1) numbers of an arbi-
trary k-tuple of the system does nof coincide with the set of the j;-st, j,-nd, ..., j,-th numbers
of another %-tuple of the system. At most how many k-tuples can the system contain ?
In this paper we solve the problem in a special case.

Denote by f(n, k) the maximal number of k-tuples which can be chosen from the first »
numbers (1 < 2 < #) such that the last £ — 1 numbers of a k-tuple do not coincide with
the first £ — 1 numbers of another selected &-tuple.

It is trivial that f(», 1) = .

It will be proved that if 2 > 2 then

n—k
A [ 2 ] n—1—2m
tn=3 (")
m=0

The proof uses induction on #. If » = &, f(k, k) = 1. If » = k + 1, only the k-tuple of
the first and the k-tuple of the last £ numbers cannot be selected at the same time,
consequently f(k + 1, k) = k. Thus the statement holds for » = &, 2 + 1, and it may be
supposed that # > k& + 2 and it holds for the numbers less than ».

Put N={1,2,...,#n} and M = {2, 3,...,n — 1}. Consider a maximal system R of
k-tuples of N, satisfying the condition. Denote by » a (¢ — 2)-tuple. xC N and x ¢ M
will mean that the elements of » are in N and M, respectively. Divide the (¢ — 1)-tuples
of N into two classes: A and B. If a (¢ — 1)-tuple consists of the first £ — 1 elements of a
k-tuple of N, then put the (2 — 1)-tuple into A, otherwise into B. Denote by «(x) the
number of (£ — 1)-tuples of ¥, the last 2 — 2 elements of which form %, and similarly f(x)
denotes the number of (¢ — 1)-tuples of B, the first £ — 2 elements of which form .
Because of the maximality of 9 if » consists of the last £ — 2 elements of a (¢ — 1)-tuple
of U and it is at the same time the set of the first £ — 2 elements of a (¢ — 1)-tuple of B,
then N contains the k-tuple whiclr is the union of these two (k¢ — 1)-tuples. It is obvious
that this is a unique representation of the elements of : as certain unions of elements of A
and B. Consequently

= (%) B(x)

xCN

If % contains 1, a(x) = 0 and if » contains #, ff(x) = 0. Thus it can be supposed that
% C M in the sum above. On the other hand if » C M, the (¢ — 1)-tuple consisting of 1
and of the elements of » must belong to A. So if «’(x) denotes the number of (¢ — 1)-tuples
of % in M, having » as the 1st 2 — 2 elements, then a(x) = a’(x) + 1. The number p’(x) is
defined similarly and B(x) = p’(») + 1. But then

) =D () Bl) =) (a'(x) + 1) (B'(x) + 1)

xCM “CM
:é;a %) B’ () +2’ 9+ B0 té':@n_z k)+(2:i)

N 1



134 Kleine Mitteilungen

Using the inductional hypothesis this gives
n—k
[+

fin k) < 2 (n -—kl_—12m).

m=0

To prove the converse inequality take the following system R* of k-tuples of N.
If f, 1 and m are the first, last and an arbitrary middle element of a %-tuple, respectively,
then M* contains this A-tuple if and only if » — I < m < n — f. Following the previous

n-k
e . . . [ 2 ] n—1—2m

proof it is immediate by induction that Rt* has exactly > ( ho1 ) elements.
m=0
This proves the required result.

Now consider systems of k-tuples of N satisfying the following condition: there are no
two k-tuples in a system, say », and #x,, such that the last element of %, is a middle element
of %, and the first element of x, is a middle element of »,. Denote by g(», k) the maximal
number of elements of these systems.

As this condition is much stronger then the previous one, f(n, k) > g(#», k) must hold.

It is fairly surprising that equality holds in this inequality:
f(n, k) = g(n, k).

This follows simply from the construction given above, since Rt* satisfies the stronger
condition too. For suppose that f,, f,, /;, /, are the first and last elements of two k-tuples
of M* for which f, is between f, and /,, furthermore [, is between f, and /,. But then
n—1, </, Iy <nm—f,, consequently n — f, < !, < n — f,, so this shows there are no
such two k-tuples, i.e. N* satisfies the stronger condition.

It is likely that the complete solution of the original problem is very difficult and it
needs an entirely different method.

BELa BorLoB4s, Research Institute of Mathematics, Budapest
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Sur 1’équation diophantienne (»2—1)2 + (y2-1)% = (22-1)2

W. SIERPINSKI a exposé dans [1], p. 55, les quelques résultats connus concernant
I’équation:
-1+ (2 —1)2= (22— 1)2 9, zentiers > 1, (1)

et noté que, pour x, y, z impairs, ¥ =2a+ 1, y=2b+ 1, 2= 2¢ + 1, cette équation

pouvait s’écrire:

B+ t=12 ab centiers>0, = u_(zgf—_l) (2)

Dans une précédente note [2], nous avons démontré I'impossibilité de (2) si deux au
moins des trois nombres a, b, ¢ sont consécutifs. ’
Supposant ¥ < ¥ < 2, ce qui est loisible puisque x * y, nous prouvons cette fois que:

(A) (1) est impossible avec y — » = 1.
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(B) (x, 9, 2) = (10, 13, 14) est la seule solution de (1) avec z — y = 1.
(C) (1) est impossible avecy —xouz—youz —x = 2.

(A) Nous allons montrer que 1’équation:
#—1)24 (2 — 1)2=u® %, 9, uentiers > 1, (3)

n’a, pour y — x = 1, que la solution (¥, ¥, u) = (3, 4, 17). Le résultat s’ensuivra immédiate-
ment puisque 22 — 1 + 17,

Avecy = x + 1 donc » impair, # = 2 v + 1, (3) devient ¢, = t2. Or W. LJUNGGREN [3]
puis J. W. S. CassELs [4] ont montré que ¢, ¢, t; (= #2) sont les seuls nombres triangulaires
qui sont les carrés de nombres triangulaires. Donc » = 3, v = 8, u = 17.

(B) Siz=y+ 1, I'équation:
u? 4+ (y2 — 1)2 = (22 — 1)  u, y, zentiers > 1, (4)

peut s’écrire (2y+ 1) (2924 2y — 1) =u% Posons P=2y+ 1, Q=292+ 2y — 1.
Ona P Q= u?avec P, Q entiers > 0; d’oul P = dP?, Q =dQ}avecd = (P, Q) et P, Q,
entiers > 0. Comme P? — 2 Q = 3 on obtient finalement:

a?P} —2dQ3}=3 avec d=1lou3.

Comme d, P, @, sont impairsona 1 — 2d =3 (mod. 8) doncd =3et3 P} — 20} =1,
équation qui vient d’étre résolue par R. T. BumByY [5] et qui donne (P,, Q,) = (1, 1) ou
(3, 11). La premiére solution est a écarter car elle conduit & ¥ = 1. La seconde fournit
(u, ¥, 2) = (99, 13, 14), seule solution de (4) avec z=y 4 1. En revenant a (1), on a
x* — 1 = 99 soit ¥ = 10.

(C) 1°) Siz— x = 2,alorsy — x = 1 et (1) est impossible d’aprés 4.

2°) Siy — x = 2, ¥ et y ont méme parité et z est impair. x et y ne peuvent étre pairs car
(22 — 1)2 = 2 (mod. 4). Ainsi (1) a lieu avec », y = x + 2, z impairs et implique (2) avec
b= a + 1, ce qui est impossible d’aprés [2].

Remarquons qu’en revanche I’équation (3) posséde une infinité de solutions avec
y = x + 2 car alors, ¥ étant impair pour la méme raison que ci-dessus, ¥ = 2p — 1,
p entier > 1, elle s’écrit 32 p2? (p2 + 1) = u?, d’ou on tire successivement 2 (p? 4+ 1) = v2,
v pair > 2, v = 2 w, soit finalement I'équation de PELL p2? — 2 w? = — 1, de solution
fondamentale (p, w) = (1, 1).
3°) Siz — y = 2, les solutions de I’équation (4) sont (u, y, 2) = (83, 202 — 1, 202 + 1),
v entier > 1, car cette équation devient u? = [2 (y + 1)]3. Alors (1) a lieu avec #, y, z =
¥ + 2 impairs et implique (2) avec ¢ = b + 1, ce qui est impossible d’aprés [2].
M. E. BranpaIN, Lille
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Aufgaben

Aufgabe 545. Es sei S eine endliche Menge mit #» Elementen (# > 1). Man bestimme
die kleinste natiirliche Zahl f(») mit folgender Eigenschaft: Unter f(n) verschiedenen,
beliebig ausgewdhlten (echten) Teilmengen von S gibt es immer eine, die zu zwei andern
elementefremd ist. P. ErRDOs

Losung des Aufgabenstellers: Wir benutzen den folgenden Satz (Erpés-Ko-Rapo,
Intersection Theorems for Systems of Finite Sets, Quarterly J. of Math. 1961, p. 313-320):
Essei |S|=mn, B;< S, |B;| <k < n/2 1<7<t B,0B;j+ 3,1<i<t1<<j<t.
Dann gilt max ¢ = (%-}).

Nunsei 4; < S, 1 €4 < & ein Mengensystem mit der Eigenschaft, dass zu jedem A4,
héchstens ein A, ; mit 4,0 4; = @ existiert. Wir wollen % von oben abschitzen.
A,l, Ay, ..., A, sei daSJenlge Teilsystem, dessen Mengen folgende Bedingungen erfiillen:

Al <nf2,1<j <

2 Das Komplement A4, gehort auch zum Teilsystem.

Offenbar gilt 4;,0 4;, + g 1 <u < v <7 denn andernfalls hdtte man 4;,N 4;, =
A; ﬂA_ =g entgegen der Voraussetzung iiber die A4;. Die A erfiillen also die Be-
dlngungen tiir die B; im Satz, wobei k& = [#/2]. Somit ist

r < ([7:;2_]1_1) und kg 2814 ([7:;2“]{1)’

da die Anzahl der Teilmengen von S, die mehr als #/2 Elemente enthalten, héchstens
2n—1 jst. Man sieht leicht, dass diese Schranke fiir £ bestmoglich ist. Fiir » = 2 m bilden
die Mengen mit mindestens m Elementen ein System {4,}. In diesem Fall ist

e (o () - e ()
2 m m— 1
Fiir » = 2m 4 1 wird ein System {4} geliefert durch die Mengen mit mindestens m + 1

Elementen und alle Mengen mit » Elementen, die ein festes Element enthalten.
Wir haben somit das Resultat

=t (55 1)

Aufgabe 585. Die Eckpunkte 4 ; (i = 1, 2, 3) eines gegebenen Dreiecks sind die Mittel-
punkte von drei Kreisen, die durch einen Punkt P gehen. B, sei der zweite Schnittpunkt
der Kreise um 4, ,,, 4;,, (4, =4,, 45 = 4,).

1. Konstruiere die Punkte P, fiir die das Dreieck B,B,B, gleichseitig ist.

2. Fiir welche Punkte P liegen B,, B,, B, auf einer Geraden ?

3. Beweise, dass die Umkreise der Dreiecke 4 ;B;,;B;,, (i = 1, 2, 3) sich in einem Punkt
schneiden. J. BrejcHA, Brno, CSSR

Lisung : Vorbemerkung: Der Winkel a = (4 XB), 0 <« < &, zweier Geraden 4 X und
BX sei derjenige Winkel, der von der ungerichteten Geraden 4 X iiberstrichen wird, wenn
man sie im Uhrzeigersinn auf die Gerade BX dreht, also <(4XB) =n — X(BXA4) modan.
Dann gilt der Peripheriewinkelsatz in folgender Form: Die Punkte X mit <(4XB) =
o = const, 4, B feste Punkte, sind genau die Punkte eines eindeutig bestimmten Voll-
kreises durch 4 und B.
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1. Die Punkte B, entstehen aus P durch Spiegelung an den Dreiecksgeraden 4; 4, ,.
B; wird somit durch zwei Spiegelungen, d.h. durch eine Drehung um den doppelten
Winkel 2 a; , ; der Spiegelachsen, nach B, , gebracht. Die Bedingung der Gleichseitigkeit

B,B; ,=2+4;,,P-sina; ;=c=const fir t=1,2,3

fithrt mit dem Sinussatz zu ATP:A—J.T’ =a;:a; (a;=A,;,4,,,). Das Dreieck B,B,B, ist
daher genau dann gleichseitig, wenn P Schnittpunkt der dre: Apollonischen Kreise ist.
2. Die Dreiecksgerade 4, ;4 , schneidet die Strecke PB ; senkrecht im Streckenmittel-
punkt M. Liegen die Punkte B, auf einer Geraden, dann auch die Punkte M ;. Die Lot-
fusspunkte M, der von P aus auf die Dreiecksgeraden gefillten Lote liegen genau dann
auf einer Geraden, wenn P auf dem Umbkreis des Dreiecks 4,4 ,4 liegt (Satz von Wallace).
3. Q und B, seien die Schnittpunkte der Umkreise der Dreiecke B,4,B, und B;4,B,.

Aus der in der Vorbemerkung angegebenen Winkeldefinition und dem Peripheriewinkel-
satz folgt

A(B10B;) = X(B,QB,) + X(B0B;) = 2 (4, + a3) modaw = —2 oy modn = J(B4,B;),
d.h. Q liegt auch auf dem Umkreis von Dreieck B,A4,B,.
W. Vinzenz und R. KocH, Miinchen

Weitere Losungen sandten J. FEHER (Pécs/Ungarn), R. WHITEHEAD (Hayle/England).
D. VELJAN, Zagreb.

Aufgabe 586. Show that
n
20 G = (1) e =
“h\k m m m— 1

L. Carrirz, Duke University, USA
Léosung: Wir setzen

Val#) = (L + yITF R = 3 f(n, m) xm . )
m=0

Dann ist (vgl. die Lésung von Aufgabe 563, E1. Math. 23, 139 (1968))
n
n\ (k]2
ponm = 2 (3) (o)-
k=0
Man priift leicht nach, dass y,(¥) der Rekursion

Ynra¥) = 2¥543(%) — ¥ y,(x) = 0 (2
geniigt. Trigt man in (2) die Reihenentwicklung nach (1) ein, so resultiert fiir die Gréssen
f(n, m) die partielle Differenzengleichung

fm+2,m+1)—2fn+1,m+1)—f(n,m=0 (m>1). (3)

Nach (1) ist f(n, 0) = 2», f(0, 0) = 1, (0, m) = 0 fiir alle m > 1. Offensichtlich lassen sich
nach (3) alle Werte f(n, m) rekursiv berechnen, wenn nur die « Anfangswerte» f(»n, 1) fiir
alle » und f(1, m) fiir alle m bekannt sind. Aus (1) folgt nun unmittelbar

fm, 1) =n2"=2  f(i,m)= (ly/nz) fir allen und m > 1. (4)
Der Ausdruck

T (n——m——l)
m m—1
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stimmt fiir m = 1 und alle # > 1 sowie fiir » = 1 und alle m > 1 mit den Werten in (4)
iiberein. Ausserdem priift man leicht durch Einsetzen in (3) nach, dass er Losung dieser
Differenzengleichung ist.

Die allgemeine Losung dieser Gleichung, die an die Anfangswerte (4) angepasst ist,

wird daher durch
=" on-2 ("” —m— 1)
1(n, m) m anim m—1

gegeben. Damit ist die in Aufgabe 586 behauptete Identitit bewiesen.
G. BacH, Braunschweig

Weitere Losungen sandten P. BunpscHUH (Freiburg i.Br.), J. FEHER (Pécs/Ungarn),
W. JANICHEN (Berlin-Zehlendorf).

Aufgabe 587. Prove that either of the following properties characterize the exponen-
tial function:

Property 1. f(z) non-zero, entire and there exists a simple analytic arc 4 which divides
the plane into two unbounded simply connected domains S, and S, with

7(Sy) < {w: |w| < 1} and f(S,) < {w: |w| > 1}.

Property 2. f(z) entire and the image of the left and right half planes are contained in
{w: |w| < 1} and {w: |w| > 1} respectively.
W. J. SCHNEIDER, Syracuse University, USA

Solution by the Proposer: 1) Theorem: The only function f(z) satisfying Property 1 is
f(2) = eaztb (a % 0).

Proof. h(z) (= log f(2)) is analytic and by continuity purely imaginary on 4 and only
on A. Since A is a simple analytic arc there exists an analytic homeomorphism k() from
a neighborhood of the open unit interval I onto a neighborhood of 4 with £(I) = 4 ([1],
p. 192 (paragraph 2)). The function g(¢) = ¢ #(k(¢)) is a 1-1 analytic map from I into the
reals. If it were not 1-1 then g’(f) would equal zero at some point and this would imply
h’(z) would equal zero at some point z, of 4. This would mean by the local mapping
correspondence ([1], pp. 107-108) there would be at least four distinct arcs emanating
from z, on which k(z) is imaginary which would contradict Property 1. The fact g(z) is 1-1
on I implies 4(2) is 1-1 on 4. Now by the Picard theorem ([2], pp. 277-282) and the
fundamental theorem of algebra %(z) is a polynomial of exactly degree one. Therefore
1(2) = eaz*b (a # 0).

2) Corollary to the Theorem: The only function satisfying Property 2 is f(z) = eaz
(a real and positive).

Proof. The function f(z) is non-zero in the left half plane for otherwise, by the reflection
principle ([1], p. 191 (paragraph 4)), f(z) would have a pole in the right half plane. By the
Theorem, f(z) = eaz¢b. Therefore |f(0)| = |e?| = 1, which implies b is imaginary. Since
|f(2)| = 1 on the imaginary axis, a z must be imaginary on the imaginary axis (hence a is
real). Property 2 impliesa > 0Oand b=2%nn¢ (r=0,1, —1,...).
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Aufgabe 588. Ist » eine natiirliche Zahl und p eine Primzahl, so gilt

(prn—1)[{(n—1)]"Pnl=p £ 0 (modp) <> n = pk.
E. TrosT, Ziirich
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Lgsung: Wir bezeichnen mit F(x) die linke Seite der obigen Kongruenz, mit e(r) den
Exponenten von p in der Primzerlegung von # und mit s(») die p-adische Quersumme
von n. Bekanntlich ist (vgl. A. M. LEGENDRE, Théorie des nombres, 1808)

%= s(n)

e(n!) = Y

Also gilt
e(Fm) =e((pn— 1)) —pe((n—1)1) — (p — 1) e(n)

psp—-1)—(sm—-1)+p-1)
P—l —'(p

=1+ — 1) e(n)

14+sm—1)—1—(p—1)e(n)

(p—1)e(n) + snpem) —1—(p—1)e(n)
= s(n pem) — 1.

Il

Dabher ist ¢(F(#)) = 0 und ¢(F(n)) = 0 genau dann, wenn » p~e(n) = 1 ist.
H. ScHEID, Mainz

J. FEHER (Pécs/Ungarn) bemerkt, dass in der Aufgabenstellung == 0 (modp) durch
= — 1 (modp) ersetzt werden kann. In der Tat gilt, wenn die linke Seite der Kongruenz
wieder mit F(n) bezeichnet wird,

pH(sz) _‘pl (p—1)!=—1 (mod p).

Weitere Losungen sandten A. Bager (Hjerring), P. BunpscHuH (Freiburg i.Br.),
L. Cartirz (Duke University, USA), Z.M.MiTROVIC (Vranje), E. J. F. PRIMROSE (Leicester),
Dragutin SVRTAN, Zagreb.

Neue Aufgaben

Aufgabe 610. Man zeige, dass in jedem ebenen Dreieck gilt:
a) Harmonisches Mittel der beiden grosseren Hohen = kleinste Winkelhalbierende.
b) Grosste Winkelhalbierende = harmonisches Mittel der beiden kleineren Seiten-
halbierenden.
Das Gleichheitszeichen gilt jeweils nur im gleichseitigen Dreieck.
P. Erpn0s, Budapest, und F. LEUENBERGER, Feldmeilen

Aufgabe 611, Let p be an odd prime, (a, p) = 1. Show that

0 (p =1 (mod 4))
. mas? l
S = tan
2 |(55) v 2 (~2% () (b= 3 (mod 4),
where (a/p) is the Legendre symbol. L. CarLitz, Duke University, USA

Aufgabe 612, Fiir natiirliche Zahlen %, ¢, b mit & > 3, ¢ > 2, b < ¢ werde gesetzt:

Hyb ey = 3o (" 1 ")
n20
Man zeige: H (b ¢71) ist irrational, wenn b < #1-Vk fiir ungerades % und wenn b < f-1/(k~1)
fiir gerades &.
(Diese Aufgabe 16st eine offene Frage aus einer Arbeit von W. ScawARz, Remarks on
the Irrationality and Transcendence of Certain Series, Math. Scand. 20, 269-274 (1967).)
P. BunpscHUH, Freiburg i. Br.
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Aufgabe 613. Drei Geraden g,, g,, g; des Raumes R, schneiden sich in drei verschie-
denen Punkten. Man bestimme alle Raumpunkte P mit der Eigenschaft: Die Fusspunkte
der Lote von P auf gy, g,, g; sind kollinear. O. REUTTER, Ochsenhausen

Literaturiiberschau

ZDM — Zentralblatt filv Didaktik der Mathematik. Herausgegeben in Verbindung mit
dem Zentrum fiir Didaktik der Mathematik an der Universitit Karlsruhe und der inter-
nationalen mathematischen Unterrichtskommission (IMUK); Verlag Ernst Klett,
Stuttgart.

Mit dem vorliegenden Heft 1/69 ist der 1. Jahrgang dieser neuen Zeitschrift eroffnet
worden. Die Zeitschrift ist geschaffen worden auf gemeinsame Initiative des Zentrums fiir
Didaktik der Mathematik an der Universitit Karlsruhe und des Klett-Verlages in Stutt-
gart; prominente Mathematiker, darunter auch namhafte Vertreter der Didaktik der
Mathematik, stehen ihr im Redaktionskomitee und im wissensthaftlichen Beirat zur Seite,
die Geschiftsfithrung besorgt Hans Wiasche. — Wer einigermassen um die Mannigfaltigkeit
und den Umfang der Publikationen zur Didaktik der Mathematik in den letzten Jahrzehn-
ten Bescheid weiss, wird die Herausgabe dieses Zentralblattes freudig begriissen! Bereits
die erste Nummer zeigt eine Konzeption, die wohl von den meisten Lesern als sehr gliick-
lich und vielversprechend empfunden wird: Der erste Teil, Berichtsteil genannt, enthilt
zunichst einen Analysenteil. Darin sollen Veroffentlichungen zu einem Thema oder mit
einer bestimmten didaktischen Funktion zusammengestellt und im Hinblick auf dieses
Thema und auf die jeweilige Zielsetzung analysiert werden; dadurch ergeben sich Stellung-
nahmen, die unter Umstdnden weit iiber eine blosse Rezension hinausgehen. Anschliessend
folgen Rezensionen und dann Informationen (Literaturbericht, Mitteilungen iiber
Seminare, Kongresse usw.). Der zweite Teil, der Dokumentationsteil, enthilt kurze An-
gaben iiber Zeitschriftenartikel und Biicher, die in den Rahmen dieses Zentralblattes
fallen, und ist so angelegt, dass er in Karteikarten zerschnitten werden kann. Beide
Hauptteile bedeuten jedem an der Didaktik der Mathematik Interessierten, natiirlich vor
allem dem Lehrer der Mathematik an hoheren Schulen, eine sehr grosse Hilfe. Es sei
deshalb sehr empfehlend auf diese neue Zeitschrift hingewiesen, die — bei geniigend breiter
Verankerung in moglichst weitem Kreise — zu grosser Bedeutung gelangen kann.

R. INEICHEN

Linear Transformations and Matrvices. Von F. A. FickeN. XIII und 398 Seiten.
Prentice-Hall, Englewood Cliffs, N. J. 1967.

Es handelt sich um eine Einfithrung in die Theorie der reellen und komplexen linearen
Rédume. Zum Verstindnis des Textes ist recht wenig vorausgesetzt: Elementare Algebra
(Arithmetik) und Geometrie sowie die Kenntnis der Sinus- und Kosinusfunktion.

Die ersten vier Kapitel dienen als Einfiihrung. Die logischen Grundlagen der mathe-
matischen Sprache werden mit den Grundlagen der Mengenalgebra erldutert. Der Funk-
tionsbegriff wird klar und sauber dargestellt und die Menge der reellen Zahlen aufgebaut.
Schliesslich wird die Vektoralgebra des dreidimensionalen Euklidischen Raumes — vor
allem mit Hilfe ihrer geometrischen Veranschaulichung und Anwendung — entwickelt.
Mit Hilfe der vielen Ergebnisse zeigt der Autor im 4. Kapitel (Mengen und Strukturen)
alle fiir den weitern Aufbau des Buches notwendigen algebraischen Abstraktionen.

Der lineare Raum wird formell im 5. Kapitel eingefiihrt. Es folgen: Lineare Trans-
formationen, Lineares Funktional und Dualitit, Einige Eigenschaften von Matrizen,
Systeme linearer algebraischer Gleichungen und Aquivalenz von Matrizen, Bilineare und
quadratische Formen und Funktionale, Determinanten, Ahnliche Operatoren, Unitére
und Euklidische Ridume, Ahnliche Operatoren in Unitiren Rdumen. Der Autor legt
grossen Wert auf die Anschauung. Wenn immer moglich wird die « Basis-freie» (Koordinaten-
freie) Darstellung gew#hlt. Neue Begriffe und Resultate werden an Beispielen illustriert.
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Der Leser erhilt nicht nur eine fundierte Einfithrung in diese Theorie, sondern fordert
durch den geschickten Aufbau des Stoffes auch seine mathematische Reife. 720 Ubungs-
aufgaben gestatten es, das Verstindnis des Gelesenen zu priifen und die theoretischen
Kenntnisse selbstidndig zu vertiefen. Um die eigenen Losungen kontrollieren zu kdnnen,
stehen im Anhang eine grosse Anzahl von Hinweisen und Lésungen zur Verfiigung. In
einer Bibliographie findet der Leser schliesslich eine Auswahl weiterer Werke (meist
englischer Sprache) zu denselben oder dhnlichen Themen und die Angabe von Biichern,
die ausfithrlich Probleme behandeln, welche nur gestreift oder erwihnt werden (Tensor-
algebra, Numerische Analysis, Lineare Ungleichungen und lineares Programmieren).

W. HOLENWEG

Some Theory of Sampling. Von W. E. DEMING. XVII und 602 Seiten. $ 3.50. Dover
Publications, New York 1966.

Das rund 600 Seiten fassende Werk ist ein ungekiirzter und unveridnderter Nachdruck
eines 1950 bei Wiley erschienenen Bandes.

Theorie und Praxis der Stichprobenerhebungen haben in den letzten zwei Jahrzehnten
immer mehr auch in den Wirtschafts- und Sozialwissenschaften Eingang gefunden (Be-
volkerungsstatistik, Versicherungswesen, Qualitidtskontrolle, Marktforschung, Psychologie
usw.).

Das Buch von DEmING (Theoretiker und Praktiker in einer Person) ist mehrheitlich
auf einige der genannten Gebiete ausgerichtet. Neben grundlegenden theoretischen Gegen-
stinden (Testen von Hypothesen) findet man eine Fiille von Anwendungen in der statisti-
schen Praxis wie:

Hinweise auf systematische Fehler beim Planen und Auswerten von Versuchen;

Aufstellen kostenminimaler Stichprobenpldne mit optimalem Informationsgehalt.

Die iiber 200 eingestreuten (z.T. mit Losungen versehenen) Aufgaben sind von grund-
sdatzlicher Natur sowohl fiir die Theorie wie auch fiir die Praxis. Fiir Dozenten bilden sie
eine willkommene Ergdnzung des Ubungsmaterials.

Voraussetzungen fiir eine erfolgreiche Lektiire sind : Grundkenntnisse in Kombinatorik,
Statistik und Infinitesimalrechnung.

Das in einem romanhaften, leicht fassbaren Stil geschriebene Buch richtet sich in
erster Linie an Studenten der Wirtschafts- und Sozialwissenschaften, Statistiker in der
Praxis (insbesondere amtliche Bevolkerungsstatistik) sowie Dozenten der Statistik.

HaNs LoEFFEL

Topologie. Eine Einfiihrung von HORST SCHUBERT. 328 Seiten mit 23 Figuren.
DM 45,60. B. G. Teubner Verlagsgesellschaft, Stuttgart 1964.

Dieses Werk will eine Einfithrung in die allgemeine und in die algebraische Topologie
geben. Zwei Faktoren sind es, die die vorliegende Gestalt des Werkes im wesentlichen
bestimmen. Der erste ist die Stoffauswahl. Der Inhalt ist in vier Hauptkapitel gegliedert,
deren Titel lauten: Topologische Rdume, Uniforme Réiume, Homotopie, Singulire
Homologietheorie. Der zweite Faktor ist die an BourBAKI sich anlehnende Darstellungs-
art. Sie verlangt gewissermassen, dass der Stoff wohlprogrammiert ist, was hier auch
geschehen ist. J. M. EBERSOLD

Studies in Modern Topology. Herausgegeben von P. J. HiLTon. Band 5 der MAA Studies
in Mathematics. 212 Seiten mit 43 Figuren. $ 6.—. Prentice-Hall, Englewood Cliffs, N. J.
1968.

In der Einfiihrung dieses Orientierungsbandes fiir Fortgeschrittene gibt der Heraus-
geber einen Uberblick iiber die Entwicklung der Topologie in etwa den letzten zwei
Dezennien. Man kann die moderne Topologie, ohne ihre Anwendungsgebiete zu beriick-
sichtigen, in die folgenden Zweige gliedern: mengentheoretische Topologie, geometrische
Topologie, algebraische Topologie und die Topologie der differenzierbaren Mannigfaltig-
keiten. Die folgenden fiinf Artikel des Bandes geben einen Einblick in das neuere Schaffen
in jedem dieser Zweige: G. T. WHYBURN: What is a Curve? W. HAKEN: Some Results on
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Surfaces in 3-Manifolds. V. K. A. M. GUGENHEIM: Semisimplicial Homotopy Theory.
E.DvER: The Functors of Algebraic Topology. V. POENARU: On the Geometry of Differen
tiable Manifolds. J. M. EBERSOLD

Wahyscheinlichkeitsvechnung und Statistik. Von HERMANN ATHEN. 2. neubearbeitete
Auflage. 149 Seiten mit 57 Abbildungen. DM 9,60. Schroedel-Verlag, Hannover, und
Schéningh-Verlag, Paderborn 1968.

Mit der 1. Auflage dieser Schrift (1955) hat sich der Verfasser seinerzeit recht eigentlich
auf didaktisches Neuland vorgewagt. Ein Vergleich jener 1. Auflage mit der vorliegenden
2. Auflage zeigt die grosse Entwicklung, die die didaktische Seite der Wahrscheinlichkeits-
rechnung und Statistik seither durchgemacht hat. Diese Entwicklung hat einerseits dazu
gefithrt, grundlegende Begriffe (wie z.B. Ereignis, Wahrscheinlichkeit) auch im Schul-
unterricht auf durchaus moderne und sachgemaésse Art zu behandeln, anderseits den Kreis
der Betrachtungen weit iiber das Herkdmmliche hinausgreifen zu lassen, und so z.B.
einfache Beispiele zum Testen von Hypothesen oder elementare Betrachtungen iiber
Markoffsche Ketten einzubeziehen. Beide Tendenzen sind in dieser Schrift in reichem
Masse zur Geltung gekommen; trotzdem ist es dem Autor sehr gut gelungen, in allen
Kapiteln wirklich auf dem Schulniveau zu bleiben. Sicher wird man nirgends den gesamten
Stoff im reguldren Unterricht behandeln kénnen; die Darstellung wird aber dem Lehrer
der Mathematik zahlreiche Anregungen bieten und manchen interessierten Schiiler tiefer
in das Stoffgebiet einfithren. Zahlreiche Aufgaben (mit Losungen) ergidnzen die Aus-
fithrungen. R. INEICHEN

Grundziige dev Mathematik,; Band V, Praktische Methoden und Anwendungen dey
Mathematik (Rechenanlagen, Algebra, Analysis). Von H. BEENKE, G. BERTRAM, L. CoLLATZ,
R. SAUER, H. UNGER. XI und 478 Seiten mit zahlreichen Abbildungen. DM 52,—. Vanden-
hoeck & Ruprecht, Gottingen 1968.

Wir haben an dieser Stelle schon wiederholt auf die wertvollen «Grundziige» hinweisen
diirfen. Mit dem 5. Band liegt nun ein Standardwerk abgeschlossen vor, das kaum mehr
einer besonderen Empfehlung bedarf, so dass wir uns wohl mit einer kurzen Inhaltsangabe
begniigen diirfen: Allgemeine Gesichtspunkte (z.B. iiber die Wechselwirkung zwischen
Mathematik und ihren Anwendungen) — Ziffernrechner (Rechenautomaten) — Analog-
rechner — Numerische Verfahren (Lineare und nichtlineare Gleichungssysteme, Approxi-
mationen, Numerische Integration und Differentiation, Anfangs- und Randwertprobleme,
Eigenwertprobleme, Lineare Optimierung) — Anwendungen der Algebra — Anwendungen
der Analysis (mit vielen sehr schénen Beispielen fiir Anwendungen der verschiedenen
Teilgebiete) und zum Abschluss ein interessantes orientierendes Kapitel iiber die neueren
Entwicklungen in der numerischen Mathematik, das vor allem auch jenen Leser ansprechen
wird, der an einer Ubersicht interessiert ist. R. INEICHEN

Géométrie. Terminales C et T. L'enseignement de la mathématique. Par LUCIENNE FELIX
et ALFRED DoNEDOU. Collection dirigée par A. DoNEDOU. 313 pages. Dunod, Paris 1967.

D ala plume de deux éminents pédagogues frangais, cet ouvrage conforme au nouveau
programme officiel frangais se compose de deux parties. On trouve dans la premiére partie
une axiomatique de la géométrie euclidienne a trois dimensions, un exposé sur les symétries
perpendiculaires et les déplacements et la notion d’espace vectoriel euclidien. La seconde
partie de l'ouvrage concerne la technique de la géométrie dans le cadre de la théorie
moderne des structures. Les familles de droites, de cercles et de coniques font partie du
programme qui traite des géométries affine, projective, métrique, anallagmatique ainsi
que de la géométrie descriptive. La géométrie euclidienne est présentée comme 1'étude d’un
espace ponctuel sur lequel opére le groupe des isométries. Clair et précis, cet quvrage
comprend de nombreux exercices judicieusement gradués et sera consulté avec profit par
les éléves de nos gymnases ainsi que par les candidats au brevet secondaire scientifique.

S. Piccarp
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Introduction a la théovie des ensembles et & la topologie. Par K. KuraATOWSKI. Monographie
No 15 de I'Enseignement mathématique, Genéve 1966. 305 pages. Traduit de ’anglais par
M. VUILLEUMIER.

L’édition originale de cet ouvrage avait paru & Varsovie en 1955. L’ouvrage a été
traduit successivement en anglais puis en frangais. Pour cette derniére traduction,
l'auteur a apporté des modifications essentielles A la seconde partie en remplagant 1’étude
des espaces métriques par celle d’espaces topologiques généraux. Quelques adjonctions ont
également été apportées au début de I'ouvrage, dont la majeure partie est accessible 3 des
débutants. Dans la premiére partie, I'auteur expose les éléments de la théorie des ensembles.
Il parle de calcul propositionnel, d’algébre des ensembles (opérations finies), de fonctions
propositionnelles et produits cartésiens, de la notion de fonction et des opérations infinies,
de la notion de puissance d’un ensemble, d’ensembles dénombrables, d’opérations sur les
nombres cardinaux, des nombres a et ¢, de relations d’ordre et du bon ordre. La seconde
partie est consacrée 4 la Topologie générale. Il y est question d’espaces métriques, d’espaces
euclidiens, d’espaces topologiques, de diverses familles d’ensembles, de 1’ensemble dérivé,
d’applications continues, de produits cartésiens, d’espaces & base dénombrable, d’espaces
métriques complets, d’espaces compacts, de connexité, de connexité locale, de la notion de
dimension, de simplexes, de complexes et de coupure du plan. Cet ouvrage porte I'emprunte
de I'illustre Maitre de I’Ecole mathématique de Varsovie, le Professeur W. S1ErpPINSKI dont
M. KuraTOowsKI est un des plus brillants éléves. S. Piccarp

Introduction & la théovie des graphes ovientés. Par F. HARRARY, R. Z. NORMAN &
D. CARTWRIGHT. 437 pages. Dunod, Paris 1968.

Dans cet ouvrage, les graphes orientés ou digraphes sont traités par voie axiomatique.
On le fait de la fagon suivante. On considére un ensemble V d’éléments appelés sommets,
un ensemble X d’éléments appelés arcs et deux fonctions f et s définies sur X, & valeurs
dans V, f et s servant a relier les sommets aux arcs. Quel que soit I’arc » de I’ensemble X,
fx et sx sont deux éléments de V dont le premier est 'origine et le second 'extrémité de
I'arc orienté ». On dit que » est une boucle si son origine coincide avec son extrémité.
Deux arcs sont dits paralléles s’ils ont méme origine et méme extrémité. La structure de
diagraphe est caractérisée par les quatre axiomes suivants: 1. L’'ensemble V est fini, non
vide. 2. L’ensemble X est fini. 3. Il n’y a pas de couples d’arcs parall¢les. 4. Il n’y a pas de
boucles. L’exposé est élémentaire et s’appuie sur quelques notions fondamentales de la
théorie des ensembles et du calcul matriciel. Le premier chapitre est consacré a la structure
de digraphe. Les chapitres 2—4 traitent des liaisons qui peuvent exister entre les sommets.
L’emploi des matrices dans la théorie des digraphes est expliqué au chapitre 5. Le chapitre 6
traite de questions de descendance. Les effets de la suppression d’'un sommet ou d’un arc
sont exposés aux chapitres 7 et 8. Des types particuliers de digraphes sont étudiés aux
chapitre 9 a 12. Les extensions des digraphes sont examinées aux chapitres 13 et 14.
L’ouvrage s’adresse avant tout & des sociologues. Mais il fournit aussi un instrument de
travail utile en recherche opérationnelle, dans I’étude des flots dans les réseaux de transport,
dans la théorie des échelles, la logique des propositions et la structure des connaissances.
L’ouvrage est illustré de nombreux schémas et d’exercices que 'on trouve 3 la fin des
chapitres. Une bibliographie assez compléte, la liste des principaux théorémes, un glossaire
des principaux termes introduits et utilisés et un index complétent cet ouvrage accessible
a un vaste public. S. Piccarp

Projektive Differentialgeometrie, 3. Teil. Von GERrIT BoLr. VIII und 527 Seiten mit
15 Figuren. DM 85,—. Studia mathematica, Band XVIII. Verlag Vandenhoeck & Ruprecht,
Gottingen und Ziirich 1967,

Der letzte Teil von G. BoLs Monographie zur projektiven Differentialgeometrie liess
etwas linger auf sich warten, als dies geplant war (Band I/II, vgl. El. Math. X/6, 1955).
Ein Grund fiir die Verzogerung diirfte wohl darin liegen, dass der Autor seine urspriingliche
Konzeption geindert hat. Anstelle der seinerzeit angekiindigten Darstellung einiger
spezieller Flichenklassen hat nun der dritte Teil vorwiegend die Arbeitsmethoden der
projektiven Differentialgeometrie zum Gegenstand. Diese bestehen einerseits in ver-
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schiedenen Kalkiilen (alternierende Differentialformen, Differentialoperatoren, Tensor-
rechnung), zum andern aber auch in einigen wichtigen Figuren des zwei- und des drei-
dimensionalen projektiven Raumes, die fiir die Flichentheorie in verschiedener Hinsicht
von Bedeutung sind (2-parametrige Tetraederfigur, Kurvennetze, Strahlenkongruenzen).

Die klare Gliederung, welche die ersten beiden Binde kennzeichnet, ist erfreulicher-
weise auch im dritten Band wieder zu finden. Dies erleichtert dem Leser den Zugang zu den
Gedankengédngen des Verfassers ganz erheblich.

G. BoL gehort zu den Mitbegriindern der projektiven Differentialgeometrie und ist
daher in besonderem Masse zum Autor einer zusammenfassenden Darstellung iiber diese
immer noch in Weiterentwicklung begritfene Sparte der Differentialgeometrie berufen.
Er hat ein Werk geschaffen, das dem Neuling in diesem Gebiete bei der Einfiihrung, aber
auch dem Kenner bei der Vertiefung wertvolle Hilfe bietet. M. JEGER

Computer Methods in Mathematics. Von R. ALBRECHT, E. LINDBERG, W. MARA.
204 Seiten. s.52/- Addison-Wesley Publishing Company, London 1969.

Diese leicht verstindliche Einfiihrung ins Rechnen mit einem Computer beginnt mit
der Programmierung einer elektronischen Tischrechenmaschine SAM mit zwei Registern.
Die Idee wird weiter entwickelt fiir ein grésseres Modell BIGSAM, welches bereits Pro-
grammspeicherung gestattet. Als umfangreichster Teil folgt die Programmierung eines
Computers, wobei vor allem an Teilnehmerbetrieb gedacht ist. Als Konversationssprachen
werden BASIC und FORTRAN verwendet.

Die zahlreichen Beispiele sind dem Erfahrungsbereich eines Schiilers der High-School
oder des College entnommen, konnen also ohne weiteres an einer Mittelschule verwendet
werden. Vereinzelte Beispiele, wieetwa Beispiel 8, Seite 107, sind falsch eingestuft oder weisen
sinnstorende Druckfehler auf, was bei einer spiatern Auflage beriicksichtigt werden sollte.

E. R. BRANDLI

Die Gesetze dev grossen Zahlen. Von PAL REvEsz. 175 Seiten. Fr. 38.- Birkhduser
Verlag, Baszl 1968.

Die moderne Wahrscheinlichkeitstheorie ist axiomatisch aufgebaut. Dabei stellt sich
die Frage, ob eine solche Theorie mit unsern «natiirlichen» Vorstellungen iiber die Wahr-
scheinlichkeit einigermassen iibereinstimmt. Und dies fithrt auf die Untersuchung der
Beziehungen zwischen mathematischer Wahrscheinlichkeit und Héufigkeit und damit zu
den verschiedenen Gesetzen der grossen Zahlen. Etwas allgemein formuliert, sagen solche
Gesetze etwas aus iiber die Konvergenz eines Mittelwertes von # Zufallsvariablen gegen
eine andere Zufallsvariable; es kommen dabei verschiedene Konvergenzbegriffe (so die
stochastische Konvergenz, die Konvergenz im quadratischen Mittel und die Konvergenz
mit Wahrschzinlichkeit 1) in Betracht. Die vorliegende Monographie gibt eine Ubersicht
iiber diec Ergebnisse und die wichtigsten Methoden dieses Gebietes. Aus dem Inhalt: Der
mathematische Hintergrund (Uberblick iiber Mass- und Wahrscheinlichkeitstheorie,
Stochastische Prozesse, Begriff des Hilbert- und des Banachraumes usw.) — Verschiedene
Arten der Gesstze der grossen Zahlen — Unabhidngige Zufallsveranderliche — Orthogonale
Zufallsveranderliche — Folgen von Zufallsverdnderlichen — Symmetrisch abhingige Zu-
fallsverdnderliche — Markoffsche Ketten — Schwach abhidngige Zufallsverdnderliche —
Summe ciner zufélligen Anzahl von Zufallsverinderlichen — Anwendungen. Die Lektiire
des Buches stellt ganz erhebliche Anspriiche. Sie fithrt den Leser in ein Gebiet, das er
anderswo kaum in einer so zusammenhingenden Darstellung finden kann, denn es ist dem
Verfasser ausgezeichnet gelungen, das Gemeinsame an zundchst ganz verschiedenen
Untersuchungen herauszuarbziten und von allgemeinen Gesichtspunkten aus zu beleuch-
ten. Unter den verarbeiteten Abhandlungen finden sich auch mehrere, die auf den Autor
s2lbst zuriickgehen. R. INEICHEN

Mitteilung der Redaktion

Wir haben die Freude, Herrn PD Dr. J. RAtz (Universitit Bern) als neuen Mitarbeiter
in der Redaktion begriissen zu diirfen. Herr Rdtz wird insbesondere den Aufgabenteil
bztreuen.
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