

Werk

Titel: Rendiconti del Circolo Matematico di Palermo

Verlag: s.n. Jahr: 1895

Kollektion: mathematica
Signatur: 4 MATH I, 1320:9
Werk Id: PPN599472057 0009

PURL: http://resolver.sub.uni-goettingen.de/purl?PID=PPN599472057 0009|PPN599472057 0009

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational, research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online system to access or download a digitized document you accept the Terms and Conditions. Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the source.

Contact

Niedersächsische Staats- und Universitätsbibliothek Göttingen Georg-August-Universität Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Germany Email: gdz@sub.uni-goettingen.de

RENDICONTI

DEL

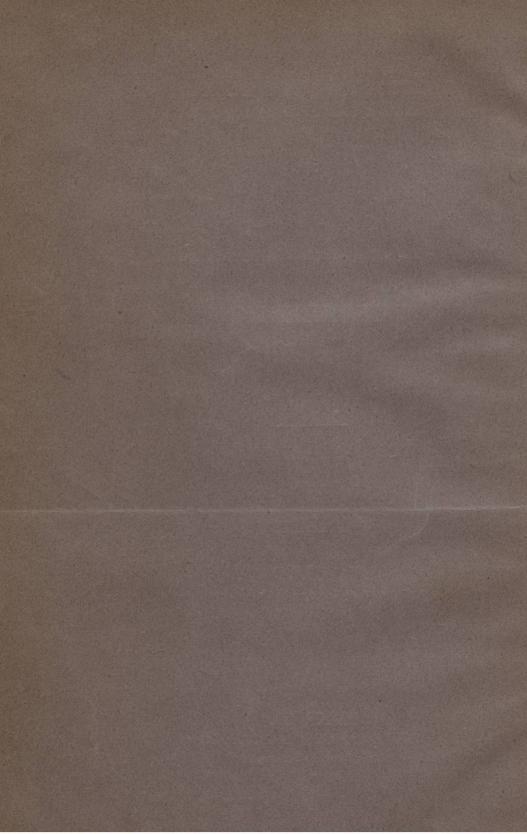
CIRCOLO MATEMATICO

DI PALERMO

TOMO IX. - ANNO 1895.

PARTE PRIMA: MEMORIE E COMUNICAZIONI, PARTE SECONDA: BIBLIOTECA MATEMATICA.

PALERMO,
SEDE DELLA SOCIETÀ
28, via Ruggiero Settimo, 28



RENDICONTI

DEL

CIRCOLO MATEMATICO

DI PALERMO

ANNUNZIO.

Per ogni Nota o Memoria, presentata in una sola adunanza de' Circolo, la quale sorpassi le 16 pagine di stampa, rimane a carico dell'Autore la spesa di composizione delle pagine eccedenti, in ragione di L. 3, 15 per ogni pagina o parte di essa.

Gli Autori che desiderano Estratti delle Note e Memorie inserite nei Rendiconti, sono vivamente pregati di avvertirne la Redazione nell'atto di rinviare le prove di stampa. A fine di agevolare i soci nella pubblicazione dei loro lavori, gli estratti saranno ad essi mandati a mano a mano che procede la stampa del fascicolo.

Il prezzo degli estratti è regolato come segue:

Per un foglio di 8 pagine, o meno:

50 esemplari=L. 5; 100=L. 7, 75; 150=L. 11; 200=L. 13, 75; 250=L. 17; 300=L. 20, 25; 350=L. 23, 50; 400=L. 26, 75.

Per ogni foglio successivo di pagine 8, o parte di esso (oltre la spesa di composizione, come sopra, per le pagine eccedenti i due fogli di stampa):

50 esemplari = L. 3, 75; 100 = L. 5, 25; 150 = L. 7, 25; 200 = L. 8, 75; 250 = L. 10, 75; 300 = L. 12, 75; 350 = L. 14, 75; 400 = L. 16, 75.

Le tavole sono a carico degli Autori.

REDAZIONE: 28, via Ruggiero Settimo - Palermo.

RENDICONTI

DEL

CIRCOLO MATEMATICO

DI PALERMO

TOMO IX. - ANNO 1895.

PARTE PRIMA: MEMORIE E COMUNICAZIONI.

PALERMO, SEDE DELLA SOCIETÀ

28, via Ruggiero Settimo, 28

1895

RENDICONTI

CIRCOLO MATEMATICO

BIBLIOTHECA REGLA ACADEM GEORGIAE AUG.

MEMORIE E COMUNICAZIONI.

RICERCHE

SUI SISTEMI LINEARI DI CURVE ALGEBRICHE PIANE,
DOTATI DI SINGOLARITÀ ORDINARIE.

Memoria IIª di G. B. GUCCIA, in Palermo (*).

Adunanze dell'11 e 25 marzo 1894.

§ VII.

Teoria delle curve o relative ad un fascio di curve.

38. Nei \S VII-XI di queste Ricerche, fondandomi sulle più elementari nozioni di Geometria sulla retta, mi propongo di trattare con metodo sintetico alcune delle principali questioni della teoria generale delle curve algebriche piane, mercè l'uso di certi luoghi geometrici relativi ad un fascio di curve, i quali indicherò col nome di « curve Φ ». Tutti i problemi pei quali sono state fin qui adoperate le polari relative ad una curva C, potranno essere risoluti più speditamente mediante le curve Φ relative al fascio individuato dalla curva data C insieme ad una curva ausiliare, dello stesso ordine, presa ad arbitrio nel piano.

In un altro lavoro metodi analoghi saranno adoperati per lo

studio di questioni riguardanti le superficie algebriche.

39. Siano nel piano: (C) un fascio di curve d'ordine n; P un

^(*) Vedi la Memoria Ia, in questi Rendiconti, t. VII, 1893, pp. 193-255.

Rend. Circ. Matem., t. IX, parte 1a.—Stampato il 24 settembre 1894.

punto qualsiasi. Si indichi con Φ_P il luogo dei punti di contatto delle tangenti condotte da P alle curve del fascio (C). Se R è una retta condotta ad arbitrio nel piano e si considera la curva, Ω_R , inviluppo delle rette tangenti alle curve di (C) nei punti di R, egli è evidente che le tangenti condotte da P all'inviluppo Ω_R incontreranno R nei punti in cui questa retta è incontrata dal luogo Φ_P . Val quanto dire che l'ordine della curva Φ_P è uguale alla classe della curva Ω_R .

Le curve del fascio (C) incontrano la retta R in gruppi di n punti, i quali costituiscono un'involuzione di grado n e prima specie. Poiche questa involuzione possiede 2 (n - 1) punti doppi, ne segue che per l'inviluppo Ω_R la retta R è una tangente multipla del grado 2(n-1). D'altra parte, assumendo sulla retta R un punto arbitrario Q, per questo punto passa una, ed una sola, retta che è ivi tangente ad una curva del fascio (C) (quella individuata da Q), ossia una, ed una sola, retta dell'inviluppo Ω_R diversa da R. Di qui s'inferisce che le tangenti all'inviluppo Ω_R che si possono condurre dal punto Q sono equivalenti a 2(n-1)+1=2n-1. Dunque, la classe di Ω_R , epperò l'ordine di Φ_R , è 2n-1. Se ora si conduce pel punto P una trasversale arbitraria, questa retta incontrerà il luogo Φ_p nei 2 (n-1) punti doppi dell'involuzione di grado ne prima specie costituita dai gruppi di n punti nei quali la retta medesima è incontrata dalle curve di (C). Donde si conclude, che la curva Φ_P passa con (2n-1)-2(n-1)=1 ramo pel punto P. Laonde:

Il luogo Φ_P , corrispondente ad un punto P del piano, è dell'ordine 2n-1 e passa, in generale, con un ramo pel punto P (*).

- 40. Suppongasi che il fascio (C) possegga un punto base (r)-plo, B. Due casi sono da prendere in esame:
- a) Il fascio contiene una curva, C', che ha in B un punto $(r+\rho)$ -plo $(\rho > 0)$. In tal caso le r tangenti in B alla curva generica del fascio, C^* , sono tutte fisse (n° 9, Teor. II).
 - b) Il fascio non contiene curva che ha in B un punto di mol-

^(*) Cfr. Cremona, Introduz., nº 85.

tiplicità > r. In tal caso una (almeno) delle r tangenti in B alla curva generica C^* è mobile (n° 14, Teor. V). Con altre parole: i gruppi di r tangenti in B alle singole curve del fascio costituiscono un'involuzione di raggi, J_r^1 , di grado r e prima specie, con o senza raggi base.

In ciascuna di queste due ipotesi cerchiamo anzitutto come si comporta in B la curva Φ_B , luogo dei punti di contatto delle tangenti condotte da B alle curve del fascio (C).

caso a).—Una trasversale R condotta ad arbitrio pel punto B è incontrata dalle curve di (C) in gruppi di punti di un'involuzione di grado n e prima specie, la quale possiede un punto base (r)-plo B e contiene un gruppo (individuato dalla curva C') che ha in B un punto $(r+\rho)$ -plo. Questa involuzione si scinde nel punto B contato r volte ed in un'involuzione di grado n-r e prima specie la quale contiene un gruppo che ha in B un punto (ρ) -plo. Poichè i (*)

$$2(n-r-1)-(\rho-1)=2n-2r-\rho-1$$

punti doppi (diversi da B) di quest'ultima involuzione sono i punti in cui la retta R, uscente da B, è incontrata ulteriormente dal luogo Φ_B , se ne conclude che questa curva ha in B un punto multiplo del grado

$$(2n-1)-(2n-2r-\rho-1)=2r+\rho.$$

 α) Sia T una delle r tangenti fisse in B alla curva generica C^* . Questa retta sarà incontrata dalle curve di (C) in gruppi di punti di un'involuzione di grado n e prima specie, la quale possiede in B un punto base (r+1)-plo e contiene un gruppo (individuato dalla curva C') che ha in B un punto $(r+\rho)$ -plo. Questa involuzione si scinde nel punto B contato r+1 volte ed in un'involuzione di grado n-r-1 e prima specie la quale contiene un gruppo che ha in B un punto $(\rho-1)$ -plo. Poichè i

$$2(n-r-2)-(\rho-2)=2n-2r-\rho-2$$

^(*) Due proposizioni, etc. Lemma II (ponendo ivi t=1).

punti doppi (diversi da B) di quest'ultima involuzione sono i punti in cui la retta T, uscente da B, è ulteriormente incontrata dal luogo Φ_B , ne segue che la retta T ha

$$(2n-1)-(2n-2r-\rho-2)=2r+\rho+1$$

delle sue intersezioni con la curva Φ_B riunite in B. Donde si conclude che la retta T è tangente in B alla curva Φ_B .

 β) Sia T una delle $r+\rho$ tangenti in B alla curva C'. Questa retta sarà incontrata dalle curve di (C) in gruppi di punti di un'involuzione di grado n e prima specie, la quale possiede in B un punto base (r)-plo e contiene un gruppo (individuato dalla curva C') che ha in B un punto $(r+\rho+1)$ -plo. Questa involuzione si scinde nel punto B contato r volte ed in un'involuzione di grado n-r e prima specie, la quale contiene un gruppo che ha in B un punto $(\rho+1)$ -plo. I

$$2(n-r-1)-\rho=2n-2r-\rho-2$$

punti doppi (diversi da B) di quest'ultima involuzione essendo i punti in cui la retta T, uscente da B, è ulteriormente incontrata dal luogo Φ_B , se ne conclude che

$$(2n-1)-(2n-2r-\rho-2)=2r+\rho+1$$

intersezioni di T con Φ_B sono riunite in B, e conseguentemente che la retta T è tangente in B alla curva Φ_B .

Riassumendo:

TEOREMA XXXVII. — Se un fascio (C) possiede un punto base (r)-plo, B, e contiene una curva, C', dotata in B d'un punto $(r+\rho)$ -plo $(\rho > 0)$, il luogo Φ_B (n° 39) corrispondente al punto B passa, in generale, con $2r + \rho$ rami pel punto B ed ha ivi per tangenti le r tangenti fisse del fascio e le $r + \rho$ tangenti della curva C' (*).

^(*) Posto r=n-1, onde $\rho=1$: Per un fascio d'ordine n con un punto base (n-1)-plo, B, a tangenti fisse, il relativo luogo Φ_B si scinde nelle n-1 tangenti fisse in B e nelle n rette che costituiscono la curva del fascio dotata d'un punto (n)-plo in B [Teor. IV, nota, Esempio c)].

caso b).—Una trasversale R condotta ad arbitrio pel punto B è incontrata dalle curve di (C) in gruppi di punti di un'involuzione di grado n e prima specie dotata in B d'un punto base (r)-plo, ossia di un'involuzione la quale si scinde nel punto B contato r volte ed in un'involuzione di grado n-r e prima specie. Poichè i 2(n-r-1) punti doppi di quest'ultima involuzione sono i punti in cui la retta R, uscente da B, incontra ulteriormente il luogo Φ_B , se ne conclude subito che questa curva ha in B un punto multiplo del grado

$$(2n-1)-2(n-r-1)=2r+1.$$

Sia t una qualunque delle 2r+1 tangenti in B alla curva Φ_B . Questa retta incontrerà ulteriormente il luogo Φ_B in

$$(2n-1)-(2r+2)=2(n-r)-3$$

punti, ciascuno dei quali è doppio per l'involuzione di grado n-r e prima specie costituita dai gruppi di n-r punti in cui la retta t è incontrata ulteriormente dalle curve del fascio (C). Pertanto

$$2(n-r-1)-[2(n-r)-3]=1$$

dei 2(n-r-1) punti doppi che competono a questa involuzione è il punto B. Val quanto dire che fra le curve del fascio (C) ve n'è una che ha r+2 intersezioni con la retta t riunite nel punto B.

Reciprocamente, se una retta uscente da B ha r+2 intersezioni riunite in B con una curva del fascio (C), la retta medesima sarà una delle 2r+1 tangenti in B alla curva Φ_B .

Suppongasi che l'involuzione di raggi J_r^1 , di grado r e prima specie, costituita dai gruppi di tangenti in B alle singole curve del fascio (C), possegga un raggio base semplice τ . Fra le curve di (C) ve ne sarà una, ed una sola, la quale ha, con la retta τ , r+2 intersezioni riunite in B. Questa retta dunque sarà una delle 2r+1 tangenti in B alla curva Φ_B .

Ma in questo caso la retta τ è, in B, pel relativo ramo della curva Φ_B , una tangente stazionaria. Infatti, la retta medesima è incontrata dalle curve del fascio (C) in gruppi di punti di un'involuzione di grado n e prima specie dotata in B d'un punto base (r+1)-plo, ossia di un'involuzione la quale si scinde nel punto B contato r+1

volte ed in un'involuzione di grado n-r-1 e prima specie. Poichè i 2(n-r-2) punti doppi di quest'ultima involuzione sono i punti in cui la retta τ , uscente da B, incontra ulteriormente il luogo Φ_B , ne segue che

$$(2n-1)-2(n-r-2)=2r+3$$

intersezioni della retta τ con il luogo Φ_B saranno riunite in B. Val quanto dire che la retta τ ha tre intersezioni confuse in B col ramo della curva Φ_B del quale essa è la relativa tangente.

Così, se in una retta τ vengono a coincidere $\sigma(< r)$ raggi base semplici dell'involuzione $J_r^{\rm r}$, la retta medesima conterà per σ delle 2r+1 tangenti in B alla curva Φ_B , ed avrà con la curva Φ_B 2r+3 intersezioni riunite nel punto B.

Riassumendo:

Teorema XXXVIII. — Se un fascio (C) possiede un punto base (r)-plo, B, i cui gruppi di tangenti alle singole curve costituiscono un'involuzione, J_r^i , di grado r e prima specie, il luogo Φ_B (\mathfrak{n}° 39), corrispondente al punto B, passa per questo punto, in generale, con 2r+1 rami a tangenti distinte, ciascuna delle quali è una retta che ha r+2 intersezioni riunite in B con una curva del fascio (C). In particolare, se l'involuzione J_r^i possiede un raggio base di grado $\sigma(< r)$, questo conterà per σ tangenti in B alla curva Φ_B ed avrà con la curva Φ_B 2r+3 intersezioni riunite nel punto B (*).

41. Dal Teor. XXXVII per r = 0: Se un fascio contiene una curva, C', dotata d'un punto (ρ) -plo, B (che non sia punto base del fascio), il relativo luogo Φ_B passa con ρ rami pel punto B ed ha ivi le stesse tangenti della curva C'. In particolare: se s tangenti in B alla curva C' coincidono in una, in questa coincideranno s tangenti in B alla curva Φ_B .

^(*) Posto r=n-1: Per un fascio d'ordine n con un punto base (n-1)-plo, B, i cui gruppi di tangenti alle singole curve costituiscono un'involuzione di grado n-1 e prima specie, il relativo luogo Φ_B si scinde nelle rette che congiungono il punto B a' residuali $n^2-(n-1)^2=2n-1$ punti base semplici del fascio. In particolare, $\sigma(< n-1)$ di questi ultimi punti base possono essere infinitamente vicini al punto B in direzioni distinte o coincidenti.

a) Conseguentemente, per $\rho=1$: Dato un fascio di curve, il luogo Φ_P corrispondente ad un punto qualunque, P, del piano passa semplicemente pel punto P (n° 39) ed è ivi tangente alla curva del fascio individuata dal punto P.

42. Cerchiamo ora, in ciascuna delle ipotesi a) e b) del n° 40, come si comporta in B la curva Φ_P corrispondente ad un punto, P, preso ad arbitrio nel piano.

caso a).—Sia R una retta condotta ad arbitrio pel punto B e si consideri anzitutto la curva, Ω_R , inviluppo delle rette tangenti alle curve del fascio (C) nei punti di R. Questa retta è incontrata dalle curve di (C) in gruppi di punti di un'involuzione di grado n e prima specie, la quale si scinde nel punto B contato r volte ed in un'involuzione di grado n-r e prima specie che contiene un gruppo (individuato dalla curva C), per il quale B è un punto (ρ)-plo. Quest'ultima involuzione contiene

$$2(n-r-1)-(\rho-1)=2n-2r-\rho-1$$

punti doppi (diversi da B), in ognuno dei quali la retta R è tangente ad una curva del fascio (C). Di qui s'inferisce che per l'inviluppo Ω_R la retta R è una tangente multipla del grado $2n-2r-\rho-1$. Se ora si assume sulla retta R un punto arbitrario Q, per questo punto passa una, ed una sola, retta che è ivi tangente ad una curva del fascio (C) (quella individuata da Q), ossia una, ed una sola, retta dell'inviluppo Ω_R diversa da R. Sono dunque equivalenti a $(2n-2r-\rho-1)+1=2n-2r-\rho$ le tangenti che si possono condurre da Q all'inviluppo Ω_R ; epperò questa curva è della classe $2n-2r-\rho$.

Ritorniamo ora al luogo Φ_P . I punti in cui questa curva incontra la retta R oltre il punto B sono nel tempo istesso i punti in cui le $2n-2r-\rho$ tangenti condotte da P all'inviluppo Ω_R incontrano la retta R. Di qui s'inferisce che delle 2n-1 intersezioni di R con Φ_P ve ne sono

$$(2n-1)-(2n-2r-\rho)=2r+\rho-1$$

riunite in B. Dunque: il luogo Φ_P ha in B un punto multiplo del grado $2r + \rho - 1$.

Indichiamo con:

 Δ_r il gruppo delle r tangenti (fisse) in B alla curva generica del fascio;

 $\Delta'_{r+\rho}$ il gruppo delle $r+\rho$ tangenti in B alla curva C'; t la retta PB.

Possiamo intendere che il fascio sia individuato dalla curva C' insieme ad un'altra qualunque delle sue curve, C (le cui r tangenti in B costituiscono il gruppo fisso Δ_r) e scriveremo $(C) \equiv (C, C')$.

Si conduca pel punto P una trasversale arbitraria T e siano rispettivamente:

$$(A_1, A_2, \ldots, A_n), (A'_1, A'_2, \ldots, A'_n)$$

i due gruppi di n punti in cui la retta T è incontrata dalle curve C, C'. Questi due gruppi individuano un'involuzione di grado n e prima specie, i cui 2(n-1) punti doppi, che indicherò con

$$(D_1, D_2, \ldots D_{2(n-1)}),$$

sono i punti nei quali la trasversale T è incontrata dal luogo Φ_p . Congiungendo i punti A, A', D col punto B si otterranno tre gruppi di raggi

$$(21)$$
 $(A_1B_1, A_2B_2, \dots A_nB_n), (A_1B_1, A_2B_2, \dots A_nB_n)$

$$(22) (D_1 B, D_2 B, \dots D_{2(n-1)} B),$$

l'ultimo dei quali è costituito dai raggi doppi dell'involuzione di grado n e prima specie individuata dai primi due. Così, per ogni posizione della trasversale T (condotta per P), si avranno due gruppi di n raggi (21), i quali determinano un'involuzione di prima specie i cui 2(n-1) raggi doppi (22) incontrano la retta T in punti del luogo Φ_p .

Se ora si suppone che la retta T, ruotando attorno al punto P, venga a coincidere col raggio t, al limite:

1° il gruppo $(A_1 B, A_2 B, \ldots A_n B)$ sarà costituito dal gruppo Δ_r e dal raggio t contato n-r volte;

2° il gruppo $(A'_{1}B, A'_{2}B, \ldots A'_{n}B)$ sarà costituito dal gruppo $\Delta'_{r+\rho}$ e dal raggio t contato $n-r-\rho$ volte;

3° il gruppo $(D_1B, D_2B, \ldots D_{2(n-1)}B)$ sarà costituito dalle $2r + \rho - 1$ tangenti in B alla curva Φ_P e dal raggio t contato

$$2(n-1)-(2r+\rho-1)=2n-2r-\rho-1$$

volte. Dunque: le $2r + \rho - 1$ tangenti in B alla curva Φ_p sono: i raggi doppi (diversi da t) dell'involuzione di grado n e prima specie individuata dai due gruppi di n raggi:

$$\Delta_r$$
, t^{n-r} , $\Delta'_{r+\rho}$, $t^{n-r-\rho}$;

ossia: i raggi doppi (diversi da t) dell'involuzione di grado $r + \rho$ e prima specie individuata dai due gruppi:

(23)
$$\Delta_r$$
. t^ρ , $\Delta'_{r+\rho}$.

- α) Suppongasi che s(>1) raggi del gruppo Δ_r (ovvero del gruppo Δ'_{r+p}) coincidano in uno, τ . In questo caso nella retta τ coincideranno s-1 raggi doppi dell'involuzione individuata dai due gruppi (23).
- β) Suppongasi che s raggi del gruppo Δ_r ed s' raggi del gruppo Δ'_{r+o} coincidano tutti in uno, τ ($s \neq s'$). Scrivendo:

$$\Delta_r \equiv \Delta_{r-s} \cdot \tau^s$$
, $\Delta'_{r+o} \equiv \Delta'_{r+o-s'} \cdot \tau^{s'}$,

le tangenti in B alla curva Φ_p diverse da τ saranno (23) i raggi doppi (diversi da t e da τ) dell'involuzione di grado $r + \rho$ e prima specie individuata dai due gruppi:

$$\Delta_{r-s}$$
. τ^s . t^ρ , $\Delta'_{r+\rho-s'}$. $\tau^{s'}$,

ossia, supposto ad es. s < s', i raggi doppi (diversi da t e da τ) dell'involuzione di grado $r + \rho - s$ e prima specie individuata dai due gruppi:

$$\Delta_{r-s}$$
. t^{ρ} , $\Delta'_{r+\rho-s'}$. $\tau^{s'-s}$.

Rend. Circ. Matem., t. IX, parte 1a.—Stampato il 24 settembre 1894.

Ora quest'ultima involuzione possiede:

$$2(r+\rho-s-1)-(\rho-1)-(s'-s-1)=2r+\rho-s-s'$$

raggi doppi diversi da t e da τ . Dunque, nel caso attuale, delle $2r + \rho$ — r tangenti in B alla curva Φ_P ve ne saranno

$$(2r + \rho - 1) - (2r + \rho - s - s') = s + s' - 1$$

le quali si confondono col raggio 7.

 γ) Nell'ipotesi precedente sia s=s'. In questo caso le tangenti in B alla curva Φ_P diverse da τ saranno i raggi doppi (diversi da t e da τ) dell'involuzione di grado $r+\rho$ e prima specie individuata dai due gruppi:

$$\Delta_{r-s}$$
. τ^s . t^ρ , Δ'_{r+o-s} τ^s ,

ossia i raggi doppi (diversi da t) dell'involuzione di grado $r + \rho - s$ e prima specie individuata dai due gruppi :

$$\Delta_{r-s}$$
. t^{ρ} , $\Delta'_{r+\rho-s}$.

E come quest'ultima possiede:

$$2(r+\rho-s-1)-(\rho-1)=2r+\rho-2s-1$$

raggi doppi diversi da t, se ne conclude che delle $2r + \rho - 1$ tangenti in B alla curva Φ_P ve ne saranno in questo caso

$$(2r+\rho-1)-(2r+\rho-2s-1)=2s$$
,

le quali coincidono nel raggio 7.

Riassumendo:

Teorema XXXIX. — Sia dato un fascio di curve, il quale possiede un punto base (r)-plo, B, e contiene una curva, C', dotata in B d'un punto $(r + \rho)$ -plo $(\rho > 0)$. Siano;

 Δ_r il gruppo delle r tangenti fisse in B alla curva generica del fascio;

 $\Delta'_{r+\rho}$ il gruppo delle $r+\rho$ tangenti in B alla curva C'.

Il luogo Φ_P (n° 39), corrispondente ad un punto P fissato ad arbitrio nel piano, passa, in generale, con $2r+\rho-1$ rami pel punto B, ed ba ivi per tangenti i $2r+\rho-1$ raggi doppi (diversi da $t\equiv PB$) dell'involuzione di grado $r+\rho$ e prima specie individuata dai due gruppi di $r+\rho$ raggi:

$$\Delta_r$$
. t^ρ , $\Delta'_{r+\rho}$.

In particolare:

- a) Se s(>1) raggi del gruppo Δ_r (ovvero del gruppo $\Delta'_{r+\rho}$) coincidono in uno, in questo coincideranno s-1 delle $2r+\rho-1$ tangenti in B alla curva Φ_p .
- β) Se s raggi del gruppo Δ , ed s' raggi del gruppo $\Delta'_{r+\rho}$ ($s \neq s'$) coincidono in uno, in questo coincideranno s+s'-1 delle $2r+\rho-1$ tangenti in B alla curva Φ_p .
- γ) Se s raggi del gruppo Δ , ed s raggi del gruppo $\Delta'_{r+\rho}$ coincidono in uno, in questo coincideranno 2 s delle $2r+\rho-1$ tangenti in B alla curva Φ_p .

CASO b).—Per conoscere, nell'ipotesi (b) del n° 40, come si comporta in B la curva Φ_P corrispondente ad un punto qualunque P del piano, consideriamo, come sopra, l'inviluppo Ω_R relativo ad una retta R condotta ad arbitrio pel punto P.

La retta R è incontrata dalle curve di (C) in gruppi di punti di un'involuzione di grado n e prima specie, dotata in B d'un punto base (r)-plo, la quale possiede 2(n-r-1) punti doppi diversi da B. In ognuno di questi ultimi punti la retta R è tangente ad una curva del fascio. Ma nell'ipotesi attuale vi è inoltre una (ed una sola) curva del fascio che è tangente alla retta R nel punto B. Pertanto la retta R sarà, per l'inviluppo Ω_R , una tangente multipla del grado

$$2(n-r-1)+1=2n-2r-1.$$

Osservando poi, come dianzi, che per un punto Q, scelto ad arbitrio sulla retta R, passa una, ed una sola, retta tangente in Q ad

una curva del fascio (C) (quella individuata da Q), se ne conclude che il numero delle tangenti che si possono condurre da Q all'inviluppo Ω_R è equivalente a

$$(2n-2r-1)+1=2(n-r);$$

epperò che la curva Ω_R è della classe 2(n-r).

Ciò posto, i punti in cui la retta R, uscente da B, incontra ulteriormente il luogo Φ_P sono i punti in cui le 2(n-r) tangenti condotte da P all'inviluppo Ω_R incontrano la retta R. Talchè, delle 2n-1 intersezioni di R con Φ_P ve ne sono

$$(2n-1)-2(n-r)=2r-1$$

confuse nel punto B. Dunque: il luogo Φ_p ha in B un punto multiplo del grado 2r-1.

Considerando due gruppi di r tangenti in B a due curve scelte ad arbitrio nel fascio (C), come quelli che individuano l'involuzione di raggi J_r^1 , con procedimento affatto analogo a quello adoperato più sopra (a) si trova che i 2(r-1) raggi doppi di J_r^1 sono tangenti in B alla curva Φ_P . Così, in particolare, se l'involuzione J_r^1 possiede un raggio base (s)-plo, τ , che è nel tempo istesso raggio $(s+\sigma)$ -plo $(\sigma \geq 1)$ per uno dei suoi gruppi, delle anzidette 2(r-1) tangenti in B alla curva Φ_P ve ne saranno $2s+\sigma-1$ le quali coincidono nella retta τ .

La rimanente tangente in B alla curva Φ_P è la retta PB. Infatti, poichè la curva Φ_P passa semplicemente pel punto P (n° 39, n° 41, α) ed incontra la retta PB, oltre P e B, nei 2 (n-r-1) punti doppi (diversi da B) dell'involuzione di grado n e prima specie, dotata d'un punto base (r)-plo in B, che è costituita dai gruppi di punti in cui PB è incontrata dalle curve di (C), ne segue che

$$(2n-1)-1-2(n-r-1)=2r$$

intersezioni della retta PB con il luogo Φ_p sono confuse in B; val quanto dire che PB è una delle 2 r-1 tangenti in B alla curva Φ_p .

Riassumendo:

TEOREMA XL. — Sia dato un fascio di curve, il quale possiede un punto base (r)-plo, B, con una (almeno) tangente mobile. Il luogo Φ_P (n° 39) corrispondente ad un punto P, fissato ad arbitrio nel piano, passa, in generale, con 2r-1 rami pel punto B, ed ha ivi per tangenti la retta PB ed i 2(r-1) raggi doppi dell' involuzione di grado r e prima specie, $J_r^{\rm I}$, costituita dai gruppi di r tangenti in B alle singole curve del fascio.

- α) In particolare: Se l'involuzione J_r^i possiede un raggio base (s)-plo, che sia raggio (s + σ)-plo ($\sigma \geq 1$) per uno dei suoi gruppi, in questo coincideranno $2s + \sigma 1$ tangenti in B alla curva Φ_p .
- 43. Dal Teorema XXXIX per r=0: Se un fascio contiene una curva, C', dotata d'un punto (ρ) -plo B (che non sia punto base del fascio), il luogo Φ_P , corrispondente ad un punto qualunque P del piano, passa con $\rho-1$ rami pel punto B ed ha ivi per tangenti i $\rho-1$ raggi doppi (diversi da $t\equiv PB$) dell'involuzione di grado ρ e prima specie individuata dai due gruppi di ρ raggi

$$t^{\rho}, \quad \Delta'_{\rho},$$

dove Δ_{ρ}' indica il gruppo delle ρ tangenti in B alla curva C'. In particolare: se s(>1) raggi del gruppo Δ_{ρ}' coincidono in uno, in questo coincideranno s-1 tangenti in B alla curva Φ_{P} .

- 44. Dal Teorema XL per r=1: Se B è un punto base semplice di un fascio, a tangente mobile, la curva Φ_P , corrispondente ad un punto qualunque P del piano, passa semplicemente per B ed ha ivi per tangente la retta PB.
- 45. Con gli stessi metodi fin qui adoperati si possono ottenere immediatamente varie altre proposizioni intorno al modo di comportarsi di un luogo Φ_P in un punto multiplo ordinario della curva generica o di una speciale curva del fascio, in diversi casi di coincidenza delle relative tangenti. Così , ad es., si hanno i seguenti enunciati:
 - α) Se un fascio contiene una curva, C', dotata d'un punto (ρ)-plo

 $B \cos s (< \rho)$ tangenti coincidenti in una medesima retta τ , il luogo Φ_P corrispondente ad un punto P della retta τ (diverso da B) avrà in B un punto $(\rho - 1)$ -plo con s tangenti coincidenti nella retta τ . Le rimanenti $\rho - s - 1$ tangenti in B alla curva Φ_P saranno i raggi doppi (diversi da τ) dell'involuzione individuata dai gruppi $\tau^{\rho-s}$, $\Delta'_{\rho-s}$ (dove $\Delta'_{\rho-s}$ indica il gruppo delle $\rho - s$ residuali tangenti in B alla curva C').

β) Se un fascio contiene una curva dotata d'un punto (ρ)-plo B con tutte le tangenti coincidenti in una medesima retta τ , il luogo Φ_P corrispondente ad un punto P della retta τ (diverso da B) avrà in B, in generale, un punto (ρ)-plo a tangenti distinte. Quando il punto P percorre la retta τ i gruppi di ρ tangenti in B alla corrispondente curva Φ_P generano un'involuzione di grado ρ e prima specie senza raggi base, la quale contiene un gruppo (quello relativo alla curva Φ_B) che è costituito dal raggio τ contato ρ volte (Teor. XXXVII per r = 0).

46. Si può ancora dedurre dal Teor. XXXIX la seguente proposizione:

Se in un fascio d'ordine n vi è un luogo, composto di una curva K d'ordine ν , contata μ volte, e di una residuale curva semplice L d'ordine $n-\nu\mu$, il luogo Φ_p , corrispondente ad un punto P fissato ad arbitrio nel piano, si scinde nella curva K contata $\mu-1$ volte ed in una curva residua Φ'_P d'ordine $(2n-1)-\nu(\mu-1)$, la quale, in generale, passa con un ramo: per ciascuno degli $n\nu$ punti base del fascio che trovansi sulla curva K; per ciascuno degli $n(n-\nu\mu)$ punti base del fascio che trovansi sulla curva L; per ciascuno dei $\nu(n-\nu\mu)$ punti comuni alle curve K ed L.

Per $\mu > 1$, se B è uno degli $n \vee punti base appartenenti a <math>K$ e si indica con α la tangente fissa in B alla curva generica del fascio e con β la tangente in B alla curva K, allora la tangente in B alla curva Φ'_P sarà il raggio doppio (diverso da $t \equiv PB$ e da β) dell'involuzione di prima specie e grado μ individuata dai due gruppi: α . $t^{\mu-1}$, β^{μ} (Teor. XXXIX, α) (*).

Se B è uno degli $n(n - \nu \mu)$ punti base del fascio che tro-

^(*) Per $\mu = 1$, la curva Φ'_p avrà per tangente in B la retta PB (nº 44).

vansi sulla curva L, la curva Φ'_P ha per tangente in B la retta PB (n° 44).

Se B è uno dei $v(n-v\mu)$ punti comuni alle curve K ed L e si indicano risp. con β e γ le relative tangenti in B, allora la tangente in B alla curva Φ_P' sarà il raggio doppio (diverso da $t \equiv PB$ e da β) dell'involuzione di prima specie e grado $\mu + r$ individuata dai due gruppi: $t^{\mu+r}$, β^{μ} . γ (n° 43).

α) In particolare, se un punto, B, della curva (μ)-pla K è, nel tempo istesso, punto base (μ)-plo, a tangenti mobili, del fascio, in tal caso il luogo residuo Φ_P' passerà pel punto B con μ rami ed avrà ivi per tangenti la retta PB ed i μ — Γ raggi doppi (diversi dalla tangente in B alla curva Γ 0 dell'involuzione, Γ 1, di grado Γ 2 e prima specie, costituita dai gruppi di Γ 3 tangenti in Γ 4 alle singole curve del fascio. Se, inoltre, l'involuzione Γ 4, possiede un raggio base (Γ 5)-plo, che sia raggio (Γ 5)-plo (Γ 7) per uno dei suoi gruppi, in questo coincideranno 2 Γ 5 + Γ 7 delle anzidette Γ 7 tangenti in Γ 8 alla curva Γ 9 (Teor. XL).

§ VIII.

Sui punti doppi delle curve d'un fascio.

47. Sia (C) un fascio generale d'ordine n. Si assumano arbitrariamente nel piano due punti P, Q. I corrispondenti luoghi Φ_P , Φ_Q passeranno entrambi, con un ramo, per ciascuno degli n^2 punti base semplici di (C) (n° 44) e per ciascuno dei 2(n-1) punti in cui la retta PQ è tangente a curve di (C). Ora, uno qualunque, D, dei residuali

$$(2 n - 1)^2 - n^2 - 2 (n - 1) = 3 (n - 1)^2$$

punti d'intersezione delle curve Φ_P , Φ_Q è tale che ciascuna delle rette DP, DQ ha due intersezioni riunite in D con una curva di (C). Da qui s'inferisce che D è punto doppio per quella curva che esso individua nel fascio (C). Donde il noto teorema:

« Le curve di un fascio d'ordine n hanno, in generale, $3(n-1)^2$ punti doppi ».

48. Nell'ipotesi che il fascio (C) possieda, in un punto B del piano, una singolarità base qualunque (*), proponiamoci di esprimere l'abbassamento U prodotto dal punto B nel numero $3(n-1)^2$ dei punti doppi del fascio.

Siano: V il numero delle intersezioni confuse nel punto B di due curve qualunque del fascio; W il numero delle intersezioni confuse nel punto B di due luoghi Φ_P , Φ_Q corrispondenti a due punti P, Q fissati ad arbitrio nel piano; δ il numero dei punti doppi del fascio (C) diversi da B. Poichè le curve Φ_P , Φ_Q passano inoltre, con un ramo, per ciascuno dei residuali n^2-V punti base semplici di (C) e per ciascuno dei 2(n-1) punti in cui la retta PQ è toccata da curve di (C), ne segue che esse s'incontreranno ulteriormente in $(2n-1)^2-W-(n^2-V)-2(n-1)=3(n-1)^2-W+V$ punti, ciascuno dei quali $(n^0$ 47) sarà doppio per una curva del fascio (C). Si ha quindi

$$\delta = 3(n-1)^2 - W + V;$$

epperò

$$U = 3(n-1)^2 - \delta = W - V$$
.

Laonde:

TEOREMA XLI. — Se due curve dello stesso ordine C, C' passano in modo QUALUNQUE per un medesimo punto B del piano, l'abbassamento prodotto dal punto B nel numero dei punti doppi del fascio (C, C') è uguale al numero delle intersezioni confuse in B dei luoghi Φ_P , Φ_Q (n° 39) corrispondenti a due punti P, Q fissati ad arbitrio nel piano, diminuito del numero delle intersezioni riunite in B delle curve C, C'.

α) Per V = 0, ossia nell'ipotesi che una delle due curve non passi pel punto B:

Se una curva possiede, in un punto B, una singolarità QUALUNQUE, l'abbassamento prodotto dal punto B nel numero dei punti doppi del

^(*) Per la ricerca contenuta in questo numero usciamo eccezionalmente dal campo delle singolarità ordinarie, al quale abbiamo inteso di limitarci nel presente lavoro.

fascio individuato dalla curva medesima insieme ad un'altra curva dello stesso ordine, non passante per B, è uguale al numero delle intersezioni confuse in B dei luoghi Φ_P , Φ_Q (n° 39) corrispondenti a due punti P, Q fissati ad arbitrio nel piano.

49. In virtù dei teoremi sulle curve Φ dimostrati più sopra, la relazione

$$(24) U + V - W = 0$$

ci permette di determinare il numero U in varì casi di singolarità basi ordinarie di un fascio.

a) Suppongasi che le curve C, C' (Teor. XLI) passino rispettivamente pel punto B con r, $r+\rho$ ($\rho>0$) rami a tangenti distinte e diverse per le due curve. In tal caso si ha subito

$$V = r(r + \rho)$$

ed in virtù del Teor. XXXIX:

$$W = (2r + \rho - 1)^2$$
 (*).

Onde

$$U = W - V = (2r + \rho - I)^2 - r(r + \rho).$$

Epperò (n° 40, a):

TEOREMA XLII. — Se un fascio possiede un punto base (r)-plo, B ($r \ge 0$), a tangenti fisse e distinte, e contiene una curva dotata in B d'un punto ($r + \rho$)-plo ($\rho > 0$), a tangenti distinte e diverse dalle prime, il numero dei punti doppi del fascio risulta diminuito, in generale, di

$$(2r+\rho-1)^2-r(r+\rho)$$

unità (**).

^(*) Lo stesso teorema XXXIX ci affida che, per una scelta arbitraria dei punti P e Q, i luoghi Φ_P e Φ_Q non hanno tangenti comuni in B.

^(**) Pei casi particolari: r>0, $\rho=1$; r=0, $\rho>0$; r=1, $\rho>0$ vedi: Cremona, Sopra alcune questioni nella teoria delle curve piane (Annali di Matematica, t. VI, 1864, pp. 153-168), ni 10, 11, 12.

Roud. Circ. M. tem., t. IX, parte 1ª. - Stampato il 29 settembre 1894.

b) Nelle ipotesi precedenti suppongasi che s(>1) tangenti in B alla curva C [ovvero s(>1) tangenti in B alla curva C'] coincidano in una medesima retta. In tal caso sarà

$$V = r(r + \rho)$$

ed in virtù del Teor. XXXIX, a:

$$W = (2r + \rho - 1)^2 + (s - 1);$$

epperò:

$$U = W - V = (2r + \rho - I)^2 - r(r + \rho) + (s - I).$$

Laonde:

TEOREMA XLIII.—Nelle ipotesi del Teor. XLII, se s(>1) delle r tangenti fisse in B alla curva generica del fascio (*) [ovvero s(>1) delle $r+\rho$ tangenti in B a quella curva che ivi possiede un punto $(r+\rho)$ -plo (**)] coincidono in una medesima retta, il numero dei punti doppi del fascio risulterà ancora diminuito, in generale, di altre s-1 unità.

50. Suppongasi che le curve C, C' (Teor. XLI) passino pel punto B ciascuna con r rami a tangenti distinte e diverse. Si ha in questo caso

$$V = r^2$$

ed in virtù del Teor. XL:

$$W = (2r - 1)^2 + 2(r - 1);$$

epperò

$$U = W - V = (r - 1)(3r + 1).$$

Donde il noto teorema: « Se un fascio possiede un punto base (r)-plo, i cui gruppi di tangenti alle singole curve costituiscono un'involuzione J_r^1 di grado r e prima specie senza raggi base, il numero

^(*) Per $\rho = 1$ vedi Cremona, loco citato, nº 10.

^(**) Per r = 0, $\rho > 0$ e per r = 1, $\rho > 0$ vedi: Cremona, loco citato, ni 11, 12.

dei punti doppi del fascio sarà diminuito di (r-1)(3r+1) unità » (*).

51. Nel fascio (C), d'ordine n, vi sia un luogo composto di una curva K d'ordine ν , contata μ volte, e di una residuale curva semplice L d'ordine $n-\nu\mu$. In tale ipotesi qual'è, in generale, il numero δ dei punti doppi del fascio che trovansi fuori di K?

I luoghi Φ_P' , Φ_Q' (n° 46), corrispondenti a due punti P, Q fissati ad arbitrio nel piano, sono dell'ordine $2n - \nu(\mu - 1) - 1$ e passano entrambi semplicemente (e senza toccarsi, in generale) per gli $n\nu$ punti base di (C) giacenti su K, per gli $n(n - \nu\mu)$ punti base di (C) giacenti su L, per i $\nu(n - \nu\mu)$ punti comuni alle curve K ed L e finalmente per i $2(n - 1) - \nu(\mu - 1)$ punti in cui la retta PQ è toccata da curve di (C) diverse dalla curva composta K. L. Epperò questi due luoghi s'incontreranno ulteriormente in

$$\delta = [2n - \nu(\mu - 1) - 1]^2 - n\nu - n(n - \nu\mu) - \nu(n - \nu\mu) - [2(n - 1) - \nu(\mu - 1)]$$

$$= 3(n - 1)^2 - \nu[3(n\mu - \mu + 1) - \nu(\mu^2 - \mu + 1) - 2n]$$

punti, ciascuno dei quali sarà (n° 47) doppio per una curva del fascio (C). Talchè:

Teorema XLIV. — Se un fascio d'ordine n contiene un luogo composto, del quale fa parte una curva d'ordine v contata p. volte, il numero dei punti doppi del fascio risulterà diminuito, in generale, di

$$v[3(n\mu-\mu+1)-v(\mu^2-\mu+1)-2n]$$

unità.

52. Nelle ipotesi precedenti, suppongasi inoltre che un punto, B, della curva (μ)-pla K sia, nel tempo istesso, punto base (μ)-plo (a tangenti mobili) del fascio (C). In tal caso i luoghi Φ_P' , Φ_Q' avranno in B un punto (μ)-plo ed ivi per tangenti comuni i μ — I raggi doppi (diversi dalla tangente in B alla curva K) dell'involuzione di grado μ e prima specie costituita dai gruppi di μ tangenti

^(*) Cremona, l. c., nº 8.

in B alle singole curve del fascio (n° 46, α). Come sopra, i luoghi medesimi passeranno inoltre con un ramo (e senza toccarsi, in generale) per i residuali $n \vee -\mu$ punti base di (C) giacenti su K, per gli $n(n-\nu\mu)$ punti base di (C) giacenti su L, per i $\nu(n-\nu\mu)$ punti d'incontro delle curve K ed L e per i $\nu(n-\nu)$ punti di contatto della retta ν con curve di (C). Pertanto essi s'incontreranno ulteriormente in

$$\delta' = [2n - \nu(\mu - 1) - 1]^{2} - (\mu^{2} + \mu - 1) - (n\nu - \mu) - n(n - \nu\mu)$$

$$- \nu(n - \nu\mu) - [2(n - 1) - \nu(\mu - 1)] =$$

$$= 3(n - 1)^{2} - \nu[3(n\mu - \mu + 1) - \nu(\mu^{2} - \mu + 1) - 2n] - (\mu^{2} - 1)$$

punti, ciascuno dei quali è doppio per una curva del fascio (C). Di qui s'inferisce che nell'attuale ipotesi diminuisce di altre

$$\delta - \delta' = \mu^2 - 1$$

unità il numero dei punti doppi di (C).

Epperò, estendendo questo risultato ad α punti della curva K analoghi a B si ha la seguente proposizione:

TEOREMA XLV. — Nelle ipotesi del Teorema XLIV, se α punti distinti della curva (μ)-pla sono, nel tempo istesso, punti base (μ)-pli (a tangenti mobili) del fascio, il numero dei punti doppi del fascio sarà ulteriormente diminuito, in generale, di altre α (μ ² — I) unità.

Come caso particolare, per

$$n=3\mu$$
, $\nu=3$, $\alpha=9$, $\mu \geq 1$,

il fascio d'ordine 3 μ dotato di 9 punti base (μ)-pli a tangenti mobili avrà (Teoremi XLIV e XLV):

$$3(3 \mu - 1)^2 - 3[3(3 \mu^2 - \mu + 1) - 3(\mu^2 - \mu + 1) - 6\mu] - 9(\mu^2 - 1) = 12$$

punti doppi fuori della cubica [(μ)-pla] individuata dagli anzidetti 9 punti base.

Quest'ultimo risultato è dovuto ad Halphen. (*)

53. I metodi precedenti permettono di trattare facilmente altri casi, che per brevità omettiamo. Si ha così, ad es., la proposizione:

Un fascio (A, B), d'ordine mn, il quale contiene una curva (m)-pla A d'ordine n ed una curva (n)-pla B d'ordine m $(\neq n)$, possiede, in generale,

$$\delta = (m+n)^2 - mn - 3(m+n-1)$$

punti doppi fuori delle curve A e B.

Per m=1 si ha $\delta=n$ (n-2)+1. Se inoltre è n=2, si ha $\delta=1$: Un fascio di coniche, il quale contiene una retta contata due volte, possiede un solo punto doppio fuori della retta medesima; è questo il punto d'incontro delle due tangenti fisse alla conica generica nei due punti base semplici del fascio. Etc. etc.

S IX.

Costruzione della Jacobiana di una rete mediante le curve Φ. — Esempii.

54. Si consideri nel piano una rete d'ordine n:

$$[C] \equiv [C, C', C'']$$

(dove C, C', C" sono tre qualunque delle sue curve linearmente indipendenti).

La curva C, presa insieme ad una curva qualsiasi C^* del fascio (C', C''), individua un fascio (C, C^*) contenuto nella rete [C]. Facendo variare C^* nel fascio (C', C''), tutt'i fasci analoghi a (C, C^*) esauriranno i fasci della rete [C], in ciascuno dei quali è contenuta la curva C.

Ciò premesso, sia P un punto preso ad arbitrio nel piano. Per

^(*) Halphen, Sur les courbes planes du sixième degré à neuf points doubles (Bulletin de la Société Mathématique de France, t. X, 1881-82, pp. 162-172), no 10.

ogni fascio (C, C^*) si costruisca il relativo luogo Φ_P (n° 39). Variando C^* nel fascio (C', C''), le curve Φ_P relative ai singoli fasci (C, C^*) formeranno un sistema di curve semplicemente infinito, che indicherò con (Φ_P). Dico che per un punto a, assunto ad arbitrio nel piano, passa una, ed una sola, curva del sistema (Φ_P). Infatti, fra le curve della rete [C] ve n'è una, ed una sola, C_a , che è tangente in a alla retta Pa. Ora, la curva Φ_P relativa al fascio (C, C_a) è la sola curva del sistema (Φ_P), la quale passi pel punto a. Epperò:

Data una rete d'ordine n

$$[C] \equiv [C, C', C'']$$

(dove C, C', C'' sono tre qualunque delle sue curve linearmente indipendenti), indicando con C^* la curva generica del fascio (C', C'') e con P un punto preso ad arbitrio nel piano, le curve Φ_P relative a' singoli fasci (C, C^*) costituiscono, alla lor volta, un fascio, (Φ_P) , dell'ordine 2n-1.

Una curva Φ_P relativa ad un fascio (C, C^*) incontra la curva $C: 1^\circ$ negli n^2 punti base del fascio (C, C^*) , i quali indicherò brevemente con (b); 2° in altri $(2n-1)n-n^2=n(n-1)$ punti, (p), i quali sono punti di contatto delle tangenti condotte da P alla curva C. Conseguentemente, i $(2n-1)^2$ punti base del fascio (Φ_P) sono: 1° gli n(n-1) punti (p); 2° il punto P; 3° altri

$$(2n-1)^2-n(n-1)-1=3n(n-1)$$

punti fissi del piano.

Analogamente, assumendo nel piano un altro punto, Q, ed indicando con (q) il gruppo dei punti di contatto delle tangenti condotte da Q alla curva C, ogni curva Φ_Q relativa ad un fascio (C, C^*) incontrerà la curva C: 1° negli n^2 punti base (b) del fascio (C, C^*) ; 2° negli n(n-1) punti (q). Inoltre, il fascio (Φ_Q) avrà per punti base: 1° gli n(n-1) punti (q); 2° il punto Q; 3° altri 3n(n-1) punti fissi del piano.

Ciò posto, facendo variare la curva C^* nel fascio (C', C'') ed assumendo come corrispondenti due curve Φ_P , Φ_O relative ad un

medesimo fascio (C, C^*) , si otterranno due fasci projettivi (Φ_P) , (Φ_Q) , entrambi dell'ordine 2n-1, i quali genereranno un luogo, Ξ , dell'ordine 2(2n-1). Si osservi ora che due curve corrispondenti Φ_P , Φ_Q [relative ad un medesimo fascio (C, C^*)] s'incontrano: 1° nei 2(n-1) punti, (a), nei quali la retta PQ è tangente a curve del fascio (C, C^*) ; 2° negli n^2 punti base (b) del fascio (C, C^*) ; 3° nei $3(n-1)^2$ punti doppi (d) del fascio (C, C^*) $(n^\circ$ 47). Ne segue dunque che la curva Ξ , luogo delle mutue intersezioni di due curve corrispondenti dei fasci projettivi (Φ_P) , (Φ_Q) , si scinderà:

1° nella retta PQ, luogo dei punti (a);
2° nella curva C, luogo dei punti (b);
3° in una residuale curva, J, dell'ordine

$$2(2n-1)-1-n=3(n-1),$$

che sarà il luogo dei punti (d), ossia il luogo dei punti doppi della rete data [C] (n° 24, b).

55. Si ha così una nuova costruzione geometrica della Jacobiana di una rete, indipendente dalla teoria delle polari. Siffatta costruzione conduce bensì facilmente a determinare il modo di comportarsi di questo luogo geometrico in un punto singolare della rete, per tutt'i casi considerati nel § VI. A titolo di esempii, nel n° seguente ci limiteremo a ritrovare gli enunciati dei Teoremi XXXI, XXXIV, XXXV e XXXVI.

Lo stesso metodo, opportunamente adoperato, può servire anche a risolvere le quistioni analoghe (parimenti trattate nel § VI) relative alla Jacobiana di tre curve che non siano tutte di uno stesso ordine (*).

^(*) Dopo la pubblicazione della prima parte di queste Ricerche, l'egregio collega prof. F. Gerbaldi, in una Nota intitolata « Sulle singolarità della Jacobiana di tre curve piane » (questi Rendiconti, t. VIII, 1894, pp. 1-24), è pervenuto, con metodo algebrico, alla soluzione del seguente importante problema: « Ricercare tutti i casi in cui un punto singolare, di molteplicità r_1 , r_2 , r_3 , « per tre curve algebriche piane ha per la Jacobiana una molteplicità maggiore « di quella data in generale dalla formola $r_1 + r_2 + r_3 - 2$ ».

56. Suppongasi che la rete [C] possegga un punto base (r)-plo O e contenga un fascio, (C'), dotato in O d'un punto base (r')-plo, il quale contiene alla sua volta una curva, C'', che ha in O un punto (r'')-plo. Indicando con C, C', C'' tre curve della rete, linearmente indipendenti, le quali passano pel punto O rispettivamente con r, r', r'' rami, a tangenti distinte e diverse, riterremo la rete come individuata da queste tre curve, epperò scriveremo:

$$[C] \equiv [C, C', C''].$$

Ciò premesso, proponiamoci d'investigare come si comporterà nel punto O la Jacobiana della rete [C], in ciascuno dei seguenti casi :

a)
$$0 < r < r' < r''$$
, c) $0 < r < r' = r''$,

b)
$$0 < r = r' < r''$$
, d) $0 < r = r' = r''$.

caso a). 0 < r < r' < r''. — In questo caso (Teor. I per k = 2, $r_2 > r_1 > r$, $\varsigma_{l,m} = 0$; e Teor. II per $\rho > 0$, q = 0) le r tangenti in O alla curva generica della rete data $[C] \equiv [C, C', C'']$ e le r' tangenti in O alla curva generica del fascio (C', C''), in quella contenuto, sono fisse, le une e le altre.

Indicando con C^* la curva generica del fascio (C', C''), pel Teor. Il ciascun fascio (C, C^*) ha in O un punto base (r)-plo a tangenti fisse e coincidenti con le tangenti in O alla curva C, ed è tale inoltre che in esso è contenuta una curva, C^* , per la quale O è un punto multiplo del grado r'(>r). In particolare, il fascio (C, C'') ha in O un punto base (r)-plo a tangenti fisse e coincidenti con le tangenti in O alla curva C, e contiene una curva, C'', per la quale O è un punto multiplo del grado r''(>r).

Ciò posto, si assumano nel piano due punti arbitrari $P \in Q$. In virtù del Teor. XXXIX il luogo Φ_p^* , relativo al fascio generico (C, C^*) , avrà in O un punto (r + r' - 1)-plo, mentre in particolare il luogo Φ_p^r , relativo al fascio (C, C''), avrà in O un punto multiplo del grado r + r'' - 1 (> r + r' - 1). Dunque (Teor. I): il fascio (Φ_p) ha in O un punto base (r + r' - 1)-plo,

a tangenti fisse, e contiene una curva, Φ_P'' , per la quale O è un

punto (r + r'' - 1)-plo.

Analogamente: il fascio (Φ_Q) ha in O un punto base (r+r'-1)-plo, a tangenti fisse, e contiene una curva $\Phi_Q^{\prime\prime}$ [il luogo relativo al fascio (C, C'')], per la quale O è un punto (r+r''-1)-plo.

Si ottengono così due fasci projettivi (Φ_P) , (Φ_Q) , i quali posseggono in O, l'uno e l'altro, un punto base del grado r+r'-1, e contengono due curve corrispondenti Φ_P'' , Φ_Q'' , per ciascuna delle quali O è un punto multiplo del grado r+r''-1. Pertanto, conducendo pel punto O una trasversale arbitraria ed applicando a questa retta il Lemma di Cremona (2^a nota del n^o 16) si trova immediatamente che la curva

$\Xi \equiv PQ. C. J$

(n° 54), generata dai due fasci projettivi (Φ_P) , (Φ_Q) , ha in O un punto multiplo del grado

$$2(r+r'-1)+(r''-r')=2r+r'+r''-2.$$

Donde si conclude che la Jacobiana J della rete [C] « ha in O un « punto multiplo del grado

$$(2r + r' + r'' - 2) - r = r + r' + r'' - 2$$
.

Si ritrova così il Teorema XXXI.

caso b). 0 < r = r' < r''. — In questo caso (n° 11) la rete $[C] \equiv [C, C', C'']$: 1° possiede in O un punto base (r)-plo, i cui gruppi di tangenti alle singole curve costituiscono un'involuzione di raggi, J_r^* , di grado r e prima specie (individuata dai due gruppi di r tangenti in O alle curve C e C'); 2° contiene una curva, C'', per la quale O è un punto multiplo del grado r''(>r).

Sia C^* la curva generica del fascio (C', C''). Pel Teor. II ogni fascio (C, C^*) ha in O un punto base (r)-plo, i cui gruppi di tangenti generano l'involuzione J_r^i ; in particolare, il fascio (C, C'') ha in O un punto base (r)-plo a tangenti fisse (coincidenti con le tan-

Rend, Circ. Malem., t. IX, parte 1a.—Stampato il 5 ottobre 1894.

genti in O alla curva C) e contiene una curva, C", per la quale O è un punto multiplo del grado r''(>r).

Nello assumere, come sopra, i due punti P e Q facciamo che uno di essi, ad es. Q, sia il punto O; e cerchiamo di conoscere come si comporta in O ciascuno dei fasci projettivi (Φ_p) e (Φ_0) .

Per il Teor. XL il luogo Φ_p^* , relativo al fascio generico (C, C*). ha in O un punto (2r-1)-plo, le cui tangenti in O sono: la retta PO ed i 2(r-1) raggi doppi dell'involuzione I_r , i quali indicheremo brevemente con (D); in particolare, il luogo \(\Phi''_n \), relativo al fascio (C, C"), ha in O un punto multiplo del grado r + r'' - 1(> 2r - 1) (Teor. XXXIX).

D'altra parte, per il Teor. XXXVIII il luogo \(\Phi_0^* \), relativo al fascio generico (C, C*), ha in O un punto (2r + 1)-plo; ed in particolare (Teor. XXXVII), il luogo \(\Phi'_0\), relativo al fascio (C, C"), possiede in O un punto multiplo del grado $r + r''(\sum 2r + 1)$ ed ha ivi per tangenti le r tangenti in O alla curva C e le r" tangenti in O alla curva C".

Si ottengono così due fasci projettivi (Φ_p) , (Φ_0) , i quali hanno in O, rispettivamente, un punto base (2r-1)-plo, (2r+1)-plo e contengono due curve corrispondenti \(\Phi''_P, \(\Phi''_O \) [i luoghi relativi al fascio (C, C")], la prima delle quali ha in O un punto (r+r''-1)-plo, mentre la seconda ha in O un punto (r+r'')-plo, le cui tangenti coincidono con le r tangenti in O alla curva C e le r'' tangenti in O alla curva C''.

Ora, applicando il Lemma di Cremona (2ª nota del nº 16):

1° ad una retta condotta ad arbitrio pel punto O;

 2° ad una qualsiasi delle 2(r-1) rette (D);

3° ad una qualsiasi delle r" tangenti in O alla curva C"; si trova, ordinatamente, che il luogo

To avoid and ensure $\mathbf{z} \equiv PO. C. \mathbf{J}$, who all the property

generato dai due fasci projettivi (Φ_p) , (Φ_o) :

1° passa con 3r + r'' - 1 rami pel punto O;

 2° ha ivi per tangenti le 2(r-1) rette (D);

3° ha ivi inoltre per tangenti le r'' tangenti in O alla curva C''.

Donde si conclude, che la Jacobiana J della rete $[C] \equiv [C, C, C'']$ « passa con

$$(3r + r'' - 1) - 1 - r = 2(r - 1) + r''$$

« rami pel punto O ed ha ivi per tangenti i 2(r-1) raggi doppi « dell'involuzione J_r^i e le r'' tangenti in O alla curva C'' ». In particolare, « se l'involuzione J_r^i ha un raggio base (σ) -plo $(\sigma \leq r-1)$, « in questo raggio coincideranno 2σ tangenti in O alla Jacobiana; « e se l'involuzione J_r^i ha un raggio base (σ) -plo $(\sigma \leq r-1)$, che « è nel tempo istesso raggio (σ_i) -plo $(\sigma_i > \sigma+1)$ per uno dei suoi « gruppi, in questo raggio coincideranno $\sigma+\sigma_i-1$ tangenti in O « alla Jacobiana » (*).

Rimane così dimostrato il Teorema XXXIV.

CASO c). 0 < r < r' = r''. — In questo caso la rete $[C] \equiv [C, C', C'']$: 1° possiede in O un punto base (r)-plo a tangenti fisse (le r tangenti in O alla curva C) (Teor. III, ponendo ivi k = 2, b = 0, q = 0); 2° contiene un fascio, (C', C''), dotato in O d'un punto base (r')-plo, i cui gruppi di tangenti alle singole curve costituiscono un'involuzione, $J_{r'}^{i}$, di grado r' e prima specie (Teor. II, b, ponendo ivi q = 0).

Nel seguire il procedimento del nº 54 scambiamo di posto le

curve C e C'', e scriviamo

$[C] \equiv [C'', C', C].$

Se C^* è la curva generica del fascio (C', C), pel Teor. II ogni fascio (C'', C^*) ha in O un punto base (r)-plo a tangenti fisse, le quali coincidono con le r tangenti in O alla curva C, e contiene una curva, C'', per la quale O è un punto multiplo del grado r'(>r). In particolare, il fascio (C'', C') ha in O un punto base (r')-plo a tangenti mobili.

Ciò posto, proponiamoci di conoscere come si comportano in O

i fasci projettivi (Φ_p) , (Φ_o) .

^(*) Due proposizioni, etc., Lemma II (ponendo ivi t = 1).

Il luogo Φ_p^* , relativo al fascio generico (C'', C^*), avrà in O un punto (r+r'-1)-plo (Teor. XXXIX). In particolare, il luogo Φ_p' , relativo al fascio (C'', C'), passerà pel punto O con 2r'-1 (>r+r'-1) rami, 2(r'-1) dei quali avranno ivi per tangenti i 2(r'-1) raggi doppi dell'involuzione J_r^* , (Teor. XL), i quali indicheremo brevemente con (D).

Il luogo Φ_0^* , relativo al fascio generico (C'', C^*), avrà in O un punto (r+r')-plo ed ivi le stesse tangenti delle curve C'' e C^* (Teor. XXXVII), ossia le stesse tangenti delle curve C'' e C. In particolare, il luogo Φ_O' , relativo al fascio (C'', C'), avrà in O un punto multiplo del grado 2r'+1 (>r+r') (Teor. XXXVIII).

Si ottengono così due fasci projettivi (Φ_p) , (Φ_0) , il primo dei quali ha in O un punto base (r+r')-plo a tangenti fisse ed il secondo un punto base (r+r')-plo a tangenti fisse e coincidenti con le r ed r' tangenti in O alle curve C e C''. Questi due fasci contengono due curve corrispondenti Φ_p' , Φ_O' [i luoghi relativi al fascio (C'', C')], la prima delle quali ha in O un punto multiplo del grado 2r'-1 (>r+r'-1), con 2(r'-1) rami tangenti alle rette (D), mentre la seconda ha in O un punto multiplo del grado 2r'+1 (>r+r').

Pertanto, applicando il Lemma di Cremona (2ª nota del

n° 16):

1° ad una retta condotta ad arbitrio pel punto O;

2° ad una qualsiasi delle 2(r'-1) rette (D);

3° ad una qualsiasi delle r tangenti in O alla curva C; si trova, successivamente, che il luogo

$\Xi' \equiv PO. C''. J,$

generato dai due fasci projettivi (Φ_p) , (Φ_0) :

 1° passa pel punto O con r + 3 r' - 1 rami;

2° ha ivi per tangenti le 2(r'-1) rette (D);

3° ha ivi inoltre per tangenti le r tangenti in O alla curva C. Di qui si conclude, che la Jacobiana J della rete [C] = [C, C', C''] « passa con

$$(r + 3r' - 1) - 1 - r' = r + 2(r' - 1)$$

« rami pel punto O ed ha ivi per tangenti le r tangenti fisse della « rete (le tangenti in O alla curva C) ed i 2(r'-1) raggi doppi « dell'involuzione, J_r^i , costituita dai gruppi di tangenti in O alle « curve del fascio (C', C'') ». In particolare (*), « se l'involuzione « J_r^i , possiede un raggio base (σ) -plo $(\sigma \leq r'-1)$, in questo raggio « coincideranno 2σ tangenti in O alla Jacobiana; e se l'involuzione « J_r^i , possiede un raggio base (σ) -plo $(\sigma \leq r'-1)$, che è nel tempo « istesso raggio (σ_1) -plo $(\sigma_1 > \sigma + 1)$ per uno dei suoi gruppi, in « questo raggio coincideranno $\sigma + \sigma_1 - 1$ tangenti in O alla Jaco- « biana »

Rimane così dimostrato per altra via il Teorema XXXV.

caso d). 0 < r = r' = r''.—In questo caso, supposto r > 1 (**), la rete $[C] \equiv [C, C', C'']$ possiede in O un punto base (r)-plo, i cui gruppi di tangenti alle singole curve costituiscono un'involuzione di grado r e seconda specie (Teor. I, nota). Con gli stessi procedimenti più sopra adoperati [cfr. il caso b)] si trova subito che i fasci projettivi (Φ_p) , (Φ_0) hanno in O, rispettivamente, un punto base (2r-1)-plo, (2r+1)-plo e non contengono curve dotate in O risp. d'un punto multiplo di grado > 2r-1, > 2r+1. Onde, applicando il Lemma di Cremona $(2^a$ nota del n° 16) ad una trasversale condotta ad arbitrio pel punto O, si trova che il luogo

$\Xi \equiv PO. C. J,$

generato dai due fasci projettivi (\$\Phi_p\$), (\$\Phi_o\$), passa con

$$(2r-1)+(2r+1)=4r$$

rami pel punto O.

Di qui si conclude che la Jacobiana J della rete $[C] \equiv [C, C', C'']$ « ha in O un punto multiplo del grado

$$4r-1-r=3r-1$$
».

Con che si ritrova il Teorema XXXVI.

(*) Due proposizioni, etc., Lemma II (ponendo ivi t=1).

^(**) Per r=1, la tangente in O alla curva generica della rete genera un'involuzione di grado e specie uno (un fascio di raggi). In questo caso la rete contiene una curva dotata in O d'un punto doppio [Teor. IV, nota, Esempio d)], epperò si ricade nel Caso b) più sopra considerato.

S. X

La rete $[\Phi]$ relativa ad un fascio di curve; sua Jacobiana: la curva Σ .

57. Sia dato nel piano un fascio di curve, (C), dell'ordine n. Ad ogni punto P del piano è associata una curva Φ_P (n° 39), dell'ordine 2n-1, luogo dei punti di contatto delle tangenti condotte da P alle curve di (C). Siccome i punti P del piano sono in numero ∞^2 , così tutte le curve Φ_P , relative al fascio (C), costituiranno un sistema di curve ∞^2 , che indicherò con $[\Phi]$. Dico che per due punti qualunque del piano a e b passa una, ed una sola, curva del sistema $[\Phi]$. Infatti, pei punti a e b passano due curve del fascio (C), le cui tangenti risp. in a e in b s'incontrano in un punto, Q, del piano. Il luogo Φ_Q , relativo al fascio (C), è quella curva, unica, del sistema, la quale passa per a e per b. Epperò: Tutte le curve Φ_P relative al fascio dato (C) costituiscono nel piano una rete, $[\Phi]$, dell'ordine 2n-1.

58. Suppongasi che il fascio (C) sia generale, e si indichino brevemente con (b) i suoi n^2 punti base semplici e con (d) i suoi $3(n-1)^2$ punti doppi (n° 47).

 α) La rete $[\Phi]$, relativa al fascio (C), possiede

$$n^2 + 3(n-1)^2 = 2n(2n-3) + 3$$

punti base semplici a tangente mobile, cioè: gli n^2 punti (b) (n° 44) ed i $3(n-1)^2$ punti (d) (n° 43).

β) Due curve qualunque della rete $[\Phi]$, Φ_P e Φ_Q , s'incontrano in

$$(2n-1)^2 - [2n(2n-3)+3] = 2(n-1)$$

punti della retta PQ. Sono questi i punti in cui la retta PQ è tangente a curve del fascio (C).

 γ) Se un punto P descrive nel piano una retta R, la corrispondente curva Φ_P , della rete $[\Phi]$, genera un fascio, (Φ_R) , dell'ordine

2n-1. I $(2n-1)^2$ punti base semplici del fascio (Φ_R) sono: gli n^2 punti (b), i $3(n-1)^2$ punti (d) ed i 2n-1 punti in cui la retta R è tangente a curve del fascio (C).

Reciprocamente: Se una curva Φ_p , della rete $[\Phi]$, genera un fascio (Φ) , il corrispondente punto P descrive una retta, R, sulla quale giacciono i residuali 2(n-1) punti base del fascio (Φ) , di-

versi dai punti (b) e (d).

Per tal modo, dato nel piano un fascio (C) d'ordine n, fra i punti P e le curve Φ_P della rete $[\Phi]$, relativa a (C), interviene una corrispondenza, tale che: ad un punto P corrisponde una, ed una sola, curva Φ_P ; e ad una curva Φ_P corrisponde uno, ed un solo, punto P. Inoltre: quando un punto P descrive una retta R, la corrispondente curva Φ_P genera un fascio $(\Phi)_R$ [che ha 2(n-1) dei suoi punti base sulla retta R]; e viceversa: quando una curva Φ_P genera un fascio $(\Phi)_R$ [R essendo la retta che contiene i 2(n-1) punti base del fascio, diversi da (b) e da (d) (vedi più sopra, (B)), il corrispondente punto (B)0 descrive una retta, (B)1.

Siffatta corrispondenza fra i punti P e le curve Φ_P trae con sè un'altra corrispondenza fra i punti P e le rette R del piano: Dato un punto P, rimane individuata una, ed una sola, retta R passante per P (luogo dei punti le cui corrispondenti curve Φ passano per P); viceversa: data una retta R, rimane individuato sulla medesima un gruppo di 2(n-1) punti P [costituito dai punti base, diversi da P0) e da P1, del fascio di curve P2 corrispondenti P3 punti di P3; ossia: dai punti in cui la retta P3 è tangente a curve del fascio P3.

δ) La rete $[\Phi]$ contiene n^2 curve, ciascuna delle quali ha un punto triplo in uno dei punti base del fascio (C). Invero, se b è uno qualsiasi degli n^2 punti (b), il luogo Φ_b passa pel punto b con tre rami a tangenti distinte, ciascuna delle quali è tangente stazionaria in b per una curva del fascio (C) (Teor. XXXVIII).

 ϵ) Il luogo dei punti doppi delle curve Φ relative al fascio dato (C), ossia la Jacobiana della rete $[\Phi]$, è una curva dell'ordine

$$3[(2n-1)-1]=6(n-1)$$

(n° 24, b; n° 54), che indicheremo con Σ.

59. Nella rete $[\Phi]$, relativa al fascio dato (C), sia Φ_Q una curva

dotata d'un punto doppio, M. Per il punto M passano infinite curve della rete $[\Phi]$ formanti un fascio, (Φ) , nel quale è contenuta la curva Φ_Q . Sia Φ_P un'altra curva di questo fascio e T la relativa tangente in M. Tutte le curve del fascio $(\Phi) \equiv (\Phi_P, \Phi_Q)$, eccetto Φ_Q , passano semplicemente pel punto M e toccano ivi la retta T (Teor. II). Poichè la retta T contiene, riuniti in M, due dei 2(n-1) punti base di (Φ) diversi dai punti (b) e (d), ne segue che essa conterrà i rimanenti 2(n-1)-2; epperò $(n^\circ, 58, \gamma)$ la retta T sarà il luogo dei punti P corrispondenti alle curve del fascio $(\Phi) \equiv (\Phi_P, \Phi_Q)$. Conseguentemente, la retta T conterrà anche il punto Q. Dunque:

a) Se un punto Q del piano è tale che la corrispondente curva Φ_Q ha un punto doppio, M, le curve Φ_P corrispondenti ai punti P della

retta QM saranno tangenti in M alla retta QM.

 β) Reciprocamente (cfr. Teor. V, nota): Se due, epperò infinite, curve della rete $[\Phi]$ si toccano in un punto, M, i corrispondenti punti P si troveranno sulla loro tangente comune in M. Fra i punti di questa retta ve ne sarà uno, Q, la cui corrispondente curva Φ_Q avrà un punto doppio in M.

60. Nella rete $[\Phi]$, relativa al fascio dato (C), sia Φ_Q una curva dotata d'un punto doppio, M. Poichè la curva Φ_Q passa semplicemente per Q (n° 39; n° 41, α), ne segue che la retta QM è incontrata dalla curva medesima, oltre Q ed M, in

$$(2n-1)-1-2=2n-4$$

punti. Ora, essendo questi i punti doppi, diversi da M, dell'involuzione di grado n e prima specie costituita dai gruppi di punti in cui la retta QM è incontrata dalle curve del fascio (C), se ne conclude che

$$2(n-1)-(2n-4)=2$$

dei 2(n-1) punti doppi di detta involuzione sono assorbiti dal punto M. Ma in tal caso M è punto triplo per un gruppo della involuzione medesima, val quanto dire che la curva del fascio (C) la

quale passa pel punto M ha ivi tre intersezioni riunite con la retta QM. Dunque:

Se una curva Φ_Q , corrispondente ad un punto Q, ha un punto doppio M, quella curva del fascio (C) che passa per M ha ivi un flesso, la cui tangente stazionaria è la retta QM.

61. Siano: P un punto preso ad arbitrio nel piano; Φ_P la corrispondente curva della rete $[\Phi]$; N il punto di contatto di una qualsiasi delle tangenti che si possono condurre da P alla curva Φ_P . Poichè la curva Φ_P passa semplicemente pel punto P (n° 39; n° 41, α), ne segue che la retta PN è incontrata dalla curva medesima, oltre P ed N, in

$$(2n-1)-1-2=2n-4$$

punti. Ora, essendo questi i punti doppi, diversi da N, dell'involuzione di grado n e prima specie costituita dai gruppi di punti in cui la retta PN è incontrata dalle curve del fascio (C), se ne conclude che

$$2(n-1)-(2n-4)=2$$

dei 2(n-1) punti doppi di detta involuzione rimangono assorbiti dal punto N. Ma in questo caso N è punto triplo per un gruppo della involuzione medesima; epperò quella curva del fascio (C), la quale passa per N, ha in questo punto tre intersezioni riunite con la retta PN; e conseguentemente, tutte le curve Φ corrispondenti a' punti della retta PN sono tangenti in N alla retta PN, e fra esse ve n'è una $(n^{\circ} 59, \beta)$ dotata d'un punto doppio in N. Dunque:

Se N è il punto di contatto di una qualsiasi delle tangenti che si possono condurre da un punto P (preso ad arbitrio nel piano) alla corrispondente curva Φ_P :

α) Quella curva del fascio (C) che passa per N ha in questo punto un flesso, la cui tangente stazionaria è la retta PN.

 β) Le curve Φ corrispondenti ai punti della retta PN [le quali formano un fascio (n° 58, γ)] sono tangenti in N alla retta PN. Fra esse ve n'è una per la quale N è un punto doppio.

Rend. Circ. Matem., t. IX, parte 1ª.—Stampato il 9 ottobre 1894.

62. Da quanto precede (ni 58, 2; 59; 60; 61) discende la se-

guente proposizione:

TEOREMA XLVI.—Dato nel piano un fascio di curve (C), d'ordine n, la Jacobiana della rete $[\Phi]$, relativa al fascio (C) $(n^{\circ} 57)$, è una curva, Σ , dell'ordine 6(n-1) $(n^{\circ} 58, \epsilon)$, alla quale sono da attribuire le seguenti definizioni:

α) Luogo dei punti doppi della rete [Φ].

 β) Luogo di un punto in cui due, epperò infinite, curve della rete. $[\Phi]$ si toccano.

γ) Luogo dei punti di contatto delle tangenti condotte da un punto

generico P alla corrispondente curva Pp.

8) Luogo dei punti di flesso delle curve del fascio (C) (*).

63. Suppongasi che il fascio dato (C) possegga un punto base B di grado $r(\ge 0)$ e contenga una curva, C', che ha in B un punto $(r+\rho)$ -plo $(\rho > 0)$ [Caso a) del n° 40].

In queste ipotesi come si comporterà nel punto B il luogo Σ

relativo al fascio (C)?

Indichiamo brevemente con Δ_r il gruppo delle r tangenti fisse in B alla curva generica del fascio (C) e con $\Delta'_{r+\rho}$ il gruppo delle $r+\rho$ tangenti in B alla curva C'. La curva Φ_P , corrispondente ad un punto arbitrario P del piano, passa con $2r+\rho-1$ rami pel punto B ed ha ivi per tangenti i $2r+\rho-1$ raggi doppi (diversi da $t\equiv PB$) dell'involuzione di grado $r+\rho$ e prima specie individuata dai due gruppi di $r+\rho$ raggi: $\Delta_r t^\rho$, $\Delta'_{r+\rho}$ (Teor. XXXIX). In particolare, la curva Φ_B , corrispondente al punto B, passa con $2r+\rho$ ($>2r+\rho-1$) rami pel punto B ed ha ivi per tangenti le r tangenti fisse del fascio (C) e le $r+\rho$ tangenti della curva C' (Teor. XXXVII).

^(*) Il luogo Σ (qui ottenuto come Jacobiana della rete costituita da tutte le curve Φ relative ad un fascio), come luogo dei flessi del fascio era già stato considerato dal sig. Bobek, il quale ne aveva determinato l'ordine 6(n-1) e la classe 6(n-2)(4n-3). Cfr. Doehlemann, Ueber lineare Systeme in der Ebene und im Raum und über deren Jacobi'sche Curve beziehungsweise Jacobi'sche Fläche (Math. Ann., XLI, 1893, pp. 545-570), pp. 553-554.

Di qui s'inferisce (n° 11) che, nelle ipotesi attuali, la rete $[\Phi]$, relativa al fascio dato (C), ha in B un punto base $(2r+\rho-1)$ -plo, i cui gruppi di tangenti alle singole curve costituiscono un'involuzione, $J_{2r+\rho-1}^{1}$, di grado $2r+\rho-1$ e prima specie, e contiene una curva, Φ_{B} (corrispondente al punto B), la quale passa per B con $2r+\rho$ ($>2r+\rho-1$) rami ed ha ivi per tangenti le r rette $\Delta_{r+\rho}$ e le r p rette $\Delta_{r+\rho}$. Dunque (Teor. XXXIV, ovvero n° 56, b): la Jacobiana della rete $[\Phi]$, ossia la curva Σ , passerà con

$$2[(2r+\rho-1)-1]+(2r+\rho)=3(2r+\rho)-4$$

rami pel punto B ed avrà ivi per tangenti : i $2(2r+\rho-2)$ raggi doppi dell'involuzione $J_{2r+\rho-1}^{r}$, le r rette Δ_{r} e le $r+\rho$ rette $\Delta_{r+\rho}'$.

Si ha quindi la seguente proposizione:

TEOREMA XLVII.—Se un fascio possiede un punto base B di grado $r(\geq 0)$ e contiene una curva, C', dotata in B d'un punto $(r+\rho)$ -plo $(\rho > 0)$, la relativa curva Σ (Teor. XLVI) passa, in generale, pel punto B con $3(2r+\rho)-4$ rami, $2r+\rho$ dei quali toccano in B le r tangenti fisse della curva generica del fascio e le $r+\rho$ tangenti della curva C'.

64. Posto r=0 nelle ipotesi del nº precedente, suppongasi che $s(<\rho)$ delle ρ tangenti in B alla curva C' coincidano in una medesima retta, τ ; per il che, mantenendo le superiori notazioni, scri-

veremo: $\Delta'_{\rho} \equiv \tau' \Delta'_{\rho-s}$.

La curva Φ_P , corrispondente ad un punto arbitrario P del piano, ha in B un punto $(\rho-1)$ -plo, le cui tangenti sono: la retta τ contata s-1 volte ed i $\rho-s$ raggi doppi (diversi da $t\equiv PB$ e da τ) dell'involuzione di grado ρ e prima specie individuata dai due gruppi di ρ raggi: t^ρ , $\tau^s \Delta'_{\rho-s}$ (n° 43). In particolare: 1° La curva $\Phi_{P'}$, corrispondente ad un punto arbitrario P' della retta τ , ha in B un punto $(\rho-1)$ -plo, le cui tangenti sono: la retta τ contata s volte ed i $\rho-s-1$ raggi doppi (diversi da τ) dell'involuzione di grado $\rho-s$ e prima specie individuata dai due gruppi di $\rho-s$ raggi: $\tau^{\rho-s}$, $\Delta'_{\rho-s}$ (n° 45, α). 2° La curva Φ_B , corrispondente al punto B, ha in B un punto (ρ) -plo ed ivi le stesse tangenti della curva C', cioè: la retta τ contata s volte e le $\rho-s$ rette $\Delta'_{\rho-s}$ (n° 41).

Segue da ciò (n° 11), che nelle attuali ipotesi la rete $[\Phi]$, relativa al fascio dato (C): 1° ha in B un punto base $(\rho-1)$ -plo, i cui gruppi di tangenti alle singole curve costituiscono un'involuzione, $J_{\rho-1}^{\tau}$, di grado $\rho-1$ e prima specie, con un raggio base (s-1)-plo nella retta τ [il gruppo di $J_{\rho-1}^{\tau}$ per il quale τ è raggio (s)-plo essendo costituito dalle $\rho-1$ tangenti fisse in B alla curva generica del fascio $(\Phi_{P'})$]; 2° contiene una curva, Φ_B , che ha in B un punto (ρ) -plo, le cui tangenti sono: la retta τ contata s volte e le $\rho-s$ rette $\Delta'_{\rho-s}$.

Dunque (Teor. XXXIV, ovvero n° 56, b): nella retta τ , considerata come raggio base (s-1)-plo dell'involuzione $J_{\rho-1}^{\tau}$, verranno a coincidere 2(s-1) tangenti in B alla Jacobiana della rete $[\Phi]$; e nella medesima retta, considerata come quella in cui trovansi riunite s tangenti in B alla curva Φ_B , verranno eziandio a coincidere s tangenti in B alla Jacobiana della rete $[\Phi]$. Conseguentemente, delle $3 \rho - 4$ tangenti in B alla curva Σ (Teori XLVI e XLVII), ve ne saranno

$$2(s-1)+s=3s-2$$

le quali coincidono nella retta 7. Epperò (Teor. XLVII):

Teorema XLVIII.—Se un fascio contiene una curva, C', dotata d'un punto (ρ)-plo B, con $s(<\rho)$ tangenti coincidenti in una medesima retta τ , la relativa curva Σ (Teor. XLVI) ha in B, in generale, un punto $(3\rho-4)$ -plo, le cui tangenti sono: la retta τ contata 3s-2 volte e le residuali ρ — s tangenti in B alla curva C'.

65. Posto r = 0 nelle ipotesi del nº 63, suppongasi che tutte le p tangenti in B alla curva C' coincidano in una medesima retta, τ .

La curva Φ_P , corrispondente ad un punto arbitrario P del piano, ha in B un punto $(\rho - 1)$ -plo, le cui tangenti coincidono tutte nella retta τ (n° 43). In particolare: la curva $\Phi_{P'}$, corrispondente ad un punto arbitrario P' della retta τ , ha in B un punto (ρ)-plo, il cui gruppo di ρ tangenti, quando P' descrive la retta τ , genera un'involuzione, J_ρ^1 , di grado ρ e prima specie, senza raggi base, un gruppo della quale (quello relativo al luogo Φ_B) è costituito dal raggio τ contato ρ volte (n° 45, β).

Val quanto dire, che nel caso attuale la rete $[\Phi]$, relativa al fascio dato [C]: 1° ha in B un punto base $(\rho - 1)$ -plo a tangenti fisse e coincidenti tutte nella retta τ ; 2° contiene un fascio, $(\Phi_{P'})$, che ha in B un punto base (ρ) -plo, i cui gruppi di tangenti alle singole curve generano un'involuzione J_{ℓ}^n , senza raggi base, per un gruppo della quale la retta τ è raggio (ρ) -plo.

Dunque (Teor. XXXV, ovvero n° 56, c):

t° La Jacobiana della rete $[\Phi]$ avrà in B un punto multiplo del grado

$$(\rho - I) + 2(\rho - I) = 3(\rho - I).$$

2° I 2(ρ – I) – (ρ – I) = ρ – I raggi doppi (diversi da τ) dell'involuzione J_{ρ}^{r} saranno tangenti in B alla Jacobiana della rete [Φ].

3° Nella retta τ , considerata come quella in cui si confondono tutte le $\rho-1$ tangenti fisse in B alla curva generica della rete $[\Phi]$, verranno a coincidere $\rho-1$ tangenti in B alla Jacobiana della rete medesima; e nella retta τ , considerata come raggio (ρ)-plo di un gruppo dell'involuzione J_{ρ}^{τ} , verranno altresì a coincidere $\rho-1$ tangenti in B alla detta Jacobiana. Talchè, delle $3(\rho-1)$ tangenti in B alla Jacobiana della rete $[\Phi]$ ve ne saranno

$$(\rho - I) + (\rho - I) = 2(\rho - I),$$

le quali coincidono nella retta 7.

Si ha quindi la proposizione:

Teorema XLIX. — Se un fascio contiene una curva dotata d'un punto (ρ)-plo B, con tutte le tangenti coincidenti in una medesima retta τ , la relativa curva Σ (Teor. XLVI) ha in B, in generale, un punto $3(\rho-1)$ -plo, le cui tangenti sono: 1° la retta τ contata $2(\rho-1)$ volte; 2° i $\rho-1$ raggi doppi (diversi da τ) dell'involuzione di grado ρ e prima specie costituita dai gruppi di tangenti in B alle curve Φ corrispondenti ai punti della retta τ (n° 45, β).

66. Suppongasi che il fascio dato (C) possegga un punto base B di grado r > 0, i cui gruppi di r tangenti alle singole curve costituiscono un'involuzione di raggi, J_r , di grado r e prima specie [Caso b) del n° 40].

Come si comporterà nel punto B il luogo Σ relativo al fascio (C)? Indichiamo brevemente con $\Delta_{2(r-1)}$ il gruppo dei 2(r-1) raggi doppi dell'involuzione J_r^1 e con Δ_{2r+1} il gruppo delle 2r+1 rette uscenti da B, ciascuna delle quali ha r+2 intersezioni riunite in B con una curva del fascio (C) (Teor. XXXVIII). La curva Φ_P , corrispondente ad un punto arbitrario P del piano, passa con 2r-1 rami pel punto B ed ha ivi per tangenti la retta PB e le 2(r-1) rette fisse $\Delta_{2(r-1)}$ (Teor. XL). In particolare, la curva Φ_B , corrispondente al punto B, passa con 2r+1 rami pel punto B ed ha ivi per tangenti le 2r+1 rette Δ_{2r+1} (Teor. XXXVIII).

Ne segue che, nel caso attuale, la rete $[\Phi]$, relativa al fascio dato (C): 1° ha in B un punto base (2r-1)-plo, i cui gruppi di tangenti alle singole curve costituiscono un'involuzione J_{2r-1}^1 , di grado 2r-1 e prima specie, con 2(r-1) raggi base semplici $\Delta_{2(r-1)}$; 2° contiene una curva, Φ_B , la quale passa per B con 2r+1 rami

ivi tangenti alle rette Δ_{2r+1} .

Dunque (Teor. XXXIV, ovvero n° 56, b):

r° La Jacobiana della rete $[\Phi]$ avrà in B un punto multiplo del grado

$$2[(2r-1)-1]+(2r+1)=3(2r-1).$$

2° In ciascuna delle 2(r-1) rette $\Delta_{2(r-1)}$ coincideranno due tangenti in B alla Jacobiana della rete $[\Phi]$.

3º Le residuali

$$3(2r-1)-2.2(r-1)=2r+1$$
.

tangenti in B a detta Jacobiana saranno le rette Δ_{2r+1} .

Si ha quindi la proposizione:

TEOREMA L. — Se un fascio possiede un punto base (r)-plo B, i cui gruppi di tangenti alle singole curve costituiscono un'involuzione, J_r , di grado r e prima specie, la relativa curva Σ (Teor. XLVI) passa in generale pel punto B con 3 (2 r — 1) rami, ed ha ivi per tangenti i 2(r-1) raggi doppi di J_r , ciascuno contato due volte, e le 2r+1 rette, ciascuna delle quali ha r+2 intersezioni riunite in B con una curva del fascio (Teor. XXXVIII).

67. Dal Teor. L per r = r e dal Teor. XLVII per r = o,

ρ = 2 si ricava in particolare che:

La curva Σ (Teor. XLVI) relativa ad un fascio generale d'ordine n: 1° passa con tre rami per ciascuno degli n^2 punti base semplici del fascio, ed ha ivi per tangenti quelle tre rette, ciascuna delle quali è in quel punto tangente stazionaria per una curva del fascio (Teor. XXXVIII per r=1); 2° passa con due rami per ciascuno dei $3(n-1)^2$ punti doppi del fascio (n^4), in uno qualunque dei quali ha le stesse tangenti di quella curva del fascio, per la quale quel punto è doppio (*).

68. Rammentando poi che la curva Σ è anche il luogo dei punti di contatto delle tangenti che si possono condurre da un punto arbitrario P del piano alla corrispondente curva Φ_P (Teor. XLVI, γ), si può immediatamente determinare la classe della curva generica della rete $[\Phi]$, relativa ad un fascio generale (C) d'ordine n, senza invocare le formole di $Pl\ddot{u}$ cker. Infatti, cercando le rette che si possono condurre da un punto P (generico) a toccare altrove la corrispondente curva Φ_P , troviamo subito che esse sono: 1° le congiungenti il punto P agli n^2 punti base del fascio (C) (n° 44); 2° le congiungenti il punto P ai

$$(6n-6)(2n-1)-3n^2-2.3(n-1)^2=3n(n-2)$$

punti in cui la curva Φ_p è incontrata dal luogo Σ , oltre i punti base ed i punti doppi del fascio (C) (n° 67). Ora, siccome la curva Φ_p passa pel punto P (n° 39; n° 41, α), per il che la relativa tangente (come è noto) conta per due, così il numero delle tangenti (distinte e coincidenti) che si possono condurre da P alla corrispondente curva Φ_p è dato dalla formola:

$$n^2 + 3n(n-2) + 2 = 2(2n-1)(n-1)$$
.

Epperò: La curva generica della rete $[\Phi]$, relativa ad un fascio generale d'ordine n, è della classe 2(2n-1)(n-1).

^(*) Cfr. Doehlemann, loco citato, pp. 553-554.

S XI.

Formole di Plücker. - Proprietà diverse.

69. Fra le più elementari applicazioni della teoria delle « curve Φ » (§§ VII-X) è da comprendere la dimostrazione delle note formole di Plücker, che qui esponiamo unicamente per mettere viemmeglio in luce l'efficacia del metodo da noi proposto per trattare le principali questioni della teoria generale delle curve algebriche piane.

Sia C una curva algebrica generale dell'ordine n.

Si assumano ad arbitrio nel piano: un punto P ed una curva ausiliare, C^* , dello stesso ordine n. Il luogo Φ_P , relativo al fascio (C, C^*) , è una curva dell'ordine 2n-1, la quale passa con un ramo per ciascuno degli n^2 punti comuni alle curve C e C^* (n^i 39, 44): Epperò il luogo medesimo incontrerà ulteriormente la curva C in

$$(2n-1)n-n^2=n(n-1)$$

punti, ciascuno dei quali è punto di contatto di una tangente condotta da P alla curva data C. Donde il noto teorema:

« Una curva dell'ordine n è, in generale, della classe n(n-1)».

70. Suppongasi che la curva data C possegga un punto (r)-plo, C, con $s(\leq r)$ tangenti le quali coincidono tutte in una medesima retta τ .

Si assumano ad arbitrio nel piano: un punto P ed una curva ausiliare C^* , dell'ordine n, non passante per O. Il luogo Φ_P , relativo al fascio (C, C^*) , è una curva dell'ordine 2n-1, la quale: passa semplicemente per ciascuno degli n^2 punti comuni alle curve C e C^* , ed ha in O un punto (r-1)-plo con s-1 tangenti le quali coincidono tutte nella retta τ (n^i 39, 44, 43). Ora, le ulteriori

$$(2n-1)n-n^2-[r(r-1)+(s-1)]$$

$$=n(n-1)-[r(r-1)+(s-1)]$$

intersezioni del luogo Φ_P con la curva C sono i punti di contatto

41

6

delle tangenti che si possono condurre dal punto P alla curva data C (*). Dunque (n° 69):

« Se una curva ha un punto (r)-plo con $s(\underline{\leq}r)$ tangenti coin-« cidenti in una medesima retta, la classe della curva diminuisce, « in generale, di

$$n(n-1)-[n(n-1)-r(r-1)-(s-1)]=r(r-1)+(s-1)$$
« unità » (**).

- α) Per r=2, s=1: « Un punto doppio ordinario diminuisce « di due unità la classe della curva ».
- β) Per r = 2, s = 2: « Una cuspide ordinaria diminuisce di « tre unità la classe della curva » (***).

71. Nelle ipotesi del nº precedente si assuma di nuovo nel piano una curva ausiliare C^* , dell'ordine n, non passante pel punto O. Il luogo Φ_O , relativo al fascio (C, C^*) , è una curva dell'ordine 2n-1, la quale: passa semplicemente per ciascuno degli n^2 punti comuni alle curve C e C^* , ed ha in O un punto (r)-plo con le stesse tangenti della curva C $(n^1$ 39, 44, 41). Onde il luogo mede-

$$(2 n - 1) n - (n^{2} - r r^{*}) - r (r + r^{*} - 1) - (s - 1)$$

$$= n (n - 1) - r (r - 1) - (s - 1)$$

punti, ciascuno dei quali è punto di contatto di una tangente condotta da P alla curva data C.

^(*) Per determinare il numero n(n-1)-r(r-1)-(s-1) delle tangenti che si possono condurre da un punto arbitrario P del piano ad una curva C dotata d'un punto (r)-plo, O, con $s(\leq r)$ tangenti coincidenti in una retta τ , si può anche assumere, come curva ausiliare C^* , ad es. una curva d'ordine n con un punto (r^*) -plo in O. In questo caso il luogo Φ_P , relativo al fascio (C, C^*) , passa semplicemente per ciascuno dei residuali n^2-rr^* punti comuni alle curve C e C^* (n^0 44) ed ha in O un punto $(r+r^*-1)$ -plo con s-1 tangenti coincidenti nella retta τ (Teor. XXXIX, α). Epperò il luogo medesimo, che è dell'ordine 2n-1, incontra ulteriormente la curva C in

^(**) Cremona, Introduz., nº 74, b.

^(***) Conseguentemente: « Un punto (r)-plo con s ($\leq r$) tangenti coinci« denti in una medesima retta produce, rispetto alla classe della curva, la stessa
« diminuzione che produrrebbero $\frac{1}{2}r(r-1)-(s-1)$ punti doppi ed s-1« cuspidi ordinarii ». (C r e m o n a, Introduz., no 74, d).

simo incontrerà ulteriormente la curva C in

$$(2n-1)n-n^2-(r^2+r)=n(n-1)-r(r+1)$$

punti, in ciascuno dei quali una retta condotta da O è tangente alla curva data C. Dunque:

« Se una curva ha un punto (r)-plo O (a tangenti distinte o coin« cidenti), fra le rette uscenti dal punto O ve ne sono n(n-1)-r(r+1),
« le quali toccano altrove la curva medesima ».

72. Sia C una curva algebrica generale dell'ordine n.

Si assuma ad arbitrio nel piano una curva ausiliare, C^* , dello stesso ordine n. Il luogo Σ (Teor. XLVI), relativo al fascio (C, C^*), è dell'ordine 6(n-1) e passa con tre rami per ciascuno degli n^2 punti comuni alle curve C e C^* (n° 67). Epperò il luogo medesimo incontrerà ulteriormente la curva C in

$$6n(n-1)-3n^2=3n(n-2)$$

punti, ciascuno dei quali (Teor. XLVI, δ) sarà un flesso per la curva data C. Dunque:

« Una curva d'ordine n possiede, in generale, 3n(n-2) punti « di flesso ».

73. Suppongasi che la curva data C possegga un punto (r)-plo, O, a tangenti distinte.

Si assuma nel piano una curva ausiliare, C^* , dello stesso ordine n, non passante pel punto O. Il luogo Σ (Teor. XLVI), relativo al fascio (C, C^*), passa con tre rami per ciascuno degli n^2 punti comuni alle curve C e C^* (n° 67) e passa pel punto O con 3r-4 rami, r dei quali hanno ivi le stesse tangenti della curva C (Teor. XLVIII). Epperò il luogo Σ , che è dell'ordine 6(n-1), incontrerà ulteriormente la curva C in

$$6n(n-1)-3n^2-r(3r-4)-r=3n(n-2)-3r(r-1)$$

punti, ciascuno dei quali (Teor. XLVI, δ) sarà un flesso per la curva data C. Dunque (n° 72):

« Un punto (r)-plo a tangenti distinte diminuisce, in gene-

$$3n(n-2) - [3n(n-2) - 3r(r-1)] = 3r(r-1)$$

« unità il numero dei flessi di una curva » (*).

 α) Per r=2: « Un punto doppio ordinario diminuisce di sei « unità il numero dei flessi della curva ».

74. La curva data C possegga una cuspide, O. Sia τ la relativa tangente cuspidale.

Si assuma nel piano una curva ausiliare C^* , dell'ordine n, non passante pel punto O. Il luogo Σ (Teor. XLVI), relativo al fascio (C, C^*) , passa con tre rami per ciascuno degli n^2 punti comuni alle curve C e C^* (n° 67) ed ha in O un punto triplo con due tangenti le quali coincidono nella retta τ (Teor. XLIX per $\rho = 2$). Onde il luogo Σ incontrerà ulteriormente la curva C in

$$6n(n-1)-3n^2-2.3-2=3n(n-2)-8$$

punti, ciascuno dei quali (Teor. XLVI, δ) è un flesso per la curva data C. Epperò (n° 72):

$$6n(n-1) - 3(n^2 - rr^*) - r[3(r+r^*) - 4]$$

$$-r = 3n(n-2) - 3r(r-1)$$

punti, ciascuno dei quali è un flesso per la curva data C.

b) Se $r=r^*$, in tal caso la curva Σ passerà con 3 (2r-1) rami pel punto O, senza toccare ivi la curva C (Teor. L); epperò si trova parimenti, che il luogo istesso incontra ulteriormente la curva C in

$$6n(n-1)-3(n^2-r^2)-r[3(2r-1)]=3n(n-2)-3r(r-1)$$
 punti, ciascuno dei quali è un flesso per la curva data C .

^(*) Si giunge al medesimo risultato assumendo, come luogo ausiliare C^* , una curva d'ordine n, la quale passi pel punto O con r^* rami a tangenti distinte e diverse da quelle della curva data C. Il luogo Σ , relativo al fascio (C, C^*) , passerà con tre rami per ciascuno dei residuali n^2-rr^* punti comuni alle curve C e C^* (n^0 67):

a) Se $r^{\bullet} > r$ ovvero $r^{\bullet} < r$, in ambidue i casi la curva Σ passerà inoltre pel punto O con $3(r+r^{\bullet})-4$ rami, r dei quali avranno ivi le stesse tangenti della curva C (Teor. XLVII); epperò in ambidue i casi il luogo medesimo incontra ulteriormente la curva C in

- « Una cuspide ordinaria diminuisce di otto unità il numero dei « flessi della curva ». (*)
- 75. Dalle proposizioni dei ni 69; 70, α , β ; 72; 73, α ; 74 segue immediatamente che una curva algebrica piana dell'ordine n, con δ punti doppi e α cuspidi ordinarii, è della classe

$$m = n(n-1) - 2\delta - 3 \times$$

e possiede

$$i = 3n(n-2) - 6\delta - 8x$$

punti di flesso.

Sono queste, insieme alle loro duali, le note formole di Plücker.

(*) Se si suppone che la curva data C ha un punto (r)-plo O con s ($\leq r$) tangenti coincidenti in una medesima retta, e si assume una curva ausiliare C* d'ordine n, non passante per O, in tal caso un esame più intimo della singolarità superiore che il luogo Σ [relativo al fascio (C, C^*)] possiede nel punto O farebbe conoscere che, nell'ipotesi s < r (Teor. XLVIII) le curve C e Σ hanno

$$r(3r-4)+(3s-2)+(r-s)$$

intersezioni riunite in O, e nell'ipotesi s=r (Teor. XLIX) le curve C e Σ hanno

$$3r(r-1)+2(r-1)$$

intersezioni riunite in O. Nel 1º caso il luogo Σ [il quale ha bensi un punto triplo in ciascuno degli n^2 punti comuni alle curve C e C^* (n^o 67)] incontra ulteriormente la curva C in

$$6 n (n-1) - 3 n2 - r (3 r - 4) - (3 s - 2) - (r - s)$$

= 3 n (n - 2) - [3 r (r - 1) + 2 (s - 1)]

punti, e nel 2º caso in

$$6n(n-1)-3n^2-3r(r-1)-2(r-1)=3n(n-2)-[r(3r-1)-2]$$

punti. Donde si conclude (n° 72) che: « Un punto (r)-plo con s ($\leq r$) tangenti « coincidenti in una medesima retta diminuisce, in generale, di 3r(r-1)+2(s-1) « unità il numero dei flessi della curva ».

Conseguentemente [essendo quest'ultimo numero = 6 per r = 2, s = 1 (nº 73, α); ed = 8 per r = s = 2 (nº 74)]:

« Un punto (r)-plo con $s (\leq r)$ tangenti coincidenti in una medesima retta « produce, rispetto al numero dei flessi della curva, la stessa diminuzione che « produrrebbero $\frac{1}{2}r(r-1)-(s-1)$ punti doppi ed s-1 cuspidi ordinarii ».

76. Siano C_m , C_n , C_p tre curve d'ordini m, n, p, le quali passino per un medesimo punto, O, risp. con α , β , γ rami a tangenti distinte e diverse per due qualunque di esse. Si indichino con:

- (a_{α}) , (a_{β}) , (a_{γ}) , rispettivamente, i gruppi di $n p \beta \gamma$, $p m \gamma \alpha$, $m n \alpha \beta$ punti in cui le curve C_n e C_p , C_p e C_m , C_m e C_n s'incontrano oltre il punto O;
- (c) il gruppo degli $m(m-1) + n(n-1) + p(p-1) \alpha(\alpha+1) \beta(\beta+1) \gamma(\gamma+1)$ punti di contatto delle rette che si possono condurre da O a toccare altrove le curve C_m , C_n , C_p (nⁱ 69, 71);
 - Δ_l un gruppo arbitrario di l' rette uscenti dal punto O.
 - a) Si consideri il fascio d'ordine $\mu(\geq m+n+p)$:

$$(C_{\mu}) \equiv (C_{m}. C_{n}. C_{p}. \Delta_{\mu-m-n-p}, \Delta_{\mu})$$

individuato dai due luoghi d'ordine μ : C_m . C_p . $\Delta_{\mu-m-n-p}$ e Δ_{μ} .

Poichè ogni punto di una retta appartenente al gruppo $\Delta_{\mu_{\mu}, m_{\mu}, n_{\mu}}$ ovvero al gruppo Δ_{μ} può essere considerato come punto di contatto di una tangente condotta da O ad una curva del fascio (C_{μ}) , ne segue che il luogo Φ_O , relativo al fascio (C_{μ}) , il quale è dell'ordine $2\mu - 1$ (n° 39), si scinderà nelle $2\mu - m - n - p$ rette $\Delta_{\mu_{\mu}, m_{\mu}, n_{\mu}, p}$, Δ_{μ} ed in una curva residuale, Θ_O , dell'ordine

$$(2 \mu - 1) - (2 \mu - m - n - p) = m + n + p - 1.$$

Dai teoremi sulle curve Φ si trae subito che il luogo Θ_0 :

1° Passa con $\alpha + \beta + \gamma$ rami pel punto O ed ha ivi le stesse tangenti delle curve C_m , C_n , C_p (Teor. XXXVII).

2° Passa con un ramo per ciascun punto dei gruppi (a_{α}) , (a_{β}) , (a_{γ}) , ed in uno qualunque di essi, a_{α} [del gruppo (a_{α}) , ad es.], ha per tangente il raggio doppio (diverso da Oa_{α}) dell'involuzione di secondo grado e prima specie individuata dal raggio Oa_{α} , contato due volte, e dalla coppia di raggi costituita dalle due tangenti in a_{α} alle curve C_n e C_p (n° 43); ossia: la retta che è coniugata armonica di Oa_{α} rispetto alle due tangenti in a_{α} alle curve C_n e C_p .

3º Passa con un ramo per ciascuno dei punti doppi (non con-

tenuti nei luoghi C e Δ) del fascio (C_{μ}) , ed in uno qualunque di essi, d, ha per tangente il raggio doppio (diverso da Od) dell'involuzione di secondo grado e prima specie individuata dal raggio Od, contato due volte, e dalla coppia di raggi costituita dalle due tangenti in d a quella curva del fascio (C_{μ}) che ha ivi un punto doppio $(n^{\circ} 43)$; ossia : la retta che è coniugata armonica di Od rispetto alle due tangenti in d a quella curva del fascio (C_{μ}) che ha ivi un punto doppio.

4° Passa con un ramo per ciascun punto del gruppo (c) (n° 39). Si osservi ora che la curva d'ordine m+n+p-1, Θ_0 , relativa ad un fascio del tipo (25), è unica, qualunque sia μ e per qualsiasi scelta dei due gruppi ausiliari Δ di rette uscenti dal punto O. Infatti, essendo

(26)
$$\begin{cases} (\alpha + \beta + \gamma)(\alpha + \beta + \gamma + 1) + 2(np + pm + mn - \beta\gamma - \gamma\alpha - \alpha\beta) \\ + m(m-1) + n(n-1) + p(p-1) \\ -\alpha(\alpha + 1) - \beta(\beta + 1) - \gamma(\gamma + 1) > (m+n+p-1)^{2}, \end{cases}$$

se due curve Θ_O esistessero, esse avrebbero riunite nei punti O, (a_{α}) , (a_{β}) , (a_{γ}) e (c) un numero d'intersezioni maggiore del prodotto degli ordini, il che è assurdo.

b) Si consideri il fascio d'ordine $\mu (\ge al più grande dei due numeri <math>m$ ed n + p):

(27)
$$(C_{\mu}^{(m)}) \equiv (C_n, C_p, \Delta_{\mu-n-p}, C_m, \Delta_{\mu-m}),$$

individuato dai due luoghi composti d'ordine μ : C_n . $C_p \Delta_{\mu-n-p}$ e C_m . $\Delta_{\mu-m}$.

Come sopra, il luogo Φ_O relativo al fascio $(C_{\mu}^{(m)})$ si scinderà nelle $2 \mu - m - n - p$ rette $\Delta_{\mu-n-p}$, $\Delta_{\mu-m}$ ed in una curva residuale, $\Theta_O^{(m)}$, dell'ordine m + n + p - 1.

In virtù di proposizioni relative alle curve Φ , il luogo $\Theta_O^{(m)}$:

r° Se $\beta + \gamma - \alpha \neq n + p - m$: passa con $\alpha + \beta + \gamma$ rami pel punto O ed ha ivi le stesse tangenti delle curve C_m , C_n , C_p (Teor. XXXVII); e se $\beta + \gamma - \alpha = n + p - m$: passa pel punto

O con $\alpha + \beta + \gamma + r$ rami, le cui tangenti in O sono tutte diverse, in generale, da quelle delle curve C_m , C_n , C_p (Teor. XXXVIII).

2° Passa con un ramo per ciascun punto del gruppo (a_{α}) , ed in uno qualunque di essi, a_{α} , ha per tangente [vedi più sopra: a), 2°] la retta coniugata armonica di Oa_{α} rispetto alle due tangenti in a_{α} alle curve C_n e C_b .

3° Passa con un ramo per ciascun punto dei gruppi (a_{β}) ed (a_{γ}) , in uno qualunque dei quali ha per tangente la retta che congiunge

il punto medesimo al punto O (nº 44).

 4° Passa con un ramo per ciascuno dei punti doppi (non contenuti nei luoghi C e Δ) del fascio $(C_{\mu}^{(m)})$, ed in uno qualunque di essi, d, ha per tangente [vedi più sopra: a), 3°] la retta coniugata armonica di Od rispetto alle due tangenti in d a quella curva del fascio $(C_{\mu}^{(m)})$ che ha ivi un punto doppio.

5° Passa con un ramo per ciascun punto del gruppo (c) (n° 39).

Anche qui si osservi che la curva d'ordine m+n+p-1 $\Theta_0^{(m)}$, relativa ad un fascio del tipo (27), è unica, qualunque sia μ e per qualsiasi scelta dei due gruppi ausiliari Δ di rette uscenti dal punto O. Infatti, in virtù dell'ineguaglianza (26) (pel caso generale $\beta + \gamma - \alpha \neq n + p - m$) e della seguente:

$$(\alpha + \beta + \gamma + 1)^{2} + 2(np + pm + mn - \beta\gamma - \gamma\alpha - \alpha\beta) + m(m-1) + n(n-1) + p(p-1) - \alpha(\alpha + 1) - \beta(\beta + 1) - \gamma(\gamma + 1) > (m+n+p-1)^{2}$$

(pel caso particolare $\beta + \gamma - \alpha = n + p - m$), se due curve $\Theta_0^{(m)}$ esistessero, esse avrebbero riunite nei punti O, (a_{α}) , (a_{β}) , (a_{γ}) e (c) un numero d'intersezioni maggiore del prodotto degli ordini, il che è assurdo.

Pertanto, indicando con $\Theta_O^{(n)}$ e $\Theta_O^{(p)}$ i luoghi analoghi a $\Theta_O^{(m)}$, che si ottengono scambiando fra loro in (27) risp. le curve C_m e C_n e le curve C_m e C_p , da quanto precede si conclude che per tutt'i punti di contatto, (c), delle rette che si possono condurre da O a toccare altrove le tre curve C_m , C_n , C_p passano quattro curve d'ordine $m+n+p-1:\Theta_O$, $\Theta_O^{(m)}$, $\Theta_O^{(n)}$, $\Theta_O^{(p)}$, tali che:

1º Ciascuna di esse passa altresì:

con $\alpha + \beta + \gamma$ rami pel punto O ed ha ivi le stesse tangenti delle curve date C_m , C_n , C_b ;

con un ramo per ogni punto dei gruppi (a_{α}) , (a_{β}) , (a_{γ}) .

2° In un punto qualunque, a_{α} , del gruppo (a_{α}) (ad es.): ciascuna delle due curve $\Theta_O^{(n)}$, $\Theta_O^{(p)}$ ha per tangente la retta Oa_{α} ; ciascuna delle due curve Θ_O , $\Theta_O^{(m)}$ ha per tangente la retta coniugata armonica di Oa_{α} rispetto alle due tangenti in a_{α} alle curve C_n e C_b .

In particolare: se $\beta + \gamma - \alpha = n + p - m$, la curva $\Theta_0^{(m)}$ passa pel punto O con $\alpha + \beta + \gamma + 1$ rami, le cui tangenti in O sono tutte diverse, in generale, da quelle delle curve C_m , C_n , C_p ; ed analogamente pei luoghi $\Theta_0^{(n)}$ e $\Theta_0^{(p)}$.

c) Le quattro curve d'ordine m+n+p-1: Θ_O , $\Theta_O^{(n)}$, $\Theta_O^{(n)}$, $\Theta_O^{(n)}$, $\Theta_O^{(p)}$ godono della proprietà di appartenere ad una medesima rete. Per dimostrare ciò procederemo nel modo seguente.

Pongasi anzitutto $(=n e \gamma = p)$; per il che si viene a supporre, nella ricerca precedente, che i luoghi C_n e C_p siano, rispettivamente, n e p rette uscenti dal punto O. In tal caso, i quattro luoghi Θ_O , $\Theta_O^{(m)}$, $\Theta_O^{(n)}$, $\Theta_O^{(p)}$ si riducono ad un solo, costituito da quelle n+p rette e da un luogo residuale, dell'ordine m-1, che è la prima polare di O rispetto a C_m (*), e si ha in particolare la nota proposizione:

« Data nel piano una curva C_m , d'ordine m, con un punto « (α)-plo O ($\alpha \geq 0$), gli $m(m-1)-\alpha(\alpha+1)$ punti di contatto « delle rette che si possono condurre da O a toccare altrove la « curva C_m sono situati in una curva d'ordine m-1 (la prima po« lare di O rispetto a C_m), la quale passa con α rami pel punto O « ed ha ivi le stesse tangenti della curva C_m » (**).

Indichiamo con C'_{m-1} quest'ultima curva d'ordine m-1 e torniamo alle curve C_m , C_n , C_b .

^(*) Cfr. la mia Nota: Una definizione sintetica delle curve polari (questi Rendiconti, t. VII, 1893, pp. 263-272), nº 5.

^(**) Cfr. Cremona, Introduz., ni 70-72.

I luoghi $\Theta_O^{(n)}$ e $\Theta_O^{(p)}$ individuano un fascio $(\Theta_O^{(n)}, \Theta_O^{(p)})$, d'ordine m+n+p-1, il quale [vedi più sopra, b)] avrà:

in O: un punto base $(\alpha + \beta + \gamma)$ -plo a tangenti fisse (le tangenti in O alle curve C_m , C_n , C_b);

in un punto qualunque dei gruppi (c), (a_{β}) ed (a_{γ}) : un punto base semplice a tangente mobile;

in un punto qualunque, a_{α} , del gruppo (a_{α}) : un punto base semplice a tangente fissa (la retta Oa_{α}).

Dall'ultima di queste proprietà segue (Teor. V, nota) che il fascio $(\Theta_O^{(n)}, \Theta_O^{(p)})$ conterrà una curva, la quale passa con due rami pel punto a_α . Ora questa, dovendo incontrare ciascuna delle curve C_n e C_p in un numero di punti che risulta maggiore del prodotto degli ordini (*), si scinde evidentemente nelle curve C_n e C_p ed in un luogo residuale dell'ordine (m+n+p-1)-n-p=m-1, il quale, dovendo avere in O un punto (α) -plo con le stesse tangenti della curva C_m e dovendo inoltre passare con un ramo per ciascuno degli $m(m-1)-\alpha(\alpha+1)$ punti di contatto delle rette che si possono condurre da O a toccare altrove la curva C_m , coinciderà necessariamente con la curva C_{m-1} dianzi considerata. Dunque: una delle curve del fascio $(\Theta_O^{(n)}, \Theta_O^{(n)})$ è il luogo composto C_n . C_p . C'_{m-1} .

Analogamente, il fascio $(\Theta_0, \Theta_0^{(m)})$, individuato dai luoghi Θ_0 e $\Theta_0^{(m)}$, avrà [vedi più sopra: a) e b)]:

in O: un punto base $(\alpha + \beta + \gamma)$ -plo a tangenti fisse (le tangenti in O alle curve C_m , C_n , C_p);

in un punto qualunque dei gruppi (c), (a_{β}) ed (a_{γ}) : un punto base semplice a tangente mobile;

in un punto qualunque, a_{α} , del gruppo (a_{α}) : un punto base semplice a tangente fissa (la retta coniugata armonica di $O.a_{\alpha}$ rispetto alle due tangenti in a_{α} alle curve C_n e C_p).

$$\beta(\alpha + \beta + \gamma) + \beta + [n(n-1) - \beta(\beta+1)] + (mn - \alpha\beta) + (np - \beta\gamma - 1) + 2$$

$$> n(m+n+p-1),$$

$$\gamma(\alpha + \beta + \gamma) + \gamma + [p(p-1) - \gamma(\gamma+1)] + (pm - \gamma\alpha) + (np - \beta\gamma - 1) + 2$$

> $p(m+n+p-1)$.

^(*) Rispettivamente per le ineguaglianze:

Come sopra, il fascio $(\Theta_O, \Theta_O^{(m)})$ conterrà una curva dotata di un punto doppio in a_α , la quale si scinde nelle curve C_n , C_p ed in un luogo residuale d'ordine m-1; e quest'ultimo, dovendo avere in O un punto (α) -plo con le stesse tangenti della curva C_m e dovendo inoltre passare con un ramo per ciascuno degli $m(m-1)-\alpha(\alpha+1)$ punti di contatto delle rette che si possono condurre da O a toccare altrove la curva C_m , coinciderà necessariamente con la curva C'_{m-1} . Epperò: il luogo composto C_n . C_p . C'_{m-1} è anche contenuto nel fascio $(\Theta_O, \Theta_O^{(m)})$.

Ora, poichè i due fasci $(\Theta_O^{(n)}, \Theta_O^{(p)})$ e $(\Theta_O, \Theta_O^{(m)})$ hanno in comune una curva, C_n . C_p . C'_{m-1} , se ne conclude che i quattro luoghi: $\Theta_O, \Theta_O^{(m)}, \Theta_O^{(m)}, \Theta_O^{(p)}$ appartengono ad una medesima rete. c. p. p.

Dalla discussione precedente discendono le seguenti proposizioni :

TEOREMA LI. — Date nel piano tre curve C_m , C_n , C_p , d'ordini m, n, p, le quali passano per un medesimo punto, O, risp. con $\alpha(\geq 0)$, $\beta(\geq 0)$, $\gamma(\geq 0)$ rami a tangenti distinte e diverse per due qualunque di esse, esiste una rete di curve, $[\Theta]$, dell'ordine m+n+p-1, la curva generica della quale passa:

con $\alpha + \beta + \gamma$ rami pel punto O ed ha ivi le stesse tangenti delle curve C_m , C_n , C_o ;

con un ramo, a tangente mobile, per ciascuno degli ulteriori

$$np + pm + mn - \beta \gamma - \gamma \alpha - \alpha \beta$$

punti d'incontro delle curve C_m , C_n , C_p , due a due; con un ramo, a tangente mobile, per ciascuno degli

$$m(m-1)+n(n-1)+p(p-1)-\alpha(\alpha+1)-\beta(\beta+1)-\gamma(\gamma+1)$$

punti di contatto delle rette che si possono condurre da O a toccare altrove le curve C_m , C_n , C_p .

La rete $[\Theta]$ contiene quattro curve: Θ_0 , $\Theta_0^{(m)}$, $\Theta_0^{(m)}$, $\Theta_0^{(p)}$, tali che:

1° In uno qualsiasi, a_{ij} , degli ulteriori punti comuni alle curve G_i e G_j (i, j, k = m, n, p):

a) ciascuna delle due curve $\Theta_0^{(i)}$, $\Theta_0^{(j)}$ ha per tangente la retta Oa_{ij} ;

b) ciascuna delle due curve Θ_0 , $\Theta_0^{(k)}$ ha per tangente la retta coniugata armonica di Oa_{ij} rispetto alle due tangenti in a_{ij} alle curve

Ci e Ci.

2° Il fascio $(\Theta_O^{(i)}, \Theta_O^{(j)})$ (i, j, k = m, n, p) contiene il luogo d'ordine m + n + p - 1 composto delle curve C_i , C_j e della prima polare di O rispetto a C_k ; ed il fascio $(\Theta_O, \Theta_O^{(i)})$ contiene il luogo d'ordine m + n + p - 1 composto delle curve C_j , C_k e della prima polare di O rispetto a C_i .

In particolare: se $\beta + \gamma - \alpha = n + p - m$, la curva $\Theta_0^{(m)}$ passa pel punto O con $\alpha + \beta + \gamma + 1$ rami, le cui tangenti in O sono tutte diverse, in generale, da quelle delle curve C_m , C_n , C_p ; ed analogamente per gli altri due luoghi $\Theta_0^{(n)}$ e $\Theta_0^{(p)}$. (*)

TEOREMA LII. — Date nel piano tre curve C_m , C_n , C_p , d'ordini m, n, p, le quali passano per un medesimo punto, O, risp. con α (\geq 0), β (\geq 0), γ (\geq 0) rami a tangenti distinte e diverse per due qualunque di esse, se si indica col simbolo Δ_1 un gruppo arbitrario di l rette uscenti dal punto O:

1° I punti doppi (non contenuti nei luoghi C e Δ) di ogni fascio d'ordine qualunque μ ($\geq m+n+p$):

$$(C_{\mu}) \equiv (C_m.C_n.C_p.\Delta_{\mu-m-n-p}, \Delta_{\mu})$$

sono situati nella curva d'ordine m+n+p-1: Θ_0 , definita nel Teor. LI.

2° I punti doppi (non contenuti nei luoghi $C \in \Delta$) di ogni fascio d'ordine qualunque μ (\geq al più grande dei due numeri m ed n + p):

$$(C_{\mu}^{(m)}) \equiv (C_n.C_p.\Delta_{\mu-n-p}, C_m.\Delta_{\mu-m})$$

^(*) Indicando con c_i uno qualunque dei punti di contatto delle rette che si possono condurre da O a foccare altrove la curva C_i e con C'_{i-1} , C'_{k-1} le prime polari di O rispetto alle curve C_i , C_k (i,j,k=m,n,p), si potrebbe aggiungere che la curva unica, della rete $[\Theta]$, dotata d'un punto doppio in c_i [Teor. IV, nota, Esempio d)] è il luogo composto dalla curva C_i insieme a quella curva del fascio $(C_i, C'_{k-1}, C_k, C'_{i-1})$ che passa per c_i .

sono situati nella curva d'ordine $m+n+p-1:\Theta_0^{(m)}$, definita nel Teor. LI: ed analogamente per gli altri due fasci $(C_n^{(n)})$ e $(C_n^{(p)})$.

3° Se d'è un punto doppio (non situato nei luoghi C e Δ di un fascio (C_{μ}) [ovvero di un fascio ($C_{\mu}^{(i)}$) (i = m, n, p)], la tangente in d alla curva Θ_0 [ovvero $\Theta_0^{(i)}$] sarà la retta coniugata armonica del raggio Od rispetto alle due tangenti in d a quella curva del fascio che ha ivi un punto doppio.

Queste due proposizioni (le quali sono suscettibili di immediata estensione ad un numero qualsivoglia di curve C) comprendono anche il caso particolare $\alpha=\beta=\gamma=0$, per il quale negli enunciati s'intenderà che O sia un punto del piano fissato ad arbitrio.

77. Nelle ipotesi del n° precedente suppongasi che le curve C_m , C_n , C_p passino per un altro punto, O', risp. con $\alpha' (\geq 0)$, $\beta' (\geq 0)$, $\gamma' (\geq 0)$ rami a tangenti distinte e diverse per due qualsiasi di esse. In questo caso, il numero di punti di ciascun gruppo (a_{α}) , (a_{β}) , (a_{γ}) , (c) sarà diminuito, rispettivamente, di $\beta'\gamma'$, $\gamma'\alpha'$, $\alpha'\beta'$, $\alpha'(\alpha'-1)+\beta'(\beta'-1)+\gamma'(\gamma'-1)$ (n° 70) unità. Inoltre:

1° La curva Θ_O del Teor. LI passerà con $\alpha' + \beta' + \gamma' - 1$ rami pel punto O' ed avrà ivi per tangenti gli $\alpha' + \beta' + \gamma' - 1$ raggi doppi (diversi da OO') dell'involuzione di grado $\alpha' + \beta' + \gamma'$ e prima specie individuata dal raggio OO' contato $\alpha' + \beta' + \gamma'$ volte e dal gruppo costituito dalle tangenti in O' alle curve C_m , C_n , C_p (n° 43); ossia (*): gli assi armonici, di grado $\alpha' + \beta' + \gamma' - 1$, del gruppo costituito dalle $\alpha' + \beta' + \gamma'$ tangenti in O' alle curve C_m , C_n , C_p rispetto alla retta OO'.

2° La curva $\Theta_0^{(m)}$ (ad es.) del Teor. LI passerà pel punto O' con $\alpha' + \beta' + \gamma' - 1$ rami. Le sue tangenti in O' saranno:

a) se $\alpha' > \beta' + \gamma'$: gli $\alpha' + \beta' + \gamma' - 1$ raggi doppi (diversi da OO') dell'involuzione di grado α' e prima specie individuata dal gruppo delle tangenti in O' alla curva C_m e dal gruppo

^(*) Kohn, Zur Theorie der harmonischen Mittelpunkte (Sitzb. der k. Akad. der Wissensch. zu Wien, II. Abth. Juli-Heft, 1883). Cfr. altresi la mia Nota: Sulle involuzioni di specie qualunque dotate di singolarità ordinarie (questi Rendiconti, t. VIII, 1894, pp. 227-247), no 14.

costituito dal raggio OO', contato $\alpha' - \beta' - \gamma'$ volte, insieme alle tangenti in O' alle curve C_a , e C_b (Teor. XXXIX);

- b) se $\alpha' < \beta' + \gamma'$: gli $\alpha' + \beta' + \gamma' 1$ raggi doppi (diversi da OO') dell'involuzione di grado $\beta' + \gamma'$ e prima specie individuata dal gruppo costituito dal raggio OO' contato $\beta' + \gamma' \alpha'$ volte insieme alle tangenti in O' alla curva C_m e dal gruppo costituito dalle tangenti in O' alle curve C_m e C_p (Teor. XXXIX);
- c) se $\alpha' = \beta' + \gamma'$: la retta OO' ed i $2(\alpha' 1)$ raggi doppi dell'involuzione generale di grado α' e prima specie individuata dal gruppo di tangenti in O' alla curva C_m e dal gruppo costituito dalle tangenti in O' alle curve C_n e C_p (Teor. XL).
- 78. Nella ricerca del nº 76 pongasi $\gamma = p$, con che si viene a supporre che il luogo C_p si scinda in p rette uscenti da O. In questo caso, i quattro luoghi Θ_O , $\Theta_O^{(m)}$, $\Theta_O^{(n)}$, $\Theta_O^{(p)}$ si riducono a due, ciascuno dei quali risulta costituito da quelle p rette e da un luogo residuale d'ordine m+n-1; e si ottengono, come casi particolari dei Teoremi LI e LII, le due seguenti proposizioni:

Teorema IIII. — Date nel piano due curve C_m e C_n , d'ordini m ed n, le quali passano per un medesimo punto, O, risp. con $\alpha (\geq 0)$ e $\beta (\geq 0)$ rami a tangenti distinte e diverse, esiste un fascio di curve (Θ) , dell'ordine m+n-1, la curva generica del quale passa:

con $\alpha + \beta$ rami pel punto O ed ha ivi le stesse tangenti delle curve C_m e C_n ;

con un ramo, a tangente mobile, per ciascuno degli ulteriori $mn-\alpha\beta$ punti d'incontro delle curve C_m e C_n ;

con un ramo, a tangente mobile, per ciascuno degli

$$m(m-1) + n(n-1) - \alpha(\alpha+1) - \beta(\beta+1)$$

punti di contatto delle rette che si possono condurre da O a toccare altrove le curve C_m e C_n .

Il fascio (Θ) contiene due curve, Θ_0 , Θ_0^* , tali che, in uno qualsiasi, a, degli ulteriori punti comuni alle curve C_m e C_n : uno dei due luoghi, Θ_0^* , ha per tangente la retta O a e l'altro, Θ_0 , ha per tangente la retta coniugata armonica di O a rispetto alle due tangenti in a alle curve C_m e C_n .

In particolare: se $m-\alpha=n-\beta$, la curva Θ_0^* passa pel punto O con $\alpha+\beta+1$ rami, le cui tangenti in O sono tutte diverse, in generale, da quelle delle curve C_m e C_n . (*)

Teorema LIV. — Date nel piano due curve C_m e C_n , d'ordini m ed n, le quali passano per un medesimo punto, O, risp. con $\alpha (\geq 0)$ e $\beta (\geq 0)$ rami a tangenti distinte e diverse, se si indica col simbolo Δ_1 un gruppo arbitrario di l rette uscenti dal punto O:

1° I punti doppi (non contenuti nei luoghi C e D) di ogni fuscio

d'ordine qualunque μ ($\geq m + n$):

$$(C_{\mu}) \equiv (C_{m}.C_{n}.\Delta_{\mu-m-n},\Delta_{\mu})$$

sono situati nella curva d'ordine $m+n-1:\Theta_0$, definita nel Teorema LIII.

2° I punti doppi (non contenuti nei luoghi $C \in \Delta$) di ogni fascio d'ordine qualunque μ . (\sum al più grande dei due numeri m ed n):

$$(C_{\mu}^*) \equiv (C_m. \Delta_{\mu-m}, C_n. \Delta_{\mu-n})$$

sono situati nella curva d'ordine $m+n-1:\Theta_0^*$, definita nel Teorema LIII.

3° Se d è un punto doppio (non situato nei luoghi C e Δ) di un fascio (C_{μ}) [ovvero (C_{μ}^{*})], la tangente in d alla curva Θ_{0} [ovvero Θ_{0}^{*}] sarà la retta coniugata armonica del raggio O d rispetto alle due tangenti in d a quella curva del fascio che ha ivi un punto doppio.

Pel caso particolare $\alpha = \beta = 0$ nei due precedenti enunciati s'intenderà che O sia un punto fissato ad arbitrio nel piano.

79. Nelle ipotesi precedenti, se si suppone che le curve C_m e C_m passino per un altro punto, O', risp. con $\alpha'(\geq 0)$ e $\beta'(\geq 0)$ rami a tangenti distinte e diverse, in tal caso i gruppi (a_{γ}) e (c) $(n^{\circ}$ 76) conterranno risp. $mn - \alpha\beta - \alpha'\beta'$ ed m(m-1) + n(n-1)

^(*) Pel luogo Θ_0 * cfr. Caporali, Sulle tangenti condotte ad una curva algebrica piana da un suo punto multiplo (Rend. Acc. Napoli, giugno 1881), teorema del nº 1.

 $-\alpha(\alpha+1)-\beta(\beta+1)-\alpha'(\alpha'-1)-\beta'(\beta'-1)$ (n¹ 69, 70

e 71) punti, ed inoltre:

1° La curva Θ_O del Teor. LIII passerà con $\alpha' + \beta' - 1$ rami pel punto O' ed avrà ivi per tangenti gli assi armonici, di grado $\alpha' + \beta' - 1$, del gruppo costituito dalle $\alpha' + \beta'$ tangenti in O' alle curve C_m e C_n rispetto alla retta OO' (n° 43; n° 77, 1°).

 2° La curva Θ_{O}^{*} del Teor. LIII passerà pel punto O' con

 $\alpha' + \beta' - 1$ rami. Le sue tangenti in O' saranno:

a) se $\alpha' > \beta'$: gli $\alpha' + \beta' - 1$ raggi doppi (diversi da O(O')) dell'involuzione di grado α' e prima specie individuata dal gruppo delle tangenti in O' alla curva C_m e dal gruppo costituito dal raggio OO', contato $\alpha' - \beta'$ volte, insieme alle tangenti in O' alla curva C_m (Teor. XXXIX);

b) se $\alpha' < \beta'$: gli $\alpha' + \beta' - r$ raggi doppi (diversi da OO') dell'involuzione di grado β' e prima specie individuata dal gruppo costituito dal raggio OO', contato $\beta' - \alpha'$ volte, insieme alle tangenti in O' alla curva C_m e dal gruppo costituito dalle tangenti in O' alla curva C_m (Teor. XXXIX);

c) se $\alpha' = \beta'$: la retta OO' ed i $2(\alpha' - 1)$ raggi doppi dell'involuzione generale di grado α' e prima specie individuata dai due gruppi di tangenti in O' alle curve C_m e C_n (Teor. XL).

80. Se nei Teoremi LIII e LIV poniamo $\beta = n$, per il che si viene a supporre che il luogo C_n si scinde in n rette uscenti da O, in tal caso: i luoghi Θ_O e Θ_O^* coincideranno in uno, costituito da quelle n rette e da un luogo residuale d'ordine m-1, che è la prima polare di O rispetto a C_m ; il Teor. LIII ci ricondurrà ad una proposizione già notata (n° 76, c); ed il Teor. LIV assumerà l'enunciato seguente (nel quale per $\alpha = 0$ intenderemo che O sia un punto preso fuori della curva C_m):

Data nel piano una curva C_m , d'ordine m, dotata d'un punto (α) -plo O $(\alpha \geq 0)$, se si indica col simbolo Δ_i un gruppo arbitrario di l rette uscenti da O: i punti doppi (non contenuti nei luoghi C e Δ) di ogni fascio d'ordine qualunque $\mu(\geq m)$:

$$(C_{\mu}) \equiv (C_{m}.\Delta_{\mu-m}, \Delta_{\mu})$$

giacciono nella prima polare di O rispetto alla curva C_m .

Se d è un punto doppio (non situato nei luoghi C e Δ) di un fascio (C_{μ}), la tangente in d alla prima polare di O rispetto a C_m sarà la retta coniugata armonica del raggio Od rispetto alle due tangenti in d a quella curva del fascio che ha ivi un punto doppio (*).

81. Dal Teor. LI per p = 1, $\gamma = 0$:

Date nel piano due curve C_m e C_n , degli ordini m ed n, le quali passano per un medesimo punto, O, risp. con $\alpha(\geq 0)$ e $\beta(\geq 0)$ rami a tangenti distinte e diverse: per ogni trasversale R (non passante per O) esiste una rete di curve, $[\Theta]$, dell'ordine m+n, la curva generica della quale passa:

con $\alpha + \beta$ rami pel punto O ed ha ivi le stesse tangenti delle

curve C, e C,;

con un ramo, a tangente mobile, per ciascuno degli m + n punti in cui la retta R incontra le curve C_m e C_n ;

con un ramo, a tangente mobile, per ciascuno degli ulteriori $mn - \alpha\beta$ punti d'incontro delle curve C_m e C_n ;

e con un ramo, a tangente mobile, per ciascuno degli

$$m(m-1)+n(n-1)-\alpha(\alpha+1)-\beta(\beta+1)$$

punti di contatto delle rette che si possono condurre da O a toccare altrove le curve C_m e C_n .

La rete $[\Theta]$ contiene quattro curve: Θ_O , $\Theta_O^{(m)}$, $\Theta_O^{(n)}$, $\Theta_O^{(n)}$, tali che: Γ^o In uno qualsiasi, a, degli ulteriori punti comuni alle curve C_m e C_n : ciascuna delle due curve $\Theta_O^{(m)}$, $\Theta_O^{(n)}$ ha per tangente la retta Oa e ciascuna delle due curve Θ_O , $\Theta_O^{(n)}$ ha per tangente la retta coniugata armonica di Oa rispetto alle due tangenti in a alle curve C_m e C_n ; ed in uno qualsiasi, a_i , degli i punti d'incontro

^(*) Per questa via si ritrovano tutti i teoremi relativi alle prime polari. Così ad es. (sempre nell'ipotesi $\beta=n$) ponendo $\beta'=0$ negli enunciati del nº 79 si ha la nota proposizione: « La prima polare di un punto qualunque, O, ri-« spetto ad una curva dotata d'un punto (α')-plo, O', passa con $\alpha'-1$ rami per « O' ed ha ivi per tangenti le $\alpha'-1$ rette il cui sistema è la prima polare di « O rispetto al gruppo delle α' tangenti in O' alla curva data ». (Cremona, Introduz., ni 73 e 74). Etc. etc.

della retta R con la curva C_i (i, j = m, n): ciascuna delle due curve $\Theta_O^{(i)}$, $\Theta_O^{(i)}$ ha per tangente la retta Oa_i e ciascuna delle due curve Θ_O , $\Theta_O^{(j)}$ ha per tangente la retta coniugata armonica di Oa_i rispetto alla coppia di rette costituita dalla retta R insieme alla tangente in a_i alla curva C_i .

2° Ciascuno dei due fasci $(\Theta_O, \Theta_O^{(1)})$, $(\Theta_O^{(m)}, \Theta_O^{(n)})$ contiene il luogo d'ordine m+n composto delle curve C_m e C_n ; e ciascuno dei due fasci $(\Theta_O^{(i)}, \Theta_O^{(1)})$, $(\Theta_O^{(j)}, \Theta_O)$ (i, j=m, n) contiene il luogo d'ordine m+n composto della retta R, della curva C_i e della prima polare di O rispetto a C_i .

In particolare: se $\beta - \alpha = n - m + 1$ (ovvero $\beta - \alpha = n - m - 1$) la curva $\Theta_O^{(m)}$ (ovvero la curva $\Theta_O^{(n)}$) passa pel punto O con $\alpha + \beta + 1$ rami, le cui tangenti sono tutte diverse, in generale, da quelle delle curve C_m e C_n .

82. Dal Teor. LIII per n = 1, $\beta = 0$ (ovvero dal Teor. LI per $\gamma = p$, n = 1, $\beta = 0$):

Data nel piano una curva C_m , d'ordine m, con un punto (α) -plo O $(\alpha \geq 0)$ a tangenti distinte: per ogni trasversale R (non passante per O) esiste un fascio di curve, (Θ) , d'ordine m, la curva generica del quale passa:

con α rami pel punto O ed ha ivi le stesse tangenti della curva C_m ;

con un ramo, a tangente mobile, per ciascuno degli m punti in cui la retta R incontra la curva C_m ;

e con un ramo, a tangente mobile, per ciascuno degli m(m-1) — $\alpha (\alpha + 1)$ punti di contatto delle rette che si possono condurre da O a toccare altrove la curva C_m .

Il fascio (Θ) contiene due curve: Θ_o , Θ_o^* , tali che, in uno qualsiasi, a, degli m punti comuni alla retta R ed alla curva C_m : uno dei due luoghi, Θ_o^* , ha per tangente la retta Oa e l'altro, Θ_o , ha per tangente la retta coniugata armonica di Oa rispetto alla coppia di rette costituita dalla retta R insieme alla tangente in a alla curva C_m .

In particolare: se $\alpha = m - 1$, il luogo Θ_0^* si scinde nelle m rette che congiungono il punto O ai punti in cui la curva C_m è incontrata dalla retta R.

83. Particolarizzando in vari modi le curve C_m , C_n e C_p , considerate nella ricerca del nº 76, si giungerebbe facilmente, con l'ausilio delle proposizioni fondamentali del \S VII, ad altre proprietà relative a vincoli esistenti fra i punti di contatto delle tangenti condotte da un punto ad una o a più curve algebriche. Ma noi invece, nel dar termine a questo paragrafo, preferiamo di applicare ad un particolare esempio alcune di quelle proprietà della curva Σ relativa ad un fascio di curve, che furono dimostrate nel \S X. A tal uopo riassumeremo una parte di quelle proposizioni nell'enunciato seguente, il quale metterà in evidenza i legami che esistono fra i punti di flesso di due curve dello stesso ordine, i loro punti d'incontro ed i punti doppi del fascio dalle medesime individuato.

TEOREMA LV. — Date nel piano due curve C e C', dello stesso ordine n, le quali passano per un medesimo punto, O, risp. con $\alpha(\geq 0)$ ed $\alpha'(\geq 0)$ rami a tangenti distinte e diverse, esiste una curva, Σ , dell'ordine G (G = G) (Teor. XLVI), la quale:

1° se $\alpha \neq \alpha'$, passa pel punto O con $3(\alpha + \alpha') - 4$ rami, $\alpha + \alpha'$ dei quali toccano in O le α tangenti della curva C e le α' tangenti della curva C' (Teor. XLVII); e se $\alpha = \alpha'$, passa pel punto O con $3(2\alpha - 1)$ rami, $2\alpha + 1$ dei quali toccano in O le $2\alpha + 1$ rette ciascuna delle quali ha $\alpha + 2$ intersezioni riunite in O con una curva del fascio (C, C') (Teor. XXXVIII e Teor. L);

2° passa con tre rami per ciascuno degli $n^2 - \alpha \alpha'$ ulteriori punti comuni alle curve C e C'; in uno qualunque dei quali, α , ha per tangenti le tangenti stazionarie di quelle tre curve del fascio (C, C') dotate di un flesso nel punto a (Teor. XXXVIII e Teor. L per r=1);

3° passa con due rami per ciascuno dei

$$3(n-1)^2 - [(\alpha + \alpha' - 1)^2 - \alpha \alpha'] \quad (\text{se } \alpha \neq \alpha')$$
$$3(n-1)^2 - (\alpha - 1)(3\alpha + 1) \quad (\text{se } \alpha = \alpha')$$

ulteriori punti doppi del fascio (C, C'); in uno qualunque dei quali ha le stesse tangenti di quella curva del fascio per la quale quel punto è doppio (n° 47, Teor. XLII, n° 50 e Teor. XLVII per r = 0, $\rho = 2$);

4° finalmente, passa con un ramo per ciascuno dei

$$3 [2 n(n-2) - \alpha(\alpha-1) - \alpha'(\alpha'-1)]$$

punti di flesso delle curve C e C' (nⁱ 72, 73 e Teor. XLVI, δ). Supposto $\alpha \leq \alpha'$, i $3 [n(n-2)-\alpha(\alpha-1)]$ flessi della curva generica del fascio (C,C') (Teor. II e nⁱ 72, 73) costituiscono il gruppo delle intersezioni mobili di questa curva con il luogo Σ . (*)

(*) 1. Otto punti b_1 , b_2 , ... b_8 individuano nel piano:

 $_{1}^{\circ}$ il nono punto base, b_{9} , del fascio, (C_{3}) , costituito dalle cubiche che passano per b_{1} , b_{2} , ... b_{8} ;

2º nove terne di rette, una qualunque delle quali, $(l_i^{(1)}, l_i^{(2)}, l_i^{(3)})$, è composta delle tre tangenti stazionarie in b_i (i = 1, 2, ... 9) di quelle tre curve del fascio (C_3) che hanno ivi un flesso;

3º dodici punti, d1, d2, ... d12: i punti doppi del fascio (C3);

 4° dodici coppie di rette, una qualunque delle quali, $(\tau_{j}^{(1)}, \tau_{j}^{(2)})$, è composta delle due tangenti in d_{j} $(j=1, 2, \ldots 12)$ a quella curva del fascio (C_{3}) che ha ivi un punto doppio.

In virtu del Teorema LV (per n=3, $\alpha=\alpha'=0$) i 21 punti b_1 , b_2 , ... b_9 ,

 d_1 , d_2 , ... d_{12} sono situati in una curva del 12° ordine, la quale:

a) passa con tre rami pel punto b_i ed ha ivi per tangenti le rette $t_i^{(1)}$, $t_i^{(2)}$, $t_i^{(3)}$

(i = 1, 2, ... 9);b) passa con due rami pel punto d_j ed ha ivi per tangenti le rette $\tau_j^{(1)}, \tau_j^{(2)}$ (j = 1, 2, ... 12);

c) contiene i 9 punti di flesso di ogni curva del fascio (C3).

2. Per n=2 il luogo Σ del Teor. LV è del 6° ordine e si scinde nelle 6 rette che congiungono due a due i 4 punti base del fascio di coniche.

3. Siano: C_n una curva d'ordine n con un punto (n-1)-plo ordinario, O; (b) un gruppo di n punti presi ad arbitrio sulla curva C_n ; Δ_n il gruppo delle n rette che congiungono il punto O ai singoli punti (b); d_i il punto in cui una qualsiasi, t_i , delle n-1 tangenti in O alla curva C_n è ulteriormente incontrata dalla curva d'ordine n-1, $C_{n-1}^{(i)}$, la quale: passa con n-2 rami pel punto O, ha ivi per tangenti le rette t_1 , t_2 , ... t_{i-1} , t_{i+1} , ... t_{n-1} e passa con un ramo per ciascuno dei punti (b) $(i=1,2,\ldots n-1)$.

In virtù del Teorema LV il luogo Σ relativo al fascio d'ordine $n(C_n, \Delta_n)$ è dell'ordine 6(n-1) e passa: con 3[n+(n-1)]-4=6n-7 rami pel punto 0, 2n-1 dei quali hanno ivi per tangenti le n-1 rette t_1 , t_2 , ... t_{n-1}

84. Siano:

 C_n una curva d'ordine n con un punto (n-1)-plo ordinario, O;

 Δ_{n-1} il gruppo delle n-1 tangenti in O alla curva C_n ; $\Delta_{3(n-2)}$ il gruppo delle rette che congiungono il punto O ai

$$3n(n-2)-3(n-1)(n-2)=3(n-2)$$

punti di flesso della curva C_n (nⁱ 72, 73); R, R', R'' tre rette fissate ad arbitrio nel piano. I quattro luoghi d'ordine n:

$$R.\Delta_{n-1}$$
, $R'.\Delta_{n-1}$, $R''.\Delta_{n-1}$, C_n

e le n rette Δ_n ; con tre rami per ciascuno degli n punti (b); con due rami per ciascuno degli n-1 punti $d_1, d_2, \ldots d_{n-1}$, in uno qualsiasi dei quali, d_i , ha per tangenti la retta t_i , e la tangente in d_i alla curva $C_{n-1}^{(i)}$; e finalmente con un ramo per ciascuno dei $(n^i, 72, 73)$: 3n(n-2)-3 (n-1)(n-2)=3 (n-2) punti di flesso della curva C_n . Conseguentemente, il luogo Σ si scinde: 1^o nelle n rette Δ_n , ciascuna contata due volte; 2^o nelle n-1 rette $t_1, t_2, \ldots t_{n-1}$; 3^o in un luogo residuale, dell'ordine 6(n-1)-2n-(n-1)=3n-5, il quale: passa con (6n-7)-2n-(n-1)=3n-6 rami pel punto O; passa con un ramo per ciascuno degli n punti $d_1, d_2, \ldots d_{n-1}$, in uno dei quali, d_i , è tangente alla curva $C_{n-1}^{(i)}$; e passa con un ramo per ciascuno dei 3(n-2) punti di flesso della curva data C_n .

Si ha quindi la seguente proposizione:

Se sopra una curva C_n , d'ordine n, con un punto (n-1)-plo ordinario, O, si assume ad arbitrio un gruppo, (b), di n punti, e si indica con d_i il punto in cui una, t_i , delle n-1 tangenti in O alla curva C_n è ulteriormente incontrata dalla curva d'ordine n-1, $C_{n-1}^{(i)}$, che passa per O con n-2 rami ivi tangenti alle rette t_1 , t_2 , ... t_{i-1} , t_{i+1} , ... t_{n-1} e passa semplicemente per ciascuno dei punti (b) (i=1,2,... n-1), allora esiste una curva d'ordine 3n-5, la quale:

1º ha in O un punto (3n — 6)-plo;

2º passa con un ramo per ciascuno degli n punti (b);

3º passa con un ramo per ciascuno degli n — 1 punti (d);

 4° in uno, d_i , degli n-1 punti (d) tocca la curva $C_{n-1}^{(i)}$ (i=1,2,...n-1);

 5° passa con un ramo per ciascuno dei 3(n-2) punti di flesso della curva data C_n .

individuano un sistema lineare triplamente infinito d'ordine n:

$$[C_n]^3 \Longrightarrow [R. \Delta_{n-1}, R'. \Delta_{n-1}, R''. \Delta_{n-1}, C_n],$$

il quale possiede in O un punto base (n-1)-plo a tangenti fisse: le n-1 tangenti Δ_{n-1} della curva C_n .

Poichè ogni curva del sistema $[C_n]^3$ può essere ottenuta come curva del fascio

$$(C_n^*) \equiv (R^*. \Delta_{n-1}, C_n),$$

dove R^* è una retta che varia nella rete [R, R', R''] (ossia una retta qualunque del piano) (n° 1, a), ne segue che il sistema $[C_n]^3$ gode altresì della proprietà che la sua curva generica incontra ulteriormente la curva data C_n in $n^2 - (n-1)^2 - (n-1) = n$ punti situati in linea retta (*).

Reciprocamente, ogni curva d'ordine n, la quale passa pel punto O con n-1 rami ivi tangenti alle rette Δ_{n-1} ed incontra la curva C_n in gruppi mobili di n punti situati in linea retta appartiene al sistema $[C_n]^3$. Infatti, se C_n^* è una di queste curve ed R^* è la retta che contiene gli n punti in cui la curva medesima incontra ulteriormente C_n , il fascio (C_n^*, C_n) conterrà necessariamente il luogo composto $R^*.\Delta_{n-1}$; epperò la curva C_n^* apparterrà al fascio $(C_n^*) \equiv (R^*.\Delta_{n-1}, C_n)$ e conseguentemente al sistema $[C_n]^3$.

Ciò premesso cerchiamo il luogo Σ (Teor. XLVI) relativo al fascio (C_n^*) .

Siccome questo fascio contiene una curva costituita da un gruppo, Δ_n , di n rette uscenti da O (Teor. V, nota), così considereremo il fascio medesimo come individuato dai due luoghi d'ordine n: $R^*.\Delta_{n-1}$ e Δ_n , e scriveremo:

$$(C_n^*) \equiv (R^*.\Delta_{n-1}, \Delta_n).$$

Pertanto, applicando il Teorema LV troviamo subito che il luogo Σ relativo al fascio (C_n^*) passa : con

$$3[(n-1)+n]-4=6n-7$$

^(*) Conseguentemente: due curve qualunque del sistema $[C_n]^3$ s'incontrano in un gruppo mobile di n punti situati in linea retta.

rami pel punto O; con tre rami per ciascuno degli n punti d'incontro della retta R^* con i raggi del gruppo Δ_n ; e con due rami per ciascuno degli n-1 punti d'incontro della retta R^* con i raggi del gruppo Δ_{n-1} . Ma siccome ogni punto di una qualsiasi delle rette costituenti i gruppi Δ_{n-1} e Δ_n è da considerarsi come flesso di una curva del fascio (C_n^*) , così il luogo Σ , che è dell'ordine 6(n-1), si scinderà nelle 2n rette $R^*.\Delta_{n-1}$. Δ_n ed in un luogo residuale d'ordine

$$6(n-1)-2n=4n-6$$
,

il quale, dovendo passare: con

$$(6n-7)-(n-1)-n=4n-6$$

rami pel punto O, con un ramo per ciascuno degli n punti d'incontro della retta R^* coi raggi del gruppo Δ_n e con un ramo per ciascuno dei 3 (n-2) flessi della curva C_n , si scinderà alla sua volta nelle 4n-6 rette Δ_n . $\Delta_{3(n-2)}$. Donde si conclude che il luogo Σ relativo al fascio particolare (C_n^*) si compone della retta R^* , delle n-1 rette Δ_{n-1} , delle n rette Δ_n , ciascuna contata due volte, e delle 3(n-2) rette $\Delta_{3(n-2)}$. Epperò:

TEOREMA LVI. — Data nel piano una curva C_n d'ordine n con un punto (n-1)-plo ordinario, O, tutte le curve d'ordine n, le quali hanno in O un punto (n-1)-plo con le stesse tangenti di C_n ed incontrano ulteriormente C_n in gruppi di n punti situati in linea retta costituiscono un sistema lineare triplamente infinito (nel quale è contenuta C_n) tale, che i 3(n-2) flessi della relativa curva generica descrivono 3(n-2) rette concorrenti nel punto O.

(CONTINUA).

Lana an der Etsch, Gardscheit 8 ottobre 1894.

ERRATA-CORRIGE E NOTE.

- 1) Mem. Ia, no 5: Il Corollario che avevo rapidamente indicato in una nota a piè della pag. 197 (e del quale non ho fatto alcun uso in queste Ricerche), nei termini in cui trovasi ivi enunciato è erroneo; epperò prego il·lettore di considerarlo come nullo.
- 2) Mem. I^a , §§ IV e V: Per inavvertenza, negli enunciati del Lemma del n^o 16 e dei Teoremi VI, VII e VIII è stata omessa la condizione $n_i \geq k$, che il Lettore avrà potuto restituire da sè osservando, che nelle ricerche di quei due paragrafi si considerano sistemi lineari ∞^k segati da una retta arbitraria in gruppi di un'involuzione di grado n_i e specie k, la cui definizione implica (cfr. Due proposizioni, etc., n^o 1) la condizione $n_i \geq k$.
- 3) Mem. Ila, Teor. XL: Nell'ipotesi particolare in cui tutte le r tangenti in B alla curva generica del fascio dato sono supposte mobili, cfr. la interessante Memoria del prof. Chizzoni: Sopra le involuzioni nel piano (Mem. Acc. Lincei, vol. XIX, 1884), no 14, dove trovasi indicato che il luogo Φ_P passa con 2r-1 rami pel punto B e che una delle sue 2r-1 tangenti in B è la retta PB.
- 4) Mem. II^a , n^o 57: La proprietà che tutte le curve Φ relative ad un fascio dato costituiscono una rete devesi attribuire al prof. Chizzoni, il quale ebbe a dimostrarla nel nº 14 della sua Memoria (loco citato).
- 5) Mem. IIa, n° 58: A pag. 30, linea 30, ed a pag. 31, linea 1, leggasi $(\Phi)_R$ in vece di (Φ_R) .
- 6) Mem. IIa, Teor. XLVIII: In luogo di «..., le cui tangenti sono: » leggasi: «..., fra le cui tangenti sono da comprendere: ».
- 7) Per la determinazione dei numeri μ_k e ξ_{k-1} della Nota: Una definizione sintetica delle curve polari (questi Rendiconti, t. VII, 1893, pp. 263-272) (estratta da un \S , tutt'ora inedito, della Memoria III^a di queste Ricerche) sostituiscasi la seguente dimostrazione, a quella esposta nel nº 1 della Nota medesima.

Siano: $[C]^k$ un sistema lineare di curve d'ordine n e dimensione k (< n); P un punto fissato ad arbitrio nel piano; Φ_p^k il luogo dei punti in cui rette condotte dal punto P hanno contatti d'ordine k con curve del sistema $[C]^k$; μ_k l'ordine del luogo Φ_p^k ; ξ_{k-1} il grado di moltiplicità del punto P per la curva Φ_p^k , ossia:

- a) il numero delle rette uscenti dal punto P, ciascuna delle quali ha ivi un contatto d'ordine k con una curva del sistema $[C]^k$, ossia:
- b) il numero delle rette uscenti da un punto P, ciascuna delle quali ha ivi un contatto d'ordine k con una curva di un sistema lineare $[C]^{k-1}$, di dimensione k-1, dotato in P d'un punto base semplice a tangente mobile, ossia:
 - c) il grado di moltiplicità di un punto P per il luogo Φ_p^{k-1} relativo ad un

sistema lineare $[C]^{k-1}$, di dimensione k-1, dotato in P d'un punto base semplice a tangente mobile.

Una retta R, condotta ad arbitrio pel punto P, incontra le curve del sistema $[C]^k$ in gruppi di n punti, i quali costituiscono un'involuzione di grado n e specie k. I (k+1) (n-k) punti (k+1)-pli di questa involuzione sono i punti in cui la retta R, uscente da P, incontra ulteriormente il luogo Φ_p^k . Si ha quindi:

(a)
$$\mu_k = (k+1)(n-k) + \xi_{k-1}$$
.

Il luogo Φ_P^{k-1} , relativo al sistema lineare $[C]^{k-1}$ costituito dalle curve di $[C]^k$ che passano per P, è dell'ordine μ_{k-1} e passa [c] con ξ_{k-1} rami pel punto P. D'altra parte, i punti in cui una retta, condotta ad arbitrio per P, incontra ulteriormente il luogo Φ_P^{k-1} , sono i k(n-k) punti (k)-pli dell'involuzione di grado n-1 e specie k-1 costituita dai gruppi di n-1 punti in cui la retta medesima è incontrata dalle curve di $[C]^{k-1}$. Si ha dunque:

(
$$\beta$$
) $\mu_{k-1} = k (n-k) + \xi_{k-1}$.

Ciò posto, eliminando ξ_{k-1} dalle (α) e (β) si ottiene la formola di ricorrenza:

$$\mu_k = \mu_{k-1} + n - k;$$

dalla quale, essendo $\mu_r=2n-1$ (queste Ricerche, nº 39; ovvero: Una definizione, etc., nº 1, a), si deduce:

$$\mu_k = \frac{(k+1)(2n-k)}{2}$$

e conseguentemente (a):

$$\xi_{k-1} = \frac{k(k+1)}{2}$$
. C. D. D.

GRG

SUR LES COURBES HYPERELLIPTIQUES

PORTANT

DES CORRESPONDANCES UNIVOQUES;

par M. S. Kantor.

Adunanza del 22 luglio 1894.

1. Un intérêt particulier distingue ces courbes des autres courbes à correspondance univoque interne, en tant que les correspondances sur elles sont toujours contenues dans des transformations birationnelles planes, sans avoir besoin de subir une transformation simplement rationnelle (*). Pour étudier les propriétés purement algébriques on peut se borner à la courbe normale $C_n(a)^{n-2}$. Je vais construire toutes les transformations birationnelles qui y appartiennent.

Théorème I. — Les points de contact des tangentes menées de a à la courbe doivent être joints entre eux en des cycles de la correspondance.

C'est une conséquence de la continuité de la correspondance, l'involution inhérente $g_2^{\scriptscriptstyle \text{I}}$ étant changée en soi-même.

Théorème II. — Lorsque les tangentes sortant de a sont jointes par des cycles d'une homographie binaire, la courbe possède une correspondance univoque.

^(*) Ces transpositions simplement rationnelles furent employées la première fois par M. A. Hurwitz (Math. Ann., Bd. 32).

C'est ce qui est prouvé immédiatement par l'expression

$$y = Q(x) \pm \sqrt{R(x)}$$

de la courbe, et ce qui résultera aussi par la construction de la transformation birationnelle relative, qui sera achevée au théorème XXVII. J'ai déjà étudié le cas le plus particulier, savoir celui où existe une cubique invariantive et cela montrait que les cycles ne doivent pas être assujettis à aucune condition. Une seconde preuve est le cas, où la courbe $C_n(a)^{n-2}$ est dégénérée en une $C_n(a)^{n-1}$ et le point a, celui-ci comptant pour n = 0 avec les singularités a^{-1} , $a_1^0 = a_2^0 = \dots$

Si la condition du Théorème II est satisfaite, il y a toujours deux correspondances, dont l'une est la composition de l'autre avec l'involution inhérente. Il faut distinguer les cas d'indice pair et impair. Si l'indice h+1 entre les droites par (a b) est impair, il y a toujours une des correspondances, qui contient l'involution inhérente et une, qui ne la contient pas. Si h+1 est pair, il existe deux espèces essentiellement différentes de courbes: 1° celles où toutes les deux correspondances contiennent l'involution inhérente et 2° celles où aucune des deux correspondances ne contient l'involution inhérente.

Pour h+1 impair, parmi les points de contact sortis de a existe un seul point double ou deux points doubles ou n'existe nul point double, suivant que les autres points de contact s'arrangent en un nombre impair ou pair de cycles. Pour h+1 pair, parmi les points de contact n'existe nul point double ou il en existe deux. Tous ces cas sont effectifs, parce qu'on peut construire la fonction $\varphi_0 \varphi_2 + \varphi_1^2$ pour $x_1^2 \varphi_0 + 2 \varphi_1$. $x_1 - \varphi_2 = 0$ tellement, à satisfaire à une quelconque de ces propriétés.

Théorème III. — Pour b+1 impair existent 6 espèces de corspondances Γ :

- 1. Γ peut avoir l'indice h + 1 et 3 points doubles, l'un d'eux entre les points de contact;
- 2. Γ peut avoir l'indice 2(h+1) et 1 point double et une couple involutive;
 - 3. Γ peut avoir l'indice h + 1 et 2 points doubles;
 - 4. Γ peut avoir l'indice 2(h + 1) et 2 points doubles;

- 5. I peut avoir l'indice h + 1 et 4 points doubles libres;
- 6. Γ peut avoir l'indice 2(h+1) et 2 couples involutives, sans point double.

Théorème IV. — Pour b+1 pair existent 2 espèces de correspondances Γ :

- 7. Γ peut avoir l'indice b+1 et deux points doubles libres et une couple involutive;
- 8. Γ peut avoir l'indice 2(b+1) et deux points doubles entre les points de contact.

Les correspondances I et 2, 3 et 4, 5 et 6 sont toujours simultanées, 7 et 8 s'excluent. La cubique équianharmonique est un exemple pour I et 2, la cubique harmonique pour 7 et 8. Une certaine C_4 qui se rencontre dans les transformations typiques est un exemple pour 3, 4, 5, 6.

2. Théorème V. — Lorsqu' une courbe $C_m(a)^{m-2}$ à p>2 admet une correspondance univoque, il existe toujours une transformation birationnelle du plan, qui contient les cycles de cette correspondance.

Dém. Par la correspondance la série g_m^2 decoupée par les droites du plan est changée en une série g_m^2 , qui doit contenir la serie g_2^1 inhérente. Mais aucun faisceau de courbes n'existe, qui découpe cette g_2^1 , excepté les droites par (ab); il faut donc, que le faisceau des courbes nouvelles se décompose en ce faisceau et en une courbe commune. A cela suffit un système de C_n , qui passent par $(ab)^{n-1}$ et l'équation nm - (n-1)(m-2) - n = m démontre, que 2(n-1) points de base doivent être sur la courbe C_m .

Théorème VI. — Il existe une infinité de transformations birationnelles non involutives, qui contiennent tous les points d'une courbe $C_n(a)^{n-2}$ comme des points doubles.

Dém. Une transformation d'un ordre $\langle n \rangle$ ne pouvant pas exister, il s'agit des transformations de l'ordre n. Suivant les rapports doubles sur les droites par a les droites se rangent en des groupes d'une involution $J_{2(n-1)}$ (*). Il faut donc établir une involution de l'ordre

^(*) Voir mon Mémoire couronné: « Premiers fondements pour une théorie des transformations périodiques univoques » (Atti della R. Accademia delle Scienze di Napoli, 2^a serie, III, 2; IV, 7).

2(n-1), qui contient les tangentes menées de a en un groupe. Un autre se trouvera de la manière suivante: On cherche 2(n-1) points de la courbe tels que les courbes $C_{n-1}(a)^{n-2}$ passant par eux et par les points opposés sur la courbe ont en a les mêmes n-2 tangentes pour satisfaire au Lemme qui suit.

Lemme. — Les deux courbes fondamentales de a dans une transformation à ∞^{I} droites invariantives ont en a les mêmes tangentes, qui sont identiques aux tangentes du lieu des points doubles,

 $C_n(a)^{n-2}$.

Cela fait n-2 conditions pour les 2n-2 droites du second groupe et on peut donc prendre n droites arbitrairement, qui doivent porter le même $D=\infty$. L'involution ainsi déterminée est employée de la manière suivante. On prend la valeur D=1 pour le groupe des 2(n-1) tangentes, $D=\infty$ pour le groupe des 2(n-1) droites récemment trouvées. Comme on peut considérer $D+\frac{1}{D}$ comme paramètre, la distribution des D et dès lors la transformation est achevée.

Surtout les n-1 points d'intersection des deux courbes fondamentales donnent, liés à a, n-1 droites qui forment, deux fois comptées, le groupe pour D=-1.

Ainsi par la découverte du système fondamental sur $C_n(a)^{n-2}$ la transformation est parfaitement déterminée (Voir plus loin n° 4).

3. Théorème VII. — Les tangentes par a à C_n touchent C_n en 2(n-1) points et les courbes $C_{n-1}(a)^{n-2}$, qui passent par ces points, ont toutes en a les mêmes tangentes que C_n .

 $D\acute{e}m$. Si l'on fait passer par $a \ 2(n-1)$ droites, qui coupent la courbe en 2(2n-2) points tels que par eux passent deux courbes $C_n(a)^{n-2}$, $C'_n(a)^{n-2}$ qui ont en a les mêmes tangentes, on pourra former un faisceau de $C_{2(n-1)}$, qui contient le faisceau de 2(n-1) droites et la composition des deux courbes $C_{n-1} + C'_{n-1}$. Donc toutes les courbes du faisceau passent par les 2(2n-2) points sur C_n et ont en a les 2n-4 tangentes en commun jusqu'à s'y osculer. Les autres n-2 points d'intersection des courbes de ce faisceau sont dépendants et une courbe du faisceau doit se partager en la

 C_n donnée et en un faisceau de n-2 droites par a. Ces droites doivent être des tangentes communes à toutes les courbes du faisceau et aussi tangentes à la courbe C_n , parce que dans le faisceau existe une courbe, qui possède une multiplicité supérieure, de deux unités, à la multiplicité de la courbe générale du faisceau. Donc si les deux courbes C_{n-1} existent, il faut qu'elles soient toutes les deux tangentes en a aux branches de la courbe C_n . (*)

4. Cela donne enfin la construction nécessaire pour la preuve complète du théorème VI. On peut prendre n points arbitraires sur C_n , faire passer par eux une courbe $C_{n-1}(a)^{n-2}$, tangente à toutes les branches de C_n en a, qui est déterminée par conséquent. Elle coupe C_n en n-2 autres points. En projetant les 2(n-1) points, qui sont différents de a, sur la courbe C_n , on obtient 2(n-1) points, par lesquels passe une courbe $C_{n-1}(a)^{n-2}$, qui a les mêmes tangentes en a que la première C_{n-1} , savoir les tangentes de C_n .

Ces deux courbes seront les courbes fondamentales d'une transformation de Jonquières. La distribution des rapports D aux groupes de l'involution J est donc accomplie en conséquence.

5. Par la composition de deux transformations du degré n l'une après l'autre on obtient des transformations de Jonquières d'un ordre supérieur et réciproquement.

Théorème VIII. — Toutes les transformations birationnelles non involutives, qui possèdent la courbe $C_n(a)^{n-2}$ donnée pour lieu de points doubles, peuvent être obtenues par la composition de plusieurs transformations de Jonquières du $n^{\text{ième}}$ degré.

 $D\acute{e}m$. En effet, on prend pour une telle transformation n des points fondamentaux simples pour la construction du $n^{\acute{o}}$ 4 et on compose la transformation obtenue du $n^{i\acute{e}me}$ degré avec la transformation du degré supérieur. On aura le degré m.n - (m-1)(n-1)

^(*) Le théorème du texte complète un théorème dû à Caporali sur les tangentes des courbes menées d'un point multiple (Rend. Acc. Napoli, giugno 1881). Cela fait prévoir, qu'aussi le théorème général, qu'il donne l. c., ne sera pas complet, et que d'autres conditions encore existent pour les points de contact.

-n=m-1, donc diminution du degré d'une unité. En continuant ainsi on arrivera à une transformation du $n^{\text{ième}}$ degré. Par n de ses points fondamentaux simples les autres sont déterminés et nulle diminution ultérieure n'existe.

6. Pour une telle transformation le lieu des points doubles consiste effectivement en la C_n donnée et en m-n droites remplies de points doubles.

L'orsqu'on obtient la transformation comme composition de T_n , $T_{n'}$, ces droites sont celles qui ont dans les deux transformations le même rapport double D. En effet, les deux involutions J_D sont en relation projective par l'égalité de D et possèdent 4(n-1) coïncidences. Parmi elles sont les 2(n-1) tangentes de C_n par a, pour D=1, et n-2 sont les tangentes en a, pour D=-1. Les autres n-1 consistent en les δ droites fondamentales coïncidentes de T_n , $T_{n'}$ pour D=0, ∞ et en $n-1-\delta$ autres pour D arbitraires. Or la transformation T_n . $T_{n'}$ a le degré

$$n.n - (n-1)^2 - \delta = 2n - 1 - \delta$$

et donc en dehors de C_n une courbe $n-1-\delta$, comme il faut. Donc:

Théorème IX. — Il existe une infinité illimitée de transformations de Jonquières, qui ont $C_n(a)^{n-2}$ comme lieu de points doubles.

Théorème X. — Les involutions J_D^{2n-2} produites à la suite de la distribution des D forment pour les ∞^n T_n un système linéaire d'involutions, qui ont en commun un (2n-2)-tuple.

 $D\acute{e}m$. Comme nous n'avons pas distingué les rapports doubles réciproques, la donnée de n droites d'un groupe détermine, pour chaque D, n points de chaque courbe fondamentale et ensuite la transformation et sa reciproque, ainsi que l'involution J_D et à cause de la fin du n° 7 il n'y a pas ∞^{n+1} , mais seulement ∞^n involutions de droites.

Théorème XI. — Les groupes à une même valeur de $D+\frac{\mathbf{I}}{D}$, pris dans toutes ces involutions forment eux-mêmes une involution de la dimension n.

 $D\acute{e}m$. Car en prenant n droites comme des porteurs de $D+\frac{1}{D}$ on a détermination suffisante de la transformation et donc aussi de l'involution et partant du groupe à D, $\frac{1}{D}$.

7. Théorème XII. — La transformation T_n est déterminée à une seule variabilité par n-1 droites, qui sont associées dans le groupe de J_D , qui a D=-1.

D
otin M. En effet, par ces n-1 droites on a les n-1 points harmoniquement conjugués à a par rapport aux n couples de points d'intersection des droites avec C_n et par ces n-1 points passe un faisceau de $C_{n-1}(a)^{n-2}$, qui sont tangentes en a aux branches de C_n . Ces courbes se groupent en des couples de courbes fondamentales d'une transformation de J on quières. Les courbes unies de cette involution sont la $C_{n-1}(a)^{n-2}$ par les 2(n-1) points de contact sur C_n , dont a est le tangentiel, et d'autre part la courbe décomposée en les n-1 droites choisies. Cela fournit un ∞^1 système d'involutions J_D , qui ont en commun deux groupes entiers, dont l'un consiste en n-1 droites deux fois comptées et qui se distinguent seulement par la distsibution de D.

8. Le lemme du n° 2 fait usage implicitement du théorème, que les points de Σ , infiniment voisins à a, qui sont suivis par les branches de la courbe fondamentale, correspondent aux points de la courbe fondamentale de Σ' , infiniment voisins à a'. Ce théorème (*) conduit à une nouvelle conclusion, que je tiens à reproduire.

Pour une transformation du $m^{\text{ième}}$ degré on peut prendre une courbe $C_m(a)^{m-2}a_1 \ldots a_{2(n-1)}$ qui a ses $(n-1)m-(n-2)\times (m-2)-2(n-1)$ points d'intersection avec la courbe fondamentale en les n-2 points infiniment voisins à a. Une telle courbe

^(*) Plus généralement: Si dans une transformation ponctuelle entre R_r , R'_r une variété fondamentale V de R_r passe par un point fondamental F, la variété fondamentale Φ' de F passe par le point fondamental P' de V de sorte, que les points voisins de F sur V correspondent aux points voisins de P' sur Φ' .

est changée en une courbe de même nature et n points alignés sont portés en n points, qui avec les dits points près de a forment l'intersection de $C_m(a)^{m-2}$ avec les courbes homaloïdales $C_n(a)^{n-1}$ et sont alignés, par conséquent. Mais si m > n la transformation elle-même deviendrait une collinéation. Donc :

Théorème XIII. — Il existe une infinité de courbes C_m à $m \leq n$ qui sont changées par une transformation de Jonquières tellement, que ce changement entre leurs points est simultanément contenu dans une collinéation plane, mais ces collinéations ne sont pas les mêmes pour toutes ces courbes.

Corollaire. Il n'existe aucune courbe $C_m(a)^{m-2}$, m > n, qui aurait la propriété, que tous les points d'intersection avec la courbe fondamentale tombent en a, a_1 , ... $a_{2(n-1)}$.

Parmi les répétitions de a, $(a'_i$, en ... a_i) [i=1, 2, ... 2(n-1)] (*) existe toujours une, qui a tous ces points comme fondamentaux et est équivalente à la transformation originaire. Une telle transformation possède toujours une courbe $C_n(a)^{n-2}$ de la propriété demandée pour XIII; donc:

Théorème XIV. — On obtient toutes les classes de transformations périodiques de Jonquières à (ab), en distribuant sur une courbe $C_n(a)^{n-2}$, qui est reproduite par une collinéation plane, les cycles enchaînés des droites $a(a'_i en \ldots a_k)$ tellement, que les cycles peuvent être ensemble un groupe D=0, ∞ d'une involution J_D , qui appartient à la $C_n(a)^{n-2}$.

9. Pour avoir la totalité des transformations birationnelles planes, qui reproduisent la courbe $C_n(a)^{n-2}$, on doit encore établir toutes les transformations, qui contiennent l'involution organique sur la courbe C_n . Ces transformations sont en infinitée illimitée. On prend une courbe quelconque $C_m(a)^{m-1}$ et construit sur chaque droite par a le point harmoniquement conjugué par rapport aux deux points d'intersection de la droite avec $C_n(a)^{n-2}$. Cette courbe est nouvellement une $C_{m'}(a)^{m'-1}$ et les deux courbes sont directrices pour une transformation involutive du plan, qui contient la courbe $C_n(a)^{n-2}$ donnée

^(*) Cfr. p. e. mon Mémoire: Journal f. d. Mathem., Bd. CXIV, p. 50.

comme invariantive, m' = mn - (m-1)(n-1) = m+n-1. (Voir n° 10).

Théorème XV. — La transformation ainsi construite sera une transformation de Jonquières du degré m+m', qui a dans chaque point d'intersection de C_m , C_m , deux points fondamentaux simples infiniment voisins dans la direction de la polaire de a par rapport à $C_m + C_{m'}$.

Théorème XVI. — La transformation du moindre degré est celle, aù a et $C_{n-1}(a)^{n-2}$ par les 2(n-1) points de contact partant de a sont le lieu des points doubles.

10. Mais on peut aussi construire des transformations involutives avec courbe lieu non décomposée ayant la $C_n(a)^{n-2}$ comme lieu de couples involutives. Il faut établir le

THÉORÈME XVII. — Chaque courbe $C_m(a)^{m-2}$ invariantive dans la transformation involutive avec $C_n(a)^{n-2}$ comme lieu de points doubles peut servir de lieu de points doubles d'une transformation involutive, dans laquelle la $C_n(a)^{n-2}$ est invariantive, et réciproquement toutes les transformations sont produites de cette façon.

Pour construire une courbe de cette espèce, on peut procèder ainsi. On prend deux courbes C_m , $C_{m'}$ conjointes comme ci-haut et sur chaque droite par a on détermine la couple jacobienne des deux couples sur $C_n(a)^{n-2}$ et sur $C_m + C_{m'}$.

Quant au moindre degré d'une transformation involutive à courbe directrice non décomposée, c'est une question qui touche aux questions de l'Algèbre formale et semble ouvrir la perspective d'une nouvelle voie de recherches. Il peut exister des courbes $C_n(a)^{n-2}$ qui admettent une conique comme invariantive ou qui de leur tour sont invariantives dans une inversion ordinaire et des courbes $C_n(a)^{n-2}$ qui n'admettent pas de conique, mais une $C_3(a)^2$ invariantive et réciproquement, et ainsi de suite.

On devra classifier les courbes $C_n(a)^{n-2}$ d'après ce minimum. Théorème XVIII. — Une courbe $C_n(a)^{n-2}$ tout arbitraire n'admet pas de courbe directrice non décomposée d'un ordre moindre que n.

II. La méthode des deux courbes $C_m + C_{m'}$, bien qu'elle soit Rend. Circ. Matem., t. IX, parte 1^a .—Stampato il 5 dicembre 1894 10

à l'apparence la plus particulière, permet toutefois une généralisation, en prenant dans la transformation la plus générale du th. VII une courbe $C_m(a)^{m-2}$ et sa transformée $C_{m'}$ pour directrice d'une transformation ayant une involution J_D , soit la même que la transformation donnée. Chaque droite par a portera une affinité symétrique bivoque, ce qui constitue une transformation symétrique bivoque du plan.

12. J'ai appelé homologies supérieures les transformations de Jonquières, où la courbe directrice est une courbe $C_n(a)^{n-1}$ et le point a. Les plus générales sont les suivantes : On établit entre les droites de a une involution I_n en mettant une relation univoque entre les groupes et le rapport double D d'une homographie, qu'on institue sur chaque droite. (*)

Seulement les homologies supérieures périodiques possèdent des courbes invariantives.

13. Lorsque $C_n(a)^{n-2}$ porte une correspondance et qu'on connaît une transformation qui la contienne, on en déduit toutes les autres en composant cette transformation avec l'infinité des transformations du théorème VII. Comme une en existe toujours (voir nos 14 et 15):

Théorème XIX. — Il existe une infinité illimitée de transformations de Jon quières, qui contiennent toutes une même correspondance donnée sur une $G_n(a)^{n-2}$.

14. La correspondance étant cyclique et le problème limité aux transformations typiques, qui la contiennent comme des hémicycles, il est clair, que le nombre des points fondamentaux ne peut pas surpasser m où m-1 où m-2. Voir mon Mémoire couronné, IV, § 7, où je démontre, que pour l'indice h+1 et le degré m l'ordre de la courbe des hémicycles M=(h+1)m-h, d'où $m=\frac{M+h}{h+1}$.

THEOREME XX. - Le moindre degré d'une transformation typique de

^(*) Même généralisation s'introduit déjà dans la théorie des homologies linéaires,

Jonquières, qui contient une courbe $C_M(a)^{M-2}$ et où les 2(M-1) tangentes sont divisées en des cycles de l'indice h+1 est

$$m=\frac{M+4}{b+1}$$
 ou $\frac{M+b+1}{b+1}$ ou $\frac{M+b+2}{b+1}$.

Mais ce minimum n'existe pas toujours effectivement. Je l'appelle transformation extraordinaire.

Théorème XXI. — Lorsque sur une courbe $C_M(a)^{M-2}$ existe une correspondance univoque et qu'il arrive une seule fois, que M points alignés sont changés en M points d'une conique par a, cela arrive pour toutes les droites du plan et toutes les coniques passent par les mêmes deux points de la courbe.

Ce théorème sert à préciser les transformations quadratiques et il est une conséquence du théorème d'Abel, de même que le suivant:

Theoreme XXII.—Lorsque sur une courbe $C_M(a)^{M-2}$ existe une correspondance univoque et qu'il arrive une seule fois, que M points alignés sont changés en M points d'une courbe $C_m(a)^{m-1}$, cela arrive pour toutes les droites du plan et toutes ces courbes se coupent en les mêmes mM - (m-1)M - 2 - M = 2(m-1) points sur $C_M(a)^{M-2}$.

Théorème XXIII.—Les courbes tellement affectées admettent immédiatement une transformation du degré m, qui contient la correspondance sur la courbe $C_M(a)^{M-2}$.

Il suffit d'établir la coordination entre les droites et les courbes C_m du théorème précédent.

Théorème XXIV.—Les transformations extraordinaires avec une $C_M(a)^{M-2}$ invariantive sont en général périodiques.

Car m étant < M il est nécessaire, que chaque droite retourne à soi-même après h+1 applications. Et il s'ensuit, que les 2(m-1) points simples tombent de force sur les points de contact des tangentes par a, et que certains parmi ceux-ci se distinguent des autres. Du th. XIX se dérive:

Théorème XXV. — Parmi les transformations planes, qui contiennent une correspondance sur $C_M(a)^{M-2}$ en existe toujours des périodiques.

Il sera utile de noter ce Corollaire: Lorsqu'une répétition d'une

correspondance et la correspondance elle-même font partie de deux transformations extraordinaires, il faut que l'une de celles-ci soit une répétition de l'autre. Et encore:

Théorème XXVI.—Pour la même correspondance peuvent exister simultanément deux transformations des ordres m, m' seulement en tant que

$$m m' - (m - 1)(m' - 1) = m + m' - 1 > M.$$

Sur les transformations non extraordinaires décide le théorème suivant.

Théorème XXVII.—Quand on fait passer par un groupe de $(g_M^2)'$ une $C_m(a)^{m-1}$, elle coupera $C_M(a)^{M-2}$ en 2m-2 points et le réseau de $C_m(a)^{m-1}$ par ces points est capable de guider une transformation plane, qui a $C_M(a)^{M-2}$ pour invariantive.

lci $(g_M^2)'$ est la série transformée, par la correspondance, de g_M^2 . (*) Théorème XXVIII. — Lorsque dans la série résiduelle de $(g_M^2)'$ existe un groupe, qui a δ points communs avec un groupe g_{2m-2} de la série résiduelle de g_M^2 , la courbe admettra une transformation extraordinaire du degré $m+M-1-\delta$ et réciproquement.

Ce théorème sert à éclaircir la nature de la distinction de plusieurs points-contact par a pour les transformations extraordinaires.

Par le n° 6 on peut conclure, qu'il y a des transformations de Jonquières apériodiques, dont la ligne des cycles, et des périodiques, dont la ligne des hémicycles se décompose en plusieurs droites par a et en une courbe $C_n(a)^{n-2}$.

Théorème XXIX. — En composant une transformation de cette nature avec celle de VII on obtient toutes les transformations, qui possèdent sur $C_n(a)^{n-2}$ une correspondance contenant l'involution inhérente.

Scholie. De cette façon il peut arriver, que la ligne des hémicycles étant de l'ordre ordinaire, une courbe invariantive existe, qui est d'un ordre extraordinairement bas, p. e. on peut construire chaque type avec une conique anallagmatique ou, comme je le montrais l. c., avec une C_a anallagmatique.

^(*) Ou autrement: L'ordre de la transformation, qui transforme $C_n a^{n-2}$ en soi-même, dépend de l'ordre de la courbe $f_m(a)^{m-1}$ la plus basse, qui passe sur C_n par les n-2 points correspondants aux n-2 points voisins de a sur C_n .

15. Une autre manière, pour construire les transformations birationnelles, qui contiennent une correspondance univoque donnée entre les points d'une courbe $C_n(a)^{n-2}$, est la suivante. On prend une courbe $C_{-}(a)^{m-1}$ arbitraire qu'on suppose être aussi invariantive par la transformation cherchée. L'homographie périodique entre les droites par (ab) est déterminée par la correspondance entre les points de $C_n(a)^{n-2}$. Ensuite on a sur chaque paire de droites correspondantes trois paires de points correspondants, pour construire une homographie binaire, à savoir : les points d'intersection des quatre droites avec $C_n(a)^{n-2}$ et leurs points d'intersection avec $C_n(a)^{m-1}$. L'ensemble de toutes ces homographies binaires détermine une transformation, qui est périodique pour tout le plan. Car après h + 1 ou 2(h + 1)applications on arrive sur toutes les droites par (ab) à des homographies avec trois points doubles, qui sont donc des identités. Ces transformations périodiques sont très particulières parce qu'en général n'existe pas de courbe $C_m(a)^{m-1}$ invariantive.

16. Pour avoir des transformations apériodiques, on peut prendre simplement deux courbes $C_m(a)^{m-1}$ et $C_m(a)^{m'-1}$ comme correspondantes et déterminer au moyen de la correspondance entre les points de $C_n(a)^{n-2}$ et de celle entre C_m et C_m , sur toute paire de droites, qui se correspondent par l'homographie proposée, une homographie binaire de points. La transformation, qui est l'ensemble de toutes ces homographies, est une transformation T de J on q u i è res, qui contient la correspondance Γ sur $C_n(a)^{n-2}$.

Ici toutefois on doit distinguer les deux cas, si Γ contienne l'involution inhérente ou non, comme puissance. Au premier cas on aura après T^{b+1} sur chaque droite de (ab) une couple involutive et T^{b+1} est une involution du plan et T est périodique avec l'indice 2(b+1).

Thèorème XXX.—Si Γ contient comme une puissance l'involution inhérente, toutes les transformations de Jonquières, qui contiennent Γ , sont périodiques. Ces transformations peuvent être construites dans toute la généralité moyennant une courbe $C_n(a)^{n-2}$ et le cercle et le réglet.

^{17.} Si la correspondance Γ ne contient pas l'involution inhé-

rente, la transformation construite comme précédemment est apériodique en général. Toutefois on peut en construire aussi des périodiques, qui sont un peu plus générales que celles du n° 15. A cet effet s'offre une courbe $C_m(a)^{m-2}$, qui est invariantive dans une transformation involutive de Jonquières et qui a les tangentes par a réunies en des cycles de la même homographie que C_n . On la construit en prenant sur C_n ses points de contact sortis de a et en la faisant passer par les points de contact de C_n et parmi les courbes du système invariantif ainsi limité celles, qui sont invariantives dans l'involution de Jonquières avec $C_n(a)^{m-2}$ comme lieu de points doubles.

Cela fait, on construit les homographies sur les paires de droites correspondantes comme au n° 16 au moyen des points de C_n et de ceux de C_m , ce qui est possible, parce que chaque homographie change les 4 points harmoniques en les 4 harmoniques sur la droite subséquente.

Thèorère XXXI. — La transformation ainsi construite sera périodique et d'un caractère tout général. Si la correspondance dans C_m est choisie de l'espèce 7, la transformation est équivalente à une collinéation, si de l'espèce 8, la transformation a C_n pour lieu des hémicycles.

Paris, le 13 mai 1894.

S. KANTOR.

SUI POSTULATI FONDAMENTALI

DELLA

GEOMETRIA PROJETTIVA.

Corrispondenza.

Adunanza dell'11 novembre 1894.

-

(Lettera del Dr. G. Fano al Dr. F. Enriques).

La sua pregevolissima Nota « Sui fondamenti della Geometria Projettiva » (Rend. Ist. Lomb., s. II, vol. XXVII) mi suggerisce alcune osservazioni, anche in relazione al mio lavoro sullo stesso argomento escito due anni or sono (Giorn. di Battaglini, vol. XXX).

Dopo quei primi postulati sulle forme fondamentali di prima e seconda specie, postulati che si riducono in sostanza a tre distinti e necessari (*), e che bastano a stabilire, com'Ella osserva, i teoremi sulle configurazioni, due vie mi si erano presentate per procedere innanzi, e costruire una Geometria che fosse applicabile allo

^(*) Vale a dire: Due punti determinano UNA retta che li contiene; ogni piano contiene tutta la retta determinata da due suoi punti qualunque; due rette in un piano hanno sempre UN punto a comune.

spazio quale i sensi ce lo presentano. La prima delle due (cfr. n¹ 4-13), essendo completamente nuova, fu da me più ampiamente sviluppata, mentre invece assai meno mi sono fermato sulla seconda (n° 14), che già prima era stata seguita dal sig. A modeo (Atti R. Accademia di Torino, vol. XXVI)—per quanto nella pregevole Nota di lui qualche punto restasse ancora da completare—. A questa seconda via Lei pure si è attenuto (*). Infatti i suoi post. V e VI (tolte le due ultime condizioni del V) corrispondono press'a poco ai miei Va e VI a del n° 14. Ciò che io ho chiamato ordine non è precisamente ciò che Lei ora indica con questo stesso nome, ma qualcosa che si avvicinerebbe piuttosto alle Sue disposizioni circolari, o meglio al Suo senso di disposizione circolare, e perciò appunto nel carattere projettivo degli ordini naturali potevano essere per me ed erano infatti ritenute implicite quelle permutazioni circolari, sulle quali Lei è stato così dettagliatamente preciso (**).

A Lei è però riescito più avanti di sopprimere il mio postulato VIIa: « Esiste un gruppo armonico formato da quattro elementi distinti ». E la ragione di questo mi sembra stare nell'aver Lei ammesso fin da principio col post. IV (e anche implicitamente, come Lei pure osserva, nelle due ultime condizioni del post. V) che i punti della retta siano in numero infinito. In ogni modo però vedo ora con piacere risolta la questione, che era per me allora rimasta insoluta (l. c. pag. 22), se cioè, aggiungendo alle condizioni precedenti questa degli infiniti punti sulla retta, si potesse sopprimere quel mio ultimo postulato. E vedo dunque che (in questo caso) si può effettivamente sopprimerlo.

Ma v'ha di più. Non è nemmeno necessario di ammettere che i punti della retta siano in numero infinito; basta ammettere che

^(*) È infatti la più semplice e la più naturale, per quanto la prima, quella delle serie armoniche rientranti, possa forse riescire più interessante. Ma di queste serie armoniche non si potrebbe certo parlare p. es. in un corso elementare!

^(**) L'ordine era per me una specie di anello o catena rientrante, secondo la quale immaginavo disposti i punti di una retta, senza tuttavia accennare ad un particolare primo elemento. E il restare inalterato di un ordine così concepito, senza, ben inteso, che ogni punto rimanga fisso, conduce di necessità alle permutazioni circolari.

siano in numero superiore a tre. Lei vedrà infatti senza difficoltà che sopra una retta contenente un numero di punti finito ma non inferiore a quattro il Suo post. VI non potrebbe in alcun modo sussistere. Come mai si potrebbero allora portare due o, peggio ancora, tre punti dati in altri assegnati ad arbitrio, e ciò con una semplice permutazione circolare, più, forse, un'inversione? (*)—Nel solo caso di tre punti, le permutazioni cicliche colle loro inverse — sei in tutto — soddisfanno precisamente alle condizioni richieste da quel postulato.

Ammesso pertanto il Suo post. VI, e, per di più, l'esistenza di almeno quattro punti sulla retta, rimane come solo caso possibile quello degli infiniti punti, e si può applicare di nuovo tutto il Suo ragionamento. Certo che, volendo togliere ab initio l'ipotesi degli infiniti punti sulla retta, bisogna anche togliere le condizioni 4ª e 5ª del Suo post. V, nelle quali detta ipotesi è implicitamente contenuta. Ma di queste due condizioni (**) si fa uso in un solo punto del Suo lavoro, nel quale anche (come Lei stesso ebbe a intravedere) un'osservazione semplicissima basta per farne a meno (***).

^(*) Le Sue permutazioni circolari si riducono in questo caso a quelle stesse permutazioni di un numero finito di elementi—qui punti—che di solito si indicano con questo nome. Le mie configurazioni—e prima fra queste il piano di 13 punti, di cui al nº 8—dànno facili esempi di projettività che non conserverebbero gli ordini naturali secondo la data definizione.

^(**) È più specialmente della 4^a; la 5^a è quasi un complemento della 4^a, ma complemento necessario per poter poi concludere che quest'ultima rimane verificata per tutti i diversi ordini derivati (con permutazioni circolari e inversioni).

^(***) Alludo alla dimostrazione del teorema, che due coppie armoniche devono sempre separarsi, e tanto meno quindi l'una di esse può esser costituita da elementi coincidenti, a meno che questi non coincidano tutti due in uno dei limiti comuni. — Basta infatti dimostrare che questa proprietà sussiste per un gruppo armonico, perchè da quest'unico caso essa seguirà per ogni altro. E appunto per questo è anche permesso di scegliere i punti A, B, C (cfr. p. 11 della Sua Nota) in modo particolare; e conviene precisamente scegliere A e B in modo che siano separati da C e da un quarto punto della retta u, supposto esistente. Questo quarto punto si proietterà a'lora da F' sulla retta a in un punto che potremo assumere come H. E accertata così l'esistenza di questo punto H che con F separa la coppia AE, si può ripetere parola per parola tutto il Suo ragionamento, basato esclusivamente sopra successive proiezioni.

Mentre dunque il Suo lavoro completa effettivamente il mio (in certi punti), non sarà forse male l'osservare ancora che i postulati in esso veramente necessari si possono ridurre ai primi tre, alle prime tre condizioni del V, e al VI; più la condizione che la retta contenga almeno quattro punti. — D'altra parte anche i primi tre postulati del mio lavoro coincidono completamente con quelli del Suo; il IV dice che su ogni retta stanno più di due punti; il Va e il VIa corrispondono ai Suoi V e VI (nei quali tuttavia gli stessi concetti sono forse meglio precisati), e infine il VIIa dice che « Esiste un gruppo armonico formato da quattro elementi distinti ». Quest'ultimo postulato porta con sè, naturalmente, l'esistenza di un quarto punto sulla retta, ma dice anche di più; questo di più è ora provato essere già una conseguenza delle cose precedenti... (*) (**)

Colognola ai Colli (Verona), settembre 1894.

G. FANO.

11.

(Lettera del Dr. F. Enriques al Dr. G. Fano).

Leggo con piacere nella sua lettera le acute osservazioni suggeritele dalla mia Nota « Sui fondamenti della Geometria Projettiva ». In quella Nota io (ispirandomi al concetto intuitivo sperimentale dello spazio) ho fondato la Geometria projettiva sopra 6 postulati (***)

^(*) E il piano di 7 punti, al quale a p. 21 del mio lav. cit. io ero ricorso come esempio per mostrare la necessità del post. VIIa, è anche il solo caso logicamente possibile di un gruppo armonico ABCC (dove A, B, C sono distinti).

^(**) Non ho bisogno di aggiungere che i postulati di cui qui ho discorso conducono soltanto a una Geometria projettiva lineare, e a uno spazio (di punti razionali) che ancora non corrisponde del tutto a ciò che i sensi ci dicono (o a quello che noi crediamo ci dicano). L'ultimo passo che rimane da fare è quello appunto della continuità (§§ 9 e seg. del Suo lav.).

^(***) I postulati ivi menzionati sono 7, ma il IV che afferma l'esistenza di infiniti punti su una retta è incluso nel V (come ivi pure è osservato) ed ammesso provvisoriamente innanzi per semplicità.

(composti), il 6º dei quali (riguardante la continuità) non comparisce in quella che Ella chiama la Geometria dei punti razionali.

Ora Ella opportunamente osserva che l'esistenza di infiniti punti sulla retta segue dal mio post. VI (concernente l'esistenza sulla retta d'una disposizione circolare naturale avente carattere proiettivo) ammessa l'esistenza di almeno 4 punti sopra una retta, e quindi introdotta questa ipotesi si possono sopprimere le due ultime condizioni del mio post. V (*) (le quali invero contengono anche qualcosa di più) e stabilire ugualmente che il quarto armonico D dopo tre punti A, B, C (sopra una retta) è distinto da essi ed insieme a C separa A, B (**).

Ciò basta, secondo Lei, a svolgere tutta la Geometria proiettiva dei punti razionali, e sta bene: ma nel seguito (cioè nella Geometria proiettiva dove si considera la retta continua) quelle due condizioni (fondamento del concetto di segmento) debbono essere invocate. Ora (ed è su questo che mi permetto di richiamare la sua attenzione perchè in un certo senso completa la sua osservazione), dopo avere dimostrato quel teorema sulla separazione delle coppie armoniche si può anche dimostrare che per gli ordini naturali dei punti d'una retta vengono soddisfatte le due ultime condizioni del mio post. V.

Invero si consideri sopra una retta un ordine naturale (ABC); l'esistenza d'un punto intermedio a B, C nel detto ordine, vien data dal fatto che il coniugato armonico di A rispetto a B, C, insieme ad A separa B, C. Parimente si deduce che non può esservi un punto (ad es. C) ultimo nel detto ordine; basta considerare il quarto armonico dopo ABC che segue C in (ABC).

Con questo siamo d'accordo nel ritenere stabilito che tutta la Geometria projettiva può fondarsi sui primi 3 postulati della mia Nota, sulla ipotesi che sopra una retta vi sieno più di 3 punti, e sui

^(*) Queste condizioni enunciate per gli ordini naturali d'una retta dicono: In un ordine naturale sopra una (certa) retta, tra due punti ve n'è sempre uno (e quindi infiniti) intermedio.

Questo ordine naturale non possiede un ultimo elemento.

^(**) Con una lieve modificazione del ragionamento a pag. 11 della mia Nota.

post. V, VI, VII, della detta Nota, omesse le due ultime condizioni del V le quali in base alla detta ipotesi ed al post. VI possono dimostrarsi.

Questa è certo, dal punto di vista scientifico, una semplificazione, la quale per altro non sarebbe forse opportuna ove (come nella mia Nota) si volesse tener conto anche delle esigenze didattiche, e seguire la via indicata dall'intuizione sperimentale....

Castiglione dei Pepoli (Bologna), settembre 1894.

F. ENRIQUES.

III.

(Lettera del Dr. G. Fano al Dr. F. Enriques).

A complemento della mia lettera dello scorso Settembre potrei aggiungere un'altra osservazione, che al momento non mi si era presentata, e che ora si collega anzi con quanto è detto nella Sua Risposta.

Se fra due punti A e B di una retta a non esistesse che un numero finito n() di punti intermedi (riferita quest'espressione a uno dei due sensi di disposizione naturale), è chiaro che una projettività qualsiasi su a, nella quale ad A e B corrispondessero due punti A' e B' con un numero qualunque diverso da n di punti intermedi (nell'uno e nell'altro senso di disposizione naturale), sarebbe in contraddizione col post. VI della Sua Nota. E siccome una projettività così fatta si può sempre costruire (se la retta contiene più di tre punti) così possiamo anche concludere subito che (in questa stessa ipotesi) non solo l'intiera retta deve contenere infiniti punti, ma infiniti devono pure esservene in ogni segmento (definito il segmento nella disposizione circolare naturale, che ha carattere projettivo).

Anche le condizioni 4^a e 5^a del Suo post. V, in quanto si riferiscono agli ordini naturali caratterizzati dal post. VI, seguono dunque immediatamente da questo stesso post. (ammessa l'esistenza di almeno quattro punti sulla retta); e siccome è in questo caso soltanto che la prima di esse occorre più avanti, per dimostrare la separazione delle coppie armoniche, mi sembra così rimediato anche all'inconveniente didattico, che giustamente Ella aveva scorto nella semplificazione propostale....

Colognola ai Colli (Verona), 3 ottobre 1894.

G. FANO.

CONCERNING TRIPLE SYSTEMS;

by E. Hastings Moore, of Chicago.

Adunanza dell'11 novembre 1894.

Mr. Netto in his article « Zur Theorie der Tripelsysteme » (Mathematische Annalen, v. 42, pp. 143-152, 1893) raised the questions as to the existence and the number of distinct classes of triple systems in n elements, where n has (necessarily) the form n = 6m + 1 or 6m + 3.

I took up the questions in an article « Concerning Triple Systems » (Mathematische Annalen, v. 43, pp. 271-285, 1893), and was able to construct for every n > 13 of the proper form (at least) two distinct triple systems.

Mr. Jan de Vries in his paper « Zur Theorie der Tripelsysteme » (Rendiconti del Circolo Matematico di Palermo, v. 8, pp. 222-226, 1894) exhibits a triple system in n=13 elements distinct from the one given by Mr. Netto.

Thus we see that for n=3, 7, 9 respectively there is but one class of triple systems in n elements, and for every $n \ge 13$ of the form 6m+1 or 6m+3 we are in possession of at least two classes, while the extreme flexibility of my method of construction (although it is not exhaustive) would seem to justify the conjecture that the number of classes increases rapidly with n.

The University of Chicago October 22, 1894.

E. HASTINGS MOORE.

SULL'EQUILIBRIO DELLE SUPERFICIE

FLESSIBILI E INESTENDIBILI;

Nota di G. Pennacchietti, in Catania.

Adunanza del 23 dicembre 1894.

Dopo la classica memoria del Beltrami Sull'equilibrio delle superficie flessibili e inestendibili (*) si pubblicarono pregevolissimi lavori sullo stesso soggetto (**), intorno al quale mi limito a fare in questa breve Nota qualche osservazione sul modo di dedurre le equazioni differenziali, indicando in ultimo un nuovo notevole caso di equilibrio.

I. Sopra una superficie, che supponiamo perfettamente flessibile e inestendibile, sia tracciato un sistema di coordinate curvilinee u, v e sieno x, y, z le coordinate di un punto M della superficie rispetto

^(*) Mem. R. Accad. delle Scienze di Bologna, serie IV, t. III, anno 1881, pag. 217-265.

^(**) G. Morera, Rend. Accad. Lincei, 1883.

V. Volterra, ivi, 1884, note due.

G. A. Maggi, Rend. Ist. Lomb. serie II, vol. XVII, 1884.

E. Padova, Rend. Accad. Lincei 1885.

G. Picciati, Sull'equilibrio e sul moto infinitesimo delle superficie flessibili ed inestendibili. (Giorn. di Matem. del prof. G. Battaglini, 1892).

a un sistema di tre assi ortogonali fissi nello spazio. Consideriamo il parallelogramma elementare $d\sigma$, di cui sieno ds_u , ds_v i lati uscenti dal punto M e nei quali variino la sola u e la sola v rispettivamente. Poniamo:

$$E = \left(\frac{\partial x}{\partial u}\right)^{2} + \left(\frac{\partial y}{\partial u}\right)^{2} + \left(\frac{\partial z}{\partial u}\right)^{2},$$

$$F = \frac{\partial x}{\partial u}\frac{\partial x}{\partial v} + \frac{\partial y}{\partial u}\frac{\partial y}{\partial v} + \frac{\partial z}{\partial u}\frac{\partial z}{\partial v},$$

$$G = \left(\frac{\partial x}{\partial v}\right)^{2} + \left(\frac{\partial y}{\partial v}\right)^{2} + \left(\frac{\partial z}{\partial v}\right)^{2}.$$

Se X, Y, Z sono le componenti di una forza secondo gli assi e U, V, W le componenti della forza stessa secondo le linee coordinate u, v e secondo la normale alla superficie e se questa normale forma cogli assi angoli i cui coseni sono α , β , γ , si ha:

$$X = U \frac{1}{\sqrt{E}} \frac{\partial x}{\partial u} + V \frac{1}{\sqrt{G}} \frac{\partial x}{\partial v} + \alpha W,$$

$$Y = U \frac{1}{\sqrt{E}} \frac{\partial y}{\partial u} + V \frac{1}{\sqrt{G}} \frac{\partial y}{\partial v} + \beta W,$$

$$Z = U \frac{1}{\sqrt{E}} \frac{\partial z}{\partial u} + V \frac{1}{\sqrt{G}} \frac{\partial z}{\partial v} + \gamma W.$$

Sui lati ds_u , ds_v del parallelogramma si esercitano dalla rimanente superficie tensioni dirette nel piano tangente e le cui componenti denoteremo con $-T_{uu}$, $-T_{vu}$ secondo le linee coordinate u e con $-T_{uv}$, $-T_{vv}$ secondo le linee v. In virtù delle ultime tre equazioni le componenti, secondo l'asse delle x, delle tensioni che si esercitano sui lati ds_u , ds_v del parallelogramma, sono rispettivamente:

$$-\left(T_{uu}\frac{\partial x}{\partial u}+T_{uv}\sqrt{\frac{E}{G}}\frac{\partial x}{\partial v}\right)du,$$

$$-\left(T_{vu}\sqrt{\frac{G}{E}}\frac{\partial x}{\partial u}+T_{vv}\frac{\partial x}{\partial v}\right)dv.$$

Le componenti analoghe pei rimanenti due lati, opposti rispettivamente a ds_u , ds_v , sono:

$$\left(T_{uu}\frac{\partial x}{\partial u} + T_{uv}\right)\left(\frac{\overline{E}}{G}\frac{\partial x}{\partial v}\right)du + \frac{\partial}{\partial v}\left(T_{uu}\frac{\partial x}{\partial u} + T_{uv}\right)\left(\frac{\overline{E}}{G}\frac{\partial x}{\partial v}\right)dudv,$$

$$\left(T_{uv}\right)\left(\frac{\overline{G}}{E}\frac{\partial x}{\partial u} + T_{vv}\frac{\partial x}{\partial v}\right)du + \frac{\partial}{\partial u}\left(T_{vu}\right)\left(\frac{\overline{G}}{E}\frac{\partial x}{\partial u} + T_{vv}\frac{\partial x}{\partial v}\right)dudv.$$

Analoghe sono le componenti delle stesse tensioni rispetto agli altri due assi. Tutte queste tensioni fanno equilibrio alla forza esterna che si esercita sull'elemento $d\sigma$ e le cui componenti diremo $Xd\sigma$, $Yd\sigma$, $Zd\sigma$. Esprimendo che sono nulle le somme delle componenti di queste tensioni e della forza esterna, secondo gli assi, dividendo per dudv e ponendo $H = \sqrt{EG - F^2}$, si ha:

$$HX = \frac{\partial}{\partial u} \left(-T_{vu} \sqrt{\frac{\overline{G}}{E}} \frac{\partial x}{\partial u} - T_{vv} \frac{\partial x}{\partial v} \right) + \frac{\partial}{\partial v} \left(-T_{uu} \frac{\partial x}{\partial u} - T_{uv} \sqrt{\frac{\overline{E}}{G}} \frac{\partial x}{\partial v} \right)$$

con due equazioni analoghe.

Si può immaginare che pel centro del parallelogramma $d\sigma$ passino le direzioni della forza esterna e delle componenti, secondo le linee coordinate, delle tensioni sui lati del parallelogramma, sicchè esprimendo che è nulla la somma algebrica dei momenti, rispetto al centro del parallelogramma, della forza esterna e delle tensioni per le quali è in equilibrio il parallelogramma stesso, si trova la relazione:

$$T_{uu} = T_{vv}$$

Ponendo

$$\lambda = -T_{vu}\sqrt{\frac{G}{E}}$$
, $\mu = -T_{uu} = -T_{vv}$, $\nu = -T_{uv}\sqrt{\frac{E}{G}}$,

Rend. Circ. Matem., t. IX, parte 1ª.—Stampato il 22 gennajo 1895.

si ottengono così le equazioni indefinite dell'equilibrio:

$$HX = \frac{\partial}{\partial u} \left(\lambda \frac{\partial x}{\partial u} + \mu \frac{\partial x}{\partial v} \right) + \frac{\partial}{\partial v} \left(\mu \frac{\partial x}{\partial u} + \nu \frac{\partial x}{\partial v} \right),$$

$$HY = \frac{\partial}{\partial u} \left(\lambda \frac{\partial y}{\partial u} + \mu \frac{\partial y}{\partial v} \right) + \frac{\partial}{\partial v} \left(\mu \frac{\partial y}{\partial u} + \nu \frac{\partial y}{\partial v} \right),$$

$$HZ = \frac{\partial}{\partial u} \left(\lambda \frac{\partial z}{\partial u} + \mu \frac{\partial z}{\partial v} \right) + \frac{\partial}{\partial v} \left(\mu \frac{\partial z}{\partial u} + \nu \frac{\partial z}{\partial v} \right),$$

$$(1)$$

le quali sono conformi alle equazioni del Beltrami.

Se $X_s ds$, $Y_s ds$, $Z_s ds$ sono le componenti, secondo gli assi, della forza che agisce sopra un elemento ds del contorno, si dovrà avere, per l'equilibrio, anche la condizione:

$$\int_{s} X_{s} ds + \int_{\sigma} X d\sigma = 0.$$

Se per X si sostituisce il suo valore fornito dalla prima delle (1) e se si osserva che si ha:

$$\int_{\sigma} \frac{\partial \varphi}{\partial u} \frac{1}{H} d\sigma = \int_{s} \varphi \frac{dv}{ds} ds,$$

$$\int_{\sigma} \frac{\partial \varphi}{\partial v} \frac{1}{H} d\sigma = - \int_{\sigma} \varphi \frac{du}{ds} ds,$$

si deduce:

$$\int_{s} \left[\left(\lambda \frac{\partial x}{\partial u} + \mu \frac{\partial x}{\partial v} \right) \frac{dv}{ds} - \left(\mu \frac{\partial x}{\partial u} + \nu \frac{\partial x}{\partial v} \right) \frac{du}{ds} + X_{s} \right] ds = 0.$$

Osservando che quest'equazione e le due analoghe che si potrebbero egualmente dedurre, sono verificate per qualsiasi contorno,

SULL'EQUILIBRIO DELLE SUPERFICIE FLESSIBILI E INESTENDIBILI. anche piccolissimo, si ottengono le tre equazioni ai limiti:

$$X_{s} = -\left(\lambda \frac{\partial x}{\partial u} + \mu \frac{\partial x}{\partial v}\right) \frac{dv}{ds} + \left(\mu \frac{\partial x}{\partial u} + \nu \frac{\partial x}{\partial v}\right) \frac{du}{ds},$$

$$Y_{s} = -\left(\lambda \frac{\partial y}{\partial u} + \mu \frac{\partial y}{\partial v}\right) \frac{dv}{ds} + \left(\mu \frac{\partial y}{\partial u} + \nu \frac{\partial y}{\partial v}\right) \frac{du}{ds},$$

$$Z_{s} = -\left(\lambda \frac{\partial z}{\partial u} + \mu \frac{\partial z}{\partial v}\right) \frac{dv}{ds} + \left(\mu \frac{\partial z}{\partial u} + \nu \frac{\partial z}{\partial v}\right) \frac{du}{ds}.$$
(2)

Se le (1) si moltiplicano ordinatamente dapprima per $\frac{\partial x}{\partial u}$, $\frac{\partial y}{\partial u}$, $\frac{\partial z}{\partial u}$, poi per $\frac{\partial x}{\partial v}$, $\frac{\partial y}{\partial v}$, $\frac{\partial z}{\partial v}$, infine per i coseni α , β , γ degli angoli che la normale alla superficie forma cogli assi e se ciascuna volta si sommano i risultati e si pone:

$$Q_1 = X \frac{\partial x}{\partial u} + Y \frac{\partial y}{\partial u} + Z \frac{\partial z}{\partial u}, \quad Q_2 = X \frac{\partial x}{\partial v} + Y \frac{\partial y}{\partial v} + Z \frac{\partial z}{\partial v},$$

si avranno le equazioni indefinite dell'equilibrio nella forma:

$$\begin{split} H \mathcal{Q}_{1} &= \frac{1}{2} \frac{\partial E}{\partial u} \lambda + \frac{\partial E}{\partial v} \mu + \left(\frac{\partial F}{\partial v} - \frac{1}{2} \frac{\partial G}{\partial u} \right) v + \\ &+ \left(\frac{\partial \lambda}{\partial u} + \frac{\partial \mu}{\partial v} \right) E + \left(\frac{\partial \mu}{\partial u} + \frac{\partial \nu}{\partial v} \right) F, \\ H \mathcal{Q}_{2} &= -\left(\frac{\partial F}{\partial u} - \frac{1}{2} \frac{\partial E}{\partial v} \right) \lambda + \frac{\partial G}{\partial u} \mu + \frac{1}{2} \frac{\partial G}{\partial v} v + \\ &+ \left(\frac{\partial \lambda}{\partial u} + \frac{\partial \mu}{\partial v} \right) F + \left(\frac{\partial \mu}{\partial u} + \frac{\partial \nu}{\partial v} \right) G, \\ H (X u + Y \beta + Z \gamma) &= A \lambda + 2 B \mu + C \nu, \end{split}$$

dove si è posto per brevità:

$$A = \frac{\partial^2 x}{\partial u^2} \alpha + \frac{\partial^2 y}{\partial u^2} \beta + \frac{\partial^2 \chi}{\partial u^2} \gamma,$$

$$B = \frac{\partial^2 x}{\partial u \partial v} \alpha + \frac{\partial^2 y}{\partial u \partial v} \beta + \frac{\partial^2 \chi}{\partial u \partial v} \gamma,$$

$$C = \frac{\partial^2 x}{\partial v^2} \alpha + \frac{\partial^2 y}{\partial v^2} \beta + \frac{\partial^2 \chi}{\partial v^2} \gamma.$$

Se U, V, W sono le componenti della forza X, Y, Z secondo le linee coordinate u, v e secondo la normale alla superficie, si ha:

$$U = \frac{\sqrt{E}}{H^2} (G Q_x - F Q_z), \qquad V = \frac{\sqrt{G}}{H^2} (-F Q_x + E Q_z),$$

$$W = X\alpha + Y\beta + Z\gamma.$$

Le equazioni indefinite dell'equilibrio divengono perciò:

$$HU = V \overline{E} \left(\frac{\partial \lambda}{\partial u} + \frac{\partial \mu}{\partial v} + E_{1} \lambda + 2 F_{1} \mu + G_{1} \nu \right),$$

$$HV = V \overline{G} \left(\frac{\partial \mu}{\partial u} + \frac{\partial \nu}{\partial v} + E_{2} \lambda + 2 F_{2} \mu + G_{2} \nu \right),$$

$$HW = A\lambda + 2 B\mu + C\nu,$$
(3)

dove:

$$\begin{split} E_{\mathbf{x}} &= \frac{\mathbf{I}}{H^2} \left[\frac{\mathbf{I}}{2} G \frac{\partial E}{\partial u} - F \left(\frac{\partial F}{\partial u} - \frac{\mathbf{I}}{2} \frac{\partial E}{\partial v} \right) \right], \\ F_{\mathbf{x}} &= \frac{\mathbf{I}}{2H^2} \left(G \frac{\partial E}{\partial v} - F \frac{\partial G}{\partial u} \right), \\ G_{\mathbf{x}} &= \frac{\mathbf{I}}{H^2} \left[G \left(\frac{\partial F}{\partial v} - \frac{\mathbf{I}}{2} \frac{\partial G}{\partial u} \right) - \frac{\mathbf{I}}{2} F \frac{\partial G}{\partial v} \right], \end{split}$$

$$\begin{split} E_2 &= \frac{1}{H^2} \left[-\frac{1}{2} F \frac{\partial E}{\partial u} + E \left(\frac{\partial F}{\partial u} - \frac{1}{2} \frac{\partial E}{\partial v} \right) \right], \\ F_2 &= \frac{1}{2H^2} \left(-F \frac{\partial E}{\partial v} + E \frac{\partial G}{\partial u} \right), \\ G_2 &= \frac{1}{H^2} \left[-F \left(\frac{\partial F}{\partial v} - \frac{1}{2} \frac{\partial G}{\partial u} \right) + \frac{1}{2} E \frac{\partial G}{\partial v} \right], \end{split}$$

come si dedurrebbe anche dalla memoria del Beltrami.

Si riconosce poi immediatamente che le prime due equazioni indefinite dell'equilibrio in coordinate curvilinee si deducono dalle note equazioni differenziali:

$$\frac{d}{dt}\frac{\partial T}{\partial u'} - \frac{\partial T}{\partial u} = Q_{1}, \quad \frac{d}{dt}\frac{\partial T}{\partial v'} - \frac{\partial T}{\partial v} = Q_{2}$$

del moto di un punto di massa eguale all'unità sopra la superficie data e sotto l'azione delle forze date X, Y, Z, col solo cambiare in queste ultime equazioni:

$$u'^2$$
, $u'v'$, v'^2 , u'' , v''

rispettivamente in

$$\frac{1}{H}\lambda$$
, $\frac{1}{H}\mu$, $\frac{1}{H}\nu$, $\frac{1}{H}\left(\frac{\partial \lambda}{\partial u} + \frac{\partial \mu}{\partial v}\right)$, $\frac{1}{H}\left(\frac{\partial \mu}{\partial u} + \frac{\partial \nu}{\partial v}\right)$.

Similmente moltiplichiamo le equazioni (2) rispettivamente per $\frac{\partial x}{\partial u}$, $\frac{\partial y}{\partial u}$, $\frac{\partial z}{\partial u}$ e sommiamo; operiamo nello stesso modo coi molti-

plicatori $\frac{\partial x}{\partial v}$, $\frac{\partial y}{\partial v}$, $\frac{\partial \zeta}{\partial v}$ e coi moltiplicatori α , β , γ : poniamo:

$$Q_{s}' = X_{s} \frac{\partial x}{\partial u} + Y_{s} \frac{\partial y}{\partial u} + Z_{s} \frac{\partial z}{\partial u}, \quad Q_{2}' = X_{s} \frac{\partial x}{\partial u} + Y_{s} \frac{\partial y}{\partial u} + Z_{s} \frac{\partial z}{\partial u}$$

e osserviamo che si ha identicamente:

$$\frac{\partial x}{\partial u}\alpha + \frac{\partial y}{\partial u}\beta + \frac{\partial z}{\partial u}\gamma = 0, \quad \frac{\partial x}{\partial v}\alpha + \frac{\partial y}{\partial v}\beta + \frac{\partial z}{\partial v}\gamma = 0;$$

si avranno le equazioni ai limiti nella forma:

$$Q'_{s} = E\left(-\lambda \frac{d v}{d s} + \mu \frac{d u}{d s}\right) + F\left(-\mu \frac{d v}{d s} + \nu \frac{d u}{d s}\right),$$

$$Q'_{s} = F\left(-\lambda \frac{d v}{d s} + \mu \frac{d u}{d s}\right) + G\left(-\mu \frac{d v}{d s} + \nu \frac{d u}{d s}\right),$$

$$X_{s} \alpha + Y_{s} \beta + Z_{s} \gamma = 0.$$

Se la forza X_s , Y_s , Z_s , si risolve in tre componenti U_s , V_s , W_s secondo le linee coordinate u, v e secondo la normale alla superficie, si ha:

$$U_{s} = \frac{\sqrt{E}}{H^{2}} (G Q'_{1} - F Q'_{2}), \quad V_{s} = \frac{\sqrt{G}}{H^{2}} (-F Q'_{1} + E Q'_{2}),$$

$$W_{s} = X_{s} \alpha + Y_{s} \beta + Z_{s} \gamma.$$

Le equazioni ai limiti assumono così quest'altra forma data pure dal Beltrami.

$$U_{s} = \sqrt{E} \left(-\lambda \frac{dv}{ds} + \mu \frac{du}{ds} \right), \quad V_{s} = \sqrt{G} \left(-\mu \frac{dv}{ds} + \nu \frac{du}{ds} \right),$$

$$W_{s} = 0.$$
(4)

II. Ai casi notevoli di equilibrio dati dal Beltrami aggiungerò il seguente, il quale vale pure per una superficie qualunque e può essere direttamente verificato mediante le formule che precedono. S'immagini, com'è sempre possibile, sopra la superficie data un sistema di coordinate curvilinee isoterme e il quadrato dell'elemento lineare sia dato da:

$$ds^2 = E(du^2 + dv^2).$$

La superficie stessa sarà in equilibrio sotto l'azione:
1° delle forze

$$U=\frac{k}{r_u}, \qquad V=\frac{k}{r_v},$$

$$W = \frac{1}{E} (A\lambda + 2B\mu + C\nu),$$

dove k è una costante qualunque, $\frac{1}{r_u}$, $\frac{1}{r_v}$ sono le curvature tangenziali o geodetiche delle linee coordinate u, v, cioè:

$$\frac{1}{r_u} = \frac{1}{E} \frac{\partial \sqrt{E}}{\partial v}, \qquad \frac{1}{r_v} = \frac{1}{E} \frac{\partial \sqrt{E}}{\partial u}$$

e dove, indicando con b1, b2, k1 nuove costanti qualunque, si ha:

$$\lambda = \frac{b_{\mathrm{r}}}{E} + k_{\mathrm{r}}, \quad \mu = \frac{b_{\mathrm{s}}}{E} + \frac{k}{2}, \quad \mathbf{v} = -\frac{b_{\mathrm{r}}}{E} + k_{\mathrm{r}};$$

2° di forze al contorno determinate dalle formule generali (I, 4) e da quest'ultimi valori di λ , μ , ν .

Catania, 29 novembre 1894.

G. PENNACCHIETTI.

SU DI UN TEOREMA FONDAMENTALE

RELATIVO AGLI ELEMENTI COMUNI DI DUE CONICHE IN UN PIANO.

Nota di Eugenio Maccaferri, in Bologna.

Adunanza del 23 dicembre 1894.

Con la presente Nota mi sono proposto di colmare una lacuna che ho riscontrato nelle ordinarie trattazioni sintetiche del problema degli elementi comuni a due coniche di un piano. Come è noto lo svolgimento di tale problema (come in generale di tutti i problemi geometrici di 3° e 4° grado) si fonda sul teorema che « Due coniche (reali) di un piano aventi in comune un punto (reale), che non sia di contatto, hanno almeno un altro punto (reale) comune ». Di questo teorema (il quale corrisponde in sostanza all'esistenza di una radice reale di un'equazione di 3° grado) si suol dare nei trattati di geometria proiettiva (*), seguendo il Chasles, una giustificazione intuitiva che non è affatto una dimostrazione rigorosa. D'altra parte non era da supporsi che per dimostrare tale proposizione fosse necessario introdurre qualche nuovo postulato, oltre al sistema di postulati atti a stabilire il teorema fondamentale dello Staudt, e ciò per la dimostrazione analitica della quistione (**).

^(*) Vedi per es.: Sannia, Geom. proiett., 2ª ed., pag. 265.

^(**) È noto che dal teorema fondamentale dello Staudt si deduce la rappresentabilità dei punti dello spazio mediante coordinate proiettive.

Io ottengo appunto in questa Nota la dimostrazione della proposizione in parola fondandomi sui risultati stabiliti dal sig. F. Enriques in una sua Nota (*) dove espone un sistema di postulati grafici conducenti al teorema fondamentale dello Staudt.

Risolvo ancora alcune altre quistioni (che hanno attinenza all'argomento trattato in questa Nota) sul modo di comportarsi, l'una rispetto all'altra, di due coniche del piano, avuto riguardo alle loro regioni di punti interni e di punti esterni, quistioni che venivano risolute finora con processi intuitivi.

1. Rimando alla Nota Sui fondamenti della Geometria proiettiva del sig. En riques per i postulati, le definizioni, i teoremi che stabiliscono, rispetto alle forme fondamentali di 1ª specie, la disposizione circolare naturale degli elementi (e corrispondentemente gli elementi susseguentisi, le coppie di elementi che si separano, i segmenti, ecc.), le corrispondenze biunivoche ordinate e le loro proprietà, e il teorema fondamentale dello Staudt.

Questi concetti e teoremi — avuto riguardo agli sviluppi ordinari della geometria proiettiva, e in particolare alla corrispondenza prospettica tra i punti di una conica e i raggi di un fascio di centro sulla conica, e alla proiettività tra coniche — si estendono senz'altro alle forme di II° ordine del piano e della stella, v-a-d la conica-luogo, la conica-inviluppo, il cono di II° ord. di raggi e il cono di II° ord. di piani (**).

Allora il concetto di corrispondenza (biunivoca) ordinata si può considerarlo rispetto a due forme qualsivoglia delle 3 forme fondamentali di 1ª specie e delle 4 forme di II° ord., come si fa in particolare per la proiettività.

2. Data nel piano una conica (reale) γ , se il punto U e la retta u sono polo e polare rispetto alla γ , si conviene di dire che

^(*) Sui fondamenti della Geometria proiettiva, Rendiconti dell'Istituto Lombardo, s. II, v. XXVIII (1894).

^(**) E così ancora alla forma di IIº ordine dello spazio, la schiera rigata: ma di essa non ci occupiamo qui.

U è interno o esterno alla γ , e corrispondentemente che la u è esterna o sega la γ , secondochè sono ellittiche o iperboliche le due involuzioni (prospettive) (U), (u) di elementi reciproci rispetto alla γ , delle quali U, u sono sostegno, — ovvero, ciò che è lo stesso, secondochè sono ellittiche o iperboliche le due involuzioni di punti e di tangenti della conica delle quali U, u sono elementi di collineazione (*).

Mi propongo di dimostrare le due proposizioni seguenti (di cui dovrò servirmi in seguito), delle quali si suol dare una dimostrazione basata sul concetto intuitivo del movimento continuo di un punto (o di una tangente) della conica (**).

« Se u è una retta segante di « Se U è un punto esterno « una conica γ, e se M, N sono « ad una conica γ, e se m, n sono « i due punti di sezione con la « le tangenti alla γ che escono da « γ, — nella punteggieta (u) uno « U,— nel fascio (U) uno dei due « dei due segmenti complementari « segmenti m n è tutto di rette se- « MN è costituito da tutti punti « ganti, e l'altro è tutto di rette « interni (segmento interno) e l'al- « esterne, le rette m, n escluse.— « tro è costituito da tutti punti « Si dice che il primo dei due seg- « esterni (segmento esterno), i punti « menti o angoli m n di (U) com- « estremi esclusi ». « prende la conica γ ».—

Pel teorema di destra, siano M, N i punti di contatto delle tangenti m, n uscenti da U; la retta $u \equiv MN$ è la polare di U. Sia L un terzo punto (oltre M, N) della γ . Dico che ogni retta r di (U) compresa nel segmento (o angolo) $\lambda \equiv (mn)$ che contiene la retta UL è una segante della γ , mentre ogni retta del segmento complementare è esterna alla γ .

Infatti, detto H il punto (UL - MN), si conduca per U una

^(*) L'equivalenza delle due definizioni deriva dalla proposizione che « Se O è un punto arbitrario della conica γ, l'involuzione I di punti della γ, prospettiva rispetto ad O, all'involuzione di punti reciproci (u), ha per elementi di collineazione U, u ». Cfr. S t a u d t, Geom. di pos., n° 253.

^(**) Vedi ad es.: Sannia, Geom. proiett., 1ª ed., pag. 402. La dimostrazione che è nella 2ª edizione della Geom. proiettiva del Sannia a pag. 172-3 (nº 86, g) non ha senso, non so se per errori di stampa o per altro.

retta arbitraria r (diversa dalle m, n, UL) e siano K, M_r , N_r i suoi punti d'incontro colle MN, LM, LN. Per un noto teorema (*) i punti M_r , N_r sono tra loro reciproci rispetto alla γ , sicchè sulla r avremo l'involuzione di punti reciproci $(r) \equiv (UK, M_r N_r)$. Ora notando che il gruppo HKMN della (u) è prospettivo (rispetto al centro L) al gruppo UKM_rN_r della (r), avremo a seconda che in (U) il raggio r è esterno o interno all'angolo $\lambda \equiv (mn)$ che contiene UHL, nella (u) la coppia HK separa ovvero non separa la coppia MN, nella (r) la coppia UK separa ovvero non separa la coppia M_rN_r , e quindi l'involuzione $(r) \equiv (UK, M_rN_r)$ è ellittica ovvero iperbolica; ciò che è quanto si voleva dimostrare.

Correlativamente nel piano pel teorema di sinistra.

3. Si abbia una conica (reale) γ , e sia U un punto del suo piano, interno o esterno ad esso. Nel fascio (U) siano a, b due seganti della conica.

 α) Dico che dei due angoli o segmenti complementari ab del fascio (U) ve n'è sempre uno $\omega \equiv (ab)$ le cui rette sono tutte se-

ganti della conica γ.

Invero, se U è esterno alla γ basta prendere il segmento ab di (U) che è contenuto nell'angolo $\lambda \equiv (mn)$ formato dalle tangenti alla γ uscenti da U e che comprende detta conica $(\S 2)$. Se U è interno alla γ , ognuno dei due angoli complementari ab è nelle condizioni accennate, giacchè nel piano di una conica ogni retta che passa per un punto interno alla conica è una retta segante (**).

Si consideri adunque nel fascio (U) l'angolo o segmento $\omega \equiv (ahb)$

le cui rette interne h sono tutte seganti della γ.

β) Dico che tali rette seganti h determinano nella conica γ delle coppie H, H' di punti sezione che formano due segmenti (o archi) della γ , i quali sono riferiti con corrispondenza ordinata (§ 1) al segmento (o angolo) $\omega \equiv (ahb)$ di (U), considerando come corri-

^(*) Staudt, Geom. di pos., nº 253.

^(**) Ciò si può derivare dal fatto che due involuzioni sulla conica, di cui una sia ellittica, hanno sempre una coppia (reale) comune.

spondenti la retta h e i due punti sezione H, H' di tale retta colla conica

Considero il caso di U esterno (per U interno si procede analogamente). Le tre rette a, b, b di U segano la conica γ in tre coppie di punti AA', BB', HH' che sono coniugati in un'involuzione iperbolica (avente per centro di collineazione il punto U); sicchè tali coppie non si separano sulla conica, e quindi, disponendo opportunamente gli accenti, avremo nella conica γ i sei punti susseguentisi AHBB'H'A'. Voglio dimostrare che i due archi AHB, A'H'B' della γ sono riferiti (nel modo anzidetto) con corrispondenza ordinata al segmento $\omega \equiv (ahb)$ di (U).

Sia K un qualunque punto dell'arco AHB della γ , tale, per es., che siano susseguentisi sulla γ i punti A, H, K, B. Se K' è il punto coniugato di K, anche i punti A', H', K', B' si susseguono sulla γ ,— sicchè sulla γ si hanno i punti susseguentisi AHKBB'K'H'A'. Si dovrà dimostrare che nel fascio (U) si susseguono le rette $a \equiv AA'$, $b \equiv HH'$, $k \equiv KK'$, $b \equiv BB'$.

Si noti perciò che siccome le due coppie di punti AK, HH' si separano sulla γ , il punto $H_{\mathbf{I}} \equiv (AK - HH')$ è interno alla γ , onde il segmento $AH_{\mathbf{I}}K$ della retta AK è interno alla γ (§ 2) e quindi l'angolo prospettivo U(AHK) di (U) risulta formato di rette seganti. Di tale angolo non fa parte la retta $UB \equiv b$, giacchè le coppie AK, BB' non si separano sulla γ , onde il punto $B_{\mathbf{I}} \equiv (AK - BB')$ risulta esterno alla γ e quindi anche al segmento $AH_{\mathbf{I}}K$.—

Osservo infine che se il punto U è esterno alla conica γ , si può prendere in particolare per angolo $\omega \equiv (ab)$ di (U) l'angolo delle due tangenti alla conica uscenti da U: allora $A \equiv A'$, $B \equiv B'$, e i due archi considerati AB, A'B' divengono due archi complementari della conica.

4. Mi propongo ora di dimostrare il

Teorema.—Due coniche (reali) γ , γ' , situate in un piano, aventi in comune un punto (reale) A, che non sia un punto di contatto, hanno almeno un altro punto (reale) comune.

La tangente in A alla γ incontri la γ' (oltre che in A) in B, e la tangente in A alla γ' incontri la γ (oltre che in A) in B'. Per

B si conduca la seconda tangente (oltre alla BA) alla γ , e sia Cil suo punto di contatto colla γ, e C' la sua ulteriore con la γ' (*).

Chiamo λ l'angolo o segmento B(AC) del fascio (B) che com-

prende la conica y (§ 2).

Si consideri nel fascio (B) un raggio r variabile nel segmento $\lambda \equiv B(AC)$: siano M, M, i due punti d'incontro di r con la γ , ed M' il secondo punto d'incontro di r con la γ' . Si considerino le tre corrispondenze ordinate nelle quali al raggio $r \equiv BM$ di λ corrispondono rispettivamente i punti M, M, di γ e il punto M' di γ' : di esse le due prime intercedono tra l'angolo $\lambda \equiv B(AC)$ e i due archi (o segmenti) complementari AC [AMC, AM, C] di y (§ 3, β); e la terza intercede tra il medesimo angolo $\lambda \equiv B(AC)$ e l'arco AC'[AM'C'] di γ' interno a λ [ed è precisamente una corrispondenza prospettica (§ 1)].

Ma i due archi complementari AC di γ si possono riferire con corrispondenza prospettica ai due segmenti complementari A(BC)del fascio (A), e l'arco A C' (interno a λ) di γ' si può riferire con corrispondenza prospettica ad uno determinato dei due segmenti complementari A(B'C') di (A). Sicchè quest'ultimo segmento A(B'C')di (A) risulterà così riferito con corrispondenza ordinata a ciascuno

dei due segmenti A(BC) di (A).

Indicherò per brevità con b, c, b', c' rispettivamente i raggi AB, AC, AB', AC'. Nel fascio (A) adunque ad un segmento determinato b'c' sono riferiti con corrispondenza ordinata i due segmenti complementari bc, essendo b distinto da b'.

Bisogna distinguere due casi:

1° Il segmento b'c' in quistione è contenuto in uno dei due segmenti bc.-Allora se si considera quel segmento bc che contiene il segmento b'c', la corrispondenza che tra loro intercede ammetterà almeno un raggio unito (**) (diverso da b e da b').

^(*) Si noti che C non può appartenere alla AB, e C' non può appartenere alla AB'; mentre C' può coincidere con B, C con B', o anche C con C', ciò che non disturba i ragionamenti che seguono.

^(**) Vedi Enriques, loc. cit., § 10: Teorema. «Se in una forma di 1ª specie « è data una corrispondenza ordinata in cui ad un segmento AB corrisponda un « segmento A'B' contenuto nel primo, esiste in questo segmento A'B' (e quindi

2° Nessuno dei due segmenti bc contiene il segmento b'c'.— Allora se si considera quello dei due segmenti bc che è riferito con corrispondenza discorde al segmento b'c', la corrispondenza che tra loro intercede ammette almeno un raggio unito (*) (diverso da b e da b').

Dunque in ogni caso esiste almeno un raggio r dell'angolo $\lambda \equiv B(AC)$ (diverso da $b \equiv BA$) che sega la γ' in un punto M' che coincide con uno dei punti M, M_r di sezione di detto raggio con la γ .

Con ciò il teorema risulta dimostrato.

5. A quanto è esposto nel precedente \S aggiungo alcune considerazioni che ci dànno un'idea precisa del modo reciproco di comportarsi delle due coniche γ , γ' in quistione.

Noto dapprima che i punti della γ' esterni [cioè situati in rette di (B) esterne] all'angolo $\lambda \equiv B(A|C)$ che comprende la γ , sono necessariamente esterni alla γ .

 α) Considero le corrispondenze che ho stabilito nel fascio (A) tra il segmento b'c' e i due segmenti complementari bc. I raggi uniti delle due corrispondenze contengono ciascuno (oltre ad A) un punto comune alle coniche γ , γ' , e viceversa per ogni punto (diverso da A) comune alle γ , γ' passa raggio unito di una di tali corrispondenze. Il numero di questi raggi uniti e quindi il numero dei punti (reali) diversi da A comuni alle γ , γ' , il quale è \geq I (\S 4), dovrà essere \leq 3, altrimenti le due coniche γ , γ' sarebbero coincidenti.

Se immagino un raggio m' del fascio (A) che descriva il segmento b'c' da b' verso c', ad esso corrispondono nelle due corrispondenze in quistione due raggi m, m_r di (A) che descrivono (in

[«] in AB) un elemento unito M siffatto che ad esso non precede alcun elemento « unito nel segmento ordinato AB».—In questo teorema si considera veramente una corrispondenza data in tutta una forma di t^a specie, ma è sufficiente che la corrispondenza interceda tra i due segmenti considerati, come appare dalla dimostrazione.

^(*) Invero, è facile nel caso indicato determinare un segmento che è contenuto nel segmento corrispondente.

senso tra loro opposto) i due segmenti complementari (bc). I raggi m, m_r segano la γ (oltre che in A) in due punti M, M_r , e il raggio m' sega la γ' (oltre che in A) in un punto M', risultando i tre punti M, M_r , M' su di una medesima retta r del fascio (B).

Dico che il punto M' di γ' risulta interno a γ solo quando il raggio $m' \equiv AM'$ è esterno ai due angoli bm, bm_1 percorsi dai due raggi mobili m, m_1 prima di giungere alle posizioni $m \equiv AM$,

 $m_{r} \equiv A M_{r}$.

Invero, solo nel caso accennato il punto A' in cui la retta $m' \equiv A M'$ sega ulteriormente la γ è un punto dell'arco $M M_{\rm I}$ di γ che non contiene A, v-a-d le due coppie di punti AA', $MM_{\rm I}$ si separano sulla γ , e quindi il punto $M' \equiv (A A' - M M_{\rm I})$ risulta in-

terno alla y.

β) Nel segmento b'c' in quistione, procedendo da b' verso c' sia b il primo raggio che è unito in una qualsivoglia delle due corrispondenze considerate, e che contiene quindi (oltre ad A) un punto H comune alle γ , γ' (b è distinto da b', non escluso che sia b=c'=c, — e quindi H è distinto da A, non escluso che sia H=C'=C). Dico che i raggi compresi tra b' e b contengono tutti dei punti della γ' interni alla γ , cioè l'arco AH, che non contiene B di γ' è formato (gli estremi esclusi) da tutti punti interni alla γ .

Per dimostrarlo basta far vedere che nel segmento b'h non v'è nessun raggio m' che sia interno ad uno dei due segmenti bm, bm, che corrispondono a b'm'. Si supponga per es. che m' sia interno

a bm: in tal caso:

1°) o anche b' è interno a bm, — e allora o b'm' è interno a bm, o bm, è interno a b'm',

2°) o b' è esterno a bm, — e allora b'm' o ha senso opposto a bm contenendo m, o ha senso opposto a bm_t contenendo b: sicchè per le proprietà delle corrispondenze ordinate esisterebbe sempre un elemento unito nel segmento b'm', ciò che è contro l'ipotesi.

Analogamente, se nel segmento b'c' è k l'ultimo raggio unito e che contiene perciò (oltre ad A) un punto K comune alle γ , γ' (non escluso che sia k=b, o anche k=c'=c, o le due cose insieme, — e quindi non escluso che sia K=H, o anche K=C'=C, o le due cose insieme), l'arco KA, che contiene B, della γ è for-

mato (gli estremi esclusi), da tutti punti esterni alla γ, come si dimostrerebbe con ragionamento simile al precedente.

Dunque « il punto A comune alle due coniche γ, γ' senza es-« sere un punto di contatto, separa sulla conica γ' due archi adia-« centi AH, KA, formati (escluso i punti estremi) l'uno di punti interni « e l'altro di punti esterni alla conica γ , essendo H, K due punti « comuni alle γ, γ' (non escluso H = K) ».

Lo stesso si dica della conica γ rispetto alla conica γ' .

 γ) Esamino ora in breve le diverse ipotesi che si possono fare sul numero [\geq 1 e \geq 3] dei punti (reali e distinti) che le due coniche γ , γ' hanno in comune oltre al punto A, ottenendo così i diversi casi possibili avuto riguardo alla teoria sviluppata, i quali risultano appunto i casi che si verificano in realtà, come mostrerebbero ulteriori semplici considerazioni.

a) Se le due coniche γ , γ' ammettono (oltre ad A) un sol punto (reale) comune H, in ciascuno di esse (per ciò che si è visto in β) i due archi complementari AH sono l'uno di punti interni e l'altro di punti esterni all'altra conica. [Le due coniche hanno in H o le

tangenti distinte o un contatto tripunto].

b) Se le due coniche γ , γ' ammettono (oltre ad A) tre punti comuni H, I, K, in tali punti le γ , γ' non possono avere contatto, giacchè altrimenti esse coinciderebbero, sicchè se procedendo in un determinato senso sulla conica γ' l'arco AH risulta di punti interni alla γ , l'arco HI risulterà di punti esterni, IK di punti interni e KA

di punti esterni.

- c) Infine se le γ , γ' ammettono (oltre ad A) due punti comuni H, K, in uno almeno di questi, supponiamo per es. nel punto H, le due coniche non devono avere contatto, giacchè altrimenti esse coinciderebbero. Dico che nell'altro punto K le γ , γ' hanno necessariamente un contatto. Infatti, se procedendo in determinato senso sulla γ' l'arco KA è esterno alla γ , l'arco AH sarà interno, e l'arco HK sarà esterno (per quanto si è visto in β). Sicchè i due archi adiacenti HK, KA della γ' , che sono separati dal punto K comune alle γ , γ' , sono entrambi esterni alla γ , ciò che esclude che in K le γ , γ' abbiano le tangenti distinte.
 - 6. Esamino ancora alcune altre questioni sulla posizione reci-

proca di due coniche (reali) di un piano, rispetto alle loro regioni

di punti interni e di punti esterni.

α) « Se si hanno in un piano due coniche (reali) γ , γ' , ed A « è un punto della γ esterno [o interno] alla γ' , esiste un arco « MAN di γ tutto costituito di punti esterni [interni] alla γ' ».

Sia HAK un arco della γ contenente un punto A esterno alla γ' . Conduco per A due rette arbitrarie che seghino la γ' nelle due coppie di punti A_1A' , A_2A'' : queste due coppie non si separano sulla γ' per essere il punto A esterno alla γ' , e di più posso stabilire le designazioni dei quattro punti in modo che $A_1A'A''A_2$ si sus-

seguano nella y'.

Mediante i fasci (A_1) , (A_2) riferisco con corrispondenza ordinata l'arco HAK di γ ai due archi H'A'K', H''A''K'' di γ' (§ 3, β), i quali risultano così riferiti con corrispondenza ordinata tra loro. I due archi corrispondenti A'K', A''K'' di γ' o non hanno punti uniti, o hanno un primo punto unito (differente di A') procedendo da A' verso K'; sicchè in ogni caso posso prendere in A'K' un punto N' tale che l'arco A'N' e l'arco corrispondente A''N'' non abbiano punti uniti nella corrispondenza. Analogamente nell'arco H'A' potrò prendere un punto M' tale che i due archi corrispondenti M'A', M''A'' non abbiano punti uniti. Ottengo così sulla γ' due archi M'A'N', M''A''N'' riferiti con la corrispondenza ordinata che abbiamo stabilito, i quali non hanno elementi uniti. Di più potrò aver preso i punti M', N' in modo che M', N', M''', N''' si trovino tutti nell'arco $A_1A'A''A_2$.

Dico che l'arco MAN di γ (che corrisponde ai due archi precedenti M'A'N', M''A''N'' di γ') è tutto di punti esterni alla γ' .

Infatti, ad ogni punto P di MAN corrispondono in γ' due punti distinti P', P'' che si trovano nello stesso arco $A_1A'A''A_2$; e di più in tale arco ordinato $A_1A'A''A_2$ P' precede P'', giacchè in caso contrario i due archi corrispondenti A'P', A''P'' dovrebbero avere un punto unito, come si deduce facendo le diverse ipotesi possibili sulla posizione rispettiva dei quattro punti A', P', A'', P'' e applicando i teoremi sulle corrispondenze ordinate. Sicchè il punto $P \equiv (A_1P' - A_2P'')$ è esterno alla γ' .

Analogamente si ragiona se il punto A di γ è interno alla γ' .

Rend. Circ. Matem., t. IX, parte 1^a.—Stampato il 1º febbrajo 1895.

 β) « Se si hanno in un piano due coniche (reali) γ , γ' , ed esi« stono due punti A, B di γ l'uno esterno, l'altro interno alla γ' ,
« le due coniche hanno almeno due punti (reali) in comune, situati
« nei due archi complementari AB di γ ».

Invero, considerando uno qualsivoglia degli archi AB di γ , i punti di tale arco si possono dividere in due classi, l'una dei punti ai quali precedono nel segmento o arco ordinato AB solo punti esterni alla γ' , l'altra dei punti pei quali ciò non accade. Tali classi, pel postulato della continuità (*), ammettono un punto di separazione H, che è un punto comune alle due coniche, non potendo essere (pel teorema α) nè un punto esterno, nè un punto interno alla γ' .

 γ) « Di due coniche (reali) γ , γ' di un piano aventi un con-« tatto senza avere altri punti reali in comune, sempre una è esterna « all'altra (**) ».

Invero, si conduca pel punto di contatto A una retta che seghi le γ , γ' nei punti B, B' rispettivamente : almeno uno degli estremi B, B' dei due segmenti AB, AB' interni (§ 2) alle γ , γ' è esterno all'altro segmento : se per es. B è esterno al segmento AB' (interno alla γ'), tutti i punti di γ (A escluso) sono esterni a γ , giacchè se esistesse un punto C di γ interno a γ' , le γ , γ' dovrebbero avere due punti (reali o distinti) in comune, ciò che è escluso.

Secondochè poi B' è esterno o interno al segmento AB, interno a γ , la γ' (come è facile dedurre) risulta esterna o interna alla γ .

δ) « Di due coniche (reali) γ, γ' di un piano non aventi punti « reali in comune, sempre una è esterna all'altra ».

Invero, se si conduce una segante comune, i due segmenti AB, A'B' di tale retta interni alle γ, γ' devono essere o 1°) l'uno esterno all'altro, o 2°) l'uno interno all'altro (cioè le due coppie AB, A'B' non devono separarsi, giacchè altrimenti le due coniche avrebbero due punti in comune). E si deduce immediatamente che nel 1° caso

^(*) Vedi: Enriques, loc. cit., § 9.

^(**) Cioè tutti i punti di una conica sono esterni all'altra, il punto di contatto escluso.

le due coniche risultano esterne l'una all'altra; e nel 2°, se per es. il segmento A'B' interno alla γ' è contenuto nel segmento AB interno alla γ , la γ risulta esterna alla γ' , e la γ' interna alla γ .

Bologna, 10 dicembre 1894.

EUGENIO MACCAFERRI.

PRELIMINARI PER LO STUDIO DELLE FUNZIONI

DI DUE VARIABILI;

Nota di G. Vivanti, in Pavia.

Adunanza del 13 gennajo 1895.

1. Una delle difficoltà che presenta lo studio delle funzioni di due variabili proviene dal fatto che, tentando di estendere a queste l'ordinario metodo di rappresentazione geometrica delle quantità complesse, si è condotti a considerare come campo d'esistenza di tali funzioni uno spazio piano a 4 dimensioni.

È noto che Poincaré, nelle sue importantissime ricerche sugl'integrali della forma $\iint F(x, y) dx dy$ (*), evitò questa difficoltà considerando, in luogo degli enti geometrici posti nello spazio a 4 dimensioni, le loro intersezioni con uno spazio a 3 dimensioni opportunamente scelto.

Non è tuttavia inutile vedere se, senza alcuno speciale artificio, possa ottenersi nello spazio ordinario una rappresentazione completa del campo di variabilità di due quantità complesse indipendenti, la quale si presti opportunamente allo studio delle funzioni di due variabili. Una tale rappresentazione si ha appunto, quando si faccia corrispondere a ciascuna coppia di valori (x, y) delle due variabili una retta dello spazio. Intendendo allora deposto su ciascuna retta (x, y) il valore corrispondente della funzione f(x, y), questa potrà

^(*) Sur les résidus des intégrales doubles, Acta math. t. IX, pp. 321-380.

considerarsi come una funzione di linee, in senso analogo a quello dato a tale denominazione da Volterra (*).

Siccome però la geometria dello spazio rigato ci è assai meno familiare che non quella dello spazio punteggiato, così avviene che alcuni concetti fondamentali relativi alla geometria infinitesimale ed all'analysis situs dello spazio ordinario, i quali si appoggiano principalmente sull'intuizione geometrica, perdono tale carattere di intuitività nel trasformarsi nei concetti corrispondenti per lo spazio di rette. Tali fra gli altri i concetti di ente geometrico aperto o chiuso, di elemento interno od esterno ad un ente chiuso, di intorno d'un elemento, di contorno, etc. (**). Importa pertanto darne anzitutto una definizione precisa. È questo l'oggetto principale della presente Nota, la quale contiene così i preliminari dello studio delle funzioni di due variabili complesse. E riservando tale studio ad altra occasione, ci limitiamo per ora ad accennare brevissimamente alla via da seguirsi per estendere a quelle funzioni i concetti fondamentali di Cauchy e di Riemann.

2. Se ξ, η, ζ sono le coordinate correnti d'un punto dello spazio ordinario, noi intendiamo la coppia di valori complessi $x = x_1 + ix_2$, $y = y_1 + iy_2$ rappresentata dalla retta:

$$x_1\xi + x_2\zeta = 1$$
, $y_1n + y_2\zeta = 1$, (1)

che diremo retta (x, y) (***).

(***) Se pik sono le coordinate omogenee della retta considerata, si ha:

$$\rho p_{12} = x_1 y_1, \quad \rho p_{34} = -x_2 + y_2, \quad \rho p_{23} = -x_2 y_1, \quad \rho p_{34} = -x_1, \\ \rho p_{31} = -x_1 y_2, \quad \rho p_{24} = y_1,$$

e le equazioni (3) e (4) del nº 3 divengono: $(p_{12}-a_1p_{24})^2+(p_{23}+a_2p_{24})^2=\rho^2p_{24}^2, \quad (p_{12}+b_1p_{14})^2+(p_{31}-b_2p_{14})^2=\sigma^2p_{14}^2.$

^(*) Sopra le funzioni dipendenti da linee, Rend. dell'Acc. dei Lincei, 1887, 2º sem., pp. 225-230, 274-281; Sur une généralisation de la théorie des fonctions d'une variable imaginaire, Acta math., t. XII, pp. 233-286. - È però da notarsi che le linee considerate da Volterra sono chiuse e di forma qualunque.

^(**) Alla geometria infinitesimale dello spazio di rette si riferisce l'importante memoria di Koenigs: Sur les propriétés infinitésimales de l'espace réglé, Ann. de l'Éc. norm., 1882, pp. 219-338. Vedi anche la memoria dello stesso autore: La géométrie réglée, Ann. de la Fac. des sc. de Toulouse, t. III (1889) e VI (1892).

Ad ogni coppia di valori finiti e non nulli (x, y) corrisponde una retta posta a distanza finita; alla coppia (0, y) la retta all'infinito del piano $y_1\eta + y_2\zeta = 1$; alla coppia (x, 0) la retta all'infinito del piano $x_1\xi + x_2\zeta = 1$; infine alla coppia (0, 0) qualunque retta del piano all'infinito dello spazio, o, come può dirsi, l'intero piano all'infinito. Per mantenere adunque anche in questo caso l'unicità della rappresentazione, converrà considerare il piano all'infinito come un unico elemento dello spazio rigato, allo stesso modo che nell'ordinaria rappresentazione dei numeri complessi l'insieme di tutti i punti all'infinito del piano si considera come un punto unico.

Resta ancora da vedere quali rette corrispondano a valori infiniti delle variabili. A questo proposito può dimostrarsi, che le rette le quali rappresentano coppie di valori (x, y) non ambidue finiti sono tutte e soltanto quelle che tagliano a distanza finita uno almeno dei due assi ξ , η .

Poniamo:

$$x_1 = \frac{X_1}{X_3}, \quad x_2 = \frac{X_2}{X_3}, \quad y_1 = \frac{Y_1}{Y_3}, \quad y_2 = \frac{Y_2}{Y_3};$$

le (1) diverranno:

$$X_1\xi + X_2\zeta = X_3$$
, $Y\eta_1 + Y\zeta_2 = Y_3$. (2)

Supponendo che le X, Y rimangano sempre finite, si avrà $x=\infty$ per $X_3=0$, e $y=\infty$ per $Y_3=0$. Ora, se $X_3=Y_3=0$, le (2) rappresentano una retta passante per l'origine; se $X_3=0$, l'intersezione del piano Y_1 , $\eta+Y_2$, $\zeta=Y_3$ col piano X_1 , $\xi+X_2$, $\zeta=0$ passante per l'asse η , quindi una retta che taglia l'asse η ; analogamente se $Y_3=0$ una retta che taglia l'asse ξ . Reciprocamente, se la retta (2) taglia l'asse ξ ad una distanza finita $\overline{\xi}$ dall'origine, le sue equazioni dovranno essere soddisfatte per $\xi=\overline{\xi}$, $\eta=\zeta=0$, donde segue $Y_3=0$; analogamente si ha $X_3=0$ se la retta (2) taglia l'asse η .

3. Dicesi intorno Iab d'una retta (a, b) l'insieme di tutte le rette

(x, y) tali che:

$$(x_1 - a_1)^2 + (x_2 - a_2)^2 \leq \rho^2$$
, $(y_1^* - b_1)^2 + (y_2 - b_2)^2 \leq \sigma^2$,

essendo ρ , σ due quantità finite ma arbitrariamente piccole. Il contorno di I_{ab} è costituito dall'insieme dei due complessi :

$$(x_1 - a_1)^2 + (x_2 - a_2)^2 = \rho^2,$$
 (3)

$$(y_1 - b_1)^2 + (y_2 - b_2)^2 = \sigma^2.$$
 (4)

Prendiamo a considerare p. es. il primo di questi due complessi.

Esso è costituito da tutte le rette poste negli ∞^r piani condotti normalmente al piano $\xi \zeta$ per le rette dell'inviluppo rappresentato dall'equazione (3) giacente nel piano stesso. Tale inviluppo è una conica; infatti, eliminando x_1 , x_2 , $\frac{d x_1}{d x_2}$ tra le:

$$x_1 \xi + x_2 \zeta - 1 = 0$$
, $\xi dx_1 + \zeta dx_2 = 0$,

$$(x_1 - a_1)^2 + (x_2 - a_2)^2 = \rho^2$$
, $(x_1 - a_1) dx_1 + (x_2 - a_2) dx_2 = 0$,

si ottiene:

$$(a_1\xi + a_2\zeta - 1)^2 - \rho^2(\xi^2 + \zeta^2) = 0.$$
 (5)

Questa conica è la polare reciproca del cerchio:

$$(\xi - a_1)^2 + (\zeta - a_2)^2 = \rho^2$$

rispetto al cerchio:

$$\xi^2 + \zeta^2 = 1.$$

Essa ha un fuoco nell'origine; infatti per $\xi \pm i\zeta = 0$ la (5) si riduce ad un quadrato perfetto, il che dimostra che ciascuna delle due rette imaginarie $\xi \pm i\zeta = 0$ incontra la curva in due punti

coincidenti ossia le è tangente. La direttrice corrispondente è la retta:

$$a_{\scriptscriptstyle \rm I}\xi+a_{\scriptscriptstyle \rm I}\zeta-{\scriptscriptstyle \rm I}=0,$$

cioè la proiezione sul piano ξζ della retta (a, b). Dunque:

Le proiezioni sul piano $\xi \zeta$ delle rette appartenenti all'intorno I_{ab} della retta (a, b) sono tutte le rette le quali non tagliano una conica avente per uno dei fuochi l'origine e per direttrice corrispondente la proiezione della retta (a, b).

Questa conica tende a confondersi colla proiezione della retta

(a, b), quando la costante o impicciolisce indefinitamente.

Considerazioni analoghe possono farsi per la proiezione sul piano ηζ.

4. I due complessi (3), (4) hanno comune una congruenza, la quale ha la proprietà speciale che la sua proiezione su ciascuno dei due piani $\xi \zeta$, $\eta \zeta$ è costituita da un'infinità semplice di rette, cioè da un inviluppo. Sono questi gl'inviluppi di cui si è parlato nel numero precedente.

La congruenza considerata è del 4° ordine e della 4ª classe.

Il suo ordine risulta immediatamente dalla considerazione che le (1), (3), (4) dànno per ogni sistema di valori ξ , η , ζ tutt'al più 4 sistemi di valori reali x_1 , x_2 , y_1 , y_2 .

La classe d'una congruenza è il numero delle rette di essa contenute in un piano qualunque. Sia:

$$A\xi + B\eta + C\zeta + D = 0$$

l'equazione d'un piano; le condizioni perchè esso contenga la retta (1) sono:

$$Ay_1 + Bx_1 + Dx_1y_1 = 0$$
, $Ax_2y_1 + Bx_1y_2 - Cx_1y_1 = 0$,

donde si ha:

$$x_{i} = \frac{-Ay_{i}}{B+Dy_{i}}, \qquad x_{2} = \frac{By_{2}-Cy_{i}}{B+Dy_{i}}.$$
 (6)

Introducendo questi valori nella (3), essa diviene un'equazione di 2° grado in y_1 , y_2 , che insieme alla (4) ci dà 4 coppie di valori y_1 , y_2 . A ciascuna di queste corrisponde per le (6) un'unica coppia di valori x_1 , x_2 . Dunque la congruenza è di 4° classe.

5. Data una retta P appartenente ad un complesso π , dicesi intorno della retta P nel complesso π l'insieme delle rette di π appartenenti all'intorno di P. Esso è limitato da due congruenze [le intersezioni di π coi complessi (3) e (4)], aventi comune una rigata, le cui proiezioni sono gli inviluppi del n° 3.

Si definisce analogamente l'intorno d'una retta in una congruenza.

6. Importa ora vedere come una congruenza possa decomporsi in una doppia infinità di elementi.

Supponiamo dapprima che la congruenza considerata si proietti, p. es., sul piano $\xi \zeta$ in un inviluppo. Se P è una retta della congruenza, $P_{\rm r}$ la sua proiezione sul piano $\xi \zeta$ e $\overline{P}_{\rm r}$ è quella retta (in generale unica) dell'inviluppo che si considera posta nell'intorno di $P_{\rm r}$ e facente con questa un angolo positivo arbitrariamente piccolo ma determinato $d\omega$, ogni retta della congruenza appartenente all'elemento che ha per origine la retta P dovrà soddisfare alla condizione che la sua proiezione sul piano $\xi \zeta$ sia una retta dell'inviluppo posta fra $P_{\rm r}$ e $\overline{P}_{\rm r}$. — Si ha, essendo ω l'angolo di $P_{\rm r}$ coll'asse ξ :

$$\omega = - \arctan \frac{x_1}{x_2}$$
, $d\omega = - \frac{x_2 dx_1 - x_1 dx_2}{x_1^2 + x_2^2}$,

quindi, se si vuole che dx sia costante e per conseguenza lo sieno anche dx_1 e dx_2 , si dovrà prendere:

$$d\omega = \frac{nx_1 - mx_2}{x_1^2 + x_2^2} d\lambda,$$

dove m, n, $d\lambda$ sono costanti, ossia indicando con R(u) la parte reale di u e ponendo n-im=q:

$$d\omega = R\left(\frac{q}{x}\right)d\lambda.$$

Se invece, come avviene in generale, la congruenza si proietta sul piano $\xi \zeta$ in una doppia infinità di rette, detti A, B i punti d'incontro di $P_{\rm r}$ cogli assi ξ , ζ , si conduca per A una retta $P'_{\rm r}$ che faccia con $P_{\rm r}$ un angolo $d\alpha$, per B una retta $P'_{\rm r}$ che faccia con $P_{\rm r}$ un angolo $d\beta$. Sia D il punto d'incontro di $P'_{\rm r}$ coll'asse ζ , C quello di $P''_{\rm r}$ coll'asse ξ . Ogni retta della congruenza appartenente all'elemento che ha per origine la retta P dovrà soddisfare alla condizione che la sua proiezione sul piano $\xi \zeta$ tagli l'asse ξ nel tratto AC e l'asse ζ nel tratto AD. — Si ha:

$$\operatorname{tg} \omega = -\frac{x_{\scriptscriptstyle \mathrm{I}}}{x_{\scriptscriptstyle 2}}, \qquad \operatorname{tg} (\omega + d\alpha) = -\frac{x_{\scriptscriptstyle \mathrm{I}}}{x_{\scriptscriptstyle 2} + dx_{\scriptscriptstyle 2}},$$

ossia mediante lo sviluppo di Taylor:

$$\frac{d\alpha}{\cos^2\omega} = \frac{x_1 dx_2}{x_2^2},$$

da cui:

$$d\alpha = \frac{x_1 d x_2}{x_1^2 + x_2^2}.$$

Analogamente:

$$d\beta = \frac{x_2 d x_1}{x_1^2 + x_2^2}.$$

Se si vuole che dx sia costante, si porrà:

$$d\alpha = R\left(\frac{1}{x}\right) m d\lambda, \qquad d\beta = R\left(\frac{i}{x}\right) n d\lambda,$$

dove m, n, $d\lambda$ sono costanti.

7. Se si ha una porzione τ di una superficie σ , si può definire geometricamente il contorno di τ come segue. Sia P un punto qualunque di τ (*), π il piano tangente alla superficie in P, e si ima-

^(*) È quasi inutile avvertire che qui si fa astrazione dai punti singolari si della superficie che del contorno.

gini descritta in questo piano una circonferenza di raggio piccolissimo ρ avente il centro in P. Se gli estremi di tutti i raggi di questa circonferenza, per $\lim \rho = 0$, giacciono in τ , si dice che P è un punto interno di τ ; nel caso contrario, si dice che P appartiene al contorno di τ .

In modo analogo può definirsi il contorno d'una porzione τ d'una congruenza σ . Sia P una retta di τ , e si imaginino condotte per un punto di P tutte le semirette normali a P. Se T è una di queste e ρ è una quantità costante positiva ed arbitrariamente piccola, esiste in generale nell'intorno di P una ed una sola retta P_T della congruenza la cui minima distanza da P è ρ ed ha la stessa direzione e lo stesso senso di T. Se tutte le rette P_T appartengono a τ , P è una retta interna, nel caso contrario, essa fa parte del contorno di τ .

Analiticamente, se:

$$f(x_1, x_2, y_1, y_2) = 0, \quad \varphi(x_1, x_2, y_1, y_2) = 0$$

sono le equazioni della congruenza σ , una porzione τ di essa sarà definita da una diseguaglianza:

$$F(x_1, x_2, y_1, y_2) \leq 0.$$
 (7)

Il contorno di 7 sarà la rigata avente le equazioni:

$$f=0$$
, $\varphi=0$, $F=0$.

Se P è una retta di questa rigata, le due rette di essa contigue a P separano le P_T interne a τ da quelle che non appartengono a τ , ossia che sono esterne a τ .

8. Le cose dette testè per le congruenze possono estendersi immediatamente ai complessi.

Abbiasi un complesso s e una porzione t di esso. Sia P una retta di t, e si considerino tutti i piani paralleli alla P e distanti da essa di una quantità piccola a piacere ρ . Uno qualunque π di questi

piani avrà comune con s un inviluppo. Se questo, per tutti i piani π , appartiene per intero a t, P è una retta interna a t, in caso diverso essa fa parte del contorno di t.

Può darsi un'altra condizione, sufficiente ma non necessaria in tutti i casi, perchè una retta P appartenga al contorno di t. Poichè per ogni punto dello spazio passa in generale un'infinità semplice di rette d'un complesso, ciascun punto A della retta P sarà il vertice d'un cono k_A di rette del complesso, e tutti questi coni avranno al generatrice comune P. Consideriamo le generatrici P', P'' del cono k_A contigue a P dalle due parti opposte. Se fra le generatrici P', P'' di tutti i coni k_A ve n'hanno alcune non appartenenti a t, può asserirsi che P fa parte del contorno di t.

Analiticamente una porzione d'un complesso f = o è definita da una diseguaglianza della forma (7), e il contorno di tale porzione è costituito dalla congruenza:

$$f=0, F=0.$$

9. Una congruenza dicesi connessa, se prese comunque due rette di essa può passarsi con continuità da una all'altra mediante una rigata appartenente per intero alla congruenza. Analoga definizione può darsi per un complesso.

Una congruenza connessa, non avente contorno, e di cui nessuna retta taglia a distanza finita gli assi ξ , η , dicesi *chiusa*. — La stessa definizione vale per un complesso.

10. Un complesso connesso dicesi semplicemente connesso, se qualunque congruenza chiusa in esso contenuta lo divide in due regioni; cioè se, data una congruenza chiusa σ , possono assegnarsi due rette P, Q del complesso, tali che qualunque rigata del complesso la quale congiunga P con Q contenga almeno una retta della congruenza σ .

Un caso molto generale in cui una congruenza divide un complesso in due regioni è il seguente. Il complesso considerato k, di equazione f = 0, è chiuso, e la congruenza σ è la rappresentazione completa dell'equazione $\varphi = 0$, cioè è il luogo delle rette del com-

plesso per le quali $\varphi = 0$, essendo φ una funzione intera, razionale o trascendente, delle x_1 , x_2 , y_1 , y_2 . Allora avverrà in generale che per certe rette di k, il cui insieme designeremo con k', φ è negativo, per le altre, il cui insieme diremo k'', è positivo. Poichè φ rimane sempre finito nel complesso k, su qualunque rigata che congiunge una retta di k' con una di k'' vi sarà almeno una retta per cui $\varphi = 0$, ossia almeno una retta della congruenza σ .

11. Un complesso chiuso s divide lo spazio rigato in due regioni. In altre parole, se un complesso s è chiuso, qualunque rigata chiusa che ha comune con esso una retta ne ha comune almeno un'altra.

Per giungere a questo risultato premettiamo un'osservazione.

Abbiansi due rigate p, p' di cui nessuna generatrice tagli gli assi ξ, η e stabiliccasi una corrispondenza continua ed ordinata tra le loro generatrici. Sieno P, P' due generatrici corrispondenti, e designiamo le loro minime distanze dagli assi ξ, η rispettivamente con ρ_P , $\rho_{P'}$; σ_P , $\sigma_{P'}$. Prendasi una serie continua di valori positivi ρ che vada da ρ_P a $\rho_{P'}$, ed un'altra analoga che vada da σ_P a $\sigma_{P'}$, e stabiliscasi una corrispondenza continua ed ordinata fra le due serie. Detta (ρ, σ) una coppia di valori corrispondenti, per ognuna di tali coppie potremo scegliere una retta avente da ξ, η le minime distanze ρ, σ, e ciò in modo che l'insieme delle rette ottenute sia continuo. Un insieme analogo si può costruire per ciascuna coppia di generatrici corrispondenti delle due rigate p, p'. Ne segue che, date due rigate qualunque di cui nessuna generatrice tagli (a distanza finita) gli assi ξ, η, si può passare dall'una all'altra per moto continuo in guisa che nessuna generatrice in alcuna delle sue posizioni tagli i medesimi assi.

Il passaggio da una rigata ad un'altra, che può anche concepirsi come una deformazione continua di una di esse, presenta un notevole grado di arbitrarietà. Si vede però che il passaggio da una posizione ad una infinitamente vicina (deformazione infinitesima) può sempre imaginarsi avvenuto come segue. Per le varie rette P della rigata si facciano passare dei complessi k_P non contenenti la rigata stessa, e tali che, se P, P' sono due punti vicinissimi, k_P , k_P , differiscano di pochissimo tra loro; e si supponga che la retta P si sposti mantenendosi nel complesso k_P (*) e descrivendo una sviluppabile.

Dopo ciò sia dato il complesso chiuso s, e sia P una retta qualunque di esso. Per P e per un'altra retta O di s si faccia passare una rigata chiusa m; se n è un'altra rigata chiusa qualunque di cui P sia una generatrice, si potrà deformare m sino a portarla a coincidenza con n senza mai tagliare gli assi ξ , η . Supponiamo che nabbia comune con s la sola retta P; allora vi sarà una certa posizione m' della rigata variabile in cui essa avrà comune con s un'altra retta O' oltre P, mentre una sua deformata m" di pochissimo differente da essa non avrà comune con s alcun'altra retta. Imaginiamo condotti per le rette di m' dei complessi non contenenti m', e tali che i complessi s, condotti per le rette Q', prossime a Q' differiscano di pochissimo da s; potremo supporre che nel passaggio da m' ad m" ciascuna retta Q'_i si mantenga nel complesso corrispondente s_i , e che le due posizioni successive di essa si intersechino. La Q' si sposterà rimanendo in un complesso s contenente tutte le rette di s che sono nelle vicinanze di Q', e la sua nuova posizione intersecherà la Q' stessa. Ne segue che, se questa nuova posizione non appartenesse ad s, Q' farebbe parte necessariamente (n° 8) del contorno di s, ciò che è impossibile perchè s, essendo chiuso, non ha contorno. Con ciò è dimostrato l'asserto.

Adunque un complesso chiuso divide lo spazio rigato in due regioni; se due rette non appartengono alla stessa regione, ogni rigata che le congiunge ha almeno una retta comune con s.

L'insieme delle rette che tagliano uno almeno degli assi ξ , η costituisce un complesso connesso; poichè esso non ha comune alcuna retta con s, esso rimane interamente in una delle due regioni in cui s divide lo spazio.

^(*) Infatti sia r la rigata che si considera, \overline{r} la sua deformata. Il passaggio da r ad \overline{r} potrà concepirsi avvenuto in due successive fasi,: deformazione di r in \overline{r} per modo che una generatrice P di r si trasformi in una generatrice qualsiasi \overline{P} di \overline{r} ; e scorrimento di \overline{r} su sè stessa in modo che la \overline{P} vada a coincidere colla intersezione P_1 di \overline{r} con k_P .

12. Abbiansi nello spazio punteggiato due curve chiuse a, b; si può proporsi la questione se esse s'intrecciano o no. Perciò si faccia passare per a una superficie chiusa σ non contenente b; essa taglierà la b in un insieme di punti I. Se, qualunque sia σ , i punti di Inon giacciono in una sola delle due regioni in cui a divide σ, le due curve a, b s'intrecciano.

Abbiansi ora nello spazio rigato due congruenze chiuse α, β. Per α si faccia passare un complesso chiuso semplicemente connesso s non contenente β ; questa potrà avere in comune con s:

- 1. Una rigata.
- 2. Un numero finito di rette.
- 3. Nessuna retta.

Se, qualunque sia s, si verifica uno dei casi 1, 2, e se inoltre le rette comuni a β e ad s non giacciono tutte in una sola delle due regioni in cui s è diviso da α, può dirsi che le congruenze α, β s'intrecciano.

Ciò significa che non si può ridurre l'una di esse per deformazione continua ad un'unica retta senza venire a coincidenza con qualche retta dell'altra.

Parimenti si dice che una rigata ed una congruenza s'intrecciano, se, condotto per la congruenza un complesso chiuso qualunque s, la rigata ha con esso delle rette comuni le quali non giacciono in una sola delle due regioni in cui s è diviso dalla congruenza.

13. Se in un complesso s si hanno 3 congruenze α, β, γ aventi comune una rigata connessa e, si possono portare a coincidenza per moto continuo le parti prossime ad e delle congruenze α, β senza venire a coincidenza con alcuna retta della congruenza γ.

Ciascuna delle a, \beta è divisa da e - per quanto almeno riguarda le parti prossime a questa — in due regioni α', α"; β', β". La congruenza γ alla sua volta divide il complesso s in due regioni s', s'', in ciascuna delle quali giacerà una delle α', α", ed una delle β' , β'' . Supposto p. es. che α' , β' giacciano in s', e α'' , β'' in s", si potrà portare α' a coincidere con β' ed α" con β" senza oltrepassare alcun elemento di 7.

14. L'applicazione dei concetti esposti allo studio delle funzioni di due variabili formerà l'oggetto di ulteriori ricerche. Importa però far vedere sin d'ora con pochi cenni quale sia l'indirizzo che può seguirsi in tale studio.

Abbiasi una funzione di due variabili complesse definita da una relazione algebrica F(x, y, z) = 0. Le coppie di valori di x, y a cui corrispondono valori di z non tutti tra loro distinti si ottengono eliminando z tra le equazioni :

$$F = 0$$
, $\frac{\partial F}{\partial z} = 0$.

Il risultato dell'eliminazione è della forma $\varphi(x, y) = 0$, ossia:

$$\psi(x_1, x_2, y_1, y_2) + i\chi(x_1, x_2, y_1, y_2) = 0;$$

esso equivale alle due equazioni reali:

$$\psi = 0$$
, $\chi = 0$,

le quali nello spazio rigato sono rappresentate da una congruenza, la congruenza di diramazione δ.

Se, partendo da una retta P, si ritorna alla retta stessa percorrendo una rigata che non s'intrecci colla congruenza δ , la funzione riprende il suo valore iniziale. Se invece la rigata s'intreccia colla congruenza δ , la funzione prende in generale un valore diverso da quello che aveva in principio.

Se δ si scinde in più parti connesse, e se $\overline{\delta}$ è una di queste, e inoltre è priva di singolarità, tutte le rigate che s'intrecciano con $\overline{\delta}$ e con nessun'altra parte di δ possono ridursi l'una all'altra per moto continuo senza venire a coincidenza con alcuna retta di δ , e quindi sono fra loro equivalenti dal punto di vista delle permutazioni che introducono nei valori della funzione considerata.

15. Per trattare un esempio semplicissimo, prendasi la funzione:

$$z = V(x-a)(y-b).$$

La sua congruenza di diramazione è composta dei due piani:

$$a_1\xi + a_2\zeta = 1$$
, $b_1\eta + b_2\zeta = 1$.

Se supponiamo a reale la prima di queste equazioni diviene:

$$a_{i}\xi = 1$$
.

Prendiamo una rigata piccola a piacere, che giaccia in prossimità del primo di questi piani e che s'intrecci col medesimo. Tale sarebbe per esempio un iperboloide di rotazione ad una falda avente per asse una retta $\xi = \frac{1}{a_1}$, $\eta = c$ (che si suppone positivo), avente la linea di gola, di raggio arbitrariamente piccolo ρ , sul piano $\xi \eta$, e la cui generatrice abbia sul piano stesso un'inclinazione α molto prossima a 90°. La generatrice di questo iperboloide la cui proiezione orizzontale fa coll'asse ξ un angolo ω ha le equazioni :

$$\frac{1}{\frac{1}{a_{1}} + \rho \sin \omega} \xi - \frac{\sigma \cos \omega}{\frac{1}{a_{1}} + \rho \sin \omega} \zeta = 1$$

$$\frac{1}{c - \rho \cos \omega} \eta + \frac{\sigma \sin \omega}{c - \rho \cos \omega} \zeta = 1,$$

dove $\sigma = \frac{1}{tg \alpha}$, sicchè essa rappresenta la coppia di valori:

$$x = \frac{1 - i\sigma\cos\omega}{\frac{1}{a_{\rm r}} + \rho\sin\omega}, \quad y = \frac{1 + i\sigma\sin\omega}{c - \rho\cos\omega}.$$

Il valore della funzione z su questa retta è:

$$z = \sqrt{\frac{1 - i\sigma\cos\omega}{\frac{1}{a_1} + \rho\sin\omega} - a_1} \sqrt{\frac{1 + i\sigma\sin\omega}{c - \rho\cos\omega} - b_1 - ib_2}$$

$$= \sqrt{\frac{-a_1\rho\sin\omega - i\sigma\cos\omega}{\frac{1}{a_1} + \rho\sin\omega}} \sqrt{\frac{1 + i\sigma\sin\omega}{c - \rho\cos\omega} - b_1 - ib_2};$$

Rend. Circ. Matem., t. IX, parte 1ª.—Stampato il 7 febbrajo 1895.

prendendo l'angolo α in modo che sia $\sigma = -a_1 \rho$, si ha:

$$z = \sqrt{\frac{i a_1^2 \rho (\cos \omega + i \sin \omega)}{1 + a_1 \rho \sin \omega}} \times$$

$$\times \sqrt{\frac{\left[1-b_{1}(c-\rho\cos\omega)\right]+i\left[-b_{2}c+\rho(b_{2}\cos\omega-a_{1}\sin\omega)\right]}{c-\rho\cos\omega}}.$$

Se facciamo:

$$\frac{a_{\rm r}\,\rho}{1+a_{\rm r}\,\rho\,{\rm sen}\,\omega}=p(\omega),$$

$$\frac{\sqrt{\left[1-b_1(c-\rho\cos\omega)\right]^2+\left[-b_2c+\rho(b_2\cos\omega-a_1\sin\omega)\right]^2}}{c-\rho\cos\omega}=q(\omega),$$

$$\arctan \frac{-b_2 c + \rho (b_2 \cos \omega - a_1 \sin \omega)}{1 - b_1 (c - \rho \cos \omega)} = \theta (\omega),$$

avremo:

$$\chi(\omega) = \sqrt{p(\omega)e^{i(\omega + \frac{\pi}{2})}} \sqrt{q(\omega)e^{i\theta(\omega)}} = \sqrt{p(\omega)q(\omega)e^{\frac{\pi i}{4} + \frac{i}{2}(\omega + \theta(\omega))}},$$

dove $p(\omega)$ e $q(\omega)$ sono positivi purchè a_r sia positivo e ρ sia abbastanza piccolo, e la radice s'intende presa in valore assoluto. Ora si ha:

$$p(2\pi) = p(0), \quad q(2\pi) = q(0), \quad \theta(2\pi) = \theta(0) + k\pi,$$

dove k è un numero intero positivo, nullo o negativo; ma, siccome può sempre prendersi ρ abbastanza piccolo perchè $\theta(\omega)$ per tutti i valori di ω resti prossimo quanto si vuole ad $\arctan \frac{-b_z c}{1-b_z c}$, così sarà necessariamente k=0, e per conseguenza:

$$\frac{\chi(2\pi)}{\chi(0)} = e^{\pi i} = -1.$$

Cioè la z cambia di segno quando si sia percorso per intero l'iperboloide considerato. Lo stesso avverrebbe per ogni rigata che

s'intrecciasse col secondo piano; mentre una rigata che s'intrecciasse con ambidue i piani lascerebbe la z inalterata.

- 16. Se n è il grado rispetto a z dell'equazione che la definisce come funzione di x, y, imaginando n spazi rigati coincidenti e congi ungentisi fra loro in modo opportuno lungo la congruenza di diramazione, si potrà tentare di stabilire una teoria analoga a quella delle superficie di Riemann (*).
- 17. Sia z(x, y) una funzione continua e ad un sol valore; essa prenderà in generale ciascun valore per una doppia infinità, continua o formata di parti continue, di coppie di valori (x, y), ossia, nella nostra rappresentazione, sopra una congruenza. La congruenza sulla quale z diviene infinita dicesi congruenza singolare σ .

Sia ora α una congruenza chiusa non avente alcuna retta comune con σ ; imaginando la α decomposta in elementi (n° 6), si formi il prodotto del valore di z su ciascuna retta di α pel valore di dx dy relativo all'elemento avente quella retta per origine. La somma di tali prodotti si dice integrale doppio di z esteso alla congruenza α , e si denota con $\iint_{\alpha} z \, dx \, dy$ (**).

È facile dimostrare:

Che, se la congruenza α non s'intreccia colla σ , l'integrale esteso alla α è nullo;

Che, se due congruenze chiuse α , β s'intrecciano colla σ ma possono ridursi l'una all'altra per moto continuo senza venire a coincidenza con alcuna retta della σ , l'integrale esteso all'una od all'altra delle due congruenze ha uno stesso valore.

Dopo ciò abbiasi una congruenza chiusa α che s'intrecci colla σ ; un complesso qualunque s contenente α avrà in generale comune

^(*) Sulle funzioni algebriche di due variabili vedasi il lavoro di Picard: Mémoire sur la théorie des fonctions algébriques de deux variables, Journ. de Math. s. IV, t. V, pp. 135-319.

^(**) Per brevità abbiamo fatto uso qui del linguaggio del metodo infinitesimale; non v'ha del resto alcuna difficoltà a ristabilire la forma esatta della definizione.

con σ una rigata r composta almeno di due parti situate nelle due regioni in cui s è diviso da α .

Se in s si prende una congruenza chiusa β che scomponga r nello stesso modo in cui la scompone la α , gli integrali estesi ad α e a β saranno uguali. Sia r' una delle due parti in cui è divisa r; se per r' si fa passare un complesso t il quale non contenga alcun'altra retta di σ posta nelle vicinanze di r', e se in questo complesso si prende una congruenza γ tale che i soli elementi di σ posti in una delle regioni in cui γ divide t sieno le rette della rigata r', l'integrale esteso a γ sarà uguale all'integrale esteso a β , e quindi all'integrale esteso ad α .

Per dimostrare ciò, basta far vedere che si può passare da β a γ per moto continuo senza venire a coincidenza con alcuna retta di σ; ora la possibilità di tale passaggio risulta da quanto si è detto nel n° 13.

Così il calcolo dell'integrale esteso ad α si riduce a quello dell'integrale esteso a γ (*); resta da vedersi come debba scegliersi il complesso t per semplificare il più possibile l'integrazione. Prendiamo come complesso t l'insieme dei piani proiettanti le rette della rigata t' sul piano $\xi \zeta$; la congruenza γ si comporrà di un'infinità semplice di inviluppi posti rispettivamente in questi piani. E poichè su ciascuno di questi inviluppi la x è costante, l'integrazione doppia verrà ridotta alla successione di due integrazioni semplici ($\iint z \, dx \, dy = \int dx \int z \, dy$), di cui la prima si farà sommando per ciascun inviluppo i prodotti $z \, dy$ relativi alle sue rette, la seconda raccogliendo insieme i risultati così ottenuti per tutti gli inviluppi.

Mantova, 23 dicembre 1894.

G. VIVANTI.

^(*) Cfr. la Memoria citata di Poincaré. Sugl'integrali doppi vedi anche: Poincaré, Comptes-Rendus, t. 102, pp. 202-204; Picard, ivi, pp. 349-350, 410-412.

UN TEOREMA DI MECCANICA.

Nota di Pietro Burgatti, in Roma.

Adunanza dell'8 luglio 1894.

Nei Comptes Rendus del 6 marzo 1893 si legge il seguente teorema di Meccanica del sig. Staeckel comunicato all'Accademia dal sig. Darboux:

« Sieno q_1 , q_2 , ... q_n le variabili indipendenti che definiscono la posizione di un sistema di punti; poniamo

$$q'_1 = \frac{d q_1}{d t}, \quad q'_2 = \frac{d q_2}{d t}, \dots, q'_n = \frac{d q_n}{d t}$$

e sia 2 T la forza viva definita da

$$2T = \sum_{k,\lambda} a_{k,\lambda} q'_{\lambda} q'_{\lambda}. \qquad (k, \lambda = 1, 2, \ldots n)$$

Sieno inoltre $\varphi_{k,\lambda}(q_k)$ (per $k, \lambda = 1, 2, \ldots n$), n^2 funzioni dipendenti dal solo argomento indicato, e si rappresenti con Φ il determinante formato con le dette funzioni; onde si avrà:

$$\Phi = \sum_{k=1}^n \varphi_{k,\lambda} \, \Phi_{k,\lambda} \,,$$

essendo $\Phi_{k,\lambda}$ il complemento di $\varphi_{k,\lambda}$. Ciò posto, se

$$\sum_{k,\lambda} a_{k,\lambda} d q_k d q_{\lambda}$$

è riducibile alla forma

$$\sum_{k=1}^n \frac{\Phi}{\Phi_{k,1}} dq_k^2,$$

allora, oltre l'integrale delle forze vive

$$\sum_{k=1}^n \frac{\Phi}{\Phi_{k,1}} q_k^{\prime 2} = \alpha_1,$$

esistono altri n - 1 integrali omogenei del 2º grado, cioè:

$$\sum_{k=1}^{n} \frac{\Phi \Phi_{k,\lambda}}{\Phi_{k,1}^{2}} q_{k}^{\prime 2} = \alpha_{\lambda}, \qquad (\lambda = 2, 3, \ldots n)$$

essendo nulla la funzione delle forze ».

Nella presente Nota mi propongo di dimostrare che il teorema ha ancora luogo quando esiste una funzione delle forze riducibile alla forma:

$$U_{\scriptscriptstyle \rm I} = \sum_{k=1}^n \frac{\Phi_{k,{\scriptscriptstyle \rm I}}}{\Phi} f_k(q_k),$$

essendo f_1 , f_2 , ... f_n n funzioni affatto qualunque del solo argomento indicato. Gli n-1 integrali omogenei quadratici, da unire a quello delle forze vive, sono allora i seguenti:

$$\sum_{k=1}^{n} \frac{\Phi \Phi_{k,\lambda}}{\Phi_{k,1}^{2}} q_{kj}^{\prime 2} = 2 (U_{\lambda} + \alpha_{\lambda}), \qquad (\lambda = 2, 3, \dots n)$$

nei quali

$$U_{\lambda} = \sum_{k=1}^{n} \frac{\Phi_{k,\lambda}}{\Phi} f_{k}(q_{k}).$$

Il teorema, come si vedrà, corrisponde al caso che l'equazione alle derivate parziali d'Hamilton sia integrabile colla separazione delle variabili; ha perciò qualche importanza solamente, quando si voglia classificare un problema dinamico secondo la specie degli integrali primi che ammette.

Del teorema ho dato due dimostrazioni: la prima, basata sopra alcune identità che risultano dalla teoria dei determinanti, è molto semplice; la seconda ha minor semplicità, ma è più generale e diretta.

Alcuni mesi dopo la compilazione di questa nota seppi che anche il sig. Goursat era giunto alla stessa generalizzazione (Comptes Rendus 9 maggio 1893). Qui sono resi però espliciti gli n integrali primi del problema.

1^a Dimostrazione. — Si consideri il determinante

$$\Phi = \begin{bmatrix}
\varphi_{1,1} & \varphi_{1,2} & \varphi_{1,3} & \cdots & \varphi_{1,n-1}, & \varphi_{1,n} \\
\varphi_{2,1} & \varphi_{2,2} & \varphi_{2,3} & \cdots & \varphi_{2,n} \\
\varphi_{3,1} & \varphi_{3,2} & \cdots & \vdots \\
\varphi_{n-1,1} & \varphi_{n-1,2} & \cdots & \varphi_{n-1,n} \\
\varphi_{n,1} & \varphi_{n,2} & \cdots & \varphi_{n,n}
\end{bmatrix}$$

composto di n^2 funzioni, ciascuna delle quali contiene le variabili q_1 , q_2 , ... q_n . Per le note proprietà dei determinanti si hanno delle serie di relazioni come queste:

$$\begin{split} \phi_{1,r} \frac{\partial \Phi}{\partial \phi_{1,r}} + \phi_{2,r} \frac{\partial \Phi}{\partial \phi_{2,r}} + \dots + \phi_{n,r} \frac{\partial \Phi}{\partial \phi_{n,r}} = \Phi \\ \phi_{1,s} \frac{\partial \Phi}{\partial \phi_{1,r}} + \phi_{2,s} \frac{\partial \Phi}{\partial \phi_{2,r}} + \dots + \phi_{n,s} \frac{\partial \Phi}{\partial \phi_{n,r}} = 0, \end{split}$$

che si possono anche scrivere:

$$\begin{split} &\frac{\phi_{1,r}}{\Phi}\frac{\partial\,\Phi}{\partial\,\phi_{1,r}} + \frac{\phi_{2,r}}{\Phi}\frac{\partial\,\Phi}{\partial\,\phi_{2,r}} + \, \dots \, + \frac{\phi_{n,r}}{\Phi}\frac{\partial\,\Phi}{\partial\,\phi_{n,r}} = 1 \\ &\frac{\phi_{1,s}}{\Phi}\frac{\partial\,\Phi}{\partial\,\phi_{1,r}} + \frac{\phi_{2,s}}{\Phi}\frac{\partial\,\Phi}{\partial\,\phi_{2,r}} + \, \dots \, + \frac{\phi_{n,s}}{\Phi}\frac{\partial\,\Phi}{\partial\,\phi_{n,r}} = 0. \end{split}$$

Dando ad s i valori $1, 2, \ldots r-1, r+1, \ldots n$ si ottiene una serie di n relazioni; se poi si attribuiscono ad r successivamente i valori $1, 2, \ldots n$, si ottengono n serie di relazioni come la precedente. Poniamo per brevità

(2)
$$\frac{1}{\Phi} \frac{\partial \Phi}{\partial \varphi_{i,r}} = p_{i,r},$$

e fissiamo i ragionamenti sulla serie di relazioni controdistinta dall'indice r. Moltiplicando queste n relazioni rispettivamente per le costanti arbitrarie $\alpha_1, \alpha_2, \ldots, \alpha_n$ e sommando si ottiene l'identità:

(3)
$$p_{1,r} \sum_{i=1}^{n} \varphi_{1,i} \alpha_{i} + p_{2,r} \sum_{i=1}^{n} \varphi_{2,i} \alpha_{i} + \ldots + p_{n,r} \sum_{i=1}^{n} \varphi_{n,i} \alpha_{i} = \alpha_{r}.$$

Dando ad r successivamente i valori 1, 2, ... n si ricavano dalla precedente n identità, che sono appunto quelle che servono alla dimostrazione del teorema proposto.

Supponiamo, infatti, che nel determinante (1) le φ della 1^a linea sieno funzioni della sola q_1 , quelle della 2^a funzioni della sola q_2 ecc.; e dicendo θ una funzione delle q_1 , q_2 , ... q_n , poniamo:

$$\left(\frac{\partial \theta}{\partial q_{i}}\right)^{2} = 2 \sum_{i=1}^{n} \varphi_{i,i} \alpha_{i} + 2 f_{i}(q_{i})$$

$$\left(\frac{\partial \theta}{\partial q_{i}}\right)^{2} = 2 \sum_{i=1}^{n} \varphi_{2,i} \alpha_{i} + 2 f_{2}(q_{2})$$

$$\left(\frac{\partial \theta}{\partial q_{n}}\right)^{2} = 2 \sum_{i=1}^{n} \varphi_{n,i} \alpha_{i} + 2 f_{n}(q_{n})$$

dove le f_1 , f_2 , ... f_n sono rispettivamente funzioni del solo argomento indicato, del resto qualunque. La funzione θ è così determi-

nata, e l'espressione

$$\frac{\partial \theta}{\partial q_1} dq_1 + \frac{\partial \theta}{\partial q_2} dq_2 + \ldots + \frac{\partial \theta}{\partial q_n} dq_n$$

è un differenziale esatto. Integrando, si ricava la θ.

Sostituiamo allora nelle n identità (3) i valori dei termini $\sum_{i=1}^{n} \varphi_{s,i} \alpha_{i}$ che si ricavano dalle (4). Ponendo, in generale,

$$U_r = p_{1,r}f_1(q_1) + p_{2,r}f_2(q_2) + \dots + p_{n,r}f_n(q_n),$$

si ottiene:

$$\begin{cases} p_{1,1} \left(\frac{\partial \theta}{\partial q_1}\right)^2 + p_{2,1} \left(\frac{\partial \theta}{\partial q_2}\right)^2 + \dots + p_{n,1} \left(\frac{\partial \theta}{\partial q_n}\right)^2 = 2 \left(U_1 + \alpha_1\right) \\ p_{1,2} \left(\frac{\partial \theta}{\partial q_1}\right)^2 + p_{2,2} \left(\frac{\partial \theta}{\partial q_2}\right)^2 + \dots + p_{n,2} \left(\frac{\partial \theta}{\partial q_n}\right)^2 = 2 \left(U_2 + \alpha_2\right) \\ p_{1,n} \left(\frac{\partial \theta}{\partial q_1}\right)^2 + p_{2,n} \left(\frac{\partial \theta}{\partial q_2}\right)^2 + \dots + p_{n,n} \left(\frac{\partial \theta}{\partial q_n}\right)^2 = 2 \left(U_1 + \alpha_n\right). \end{cases}$$

Possiamo dunque sostituire questo sistema d'equazioni al sistema (4).

Ciò posto, un sistema di punti in moto sia caratterizzato dalla funzione delle forze $U_{\rm r}$; e supponiamo che siasi riuscito a porre la semiforza viva sotto la forma

$$T = \frac{1}{2} \left[\frac{1}{p_{1,1}} \left(\frac{d q_1}{d t} \right)^2 + \frac{1}{p_{2,1}} \left(\frac{d q_2}{d t} \right)^2 + \cdots + \frac{1}{p_{n,1}} \left(\frac{d q_n}{d t} \right)^2 \right];$$

la U_1 e le p avendo le espressioni sopra considerate.

Per formare l'equazione alle derivate parziali di Hamilton Rend, Circ, Mulem, t. IX, parte 1ª.—Stampato l'8 febbrajo 1895.

bisogna porre, come è noto,

$$\frac{\partial T}{\partial q'_r} = \frac{\partial \theta}{\partial q_r},$$

dove q_r' rappresenta la derivata di q_r rispetto al tempo t.

Applicandola al nostro caso, si ha:

(6)
$$\frac{1}{p_{r,1}} \frac{dq_r}{dt} = \frac{\partial \theta}{\partial q_r}, \qquad (r = 1, 2, ... n)$$

e quindi l'equazione di Hamilton

$$T = 2(U_1 + \alpha_1)$$

diventa

$$p_{1,1} \left(\frac{\partial \theta}{\partial q_1}\right)^2 + p_{2,1} \left(\frac{\partial \theta}{\partial q_2}\right)^2 + \ldots + p_{n,1} \left(\frac{\partial \theta}{\partial q_n}\right)^2 = 2 (U_1 + \alpha_1),$$

che coincide colla prima delle (5).

Per integrare questa equazione sostituiamo al posto di α_r l'espressione data dall'identità (3); è facile allora vedere che si possono separare le variabili, e che, separate, si ottiene il sistema (4). Da questo sistema, in virtù della formula (6), si possono ricavare le velocità $\frac{dq_r}{dt}$, ecc.

Ma, per quanto è stato detto, al sistema (4) è sostituibile il sistema (5); dunque, se in questo sistema d'equazioni sostituiamo a $\frac{\partial \theta}{\partial q_r}$ l'espressione data dalla (6), si otterranno gli n integrali primi del nostro problema dinamico. Effettuando tali sostituzioni, e rammentando l'espressione di $p_{s,r}$ si ottiene:

$$\sum_{k=1}^{n} \frac{\Phi \Phi_{k,r}}{\Phi_{k,1}^{2}} \left(\frac{d q_{k}}{d t}\right)^{2} = 2 \left(U_{r} + \alpha_{r}\right) \qquad (r = 2, 3, \dots n)$$

$$\sum_{k=1}^{n} \frac{\Phi}{\Phi_{k,r}} \left(\frac{d q_{k}}{d t}\right)^{2} = 2 \left(U_{r} + \alpha_{r}\right),$$

essendo $\Phi_{k,r} = \frac{\partial \Phi}{\partial \varphi_{k,r}}$. Il teorema proposto è dunque dimostrato. Saremmo giunti evidentemente allo stesso teorema, se fosse stata U_r la funzione delle forze, e T posta sotto la forma:

$$T = \frac{1}{2} \left[\frac{1}{p_{z,r}} \left(\frac{d q_z}{d t} \right)^2 + \frac{1}{p_{z,r}} \left(\frac{d q_z}{d t} \right)^2 + \ldots + \frac{1}{p_{n,r}} \left(\frac{d q_n}{d t} \right)^2 \right].$$

 2^a Dimostrazione. — Proponiamoci la questione seguente: Vedere quali funzioni devono essere $h_{r,s}$ e U_r , perchè il problema dinamico di un sistema di punti ammetta gli n integrali che si ricavano dal sistema d'equazioni

(7)
$$h_{1,r}p_1^2 + h_{2,r}p_2^2 + \dots + h_{n,r}p_n^2 = 2(U_r + \alpha_r), \quad (r = 1, 2, \dots n)$$

ove

$$p_s = \frac{\partial \theta}{\partial q_s}$$
,

colla nota formula (5'). Evidentemente si riduce a quest'altra: Come devono essere le funzioni $h_{r,s}$ e U_r perchè, ricavate dal sistema precedente le p in funzione delle q, l'espressione $\sum_s p_s dq_s$ sia un differenziale esatto?

Per cose note si hanno le $\frac{n(n-1)}{2}$ condizioni:

$$(H_r, H_s) = \sum_a \left(\frac{\partial H_r}{\partial q_a} \frac{\partial H_s}{\partial p_a} - \frac{\partial H_r}{\partial p_a} \frac{\partial H_s}{\partial q_a} \right) = 0, \text{ (da } a = 1 \text{ ad } a = n)$$

avendo indicato con H_r il 1° membro della (7) quando vi si ritenga trasportato anche il termine 2 U_r . Ponendo in luogo di $\frac{\partial H_r}{\partial q_a}$, $\frac{\partial H_s}{\partial q_a}$, $\frac{\partial H_r}{\partial p_a}$, $\frac{\partial H_s}{\partial p_a}$ le loro espressioni si ottiene :

$$\sum_{a=1}^{n} p_{a} \left[h_{a,s} \sum_{i} p_{i}^{2} \frac{\partial h_{i,r}}{\partial q_{a}} - h_{a,r} \sum_{i} p_{i}^{2} \frac{\partial h_{i,s}}{\partial q_{a}} - 2 \left(h_{a,s} \frac{\partial U_{r}}{\partial q_{a}} - h_{a,r} \frac{\partial U_{s}}{\partial q_{a}} \right) \right] = 0$$

od anche

$$\sum_{a} p_{a} \sum_{i} p_{i}^{2} \left(h_{a,s} \frac{\partial h_{i,s}}{\partial q_{a}} - h_{a,r} \frac{\partial h_{i,s}}{\partial q_{a}} \right) + 2 \sum_{a} p_{a} \left(h_{a,s} \frac{\partial U_{r}}{\partial q_{a}} - h_{a,r} \frac{\partial U_{s}}{\partial q_{a}} \right) = 0.$$

Dovendo essere verificata identicamente, si ha:

$$\begin{cases} h_{a,s} \frac{\partial h_{a,r}}{\partial q_a} - h_{a,r} \frac{\partial h_{a,s}}{\partial q_a} = 0 & (a = 1, 2, \dots n) \\ h_{a,s} \frac{\partial h_{i,r}}{\partial q_a} - h_{a,r} \frac{\partial h_{i,s}}{\partial q_a} = 0 & (a, i = 1, 2, \dots n, a \neq i) \\ h_{a,s} \frac{\partial U_r}{\partial q_a} - h_{a,r} \frac{\partial U_s}{\partial q_a} = 0 & (a = 1, 2, \dots n) \end{cases}$$

che sono appunto le condizioni alle quali devono soddisfare le funzioni $h_{r,s}$ e U_r per rispondere alla questione proposta.

Consideriamo la prima. Possiamo scriverla:

$$\frac{\partial}{\partial q_a} \log \left(\frac{h_{a,r}}{h_{a,s}} \right) = 0;$$

dalla quale si ricava

$$h_{a,r} = h_{a,s} \varphi \pmod{q_a}$$

intendendo, per brevità, con φ (non q_a) una funzione delle q non contenente però la variabile q_a . In modo generale dunque, tali coefficienti per soddisfare la 1ª delle (8) devono essere così formati:

ove le $h_{1,1}$, $h_{2,1}$, ... $h_{n,1}$ sono qualunque, e qualunque sono ancora le $\phi_{n,r}$.

Passiamo adesso alla 2ª delle (8). Sostituendo a $h_{a,r}$, $h_{a,s}$, $h_{i,r}$, $h_{i,s}$, le espressioni ora trovate, si ottiene

$$\varphi_{a,s} \frac{\partial h_{i,s} \varphi_{i,r}}{\partial q_a} - \varphi_{a,r} \frac{\partial h_{i,s} \varphi_{i,s}}{\partial q_a} = 0,$$

ossia,

$$h_{i,i}\left(\varphi_{a,s}\frac{\partial \varphi_{i,r}}{\partial q_a}-\varphi_{a,r}\frac{\partial \varphi_{i,s}}{\partial q_a}\right)+\frac{\partial h_{i,i}}{\partial q_a}\left(\varphi_{a,s}\varphi_{i,r}-\varphi_{a,r}\varphi_{i,s}\right)=0,$$

dalla quale

$$\frac{\partial}{\partial q_a} \log h_{i,i} = \frac{\varphi_{a,s} \frac{\partial \varphi_{i,r}}{\partial q_a} - \varphi_{a,r} \frac{\partial \varphi_{i,s}}{\partial q_a}}{\varphi_{a,r} \varphi_{i,s} - \varphi_{a,s} \varphi_{i,r}}.$$

Notando adesso che

$$\frac{\partial \varphi_{a,s}}{\partial q_a} = 0, \quad \frac{\partial \varphi_{a,r}}{\partial q_a} = 0,$$

si può aggiungere $\varphi_{i,r} \frac{\partial \varphi_{a,s}}{\partial q_a}$ e togliere $\varphi_{i,s} \frac{\partial \varphi_{a,r}}{\partial q_a}$; si ottiene allora facilmente

$$\frac{\partial}{\partial q_a} \log h_{i,i} = - \frac{\partial}{\partial q_a} \log (\varphi_{a,s} \varphi_{i,r} - \varphi_{a,r} \varphi_{i,s}),$$

dalla quale

(10)
$$\varphi_{a,s}\,\varphi_{i,r}-\varphi_{a,r}\,\varphi_{i,s}=\frac{1}{h_{i,1}}\,E\,(\text{non }q_a).$$

Scambiando tra loro gli indici a ed i, si ha ancora

(10')
$$\varphi_{a,s}\varphi_{i,r}-\varphi_{ar}\varphi_{i,s}=\frac{1}{h_{a,1}}G \text{ (non }q_i).$$

Queste due condizioni devono sussistere per tutte le coppie (a, i) distinte, e le coppie (r, s) distinte.

Se

$$b_{1,1} = b_{2,1} = \ldots = b_{n,1} = H,$$

le due condizioni (10) e (10') si riducono ad una sola:

(II)
$$\varphi_{a,s} \varphi_{i,r} - \varphi_{a,r} \varphi_{i,s} = \frac{1}{H} F(\text{non } q_a, \text{ non } q_i).$$

La terza poi delle condizioni (8) diventa

$$\varphi_{a,s} \frac{\partial U_r}{\partial q_a} - \varphi_{a,r} \frac{\partial U_s}{\partial q_a} = 0,$$

la quale, notando che $\varphi_{a,s}$ e $\varphi_{a,r}$ non contengono la q_a , si può anche scrivere

(12)
$$\varphi_{a,s}U_r - \varphi_{a,r}U_s = F \text{ (non } q_a).$$

Abbiamo così trovato in termini finiti le condizioni alle quali devono soddisfare le funzioni $h_{r,s}$ e U_r perchè esistino gli n integrali omogenei quadratici accennati.

Ciò posto, consideriamo il determinante Φ dato dalla (1), nel quale però riterremo sostituita la lettera ψ alla φ, giacchè la φ è stata quì adoperata con diverso significato. Allora per una notissima formula dei determinanti (Brioschi, Teorica dei Determinanti, pag. 11), si ha

(13)
$$\frac{\partial \Phi}{\partial \psi_{a,s}} \frac{\partial \Phi}{\partial \psi_{i,r}} - \frac{\partial \Phi}{\partial \psi_{a,r}} \frac{\partial \Phi}{\partial \psi_{i,s}} = \Phi \frac{\partial^2 \Phi}{\partial \psi_{a,s} \partial \psi_{i,r}}.$$

Se dunque prendiamo $H=\frac{1}{\Phi}$ e in generale $\phi_{r,s}=\frac{\partial \Phi}{\partial \psi_{r,s}}$, la condizione (11) è verificata.

In tal caso la (12) diventa

$$\frac{\partial \Phi}{\partial \psi_{a,s}} U_{r} - \frac{\partial \Phi}{\partial \psi_{a,r}} U_{s} = F \text{ (non } q_{a}\text{)}.$$

Ora si vede subito che ponendo in generale

$$U_i = p_{x,i}f_x(q_x) + p_{2,i}f_2(q_2) + \ldots + p_{n,i}f_n(q_n),$$

essendo f_1 , f_2 , ... f_n funzioni arbitrarie e $p_{a,i} = \frac{1}{\Phi} \frac{\partial \Phi}{\partial \psi_{a,i}}$, la condizione precedente è soddisfatta.

Facendo infatti le sostituzioni e ponendo in evidenza le funzioni arbitrarie, si trova che il coefficiente di $f_a(q_a)$ è nullo, e che quello di $f_i(q_i)$ è

$$\frac{1}{\Phi} \left(\frac{\partial \Phi}{\partial \psi_{a,s}} \frac{\partial \Phi}{\partial \psi_{i,r}} - \frac{\partial \Phi}{\partial \psi_{a,r}} \frac{\partial \Phi}{\partial \psi_{i,s}} \right),$$

il quale, per la formula (13), risulta indipendente da q_a . Giunti a questo punto, con ragionamenti analoghi a quelli fatti nella 1ª dimostrazione, risulta subito la verità del teorema proposto.

Roma, luglio 1894.

PIETRO BURGATTI.

SULLE FRAZIONI CONTINUE ALGEBRICHE PERIODICHE.

Nota di Emma Bortolotti, in Bologna.

Adunanza del 13 gennajo 1895.

Tutte le dimostrazioni che dal Lagrange in poi si sono date sulla periodicità della frazione continua in cui può svilupparsi una radice di un'equazione di 2° grado, si riducono a constatare che i denominatori incompleti debbono essere, da un certo punto in poi, numeri interi positivi inferiori ad un limite determinato. Tale ragionamento non può manifestamente estendersi alle frazioni continue in cui possono svilupparsi le radici di equazioni di secondo grado i cui coefficenti sono polinomi interi di una variabile x.

M'è sembrato interessante vedere se anche in questo caso il teorema trovato dal Lagrange poteva applicarsi. A tal fine ho preso in esame la frazione continua:

$$\sigma_{\scriptscriptstyle \rm I} = (a_{\scriptscriptstyle \rm I}\,,\;a_{\scriptscriptstyle \rm 2}\,,\;a_{\scriptscriptstyle \rm 3}\,,\;\ldots)$$

in cui a_1 , a_2 ... sono funzioni lineari di una variabile x; ed ammettendo la convergenza della frazione continua (*); e considerando che

^(*) Per un teorema del prof. Pincherle (R. Acc. dei Lincei, t. V, s. IV, 5 maggio 1889) una frazione continua della forma indicata, e periodica, è certamente convergente per valori della variabile x abbastanza grandi in modulo.

una frazione continua è certamente periodica se la frazione che si ottiene tralasciando un certo numero di denominatori riproduce la frazione data, ho cercato di ricondurre a questa verifica la ricerca della condizione affinchè la radice di un'equazione di 2° grado possa svilupparsi in frazione continua periodica.

A tale scopo ho incominciato col cercare la condizione necessaria e sufficiente affinchè due funzioni possano svilupparsi in frazioni continue che da un certo punto in poi abbiano gli stessi divi-

sori parziali.

Con una semplice applicazione di quella condizione ho potuto dimostrare il seguente teorema che mi sembra notevole: Condizione necessaria e sufficiente affinchè la radice di un'equazione di 2° grado a coefficienti interi in x possa svilupparsi in frazione continua periodica è che si possa risolvere con polinomi interi l'equazione indeterminata di 2° grado

$Au^2-v^2=1$

dove A è il discriminante dell'equazione data.

Il teorema di Lagrange non è dunque applicabile, in generale, alle equazioni algebriche di 2° grado. Il caso delle frazioni continue numeriche è incluso come caso speciale; si è così implicitamente trovata una nuova dimostrazione pel teorema di Lagrange, ed è resa inoltre manifesta la dipendenza della periodicità della frazione continua dalla risoluzione dell'equazione Pelliana, mentre finora non si era considerato che la dipendenza inversa.

Supposto poi di avere un'equazione algebrica di 2° grado di cui una radice si possa svolgere in frazione continua periodica, ho dimostrato che anche l'altra radice potrà svolgersi in frazione continua periodica coi medesimi periodi scritti in ordine inverso. Per questa dimostrazione mi sono giovata di alcune considerazioni trovate dal Gerono sulle frazioni continue inverse, e ricordate dal Catalan nel 1° fascicolo 1894 del giornale di Battaglini.

I.

I. Siano due funzioni σ₁, ε₁ le quali si possano sviluppare se-Rend. Circ. Matem., t. IX, parte 1^a.—Stampato il 9 febbrajo 1895. 18

condo gli algoritmi

$$\begin{cases} -\mathbf{1} + a_1 \sigma_1 = \sigma_2 \\ -\sigma_1 + a_2 \sigma_2 = \sigma_3 \end{cases}, \qquad \begin{cases} -\mathbf{1} + a_1' \varepsilon_1 = \varepsilon_2 \\ -\varepsilon_1 + a_2' \varepsilon_2 = \varepsilon_3 \end{cases}$$

che supporremo convergenti.

La condizione necessaria e sufficiente affinchè negli sviluppi delle funzioni σ_i , ε_i , secondo l'algoritmo così definito, tutti i fattori lineari che man mano si vanno trovando, ad eccezione di un numero finito di essi, siano i medesimi per le due funzioni, è che queste si ottengano l'una dall'altra mediante una sostituzione lineare

$$\sigma_{\rm r} = \frac{a - b \, \varepsilon_{\rm r}}{c - d \, \varepsilon_{\rm r}},$$

dove a, b, c, d sono polinomi interi, ed il determinante ad — bc è uguale all'unità.

La condizione è necessaria : Si abbia per σ_i la successione di divisori

$$a_1, a_2, \ldots a_m, b_1, b_2, \ldots b_n, \ldots$$

per e, la successione

$$a'_1, a'_2, \ldots a'_b, b_1, b_2, \ldots b_n, \ldots$$

Indicando con n la funzione rappresentata dalla frazione continua infinita:

$$\eta = (b_1, b_2, \ldots b_n, \ldots)$$

che, per le ipotesi poste, converge, avremo:

$$\sigma_{\scriptscriptstyle \rm I} = \frac{P_{\scriptscriptstyle m} - P_{\scriptscriptstyle m-1} \, \eta}{Q_{\scriptscriptstyle m} - Q_{\scriptscriptstyle m-1} \, \eta} \,, \qquad \varepsilon_{\scriptscriptstyle \rm I} = \frac{P_{\scriptscriptstyle p}' - P_{\scriptscriptstyle p-1}' \, \eta}{Q_{\scriptscriptstyle p}' - Q_{\scriptscriptstyle p-1}' \, \eta} \,$$

da cui

$$\sigma_{i} = \frac{(Q'_{p}P_{m-1} - Q'_{p-1}P_{m})\varepsilon_{i} - (P'_{p}P_{m-1} - P'_{p-1}P_{m})}{(Q'_{p}Q_{m-1} - Q'_{p-1}Q_{m})\varepsilon_{i} - (P'_{p}Q_{m-1} - P'_{p-1}Q_{m})}.$$

Dunque σ_i si ottiene da ϵ_i mediante una sostituzione lineare il cui determinante è manifestamente uguale all'unità.

La condizione è sufficiente: Siano σ_i , ε_i due funzioni della variabile x tali che si abbia

$$\varepsilon_{\rm r} = \frac{a - b \, \sigma_{\rm r}}{c - d \, \sigma_{\rm r}}, \quad {\rm con} \ ad - bc = 1.$$

Dico che, nell'ipotesi che tanto ε_r quanto σ_r si possano sviluppare in frazione continua convergente, da un certo punto in poi tutti i divisori parziali dovranno coincidere nei due sviluppi.

Supponiamo intanto di aver sviluppato σ_r in frazione continua, avremo:

$$\sigma_{\rm I} = \frac{P_m - P_{m-1} \eta_{m+1}}{Q_m - Q_{m-1} \eta_{m+1}},$$

sostituendo:

$$\varepsilon_{1} = \frac{a Q_{m} - b P_{m} - (a Q_{m-1} - b P_{m-1}) \eta_{m+1}}{c Q_{m} - d P_{m} - (c Q_{m-1} - d P_{m-1}) \eta_{m+1}} = \frac{R - R' \eta_{m+1}}{S - S' \eta_{m+1}}$$

in cui è RS' - R'S = 1. Ora siccome la η_{m+1} è una funzione del grado — 1 in x, che non dipende per niente dai primi m divisori incompleti a_1 , a_2 , ... a_m , ma solo dai successivi a_{m+1} , a_{m+2} , ..., se proveremo che $\frac{R'}{S'}$, $\frac{R}{S}$ sono due ridotte consecutive nello svilnppo di ϵ_1 , sarà dimostrato l'asserto. Ora si ha

$$\frac{R}{R'} = \frac{a Q_m - b P_m}{a Q_{m-1} - b P_{m-1}} = \frac{Q_m}{Q_{m-1}} \frac{\left(\frac{a}{b} - \sigma_1\right) - \left(\frac{c_{2m+1}}{x^{2m+1}} + \frac{c_{2m+2}}{x^{2m+2}} + \dots\right)}{\left(\frac{a}{b} - \sigma_1\right) - \left(\frac{c_{2m}}{x^{2m}} + \frac{c_{2m+1}}{x^{2m+1}} + \dots\right)}.$$

Ma a e b rappresentano due polinomi interi in x, nella differenza $\frac{a}{b} - \sigma_{\rm r}$ (poichè non è $\frac{a}{b} = \sigma_{\rm r}$) potranno dunque annullarsi soltanto alcuni termini in numero finito; se lo sviluppo di questa differenza in serie di potenze negative di x incomincia con l'esponente -v, disporremo di m in modo che sia 2 m > v.

Saremo allora certi che lo sviluppo in serie della frazione

$$\frac{\left(\frac{a}{b}-\sigma_{\scriptscriptstyle \rm I}\right)-\left(\frac{c_{\scriptscriptstyle 2m+1}}{x^{\scriptscriptstyle 2m+1}}+\ldots\right)}{\left(\frac{a}{b}-\sigma_{\scriptscriptstyle \rm I}\right)-\left(\frac{c_{\scriptscriptstyle 2m}}{x^{\scriptscriptstyle 2m}}+\ldots\right)}$$

incomincia col termine 1. Lo sviluppo di $\frac{R}{R'}$ incomincerà con lo stesso termine col quale comincia quello di $\frac{Q_m}{Q_{m-1}}$.

Ma Q_m è un polinomio il cui grado in x è di un'unità superiore al grado di Q_{m-1} , sarà dunque anche il grado di R superiore per un'unità a quello di R'. Similmente si proverebbe che il grado di S supera per un'unità quello di S'.

Da questa dimostrazione e dalla proprietà

$$RS' - SR' = 1$$

risulta che R ed S sono primi fra loro e che il grado di S supera per un'unità quello di R.

Si consideri ora la differenza

$$\varepsilon_{\scriptscriptstyle \rm I} - \frac{R}{S} = \frac{\eta_{\scriptscriptstyle m+1}}{S(S-S'\eta_{\scriptscriptstyle m+1})} \, .$$

Se S è del grado μ , S' è del grado $\mu-1$, la η_{m+1} è del grado -1, la frazione del grado $-(2\mu+1)$, dunque la differenza $\varepsilon_1-\frac{R}{S}$ sviluppata in serie di potenze negative di x comincerebbe col ter-

mine di grado — $(2 \mu + 1)$. Il suo denominatore è di grado μ , dunque è veramente la μ^{ma} ridotta di ε_{r} .

Similmente si dimostrerebbe che $\frac{R'}{S'}$ è la ridotta d'ordine $\mu-1$, dunque è provato quanto si voleva.

II.

2. Data una funzione o, formando il sistema:

(1)
$$\begin{cases} -1 + a_1 \sigma_1 = \sigma_2 \\ -\sigma_1 + a_2 \sigma_2 = \sigma_3 \\ \vdots \end{cases}$$

può avvenire che la successione a_1 , a_2 , ... a_n , ... sia formata con un numero limitato di elementi che si riproducono periodicamente e nel medesimo ordine. Il periodo potrà incominciare subito col primo termine, o dopo un numero determinato di termini; la frazione continua corrispondente nel primo caso dicesi periodica semplice, mista nel secondo.

Sia una funzione σ_r che possa svilupparsi nella frazione continua periodica mista

(2)
$$\sigma_{1} = (a_{1}, a_{2}, \ldots a_{n}, b_{1}, b_{2}, \ldots b_{p}, b_{1}, \ldots).$$

Indicando con n la frazione continua periodica semplice

$$\eta = (b_1, b_2, \ldots b_p, b_1, \ldots)$$

avremo:

(3)
$$\sigma_{x} = \frac{P_{n} - P_{n-x} \eta}{Q_{n} - Q_{n-x} \eta}, \qquad \eta = \frac{P_{n} - Q_{n} \sigma_{x}}{P_{n-x} - Q_{n-x} \sigma_{x}}$$

la quale ci dimostra che: Se una funzione $\sigma_i(x)$ può svilupparsi in frazione continua periodica mista, mediante una sostituzione lineare, a determinante uguale all'unità, può trasformarsi in una frazione continua periodica semplice col medesimo periodo.

- 3. Dimostriamo ora che: La condizione necessaria e sufficiente affinchè una funzione $\sigma_1(x)$, sviluppata secondo l'algoritmo indicato, dia origine ad una frazione continua periodica, è che sia radice di un'equazione di 2° grado a coefficienti interi in $x: a\sigma^2 + b\sigma + c = 0$, nella quale sia possibile la scomposizione del coefficiente b in due parti $b_1 + b_2$ in modo che si abbia $ac b_1b_2 = 1$.
- 4. La condizione è necessaria: Se la frazione continua cui σ_{r} dà origine è periodica semplice ed è a_{r} , a_{2} , ... a_{p} il periodo, avremo per la σ_{r} verificata l'eguaglianza:

$$Q_{p-1}\sigma_1^2-(P_{p-1}+Q_p)\sigma_1+P_p=0$$

il cui determinante è evidentemente uguale ad 1.

Se poi la frazione continua è periodica mista ed è a_1 , a_2 , ... a_m , b_1 , b_2 , ... b_p , b_1 , b_2 , ... la serie dei divisori parziali, chiamando η la frazione continua periodica semplice che si ottiene tralasciando i primi m termini, avremo, per la formula (3):

$$\eta = \frac{P_m - Q_m \sigma_{\scriptscriptstyle \rm I}}{P_{m-1} - Q_{m-1} \sigma_{\scriptscriptstyle \rm I}} .$$

Ma anche spezzando la serie dopo il primo periodo, si avrebbe avuto la frazione continua η , cui solamente mancherebbe il primo periodo, il che non influisce essendo i periodi in numero infinito, si avrà dunque:

$$\eta = \frac{P_{m+p} - Q_{m+p} \sigma_{\mathbf{i}}}{P_{m+p-\mathbf{i}} - Q_{m+p-\mathbf{i}} \sigma_{\mathbf{i}}}$$

e quindi:

$$(Q_{m} Q_{m+p-1} - Q_{m-1} Q_{m+p}) \sigma_{1}^{2} - (Q_{m} Q_{m+p-1} - P_{m-1} Q_{m+p}) + (Q_{m} P_{m+p-1} - Q_{m-1} P_{m+p})] \sigma_{1} - (P_{m} P_{m+p-1} - P_{m-1} P_{m+p}) = 0$$

il cui determinante è evidentemente uguale all'unità.

5. La condizione è sufficiente: Si abbia l'equazione di 2º grado

$$a\sigma^2 - b\sigma + c = 0$$

in cui supporremo possibile la scomposizione di b in due parti $b_1 + b_2$ tali che si abbia $ac - b_1b_2 = 1$.

Potremo scrivere l'equazione data sotto la forma

$$\sigma = \frac{b_2 \sigma - c}{a \sigma - b}.$$

Una funzione che sia radice dell'equazione data dovrà dunque trasformarsi in sè stessa mediante la sostituzione lineare $\sigma = S \sigma$ a determinante uguale ad 1.

Si immagini una radice σ_i di questa equazione sviluppata in frazione continua e supponiamo che questa frazione continua sia convergente. Se $\frac{P_n}{Q_n}$ è l' n^{ma} ridotta si avrà

(6)
$$\sigma_{x} = \frac{P_{n} - P_{n-x} \eta}{Q_{n} - Q_{n-x} \eta}$$

ed eliminando o, avremo:

(7)
$$\begin{cases} \eta = \frac{(aP_n^2 + bP_nQ_n + cQ_n^2) - (aP_nP_{n-1} + bP_{n-1}Q_n + cQ_nQ_{n-1})\eta}{(aP_nP_{n-1} + bP_nQ_{n-1} + cQ_nQ_{n-1}) - (aP_{n-1}^2 + bP_{n-1}Q_{n-1} + cQ_{n-1}^2)\eta} = \\ = \frac{A - B\eta}{A_1 - B_1\eta} \end{cases}$$

in cui è $AB_{r} - A_{r}B = 1$.

Se dunque dimostreremo che $\frac{A}{A_{\rm I}}$, $\frac{B}{B_{\rm I}}$ sono due ridotte consecutive nello sviluppo di η in frazione continua, la formula (7) ci mostrerà che da un certo punto in poi la successione a_{m+1} , a_{m+2} , ... riproduce tutta la successione primitiva $a_{\rm I}$, $a_{\rm 2}$, ... $a_{\rm m}$, ...; la η potrà così svilupparsi in frazione continua periodica semplice e la $\sigma_{\rm I}$,

per la formula (6) rappresenterà una periodica mista con lo stesso periodo della η. Ora si ha:

$$\frac{A}{B} = \frac{a P_n^2 + b P_n Q_n + c Q_n^2}{a P_n P_{n-1} + b P_{n-1} Q_n + c Q_n Q_{n-1}} =$$

$$= \frac{Q_n}{Q_{n-1}} \frac{1}{1 - \frac{1}{Q_n Q_{n-1}} \frac{a \frac{P_n}{Q_n} + b}{a \left(\frac{P_n}{Q_n}\right)^2 + b \frac{P_n}{Q_n} + c}}.$$

Ora, qualunque sia n il quoziente $\frac{P_n}{Q_n}$ è sempre del grado -1.

Il grado v del quoziente $\frac{a\frac{P_n}{Q_n} + b}{a\left(\frac{P_n}{Q_n}\right)^2 + b\frac{P_n}{Q_n} + c}$ è dunque indipen-

dente da n. Potremo quindi sempre disporre di n in modo che sia $2n-\tau$ (grado di $Q_n Q_{n-\tau}$) maggiore di v. Saremo allora certi che lo sviluppo in serie di potenze decrescenti di x della frazione

$$\frac{1}{1 - \frac{1}{Q_n Q_{n-1}}} \frac{a \frac{P_n}{Q_n} + b}{a \left(\frac{P_n}{Q_n}\right)^2 + b \frac{P_n}{Q_n} + c}$$

incomincia con l'unità. Dunque lo sviluppo di $\frac{A}{B}$ comincerà con lo stesso termine di quello di Q_n . Ma il grado di Q_n in x è superiore per un'unità a quello di Q_{n-1} , anche il grado di A supererà quello di B per un'unità. Analoga dimostrazione potrebbe ripetersi per A_1 , B_1 .

Si consideri ora la differenza

$$\eta - \frac{A}{A_{\scriptscriptstyle \rm I}} = \frac{\eta}{A_{\scriptscriptstyle \rm I}(A_{\scriptscriptstyle \rm I} - B_{\scriptscriptstyle \rm I} \eta)}$$

Se A_r è del grado μ , B_r è del grado $\mu-1$, η è del grado -1, quella differenza è del grado -1. La $\frac{A}{A_r}$ è dunque veramente la ridotta d'ordine μ^{mo} nello sviluppo di η .

Così

$$\eta - \frac{B}{B_{i}} = \frac{\eta}{B_{i}(A_{i} - B_{i}\eta)}$$

è del grado —(2 μ —1), dunque $\frac{B}{B_{\rm r}}$ è la ridotta d'ordine μ —1 $^{\rm mo}$ c. d. d.

6. Per la condizione ora dimostrata, affinchè una funzione $\sigma_{\rm r}$, che è radice di un'equazione algebrica di 2° grado: $a\sigma^2 + 2b\sigma + c = 0$, possa svilupparsi in frazione continua periodica è necessario e sufficiente che il polinomio b possa scomporsi nella somma di due $b_{\rm r} + b_{\rm s}$, in modo che si abbia $ac - b_{\rm r}b_{\rm s} = 1$.

Si hanno dunque le due equazioni:

$$b_1 + b_2 = 2b$$
, $b_1 b_2 = ac - 1$

da cui:

$$b_1 = b + \sqrt{b^2 - ac + 1}, \quad b_2 = b - \sqrt{b^2 - ac + 1}.$$

Ma b_1 , b_2 debbono essere polinomi razionali ed interi in x; si vede che, affinchè la scomposizione sia possibile nel modo richiesto, occorre che la quantità sotto il segno sia un quadrato perfetto. Ma b^2-ac è il discriminante dell'equazione proposta; potrà dunque sempre svilupparsi in frazione continua periodica una funzione τ che sia radice di un'equazione di 2° grado il cui discriminante aumentato di un'unità sia uguale al quadrato di un polinomio intero in x. O, più generalmente, si potranno considerare le equazioni che, mediante sostituzioni della forma: $\sigma = \frac{a_1 \eta + b_1}{c_1 \eta + d_1}$, dove a_1 , b_1 , c_1 , d_1 sono polinomi interi qualunque, si ottengono dalla proposta, e cercare se Rend. Circ. Matem., t. IX, parte 1^a .—Stampato l'II febbrajo 1895.

per una tale equazione:

$$(a a_1^2 + 2 b c_1 a_1 + c c_1^2) \eta^2 + 2 (a a_1 b_1 + b b_1 c_1 + a_1 b d_1 + c c_1 d_1) \eta + (a b_1^2 + 2 b b_1 d_1 + c d_1^2) = 0$$

la condizione enunciata è soddisfatta. Ora in una tale equazione il discriminante ha la forma:

$$(b^2 - ac)(a_1 d_1 - b_1 c_1)^2$$
,

indicando con A il discriminante dell'equazione data e con u il determinante $(a_i d_i - b_i c_i)$ della sostituzione dovrà essere soddisfatta la condizione:

$$(8) Au^2 + 1 = v^2$$

dove u e v sono polinomi interi da determinarsi.

Manifestamente poi, ogni qualvolta quest'equazione indeterminata di 2° grado possa esser risolta con polinomi interi, la periodicità della frazione continua rimane provata, perchè, trovato il valore di u, per formare una sostituzione lineare di determinante u, basterebbe porre $\sigma = -u\eta$; e, nell'equazione $a\eta^2 - 2b\eta + c = 0$ risultante, $b = b_1 + b_2$ con $b_1 = b + v$, $b_2 = b - v$ perchè fosse verificata la condizione $ac - b_1 b_2 = 1$.

E se l'equazione stessa non potesse risolversi con polinomi interi, per quanto abbiamo detto, la frazione continua non potrebbe essere periodica.

Tutto si riduce dunque alla ricerca della possibilità di risoluzione, mediante polinomi interi, dell'equazione indeterminata di 2° grado:

$$(9) Au^2 + 1 = v^2.$$

7. Si consideri p. es. l'equazione:

$$y^2 - 2y(x - 1) + 2 = 0.$$

Il discriminante di quest'equazione è: $A = x^2 - 2x - 1$. Si

dovrà dunque risolvere con polinomi interi l'equazione:

$$u^2(x^2-2x-1)+1=v^2.$$

Quest'equazione potrà esser ridotta immediatamente ponendo:

$$u^2 = x^2 - 2x + 1, \quad u = x - 1$$

perchè allora risulterà:

$$v^2 = (x^2 - 2x)^2, \quad v = x^2 - 2x.$$

Dovremo dunque trasformare l'equazione data mediante la sostituzione : $y = (x - 1)\sigma$. Si avrà così l'equazione :

$$\sigma^2(x-1)^2-2(x-1)^2\sigma+2=0.$$

Scomporremo il coefficiente $b = (x - 1)^2$, nella somma dei due:

$$b_1 = b + v = 2x^2 - 4x + 1$$
, $b_2 = b - v = 1$.

Allora si avrà:

$$\sigma^2(x-1)^2-(2x^2-4x+1)\sigma-\sigma+2=0,$$

in cui il determinante è = 1. Le radici dell'equazione data, dovranno dunque essere sviluppabili in frazione continua periodica. Si può anzi determinare immediatamente il periodo osservando che può scriversi:

$$\sigma = \frac{1}{x-1} \frac{2-\sigma}{2(x-1)-(x-1)\sigma-\frac{1}{x-1}}.$$

Chiamando con η la seconda frazione del secondo membro, avremo: $\sigma = \frac{1}{x-1} \eta$ od anche $(x-1)\sigma = \eta$.

Dunque sostituendo:

$$\sigma = \frac{1}{x-1} \frac{2 - \frac{\eta}{x-1}}{2(x-1) - \eta - \frac{1}{x-1}} = \frac{1}{x-1} \frac{1}{(x-1) - \frac{1}{2(x-1) - \eta}}$$

che verifica appunto la periodicità accennata.

8. Se il discriminante A non dipende da x, cioè si riduce ad una costante numerica, la equazione (9) è una ordinaria equazione Pelliana che si può sempre risolvere. In particolare rimane così dimostrato con nuovo metodo il teorema dovuto al Lagrange relativo alle radici di equazioni di 2° grado a coefficienti numerici.

Ma se il discriminante A dipende da una variabile x, nulla può dirsi sulla possibilità di risoluzione dell'equazione (9) poichè tutti i metodi di dimostrazione e risoluzione adoperati finora per l'equazione Pelliana, riposano esclusivamente sul concetto di numero intero e positivo. Si può osservare anzi che: Nel caso in cui il discriminante A sia di grado impari in x, l'equazione (9) è certamente impossibile con polinomi interi.

E questo risulta evidente dal fatto che il termine Au^2 è in tal caso di grado impari in x, il termine v^2 di grado pari, la loro differenza non può ridursi all'unità (*).

9. Se una delle radici di un'equazione di 2° grado a coefficienti interi in x si può sviluppare in frazione continua periodica, l'altra radice si potrà sviluppare in frazione pure periodica il cui periodo è formato con gli stessi elementi presi in ordine inverso, che costituivano il periodo della prima.

La frazione continua in cui si può sviluppare la prima radice, sia periodica semplice e si abbia

$$\sigma_{i} = \frac{1}{a_{i} - \frac{1}{a_{2} - \dots + \frac{1}{a_{p} - \frac{1}{a_{i} - \dots + \frac{1}{a_{r} - \dots + \frac{1}$$

L'equazione di secondo grado di cui σ_r è radice, avrà allora la forma :

$$Q_{p-1}\sigma_{x}^{2}-(P_{p-1}+Q_{p})\sigma_{x}+P_{p}=0.$$

^(*) Questa osservazione mi fu comunicata dal prof. Zsigmondy di Vienna.

Si consideri ora la funzione

$$\sigma_2 = a_p - \frac{1}{a_{p-1}} - \dots \frac{1}{a_1 - a_p} - \frac{1}{a_p - \dots}$$

La funzione inversa di questa

$$\frac{1}{\sigma_2} = y = \frac{1}{a_p - \dots \frac{1}{a_1 - a_p - \dots}}$$

soddisferà per la stessa formula, all'equazione:

$$Q'_{p-1}y^2 - (P'_{p-1} - Q'_p)y - P'_p = 0;$$

onde sarà:

$$P'_{p}\sigma_{2}^{2}-(P'_{p-1}+Q'_{p})\sigma_{2}+Q'_{p-1}=0$$

l'equazione cui soddisfa la o2.

Ora siccome le $P \in Q$ sono formate con gli elementi a_1 , a_2 , ... a_{p-1} , a_p , e le P', Q' con gli elementi stessi ma in ordine inverso, così, pel teorema di G e r o n o, sarà

$$P_{p}' = Q_{p-1}, \quad P_{p-1}' = P_{p-1}, \quad Q_{p}' = Q_{p}, \quad Q_{p-1}' = P_{p}.$$

L'equazione cui soddisfa la o2 sarà dunque:

$$Q_{p-1}\sigma_2^2 - (P_{p-1} + Q_p)\sigma_2 + P_p = 0$$

quella stessa cioè cui soddisfaceva la o, c. d. d.

Se la frazione continua in cui si svolge la radice σ_r , sia periodica mista, mediante la formula (3) si riconduce al caso precedentemente considerato.

EMMA BORTOLOTTI.

A PROPOS DE QUELQUES RÉCENTS

TRAVAUX MATHÉMATIQUES;

par M. Émile Picard, à Paris.

(Dalla Revue générale des sciences pures et appliquées, 3e année, n° 21: 15 novembre 1892).

Je ne me propose pas, dans l'article qu'on va lire, de faire une revue des travaux mathématiques intéressants parus depuis la dernière revue d'Analyse que j'ai publiée dans ces colonnes en 1890 (*). On voudra bien voir dans les pages qui suivent une simple conversation mathématique, à propos de quelques-uns des sujets qui préoccupent en ce moment les géomètres: j'ai choisi la théorie des groupes et celle des équations différentielles.

I.

J'ai déjà parlé (**) avec quelques détails de l'admirable théorie des groupes de transformations due à M. Sophus Lie. L'illustre géomètre norvégien continue son œuvre. Il vient de consacrer deux mémoires aux fondements de la géomètrie. La question est d'un assez grand intérêt philosophique pour que nous nous y arrêtions de nouveau.

On sait combien les travaux de Gauss et de Riemann sont importants dans l'histoire de nos idées sur les hypothèses qui sont à la base de la géométrie. Dans cette théorie, c'est l'expression de l'élément de distance qui joue le rôle essentiel, et les recherches de ces grands géomètres ont été l'origine de déve-

^(*) Voir la Revue du 30 novembre 1890, t. I, p. 702 et suiv. et ces Rendiconti, t. V (1891), p. 80 et suiv.

^(**) Loc. cit.

loppements analytiques du plus haut intérêt concernant en particulier les formes quadratiques de différentielles. On doit reconnaître cependant que Gauss et Riemann n'ont pas vu le véritable point de départ à adopter dans l'étude des fondements de la géométrie. Il semble que ce soit Helmoltz qui ait le premier placé la question sur son véritable terrain: son idée fondamentale consiste à porter l'attention sur l'ensemble des mouvements possibles dans l'espace dont on fait l'étude. La théorie des groupes n'était pas encore créée à l'époque où le célèbre physicien écrivait son mémoire; il était presque inévitable qu'il commît quelques erreurs. M. Lie vient de reprendre complètement cette étude en se plaçant au point de vue de la théorie des groupes, et nous allons résumer les conclusions auxquelles il est parvenu.

Nous considérons un espace à trois dimensions et nous regardons un point de cet espace comme défini par trois quantités (x, y, z) que l'on appelle les coordonnées du point; Qu'appellerons-nous mouvement dans cet espace? Un mouvement d'une portion de l'espace est défini par trois équations:

$$x' = f(x, y, z)$$
$$y' = \varphi(x, y, z)$$
$$z' = \psi(x, y, z).$$

Par cette transformation un ensemble E de points (x, y, z) devient un autre ensemble E' de points (x', y', z'): la transformation qui précède est pour nous un mouvement qui amène E en E'. Ceci posé, nous faisons sur l'espace que nous voulons étudier les hypothèses suivantes:

1º Les mouvements possibles dans cet espace sont tels qu'ils laissent invariable une fonction $\Omega\left(x_1,\,y_1,\,\chi_1^{-},\,x_2,\,y_2,\,\chi_2\right)$ des coordonnées de deux points quelconques $(x_1,\,y_1,\,\chi_1)$ et $(x_2,\,y_2,\,\chi_2)$. En d'autres termes, si on désigne par $(x_1',\,y_1',\,\chi_1'),\,(x_2',\,y_2',\,\chi_2')$ les coordonnées de ces points après un quelconque des mouvements possibles on aura

$$\Omega\left(x_{_{1}}\,,\,y_{_{1}}\,,\,\chi_{_{1}}\,,\,\chi_{_{2}}\,,\,y_{_{2}}\,,\,\chi_{_{2}}\right)=\Omega\left(x_{_{1}}'\,,\,y_{_{1}}'\,,\,\chi_{_{1}}'\,,\,\chi_{_{2}}'\,,\,y_{_{2}}'\,,\,\chi_{_{2}}'\right).$$

L'origine de cette hypothèse s'aperçoit d'elle-même: en langage ordinaire et sans signe algébrique, on peut dire grossièrement que, en la faisant, on veut qu'il y ait relativement à deux points de l'espace quelque chose qui reste invariable après le mouvement; on pourra appeler ce quelque chose la distance de deux points.

2º On veut, comme le disait Helmoltz, que le mouvement libre soit possible dans une certaine région de l'espace. Voici ce que l'on doit entendre par cette hypothèse complexe, bien approfondie par M. Lie. Tout d'abord, quand un point de la région est fixé, tout autre point de cette région, sans aucune exception, décrit une surface (multiplicité à deux dimensions). Ensuite quand deux points sont fixés, un point arbitraire (des exceptions étant possibles) décrit une courbe (multiplicité à une dimension); enfin si trois points arbitraires sont fixés dans la

région, tous les points de celles-ci restent en repos (des exceptions étant possibles).

Telles sont les conditions que nous imposons à l'espace. Il en résulte nécessairement que l'ensemble des mouvements possibles doit former un groupe à six paramètres. On connait deux types d'espaces satisfaisant à ces conditions. C'est tout d'abord l'espace ordinaire ou euclidien; tels sont aussi les deux espaces non euclidiens, c'est-à-dire les espaces dans lesquels le groupe des mouvements possibles est le groupe projectif transformant en elle-même l'une ou l'autre des surfaces du second degré:

$$x^2 + y^2 + z^2 \pm z = 0.$$

M. Lie a établi que les groupes précédents sont les seuls qui jouissent des propriétés (1) et (2): c'est là un résultat bien remarquable et qui montre que les espaces euclidien et non euclidiens sont les seuls où l'on puisse faire logiquement les hypothèses qui, dégagées, bien entendu, de leur forme scientifique, sont regardées par quiconque n'a pas réfléchi à ces questions comme ayant un caractère nécessaire.

La démonstration du théorème de M. Lie est fort délicate. Ainsi les mots « sans aucune exception », que nous avons soulignés plus haut, sont d'une extrême importance. Si l'on cherche le groupe des mouvements à six paramètres satisfaisant à l'hypothèse (2), on ne trouve que les groupes euclidien et non euclidiens, mais si on supprime les mots soulignés, on reconnait qu'il existe d'autres groupes que les précédents. Ajoutons encore que les problèmes analogues dans le plan admettent des solutions entièrement différentes: les espaces à deux dimensions euclidien et non euclidiens ne sont pas caractérisés par les propriétés qui leur appartiennent uniquement dans le cas de trois dimensions. Cette circonstance n'avait pas autrefois échappé à Helmoltz. On peut dire, en résumé, que les dernières recherches de M. Lie épuisent, pour les géomètres, sinon pour les philosophes, la question des principes de la géomètrie.

Nous ne nous éloignerons pas de la théorie des groupes en parlant des quantilés complexes. C'est une question sur laquelle a plané longtemps une certaine obscurité, qu'entretenait le mot un peu mystique de quantités imaginaires. Le sujet ne présente plus aujourd'hui rien de mystérieux. Dans un mémoire publié en 1884, M. Weierstrass a développé une théorie des nombres complexes. Il suppose que l'on considère des nombres de la forme

$$x_1 e_1 + x_2 e_2 + \ldots + x_n e_n$$

où les x sont des nombres réels ordinaires. Les e sont de purs symboles. On fait l'hypothèse que la somme, la différence, le produit et le quotient de deux nombres de l'ensemble font eux-mêmes partie de cet ensemble. Les produits

$$e_p e_q \ (p, q = 1, 2 ..., n)$$

sont donc des expressions $E_{p,q}$ linéaires et homogènes en e_1 , e_2 , ... , e_n qui jouent

le rôle essentiel dans la théorie. M. Weierstrass suppose de plus que les théorèmes dits commutatif et associatif subsistent tant pour l'addition que pour la multiplication. Pour l'addition ils sont vérifiés d'eux-mêmes; pour la multiplication, ils s'expriment par les égalités:

$$ab = ba$$

$$(a b) c = a (b c)$$

a, b, c étant trois nombres quelconques de l'ensemble. Ces conditions conduisent à certaines relations entre les coefficients de formes linéaires $E_{p,q}$. A tout système de coefficients de formes $E_{p,q}$ vérifiant ces relations, correspondra un ensemble de nombres complexes. Les quantités complexes ordinaires correspondent à:

$$e_1 = 1$$
, $e_2 = i$.

Les nombres complexes, que nous venons de définir, différent seulement en un point des nombres complexes ordinaires. Quand n est supérieur à deux, il existe des nombres différents de zéro, dont le produit par certains autres nombres est nul. M. Weierstrass appelle ces nombres des diviseurs de zéro. Malgré cette singularité, cette nouvelle algèbre est réductible à l'algèbre des nombres complexes de la forme $\alpha + \beta i$; l'illustre géomètre de Berlin a en effet établi que, si a et b désignent deux nombres quelconques de l'ensemble, on peut les décomposer en un certain nombre de composants $a_1, a_2, \ldots, a_r, b_1, b_2, \ldots b_r$ tels que

$$a = a_{1} + a_{2} + \dots + a_{r}$$

$$b = b_{1} + b_{2} + \dots + b_{r}$$

$$a b = a_{1} b_{1} + a_{2} b_{2} + \dots + a_{r} b_{r}$$

$$\frac{a}{b} = \frac{a_{1}}{b_{1}} + \frac{a_{2}}{b_{2}} + \dots + \frac{a_{r}}{b_{r}}$$

les composants a_i , b_i dépendant seulement d'une ou deux unités fondamentales. Ce théorème montre bien que le calcul des nouvelles quantités se déduira toujours avec facilité du calcul ordinaire; il n'y a pas là un instrument nouveau dont puisse profiter l'Analyse mathématique.

Nous avons admis que les lois commutative et associative subsistaient dans l'algèbre précédente. On s'est placé à un point de vue plus général en supposant que, seule, la loi associative exprimée par l'égalité (2) subsistait. On a alors une algèbre beaucoup plus générale; celle-ci est complètement déterminée par le système des expressions linéaires $E_{p,q}$. Un exemple célèbre d'un système à quatre unités e_1 , e_2 , e_3 , e_4 est fourni par les quaternions d'H a milton où l'on a:

$$e_1 = 1$$
, $e_2 = i$, $e_3 = j$, $e_4 = k$

Rend. Circ. Matem., t. IX, parte 1ª.—Stampato il 14 febbrajo 1895. 20

avec les relations

$$i^{2} = j^{2} = k^{2} = -1$$

 $ij = -j i = k$
 $j k = -k j = i$
 $k i = -i k = j$

Une remarque très intéressante de M. Poincaré va nous ramener à la théorie de groupes. L'éminent géomètre a fait le premier la remarque qu'à chaque système d'unités complexes correspond un groupe continu de substitutions linéaires à n variables, dont les coefficients sont des fonctions linéaires de n paramètres arbitraires. Cette idée a été approfondie, dans un mémoire récent, par un élève de M. Lie, M. Scheffer, qui a été ainsi conduit à partager les nombres complexes en deux classes suivant que le groupe qui leur correspond est intégrable ou non intégrable. A cette dernière classe appartient le groupe correspondant aux quaternions et ceux-ci sont les représentants les plus simples de cette catégorie de nombres complexes. On demandera peut-être maintenant si ce vaste symbolisme est susceptible d'accroître un jour la puissance de l'Analyse. Il est dangereux d'être prophète, mais il me semble que ces algèbres nouvelles ne pourront avoir d'autre intérêt pratique que de conduire peut être à des notations plus condensées; on le voit, au reste, pour les quaternions dont l'emploi, si prisé en Angleterre, n'est nulle part indispensable. Le rapprochement entre la théorie des groupes et le calcul symbolique n'en est pas moins, au point de vue spéculatif, d'un grand intérêt.

L'idée d'un système de fonctions formant un groupe n'est pas seulement bornée au cas où il n'y a dans l'ensemble qu'un nombre fini de paramètres. M. Lie s'est beaucoup occupé dans ces derniers temps des groupes infinis, les groupes considérés jusqu'ici étant dits groupes finis parce qu'ils dépendent d'un nombre fini de paramètres arbitraires. Considérons un système d'équations aux dérivées partielles d'ordre quelconque contenant n fonctions u_1, u_2, \ldots, u_n de n variables x_1, x_2, \ldots, x_n ; ces équations définiront un groupe si, prenant deux solutions quelconques

$$\begin{aligned} u_i &= F_i \left(x_{\scriptscriptstyle \rm I} \,,\, \ldots \,,\, x_{\scriptscriptstyle \rm H} \right) \\ v_i &= \Phi_i \left(x_{\scriptscriptstyle \rm I} \,,\, \ldots \,,\, x_{\scriptscriptstyle \rm H} \right) \end{aligned} \quad (i = 1,\, 2,\, \ldots \,n),$$

on obtient encore une solution en prenant les fonctions

$$F_i(\Phi_1, \Phi_2, \ldots, \Phi_n).$$

La théorie des invariants différentiels s'étend aux groupes infinis. On entend par invariant différentiel relatif à m+p lettres $x_1, x_2, \ldots, x_m, \zeta_1, \zeta_2, \ldots, \zeta_p$ toute fonction des x, des z et de leurs dérivées considérées comme fonctions des

x, qui garde la même forme quand on effectue sur les x et les z les substitutions du groupe. Nous reviendrons tout à l'heure sur leur rôle important dans la théorie des équations différentielles.

Certains groupes infinis jouissent de propriétés particulières. J'ai appelé l'attention sur les cas où les équations aux dérivées partielles qui définissent le groupe, ne renferment pas explicitement les variables indépendantes. La recherche de ces équations revient alors à la formation de certains groupes finis. Ces équations peuvent être considérées comme généralisant les deux équations classiques dans la théorie des fonctions d'une variable complexe, et c'est en cela que leur étude mériterait d'être poursuivie. Il est d'ailleurs vraisemblable qu'il y a d'autres cas que ceux que je viens de signaler dans lesquels la recherche des groupes infinis peut se ramener à la recherche des groupes finis.

II.

On entend quelquefois des personnes, d'ailleurs très instruites, mais pour qui les mathématiques se réduisent aux cas d'égalité des triangles, se demander ce qu'il peut bien y avoir à faire aujourd'hui en mathématiques. Il est malheureux qu'on ne puisse leur donner le conseil d'apprendre le calcul intégral, pour juger des progrès que réclamerait la théorie des équations différentielles.

Malgré les efforts des plus grands géomètres, cette théorie se réduisit longtemps à une monographie de cas particuliers. Un des résultats les plus intéressants des travaux de M. Lie est d'avoir fait une vaste synthèse de ces travaux isolés. Le fait d'admettre un groupe de transformations réduit, pour une équation différentielle, la difficulté de l'intégration, et on peut rattacher aux théories du géomètre norwégien la plupart des cas élémentaires connus. A un point de vue plus profond, la th'orie des groupes infinis parait extrêmement importante pour l'étude des équations différentielles et il semble que, dans cette voie, les recherches promettent d'être fécondes. Ainsi M. Lie montre qu'une équation différentielle ordinaire d'ordre quelconque possède des invariants relativement à toute transformation de points. Les invariants considérés autrefois par Laguerre et Halphen dans la théorie des équations linéaires forment, pour une transformation de points particulière, un bien remarquable exemple; il en est de même des invariants considérés par M. Appell et par M. Roger Liouville. Voici un genre d'applications fort intéressantes, auxquelles conduit la conception générale de M. Lie. Halphen, dans un mémoire célèbre, a trouvé les conditions pour qu'une équation différentielle linéaire puisse être ramenée à une équation linéaire intégrable. Ce problème peut s'étendre à une équation non linéaire d'ordre quelconque; on peut chercher à quelles conditions une telle équation sera, par une transformation ponctuelle ou par une transformation de contact, réductible à une équation intégrable d'un type donné.

Parmi des applications d'une nature un peu différente, je citerai une thèse

fort remarquable de M. Vessiot. J'avais, il y a quelques années, indiqué comment on pourrait étendre aux équations différentielles linéaires la théorie célèbre de Galois relative aux équations algébriques: à chaque équation linéaire on peut faire correspondre un groupe de transformations linéaire et homogène, qui est l'analogue du groupe de Galois pour les équations algébriques. M. Vessiot a développé complètement la théorie que je n'avais qu'esquissée, et parmi les applications qu'il en a faites, une des plus élégantes est la recherche des conditions pour qu'une équation linéaire s'intègre par quadratures; c'est le problème analogue à celui des équations algébriques résolubles par radicaux.

On voit que les travaux de M. Lie sont venus rajeunir singulièrement ce que l'on pourrait appeler l'ancienne théorie des équations différentielles. Ils ne peuvent, par leur nature même, conduire à des cas d'intégrations essentiellement nouveaux, puisqu'ils ont principalement pour objets des questions de transformations. Pour avoir des cas vraiment nouveaux, il est manifestement indispensable d'introduire des transcendantes nouvelles. La th'orie des fonctions analytiques a fait naître à ce sujet les plus grandes espérances, et celles-ci ont été tout à fait justifiées en ce qui regarde les équations linéaires. Il n'en a pas été tout à fait de même jusqu'ici pour les équations non linéaires; dans cette voie ce sont les résultats négatifs qui ont été les plus saillants. Il en est parmi eux d'extrêmement intéressants. Ainsi, l'attention ayant été appelée par M. Fuchs sur les équations algébriques du premier ordre à points critiques fixes, M. Poincaré a montré qu'on pouvait ramener ce cas à des quadratures ou à une équation de Riccati. Dans un remarquable mémoire couronné il y a deux ans par l'Académie des Sciences, M. Painlevé a notablement étendu ces résultats, en considérant les équations du premier ordre dont les intégrales n'ont qu'un nombre limité de valeurs autour de l'ensemble des points critiques mobiles. Une des conclusions de ses recherches est que l'intégrale supposée transcendante, de toute équation algébrique du premier ordre, qui satisfait à la condition précédente, est une fonction algébrique de l'intégrale d'une équation de Riccati dont les coefficients dépendent algébriquement de ceux de l'équation donnée. On est donc assuré de ne pas obtenir par cette voie de transcendantes nouvelles; il faudra s'adresser aux equations d'ordre supérieur dont l'étude, au point de vue qui nous occupe, présente encore des difficultés considérables qui ne seront pas sans doute levées de sitôt.

Abordons maintenant une autre direction dans laquelle tend à se développer aujourd'hui la théorie des équations différentielles. Le désir bien naturel d'appliquer à ces équations les résultats obtenus par Cauchy dans la théorie des fonctions d'une variable complexe semblait avoir fait presque complètement oublier le cas où les variables et les fonctions restent réelles. C'est M. Poincaré qui, par une suite de brillants travaux, appela de nouveau l'attention sur des études si importantes pour les applications. L'étude des courbes définies par les équations différentielles offre un intérêt de premier ordre: de la connaissance générale de

la forme de ces courbes résultent les conséquences essentielles pour le problème que l'on traite, qu'il s'agisse de géométrie ou de mécanique. Il est manifeste, par exemple, que le problème des trois corps en Mécanique céleste pourrait être regardé comme résolu si l'on pouvait obtenir une connaissance générale de la forme des courbes trajectoires. Bornons-nous à un cas très simple qui montrera suffisamment l'objet des recherches de ce genre. Soit une équation du premier ordre de la forme:

$$\frac{dx}{X} = \frac{dy}{Y} \,,$$

X et Y étant des polynômes en x et y. M. Poincaré commence par faire l'étude des points singuliers de l'équation différentielle. Ceux-ci sont en général de trois sortes. Ce sont d'abord les cols par lesquels passent deux courbes intégrales et deux seulement, puis les nœuds où viennent passer une infinité de ces courbes et ensin les foyers qui sont pour les courbes intégrales des points asymptotiques. On peut exceptionnellement avoir des centres autour desquels les courbes intégrales se présentent sous la forme de courbes fermées s'enveloppant mutuellement et enveloppant le centre. Ces éléments ne suffisent pas pour qu'on puisse se faire une idée de la forme des courbes intégrales. Pour éviter toute difficulté relative à l'infini, faisons une projection sphérique de la figure. Si l'on chemine alors sur une courbe intégrale, qu'arrivera-t-il? Cette courbe peut être fermée de telle sorte qu'on reviendra au point de départ; elle peut aussi avoir un des foyers comme point asymptote. Il peut sembler à première vue que ce sont les seuls cas possibles; ce serait une grave erreur. La courbe considérée peut encore avoir pour courbe asymptote une courbe fermée satisfaisant d'ailleurs à l'équation différentielle. Qu'il me suffise de dire que ces courbes fermées (cycles limites) jouent le rôle essentiel dans la théorie, et c'est dans les cas où il est possible de se rendre compte de leur position que la discussion de l'équation peut être faite d'une manière complète.

En restant dans le même ordre d'idées et à un point de vue seulement un peu différent, M. Poincaré a étudié, dans un mémoire célèbre, les équations différentielles de la dynamique. Je ne veux pas parler de ces belles recherches et de leur grande importance pour la Mécanique céleste; l'auteur en a fait lui-même un résumé dans cette Revue (*). C'est seulement de l'intérêt qu'elles peuvent avoir pour l'Analyse générale que nous avons à nous occuper ici. Elles ont appelé l'attention sur les solutions périodiques des équations différentielles et sur les solutions asymptotiques; sans doute, M. Poincaré se trouve dans un cas spécial où il profite de la présence d'une constante très petite dans les équations, et il raisonne alors par continuité; mais on peut espérer qu'un jour, au moins dans des

^(*) Voir à ce sujet la Revue du 15 janvier 1891, t. II, page 1.

cas étendus, on trouvera quelque autre manière de pénétrer dans l'étude de ces solutions. Quoi qu'il en soit, il semble qu'il y ait dans cette direction un vaste programme de travaux à tenter; si l'on réussit dans cette voie, on y trouvera probablement des armes nouvelles pour revenir plus tard aux cas où la variable est complexe, cas où les progrès sont maintenant si difficiles.

ÉM. PICARD,

SUR LA THÉORIE DES SURFACES ALGÉBRIQUES;

par M. Émile Picard, à Paris.

(Dalla Revue générale des sciences pures et appliquées, 5e année, nº 24: 30 décembre 1894).

Je devrais faire une revue sommaire des travaux d'Analyse récemment parus; mais, comme je l'ai déjà expliqué, une telle tâche me paraît impossible à remplir ici. J'aime mieux, encore cette année, prendre un sujet mieux limité et reprendre cette causerie mathématique à laquelle le directeur de la Revue a eu déjà deux fois l'amabilité de m'inviter (*). J'ai choisi les surfaces algébriques, et je commence par une esquisse rapide du développement de la théorie des courbes algébriques, afin de pouvoir comparer l'état actuel des deux théories.

I.

Prenant l'équation f(x, y) = 0, où f est un polynôme de degré m en x et y, on a d'abord classé les courbes d'après leur degré. Après la ligne droite, les courbes du second degré ont été étudiées les premières et les courbes du troisième degré n'ont pas cessé, depuis N e w t o n, de faire l'objet des recherches des géomètres. Vinrent ensuite de nombreuses monographies de courbes particulières, mais on doit surtout citer, parmi les ouvrages d'un caractère plus général, la célèbre introduction à l'analyse des courbes algébriques de C r a m e r notamment que l'on doit ce théorème si remarquable qu'une courbe irréductible de degré m ne peut avoir plus de $\frac{(m-1)(m-2)}{2}$ points doubles, nombre qui peut être effectivement atteint.

^(*) Voir les numéros de la Revue du 30 novembre 1890, et du 15 novembre 1892; et ces Rendiconti, t. V (1891), p. 80 et suiv. et t. IX (1895), p. 150 et suiv,

Malgré tous ces travaux, on peut dire qu'il n'y avait pas là encore les bases d'une véritable théorie. Le degré m de la courbe algébrique avait seul jusqu'ici joué un rôle dans la classification. Le calcul intégral allait mettre sur la voie d'un nombre fondamental dans la théorie des courbes algébriques. Le grand géomètre norwégien A bel commença l'étude des intégrales de différentielles algébriques, c'est-à-dire des intégrales de la forme:

(1)
$$\int_{-\infty}^{x} R(x, y) dx$$

où R est une fonction rationnelle de x et de la fonction algébrique v de x. On lui doit une proposition cé'èbre sur les sommes d'intégrales de cette forme; dans un de ses mémoires sur ce sujet, il reconnut que la somme d'un nombre quelconque μ d'intégrales (1), avec des limites supérieures arbitraires x_1 , x_2 ..., x_{μ} , peut s'exprimer à l'aide de fonctions élémentaires et d'un certain nombre (dépendant seulement de la courbe) d'intégrales de même forme dont les limites sont fonctions algébriques de x_1 , x_2 , ..., x_μ . La mort prématurée d'A b e l ne lui permit pas d'approfondir l'étude de ce nombre, et c'est à Riemann que revient la gloire d'avoir élevé, à la théorie des fonctions algébriques d'une variable, un monument qui est une des œuvres mathématiques les plus belles et les plus originales de ce siècle. Le point de départ de l'illustre géomètre est d'ailleurs tout différent de celui d'A b e l; la théorie des fonctions d'une variable complexe avait été, dans l'intervalle, édifiée par Cauchy, et les singularités des fonctions algébriques étudiées par Puiseux. C'est dans la correspondance entre les systèmes de valeurs réelles ou complexes de x et y, satisfaisant à l'équation f(x, y) = 0, et une certaine surface désignée aujourd'hui sous le nom de surface de R i e m a n n que se trouve l'idée fondamentale du géomètre allemand. En modifiant seulement un peu la conception primitive de Riemann, on peut s'arranger de manière que cette surface soit, dans l'espace à trois dimensions, une surface fermée S, et il y a entre les points de cette surface et les points (x, y) de la courbe f = 0une correspondance bien déterminée. Or, sur une surface fermée, on peut distinguer un élément numérique très important: c'est le nombre maximum des courbes ne se coupant ni entre elles ni elles-mêmes, qu'il est possible de tracer sur la surface sans la décomposer en parties distinctes. Ainsi, pour une sphère ce nombre est nul; pour un tore, il est égal à un, et sera égal à deux pour une surface à deux trous telle qu'une cruche avec deux anses. Désignons d'une manière générale ce nombre par p: on l'appelle le genre de la courbe et on a:

$$p = \frac{(m-1)(m-2)}{2} - d,$$

d désignant le nombre des points doubles. Le genre est le nombre entrevu par A b e l, et c'est une chose bien remarquable que deux ordres si différents de considérations: une réduction de sommes d'intégrales et une question de géométrie de situation conduisent au même élément. Sur la surface S on peut tracer 2 p

courbes fermées sans fractionner la surface (ces courbes ayant par couples un point commun); ces cycles jouent un rôle fondamental dans l'étude des intégrales (1), ils correspondent à leurs périodes. Parmi ces intégrales, on désigne sous le nom d'intégrales de première espèce celles qui restent finies pour tout point (x, y); leur nombre est précisément égal à p. On appelle intégrales de seconde espèce celles qui n'ont pas de points singuliers logarithmiques; elles peuvent se réduire à une combinaison linéaire de 2p d'entre elles et à une fonction rationnelle.

Riemann a encore introduit dans la science la notion capitale de classe de courbes algébriques: deux courbes appartiennent à la même classe si elles se correspondent point par point, en entendant par là que les coordonnées d'un point quelconque de la première peuvent s'exprimer rationnellement en fonction des coordonnées d'un point de la seconde, et inversement. Cette belle conception généralisait singulièrement une notion familière aux analystes qui avaient créé la théorie des formes algébriques. Deux courbes de même classe ont nécessairement le même genre, et le résultat le plus profond obtenu ici par Riemann est relatif au nombre des paramètres arbitraires dont dépend essentiellement une classe de courbes d'un genre donné p: le nombre de ces paramètres, qu'on appelle les modules, est égal à 3 p — 3, quand p est supérieur à un.

Le point de vue algébrique n'a pas été moins fécond que le point de vue transcendant, particulièrement entre les mains de MM. Brill et Noether. On y considère le genre comme le nombre des arbitraires figurant dans un polynôme en x et y, d'ordre m-3, qui s'annule pour les points doubles; ceci est conforme à la formule (2). La recherche des courbes les plus simples appartenant à une classe donnée appelait l'attention; Clebsch et Gordan avaient déjà montré qu'à toute courbe de genre p on pouvait faire correspondre une courbe de degré p+1, théorème qui est toutefois en défaut pour une classe bien définie de courbes (les hyperelliptiques); [MM. Brill et Noether ont approfondi cette théorie des courbes normales.

Je n'insisterai pas davantage sur la théorie, aujourd'hui classique, des fonctions algébriques d'une variable. J'en ai rappelé seulement les lignes principales pour permettre la comparaison avec celle des fonctions algébriques de deux variables, dont je vais maintenant m'occuper.

IT

La théorie des surfaces algébriques a nécessairement débuté par des monographies particulières. Dès les premiers degrés se sont présentées des surfaces très intéressantes; les surfaces du second degré, qui se rencontrent dans tant d'applications, ont fait jadis l'objet des recherches de géomètres illustres. Puis est venue ensuite l'étude des surfaces générales du troisième degré avec les diverses dispositions que peuvent présenter leurs vingt-sept droites; les surfaces réglées du troisième ordre ont peut-être offert, avec leur droite double, le premier exemple d'une

Rend. Circ. Matem., t. IX, parte 1ª.—Stampato il 18 febbrajo 1895.

surface ayant une ligne double, c'est-à-dire une ligne le long de laquelle se croisent deux nappes de la surface. Il faudrait une érudition qui me manque pour parler de tous les travaux relatifs aux surfaces du quatrième degré. Quelques-unes, toutefois, sont particulièrement célèbres. Ainsi, les surfaces du quatrième degré ayant une conique double ont été étudiées spécialement par M. Darboux et par M. Moutard, qui ont découvert un remarquable système triple orthogonal formé de telles surfaces. Citons ensuite la surface de Kummer qui a seize points doubles isolés; ce nombre est intéressant, car il représente le nombre maximum de points doubles que peut possèder une surface du quatrième ordre qui n'a pas de ligne double. La surface de Steiner mérite aussi d'être rappelée; elle possède trois droites doubles formant un angle trièdre dont le sommet est un point triple de la surface, et chacun de ses plans tangents la coupe suivant deux coniques.

Arrivons maintenant à la théorie générale. Nous avons signalé, pour une courbe algébrique d'ordre m, l'importance des courbes adjointes d'ordre m-3; Clebsch vit le premier qu'une théorie analogue était à développer pour les surfaces; il faut seulement, pour une surface d'ordre m, considérer les surfaces adjointes d'ordre m-4, c'est-à-dire, en me bornant, pour plus de simplicité, au cas où la surface n'a que des points doubles, les surfaces d'ordre m-4 passant par les lignes doubles. L'étude de ces surfaces a été reprise par M. No et her dans un mémoire d'une grande importance où il établit le caractère invariant du nombre p de ces adjointes linéairement indépendantes; ce nombre est dit le genre de la surface, et il présente une grande analogie avec le nombre désigné par la même lettre dans la théorie des courbes. M. No et her a découvert pour les surfaces un second nombre invariant que nous désignerons par p'; celui-ci représente le genre riemannien de la courbe mobile d'intersection de la surface donnée avec les surfaces adjointes d'ordre m-4. Voici donc deux nombres fondamentaux p et p' introduits dans la théorie des surfaces algébriques.

On peut donner aussi au nombre p une origine transcendante. M. No et her considère les intègrales doubles de la forme

$$\int\!\!\int\!\!\frac{Q(x,\,y,\,z)\,dx\,dy}{f_z'},$$

 $\mathcal Q$ étant un polynôme adjoint d'ordre m-4. On peut les appeler des intégrales doubles de première espèce, car elles restent toujours finies, quel que soit le champ de l'intégration. Le nombre p apparaît comme le nombre des intégrales doubles de première espèce linéairement indépendantes.

Nous avons maintenant une remarque très importante à faire relativement au nombre p, remarque qui n'a pas eu son analogue dans le cas des courbes. Pour calculer p, il faudrait pouvoir calculer le nombre des arbitraires figurant dans les surfaces d'ordre m-4 et passant, avec le degré voulu de singularité, par les lignes multiples et les points multiples de la surface proposée. Or, étant donné

l'ensemble de ces lignes et de ces points, on peut trouver une telle formule pour une surface d'un ordre suffisamment grand N; mais on ne sait rien sur la valeur minima au-dessous de laquelle la formule cesse d'être applicable. Si donc on fait dans cette formule N=m-4, on pourra trouver un nombre P différent de p. C'est, je crois, M. Cayley qui a appelé le premier l'attention sur cette circonstance; il peut même arriver que le nombre P soit négatif, tandis que p est évidemment positif ou nul. MM. Cayley et Zeuthen ont montré que P, comme p, jouit de la propriété d'invariance, c'est-à-dire qu'il est le même pour les surfaces se correspondant point par point. On désigne p sous le nom de genre géo-métrique, et P sous le nom de genre numérique. Les surfaces réglées algébriques sont les plus simples surfaces pour lesquelles on ait $P \neq p$; on a pour elles p = 0, tandis que P n'est pas nul en général.

La notion de classe s'applique évidemment aux surfaces comme aux courbes. La question du nombre des modules se présente alors aussi. D'après M. N o e t h e r, pour les surfaces correspondant aux nombres p et p', le nombre des modules est égal à 10 p+12-2p'; peut-être ce beau résultat aurait-il besoin d'être l'objet d'une démonstration plus rigoureuse. Il semble, en tout cas, qu'il ne s'applique qu'aux surfaces pour lesquelles on a P=p.

Nous avons considéré plus haut des intégrales doubles attachées à la surface. On peut aussi faire correspondre à une surface f(x, y, z) = 0 des intégrales de différentielles totales de la forme

(3)
$$\int P(x, y, z) dx + Q(x, y, z) dy,$$

où P et Q sont rationnelles en x, y et z. J'ai commencé autrefois l'étude de ces intégrales, et je demande la permission de rappeler les résultats principaux auxquels je suis parvenu. Tout d'abord j'ai considéré les intégrales de différentielles totales de première espèce. On rencontre dès le début une différence bien profonde entre le cas d'une variable et celui de deux variables. La courbe la plus générale d'un degré donné possède un certain nombre d'intégrales de première espèce. Il en est tout autrement pour les surfaces algébriques, car il n'existe pas d'intégrales de différentielles totales de première espèce correspondant à la surface la plus générale de degré m. J'ai montré comment on pourrait reconnaître si une surface donnée possède des intégrales de première espèce. J'ai abordé aussi la question, beaucoup plus difficile, des intégrales de seconde et de troisième espèce; j'entends par intégrales de seconde espèce celles qui n'ont que des courbes polaires (analogues aux pôles des intégrales de seconde espèce), les intégrales de troisième espèce ayant, en plus, des courbes logarithmiques. Pour la surface la plus générale de son degré, toute intégrale de seconde espèce est une fonction rationnelle des coordonnées, et le problème de reconnaître si une surface donnée admet des intégrales de seconde espèce non rationnelles ne laisse pas d'être assez délicat; d'ailleurs, quand il existe de telles intégrales, le nombre de ces intégrales distinctes est égal au nombre de leurs périodes. Quant aux intégrales de troisième espèce,

on peut rattacher leur théorie à celle des intégrales de seconde espèce; mais, bien des points demanderaient encore à être approfondis. J'ai même dû laisser en suspens une question qui se pose pourtant dès le début; il ne me paraît guère douteux que, pour la surface la plus générale de son degré, toutes les intégrales de la forme (3) doivent se réduire à la somme d'une fonction rationnelle de x, y, z et de logarithmes de telles fonctions multipliés par des constantes, mais je n'en possède pas une démonstration rigoureuse.

Nous avons dit plus haut comment Riemann avait introduit dans la théorie des courbes des points de vue empruntés à la géométrie de situation. Aucune recherche analogue n'avait été tentée pour les surfaces, et, d'autre part, mes précédentes études sur les intégrales de différentielles totales me montraient là une lacune à combler. J'eus donc tout naturellement la pensée de chercher à poser les bases d'une théorie des cycles dans les surfaces. Je fus ainsi conduit à remarquer que la généralisation peut se faire dans deux directions différentes; il y a à considérer, pour les surfaces, des cycles à une dimension ou linéaires et des cycles à deux dimensions; d'où deux théories entièrement distinctes. En pénétrant dans la première étude, on rencontre un résultat au premier abord inattendu: c'est qu'en général il n'y a pas de cycles linéaires, c'est-à-dire qu'ils se réduisent à des cycles nuls, et ce résultat donne la véritable raison du fait signalé plus haut qu'il n'y a pas, en général, d'intégrales de première et de seconde espèce. Si le nombre p, des cycles linéaires est nul généralement, il en est autrement pour le nombre p2 des cycles à deux dimensions, et c'est, par suite, dans les cycles à deux dimensions d'une surface qu'il faut chercher la généralisation des cycles d'une courbe algébrique.

Mes recherches sur les intégrales de différentielles totales m'ont permis d'aborder l'étude d'une classe intéressante de surfaces : ce sont les surfaces pour lesquelles les coordonnées d'un point quelconque s'expriment par des fonctions uniformes quadruplement périodiques de deux paramètres, et cela de telle manière qu'à un point arbitraire de la surface ne corresponde qu'un seul système de valeurs de deux paramètres, abstraction faite des multiples des périodes. J'ai établi que la condition nécessaire et suffisante pour qu'une surface jouisse de cette propriété est qu'elle soit de genre un (p=1) et possède deux intégrales distinctes de première espèce. Avant le sixième degré, il n'existe pas de surface de la classe précédente; on en peut trouver pour le sixième degré, mais les fonctions quadruplement périodiques se ramènent aux fonctions doublement périodiques.

Dans un mémoire extrêmement intéressant, couronné il y a deux ans par l'Académie, M. Hu m b e r t a approfondi l'étude des surfaces précédentes et établi des théorèmes d'une rare élégance. Parmi les résultats relatifs aux surfaces adjointes, citons au moins celui qui concerne les adjointes d'ordre m-3: le nombre de ces adjointes linéairement distinctes est égal au genre des sections planes de la surface diminuée d'une unité. Signalons encore que le genre numérique P est égal à -1 et est, par suite, distinct du genre géométrique. M. Hu m b e r t étudie

aussi des surfaces remarquables d'ordre huit, ayant pour lignes doubles les arêtes d'un tétraèdre, qui sont jusqu'ici les surfaces de moindre degré correspondant à des fonctions hyperelliptiques non réductibles aux fonctions doublement périodiques. D'après ce que j'ai dit plus haut, il resterait à voir s'il existe de telles surfaces pour les degrés six et sept; il est bien vraisemblable que huit est le degré minimum.

M. Humbert s'est aussi occupé, dans son mémoire, de la surface de Kummer, qui se rattache aux fonctions quadruplement périodiques, mais ne rentre pas dans la famille précédente: car à un point arbitraire de la surface correspondent deux valeurs des paramètres, aux périodes près; il fait une étude très complète des courbes tracées sur la surface et des propriétés des surfaces passant par ces courbes.

D'une manière générale, l'étude des courbes algébriques tracées sur une surface est un point très important de la théorie. Dans leurs célèbres m'moires de 1880, Halphen et M. Noether ont donné à ce sujet quelques propositions générales. Ce sont surtout les systèmes continus de courbes tracées sur une surface qui ont fait, dans ces derniers temps, l'objet de travaux importants, partîculièrement en Italie, avec MM. Guccia, Segre, Bertini, Castelnuovo, En riques, etc. Les systèmes linéaires de courbes sont particulièrement intéressants. On désigne sous ce nom un système de courbes découpées (totalement ou partiellement) sur F par les surfaces d'un système linéaire. M. Enriques a remarqué qu'un système de courbes dépendant de r paramètres et découpées totalement ou partiellement sur F par les surfaces d'un système algébrique (on ne dit pas linéaire), est nécessairement linéaire si r est supérieur à un, et si par r points généraux de F passe une seule courbe du système. Tout récemment, M. Il u mbert s'est occupé des séries simplement infinies de courbes sur une sur'ace, et il a montré qu'une telle série de courbes, se coupant deux à deux en un ou plusieurs points mobiles, est comprise dans une série linéaire (deux fois infinie au moins) de courbes du même ordre, pourvu que la surface ne possède pas d'intégrales de différentielles totales de première espèce; on entend ici par série linéaire de courbes des courbes découpées par les surfaces d'un système linéaire, chaque surface mobile ne coupant la proposée, en dehors de courbes fixes, que suivant une seule courbe mobile.

Les surfaces appelées unicursales, pour lesquelles les coordonnées s'expriment en fonctions rationnelles de deux paramètres, ont fait depuis Clebsch l'objet de nombreux travaux. Une lacune importante subsistait dans cette théorie. l'eut-on, pour une telle surface, faire la représentation paramétrique de manière qu'à un point arbitraire de la surface ne corresponde qu'un seul système de valeurs des deux paramètres? Cette question très délicate restait en suspens; nous savons maintenant, grâce à M. Castelnuovo, qu'elle doit être résolue par l'affirmative. On peut déduire de là que, si une surface contient une simple infinité de courbes rationnelles, infinité dépendant rationnellement d'un paramètre, elle est unicursale.

Quelques travaux ont encore été consacrés récemment à l'étude des surfaces d'après le genre de leurs sections planes. J'avais cherché autrefois les surfaces dont toutes les sections planes sont unicursales et montré qu'elles se réduisent aux surfaces réglées unicursales et à la surface de Steiner. M. Castelnuovo a cherché les surfaces dont toutes les sections planes sont de genre un et il a établi que ces surfaces sont unicursales ou réglées. M. Enriques est arrivé à la même conclusion pour les surfaces dont les sections sont des courbes hyperelliptiques de genre quelconque. Rappelons encore, dans le même ordre d'idées, un théorème énoncé en 1886 par Kronecker et que vient d'établir M. Castelnuovo, d'après lequel les seules surfaces irréductibles admettant une double infinité de sections planes décomposables en deux courbes distinctes sont les surfaces réglées et la surface de Steiner.

L'étude des transformations d'une surface en elle-même, au moyen de transformations birationnelles, est importante pour la théorie qui nous occupe. Il y a ici encore une grande différence entre le cas des courbes et celui des surfaces. Tandis qu'une transformation birationnelle d'une courbe en elle-même, dépendant de paramètres arbitraires, fait nécessairement partie d'un groupe fini et continu au sens de M. Li e, il peut en être autrement pour les surfaces. J'ai pu étudier le cas des surfaces admettant un groupe fini et continu de transformations birationnelles; mais les cas où celles-ci ne forment pas un groupe paraissent d'un bien autre intérêt.

On voit que, malgré tant de travaux et particulièrement ceux de M. No et her qui ont tant contribué aux progrès de la théorie générale des surfaces algébriques, celle-ci est loin d'être aussi avancée que celle des courbes. Il semble que d'autres nombres invariants que ceux qui ont été jusqu'ici considérés soient à introduire. Ainsi, il y a un grand nombre de classes de surfaces pour lesquelles il n'y a rien à tirer de la notion de genre géométrique; j'ai lieu d'espérer qu'au moins dans des cas étendus, un nouvel invariant sur lequel j'ai récemment appelé l'attention et d'autres nombres analogues pourront n'être pas dénués d'intérêt.

ÉMILE PICARD,
de l'Académie des Sciences,

Professeur de Calcul différentiel et intégral à la Faculté des Sciences de Paris.

SULLE INVOLUZIONI DI SPECIE QUALUNQUE.

Nota di F. Gerbaldi, in Palermo.

Adunanza dell'11 novembre 1894. - Verbali.

Il prof. Guccia ha in questi Rendiconti dimostrato in più modi che l'abbassamento prodotto di una singolarità ordinaria $[\sigma_1, \sigma_2, \ldots, \sigma_k]$ nel numero dei punti (k+1)-pli di un'involuzione di specie k è in generale

$$L_k = \sigma_1 + \sigma_2 + \ldots + \sigma_k - \frac{k(k+1)}{2}$$
.

Parmi utile rilevare che l'ultima dimostrazione (t. VIII, pp. 228-230) si può estendere in guisa che nello enunciato precedente sia lecito sostituire la parola sempre alla parola in generale. Basta a quest'uopo far vedere che

$$\Phi = \begin{bmatrix} \varphi_n & \varphi_{n-\sigma_1} & \dots & \varphi_{n-\sigma_k} \\ \frac{\partial \varphi_n}{\partial x_2} & \frac{\partial \varphi_{n-\sigma_1}}{\partial x_2} & \dots & \frac{\partial \varphi_{n-\sigma_k}}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^k \varphi_n}{\partial x_2^k} & \frac{\partial^k \varphi_{n-\sigma_1}}{\partial x_2^k} & \dots & \frac{\partial^k \varphi_{n-\sigma_k}}{\partial x_2^k} \end{bmatrix}$$

in niun caso si può annullare per $x_1 = 0$.

Pongasi per brevità

$$n-\sigma_i=n_i \qquad \qquad (i=1,\;2,\;\dots\;k)$$

ed i coefficienti delle più alte potenze di x_2 nei polinomi φ_n , $\varphi_n - \sigma_1$, ... $\varphi_n - \sigma_k$ si denotino rispettivamente con a_0 , a_1 , ... a_k . Indi si premettano le seguenti osservazioni:

1º dalle disuguaglianze

$$1 \leq \sigma_1 < \sigma_2 < \dots < \sigma_k \leq n$$

seguono le altre

$$n > n_1 > n_2 > \ldots > n_k$$
;

 2° niuno dei coefficienti a_0 , a_1 , ... a_k può essere nullo; perchè, se fosse $a_i=0$ $(i=1,2,\ldots k)$, il polinomio $\varphi_{n-\sigma_i}$ avrebbe x_1 come fattore, donde segue che nell'involuzione minore J_n^{k-i} il punto $x_1=0$ sarebbe un punto base con una molteplicità maggiore di σ_i , il che è contro l'ipotesi circa la natura della singolarità del punto $x_1=0$; nè è $a_0=0$, altrimenti il punto $x_1=0$ sarebbe un punto base per l'involuzione I_n^k data, ciò che si esclude.

Ciò posto, si calcoli il valore di Φ per $x_1 = 0$, $x_2 = 1$; esso è

$$a_0$$
 a_1 ...

 $n a_0$ $n_1 a_1$...

 $n (n-1) a_0$ $n_1 (n_1-1) a_1$...

 $n (n-1) \ldots (n-k+1) a_0$ $n_1 (n_1-1) \ldots (n_1-k+1) a_1$...

Questo determinante si riduce facilmente con operazioni fatte sulle orizzontali ad un determinante di V a n d e r m o n d e, ed è uguale a

$$\pm a_0 a_1 \dots a_k (n - n_1) \dots (n - n_k) (n_1 - n_2) \dots (n_1 - n_k) \dots (n_{k-1} - n_k).$$

Dunque, per $x_i = 0$, Φ si riduce ad un prodotto di fattori, i quali per le osservazioni premesse sono tutti diversi da zero.

Lussano, 27 agosto 1894.

F. GERBALDI.

SULLE TRASFORMAZIONI DELLE EQUAZIONI

DELLA DINAMICA.

Nota del Dr. Giovanni Di Pirro, in Roma.

Adunanza del 10 marzo 1895

r. I lavori del sig. Appell sulla «Omografia in Meccanica» condussero il sig. Goursat a proporre la seguente questione:

Dato il sistema di equazioni di Lagrangia

(A)
$$\frac{d}{dt} \left(\frac{\partial S}{\partial p'_r} \right) - \frac{\partial S}{\partial p_r} = P_r, \quad \frac{dp_r}{dt} = p'_r \quad (r = 1, 2, \dots n)$$

dove $S = \frac{1}{2} \sum_{rs} a_{rs} p_r' p_s' (a_{rs} = a_{sr})$ è una funzione quadratica omogenea delle p_1' , p_2' , ... p_n' coi coefficienti funzioni delle p_1 , p_2 , ... p_n , e dove le P_r contengono soltanto le p_1 , p_2 , ... p_n ; trovare delle funzioni φ_1 , φ_2 , ... φ_n e λ tali che, ponendo

$$\begin{cases} q_r = \varphi_r(p_1, p_2, \dots p_n) \\ dt = \lambda(p_1, p_2, \dots p_n) dt_1, \end{cases}$$

sia possibile trasformare il dato sistema nell'altro

(B)
$$\frac{d}{dt_1} \left(\frac{\partial S_1}{\partial q'_r} \right) - \frac{\partial S_2}{\partial q_r} = Q_r, \quad \frac{dq_r}{dt_1} = q'_r \quad (r = 1, 2, ... n)$$

Rend. Circ. Matem., t. IX, parte 1ª .- Stampato il 18 marzo 1895.

dove $S_{\rm r}=\frac{1}{2}\sum_{rs}b_{rs}q_{r}'q_{s}'$ $(b_{rs}=b_{sr})$ è una funzione quadratica omogenea delle $q_{\rm r}'$, $q_{\rm s}'$, ... $q_{\rm n}'$ coi coefficienti funzioni delle sole $q_{\rm r}$, $q_{\rm s}$, ... $q_{\rm n}$, e dove le $Q_{\rm r}$ contengono soltanto le $q_{\rm r}$, $q_{\rm s}$, ... $q_{\rm n}$.

Un caso particolarmente interessante di tale questione si ha in quello recentemente studiato dal sig. Painlevé in una lunga Memoria, pubblicata nel « Journal de Mathématiques pures et appliquées » (1° fasc. 1894), relativo alle trasformazioni definite dalle formole:

(2)
$$\begin{cases} p_r = q_r \\ dt = \lambda(p_1, p_2, \dots p_n) dt_1. \end{cases}$$

È il caso nel quale le traiettorie definite dai sistemi (A) e (B) hanno le medesime equazioni, pur essendo sopra esse diverso il movimento.

Su questo soggetto il sig. Painlevé ha dimostrati parecchi importanti teoremi, non però tali da esaurire l'argomento, nè tali da dare un concetto della entità di queste trasformazioni, e del contributo che esse possono apportare alla risoluzione dei problemi della Meccanica.

La questione, invero, allora potrà dirsi completamente risoluta, quando sia determinata la funzione λ e siano determinate altresì le condizioni, a cui devono soddisfare i coefficienti a_{rs} , b_{rs} , perchè la trasformazione sia attuabile.

Partendo da queste considerazioni, io mi propongo di risolvere compiutamente il problema trattato dal sig. Painlevé nel caso che le espressioni delle semiforze vive S ed S_1 siano riducibili alla forma ortogonale, e nel caso che le forze $P_r(p_1, p_2, \ldots p_n)$, $Q_r(q_1, q_2, \ldots q_n)$ siano affatto arbitrarie.

2. Allo scopo di stabilire alcune formole preliminari, è intanto necessario osservare con Stäckel (*) che, quando si sviluppino i primi membri delle equazioni (A) e (B) e si tenga conto della tra-

^(*) Journal de Crelle, t. 110,

sformazione (1), si possono trovare dei coefficienti $R_r^{(i)}$ in numero di n^2 $(r = 1, 2, \ldots, n; i = 1, 2, \ldots, n)$ non dipendenti che da p_1, p_2, \ldots, p_n in maniera che le espressioni

(3)
$$\frac{d}{dt_{r}} \left(\frac{\partial S_{r}}{\partial q'_{r}} \right) - \frac{\partial S_{r}}{\partial q_{r}} - \sum_{i=1}^{i=n} R_{r}^{(i)} \left[\frac{d}{dt} \left(\frac{\partial S}{\partial p'_{r}} \right) - \frac{\partial S}{\partial p_{r}} \right]$$

non contengano più le derivate seconde e si riducano in conseguenza a delle forme quadratiche Φ_r di $p'_1, p'_2, \ldots p'_n$.

Basterà annullare nella espressione (3) il coefficiente di $\frac{d^2p_k}{dt^2}$: con che si avrà

(4)
$$\lambda^{2} \left[b_{1r} \frac{\partial \varphi_{1}}{\partial p_{k}} + b_{2r} \frac{\partial \varphi_{2}}{\partial p_{k}} + \dots + b_{nr} \frac{\partial \varphi_{n}}{\partial p_{k}} \right] - \sum_{i=1}^{i=n} R_{r}^{(i)} a_{ki} = 0.$$

Facendo $k = 1, 2, \ldots n$ si avranno n equazioni lineari definenti $R_r^{(1)}, R_r^{(2)}, \ldots R_r^{(n)}$ nelle quali il determinante dei coefficienti delle R è il discriminante di S, che perciò non è nullo.

Calcolate le R, la espressione (3) diventa uguale ad una forma quadratica Φ_r delle p'_1, p'_2, \ldots, p'_n ; e si avranno tra le forze P_r e le Q_r le relazioni:

$$Q_r = \Phi_r + \sum_{i=1}^{i=1} R_r^{(i)} P_i.$$

Da questa formola si deduce che quando le funzioni λ e φ , sono scelte arbitrariamente a forze P, funzioni delle sole coordinate corrispondono delle forze Q, funzioni e delle coordinate e delle velocità.

Se noi però vogliamo che le forze Q, siano dipendenti soltanto dalle posizioni, occorrerà che la trasformazione sia particolarizzata dalle condizioni:

(6)
$$\Phi_1 = 0, \quad \Phi_2 = 0, \quad \dots \quad \Phi_n = 0.$$

Ora, volendo che queste condizioni sieno soddisfatte per tutti

i movimenti possibili del sistema, bisogna che le equazioni (6) abbiano luogo quali che sieno p'_1, p'_2, \ldots, p'_n , e che quindi i coefficienti delle diverse potenze delle p' siano uguali a zero.

Si avrà così un numero più grande di equazioni definenti le φ , e λ . Queste equazioni saranno generalmente in numero maggiore delle funzioni a determinarsi: di modo che non si potrà realizzare la trasformazione, senza che esistano certe relazioni tra i coefficienti a_{xx} , b_{xx} delle forme S ed S_x .

Allorquando questa trasformazione esiste, a forze P nulle cor-

rispondono forze Q nulle.

La trasformazione quindi conserva i movimenti geodetici.

3. Ciò posto, veniamo alla risoluzione del problema che ci occupa.

Trascriviamo i sistemi (A) e (B) che chiameremo d'or innanzi (S) ed (S_r) :

(S)
$$\frac{d}{dt} \left(\frac{\partial S}{\partial p_r'} \right) - \frac{\partial S}{\partial p_r} = P_r; \quad S = \frac{1}{2} \frac{ds^2}{dt^2}$$

$$(S_{i}) \qquad \frac{d}{dt_{i}} \left(\frac{\partial S}{\partial q'_{r}} \right) - \frac{\partial S}{\partial q_{r}} = Q_{r}; \quad S_{i} = \frac{1}{2} \frac{dS_{i}^{2}}{dt_{i}^{2}},$$

e supponiamo che sia

$$d s^2 = \sum_{r=1}^{r=n} a_{rr} d p_r^2, \qquad d s_1^2 = \sum_{r=1}^{r=n} b_{rr} d q_r^2.$$

Diremo corrispondenti i sistemi (S) ed (S_x) e corrispondenti pure gli elementi lineari ds, ds_x .

Ferme rimanendo le condizioni ammesse per (A) e (B), mi propongo di vedere quale debba essere la forma delle a_{rr} , b_{rr} , e quale la forma di λ , perchè il sistema (S) si trasformi nel sistema (S_r) mediante le formole:

$$\begin{cases} q_r = p_r \\ dt = \lambda(p_1, p_2, \dots p_n) dt_1. \end{cases}$$

Tenuta ragione delle ipotesi fatte, le equazioni (4) dànno nel nostro caso:

$$\lambda^2 b_{rr} = R_r^{(r)} a_{rr},$$

da cui

$$R_r^{(r)} = \lambda^2 \frac{b_{rr}}{a_{rr}} ,$$

ed

$$R_r^{(1)} = R_r^{(2)} = \dots R_r^{(r-1)} = R_r^{(r+1)} = \dots = R_r^{(n)} = 0.$$

Le equazioni (5) diventano:

$$Q_r = \Phi_r + \lambda^2 \frac{b_{rr}}{a_{rr}} P_r.$$

E se per P_r e Q_r poniamo i valori che si cavano dai primi membri dei sistemi (S) ed (S_i) , le equazioni (6) daranno luogo al sistema:

Lin

$$\left\{
\frac{1}{2} \lambda^{2} \frac{\partial b_{rr}}{\partial p_{r}} + \lambda b_{rr} \frac{\partial \lambda}{\partial p_{r}} - \frac{1}{2} \lambda^{2} \frac{b_{rr}}{a_{rr}} \frac{\partial a_{rr}}{\partial p_{r}} = 0, \quad (r = 1, 2, \dots n)
\right.$$

$$\left\{
\lambda^{2} \frac{\partial b_{rr}}{\partial p_{s}} + \lambda b_{rr} \frac{\partial \lambda}{\partial p_{s}} - \lambda^{2} \frac{b_{rr}}{a_{rr}} \frac{\partial a_{rr}}{\partial p_{s}} = 0, \quad \begin{pmatrix} r = 1, 2, \dots n \\ s = 1, 2, \dots n \end{pmatrix} r \neq s
\right.$$

$$\left. \frac{b_{rr}}{a_{rr}} \frac{\partial a_{ss}}{\partial p_{r}} - \frac{\partial b_{ss}}{\partial p_{r}} = 0. \quad \begin{pmatrix} r = 1, 2, \dots n \\ s = 1, 2, \dots n \end{pmatrix} r \neq s
\right.$$

Si vede di qui che la risoluzione del problema è ricondotta alla integrazione del sistema (7) formato da n(2n-1) equazioni differenziali.

Integriamolo:

La 1ª equazione si può scrivere:

$$\frac{\partial}{\partial p_r}(\log b_{rr}) + \frac{\partial}{\partial p_r}(\log \lambda^2) - \frac{\partial}{\partial p_r}(\log a_{rr}) = 0$$

ossia

$$\frac{\partial}{\partial p_r} \left(\log \lambda^2 \frac{b_{rr}}{a_{rr}} \right) = 0;$$

da cui

$$\lambda^2 \frac{b_{rr}}{a_{rr}} = F_r(p_1, p_2, \dots p_{r-1}, p_{r+1}, \dots p_n),$$

dove F_r è il simbolo di una funzione arbitraria che non contiene la p_r .

La 2ª equazione si può anche scrivere

$$\frac{\partial}{\partial p_s} (\log b_{rr}) + \frac{\partial}{\partial p_s} (\log \lambda) - \frac{\partial}{\partial p_s} (\log a_{rr}) = 0$$

ossia

$$\frac{\partial}{\partial p_s} \left(\log \lambda \frac{b_{rr}}{a_{rr}} \right) = 0,$$

la quale equazione, valendo per

$$s = 1, 2, \ldots r - 1, r + 1, \ldots n$$

dà

$$\lambda \frac{b_{rr}}{a_{rr}} = \frac{1}{\Pi_r(p_r)},$$

dove la $\Pi_r(p_r)$ è una funzione arbitraria della sola p_r . Tenendo conto di questo risultato l'equazione:

$$\lambda^2 \frac{b_{rr}}{a_{rr}} = F(p_1, p_2, \dots p_{r-1}, p_{r+1}, \dots p_n)$$

diventa

$$\frac{\lambda}{\Pi_r(p_r)} = F_r(p_1, p_2, \dots p_{r-1}, p_{r+1}, \dots p_n),$$

la quale valendo per r = 1, 2, ... n contiene le altre

(8)
$$\lambda = \Pi_1(p_1)F_1 = \Pi_2(p_2)F_2 = \dots = \Pi_{r-1}(p_{r-1}) = \Pi_r(p_r)F_r = \dots = \Pi_n(p_n)F_n$$
.

Portiamo ora la nostra attenzione sopra l'eguaglianza

$$\Pi_{r-1}(p_{r-1})F_{r-1} = \Pi_r(p_r)F_r$$

che possiamo scrivere

$$\frac{F_r}{\Pi_{r-1}(p_{r-1})} = \frac{F_{r-1}}{\Pi_r(p_r)};$$

ed osserviamo che, per la natura della funzione F_r , il primo membro non contiene la p_r , per la natura della funzione F_{r-1} , il secondo membro non contiene la p_{r-1} . Perchè dunque l'uguaglianza possa aver luogo è necessario che i due membri siano uguali ad una certa funzione

$$\varphi_{r,r-1}(p_1, p_2, \ldots p_{r-2}, p_{r+1}, \ldots p_n),$$

che non contenga nè la pr., nè la pr.

Avvalendoci di questa considerazione possiamo allora dal sistema (8) dedurre le seguenti relazioni:

dove le φ sono simboli di funzioni arbitrarie e gli indici r, s nella

funzione φ_r , stanno ad indicare che in essa mancano le variabili p_r e p_s .

Ora da queste relazioni si rileva che la

(indipendente dalla p_r) è tale funzione che il quoziente della divisione di essa per $\Pi_2(p_1)$ è indipendente da p_1 , il quoziente per $\Pi_3(p_2)$ è indipendente da p_2 , ..., il quoziente per $\Pi_n(p_n)$ è indipendente da p_n .

Dunque essa è necessariamente della forma

$$F_r = C. \Pi_1(p_1). \Pi_2(p_2)...\Pi_{r-1}(p_{r-1}). \Pi_{r+1}(p_{r+1})...\Pi_n(p_n)$$

essendo C una costante arbitraria.

Questa espressione farà conoscere la forma delle F_1 , F_2 , ... F_n , quando in essa si faccia successivamente

$$r=1, 2, \ldots n.$$

Tenendo conto di questi risultati e del sistema (8) segue per λ il valore

$$\lambda = C \Pi_{1}(p_{1}). \Pi_{2}(p_{2}) \ldots \Pi_{n}(p_{n}).$$

E quindi dalla

$$\lambda \frac{b_{rr}}{a_{rr}} = \frac{1}{\Pi_r(b_r)}$$

si cava

$$b_{rr} = \frac{a_{rr}}{C \cdot \Pi_{r} \Pi_{2} \cdot \ldots \cdot \Pi_{r-1} \Pi_{r}^{2} \Pi_{r+1} \cdot \ldots \cdot \Pi_{n}},$$

Dopo ciò, risolviamo il sistema contenuto nella 3ª equazione del sistema (7), che è

$$\frac{b_{rr}}{a_{rr}}\frac{\partial a_{ss}}{\partial p_{r}}-\frac{\partial b_{ss}}{\partial p_{r}}=0. \quad \binom{r=1, 2, \ldots n}{s=1, 2, \ldots n} \quad r\neq s.$$

Sostituendo in questa per b, e b, i valori trovati, si ha

$$\frac{1}{\Pi_r^2} \frac{\partial a_{ss}}{\partial p_r} = \frac{1}{\Pi_s} \frac{\Pi_r \frac{\partial a_{ss}}{\partial p_r} - a_{ss} \frac{\partial \Pi_r}{\partial p_r}}{\Pi_r^2},$$

ossia

$$(\Pi_r - \Pi_s) \frac{\partial a_{ss}}{\partial p_r} = a_{ss} \frac{\partial \Pi_r}{\partial p_r}$$
,

cioè

$$\frac{\partial}{\partial p_r} (\log a_{si}) \doteq \frac{\partial}{\partial p_r} [\log (\Pi_r - \Pi_s)].$$

Da quest'ultima integrando si cava:

$$a_{ss} = (\Pi_r - \Pi_s) \psi_r$$

dove ψ , indica una funzione indipendente dalla p_r .

Ponendo successivamente nella formola così dedotta

$$r=1, 2, \ldots n$$

si ottengono le relazioni:

$$a_{ss} = (\Pi_{1} - \Pi_{s}) \psi_{1}, \text{ essendo } \psi_{1} \text{ indipendente da } p_{1}$$

$$a_{ss} = (\Pi_{2} - \Pi_{s}) \psi_{2}, \qquad \psi_{2} \qquad \text{ } \text{ } p_{2}$$

$$\vdots$$

$$a_{ss} = (\Pi_{r} - \Pi_{s}) \psi_{r}, \qquad \text{ } \psi_{r} \qquad \text{ } \text{ } \text{ } p_{r}$$

$$\vdots$$

$$a_{ss} = (\Pi_{n} - \Pi_{s}) \psi_{n}, \qquad \text{ } \psi_{n} \qquad \text{ } \text{ } \text{ } p_{n}.$$

Per queste relazioni si deduce che la a_{ss} contiene la p_r nel solo fattore $\Pi_r - \Pi_s$, e che perciò dev'essere della forma

$$a_s = (\Pi_r - \Pi_s)(\Pi_2 - \Pi_s) \dots (\Pi_r - \Pi_s) \dots (\Pi_n - \Pi_s) P_s^{(s)},$$

dove la $P_s^{(s)}$ è una funzione arbitraria della sola p_s . Ora, senza ledere Rend, Circ. Matem., t. IX, parte 1^a .—Stampato il 18 marzo 1895. 23

la generalità dei risultati, si può supporre $P_s^{(r)} = r$, poichè ciò equivale a sostituire alle p_r altre variabili $p^{(r)}$ legate alle prime dalle relazioni:

$$p^{(r)} = \int \sqrt{P_r^{(r)}} dp_r.$$

Riterremo quindi

$$a_{ss} = (\Pi_{s} - \Pi_{s})(\Pi_{2} - \Pi_{s}) \dots (\Pi_{r} - \Pi_{s}) \dots (\Pi_{n} - \Pi_{s}).$$
 $(r \neq s)$

Sostituendo questo valore di a_{ss} nella espressione trovata per b_{ss} , si ottiene:

$$b_{ss} = \frac{(\Pi_{r} - \Pi_{s})(\Pi_{2} - \Pi_{s}) \dots (\Pi_{r} - \Pi_{s}) \dots (\Pi_{n} - \Pi_{s})}{\Pi_{r} \Pi_{2} \dots \Pi_{s-1} \Pi_{s}^{2} \Pi_{s+1} \dots \Pi_{n}}. (r \neq s)$$

È da osservare intanto che il valore di a_{ss} non cangia quando in luogo delle Π_r si ponga $\Pi_r + h$, essendo h una costante.

Per contrario b_{ss} diventa una funzione di h e varia col variare di h.

Quindi per ogni valore di a_{ss} soddisfacente al sistema di equazioni integrato corrispondono infiniti valori di b_{ss} soddisfacenti tutti al medesimo sistema.

Quanto si è detto ci permette di enunciare la seguente proposizione:

Se le espressioni delle semiforze vive S ed S, sono riducibili a forma ortogonale, il sistema (S) di equazioni di Lagrangia si potrà con le formole

$$q_r = p_r$$

 $dt = \lambda(p_1 p_2 \dots p_n) dt_1$

trasformare nel sistema (S,), quando, posto

$$S = \frac{1}{2} \left(\frac{d s}{d t} \right)^2 = \sum_{r=1}^{r=m} a_{rr} \left(\frac{d p_r}{d t} \right)^2$$

$$S_i = \frac{1}{2} \left(\frac{d s_i}{d t_i} \right)^2 = \sum_{r=1}^{r=m} b_{rr} \left(\frac{d q_r}{d t} \right)^2 = \sum_{r=1}^{r=m} b_{rr} \left(\frac{d p_r}{d t} \right)^2,$$

SULLE TRASFORMAZIONI DELLE EQUAZIONI DELLA DINAMICA. 179

si abbia rispettivamente

$$a_{rr} = (\Pi_{1} - \Pi_{r})(\Pi_{2} - \Pi_{r}) \dots (\Pi_{n} - \Pi_{r})$$

$$b_{rr} = \frac{(\Pi_{1} - \Pi_{r})(\Pi_{2} - \Pi_{r}) \dots (\Pi_{n} - \Pi_{r})}{C(\Pi_{1} + b)(\Pi_{2} + b) \dots (\Pi_{r-1} + b)(\Pi_{r} + b)^{2}(\Pi_{r+1} + b) \dots (\Pi_{n} + b)}$$

e si abbia altresi

$$\lambda = C(\Pi_1 + b)(\Pi_2 + b) \dots (\Pi_n + b).$$

In tal caso, e solo in tal caso, la trasformazione proposta a forze P_r del sistema (S), funzioni delle sole coordinate, farà corrispondere forze Q_r del sistema (S_1) , funzioni del pari delle sole coordinate.

E la dipendenza fra le P, e le Q, è desinita dalle formole:

$$Q_r = \lambda^2 \frac{b_{rr}}{a_{rr}} P_r$$

ossia dalle :

(9)
$$Q_r = C(\Pi_1 + h)(\Pi_2 + h) \dots (\Pi_{r-1} + h)(\Pi_{r+1} + h) \dots (\Pi_n + h)P_r.$$

 $(r = 1, 2, \dots n)$

4. Studiamo ora un caso particolare importante di queste trasformazioni.

Supponiamo che le P, derivino da una funzione potenziale U, per cui si abbia

$$P_r = \frac{\partial U}{\partial p_r}$$
.

Da questa ipotesi non consegue necessariamente che le Q, debbano pur esse ammettere un potenziale: ciò in generale non sarà. Si può però domandare:

Esistono forme della funzione U, per cui, essendo $P_r = \frac{\partial U}{\partial p_r}$, sia pure $Q_r^1 = \frac{\partial U_r}{\partial p_r}$?

Perchè ciò sia, occorre che l'espressione

$$Q_1 dp_1 + Q_2 dp_2 + \ldots + Q_n dp_n$$

sia un differenziale esatto e che quindi si abbia:

$$\frac{\partial Q_r}{\partial p_s} = \frac{\partial Q_s}{\partial p_r}. \qquad \begin{pmatrix} r = 1, 2, \dots n \\ s = 1, 2, \dots n \end{pmatrix} r \neq s$$

Ora

$$Q_r = C(\Pi_1 + b)(\Pi_2 + b) \dots (\Pi_{r-1} + b)(\Pi_{r+1} + b) \dots (\Pi_n + b) \frac{\partial U}{\partial p_r}$$

$$Q_s = C(\Pi_1 + b)(\Pi_2 + b) \dots (\Pi_{s-1} + b)(\Pi_{s+1} + b) \dots (\Pi_n + b) \frac{\partial U}{\partial p_s}.$$
Quindi la

$$\frac{\partial Q_r}{\partial p_s} = \frac{\partial Q_s}{\partial p_r}$$

dà

$$\frac{\partial}{\partial p_s} \left[(\Pi_r + b) \frac{\partial U}{\partial p_r} \right] = \frac{\partial}{\partial p_r} \left[(\Pi_r + b) \frac{\partial U}{\partial p_s} \right]$$

ossia

(10)
$$\frac{\partial^{2}(\Pi_{r}-\Pi_{s})U}{\partial p_{r} \partial p_{s}} = 0. \begin{pmatrix} r=1, 2, \dots n \\ s=1, 2, \dots n \end{pmatrix} r \neq s$$

La determinazione della funzione U è così ridotta alla integrazione del sistema (10).

Per effettuare una tale integrazione consideriamo le n seguenti equazioni:

$$\frac{\partial^2 (\Pi_r - \Pi_r) U}{\partial p_r \partial p_r} = 0$$

$$\frac{\partial^2 (\Pi_r - \Pi_2) U}{\partial p_r \partial p_2} = 0$$

$$\frac{\partial^{2}(\Pi_{r} - \Pi_{3})U}{\partial p_{r} \partial p_{3}} = 0$$

$$\frac{\partial^{2}(\Pi_{r} - \Pi_{s})U}{\partial p_{r} \partial p_{s}} = 0$$

$$\frac{\partial^{2}(\Pi_{r} - \Pi_{n})U}{\partial p_{r} \partial p_{s}} = 0$$

Queste equazioni, integrate, dànno:

dove $\varphi_r^{(s)}$ è il simbolo di una funzione arbitraria delle variabili, in cui l'indice r sta ad indicare che in essa manca la variabile p_r .

Ora dall'esame delle relazioni precedenti si scorge che la U deve potersi esprimere mediante la somma di due funzioni.

La prima conterrà in modo arbitrario tutte le variabili, ad eccezione della p_r , la quale vi entra soltanto nei fattori

$$\frac{1}{\Pi_r - \Pi_1}$$
, $\frac{1}{\Pi_r - \Pi_2}$, $\dots \frac{1}{\Pi_r - \Pi_s}$, $\dots \frac{1}{\Pi_r - \Pi_n}$

La seconda conterrà in modo arbitrario la p_r , e sarà tale funzione di p_1 , p_2 , ... p_{r-1} , p_{r+1} , ... p_n che, moltiplicata per $(\Pi_r - \Pi_1)$

non conterrà la p_1 , moltiplicata per $(\Pi_r - \Pi_2)$ non conterrà la p_2 , ..., moltiplicata per $(\Pi_r - \Pi_n)$ non conterrà la p_n .

Questa seconda funzione sarà quindi della forma

$$\frac{f_r(p_r)}{(\Pi_r - \Pi_1)(\Pi_r - \Pi_2) \dots (\Pi_r - \Pi_n)}$$

con $f_r(p_r)$ funzione arbitraria della sola p_r . Potremo quindi scrivere:

$$U = F_r(p_1, p_2, \dots p_{r-1}, p_r, p_{r+1}, \dots p_n) + \frac{f_r(p_r)}{(\Pi_r - \Pi_1)(\Pi_r - \Pi_2) \dots (\Pi_r - \Pi_n)},$$

dove F_r è una funzione arbitraria delle $p_1, p_2, \dots p_{r-1}, p_{r+1}, \dots p_n$, e contiene la p_r soltanto nei fattori

$$\frac{\mathrm{I}}{\mathrm{II}_r-\mathrm{II}_{\mathrm{I}}},\ \frac{\mathrm{I}}{\mathrm{II}_r-\mathrm{II}_{\mathrm{2}}},\ \cdots\ \frac{\mathrm{I}}{\mathrm{II}_r-\mathrm{II}_{\mathrm{n}}}.$$

Ma il ragionamento fatto vale per tutti i valori che può assumere r, cioè

$$1, 2, \ldots n.$$

Ne consegue che la p_x può entrare arbitrariamente soltanto nel termine

$$\frac{f_{\scriptscriptstyle \rm I}(p_{\scriptscriptstyle \rm I})}{(\Pi_{\scriptscriptstyle \rm I}-\Pi_{\scriptscriptstyle 2})(\Pi_{\scriptscriptstyle \rm I}-\Pi_{\scriptscriptstyle 3})\,\ldots\,(\Pi_{\scriptscriptstyle \rm I}-\Pi_{\scriptscriptstyle n})},$$

che la p2 può entrare arbitrariamente soltanto nel termine

$$\frac{f_2(p_2)}{(\Pi_2 - \Pi_1)(\Pi_2 - \Pi_3) \dots (\Pi_2 - \Pi_n)}$$

e che quindi la U dovrà necessariamente avere la forma

$$U = \sum_{r=1}^{r=1} \frac{f_r(p_r)}{(\Pi_r - \Pi_1)(\Pi_r - \Pi_2) \dots (\Pi_r - \Pi_n)},$$

dove $f_1(p_1)$, $f_2(p_2)$, ... $f_n(p_n)$ sono funzioni completamente arbitrarie dei soli argomenti indicati.

Deduciamo quindi il teorema:

Se le forze P, ammettono una funzione potenziale U della forma

$$U = \sum_{r=1}^{r=n} \frac{f_r(p_r)}{(\Pi_r - \Pi_1)(\Pi_r - \Pi_2) \dots (\Pi_r - \Pi_n)},$$

le forze Q, in questo caso, e solo in questo caso, ammetterranno pur esse una funzione potenziale.

I problemi definiti dalla funzione U sono caratterizzati da un a proprietà importante.

Per ritrovarla occorre invocare un teorema di Stäckel generalizzato dall'amico Dr. Burgatti, relativo ai problemi dotati di potenziale, che ammettono n integrali quadratici.

Denotiamo con o il seguente determinante:

$$\Phi = \begin{vmatrix} \varphi_{1,1} & \varphi_{1,2} & \dots & \varphi_{1,n} \\ \varphi_{2,1} & \varphi_{2,2} & \dots & \varphi_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_{n,1} & \varphi_{n,2} & \dots & \varphi_{n,n} \end{vmatrix},$$

dove in generale $\varphi_{r,s}$ è una funzione arbitraria della sola p_r , e indichiamo con $\Phi_s^{(r)}$ il complemento algebrico dell'elemento $\varphi_{r,s}$ nel determinante Φ .

Il teorema, a cui alludo, è il seguente:

« Se $ds^2 = \sum_{i\lambda} a_{i\lambda} d\rho_i d\rho_\lambda$ è riducibile alla forma $ds^2 = \sum_{i=1}^{i=n} \frac{\Phi}{\Phi_i^{(n)}} dp_i^2$, « e se esiste una funzione delle forze U_n riducibile alla forma « $U_n = \frac{1}{\Phi} \sum_{i=1}^{i=n} \Phi_i^{(n)} f_i(p_i)$, essendo in generale f_i funzione arbitraria « della sola p_i , allora, oltre all'integrale delle forze vive

$$\sum_{i=1}^{i=n} \frac{\Phi}{\Phi_i^{(n)}} \left(\frac{d p_i}{d t} \right)^2 = 2 \left(U_n + \alpha_n \right) (\alpha_n \text{ è una costante}),$$

« esistono altri n - 1 integrali quadratici nelle p', cioè:

$$\sum_{i=1}^{i=n} \frac{\Phi \Phi_i^{(\lambda)}}{\left(\Phi_i^{(n)}\right)^2} \left(\frac{d p_i}{d t}\right)^2 = 2 \left(U_{\lambda} + \alpha_{\lambda}\right) \quad (\lambda = 1, 2 \dots n - 1)$$

« dove

$$U_{\lambda} = \sum_{i=1}^{i=n} \frac{\Phi_{i}^{(\lambda)}}{\Phi} f_{i}(p_{i}).$$

Ora una semplice ispezione alla forma dei coefficienti a_{rr} , che compaiono nello elemento

$$ds^2 = \sum_{r=1}^{r=n} a_{rr} dp_r^2$$

da noi considerato, ci mostra come questo elemento lineare coincida con quello considerato nel teorema precedente, sol che si prenda il determinante Φ della forma seguente:

dove Π_r^s è la stessa Π_r che compare nei coefficienti a_{rr} , elevata alla potenza s.

Si conchiude quindi che i problemi definiti dalla funzione delle forze

$$U = \sum_{r=1}^{r=n} \frac{f_r(p_r)}{(\Pi_r - \Pi_1)(\Pi_r - \Pi_2) \dots (\Pi_r - \Pi_n)}$$

ammettono n integrali quadratici nelle $\frac{d p}{d t}$.

SULLE TRASFORMAZIONI DELLE EQUAZIONI DELLA DINAMICA. 185

I problemi *trasformati* ammetteranno anche essi un ugual numero di integrali quadratici nelle $\frac{d\,q_r}{d\,t_r} = \frac{d\,p_r}{d\,t_r}$.

I risultati sopra esposti contengono in sè, come farò vedere, tutti quelli ottenuti dal sig. Appell, dal sig. Dautheville, dal Dr. Picciati, relativi ai problemi aventi due gradi di libertà.

Di questi risultati io mi avvarrò per svolgere alcune conseguenze ed applicazioni.

Roma, 26 febbrajo 1895.

GIOVANNI DI PIRRO.

SULLE SECANTI MULTIPLE DI UNA CURVA ALGEBRICA

DELLO SPAZIO A TRE OD A QUATTRO DIMENSIONI.

Nota di L. Berzolari, in Torino.

(Estratto di Lettera diretta al prof. C. F. Geiser).

Adunanza del 10 febbrajo 1895.

Nel lavoro Ueber die dreifachen Secanten einer algebraischen Raumcurve (Collectanea Mathem. in mem. D. Chelini, 1881) Ella ha determinato, in due modi, il grado della rigata costituita dalle trisecanti della curva comune a due superficie algebriche di dati ordini (e ne ha poi dedotto l'analogo risultato per una qualsivoglia curva algebrica dello spazio ordinario), ricorrendo all'osservazione del § I (pag. 296), secondo la quale, in senso algebrico, le trisecanti della curva comune ad un piano e ad una superficie d'ordine n possono riguardarsi come costituenti una rigata d'ordine

$$-\frac{1}{6}n(n-1)(n-2).$$

Ora non è forse del tutto sprovvisto d'interesse mostrare come, senza punto nuocere alla semplicità del Suo metodo, si possa evitare questa considerazione alquanto paradossale, o, almeno, non geometrica, di un ordine negativo di una superficie. A ciò sono pervenuto facendo uso dello stesso principio che informa tutto il Suo lavoro, cioè di quello che il sig. Schubert ha chiamato il principio della conservazione del numero.

SI.

Rappresenterò con F^m una superficie d'ordine m, con $(F^m F^n)$ la curva che è completa intersezione delle superficie F^m ed F^n , e con $\varphi(m, n)$ l'ordine della rigata costituita dalle trisecanti di una $(F^m F^n)$.

Ciò posto, cerco il numero $\varphi(2a, n)$: decomponendo F^{2a} in a superficie di 2° ordine, cioè ponendo $F^{2a} \equiv F_1^2 F_2^2 \dots F_a^2$, la rigata, di cui si cerca il grado, è formata: 1) dalle a rigate delle trisecanti delle curve $(F_i^2 F^n)$, ciascuna delle quali (Collectanea, pag. 294) è di ordine $\frac{2}{3}n(n-1)(n-2)$; 2) dalle $2 \cdot \frac{a(a-1)}{2}$ rigate generate dalle corde di una delle curve $(F_i^2 F^n)$ appoggiate in un punto ad una delle curve rimanenti: ciascuna (Collectanea, pag. 302) è di ordine 2n[n(2n-1)+n(n-1)]-4n(2n-1), cioè $2n(3n^2-6n+2)$; 3) dalle $\frac{a(a-1)(a-2)}{6}$ rigate delle rette che si appoggiano in punti distinti a tre delle $(F_i^2 F^n)$, e che sono di ordine

$$2.(2n)^3 - 3.4n.2n = 8n^2(2n - 3).$$

Si ha dunque:

$$\varphi(2 a, n) = a. \frac{2}{3} n(n-1)(n-2) + a(a-1). 2 n(3 n^2 - 6 n + 2)$$

$$+ \frac{4}{3} a(a-1)(a-2). n^2(2 n - 3)$$

$$= \frac{2}{3} a n(a n - 1)[4 a n - 3(2 a + n) + 4].$$

Dando qui ad a tre valori distinti, per es. 1, 2 e 3, col metodo

da Lei indicato a pag. 300 dei Collectanea si deduce il valore generale di $\varphi(m, n)$, cioè (*):

(1)
$$\varphi(m, n) = \frac{1}{6} m n (m n - 2) [2 m n - 3 (m + n) + 4].$$

Del resto si può ottenere questa medesima formola anche con un procedimento diretto, e simile a quello di cui Ella ha fatto uso a pag. 300 dei Collectanea, ma senza però ricorrere all'osservazione del \S I del Suo lavoro. Infatti, se m = 2a, posto $F^m \equiv F_1^2 F_2^2 \dots F_a^2$, si trova per φ(2 a, n) l'espressione già scritta sopra, la quale colla sostituzione di m a 2 a, si riduce a quella fornita dalla (1). Se invece m=2 a+1, si ponga $F^m \equiv F_1^2 F_2^2 \dots F_{a-1}^2 F^3$; allora la rigata delle trisecanti di $(F^m F^n)$ si decompone: 1) nelle a-1 rigate delle trisecanti delle curve $(F_i^2 F^n)$, di cui ciascuna è di grado $\frac{2}{3} n(n-1)(n-2)$, e nella rigata delle trisecanti della (F3F"), la quale (Collectanea, pag. 297) è di grado $\frac{1}{2}n(3n-2)(3n-5)$; 2) nelle 2. $\frac{(a-1)(v-2)}{2}$ rigate costituite dalle rette che tagliano in due punti una delle (F2F") ed in un punto una delle rimanenti: ciascuna è di grado $2n(3n^2-6n+2)$; 3) nelle a-1 rigate formate dalle rette che tagliano in due punti una $(F_i^2 F^n)$ ed in un punto la $(F^3 F^n)$, e di cui ciascuna ha il grado $3n(3n^2-6n+2)$; 4) nelle a-1 rigate aventi per generatrici le corde di $(F^3 F^n)$ appoggiate ad una $(F_i^2 F^n)$, e che sono di grado $3n(5n^2-9n+2)$; 5) nelle $\frac{(a-1)(a-2)(a-3)}{6}$ rigate costituite dalle rette appoggiate in punti distinti a tre delle curve $(F_i^2 F^n)$, e che sono del grado $8n^2(2n-3)$; 6) infine nelle (a-1)(a-2) rigate, che sono luogo delle rette appoggiate in punti distinti a due delle (FiF") ed alla (FiF"), e che hanno il grado $12 n^2 (2n - 3)$.

^(*) Allo stesso risultato si potrebbe anche pervenire, facendo uso dei valori di $\varphi(m, n)$ già da Lei determinati per m=2 ed m=3, ed aggiungendo il valore che si ottiene dalla formola superiore ponendo, ad es., a=2 (cioè m=4), e poi applicando il Suo metodo sopra ricordato.

Sommando le varie espressioni così ottenute, si trova per $\varphi(2a+1, n)$ un valore che, colla sostituzione di m a 2a+1, si riduce ancora a quello dato dalla (1).

SHII.

Lo stesso metodo permette di aggiungere ai risultati del Suo lavoro la determinazione del numero $\psi(m, n)$ delle quadrisecanti di una (F^mF^n) , e poscia di una curva algebrica qualunque del nostro spazio (nell'ipotesi, ben s'intende, che tal numero sia finito). A tale scopo, per non dilungarmi soverchiamente, farò capo alle seguenti note formole, avvertendo però che, nei casi particolari in cui dovrò applicarle, esse si possono tutte dedurre assai semplicemente dal Suo lavoro.

 α) Le trisecanti di una curva di ordine m con h punti doppi apparenti, appoggiate ad una curva di ordine $m_{\rm r}$ avente colla prima k punti comuni, sono in numero di

$$m_{1}(m-2)$$
 $\left[h-\frac{1}{6}m(m-1)\right]-k(h-m+2).$

 β) Le corde comuni a due curve di ordini m_1 ed m_2 , aventi rispettivamente b_1 ed b_2 punti doppi apparenti, ed aventi in comune b_1 punti, sono in numero di

$$h_1h_2 + \frac{1}{4}m_1m_2(m_1-1)(m_2-1)-k(m_1-1)(m_2-1)+\frac{1}{2}k(k-1).$$

 γ) Le corde di una curva d'ordine m con h punti doppi apparenti, appoggiate a due altre curve di ordini m_1 ed m_2 , le quali abbiano rispettivamente in comune colla prima curva k_1 e k_2 punti, e fra loro k_{12} punti, sono in numero di

$$m_1 m_2 \left[h + \frac{1}{2} m(m-1) \right] - (m-1)(k_1 m_2 + k_2 m_1) - h k_{12} + k_1 k_2.$$

 δ) Le rette appoggiate a quattro curve di ordini m_1 , m_2 , m_3 , m_4 , tali che quelle degli ordini m_r ed m_s abbiano k_{rs} punti comuni, sono

in numero di

$$2 m_1 m_2 m_3 m_4 - \sum_{1}^{4} m_1 m_2 k_{rs} + k_{12} k_{34} + k_{13} k_{24} + k_{14} k_{23}$$
 (*).

Noto ancora che dall'esistenza di 27 rette sopra una F^3 risulta:

s)
$$\psi(3, n) = \frac{9}{8} n(n-1)(n-2)(n-3)$$
.

Ciò posto, comincio collo stabilire l'espressione di $\psi(3\,a,\,n)$, per il che basta porre $F^{3a} \equiv F_1^3 F_2^3 \dots F_a^3$. Allora le quadrisecanti della curva $(F^{3a}F^n)$ si scindono in vari gruppi, come segue: 1) a gruppi, di cui ciascuno è formato dalle quadrisecanti di una delle curve $(F_i^3F^n)$, che, per ε), sono in numero di $\frac{9}{8}n(n-1)(n-2)(n-3)$; 2) 2. $\frac{a(a-1)}{2}$ gruppi, di cui ciascuno è formato dalle rette che tagliano in tre punti una delle $(F_i^3F^n)$ ed in un punto una delle rimanenti: ciascuno di tali gruppi, per α), consta di $\frac{3}{2}n(9\,n^3-39\,n^2+46\,n-12)$ rette; 3) $\frac{a(a-1)}{2}$ gruppi, ognuno dei quali è costituito dalle corde comuni a due delle $(F_i^3F^n)$: per β), ciascuno di tali gruppi contiene $\frac{9}{4}n(13\,n^3-50\,n^2+47\,n-6)$ rette; 4) $\frac{a(a-1)(a-2)}{2}$ gruppi, ciascuno dei quali è formato dalle corde di una delle $(F_i^3F^n)$ che si appoggiano a due delle rimanenti: per γ), in ognuno di questi gruppi sono contenute $\frac{27}{2}n^2(5\,n^2-17\,n+12)$ di tali rette; 5)

22 marzo, 1885).

^(*) S'intende da sè che (qui, come in tutto il presente scritto) i punti comuni alle rette considerate e alle curve date si suppongono tutti distinti fra loro. Le formole superiori α), β), γ), δ) si trovano dimostrate, per es., in un lavoro del sig. Picquet (Bulletin de la Société Mathém. de France, t. I, 1873, pp. 260-280); le ultime due sono però date inesattamente da questo Autore, come ha rilevato il sig. Guccia a pag. 27 del t. I di questi Rendiconti (seduta del

 $\frac{a(a-1)(a-2)(a-3)}{24}$ gruppi, ognuno dei quali consta delle rette che si appoggiano a quattro delle curve $(F_i^3 F^n)$: per δ), ciascuno di tali gruppi contiene $81 n^2 (2 n^2 - 6n + 3)$ rette.

Sommando le varie espressioni ottenute, si trova:

$$\psi(3 a, n) = \frac{3}{8} a n | (3 a-1)(n-1)[3 a n (3 a-1)(n-1)-24 a n+22] - (3 a n-2)(a n-1)(3 a n-13) |.$$

Se allora si osserva che l'espressione generale di $\psi(m, n)$ dev'essere simmetrica e di 4° grado in m ed n, e deve annullarsi per m = 0 e per n = 0, sostituendo ad a quattro valori diversi, per es. 1, 2, 3 e 4, si trova col metodo dei coefficienti indeterminati la formola richiesta:

(2)
$$\begin{cases} \psi(m, n) = \frac{1}{24} m n \left[2 m^3 n^3 - 6 m^2 n^2 (m+n) + 3 m n (m+n)^2 + 18 m n (m+n) - 26 m n - 66 (m+n) + 144 \right]. \end{cases}$$

Chiamando h il numero dei punti doppi apparenti di $(F^m F^n)$, si ha:

$$b = \frac{1}{2} m n (m - 1) (n - 1),$$

onde, ponendo mn = p, il secondo membro della (2) si può scrivere anche nella forma seguente:

(3)
$$\frac{1}{2}h(h-4p+11)-\frac{1}{24}p(p-2)(p-3)(p-13).$$

Dunque una curva di ordine p dotata di h punti doppi apparenti, la quale sia completa intersezione di due superficie, possiede un numero di quadrisecanti dato dall'espressione (3).

Se poi si suppone che la curva si spezzi in due parti aventi in

comune un certo numero di punti, con un metodo analogo a quello del Suo \S IV, e facendo uso delle α) e β), si trova che il risultato precedente è vero anche per una curva che sia soltanto parziale intersezione di due superficie.

§ III.

Il metodo precedente si può anche applicare alla determinazione del numero delle trisecanti di una curva algebrica dello spazio a quattro dimensioni, studiando dapprima la curva che è completa intersezione di tre varietà (a tre dimensioni), di cui l'una sia del 2° ordine, e ricorrendo alla rappresentazione di quest'ultima nello spazio ordinario.

A tal fine è necessario premettere le seguenti proposizioni, che si dimostrano facilmente, estendendo noti procedimenti dello spazio ordinario:

 α') Date due curve di ordini m ed m_r , aventi k punti comuni, e di cui la prima abbia h delle sue corde appoggiate ad una data retta arbitraria (*), esistono

$$hm_1-(m-2)k$$

corde della prima, che si appoggiano in un punto alla seconda.

 β') Date tre curve di ordini m_1 , m_2 , m_3 , tali che quelle degli ordini m_r ed m_s abbiano k_{rs} punti comuni, esistono

$$m_1 m_2 m_3 - (m_1 k_{23} + m_2 k_{31} + m_3 k_{12})$$

rette ad esse appoggiate in punti distinti.

Ciò posto, rappresenterò con $(V^m V^n)$ la superficie d'ordine mn che è completa intersezione delle varietà V^m e V^n degli ordini m

$$h = \frac{1}{2} (m-1) (m-2) - p.$$

^(*) Il numero h è legato all'ordine m ed al genere p della curva mediante la relazione:

ed n; con (Vm Vn Vp) la curva d'ordine mnp completa intersezione delle varietà V^m , V^u , V_p ; e con $\varphi(m, n, p)$ il numero delle trisecanti di una tale curva. Per determinare questo numero, cominciamo a trovare l'espressione di $\varphi(m, n, 2)$, cioè il numero delle trisecanti di una (V'' V'' V'2). È chiaro che tali rette giacciono sopra V2, onde la questione si riduce a cercare quante fra le rette di V2 secano in tre punti la superficie (V'' V''). Per questo basta ricorrere alla projezione stereografica di V2, cioè basta projettare V2 da un suo punto sopra un iperpiano S: otteniamo in questo (*) una conica fondamentale C^2 , e l'imagine della curva $(V^m V^n V^2)$ è una curva C^{2mn} di ordine 2 m n appoggiata a C^2 in 2 m n punti, mentre le rette di V2 non passanti per il centro di projezione hanno per imagini le rette di S appoggiate a C2 in un solo punto. Il numero cercato è quindi quello delle rette di S che tagliano in tre punti la C2mn ed in an punto (diverso dai precedenti) la C2, cioè, pel teorema α) del & II.

$$4(mn-1)\left[h-\frac{mn(2mn-1)}{3}\right]-2mn(h-2mn+2),$$

avendo indicato con h il numero dei punti doppi apparenti di C^{2mn} .

Ora è noto (**) che

(4)
$$b = m n (2 m n - m - n),$$

dunque risulta:

$$\gamma'$$
) $\varphi(m, n, 2) = \frac{2}{3} mn [2m^2n^2 - 3 mn(m+n) + 6(m+n) - 8].$

Siamo ormai in grado di trovare l'espressione di $\varphi(m, n, 2a)$, poichè basta porre $V^{2a} \equiv V_1^2 V_2^2 \dots V_a^2$. Allora le trisecanti di $(V^m V^n V^{2a})$ si scindono in vari gruppi come segue: 1) a gruppi, di

^(*) Veronese, Behandlung der projectivischen Verhältnissen, etc. (Math. Annalen, Bd. XIX, 1882), Abschnitt III, § 4; Segre, Studio sulle quadriche in uno spazio lineare ad un numero qualunque di dimensioni (Mem. della R. Accademia delle Scienze di Torino, serie II, t. XXXVI, 1884), § 4.

^(**) Veronese, l. c., pag. 204.

cui ciascuno è formato dalle trisecanti di una delle $(V^m V^n V_i^2)$, e possiede un numero di rette che è dato dalla γ'); 2) 2. $\frac{a(a-1)}{2}$ gruppi, di cui ciascuno è costituito dalle corde di una delle $(V^m V^n V_i^2)$ che si appoggiano ad una delle rimanenti: in virtù di α'), in cui si ponga per k il valore 4mn, e per k il valore dato dalla k0, ognuno dei gruppi considerati contiene

$$2 m n [2 m^2 n^2 - m n (m + n) - 4 m n + 4]$$

rette; 3) $\frac{a(a-1)(a-2)}{6}$ gruppi, di cui ciascuno è formato dalle rette che secano tre delle $(V^m V^n V_i^2)$ in un punto ciascuna : per β'), ognuno di tali gruppi contiene $8 m^2 n^2 (mn-3)$ rette.

Sommando le espressioni precedenti, si ottiene:

$$\varphi(m, n, 2a) = \frac{2}{3} mna \left[2 m^2 n^2 a^2 - 3 mna(m+n) - 6 mna^2 + 6 mna + 6 (m+n) + 12 a - 20\right].$$

Se infine osserviamo che l'espressione generale cercata di $\varphi(m, n, p)$ dev'essere simmetrica e di 3° grado in m, n, p, e che inoltre essa deve annullarsi per m = 0, per n = 0, e per p = 0, attribuendo ad a nell'ultima relazione tre valori differenti, per es. 1, 2 e 3, si trova facilmente:

(5)
$$\varphi(m, n, p) = \frac{1}{6} mnp (mnp - 4) [mnp - 3 (m + n + p) + 10].$$

Chiamando h il numero delle corde di $(V^m V^n V^p)$ appoggiate ad una retta arbitraria, la formola già sopra applicata del sig. Veronese (l. c., pag. 204) dà:

$$b = \frac{1}{2} mnp (mnp - m - n - p + 2),$$

onde, posto mnp = r il secondo membro della (5) si può anche

scrivere come segue:

(6)
$$(r-4) \left\lceil h - \frac{1}{3} r(r-2) \right\rceil.$$

Dunque nello spazio a quattro dimensioni una curva di ordine r, che sia intersezione completa di tre varietà (a tre dimensioni), e tale che h delle sue corde siano appoggiate ad una retta data arbitrariamente, possiede un numero di trisecanti dato dall'espressione (6).

Supponendo poi che la curva si spezzi in due parti, con metodo analogo a quello del Suo § IV si troverebbe che il risultato precedente è vero per qualunque curva algebrica dello spazio a quattro dimensioni. Farò invece vedere come si possa pervenire alla stessa conclusione anche estendendo il metodo, col quale il sig. Picquet nel lavoro già ricordato (*) ha stabilito il numero delle quadrisecanti di una curva algebrica dello spazio ordinario.

Data una curva dell'ordine m, la quale abbia h_m delle sue corde appoggiate ad una retta arbitraria, sia $\varphi(m)$ il numero delle sue trisecanti.

Per determinare questo numero, supponiamo che la curva si decomponga in altre due degli ordini m_1 ed m_2 , di modo che sarà $m_1 + m_2 = m$; inoltre indichiamo per queste due curve con h_{m_1} ed h_{m_2} i numeri analoghi al precedente numero h_m . Le due curve avranno in comune un certo numero k di punti, che si esprime facilmente per mezzo dei numeri già introdotti; invero, per β'), esistono $m_1 m_2 - k$ rette che tagliano in punti distinti le due curve ed una retta arbitraria, onde:

$$h_m = h_{m_1} + h_{m_2} + (m_1 m_2 - k),$$

da cui:

$$k = h_{m_1} + h_{m_2} - h_m + m_1 m_2$$

^(*) V. anche la Nota inserita dal medesimo Autore nel t. 77 (pp. 474-478) dei Comptes Rendus (1873).

Allora, per a'), si ha:

$$\varphi(m) = \varphi(m_1) + \varphi(m_2) + m_1 h_{m_2} + m_2 h_{m_1} - (m - 4) (h_{m_1} + h_{m_2} - h_m + m_1 m_2).$$

Se in particolare facciamo la scomposizione $m_1 = m - 2$, $m_2 = 2$, per il che sarà $\varphi(m_2) = 0$, $h_{m_2} = 0$, dall'ultima relazione si ricava la formola ricorrente:

(7)
$$\varphi(m) = \varphi(m-2) + (m-4)h_m - (m-6)h_{m-2} - 2(m-2)(m-4)$$
.

Per dedurre da questa il valore di $\varphi(m)$ occorre distinguere il caso in cui m è pari da quello in cui esso è dispari.

Se m = 2 n, scrivendo la (7) per i valori 2 n, 2 n - 2, ..., 8, 6 di m e sommando, si ottiene:

$$\varphi(2n) = (2n - 4) h_{2n} - 8 \sum_{i=1}^{limit-2} i(i + 1)$$

$$= (2n - 4) h_{2n} - \frac{8}{3} n(n - 1)(n - 2),$$

e l'ultimo membro, sostituendo m a 2n, si riduce all'espressione (6). Se m=2n+1, scrivendo la (7) per i valori 2n+1, 2n-1,..., 7, 5 di m e sommando, si ha:

$$\varphi(2n+1) = (2n-3) h_{2n+1} - 2 \sum_{i=1}^{n-1} (4i^2 - 1) + 1$$

$$= (2n-3) \left[h_{2n+1} - \frac{1}{3} (4n^2 - 1) \right],$$

ed anche questa espressione, sostituendo m a 2n + 1, si riduce alla (6).

§ IV.

Come complemento delle indicazioni storiche date da Lei nell'ultima parte del Suo lavoro, si può osservare che i due problemi dello spazio ordinario trattati sopra (nei primi due paragrafi) erano stati già risolti anche dal sig. Picquet (1873) nei due lavori citati, e dal sig. Schubert nel § 43 del Kalkül der abzählenden Geometrie (1879). Posteriormente (1881) il sig. Rupp ha pubblicato nel Bd. XVIII dei Math. Annalen un lavoro che si connette col medesimo argomento.

Infine l'espressione (6), che dà il numero delle trisecanti di una curva algebrica dello spazio a quattro dimensioni, è compresa in una formola più generale dovuta al sig. Castelnuovo (*Una applicazione della geometria enumerativa alle curve algebriche*, n. 1; questi *Rendiconti*, t. III, 1889), il quale l'ha dedotta da considerazioni differenti, pure invocando in ajuto il principio della conservazione del numero.

Torino, 20 gennajo 1895.

L. BERZOLARI.

UN PICCOLO CONTRIBUTO ALLA TEORIA

DEGLI AGGREGATI.

Nota del Dr. C. Garibaldi, in Genova.

Adunanza del 10 marzo 1895.

Nella parte VI del Formulario di Matematica (*) è riportato (§ 1 P9) il teorema di Cantor (**):

essendo per definizione

Nalg =
$$q' - \overline{x} \varepsilon (p \varepsilon N. a_o, a_1, \dots, a_p \varepsilon n. a_o = 0. a_o x^p + a_1 x^{p-1} + \dots + a_p = 0. = =_{p,a_o,a_1,\dots,a_p} \Lambda).$$

È oggetto di questa nota la generalizzazione del teorema di Cantor.

Per facilitare la dimostrazione, premetterò due principi gene-

^(*) G. Vivanti. Sulla parte VI del Formulario. Rivista di Matematica. Anno 1894.

^(**) G. Cantor. Ueber eine Eigenschaft des Inbegriss aller reellen algebraischen Zahlen. Crelle 77, trad. fr. in Acta Math. II.

rali sulla teoria delle potenze degli aggregati; principi che parmi possano essere utili in molti casi: sia per facilitare ulteriori ricerche in questo ramo importante e difficile della teoria, come per coordinare fra loro teoremi già dimostrati laboriosamente con altri metodi.

I.

 $m, n \in \mathbb{N}. u_1, u_2, \ldots, u_m \in \mathbb{K} q_n. \text{ num } u_1 = \infty. \mathfrak{I}$:

TEOREMA I.—Se l'aggregato A è formato coi punti degli aggregati $u_1, u_2, \dots u_m$, di eguale potenza, A ha la stessa potenza di $u_1, u_2, \dots u_m$.

Consideriamo in primo luogo il caso in cui u_1 , u_2 , ... u_m , non hanno punti comuni; e fissiamo la nostra attenzione sopra uno qualunque degli aggregati dati, ad esempio u_i .

Pensiamo una funzione f_i delle coordinate dei punti di u_i univalente nei punti di u_i e zero nei punti che non appartengono ad u_i .

Consideriamo la funzione $f = \Sigma f_i$, che risulta così definita in tutti i punti di A.

È facile vedere che u_i ed A hanno la stessa potenza.

Infatti ad ogni punto di u_i corrisponde un valore di f_i , un valore di Σf_i e pertanto un determinato punto di A.

Reciprocamente ad un punto di A corrisponde un valore di Σf_i , e però un certo valore f_k , e quindi un punto di u_k . Ma u_k ha la stessa potenza di u_i , onde ad ogni punto di A corrisponde un punto di u_i .

Supponiamo ora che u_1 , u_2 , ... u_m , abbiano dei punti comuni. Sia $u_{i,k}$ l'aggregato dei punti comuni a due qualunque degli aggregati dati u_i ed u_k . L'aggregato $u_{i,k}$ avrà o la potenza di u_i o potenza inferiore.

Possiamo ora pensare un'altro aggregato $B_{i,k}$ composto di punti che non'appartengono ad u_{i} , u_{2} , ... u_{m} , il quale abbia la stessa potenza dell'aggregato $u_{i,k}$.

È chiaro che A avrà la stessa potenza dell'aggregato risultante dai punti non comuni di u_1 , u_2 , ... u_m contati tali punti ciascuno una sola volta, e dai punti degli aggregati come $B_{i,k}$.

Se gli aggregati $B_{i,k}$ hanno la stessa potenza di u_i , la questione è ridotta al caso precedente, ed A avrà la stessa potenza di u_i .

Se gli aggregati $B_{i,k}$ hanno potenza inferiore ad u_i allora si vede che la potenza di A non potrà essere per questo fatto maggiore di quella di u_i . Ma non potrà manifestamente essere inferiore a quella di u_i , onde si conclude che sarà eguale.

Il teorema resta così dimostrato.

Esso risulta come caso particolare del seguente:

Teorema II. — Se l'aggregato A è costituito dai punti degli aggregati $u_1, u_2, \ldots u_m$ di potenza differente, A ha potenza eguale a quella di u_1 che ha potenza più elevata fra $u_1, u_2, \ldots u_m$.

Infatti la potenza di A non sarà inferiore a quella di u_i ; non sarà superiore, perchè sarebbe appena eguale se ad u_1 , u_2 , ..., si unissero altri aggregati B_1 , B_2 , ..., in modo che u_1+B_1 , u_2+B_2 ,..., avessero la stessa potenza di u_i .

Si conclude pertanto che la potenza di A è eguale a quella di u_i . Il teorema I si esprime in simboli come segue:

$$m$$
, $n \in \mathbb{N}$. u_1 , u_2 , ..., $u_m \in \mathbb{K}$ q_n . $num u_1 = \infty$. \mathbb{N} $c'u_1 = \mathbb{N}$ $c'u_2 = \ldots = \mathbb{N}$ $c'u_m$. \mathfrak{D} . \mathbb{N} $c'(u_1 - u_2 - \ldots - u_m) = \mathbb{N}$ $c'u_1$.

In particolare:

$$u$$
, $v \in K$ q. num $u \in N$. num $v = \infty$. D. N c' $(u \cup v) = N$ c' v .

 u , $v \in K$ q. num $u = \infty$. N c' $u = N$ c' v . D. N c' $(u \cup v) = N$ c' u .

N c' $N + N$ c' $N = N$ c' N .

N c' $N + N$ c' $N = N$ c' N .

II.

Possiamo ora applicare i due teoremi dimostrati alla generalizzazione del teorema di Cantor, al quale abbiamo accennato in principio.

Si ha in proposito il seguente teorema:

Se i coefficienti di un'equazione algebrica di grado n assumono i valori di un'aggregato numerabile ciascuno, l'aggregato di tutti i numeri che possono essere radici di una tale equazione è pure numerabile.

Sia:

$$a_0 x^n + a_1 x^{n-1} + \ldots + a_n = 0$$

l'equazione che si considera.

Diamo ad a_o tutti i valori di cui è suscettibile, i quali per ipotesi costituiscono un'aggregato numerabile, e manteniamo costanti gli altri coefficienti. L'aggregato di equazioni che così otteniamo è numerabile perchè ad ogni valore di a_o corrisponde un'equazione determinata.

Ogni equazione ci dà un gruppo di n radici; prendendo ordinatamente da ogni gruppo di n radici la prima, la seconda, ..., otteniamo n aggregati numerabili costituiti da tutti i numeri che sono radici dell'equazione data corrispondentemente ai valori considerati di a_o .

Ragionando analogamente cogli altri coefficienti si conclude che l'aggregato dei numeri che possono essere radici dell'equazione proposta, si compone di (n + 1)n aggregati nomerabili. In forza del primo teorema possiamo dunque concludere che tale aggregato è pure numerabile.

Questo teorema si può esprimere in simboli come segue. Sia ul l'aggregato dei valori che può assumere uno qualunque dei coefficienti.

Si può supporre che esso sia lo stesso per tutti i coefficienti. Pertanto si ha:

$$n \in \mathbb{N}$$
. $u \in Kq$. $u \circ \mathbb{N}$. $o \circ q' \sim \overline{x \in (a_o, a_i, \dots a_n \in u. a_o = o. a_o x^n + a_i x^{n-i} + \dots + a_n = o. = =_{a_o, a_1, \dots a_n} \Lambda)$. $o \circ \mathbb{N}$.

Seguendo lo stesso processo di dimostrazione e facendo uso del teorema II, il risultato precedente si generalizza come segue:

L'aggregato dei numeri che sono radici di un'equazione di grado n, è della stessa potenza di quello degli aggregati percorsi dai coefficienti che ha potenza più elevata.

Genova, 22 febbrajo 1895.

C. GARIBALDI.

SULLA IRRAZIONALITÀ ICOSAEDRICA.

Nota di G. Vivanti, in Pavia.

Adunanza del 28 aprile 1895.

1. Klein, nelle sue Vorlesungen über das Ikosaeder (*), scrive:

« Wir werden jetzt als weitere, durchführbare Operation die Auf-

« lösung der Ikosaedergleichung adjungiren und fragen, ob unter « den Aufgaben, die sich durch Wurzelziehen allein nicht erledigen

« lassen, nicht solche sein mögen, bei denen dies mit Hülfe der Iko-

« saederirrationalität gelingt ».

Il primo di tali problemi è la risoluzione dell'equazione generale del 5° grado. Può chiedersi ora, se col solo aiuto dell'irrazionalità icosaedrica possano risolversi equazioni generali di grado superiore al 5°. Noi vogliamo dimostrare che a tale domanda deve rispondersi negativamente.

2. Poniamo anzitutto in chiaro in che consista il problema che vogliamo trattare.

Consideriamo come nota una quantità, quando essa sia radice d'un'equazione appartenente ad una certa classe C d'equazioni arbitrariamente assunta e i cui coefficienti appartengano ad un campo di razionalità dato; e come eseguibile l'operazione consistente nella

determinazione di tale quantità. Data un'equazione E, i cui coefficienti appartengano ad un certo campo di razionalità M, risolvere quest'equazione mediante operazioni eseguibili significa costruire una serie finita di equazioni (risolventi) R., R., ..., R., appartenenti alla classe C, e tali che i coefficienti di R, sieno quantità del campo M, che quelli di ciascuna delle altre sieno funzioni razionali d'una radice della precedente e delle quantità del campo M, e che le radici della E sieno funzioni razionali d'una radice dell'ultima risolvente R_m e delle quantità di M. Se p. es. si riguarda come unica operazione eseguibile l'estrazione di radice e quindi la classe C comprende le sole equazioni binomie, la costruzione delle risolventi R, ..., R, costituisce la risoluzione algebrica della E. È noto che, se questa equazione è generale e di grado superiore al quarto, il problema è insolubile; ed è altresì noto che, se si riguarda come operazione eseguibile anche la risoluzione dell'equazione dell'icosaedro:

$$(1) F(z) = Z,$$

dove :

$$F(z) = \frac{H^{3}(z)}{f^{5}(z)} = \frac{[-z^{20} + 228z^{15} - 494z^{10} - 228z^{5} - 1]^{3}}{[z^{11} + 11z^{6} - z]^{5}},$$

può risolversi l'equazione generale del 5° grado. Noi ci proponiamo ora di vedere se, data un'equazione generale di grado n > 5, sia possibile costruire la serie delle risolventi R quando la classe C consti delle equazioni binomie e dell'equazione icosaedrica.

3. Si sa (*) che le sole funzioni non simmetriche di cui una potenza sia una funzione simmetrica sono le funzioni alternanti; e che, se il numero delle variabili indipendenti è maggiore di 4, non v'ha alcuna funzione a più di 2 valori di cui una potenza sia una funzione a 2 valori.

Ne segue che, se la classe C comprende soltanto le equazioni

^(*) Netto, Substitutionenthecrie, Leipzig 1882, §§ 57, 59.

binomie e l'equazione icosaedrica, o la R_1 sarà un'equazione binomia di grado 2 ed R_2 un'equazione icosaedrica, oppure R_1 sarà un'equazione icosaedrica. La risoluzione del problema propostoci dipende adunque anzitutto da quella del seguente: Supposta-Z una funzione ad uno o a due valori di n variabili x_1 , x_2 , ..., x_n (n > 5), vedere se sia possibile trovare una funzione z razionale, a più di due valori, delle stesse variabili, che sia legata alla z dalla relazione (1).

4. Sia H il gruppo (simmetrico od alternante) della funzione Z, G quello della funzione ζ_1 , ζ_1 essendo una delle radici della (1). Tutte le altre radici di quest'equazione, essendo funzioni lineari di ζ_1 , sono funzioni razionali delle x il cui gruppo è ancora G. Le sostituzioni di H non appartenenti a G, dovendo lasciare invariata Z, muteranno ζ_1 in altre radici ζ_2 , ζ_3 , ..., ζ_r , della (1); epperò il gruppo H sarà (meriedricamente) isomorfo al sottogruppo K d'ordine r del gruppo I dell'icosaedro formato dalle sostituzioni che trasformano ζ_1 in ζ_2 , ζ_3 , ..., ζ_r , e G sarà il sottogruppo di H corrispondente alla sostituzione identica di K. Eventualmente potrà essere r = 60, ossia K = I.

Il gruppo I si compone (*):

Della sostituzione identica;

Di 15 sostituzioni d'ordine 2;

Di 20 sostituzioni d'ordine 3, che a due a due formano (colla sostituzione identica) un gruppo ciclico;

Di 24 sostituzioni d'ordine 5, che a 4 a 4 formano (colla sostituzione identica) un gruppo ciclico.

Esso contiene sottogruppi dei soli ordini 2, 3, 4, 5, 6, 10, 12. Se due gruppi P, Q sono meriedricamente isomorfi, essendo l'ordine di P maggiore di quello di Q, e se A, B sono due sostituzioni corrispondenti dei due gruppi, l'ordine di A è multiplo di quello di B. Ora, per n > 6, il gruppo H, sia esso simmetrico od alternante, contiene tutte le sostituzioni cicliche di 7 elementi S_7 ; e poichè in I non v'ha alcuna sostituzione d'ordine 7, dovrà a tutte

^(*) Klein, Vorlesungen über das Ikosaeder, Leipzig 1884, I 1 § 8.

le S_{7} corrispondere in K la sostituzione identica, e per conseguenza tutte le S_{7} saranno contenute in G. Ma ciò è impossibile, perchè (*) G non è nè simmetrico nè alternante; quindi non può sussistere l'isomorfismo tra H e K.

5. La dimostrazione è meno semplice per n = 6.

Sia dapprima H il gruppo simmetrico delle sostituzioni di 6 elementi; esso contiene 720 sostituzioni, e cioè: una di 1° ordine, 75 di 2°, 80 di 3°, 180 di 4°, 144 di 5°, 240 di 6°. Sia m l'ordine del gruppo G, ossia il rapporto di meriedria, α , β , γ il numero delle sostituzioni degli ordini 2, 3, 5 contenute in K; β sarà divisibile per 2, γ per 4. Alle α sostituzioni d'ordine 2 di K corrisponderanno in H α_2 , α_4 , α_6 sostituzioni degli ordini 2, 4, 6; alle β d'ordine 3 β_3 , β_6 degli ordini 3, 6; alle γ d'ordine 5 γ_5 d'ordine 5. Infine denoteremo con ω , (i=2,3,4,5,6) il numero delle sostituzioni d'ordine i contenute in G. Avranno luogo le seguenti relazioni:

(2)
$$mr = 720$$
, (8) $\alpha_2 + \omega_2 = 75$,

(3)
$$1 + \alpha + \beta + \gamma = r$$
, (9) $\beta_3 + \omega_3 = 80$,

(4)
$$1 + \omega_2 + \omega_3 + \omega_4 + \omega_5 + \omega_6 = m$$
, (10) $\alpha_4 + \omega_4 = 180$,

(5)
$$\alpha_2 + \alpha_4 + \alpha_6 = m\alpha$$
, (11) $\gamma_5 + \omega_5 = 144$,

(6)
$$\beta_3 + \beta_6 = m\beta$$
, (12) $\alpha_6 + \beta_6 + \omega_6 = 240$,

(7)
$$\gamma_s = m\gamma$$
, (13) $r \leq 60$.

Dalle (2), (13), e dal fatto che G non è simmetrico nè alternante, segue:

$$(14) 12 \leq m \leq 240,$$

quindi per le (7), (11):

^(*) Netto, op. cit., § 35.

ossia $\gamma \leq 12$. Ciò dimostra che K non può coincidere con I, ma deve essere un suo sottogruppo proprio; ne segue:

$$r \leq 12$$
, $m \geq 60$, $\gamma \leq \frac{144}{60} < 3$.

Quindi, dovendo γ essere multiplo di 4, sarà $\gamma = 0$, e per le (7), (11) $\gamma_5 = 0$, $\omega_5 = 144$. Dopo ciò risulta dalla (4) $m \ge 145$, quindi per le (2), (14) m = 240 o m = 180.

Per m=240 si ha r=3; K non può contenere sostituzioni di 2° ordine, cioè $\alpha=0$, e per le (5), (10) $\alpha_2=\alpha_4=\alpha_6=0$, $\omega_4=180$, quindi per la (4):

$$m \geq 1 + \omega_4 + \omega_5 = 325$$
,

relazione assurda.—Per m=180 si ha r=4; K non può contenere sostituzioni di 3° ordine, cioè $\beta=0$, e per le (6), (9) $\beta_3=\beta_6=0$, $\omega_3=80$, quindi per la (4) $m\geq 225$, relazione assurda.

Sia ora H il gruppo alternante; esso contiene 360 sostituzioni, cioè: una di 1° ordine, 45 di 2°, 80 di 3°, 90 di 4°, 144 di 5°. Le relazioni (3), (7), (9), (11), (13) sussistono ancora; invece delle (2), (4), (5), (6), (8), (10), (12), (14) si hanno le seguenti:

(15)
$$mr = 360$$
, (19) $\alpha_2 + \omega_2 = 45$,

(16)
$$1+\omega_2+\omega_3+\omega_4+\omega_5=m$$
, (20) $\alpha_4+\omega_4=90$,

(17)
$$\alpha_2 + \alpha_4 = m\alpha$$
, (21) $6 \leq m \leq 180$.

(18)
$$\beta_3 = m\beta$$
,

Dalle (21), (18), (9) segue $6 \beta \leq \beta$, ≤ 80 , ossia $\beta < 14$. Adunque K non può coincidere con I; quindi si ha:

$$r \leq 12$$
, $m \geq 30$, $\beta \leq \frac{80}{30} < 3$.

Dovendo β essere pari, sarà $\beta = 2$ o $\beta = 0$.

Per $\beta = 2$, K contenendo sostituzioni d'ordine 3, r dovrà essere divisibile per 3, sicchè potrà essere r = 3, 6, 12 e corrispondentemente m = 120, 60, 30. In tutti questi casi, non essendo r divisibile per 5, dev'essere $\gamma = 0$, quindi per le (7), (11) $\omega_{\varsigma} = 144$, e per la (16) $m \ge 145$, che è impossibile. — Per $\beta = 0$ si ha dalle (18), (9) $\omega_{\varsigma} = 80$, quindi per le (16), (15) $m \ge 81$, $r \le \frac{360}{81} < 5$, cioè r = 2, 3, 4, e corrispondentemente m = 180, 120, 90. In tutti questi casi dev'essere $\gamma = 0$, quindi $\omega_{\varsigma} = 144$, e per la (16) $m \ge 1 + \omega_{\varsigma} + \omega_{\varsigma} = 225$, che è impossibile. Adunque anche per n = 6 non può esistere isomorfismo tra $H \in K$.

6. Concludendo, le equazioni generali di grado superiore al 5° non sono risolubili mediante l'aggiunta dell'irrazionalità icosaedrica. Si deduce anzi dalle considerazioni esposte, che, se l'equazione generale di un determinato grado n > 5 si rende risolubile (nel senso del n° 2) quando si includa nella classe C, oltre le equazioni binomie e l'equazione icosaedrica, qualche altra famiglia di equazioni, non può avvenire, nè che la R_1 sia un'equazione binomia di 2° grado e la R_2 un'equazione icosaedrica, nè che la R_1 sia un'equazione icosaedrica.

Mantova, 21 aprile 1895.

G. VIVANTI.

SU DI UN TEOREMA DI GEOMETRIA PROIETTIVA.

OSSERVAZIONI

del Dr. Errico Ascione.

Adunanza del 14 aprile 1895. - Verbali.

Il tomo IX in corso dei Rendiconti del Circolo Matematico di Palermo contiene una Nota del sig. E. Maccaferri intitolata: « Su di un teorema fondamentale relativo agli elementi comuni di due coniche in un piano ».

A pag. 98 è trattata una proposizione (insieme alla duale nel piano) relativa alle coniche, della quale, come ivi è detto, si suol dare una dimostrazione basata sul concetto intuitivo del movimento continuo di un punto (o di una tangente per la proposizione duale) su di una conica; ed a pie' di pagina è posta la seguente annotazione: « Vedi ad es. Sannia, Geom. proiettiva, 1ª ediz., pag. 402. La dimostrazione che è nella 2ª edizione della Geom. proiettiva del Sannia a pag. 172-3 (nº 86, g) non ha senso, non so se per errori di stampa o per altro.

Mi si concedano brevi parole su questo argomento. È fuori di dubbio che la dimostrazione data nella 1ª ediz. a pag. 402 si fondava precisamente sul concetto intuitivo del movimento continuo di un punto (o di una tangente) sulla conica. Ed è appunto ciò che il mio compianto Maestro con quel rigore che caratterizzava il suo metodo d'insegnamento di Geometria proiettiva, cercò di evitare, sostituendo un'altra dimostrazione che è quella del nº 86, g della 2ª edizione.

Ora in essa è incorsa effettivamente qualche inesattezza di stampa. I tre ultimi righi della pag. 172 debbono leggersi cosí: « E poichè se ad es. il punto A trovasi nell' \land completo SUS_1 , le rette AS, AS_1 penetrano amendue nel $\bigtriangledown SUS_1$ o niuna di esse vi penetra, ...». Analogamente nella nota a pag. 172 alla A deve sostituirsi la U.

Fatta questa modificazione, da postulati ovvii sui segmenti segue che i punti $MM_{\rm I}$ non separano UR se la r è nell' \bigwedge completo $SUS_{\rm I}$ che comprende A e li separano se r giace nell'altro angolo completo. Che se il punto A non si trovasse nell' \bigwedge completo $SUS_{\rm I}$ si farebbe un ragionamento analogo.

Questa correzione, che fu indicata dal prof. Sannia stesso ai suoi alunni, era destinata a comparire nell'Errata-corrige alla fine del libro.

Del resto anche senza di essa, la dimostrazione di cui si tratta bastava a suggerire al sig. Maccaferri una dimostrazione completa: poichè se ai due righi antipenultimo e penultimo della pag. 172 si sostituisce « E poichè il gruppo $URMM_1$ è prospettivo al gruppo (UA, r, s, s_1) » e poi si attacca con evidentemente le tre coppie ..., sopprimendo la nota in pie di pagina, la dimostrazione del nº 86, g diventa identica a quella che espone il sig. Maccaferri.

Caserta, 21 marzo 1895.

E. ASCIONE.

SULLA CONGRUENZA GENERALE DI 4° GRADO SECONDO UN MODULO PRIMO.

Nota di Gerolamo Cordone, in Genova.

Adunanze del 12 e 26 maggio 1895.

La teoria generale delle congruenze di 2°, 3° e 4° grado secondo un modulo primo fu iniziata da Cauchy mel vol. IV dei suoi Exercices de Mathématiques, ov'egli si limita però al caso in cui le congruenze in questione ammettono tante radici razionali, quante unità sonvi nel loro grado.

La discussione generale della congruenza di 3° grado fu compiuta da Oltramare (vol. 45 del Journal von Crelle), il quale non solo determinò le condizioni necessarie e sufficienti perchè la proposta ammetta una o più radici razionali, ma diede altresì l'espressione esplicita delle radici in funzione razionale dei coefficienti della congruenza e del suo modulo.

Per quanto riguarda la congruenza generale del 4º grado secondo un modulo primo, la questione, a nostra conoscenza, è ancora insoluta. È dunque di tale discussione che ci occuperemo in questo lavoro, dove, pure traendo partito dei risultati dell'Oltramare concernenti la congruenza generale di 3º grado, mostreremo come si possano in più punti semplificare e completare.

Rend. Circ. Mitem., t. IX, parte 1a.—Stampato il 19 giugno 1895.

Ci limiteremo però a dare sotto forma razionale soltanto una o al più due radici della congruenza proposta, quand'anche essa ne ammetta un numero maggiore; e riguarderemo le espressioni della forma

(a razionale), come razionalmente note, semprechè la congruenza

$$x^m - a \equiv 0 \pmod{\mu}$$

sia risolubile.

1. Nella teoria delle congruenze irriducibili secondo un modulo primo, si dimostra che una congruenza qualunque di grado v, ammette v radici. Quindi la congruenza generale di 4° grado con modulo primo, ammetterà sempre quattro radici, razionali o no; e si potrà avere un'espressione analitica delle radici, ricorrendo agli stessi metodi coi quali si ottengono per radicali le radici della equazione di 4° grado.

Si tratterà poi di ricercare in quali casi le espressioni ottenute si riducono a numeri razionali.

Noi adotteremo il metodo dal prof. Giudice esposto nel vol. II della Rivista di Matematica (Peano).

2. Consideriamo la congruenza

(1)
$$y^4 + 4by^3 + 6cy^2 + 4dy + e \equiv 0 \pmod{\mu}$$
,

 μ essendo un numero primo diverso da 2 e 3, e b, c, d, e numeri razionali qualunque.

Poniamo per brevità:

$$H \equiv c - b^2$$

$$I \equiv e - 4bd + 3c^2$$

$$G \equiv d - 3 b c^2 + 2 b^3 \pmod{\mu}$$

$$J \equiv \begin{vmatrix} \mathbf{i} & b & c \\ b & c & d \\ c & d & e \end{vmatrix} \equiv HI - G^2 - 4H^3$$

e)
$$\Delta \equiv I^3 - 27 I^2.$$

Se si pone:

(2)
$$x \equiv y + b \pmod{\mu}$$

la congruenza (1) si trasforma nella seguente:

A)
$$x^4 + 6 H x^2 + 4 G x + I - 3 H^2 \equiv 0 \pmod{\mu}$$

che si può considerare come la forma generale della congruenza di 4° grado, H, G e I-3 $H^2 \equiv K \pmod{\mu}$ essendo numeri affatto arbitrarii.

Supponiamo che x sia della forma:

(3)
$$x \equiv t \sqrt[4]{z} + \sqrt[4]{z^2} + u \sqrt[4]{z^3} \pmod{\mu},$$

t, z, u essendo quantità indeterminate. Indicando con α una radice primitiva della congruenza

$$\alpha^4 \equiv 1 \pmod{\mu}$$

si vede che il prodotto

$$P(x) \equiv \prod_{i=0}^{i=3} (x - \alpha^{i} t \sqrt[4]{\overline{z}} - \alpha^{2i} \sqrt[4]{\overline{z}^{2}} - \alpha^{3i} \sqrt[4]{\overline{z}^{3}}) \pmod{\mu}$$

si riduce a una funzione intera di 4° grado in x, i cui coefficienti sono razionali in t, $u \in \mathcal{I}$.

Confrontando le stesse potenze di x nella funzione P(x) e nel 1° membro della proposta (A), si trovano tre equazioni di condizione nelle x, t e u e per eliminazione delle due ultime, si trae

B)
$$4z^3 + 12Hz^2 + (12H^2 - I)z - G^2 \equiv 0 \pmod{\mu}$$

che si può chiamare la risolvente di 3° grado della congruenza (A) (*).

^(*) La risolvente che si otterrebbe col metodo di Ferrari non differisce da quella del prof. Giudice che pel fattore 16 che in quella moltiplica tutte el radici.

Le radici χ_1 , χ_2 , χ_3 della (B) saranno date dalle formole:

$$\zeta_1 \equiv -H + \frac{1}{2}(R_1 + R_2)$$

$$\zeta_2 \equiv -H + \frac{1}{2}(fR_1 + f^2R_2) \pmod{\mu}$$

$$\zeta_3 \equiv -H + \frac{1}{2}(f^2R_1 + fR_2)$$

dove s'è posto per brevità:

(5)
$$R_1 = \sqrt[3]{-J + \sqrt{J^2 - \left(\frac{I}{3}\right)^3}} R_2 = \sqrt[3]{-J - \sqrt{J^2 - \left(\frac{I}{3}\right)^3}}$$

(6)
$$f = -\frac{1}{2} + \frac{\sqrt{-3}}{2} \quad f^2 = -\frac{1}{2} - \frac{\sqrt{-3}}{2}$$
.

Indicando con x_1 , x_2 , x_3 , x_4 le radici della proposta, si trova come nell'articolo citato del prof. Giudice:

(7)
$$\begin{cases} x_{1} \equiv V\overline{z}_{1} + V\overline{z}_{2} + V\overline{z}_{3} & x_{3} \equiv -V\overline{z}_{1} + V\overline{z}_{2} - V\overline{z}_{3} \\ x_{2} \equiv V\overline{z}_{1} - V\overline{z}_{2} - V\overline{z}_{3} & x_{4} \equiv -V\overline{z}_{1} - V\overline{z}_{2} + V\overline{z}_{3} \end{cases}$$

dove i segni dei radicali devono essere scelti in modo da verificare la relazione:

(8)
$$V_{\overline{z}_1}V_{\overline{z}_2}V_{\overline{z}_3} = -\frac{G}{2}.$$

Si riconosce facilmente che se la funzione:

$$\Delta \equiv I^3 - 27 J^2$$

è congrua a zero (mod μ), la cong. (A) ha delle radici uguali, e inversamente; perciò, adottando una denominazione propria della Teoria delle Equazioni, Δ può dirsi il discriminante della proposta.

3. Prima di studiare la congruenza (A) in tutta la sua genera-

lità, conviene considerare il caso particolare in cui si ha

$$G \equiv 0 \pmod{\mu}$$
.

Allora la proposta si risolve come una congruenza di 2º grado, e si conclude facilmente il teorema seguente:

TEOREMA I.

a) Sia K un numero tale che sia

$$K^{\frac{\mu-1}{2}} \equiv + 1 \pmod{\mu}.$$

La congruenza:

(9)
$$x^4 + 6 H x^2 + K \equiv 0 \pmod{\mu}$$

ammetterà quattro radici razionali o nessuna secondochè sia soddisfatta o no la condizione

(10)
$$(-3H + \sqrt{9H^2 - K})^{\frac{\mu-1}{2}} \equiv +1 \pmod{\mu}$$
.

b) Se invece

$$K^{\frac{\mu-1}{2}} \equiv -1 \pmod{\mu},$$

la congruenza precedente ammetterà due radici razionali o nessuna, secondochè sarà o no verificata una delle due condizioni

(11)
$$(-3H+\sqrt{9H^2-K})^{\frac{\mu-1}{2}} = +1$$
, $(-3H-\sqrt{9H^2-K})^{\frac{\mu-1}{2}} = -1$.

c) Se infine

$$K \equiv 0 \pmod{\mu}$$

la cong. (9), che può scriversi

$$x^2(x^2+6H)\equiv 0\pmod{\mu}$$

ammetterà (oltre alle due radici congrue a zero) due radici razionali o

nessuna secondoche si avrà:

$$(-6H)^{\frac{\mu-1}{2}} = +1$$
, oppure $(-6H)^{\frac{\mu-1}{2}} = -1$.

a) Se la condizione (10) è soddisfatta, non solo $\sqrt{9H^2-K}$ è un numero razionale, ma $(-3H+\sqrt{9H^2-K})$ è residuo quadratico secondo il modulo μ .

D'altronde, osservando che

$$(-3H + \sqrt{9H^2 - K})(-3H - \sqrt{9H^2 - K}) \equiv K$$

e quindi:

$$(-3H + \sqrt{9H^2 - K})^{\frac{p-1}{2}} (-3H - \sqrt{9H^2 - K})^{\frac{p-1}{2}}$$

$$\equiv (-3H - \sqrt{9H^2 - K})^{\frac{p-1}{2}} \equiv K^{\frac{p-1}{2}} \equiv + 1$$

si vede che anche $(-3H-\sqrt{9H^2-K})$ è residuo quadratico, epperò la proposta ammette quattro radici razionali, comprese nella formola

$$x = \pm \sqrt{-3H \pm \sqrt{9H^2 - K}}.$$

Inversamente, se la (10) non è soddisfatta, $\sqrt{-3H+\sqrt{9H^2-K}}$ e $\sqrt{-3H-\sqrt{9H^2-K}}$ sono entrambe irrazionali; e la proposta non può ammettere alcuna radice razionale.

- b) e c) Con un ragionamento analogo al precedente si riconosce l'esattezza della 2^a parte (b) del teorema; la 3^a parte, (c), è evidente, in forza della teoria delle congruenze binomie.
- 4. Le radici della cong. (9) possonsi esprimere razionalmente in funzione del modulo μ , dei coefficienti della congruenza e di una radice primitiva di μ .

È ciò che risulta dal teorema seguente, che è facile verificare. Teorema H. -Sia $\mu = 2^m \mu_i + 1$ (μ_i impari) un numero primo,

a una radice primitiva pel numero u, e N un numero tale che sia:

$$N^{\mu_1} \equiv a^{i\frac{\mu-1}{2^{m-1}}} \pmod{\mu},$$

i essendo un termine determinato della serie $1, 2, \ldots 2^{m-1}$. Le radici della congruenza:

$$x^2 \equiv N \pmod{\mu}$$

saranno date dalla formola:

$$x \equiv \pm N^{\frac{\mu-1}{2}} a^{-i\frac{\mu-1}{2^m}} \pmod{\mu}.$$

5. Passando ora allo studio della congruenza:

(A)
$$x^4 + 6Hx^2 + 4Gx + K \equiv 0 \pmod{\mu}$$

considerata in tutta la sua generalità, converrà distinguere tre casi principali:

I.
$$-\frac{\Delta}{27} \equiv 0$$
II.
$$\left(-\frac{\Delta}{27}\right)^{\frac{\mu-1}{2}} \equiv + \text{ I } \pmod{\mu}$$
III.
$$\left(-\frac{\Delta}{27}\right)^{\frac{\mu-1}{2}} \equiv - \text{ I.}$$
I.
$$-\frac{\Delta}{27} \equiv 0. \quad (C)$$

6. Applicando alla nostra congruenza (A) un ragionamento analogo a quello del Prof. Giudice circa la equazione del 4° grado a discriminante nullo, si conclude facilmente il seguente:

TEOREMA III. - Se I e J sono numeri tali che

$$-\frac{\Delta}{27} = J^2 - \left(\frac{I}{3}\right)^3 \equiv 0 \pmod{\mu}$$

la congruenza (A) ammetterà:

a) Per $J \equiv 0$, $H \neq 0 \pmod{\mu}$ (*): Quattro radici razionali, di cui tre uguali fra loro, cioè:

$$x_1 \equiv 3\sqrt{-H} \equiv -\frac{6H^2}{G} \equiv \frac{3G}{2H}$$

$$x_2 \equiv x_3 \equiv x_4 \equiv -\sqrt{-H} \equiv \frac{2H^2}{G} \equiv -\frac{G}{2H}$$

b) $J \neq 0$, $J \equiv 8H^3 \neq 0$:

$$\begin{cases} (-3H)^{\frac{\mu-1}{2}} \equiv +1 & \text{Due radici doppie razionali:} \\ x_1 \equiv x_2 \equiv +\sqrt{-3H}, & x_3 \equiv x_4 \equiv -\sqrt{-3H}. \end{cases}$$

$$(-3H)^{\frac{\mu-1}{2}} \equiv -1 & \text{Nessuna radice razionale.}$$

c) « $J \neq 0$, $J \neq 8 H^3$:

^(*) Adoperiamo in generale la notazione $a \neq b \pmod{\mu}$ per indicare che a e b sono incongrui secondo il modulo μ .

OSSERVAZIONE. — Si potrebbe credere che, come lo s'è fatto nel caso a) pel radicale $\sqrt{-H}$, anche nel 3° caso, c), si possa esprimere direttamente $\sqrt{-H + \frac{3J}{2I}}$, e quindi x_1 e x_2 in funzione razionale dei coefficienti della proposta. Ma le formole che si otterrebbero in questo caso sono illusorie. Invero, se si pone per brevità:

$$\rho = -\frac{GI}{3I - 2HI} = -V\overline{\zeta}_1, \quad v = 4\left(-H + \frac{3J}{2I}\right) = 4\zeta_2 = 4\zeta_3,$$

 $x \equiv \rho \pm V_{\nu}$ deve soddisfare identicamente alla congruenza (A), cioè si deve avere:

(12)
$$(\rho + \sqrt{\nu})^4 + 6H(\rho + \sqrt{\nu})^2 + 4G(\rho + \sqrt{\nu}) + K \equiv 0 \pmod{\mu}$$
.

Donde segue

(13)
$$V_{\nu}^{-} \equiv -\frac{v^2 + v(6\rho^2 + 6H) + \rho^2(6H + \rho^2) + 4G\rho + K}{4\rho^2 + 4\rho^3 + 12H\rho + 4G}$$
.

Ed osservando che si ha, tenendo conto della (B):

$$4\rho^{6} + 12H\rho^{4} + (12H^{2} - I)\rho^{2} - G^{2} \equiv 0$$

$$4\rho v + 4\rho^{3} + 12H\rho + 4G \equiv 0$$

$$v^2 + v(6\rho^2 + 6H) + \rho^2(6H + \rho^2) + 4G\rho + K$$

$$= \frac{1}{16\rho^{2}} \left[4\rho(6\rho^{2} + 6H + \nu) - (4\rho^{3} + 12H\rho + 4G) \right] \left[4\rho\nu + 4\rho^{3} + 12H\rho + 4G \right] - \frac{1}{\rho^{2}} \left[4\rho^{6} + 12H\rho^{4} + (12H^{2} - I)\rho^{2} - G^{2} \right] \pmod{\mu}$$

si vede che la frazione (13) si presenta sotto la forma indeterminata $\frac{0}{0}$.

II.
$$-\left(\frac{\Delta}{27}\right)^{\frac{p-r}{2}} \equiv + r$$
. (D)

7. Considereremo separatamente due casi, quello in cui il modulo μ è della forma $\mu = 6n - 1$, e quello in cui $\mu = 6n + 1$.

A)
$$\mu = 6 n + 1$$
.

Rend. Circ. Matem., t. IX, parte 1^a.—Stampato il 22 giugno 1895. 28

Data la forma del numero μ , ed essendo per ipotesi — $\frac{\Delta}{27}$ residuo quadratico, la risolvente della proposta, cioè:

B)
$$4z^3 + 12Hz^2 + (12H^2 - I)z - G^2 \equiv 0 \pmod{\mu}$$

ammette, com'è noto (*), una radice razionale χ_1 , e due irrazionali χ_2 e χ_3 della forma:

(14)
$$z_2 \equiv \varphi + \psi \sqrt{-3\left(\frac{-\Delta}{27}\right)} \quad z_3 \equiv \varphi - \psi \sqrt{-3\left(-\frac{\Delta}{27}\right)}$$

 φ e ψ essendo numeri razionali, e $\sqrt{-3\left(\frac{-\Delta}{27}\right)} \equiv \sqrt{\Delta_r}$ essendo irrazionale per la forma del modulo μ , e per la (D).

Ciò posto, indichiamo con

(15)
$$x \equiv \varepsilon_{r} \sqrt{\overline{\zeta}_{1}} + \varepsilon_{2} \sqrt{\overline{\zeta}_{2}} + \varepsilon_{3} \sqrt{\overline{\zeta}_{3}} \pmod{\mu}$$
$$\left[\varepsilon_{1}^{2} \equiv \varepsilon_{2}^{2} \equiv \varepsilon_{3}^{2} \equiv 1 \pmod{\mu}\right]$$

una qualunque delle radici della proposta, e facciamo successivamente le tre ipotesi seguenti:

a)
$$\zeta_{\rm r} \equiv 0$$

$$\lambda_{\rm r}^{\frac{\mu-1}{2}} \equiv -1$$

$$\zeta_{1}^{\frac{\mu-1}{2}} \equiv + 1$$

8. a)
$$\chi_i \equiv 0$$
.

Se una delle radici della risolvente è nulla (mod. μ), si deve avere:

$$G \equiv 0 \pmod{\mu}$$

^(*) Vedi Oltramare art. citato, Teor. II.

SULLA CONGRUENZA GENERALE DI 4° GRADO, ETC.

e quindi si ricade nel caso considerato al nº 3.

$$b) \qquad \qquad \cdot \qquad \frac{\mu-1}{{z_1}^2} \equiv -1.$$

Affinchè x sia razionale, bisogna che sia

$$x^{\mu} \equiv (\varepsilon_1 \sqrt{\overline{\zeta_1}} + \varepsilon_3 \sqrt{\overline{\zeta_2}} + \varepsilon_3 \sqrt{\overline{\zeta_3}})^{\mu} \equiv \varepsilon_1 \sqrt{\overline{\zeta_1}} + \varepsilon_2 \sqrt{\overline{\zeta_2}} + \varepsilon_3 \sqrt{\overline{\zeta_3}} \pmod{\mu}$$

cioè, osservando che

$$(\sqrt{\overline{\zeta_1}})^{\mu} \equiv -\sqrt{\overline{\zeta_1}}, \quad (\sqrt{\overline{\zeta_2}})^{\mu} \equiv \sqrt{\overline{\zeta_3}}, \quad (\sqrt{\overline{\zeta_3}})^{\mu} \equiv \sqrt{\overline{\zeta_2}} \pmod{\mu};$$

$$(16) \quad -2 \, \varepsilon_1 \sqrt{\overline{\zeta_1}} + (\varepsilon_3 - \varepsilon_2) \sqrt{\overline{\zeta_2}} + (\varepsilon_2 - \varepsilon_3) \sqrt{\overline{\zeta_3}} \equiv 0.$$

Se si potesse avere:

si avrebbe altresì:

$$\chi_i \equiv 0$$
, which is a small control of $\chi_i \equiv 0$

ciò che è contro l'ipotesi; dunque le radici x_1 e x_2 della proposta non possono essere razionali.

Le supposizioni:

$$egin{array}{lll} egin{array}{lll} eta_1 & \equiv eta_3 \equiv -\ {
m I}, & eta_2 \equiv {
m I}, \\ & eta_1 \equiv eta_2 \equiv -\ {
m I}, & eta_3 \equiv {
m I}, \end{array}$$

corrispondenti rispettivamente alla terza e quarta radice della (A), conducono alle relazioni

(17)
$$V_{\overline{\zeta}_1} \equiv V_{\overline{\zeta}_2} - V_{\overline{\zeta}_3}, \quad V_{\overline{\zeta}_1} \equiv V_{\overline{\zeta}_3} - V_{\overline{\zeta}_2} \pmod{\mu}.$$

Dunque in questi due casi una delle radici della proposta è nulla (mod. μ). Si deve dunque avere :

$$K \equiv I - 3 H^2 \equiv 0 \pmod{\mu}$$

e la proposta, soppressa la radice congrua a zero, si riduce alla congruenza di 3° grado:

(18)
$$x^3 + 6Hx + 4G \equiv 0 \pmod{\mu}$$
.

Ora per ipotesi si ha:

$$-\frac{\Delta}{27} \equiv J^2 - \left(\frac{I}{3}\right)^3 \equiv J^2 - H^6 \equiv (J + H^3)(J - H^3) \equiv s^2 \pmod{\mu},$$

s essendo una quantità razionale.

E per la relazione d) nº 2:

$$G^2 \equiv -J + H(I - 4H^2) \equiv -J - H^3$$

donde:

$$J + H^3 \equiv -G^2$$
, $J - H^3 \equiv -G^2 - 2H^3$,
 $G^2(G^2 + 2H^3) \equiv s^2$, $G^2 + 2H^3 \equiv \left(\frac{s}{G}\right)^2$ (mod. μ).

Se si confronta la congruenza (18) colla seguente

(19)
$$x^3 + 3px + 2q \equiv 0 \pmod{\mu = 6n - 1}$$

di cui nel teorema II dell'Oltramare, si vede che:

$$(q^2+p^3)^{\frac{p-1}{2}} \equiv [4G^2+2H^3)]^{\frac{p-1}{2}} \equiv +1.$$

Dunque la (18) ammette una sola radice razionale, appartenente alla proposta (A).

Se si pone per brevità:

$$M = \frac{1}{2} \left\{ \left[-2G + \sqrt{4G^2 + 8H^3} \right]^{2n} + \left[-2G - \sqrt{4G^2 + 8H^3} \right]^{2n} \right\}$$

le uniche radici razionali della proposta saranno

$$(20) x \equiv 0, x \equiv -\frac{2 G}{H+M}.$$

9. Non sarà privo d'interesse il far vedere come si possa per-

venire in modo più semplice ai risultati consegnati nel teorema II dell'Oltramare, e concernenti la congruenza (19).

Posto:

(21)
$$S_1 \equiv \sqrt[3]{-q + \sqrt{q^2 + p^3}}$$
, $S_2 \equiv \sqrt[3]{-q - \sqrt{q^2 + p^3}}$ (mod. μ)
$$(S_1 S_2 \equiv -p)$$

le radici della (19) saranno della forma:

(22)
$$x \equiv f^i S_1 + f^{2i} S_2$$
 $(i = 0, 1, 2).$

Ora l'espressione (22) non può essere razionale a meno che sia:

$$(f^{i}S_{i} + f^{2i}S_{2})^{\mu} \equiv f^{i\mu}S_{i}^{\mu} + f^{2i\mu}S_{2}^{\mu} \equiv f^{i}S_{i} + f^{2i}S_{2})$$

cioè (essendo $f^{i\mu} \equiv f^{2i}$, $f^{2i\mu} \equiv f^{i}$, $S_{i}^{\mu} \equiv S_{i}$, $S_{2}^{\mu} \equiv S_{2}$):

$$f^i = f^{2i}$$

ciò che esige che sia:

$$i = 0$$
.

L'unica radice razionale della (19) è dunque:

$$x \equiv S_1 + S_2$$
.

D'altronde :

$$S_1^{6n} \equiv S_1^2 \equiv (-q + \sqrt{q^2 + p^3})^{2n} \pmod{\mu}$$

$$S_1 \equiv \varepsilon_1 (-q + \sqrt{q^2 + p^3})^n \qquad (\varepsilon_1^2 \equiv 1)$$

da cui:

$$S_1^3 \equiv -q + \sqrt{q^2 + p^3} \equiv \varepsilon_1 (-q + \sqrt{q^2 + p^3})^{3n}$$

$$\varepsilon_1 \equiv (-q + \sqrt{q^2 + p^3})^{3n-1}.$$

Dunque:

$$x \equiv S_1 + S_2 \equiv (-q + \sqrt{q^2 + p^3})^{4n-1} - \frac{p}{(-q + \sqrt{q^2 + p^3})^{4n-1}}$$
$$\equiv (-q + \sqrt{q^2 + p^3})^{4n-1} + (-q - \sqrt{q^2 + p^3})^{4n-1}$$

ossia ponendo:

$$M' \equiv \frac{1}{2} \left\{ (-q + \sqrt{q^2 + p^3})^{4n-1} + (-q - \sqrt{q^2 + p^3})^{4n-1} \right\},$$
 $x \equiv 2 M' \pmod{\mu}.$

Se si applicano queste formole alla congruenza (18) si trova:

(23)
$$x=2M'=[-2G+\sqrt{4G^2+8H^3}]^{4n-1}+[-2G-\sqrt{4G^2+8H^3}]^{4n-1}$$
.

$$z_{\rm r}^{\frac{\mu-1}{2}} \equiv + {\rm r}.$$

Se:

$$x \equiv \varepsilon_1 \sqrt{\overline{\zeta}_1} + \varepsilon_2 \sqrt{\overline{\zeta}_2} + \varepsilon_3 \sqrt{\overline{\zeta}_3}$$

è razionale, dovrà aversi:

$$(\varepsilon_1 \sqrt{\overline{z}_1} + \varepsilon_2 \sqrt{\overline{z}_2} + \varepsilon_3 \sqrt{\overline{z}_3})^{\mu}$$

$$\equiv (\varepsilon_1 \sqrt{\overline{\zeta}_1} + \varepsilon_2 \sqrt{\overline{\zeta}_3} + \varepsilon_3 \sqrt{\overline{\zeta}_2}) \equiv \varepsilon_1 \sqrt{\overline{\zeta}_1} + \varepsilon_2 \sqrt{\overline{\zeta}_2} + \varepsilon_3 \sqrt{\overline{\zeta}_3}$$

cioè:

$$(\varepsilon_2 - \varepsilon_3)V_{\overline{\zeta}_2} \equiv (\varepsilon_2 - \varepsilon_3)V_{\overline{\zeta}_3}$$

donde, dovendo essere per ipotesi:

$$V\bar{z}_2 \neq V\bar{z}_3$$

si ha:

$$\epsilon_2 \equiv \epsilon_3$$

Sicchè, se la proposta ammette delle radici razionali, soltanto le due prime, x_1 e x_2 , possono essere tali.

Ma se x è razionale, lo è pure $x - \sqrt{z_i}$, cioè:

$$x-\sqrt{\overline{\zeta_1}}=\varepsilon_2(\sqrt{\overline{\zeta_2}}+\sqrt{\overline{\zeta_3}})=\varepsilon_2(\sqrt{\overline{\varphi}+\psi\sqrt{\overline{\Delta_1}}}+\sqrt{\overline{\varphi}-\psi\sqrt{\overline{\Delta_1}}})$$
 (mod. μ).

Ciò richiede che si possa porre:

(24)
$$\sqrt{\varphi + \psi V \overline{\Delta}_i} \equiv \varphi_i + \psi_i V \overline{\Delta}_i,$$

φ, e ψ, indicando numeri razionali.

Reciprocamente, se la condizione (24) è soddisfatta, x_1 e x_2 sono razionali, e precisamente:

$$x_1 \equiv V_{\overline{\zeta}_1} + 2 \varphi_1$$
 $x_2 \equiv V_{\overline{\zeta}_1} - 2 \varphi_1$.

In virtù della teoria delle congruenze irriducibili, la condizione (24) equivale alla seguente:

(24')
$$z_2^{\frac{\mu^2-1}{2}} \equiv (\varphi + \psi t)^{\frac{\mu^2-1}{2}} \equiv 1 \pmod{\mu},$$

t essendo una radice della congruenza irriducibile

$$t^2 - \Delta_i \equiv 0 \pmod{\mu}$$
.

La condizione di possibilità (24') è soddisfatta di per sè. Infatti si ha:

$$\zeta_2^{\mu+1} \equiv \zeta_2 \zeta_3 \pmod{\mu}.$$

Ed elevando i due membri alla potenza $\frac{\mu - 1}{2} = 3n - 1$:

$$\chi_{2}^{\frac{\mu^{2}-1}{2}} \equiv (\chi_{2}\chi_{3})^{\frac{\mu-1}{2}} \equiv \left(\frac{G^{2}}{4\chi_{1}}\right)^{\frac{\mu-1}{2}} \equiv \frac{\left(\frac{G}{2}\right)^{\mu-1}}{\chi_{1}^{\frac{\mu-1}{2}}} \equiv + 1. \text{ c. v. d.}$$

Per esprimere le radici della proposta in funzione razionale dei coefficienti e del modulo, poniamo:

$$\left(-J+\sqrt{-\frac{\Delta}{27}}\right)^{4n-1} \equiv R+S\sqrt{-\frac{\Delta}{27}} \pmod{\mu},$$

R e S indicando rispettivamente la parte indipendente da $\sqrt{-\frac{\Delta}{27}}$ e il

coefficiente di
$$\sqrt{-\frac{\Delta}{27}}$$
 nello sviluppo di $\left(-J+\sqrt{-\frac{\Delta}{27}}\right)^{4n-1}$ secondo la formola del binomio.

Si avrà:

(25)
$$\begin{cases} R_{1} = \sqrt[3]{-J+\sqrt{-\frac{\Delta}{27}}} = \left(-J+\sqrt{-\frac{\Delta}{27}}\right)^{4n-1} = R+S\sqrt{-\frac{\Delta}{27}} \\ R_{2} = \sqrt[3]{-J-\sqrt{-\frac{\Delta}{27}}} = \left(-J-\sqrt{-\frac{\Delta}{27}}\right)^{4n-1} = R-S\sqrt{-\frac{\Delta}{27}} \end{cases}$$

e quindi:

(26)
$$\begin{cases} V\overline{\zeta_{i}} \equiv V - \overline{H} + \overline{R} \\ V\overline{\zeta_{i}} \equiv \sqrt{-H - \frac{R}{2} + \frac{S}{2}V\overline{\Delta}_{i}} \equiv \varphi_{i} + \psi_{i}V\overline{\Delta}_{i} \\ V\overline{\zeta_{3}} \equiv \sqrt{-H - \frac{R}{2} - \frac{S}{2}V\overline{\Delta}_{i}} \equiv \varphi_{i} - \psi_{i}V\overline{\Delta}_{i} \end{cases}$$

con:

$$\varphi \equiv -H - \frac{R}{2}, \quad \psi \equiv \frac{S}{2}.$$

Se si pone:

$$\chi_2^{3n-1} \equiv (\varphi + \psi \sqrt{\Delta_1})^{3n-1} \equiv M + N \sqrt{\Delta_1} \pmod{\mu}$$

(M e N essendo numeri razionali), si trova:

$$(27) \begin{cases} (\sqrt{\overline{\zeta}_{2}})^{6n-2} \equiv \overline{\zeta_{2}^{3n-1}} \equiv \frac{\sqrt{\overline{\zeta}_{3}}}{\sqrt{\overline{\zeta}_{2}}} \equiv \frac{\varphi_{1} - \psi_{1} \sqrt{\overline{\Delta}_{1}}}{\varphi_{1} + \psi_{1} \sqrt{\overline{\Delta}_{1}}} \equiv M + N \sqrt{\overline{\Delta}_{1}} \\ (\sqrt{\overline{\zeta}_{3}})^{6n-2} \equiv \overline{\zeta_{3}^{3n-1}} \equiv \frac{\sqrt{\overline{\zeta}_{2}}}{\sqrt{\overline{\zeta}_{3}}} \equiv \frac{\varphi_{1} + \psi_{1} \sqrt{\overline{\Delta}_{1}}}{\varphi_{1} - \psi_{1} \sqrt{\overline{\Delta}_{1}}} = M - N \sqrt{\overline{\Delta}_{1}} \end{cases}$$

da cui:

(28)
$$\begin{cases} \varphi_{\scriptscriptstyle I} M + \psi_{\scriptscriptstyle I} N \Delta_{\scriptscriptstyle I} \equiv \varphi_{\scriptscriptstyle I} \\ \varphi_{\scriptscriptstyle I} N + \psi_{\scriptscriptstyle I} M \equiv -\psi_{\scriptscriptstyle I} \end{cases} \pmod{\mu}$$

all'una delle quali relazioni si può sostituire la seguente :

(29)
$$M^2 - N^2 \Delta_{\ell} \equiv 1 \pmod{\mu}.$$

Dalle (26) si deduce poi :

$$\varphi \equiv \varphi_{\rm r}^2 + \psi_{\rm r}^2 \Delta_{\rm r}$$

$$(31) \qquad \qquad \psi \equiv 2 \varphi_1 \psi_1.$$

E dalle (28) e (31):

$$\psi_{i} = \pm \sqrt{-\frac{N\psi}{2(M+1)}},$$

per cui ψ_i si può considerare come razionalmente noto in funzione dei coefficienti della proposta e del modulo.

Se si osserva che:

$$V\overline{z}_{2}V\overline{z}_{3} \equiv \varphi_{1}^{2} - \psi_{1}^{2}\Delta_{1} \equiv -\frac{G}{2V\overline{z}_{1}}$$

si ottiene dalle (28), (29) e (31):

$$4 \varphi_1^2 = -\frac{G(M+1)}{V_{Z_1}} = \frac{\psi^2}{\psi_1^2} = -\frac{2 \psi(M+1)}{N} = -\frac{S(M+1)}{N},$$

ossia:

$$V\bar{z}_{x} \equiv \frac{GN}{S}$$
.

Dunque:

(32)
$$\begin{cases} x_{1} \equiv \sqrt{\overline{\zeta_{1}}} + 2 \varphi_{1} \equiv \frac{G N}{S} + \sqrt{-\frac{S(M+1)}{N}} \\ x_{2} \equiv \sqrt{\overline{\zeta_{1}}} - 2 \varphi_{1} \equiv \frac{G N}{S} - \sqrt{-\frac{S(M+1)}{N}} \end{cases} \pmod{\mu}. (*)$$

11. I risultati di cui ai numeri 9 e 10 si possono riassumere nel seguente teorema:

TEOREMA IV. — Siano J e I numeri tali che:

$$\left(-\frac{\Delta}{27}\right)^{\mu-1} \equiv + 1 \pmod{\mu = 6n-1}$$

e posto:

$$R_{i} = \sqrt[3]{-J+\sqrt{-\frac{\Delta}{27}}} = \left(-J+\sqrt{-\frac{\Delta}{27}}\right)^{4n-1} = R+S\sqrt{-\frac{\Delta}{27}} \pmod{\mu}$$

sia:

determinate.

$$z_i \equiv -H + R$$

l'unica radice razionale della cong. (B). Se:

a) $z_1^{\frac{\mu-1}{2}} \equiv -1$, la congruenza (A) ammetterà due radici razionali date dalle formole:

$$x_1 \equiv 0, \quad x_2 \equiv [-G + \sqrt{4G^2 + 8H^3}]^{4n-1} + [-2G - \sqrt{4G^2 + 8H^3}]^{4n-1} \pmod{\mu}.$$

^(*) Se si cercasse di eliminare da queste ultime formole il radicale $\sqrt{-\frac{S(M+1)}{N}}$, esprimendo che x_i deve soddisfare identicamente alla proposta (A), si perverrebbe, come per le formole i) e k) (n° 6), a delle espressioni in-

b)
$$z_1^{\frac{\mu-1}{2}} \equiv +1$$
, posto

$$\left[\left(-H-\frac{R}{2}\right)+\frac{S}{2}\sqrt{\frac{\Delta}{9}}\right]^{3n-1}\equiv M+N\sqrt{\frac{\Delta}{9}} \ (\textit{Me N razionali})$$

ammetterà due radici razionali date da:

$$x_1 \equiv \frac{GN}{S} + \sqrt{-\frac{S(M+1)}{N}} \quad x_2 \equiv \frac{GN}{S} - \sqrt{-\frac{S(M+1)}{N}}.$$

c) $z_i \equiv 0$, la cong. (A) ammetterà delle radici razionali nei casi indicati dal Teor. I.

12). B)
$$\mu = 6n + 1$$
.

Anche qui converrà distinguere tre casi:

a)
$$R_{i}^{\frac{p-1}{3}} \equiv \left(-J + \sqrt{-\frac{\Delta}{27}}\right)^{2n} \equiv 1,$$

b)
$$R_{1}^{\frac{\mu-1}{3}} \equiv \left(-J + \sqrt{-\frac{\Delta}{27}}\right)^{2n} \equiv f,$$

c)
$$R_1^{\frac{\mu-1}{3}} \equiv \left(-J + \sqrt{-\frac{\Delta}{27}}\right)^{2n} \equiv f^2.$$

13. a)
$$R_1^{\frac{\mu-1}{3}} \equiv \left(-J + \sqrt{-\frac{\Delta}{27}}\right)^{2\pi} \equiv 1 \pmod{\mu}$$
.

In quest'ipotesi la risolvente della congruenza proposta ammette tre radici razionali; vediamo quel che accada della proposta.

Osserviamo anzitutto che, ammetta o no delle radici razionali la (A), due al più delle radici χ_1 , χ_2 , χ_3 della risolvente possono essere non residui quadratici secondo il modulo μ . Invero si ha:

$$(\chi_1 \chi_2 \chi_3)^{\frac{\mu-1}{2}} \equiv \left(\frac{G^2}{4}\right)^{\frac{\mu-1}{2}} \equiv + 1.$$

Ma è anche facile riconoscere che se la proposta ammette delle radici razionali, tutte e tre le z sono residui quadratici. Invero, se si potesse avere ad es.:

$$\chi_{2}^{\frac{\mu-1}{2}} \equiv \chi_{3}^{\frac{\mu-1}{2}} \equiv -1, \quad \chi_{1}^{\frac{\mu-1}{2}} \equiv +1$$

seguirebbe, supposto & razionale,

$$x^{\mu} \equiv \epsilon_{1} \sqrt{\overline{\zeta}_{1}} - \epsilon_{2} \sqrt{\overline{\zeta}_{2}} - \epsilon_{3} \sqrt{\overline{\zeta}_{3}} \equiv \epsilon_{1} \sqrt{\overline{\zeta}_{1}} + \epsilon_{2} \sqrt{\overline{\zeta}_{2}} + \epsilon_{3} \sqrt{\overline{\zeta}_{3}},$$

donde:

$$\zeta_2 \equiv \zeta_3,$$

ciò che non può essere, perchè $\left(-\frac{\Delta}{27}\right)^{\frac{\mu-1}{2}} \equiv + 1$.

Dunque, affinchè la congruenza (A) ammetta delle radici razionali, bisogna che siano soddisfatte due delle condizioni:

la terza essendo conseguenza delle altre due.

Reciprocamente, se le (33) sono verificate, la proposta ammette quattro radici razionali.

Poichè si sanno esprimere le z in funzione razionale dei dati, possiamo considerare come razionalmente note $\sqrt{z_1}$, $\sqrt{z_2}$, $\sqrt{z_3}$, e quindi anche le radici della proposta.

Tenendo conto di questi risultati e del teorema II, si può enunciare quanto segue:

TEOREMA V. — Sia il numero $\mu = 2^m \mu_i + 1$ (μ_i impari) della forma $\mu = 6n + 1$, e siano J e I numeri tali che:

$$\left(-J+\sqrt{-\frac{\Delta}{27}}\right)^{2n}\equiv 1\pmod{\mu}.$$

Sia inoltre a una radice primitiva pel numero µ. La congruenza (A) ammetterà quattro radici razionali o nessuna secondoche saranno o no soddisfatte le due condizioni:

(34)
$$\begin{cases}
\zeta_1^{\frac{\mu-1}{2}} \equiv \left[-H + \frac{1}{2} (R_1 + R_2) \right]^{\frac{\mu-1}{2}} \equiv + 1 \pmod{\mu} \\
\zeta_2^{\frac{\mu-1}{2}} \equiv \left[-H + \frac{1}{2} (fR_1 + f^2 R_2) \right]^{\frac{\mu-1}{2}} \equiv + 1 \pmod{\mu}.
\end{cases}$$

Se, le condizioni (34) essendo verificate, si ha:

$$\zeta_1^{\mu_1} \equiv a^{i\frac{\mu-1}{2^m-1}} \quad \zeta_2^{\mu_1} \equiv a^{k\frac{\mu-1}{2^m-1}} \pmod{\mu}$$

(i e k essendo due dei numeri 1, 2, ... 2^{m-1}) una delle radici della proposta sarà data dalla formola:

$$x = \frac{\left[-H + \frac{1}{2}(R_{1} + R_{2})\right]^{\frac{\mu_{1}+1}{2}}}{a^{\frac{\mu-1}{2m}}} + \frac{\left[-H + \frac{1}{2}(fR_{1} + f^{2}R_{2})\right]^{\frac{\mu_{1}+1}{2}}}{a^{\frac{\mu-1}{2}}}$$
$$-\frac{Ga^{(i+k)\frac{\mu-1}{2m}}}{2\left|\left[-H + \frac{1}{2}(R_{1} + R_{2})\right]\left[-H + \frac{1}{2}(fR_{1} + f^{2}R_{2})\right]^{\frac{\mu_{1}+1}{2}}}.$$

Corollario. — Se il numero $\mu = 6n + 1$ è pure della forma 4m + 3 e se si pone:

$$\left[-H + \frac{1}{2}R_{\scriptscriptstyle \rm I} + \frac{I}{6\left(-J + \sqrt{-\frac{\Delta}{27}}\right)}R_{\scriptscriptstyle \rm I}^2\right]^{m+1} \equiv M + NR_{\scriptscriptstyle \rm I} + PR_{\scriptscriptstyle \rm I}^2 \pmod{\mu}$$

(M, N e P essendo i coefficienti di Ri, Ri, Ri nello sviluppo di

$$\left[-H + \frac{1}{2}R_{i} + \frac{I}{6\left(-J + \sqrt{-\frac{\Delta}{27}}\right)}R_{i}^{2}\right]^{m+1}$$
 secondo la formola del

trinomio), una delle radici della proposta sarà data dalla formola:

$$x \equiv 3 M \pmod{\mu}$$
.

14. b)
$$R_1^{\frac{\mu-1}{3}} \equiv \left(-J + \sqrt{-\frac{\Delta}{27}}\right)^{2n} \equiv f \pmod{\mu}.$$

La risolvente della proposta non ammette in questo caso alcuna radice razionale, mentre, come vedremo, la proposta (A) ammette sempre una radice razionale.

In virtù della b)

$$R_{2}^{\frac{\mu-1}{3}} \equiv \left(-J + \sqrt{-\frac{\Delta}{27}}\right)^{2n} \equiv f^{2}$$

da cui:

$$(V_{z_1}^-)^{\mu} \equiv V_{z_2}^-, \quad (V_{z_2}^-)^{\mu} \equiv V_{z_3}^-, \quad (V_{z_3}^-)^{\mu} \equiv V_{z_1}^-,$$

dunque se x è razionale,

$$x^{\mu} \equiv (\varepsilon_{1} \sqrt{\overline{\zeta}_{1}} + \varepsilon_{2} \sqrt{\overline{\zeta}_{2}} + \varepsilon_{3} \sqrt{\overline{\zeta}_{3}})^{\mu}$$

$$\equiv \varepsilon_{1} \sqrt{\overline{\zeta}_{2}} + \varepsilon_{2} \sqrt{\overline{\zeta}_{3}} + \varepsilon_{3} \sqrt{\overline{\zeta}_{1}} \equiv \varepsilon_{1} \sqrt{\overline{\zeta}_{1}} + \varepsilon_{2} \sqrt{\overline{\zeta}_{2}} + \varepsilon_{3} \sqrt{\overline{\zeta}_{3}}$$

cioè:

$$(35) \quad (\varepsilon_{1}-\varepsilon_{3})\sqrt{\overline{\zeta}_{1}}+(\varepsilon_{2}-\varepsilon_{1})\sqrt{\overline{\zeta}_{2}}+(\varepsilon_{3}-\varepsilon_{2})\sqrt{\overline{\zeta}_{3}}\equiv 0.$$

La (35) prova che essendo per ipotesi tutte distinte le z, se la proposta ammette delle radici razionali, una sola, la x_1 , può essere tale.

D'altra parte, perchè x_i sia razionale, è necessario e sufficiente che si possa porre:

$$\sqrt{z_{i}} \equiv \sqrt{-H + \frac{1}{2}R_{i}f^{i-1} + \frac{I}{6\left(-J + \sqrt{-\frac{\Delta}{27}}\right)}R_{i}^{2}f^{2(i-1)}}$$

$$\equiv M + Nf^{l}R_{i} + Pf^{2l}R_{i}^{2}$$

(M, N, P) essendo numeri razionali), od anche indicando con t una radice della congruenza irriducibile:

$$t^3 \equiv -J + \sqrt{-\frac{\Delta}{27}} \pmod{\mu}$$

che si abbia:

(36)
$$\left[-H + \frac{1}{2}t + \frac{I}{6\left(-J + \sqrt{\frac{-\Delta}{27}}\right)}t^2\right]^{\frac{\mu^3 - 1}{2}} \equiv 1 \pmod{\mu}.$$

Ora la condizione precedente è sempre verificata; infatti si ha (i essendo uno qualunque dei numeri 1, 2, 3):

$$\frac{\zeta_{i}^{(6\overline{n+1}-1)(6\overline{n+1}^{2}+6\overline{n+1}+1)}}{2} = \zeta_{i}^{3n(6\overline{n+1}^{2}+6\overline{n+1}+1)} = \zeta_{i+2}^{3n} \cdot \zeta_{i+1}^{3n} \cdot \zeta_{i}^{3n} = \left(\frac{G^{2}}{4}\right)^{3n} = 1 \pmod{\mu}.$$

Dunque la proposta ammette effettivamente una radice razionale.

15. Per ottenere questa radice in funzione razionale dei coefficienti e del modulo, osserviamo che dalle congruenze

$$\chi_{i}^{3n} \sqrt{\overline{\zeta}_{i}} \equiv \sqrt{\overline{\zeta}_{i+1}} \qquad (i = 1, 2, 3)$$

$$\sqrt{\overline{\zeta}_{1}} \sqrt{\overline{\zeta}_{2}} \sqrt{\overline{\zeta}_{3}} \equiv -\frac{G}{2}$$

si deduce :

$$V_{\overline{\zeta}_{1}} \equiv -\frac{G}{2 \, \zeta_{2}^{3^{n+1}}} \equiv -\frac{2}{G} (\zeta_{1} \, \zeta_{3})^{3^{n+1}} \equiv M + N f \, R_{1} + P f^{2} \, R_{1}^{2}$$

$$V_{\overline{\zeta}_{2}} \equiv -\frac{G}{2 \, \zeta_{3}^{3^{n+1}}} \equiv -\frac{2}{G} (\zeta_{1} \, \zeta_{2})^{3^{n+1}} \equiv M + N f^{2} \, R_{1} + P f \, R_{1}^{2}$$

$$V_{\overline{\zeta}_{3}} \equiv -\frac{G}{2 \, \zeta_{1}^{3^{n+1}}} \equiv -\frac{2}{G} (\zeta_{2} \, \zeta_{3})^{3^{n+1}} \equiv M + N R_{1} + P \, R_{1}^{2},$$

donde

$$x \equiv 3 M$$
.

Possiamo quindi concludere il seguente teorema:

TEOREMA VI. - Se J e I sono numeri tali che si abbia:

$$\left(-J+\sqrt{\frac{-\Delta}{27}}\right)^{2n} \equiv f \equiv -\frac{1}{2} + \sqrt{\frac{-3}{2}} \pmod{\mu = 6n+1}$$

la cong. (A) ammette una ed una sola radice razionale data dalla formola.

$$x \equiv 3 M$$
,

M rappresentando la parte dello sviluppo di $-\frac{G}{2\,z_i^{3n+1}}$ secondo le potenze di $R_i \equiv \sqrt{-J + \sqrt{-\frac{\Delta}{27}}}$, che non contiene R_i a fattore ».

16. c)
$$R^{\frac{\mu-1}{3}} \equiv \left(-J + \sqrt{\frac{-\Delta}{27}}\right)^{2n} \equiv \int_{-\frac{\pi}{2}}^{2} - \frac{\sqrt{-3}}{2} \pmod{\mu}$$
.

Con un ragionamento perfettamente analogo, si conclude un teorema che non differisce affatto dal precedente.

III.
$$\left(\frac{-\Delta}{27}\right)^{\frac{\nu-1}{2}} \equiv -1$$
. (E)

17. Anche qui conviene distinguere due casi principali; il caso in cui $\mu = 6 n + 1$ e quello in cui $\mu = 6 n - 1$.

A)
$$\mu = 6n + 1$$
.

Prima di affrontare lo studio della congruenza generale di 4° grado, mostreremo come debbano essere modificati i teoremi VII e VIII dell'Oltramare circa la congruenza di 3° grado:

(37)
$$x^3 + 3px + 2q \equiv 0 \pmod{\mu = 6n + 1}$$

per la quale si ha

$$(q^2 + p^3)^{\frac{\mu - 1}{2}} \equiv -1 \pmod{\mu}.$$

Si riconosce dapprima, come all'art. 7, che posto

$$S_{t} \equiv \sqrt[3]{-q + \sqrt{q^2 + p^3}}, \quad S_{2} \equiv \sqrt[3]{-q - \sqrt{q^2 + p^3}}$$

la sola radice

$$x \equiv S_1 + S_2$$

della (37) può essere razionale.

Quindi, che se x è razionale, S_1 dovrà essere dalla forma

$$(38) S_{t} \equiv \alpha + \beta \sqrt{q^{2} + p^{3}}$$

(α e β indicando quantità razionali). In altri termini si deve avere

(39)
$$(-q+t)^{\frac{\mu^2-1}{3}} \equiv 1 \pmod{\mu},$$

t essendo una radice della congruenza irriducibile

$$t^2 \equiv (q^2 + p^3) \pmod{\mu}$$

condizione che è verificata di per sè, perchè si ha:

$$(-q+t)^{(6\overline{n+1}+1)\cdot 2n} \equiv (-q-t)^{2n}(-q+t)^{2n} \equiv (-p^3)^{2n} \equiv 1.$$

Dunque la (37) ammette sempre una radice razionale, la quale si trova facilmente essere:

(40)
$$x = -\frac{1}{p} [(-q + \sqrt{q^2 + p^3})^{2n+1} + (-q - \sqrt{q^2 + p^3})^{2n+1}] \pmod{\mu}.$$

D'altronde con tutta facilità si verifica che questa espressione soddisfa effettivamente alla (37).

Secondo l'enunciato invece del teorema VII dell'Oltramare, la cong. (37) ammetterà o no una radice razionale, secondochè sarà Rend. Circ. Matem., t. IX, parte 1ª.—Stampato il 25 giugno 1895.

o no soddisfatta la congruenza:

(41)
$$(2 M - 1)^2 (M + 1) \equiv -\frac{2 q^2}{p^3} \pmod{\mu},$$

M indicando la parte razionale dell'espressione:

$$(-q+\sqrt{q^2+p^3})^{2n}$$
.

In base ai nostri risultati la condizione (41) dev'essere verificata identicamente; è ciò che si riconosce facilmente.

I teoremi VII e VIII dell'articolo più volte citato, la cui dimostrazione è abbastanza complicata, devono essere sostituiti dal seguente.

TEOREMA VII.—Se μ è un numero primo della forma μ =6n+1, e se p e q sono numeri tali che sia:

$$(q^2+p^3)^{\frac{\mu-1}{2}}\equiv -1 \pmod{\mu},$$

la congruenza:

$$x^3 + 3px + 2q \equiv 0 \pmod{\mu}$$

ammetterà sempre una ed una sola radice razionale, data dalla formola:

$$x \equiv 2 M'$$

dov'è:

$$M' \equiv -\frac{1}{2p} \left[(-q + \sqrt{q^2 + p^3})^{2n+1} + (-q - \sqrt{q^2 + p^3})^{2n+1} \right].$$

18. Passiamo ora a considerare la congruenza (A).

Siccome i ragionamenti a farsi non differiscono sostanzialmente da quelli più volte adoperati, ci contenteremo d'enunciare all'incirca i risultati.

TEOREMA VIII. - Siano J e I numeri tali che sia:

$$\left(-\frac{\Delta}{27}\right)^{\frac{\mu-1}{2}} \equiv \left[J^2 - \left(\frac{I}{3}\right)^3\right]^{\frac{\mu-1}{2}} \equiv -1 \pmod{\mu = 6n+1}$$

e, posto:

$$R_{1} \equiv \sqrt[3]{-J+\sqrt{-\frac{\Delta}{27}}} \equiv \frac{3}{I} \left(-J+\sqrt{-\frac{\Delta}{27}}\right)^{2n+1}$$

$$\equiv R+S\sqrt{-\frac{\Delta}{27}}$$

sia

$$z_1 = -H + R$$

l'unica radice razionale della congruenza (B).

a) Se $z_1^{\frac{\mu-1}{2}} \equiv -1$, la congruenza (A) ammetterà due radici razionali date dalle formole:

$$x_1 \equiv 0, \quad x_2 \equiv -\frac{1}{3H} [(-2G + \sqrt{4G^2 + 8H^3})^{2n+1} + (-2G - \sqrt{4G^2 + 8H^3})^{2n+1}].$$

b) Se $z_1^{\frac{\mu-1}{2}} \equiv +1$, due radici razionali, date da

$$x_{1} = \frac{GN}{SV - 3} + \sqrt{\frac{SV - 3(M + 1)}{N}}$$

$$x_{2} = \frac{GN}{SV - 3} - \sqrt{\frac{SV - 3(M + 1)}{N}}$$

dove M e N sono rispettivamente i coefficienti di $\left(\sqrt{-\frac{\Delta}{27}}\right)^{\circ}$ e $\left(\sqrt{-\frac{\Delta}{27}}\right)^{\circ}$ nello sviluppo secondo la formola del binomio dell'c-spressione :

$$z_2^{3n} \equiv \left[\left(-H - \frac{R}{2} \right) + \frac{\sqrt{-3} S}{2} \cdot \sqrt{-\frac{\Delta}{27}} \right]^{3n}.$$

c) Se $z_i \equiv 0$, la congruenza (A) ammetterà delle radici razionali nei casi indicati dal teorema I.

19. B)
$$\mu = 6n - 1$$
.

Svolgeremo anzitutto alcune brevi considerazioni circa la congruenza:

(43)
$$x^3 + 3px + 2q \equiv 0 \pmod{\mu = 6n - 1}$$

p e q essendo tali che:

(44)
$$(q^2 + p^3)^{\frac{\mu - 1}{2}} \equiv -1 \pmod{\mu}.$$

Si riconosce dapprima, come lo dimostra l'Oltramare (Teorema IX), che la (43) ammette tre radici razionali o nessuna. Se il primo caso ha luogo, l'espressione:

$$x \equiv \sqrt[3]{-q + \sqrt{q^2 + p^3}} + \sqrt[3]{-q - \sqrt{q^2 + p^3}} \equiv S_1 + S_2 \pmod{\mu}$$

deve ridursi a un numero razionale, e per ciò bisogna e basta che sia soddisfatta la congruenza

(45)
$$(-q+t)^{\frac{6n-1^2-1}{3}} \equiv 1 \pmod{\mu},$$

essendo t una radice della congruenza irriducibile

$$t^2 \equiv q^2 + p^3 \pmod{\mu}$$
.

Ma si ha:

$$(-q+\sqrt{q^2+p^3})^{6n} \equiv (-q+\sqrt{q^2+p^3})(-q-\sqrt{q^2+p^3}) \equiv -p^3,$$
donde:

(46)
$$(-q + \sqrt{q^2 + p^3})^{2n} \equiv -f^i p.$$

Similmente:

$$(-q-\sqrt{q^2+p^3})^{2n} \equiv -f^{2i}p.$$

Dunque:

$$(-q+\sqrt{q^2+p^3})^{2n(6n-2)} = (-q-\sqrt{q^2+p^3})^{2n}(-q+\sqrt{q^2+p^3})^{2n} = f^i;$$

e perciò la condizione (45) equivale alla seguente:

$$i = 0$$

od anche a:

$$(47) (-q + \sqrt{q^2 + p^3})^{2n} \equiv -p.$$

Sicchè la congruenza (47) è condizione non solo necessaria, come aveva dimostrato l'Oltramare, ma anche sufficiente perchè la congruenza (43) ammetta delle radici razionali.

20. Da quanto procede, tenuto conto della teoria delle congruenze irriducibili, si deduce la proposizione seguente:

TEOREMA IX. — Sia $\mu = 6 n - 1 = 6.3^m n_1 - 1$ (n_1 primo con 3): sia inoltre $A \equiv a + b \sqrt{q^2 + p^3}$ (a e b razionali) una radice primitiva della congruenza:

$$x^{\mu^2-1} \equiv 1 \pmod{\mu}$$
.

* Se la cong. (43) ammette delle radici razionali, si avrà (essendo i uno dei numeri 1, 2, ... 3"):

$$(-q+\sqrt{q^2+p^3})^{2n_1} \equiv -\sqrt[3^m]{p} A^{i\frac{\mu^2-1}{3^m}},$$

$$(-q-\sqrt{q^2+p^3})^{2n_1} \equiv -\sqrt[3^m]{p} A^{-i\frac{\mu^2-1}{3^m}}.$$

Se, inoltre, si pone:

$$(a + b \sqrt{q^2 + p^3})^{i \frac{p^2 - 1}{3m + 1}} \equiv P + Q \sqrt{q^2 + p^3}$$

con che:

$$(a + b\sqrt{q^2 + p^3})^{-i\frac{u^2 - 1}{3^{m+1}}} \equiv P - Q\sqrt{q^2 + p^3};$$

e inoltre:

$$(-q + \sqrt{q^2 + p^3})^{\frac{2n_1+1}{3}} \equiv M + N\sqrt{q^2 + p^3}$$

$$(-q + \sqrt{q^2 + p^3})^{\frac{2n_1-1}{3}} \equiv M_1 + N_1\sqrt{q^2 + p^3}$$

una delle radici della congruenza sarà data dalla formola:

(48)
$$x \equiv -\frac{2}{\sqrt[3]{m+1}} (MP - NQ) \pmod{\mu}$$

se:

$$n_1 = 3 n_2 + 1;$$

oppure dalla formola:

(49)
$$x \equiv -2 \sqrt[3]{p} (M_1 P + N_1 Q) \pmod{\mu}$$

se:

$$n_1 = 3 n_2 + 2$$
.

21. Passiamo ora alla congruenza di 4° grado (A); e distinguiamo tre casi; secondochè si ha:

a)
$$R_{i}^{\mu+i} \equiv \left(-J + \sqrt{-\frac{\Delta}{27}}\right)^{2n} \equiv \frac{I}{3}$$

$$R_{i}^{\mu+1} \equiv \left(-J + \sqrt{-\frac{\Delta}{27}}\right)^{2n} \equiv f \frac{I}{3}$$

c)
$$R_{i}^{\mu+i} \equiv \left(-J + \sqrt{-\frac{\Delta}{27}}\right)^{2n} \equiv f^{2} \frac{I}{3}.$$

22. a). In questo caso la risolvente della proposta ammette tre radici razionali; e circa la congruenza (A) si conclude il seguente teorema, intieramente analogo al teorema V.

TEOREMA X. — Sia il numero $\mu = 2^m \mu_1 + 1$ (μ_1 impari) della forma $\mu = 6n + 1$, e siano J e I numeri tali che:

$$\left(-\frac{\Delta}{27}\right)^{\frac{\mu-1}{2}} \equiv -1, \quad \left(-J+\sqrt{-\frac{\Delta}{27}}\right)^{2n} \equiv \frac{I}{3} \pmod{\mu}.$$

Sia inoltre a una radice primitiva pel numero p.

La congruenza (A) ammetterà quattro radici razionali o nessuna secondochè saranno o no soddisfatte le due condizioni:

$$\begin{cases} z_1^{\frac{\mu-1}{2}} \equiv \left[-H + \frac{1}{2} (R_1 + R_2) \right]^{\frac{\mu-1}{2}} \equiv + \text{ i } \pmod{\mu} \\ \\ z_2^{\frac{\mu-1}{2}} \equiv \left[-H + \frac{1}{2} (fR_1 + f^2R_2) \right]^{\frac{\mu-1}{2}} \equiv + \text{ i } \pmod{\mu}. \end{cases}$$

Se, le condizioni precedenti essendo verificate, si ha:

$$\zeta_1^{\mu_1} \equiv a^{i\frac{\mu-1}{2^{m-1}}} \qquad \qquad \zeta_2^{\mu_1} \equiv a^{k\frac{\mu-1}{2^{m-1}}}$$

(i e k essendo due dei numeri 1, 2, ... 2^{m-1}) una delle radici della proposta sarà data dalla formola:

$$x \equiv \frac{z_1^{\frac{\mu_1+1}{2}}}{a^{\frac{\mu-1}{2m}}} + \frac{z_2^{\frac{\mu_1+1}{2}}}{a^{\frac{\mu-1}{2m}}} - \frac{G a^{(i+k)\frac{\mu-1}{2m}}}{(z_1 z_2)^{\frac{\mu_1+1}{2}}} \pmod{\mu}.$$

Corollario. — Se il numero $\mu = 6n - 1$ è pure della forma 12m + 11, e se si pone:

$$z_{i}^{3(m+1)} \equiv \left[-H + \frac{1}{2}R_{i} + \frac{I}{6\left(-J + \sqrt{-\frac{\Delta}{27}}\right)}R_{i}^{2} \right]^{3(m+1)} \\
\equiv M + NR_{i} + PR_{i}^{2} \pmod{\nu}$$

(M, N, P essendo rispettivamente i coefficienti di R_1^0 , R_1^1 , R_1^2 nello sviluppo di $z_1^{3(m+1)}$ secondo la formola del trinomio), una delle radici della proposta sarà data dalla formola:

$$x \equiv 3 M \pmod{\mu}$$
.

$$(-J+\sqrt{-\frac{\Delta}{27}})^{2n} \equiv f\frac{I}{3}$$

In questo caso si ha:

(51) $\zeta_1^{\mu} \equiv \zeta_3$, $\zeta_2^{\mu} \equiv \zeta_1$, $\zeta_3^{\mu} \equiv \zeta_2$ (mod. μ) e quindi si riconosce subito che la sola radice x_1 della congruenza (A) può essere razionale.

D'altronde una qualunque, χ_i , delle radici della risolvente, è di questa forma:

(52)
$$\zeta_{i} \equiv -H + \frac{1}{2} f^{i-1} R_{i} + \frac{I}{6 \left(-J + \sqrt{-\frac{\Delta}{27}}\right)} f^{2(i-1)} R_{i}^{2}$$

$$\equiv \varphi + \psi R_{i} + \tau R_{i}^{2} \pmod{\mu},$$

 φ , ψ e τ indicando funzioni razionali intere, a coefficienti razionali, di $\sqrt{-\frac{\Delta}{27}}$. Inoltre J e I sono tali (cong. b) che non si possono determinare, come nel caso precedente (a), due numeri razionali α e β , soddisfacenti alla relazione:

$$R_1 \equiv \sqrt{-J + \sqrt{-\frac{\Delta}{27}}} \equiv \alpha + \beta \sqrt{-\frac{\Delta}{27}}.$$

Perchè dunque la proposta ammetta una radice razionale, è necessario e sufficiente che si possa porre:

(53)
$$V\overline{z}_i \equiv V\varphi + \psi R_1 + \tau R_1^2 \equiv M + Nf^2R_1 + Pf^{2l}R_1^2 \pmod{\mu},$$

 $M,\ N,\ P$ essendo, come $\varphi,\ \psi$ e $\tau,\$ funzioni razionali intere, a coefficienti razionali, di $\sqrt{-\frac{\Delta}{27}}$.

Nella teoria delle congruenze binomie della forma:

(54)
$$X^m \equiv A(x) \pmod{F(x), \mu}$$

[F(x)] essendo una funzione intera di grado v, irriducibile secondo il modulo primo μ , e m un divisore di μ^{ν} — r] si dimostra che la condizione necessaria e sufficiente per la risolubilità della (54) è

espressa dalla congruenza:

$$A^{\frac{\mu^{\nu}-1}{m}} \equiv 1 \pmod{F(x), \mu}.$$

Similmente, la congruenza a triplice modulo:

$$(55) Y(x, X)^m \equiv A(x, X) \text{ [modd. } G(x, X), F(x), \mu]$$

[F(x)] essendo sempre una funzione di grado ν , irriducibile secondo μ ; G(x, X) una funzione intera di grado λ in X, i cui coefficienti sono polinomii in x, di grado inferiore a ν , il primo di essi essendo uguale all'unità; e tale che non si possa porre:

$$G(x, X) \equiv G_{x}(x, X) f(x, X) \text{ [modd. } F(x), \mu$$
]

il grado di $G_{r}(x, X)$ in X essendo inferiore a λ ; e infine m essendo un divisore di $\mu^{\lambda\nu}-r$], è possibile o no secondochè sia o no verificata la condizione:

(56)
$$A(x, X)^{\frac{\mu^{\lambda \nu}-1}{m}} \equiv 1 \pmod{G(x, X), F(x), \mu}.$$

In particolare, prendendo:

$$F(x) = x^2 + \frac{\Delta}{27}, \quad G(x, X) = X^3 - (-J + x),$$

$$A(x, X) = \tau(x)X^2 + \psi(x)X + \varphi(x)$$

$$\mu = 6n - 1,$$

con che:

$$v = 2$$
, $\lambda = 3$, $m = 2$,

si vede che la congruenza:

$$Y^2 \equiv \tau(x)X^2 + \psi(x)X + \varphi(x)$$
 [modd. $X^3 - (J+x)$, $x^2 + \frac{\Delta}{27}$, μ]

Rend. Circ. Matem., t. IX, parte 1ª.—Stampato il 26 giugno 1895.

è possibile ed allora soltanto, che si abbia:

(57)
$$[\tau(x)X^2 + \psi(x)X + \varphi(x)]^{\frac{\mu\delta_{-1}}{2}} \equiv \mathbb{I} \left[\text{modd. } X^3 - (-J+x), x^2 + \frac{\Delta}{27}, \mu \right].$$

Conveniamo ora che la indeterminata x sia una radice della congruenza irriducibile:

$$x^2 + \frac{\Delta}{27} \equiv 0 \pmod{\mu},$$

che, inoltre, X sia una radice della congruenza irriducibile a doppio modulo:

$$X^3 - (-J + x) \equiv 0 \pmod{\left(x^2 + \frac{\Delta}{27}\right)}, \mu$$

Allora si vede che la (53) sarà possibile ed allora soltanto che si abbia:

(58)
$$\left[-H+\frac{1}{2}R_{1}+\frac{I}{6\left(-J+\sqrt{-\frac{\Delta}{27}}\right)}R_{1}^{2}\right]^{\frac{6\overline{n-1}6}{2}}\equiv 1 \pmod{\mu}.$$

Questa relazione è verificata identicamente in forza delle (51): dunque la proposta ammette sempre una radice razionale.

È facile quindi concludere la seguente proposizione: TEOREMA XI.—Se I e I sono numeri tali che si abbia:

$$\left[J^2 - \left(\frac{I}{3}\right)^3\right]^{\frac{\mu-1}{2}} \equiv \left(-\frac{\Delta}{27}\right)^{\frac{\mu-1}{2}} \equiv -1 \pmod{\mu = 6n-1}$$

$$R_1^{\mu+1} \equiv \left(-J + \sqrt{-\frac{\Delta}{27}}\right)^{2n} \equiv f\frac{I}{3}$$
,

la congruenza (A) ammetterà una sola radice razionale data dalla formola;

$$x \equiv 3 M$$
,

M rappresentando la parte dello sviluppo di

$$-\frac{G}{2\,\zeta_{1}^{3^{H}}} = -\frac{2(\zeta_{2}\zeta_{3})^{3^{H}}}{G} = -\frac{2}{G} \left[-H + \frac{1}{2}fR_{1} + \frac{I}{6\left(-J + \sqrt{-\frac{\Delta}{27}}\right)} f^{2}R_{1}^{2} \right]^{3^{H}} \times \left[-H + \frac{1}{2}f^{2}R_{1} + \frac{I}{6\left(-J + \sqrt{-\frac{\Delta}{27}}\right)} fR_{1}^{2} \right]^{3^{H}}$$

secondo le potenze di R,, che non contiene R, a fattore.

24. c)
$$\left(-J + \sqrt{-\frac{\Delta}{27}}\right)^{2n} \equiv f^2 \frac{I}{3}$$
.

I ragionamenti e le conclusioni in questo 3° caso, non differiscono affatto da quelle del caso precedente.

produced commerce without were his will also again foods. Since Sa

des cromes continus. Soit un proune relatif à a lettres &

Genova, maggio 1895.

GEROLAMO CORDONE.

SUR LA THÉORIE DES GROUPES

ET DES

SURFACES ALGÉBRIQUES;

par M. Émile Picard, à Paris.

Adunanza del 23 giugno 1895.

Dans mes recherches sur les fonctions algébriques de deux variables indépendantes (Journal de Mathématiques, 1889), je me suis occupé des surfaces admettant un groupe fini et continu de transformations birationnelles. Cette question se rattache à l'étude des groupes algébriques en même temps qu'à la théorie des équations différentielles; c'est ce que j'ai montré succinctement (Comptes Rendus, 28 avril 1890) dans une Note où j'ai étudié certaines équations différentielles dont l'intégrale générale est uniforme, et j'ai indiqué plus récemment (Comptes Rendus, 25 mars 1895) comment les considérations que j'avais précédemment développées conduisaient immédiatement à une proposition générale sur les groupes algébriques. Il m'a semblé qu'il y avait quelque intérêt à rassembler ces résultats un peu épars; c'est que je me propose de faire ici.

I.

1. Rappelons d'abord une proposition bien connue dans la théorie des groupes continus. Soit un groupe relatif à n lettres x_1 , x_2 , ... x_n

et dépendant de r paramètres

$$x'_{i} = f_{i}(x_{1}, x_{2}, \dots x_{n}, a_{1}, a_{2}, \dots a_{r})$$
 $(i = 1, 2, \dots n).$

On suppose que toutes les substitutions du groupe sont deux à deux échangeables; dans ces conditions on peut choisir les paramètres a, de telle sorte que les équations donnant les x' en fonctions des a soient de la forme

$$\frac{\partial x'_i}{\partial a_k} = \xi_{ik}(x'_1, x'_2, \dots x'_n) \qquad \begin{pmatrix} i = 1, 2, \dots n \\ k = 1, 2, \dots r \end{pmatrix},$$

les ξ dépendant seulement des x.

2. Ceci posé, nous allons établir un théorème général sur les équations de la forme

(1)
$$f(y, y', \dots y^{(m)}) = 0,$$

en désignant par y, y', ... $y^{(m)}$ une fonction de x et ses dérivées jusqu'à l'ordre m; l'équation différentielle ne renferme pas explicitement la variable x. Considérons une intégrale y de cette équation, qui soit uniforme dans une certaine région du plan R, et soit R' une région du plan intérieure à R. Le point x étant dans R', le point x + h sera dans R, si la constante h est suffisamment petite; soient alors

$$Y, Y', \ldots Y^{(m)}$$

les valeurs de $y, y', \ldots y^{(m)}$ quand on y remplace x par x + h. Il est clair que les Y sont fonctions des y et de h, sans que x entre explicitement dans ces expressions. Posons donc

les Y sont des fonctions bien déterminées de y et inversement. Nous allons étudier le cas où cette transformation biuniforme entre

$$y, y', \ldots y^{(m)}$$
 et $Y, Y', \ldots Y^{(m)}$

serait birationnelle.

Dans les fractions rationnelles F, mettons comme coefficients de y, y', ... $y^{(m)}$ des constantes indéterminées, et écrivons que Y est une solution de l'équation (1). Nous obtiendrons ainsi un certain nombre de relations algébriques entre ces constantes; celles-ci s'exprimeront alors rationnellement en fonction d'un certain nombre n de paramètres liés par une relation algébrique. Désignons ces paramètres par $x_1, x_2, \ldots x_n$ et par

$$S(x_1, x_2, \ldots x_n) = 0$$

la relation algébrique à laquelle ils satisfont. Quand dans une solution de l'équation (1), correspondant à des valeurs arbitraires des paramètres $x_1, x_2, \ldots x_n$, on change x en x + h, les paramètres $x_1, x_2, \ldots x_n$ se changent en $X_1, X_2, \ldots X_n$, ceux-ci étant des fonctions rationnelles de ceux-là. Ceci revient à dire que la surface algébrique S représentée par l'équation (2) admet un groupe de transformations birationnelles en elle-même dépendant d'un paramètre arbitraire h, et pour h = 0, cette transformation devient la transformation identique. Ce groupe sera déterminé par des équations de la forme

$$\frac{dx_i}{dt} = \xi_{0i}(x_1, x_2, \ldots x_n),$$

les ξ étant des fonctions rationnelles des x.

3. Je représente par

(les f étant rationnelles en x_1 , x_2 , ... x_n) la substitution birationnelle transformant S en elle-même. Dans les fractions rationnelles f, mettons encore comme plus haut des lettres indéterminées comme coefficients des x. Nous considérons le groupe de transformations contenu dans la substitution précédente, dépendant du plus grand nombre possible de paramètres et tel que toutes ses transformations soient deux à deux échangeables. Ce groupe, que nous désignons par G, dépend au moins d'un paramètre, puisqu'il contiendra manifestement la substitution (3); de plus, si r désigne le nombre des paramètres, les coefficients des x dans la transformation pourront être regardés comme des fonctions rationnelles de r+1 paramètres liés par une relation algébrique. Ceci résulte de ce que les relations à écrire entre les lettres indéterminées, figurant comme coefficients, sont toutes algébriques, puisque nous envisageons le groupe contenant le plus grand nombre possible d'arbitraires.

On peut d'autre part, d'après le n° 1, choisir les paramètres que nous désignerons par

$$b, b_1, \ldots b_{r-1}$$

de manière que le groupe G soit défini par les équations:

$$\frac{\partial X_i}{\partial h} = \xi_{0i}(X_1, X_2, \dots X_n)$$

$$\frac{\partial X_i}{\partial h} = \xi_{ki}(X_1, X_2, \dots X_n) \quad (k = 1, 2, \dots r - 1);$$

le premier de ces paramètres, désigné par h, ne sera autre que le paramètre h qui figurait dans (3), et les ξ_0 sont les fonctions rationnelles écrites à la fin du n° 2; tous les ξ sont d'ailleurs des fonctions rationnelles des X, qui, bien entendu, satisfont à la relation

$$S(X_1, X_2, \ldots X_n) = 0.$$

Deux circonstances peuvent se présenter relativement au groupe G. Il peut être possible de faire correspondre au moyen d'une sub-

stitution du groupe un point arbitraire de la surface S à un autre point de cette surface, c'est-à-dire que le groupe peut être n-1 fois transitif; ou bien au contraire la transitivité de G sera d'ordre inférieur à n-1. Mais il est aisé de voir que ce second cas se ramène au premier, car on pourra alors détacher dans S une mutiplicité algébrique d'un moindre nombre de dimensions, que laisseront invariable les substitutions de G, et tel qu'un point quelconque de cette multiplicité pourra correspondre à un autre par une substitution de ce groupe.

Supposons donc G transitif de la manière indiquée; le nombre r sera alors au moins égal à n-1, et si, portant son attention sur les variables X_1 , X_2 , ... X_{n-1} (la dernière X_n étant fonction des autres) on considère le tableau rectangulaire

$$\xi_{0,1}$$
 $\xi_{0,2}$ \dots $\xi_{0,n-1}$

$$\xi_{1,1}$$
 $\xi_{1,2}$ \dots $\xi_{1,n-1}$ $r = n-1$

$$\xi_{r-1,1}$$
 $\xi_{r-1,2}$ \dots $\xi_{r-1,n-1}$

tous les déterminants formés avec les n-1 colonnes verticales et n-1 des lignes horizontales ne seront pas identiquement nuls, et il y aura alors nécessairement au moins un de ces déterminants, où figure la première ligne, qui ne sera pas identiquement nul. Nous pouvons donc supposer que le déterminant formé par les n-1 colonnes et les n-1 premières lignes n'est pas identiquement nul. On a ainsi les équations aux différentielles totales

qui définissent

$$X_1, X_2, \ldots X_{n-1}$$

en fonction de

$$h, h_1, \ldots h_{n-2}$$

En résolvant les équations précédentes par rapport à dh_1 , dh_2 , ... dh_{n-2} , on aura

où les P sont des fonctions rationnelles de $X_1, X_2, \ldots X_n$, la dernière de ces lettres étant liée aux autres par la relation S = 0. Les conditions d'intégrabilité sont évidemment vérifiées, et nous avons donc à faire l'inversion d'un système d'intégrales de différentielles totales relatives à la surface S = 0.

Or les X sont des fonctions uniformes de h_1 , h_2 , ... h_{n-2} , ayant pour toutes les valeurs finies de ces variables le caractère de fonctions rationnelles. Montrons-le, par exemple, pour la variable h; il suffit de répéter un mode de raisonnement classique dans la théorie des fonctions abéliennes: les relations (3) permettent d'étendre de proche en proche les fonctions d'une manière uniforme.

Nous pouvons donc conclure que les X sont des fonctions abéliennes (ou dégénérescences) des h, et en particulier de la variable h qui nous intéresse particulièrement; nous entendons par fonction abélienne d'une variable, ce que devient une fonction abélienne d'un certain nombre d'arguments, quand on laisse constants tous les arguments moins un seul qui devient la variable.

Si maintenant nous revenons à l'équation (1), on voit que les coefficients de $y, y', \ldots y^{(m)}$ dans les relations

seront des fonctions abéliennes (ou dégénérescences) de h. Si nous considérons, non-pas x, mais h comme la variable, nous pouvons dire que Y est une fonction abélienne de h, et par suite y est une fonction abélienne de x.

Nous énoncerons donc le théorème suivant qui résume cette analyse:

Sous les hypothèses faites, l'intégrale générale de l'équation (1) s'exprime à l'aide des transcendantes de la théorie des fonctions abéliennes.

Au lieu de l'équation différentielle (1), on pourrait évidemment considérer le système d'équations différentielles du premier ordre :

$$\frac{d x_i}{d t} = X_i^t(x_1, x_2, \dots x_n) \quad (i = 1, 2, \dots n-1)$$

avec la relation algébrique $S(x_1, x_2, ..., x_n) = 0$. Si on a

$$x_i(t+b) = f_i(b, x_1, x_2, \dots x_n)$$
 $(i=1, 2, \dots n),$

les f_i étant rationnelles en $x_1, x_2, \ldots x_n$, les intégrales du système (Σ) s'expriment à l'aide des transcendantes de la théorie des fonctions abéliennes.

4. J'indiquerai une conséquence de cette proposition. Soit une équation

$$f(y, y', \ldots y^{(m)}) = 0$$

dont on sait que l'intégrale générale s'exprime à l'aide d'une intégrale particulière quelconque par la formule

$$Y = R(y, y', \ldots y^{(m)}, a_1, a_2, \ldots a_m),$$

R dépendant rationnellement des y et les m lettres a représentant des constantes arbitraires.

Il est d'abord immédiat que l'intégrale générale de l'équation sera uniforme, puisque, dans le voisinage de tout point, Y peut s'exprimer rationnellement à l'aide d'une intégrale particulière y que

l'on peut supposer uniforme autour de ce point. Ensuite, les conditions supposées dans le théorème précédent seront certainement vérifiées, car on peut prendre pour Y, ce que devient y quand on remplace x par x+h; il en résulte que l'intégrale générale de l'équation ci-dessus pourra s'exprimer à l'aide des fonctions abéliennes ou de leurs dégénérescences.

II.

5. Le théorème du n° 3 était relatif aux équations différentielles. En changeant, pour ainsi dire, seulement la sorme de cette proposition, on obtient une propriété générale des groupes algébriques. Prenons une surface algébrique dans un espace à n dimensions

$$S(x_1, x_2, \ldots x_n) = 0$$

et supposons que cette surface admette un groupe G continu et fini de transformations birationnelles. J'envisage un des sous-groupes finis à un paramètre contenu dans G; ce sous-groupe sera défini par un système d'équations de la forme

(S)
$$\frac{dx_i}{dt} = X_i(x_1, x_2, \dots x_n) \qquad (i = 1, 2, \dots n),$$

les X étant rationnels en $x_1, x_2, \ldots x_n$. Puisque ce sous-groupe fait partie du groupe G, le système (S) jouit de la propriété indiquée pour le système (Σ) à la fin du n° 3, et nous pouvons dire par suite que, dans les équations finies du sous-groupe précédent, les coefficients sont des fonctions uniformes du paramètre arbitraire s'exprimant à l'aide des transcendantes de la théorie des fonctions abeliennes.

Nous pouvons opérer ainsi pour chacun des sous-groupes à un paramètre contenu dans G, et on arrive alors au théorème général suivant:

Si le groupe G est à r paramètres, on peut s'arranger de manière que les coefficients des fonctions rationnelles de x, qui donnent le groupe, soient des fonctions uniformes des r paramètres s'exprimant au moyen des transcendantes de la théorie des fonctions abéliennes ou de leurs dégénérescences.

6. Nous pouvons faire, relativement au groupe G, une distinction importante, sur laquelle nous avons déjà eu à insister au n° 3. Le groupe G peut ou non permettre de faire correspondre à un point arbitraire de la surface S un autre point quelconque de cette même surface.

Dans le premier cas, le groupe est au moins n-1 fois transitif, et en faisant varier n-1 des paramètres on obtiendra une représentation paramétrique de la surface. Il en résulte que les coordonnées d'un point quelconque de la surface

$$S(x_1, x_2, \ldots x_n) = 0$$

s'exprimeront par des fonctions abéliennes de n - 1 paramètres.

Dans le second cas, le groupe G sera nécessairement un sousgroupe d'un groupe I de transformations birationnelles de la surface, pour lequel les paramètres pourront être regardés comme entrant algébriquement. Si ce groupe I (qui peut coïncider avec G) est au moins n-1 fois transitif, nous sommes ramenés au cas précédent. Dans le cas contraire, par chaque point de la surface passe une multiplicité algébrique, contenue dans S, et d'ordre inférieur à n-1. Cette multiplicité jouira de la propriété qu'avait S dans le premier cas, c'est-à-dire que, si elle est à r dimensions, les coordonnées de ses points s'expriment par des fonctions abéliennes de r paramètres. Il est important de remarquer que les MODULES de ces fonctions abéliennes ne dépendent pas du point de la surface qui détermine la multiplicité; ceci résulte de ce que les expressions des coordonnés peuvent être obtenues en faisant varier seulement, parmi les paramètres de \(\Gamma \), r d'entre eux qu'on peut supposer être des arguments de fonctions abéliennes formées comme il a été dit au n° 5, et par conséquent tout-à-fait indépendantes du point de la surface déterminant la multiplicité qui nous occupe.

7. Le théorème du n° 5 s'applique en particulier aux groupes

de substitutions de Cremona. Si, en désignant m lettres indépendantes par $x_1, x_2, \ldots x_m$, on a entre les x et les X la substitution birationnelle

tormant un groupe a r paramètres, il résulte immédiatement, de ce qui précède, que l'on peut toujours s'arranger de façon que les R soient des fonctions uniformes des a s'exprimant par les transcendantes abéliennes.

On pourra dans certains cas aller plus loin. Si le groupe est m fois transitif, et si ses substitutions sont échangeables deux à deux, les transcendantes qui s'introduisent dans les calculs résultent simplement de l'inversion d'intégrales de différentielles totales ration-nelles. Par conséquent, h désignant un des paramètres, on obtiendra seulement, par l'inversion, des fonctions rationnelles de h ou de e^{kh} , en désignant par k une constante. On pourra alors s'arranger de manière que les R contiennent rationnellement les paramètres a.

8. Appliquons les généralités qui précèdent à la surface algébrique

$$f(x, y, z) = 0$$

dans l'espace à trois dimensions. Nous allons retrouver et compléter les propositions que nous avons données autrefois.

Supposons que cette surface admette un groupe de transformations birationnelles. Tout d'abord si le groupe permet de passer d'un point quelconque de la surface à un autre point quelconque de celle-ci, on est assuré que les coordonnées d'un point de la surface s'expriment par des fonctions abéliennes (ou dégénérescences) de deux paramètres.

Il faut approfondir davantage la question. Considérant un sous-

groupe à un paramètre contenu dans le groupe donné, nous raisonnerons comme nous l'avons fait plus haut d'une manière générale et nous sommes conduits à une transformation de la surface en elle-même, dépendant rationnellement des lettres $X_1, X_2, \ldots X_n$ qui sont elles-mêmes fonctions de paramètres $h, h_1, \ldots h_{r-1}$ (par les n^{os} 2 et 3). Nous avons ainsi la transformation birationnelle de f en elle-même

$$X = f(h, h_1, \dots h_{r-1}, x, y, z),$$

 $Y = \varphi(h, h_1, \dots h_{r-1}, x, y, z),$
 $Z = \psi(h, h_1, \dots h_{r-1}, x, y, z),$

les substitutions de ce groupe étant deux à deux échangeables. Si ce groupe est deux fois transitif, on pourra résoudre par rapport à deux des paramètres, et, d'après ce que nous avons vu au n° 3, les cordonnées d'un point quelconque de la surface s'exprimeront par des fonctions abéliennes de deux paramètres au moyen de l'inversion de deux intégrales de différentielles totales; c'est le résultat que j'ai obtenu antérieurement (Journal de Mathématiques, 1889, page 222).

Si le groupe Γ ne permet pas de passer d'un point quelconque de la surface à un autre point, on pourra faire passer par chaque point de la surface une courbe algébrique que le groupe transformera en elle-même. Cette courbe sera par suite nécessairement du genre zéro ou du genre un. On peut laisser constants tous les paramètres sauf un seul, et considérer par exemple h comme seul variable.

Dans le cas où la courbe sera de genre un, X, Y, Z devront être des fonctions doublement périodiques de h, et il est clair que le module de cette courbe est fixe, c'est-à-dire indépendant de (x, y, z). Nous avons donc, dans ce second cas, un faisceau de courbes de genre zéro ou un sur la surface; il passe par chaque point de la surface une courbe de ce faisceau. C'est un théorème que j'ai également indiqué précédemment (loc. cit.) et j'ai montré qu'on pouvait même aller plus loin quand le genre géométrique de la surface dépasse l'unité.

Le seul cas dont l'étude, d'après ce qui précède, n'est pas entièrement complète est celui où la surface admet un groupe de transformations qui ne permet pas de passer d'un point quelconque de la surface à un autre point de celle-ci, et où en même temps la surface a son genre géométrique au plus égal à un. Quand ces deux conditions se trouvent remplies, j'énonce seulement que l'on peut trouver sur la surface un faisceau de courbes de genre zéro ou un, mais j'ai tout lieu de penser que les travaux récents de M. Castelnuovo et de M. Enriques sur la théorie des surfaces permettront de donner des indications plus précises sur la nature de la surface.

Paris, le 5 juin 1895.

ÉM. PICARD.

A QUADRATIC CREMONA TRANSFORMATION

DEFINED BY A CONIC;

by Leonard E. Dickson, of Chicago.

Adunanza del 14 luglio 1895.

Let one pair AC, DB of opposite sides of a hexagon ACG DBF inscribed in a given conic be fixed, and hence four, A, C, D, B, of its vertices. Of the points of intersection $O \equiv (AC, DB)$, $P \equiv (AF, DG)$, $R \equiv (BF, CG)$ of the three pairs of opposite sides, O is fixed, while P and R vary.

A (τ, τ) correspondence between the points of the plane is thus defined by P and R.

If the point P describes a straight line [or a conic passing through A and D], the flat-pencils with centers A and D are perspec-

Let one pair ac, db, of opposite vertices of a hexagon ac gdbf circumscribed about a given conic be fixed, and hence four, a, c, d, b, of its sides. Of the lines o = (ac, db), p = (af, dg), r = (bf, cg) joining the three pairs of opposite vertices, o is fixed, while p and r vary.

A (r, r) correspondence between the lines of the plane is thus defined by p and r.

If the line p turns about a point [or moves tangent to a conic touching a and d], the ranges on a and d are perspective $(\overline{\wedge})$. But the

tive $(\overline{\wedge})$. But the pencils with cen-ranges on a and b are $\overline{\wedge}$, since tersection F of corresponding rays is tangent to the base conic. lies on the base conic.

Similarly, the pencils with centers D and C projecting G are $\overline{\wedge}$. Hence the pencils B and C are $\overline{\wedge}$ and the intersection R of corresponding rays generates a conic passing through B and C

Every line through O transforms into itself, i. e. every range containing the point O transforms into a range with the same bearer (Pascal line).

Every point on the base conic is self-corresponding.

The point A transforms into the line AC; D into DB; O into BC. All other points on the line AD transform into the point O; all others on AC into C; all others on DB into B.

Thus the vertices and sides of A A D O transform into the sides and vertices respectively of A OBC.

If K be the intersection of AD with BC, the corresponding points on OK lie in involution.

For we have two \(\overline{\lambda} \) pointrows superposed on OK, in which O and K are mutually corresponding points.

ters A and B are $\overline{\wedge}$, since the in-the join f of corresponding points

Similarly, the ranges on d and ε cut out by g are $\overline{\wedge}$. Hence the ranges b and c are $\overline{\wedge}$ and the join r of corresponding points generates a conic tangent to b and c.

Every point in o transforms into itself, i. e. every flat-pencil containing the line o transforms into a pencil with the same bearer (Brianchon point).

Every line tangent to the base conic is self-corresponding.

The line a transforms into the point ac; d into db; o into bc. All other lines through the point ad transform into the line o; all others through ac into c; all others through db into b.

Thus the sides and vertices of A ado transform into the vertices and sides respectively of A obc.

If k be the join of ad and bc, the corresponding lines through ok lie in involution.

For we have two \ flat-pencils superposed on ok, in which o and k are mutually corresponding lines.

With respect to the fixed pair of opposite sides AC and BD as axes, the most general equation to a conic making the intercepts OA = a, OB = b, OC = c, OD = d, may be thrown into the form:

$$bdx^{2} + bbdxy + acy^{2} + bd(a-c)x + ac(d-b)y - abcd = 0$$

where h is arbitrary. We then find the following relations between the coordinates x, y of P and x_1 , y_1 of R:

$$x_{i} = \frac{U}{W}, \quad y_{i} = \frac{V}{W},$$

where:

$$U = bcx(dx + ay + ad)$$

$$V = bcy(dx + ay + ad)$$

$$W = bdx^2 + acy^2 + bbdxy + abdx + acdy$$

To express the transformation in homogeneous coordinates, we note that:

$$bU + cV - bcW = bc(ab + cd - bbd)xy.$$

We exclude the very trivial case $h = \frac{ab + cd}{bd}$, when the base conic breaks up into the right lines AD and BC; for every point of the plane then transforms into BC.

Not at all trivial is the case when it breaks up into AB and DC. Let

$$z_1 = \frac{bx_1 + cy_1 - bc}{ab + cd - bbd}$$
 and $z = dx + ay + ad$.

$$\therefore x_{i}: y_{i}: \zeta_{i} = x\zeta: y\zeta: xy.$$

Solving,

$$x:y:z=x_1z_1:y_1z_1:x_1y_1.$$

The triangles of reference for the old and new coordinates are

then, respectively OAD, OCB, viz:

$$OD \equiv x = 0$$
, $OA \equiv y = 0$, $AD \equiv z = 0$, $OB \equiv x_1 = 0$, $OC \equiv y_1 = 0$, $BC \equiv z_1 = 0$.

The solution of the Cartesian relations gives:

$$x = \frac{U'}{W'}, \qquad y = \frac{V'}{W'}$$

where

$$U' = a d x_{1} (-b x_{1} - c y_{1} + b c)$$

$$V' = a d y_{1} (-b x_{1} - c y_{1} + b c)$$

$$W' = b d x_{1}^{2} + a c y_{1}^{2} + b d b x_{1} y_{1} - a b c y_{1} - b c d x_{1}.$$

The conic W' = 0 into which the line at infinity transforms, and the conic W = 0 which transforms into the line at infinity are both *similar* to the base conic.

The fact that the three conics are simultaneously all ellipses, all parabolas, or all hyperbolas follows also projectively; since a line and its transform meet the base conic in the same two points (real and distinct, coincident, or imaginary).

University of Chicago, May 1, 1895.

LEONARD E. DICKSON.

EMILIO WEYR.

Necrologia di Gustavo Kohn, in Vienna.

Dai Monatshefte für Mathematik und Physik, VI. Jahrgang 1895, pp. 1-4.

Traduzione di F. Gerbaldi.

Emilio Weyr nacque in Praga nell'anno 1848 da Francesco Weyr, professore di matematica nella Staats-Oberrealschule di quella città. Nella famiglia Weyr le scienze matematiche avevano residenza. Destinato fin dall'adolescenza alla matematica, Emilio trovò in suo padre un vero maestro, ed uno zelante condiscepolo nel suo fratello minore Edoardo, che oggi è professore di matematica in Praga nella böhmische téchnische Hochschule.

Quando entrò al Politecnico di Praga, Weyr possedeva già un buon corredo di cognizioni; allora Guglielmo Fiedler introduceva i suoi allievi alla nuova geometria, e si studiava di interessare i circoli scientifici di Praga a questa disciplina.

E milio Weyr si senti potentemente attirato dal suo fascino, e ben presto fu stimolato a ricerche scientifiche. Primo a far rivolgere l'attenzione sul matematico giovanetto fu uno scritto pubblicato a Lipzia da Teubner, la prima parte del quale (1869) ha per oggetto una teoria costruttiva delle curve razionali del 3º ordine, e la seconda parte (1870) una teoria delle superficie rigate del 3º ordine, entrambe basate sopra una corrispondenza (12).

La sua predilezione per la geometria sintetica divenne anche più profonda dopo un suo viaggio scientifico in Italia. Attirato qui dai lavori e dalla fama del Cremona, fu interamente conquistato dalla personale influenza di questo scienziato. Per tutta la sua vita scientifica Emilio Weyr rimase fedele alla geometria sintetica, e, in questa, all'indirizzo di Chasles-Cremona, che non disdegna risalire a teoremi generali, fondati soltanto analiticamente, per dedurne conseguenze geometriche. L'indirizzo puramente geometrico di Staudt-Reye ebbe su di lui poca influenza. Nel primo indirizzo poi egli cercò una strada sua propria.

E invero ben si può parlare d'un metodo a lui proprio, che spicca in molti dei suoi più notevoli lavori, e che si può caratterizzare nella maniera seguente. Da una nota proprietà di una certa forma geometrica si ricava un'altra proprietà (a quella equivalente) di una certa corrispondenza algebrica. Per ciò quella proprietà appare in certa guisa concepita più astrattamente e liberata dalla forma particolare. Allora essa si traduce in proprietà delle più svariate forme, sulle quali si possa con certe costruzioni geometriche far risorgere la corrispondenza della sorta considerata.

Il metodo lascia, come si vede, un vasto campo d'azione all'abilità ed alla imaginativa del geometra, ed il Weyr se ne serve con vera maestria.

Così è chiaro come per opera di lui la teoria delle corrispondenze algebriche su sostegni razionali, e con essa la teoria delle forme razionali e particolarmente delle curve razionali sia progredita.

La teoria delle corrispondenze algebriche, siano quelle generali, siano alcune speciali tra esse, deve a lui una serie di semplici teoremi, ed ha origine da lui una parte della terminologia oggigiorno abituale in questo campo. In particolare egli ha fermato la sua attenzione sulla teoria di una classe più specialmente importante di corrispondenze, cioè sulla teoria delle involuzioni. E quando egli, studiate le involuzioni di prima specie, tra cui approfondi particolarmente quelle cubiche, spinto dalla rappresentazione delle curve razionali tra loro, passò a studiare anche le involuzioni di specie superiore, ha reso alla scienza un servizio duraturo.

Quando si vuol trattare geometricamente una corrispondenza, ordinariamente si assume come sostegno di essa una conica, e si studia la sua curva direttrice, cioè l'inviluppo delle congiungenti punti corrispondenti. Note proprietà di corrispondenze si usufruiscono coll'assumere, accanto alle coniche, come sostegni curve razionali del 3º e 4º ordine (sia piane che gobbe). Sebbene in questa maniera si ottengono talora anche proprietà di forme non razionali, tuttavia si ha in questo soltanto un metodo per lo studio delle forme razionali, e appunto queste fino all'anno 1883 interessano sovratutto il Weyr. Egli poi nello studio di alcune speciali curve razionali ha in più lavori, per la trattazione analitica, adottata la notazione parametrale e l'ha applicata con successo.

Dal 1883 all'incirca i suoi lavori acquistano un altro indirizzo. In luogo delle curve di genere zero formano d'ora in poi oggetto delle sue ricerche le curve di genere uno. Agli studi fondamentali generali, per i quali Clebsch, Brill e Nöther erano penetrati con si splendido successo nella geometria sopra una curva algebrica, fu restio a fare adesione. Egli aveva su ciò la sua particolare maniera di vedere, ed i suoi sforzi erano tutti diretti a penetrare in questo campo coi suoi metodi più elementari. Quando fece (1883) il primo passo su questa via, che gli schiuse la veduta sulla natura geometrica della trasformazione univoca algebrica d'una curva generale di 3º ordine in sè stessa, egli ebbe per tale successo una grande gioia, di cui lo scrittore di queste righe serba vivo ricordo.

Questa veduta diventò da allora anche la base per i suoi studi ulteriori sulle curve di genere uno, tra i più bei frutti dei quali sono da annoverarsi numerose ed eleganti proprietà da lui scoperte sulle curve del quinto e del sesto ordine del genere uno.

Ci limitiamo ad una succinta esposizione della natura dei lavori del Weyr, senza darne per esteso i titoli, per brevità di spazio; invero grande è il numero delle sue pubblicazioni, che ascendono a circa un centinaio e mezzo (*). Egli fu un lavoratore incessante ed infaticabile, quasi avesse presentito che il tempo della sua attività era ristretto in angusti confini.

Avremmo un'imagine incompleta dell'operosità di Emilio Weyr, se non pensassimo anche alla sua attività didattica.

Le sue lezioni all'Università di Vienna erano semplici e disadorne, ma d'una esemplare chiarezza, tanto che anche il più corto d'ingegno poteva seguirlo senza fatica. A lui è dovuta principalmente la vasta estensione che le cognizioni geometriche e lo studio dei metodi della geometria hanno tra gli insegnanti delle scuole secondarie d'Austria. A lui pure si deve molta gratitudine, perchè durante la sua operosità in Vienna la produzione scientifica matematica ha ricevuto in Austria un incremento assai considerevole, come appare dai volumi delle « Sitzungsberichte der Wiener Akademie der Wissenschaften », dove i lavori matematici prendono un grande spazio e predominano quelli che hanno per oggetto studi geometrici. La massima parte di questi studi è di lui e dei suoi scolari, tra i quali qui nominerò soltanto quello che in morte lo precedette, l'A m e s e d e r.

Insieme al prof. Gustavo Ritter von Escherich, il Weyr ha fondato nel 1889 i « Monatshefte für Mathematik und Physik ».

Semplice e piana fu la sua vita, senza lotte, senza privazioni. Sali giovane i gradi della carriera accudemica. Nato nel 1848, nel 1871 fu nominato professore straordinario al Politecnico Boemo in Praga, e nel 1875 fu chiamato come professore ordinario all'Università di Vienna. Distinzioni non gli sono mancate. Tra l'altro egli era membro effettivo dell'Accademia delle Scienze in Vienna e dell'Accademia-Francesco-Giuseppe in Praga, e poco prima della sua morte ricevette il titolo di Consigliere Aulico. Sposatosi fin dal 1877 con Maria Vaněk Edle von Domyslov ebbe due figli ed una figlia, e poteva dirsi felice; quando colto, per invidia degli Dei, da una crudele malattia fu rapito dopo lunga sofferenza nell'età migliore.

^(*) L'elenco dei lavori del Weyr si trova stampato nell'Annuario della Università di Vienna, per l'anno scolastico 1893-94.

ESTRATTI DAI VERBALI.

[Vedi t. VIII, pp. 166-168].

ADUNANZA DEL 28 GENNAJO 1894. (Presidenza F. Caldarera).

Corrispondenza. — Con lettera in data del dicembre 1893 il dott. Enrico Barone si dimette da socio del Circolo. — A nome del socio professore comm. G. Battaglini, la consorte di lui, signora Anna Battaglini, ringrazia il Circolo pei voti espressi nell'adunanza del 7 gennajo 1894.

Ammissione di nuovi soci. — Dietro votazioni a scrutinio segreto: il sig. Antonino Romeo, tenente del Genio nella Direzione territoriale di Palermo, proposto nella precedente adunanza dai soci Guccia e Gerbaldi, è eletto socio residente; ed il prof. Carlo Somigliana (Pavia), proposto nella precedente adunanza dai soci Vivanti e Gerbaldi, è eletto socio non residente.

Memorie e Comunicazioni.

GERBALDI: Sulle singolarità della Jacobiana di tre curve piane. (Continuaz. e fine; vedi adunanza del 24 dicembre 1893).

TORELLI: Sul gruppo monomio individuato da una trasformazione infinitesimale projettiva.

ADUNANZA DELL'11 FEBBRAJO 1894. (Presidenza F. Caldarera).

Il Presidente partecipa, con dolore, l'infausta nuova della morte del socio non residente Emilio Weyr, avvenuta in Vienna il 25 gennajo u. s. e rammenta la degna carriera scientifica dell'illustre professore dell'Università di Vienna, la cui perdita è irreparabile lutto per la Scienza.

Ammissione di nuovi soci. — Dietro votazione a scrutinio segreto, il dott. Filiberto Castellano (Torino), proposto nella precedente adunanza dai soci Peano e Gerbaldi, è eletto socio non residente.

Memorie e Comunicazioni.

BIANCHI: Sui sistemi tripli ortogonali di Weingarten.

ADUNANZA DEL 25 FEBBRAJO 1894. (Presidenza F. Caldarera).

Il Presidente partecipa, con profondo rammarico, alla Società la morte del socio non residente Eugenio Catalan, avvenuta a Liegi il di 14 febbrajo corr. e rammenta gli alti titoli di benemerenza acquistati dall'eminente professore dell'Università di Liegi in una lunga esistenza così degnamente spesa a vantaggio della scienza e dell'insegnamento.

Gorrispondenza. — Il prof. Carlo Somigliana ringrazia per la sua ammissione a socio del Circolo.

Memorie e Comunicazioni.

GUCCIA: Sulle involuzioni di specie qualunque, dotate di singolarità ordinarie.

ADUNANZA DELL'11 MARZO 1894. (Presidenza A. Venturi).

Il Presidente partecipa a'la Società che, in seguito a votazione a' sensi dell'art. 20 dello Statuto, il Consiglio Direttivo (Comitato di Redazione dei Rendiconti) ha eletto il prof. G. B. Guccia quale delegato a dirigere la pubblicazione dei Rendiconti.

Gorrispondenza. — Con lettera del 6 marzo 1894 il prof. Stefano Pagliani si dimette da socio del Circolo (a partire dal 1º gennajo 1895).

Ammissione di nuovi soci. — Dietro votazioni a scrutinio segreto: il dott. Nicola Amici (Roma), proposto nella precedente adunanza dai soci Cerruti e Guccia; il prof. F. J. Studnička (Praga), proposto nella precedente adunanza dai soci Loria e Guccia; ed il dott. Giovanni Vailati, proposto nella precedente adunanza dai soci Peano e Porro, sono eletti soci non residenti.

Affari interni.—Esposizione ed approvazione del Conto consuntivo dell'esercizio 1893, reso dal Tesoriere, e del Bilancio di previsione pel 1894.

Memorie e Comunicazioni.

GUCCIA: Ricerche sui sistemi lineari di curve algebriche piane, dotati di sin-golarità ordinarie. (Memoria IIa).

ADUNANZA DEL 25 MARZO 1894. (Presidenza F. Caldarera). Memorie e Gomunicazioni.

GARIBALDI: Sull'estensione degli aggregati numerabili. POINCARÉ: Sur les équations de la Physique Mathématique.

BURALI-FORTI: Sulle classi ordinate e i numeri transfiniti.

GUCCIA: Ricerche sui sistemi lineari di curve algebriche piane, dotati di singolarità ordinarie. (Memoria II^a). (Continuaz. e fine).

ADUNANZA DELL'8 APRILE 1894. (Presidenza F. Caldarera).

Ammissione di nuovi soci. — Dietro votazione a scrutinio segreto, il dott. Domenico Amanzio (Napoli), proposto nella precedente adunanza dai soci Torelli e Guccia, è eletto socio non residente.

ADUNANZA DEL 22 APRILE 1894. (Presidenza F. Caldarera). Corrispondenza.—Il dott. Domenico Amanzio ringrazia per la sua ammissione a socio del Circolo.

Memorie e Comunicazioni.

AMICI: Risoluzione della congruenza $x^m \equiv b \pmod{2^{\nu}}$.

ADUNANZA DEL 13 MAGGIO 1894. (Presidenza F. Caldarera).

Il Presidente dà il triste annunzio della morte del socio prof. comm. Gi us e p p e Battaglini, avvenuta in Napoli il 29 aprile u. s., e tesse brevemente gli elogi del compianto illustre professore dell'Università di Napoli. Dopo di che dà la parola al socio prof. Torelli. [Vedi questi Rendiconti, t. VIII, pp. 180-186].

Il Segretario legge la seguente proposta della Società Reale di Londra (*):

« The Royal Society, Burlington House, 11 aprile 1894. — Londra.

« Al Presidente del Circolo Matematico di Palermo.

« Come probabilmente saprete, la Società Reale di Londra ha pubblicato il nono volume del Catalogo delle memorie scientifiche, essendo uscito nell'anno scorso il 1º volume della decade 1874-83.

« Tale catalogo è limitato alla letteratura scientifica periodica, cioè a lavori pubblicati negli atti ecc., di società e nei giornali; non tiene conto delle monografie e dei libri di pubblicazione indipendenti comunque importanti. Inoltre i loro titoli sono registrati soltanto in ordine al nome degli autori; e, quantunque la Società abbia da lungo tempo il proposito, che spera di effettuare come chiave dei volumi già pubblicati, di comporre un elenco di quei lavori fatto per materie, tuttavia il Catalogo viene ancora compilato secondo i nomi degli autori. Oltre a ciò, sebbene la Società abbia cercato di includervi i titoli di tutti i lavori scientifici pubblicati nei periodici di importanza notoria, tuttavia è duopo confessare che il Catalogo è incompleto, anche riguardo alla letteratura periodica, causa l'ammissione di lavori pubblicati in periodici meno importanti o non facili ad aversi.

« Causa il grande sviluppo della letteratura scientifica, il còmpito della Società nella continuazione del Catalogo, anche nella forma attuale, incontra delle difficoltà che crescono rapidamente. In pari tempo è chiaro quanto gioverebbe al progresso scientifico la pubblicazione di un Catalogo possibilmente completo e contenente i titoli delle pubblicazioni scientifiche che appajono tanto nei periodici che fuori di questi. In tale Catalogo i lavori dovrebbero essere ordinati non solo per i nomi degli autori, ma anche in relazione al loro soggetto, dovendosi consultare per questo fine il testo del lavoro oltre il suo titolo. E il valore del Catalogo crescerebbe non poco con una pubblicazione periodica frequente e di tal forma che si avessero separatamente le parti concernenti le singole branche speciali della scienza.

« Non è duopo dire che la preparazione e la pubblicazione di un catalogo così completo eccede di gran lunga il potere e i mezzi di qualunque società che vi attenda da sola.

« Guidati dalle esposte considerazioni, il Presidente e il Consiglio della Società Reale hanno incaricato una Commissione di studiare e riferire sulla possibilità di compilare un Catalogo così fatto mediante una cooperazione internazionale.

« La Commissione non è ancora riuscita a formolare un piano di lavoro per la detta cooperazione; ma saranno utili intanto le seguenti proposte preliminari:

« Il Catalogo comincierà coi lavori pubblicati a partire dal 1º gennaĵo 1900. « In un luogo da scegliersi in seguito si stabilirà un ufficio centrale che

^(*) Si riproduce qui la traduzione italiana pubblicata dal R. Istituto Lombardo a pp. 349-351 del vol. XXVII (serie II) dei suoi Rendiconti.

Rend. Circ. Matem., t. IX, parte 1ª.—Stampato il 19 luglio 1895.

verrà mantenuto mediante contribuzioni internazionali, sia direttamente cioè con sussidi annui o d'altra natura, sia indirettamente cioè coll'impegno dell'acquisto di un certo numero di copie del Catalogo.

- « A tale ufficio si daranno regolarmente tutte le informazioni necessarie a comporre il Catalogo. Ciò si potrà fare col mandarvi direttamente i periodici, le monografie, ecc., da catalogare, oppure parti di Catalogo già preparate da diversi istituti, o facendo insieme una cosa e l'altra.
- « Nell'ufficio si dovrebbe, insieme alla preparazione del Catalogo, attendere a comporre delle tabelle di dati scientifici, di mano in mano che vengono forniti dai lavori presentati.
- « Il primo passo però è di constatare se sia possibile e desiderabile uno schema di collaborazione internazionale. Di conseguenza la Commissione desidera di conoscere su questo proposito l'opinione dei corpi scientifici e degli scienziati.
- « Ci lusinghiamo pertanto che avrete la bontà di sottoporre quanto prima l'argomento al giudizio del Circolo Matematico di Palermo e di informarci, per uso della Commissione, delle conclusioni a cui si arriverà.
- « Se la decisione che riferirete sarà in qualche modo favorevole al progetto vi pregheremo inoltre, sempre per uso della Commissione, di comunicarci i suggerimenti che vi parranno opportuni sul miglior modo di effettuare il progetto, sulla costituzione dell'Ufficio centrale e sui mezzi di mantenerlo, sul carattere preciso del lavoro che vi si avrà da compiere, sulla lingua o sulle lingue in cui dovrà pubblicarsi il Catalogo, e altri simili.

Vostri servi obbedienti:

« M. FOSTER, Segret. della S. R.

« RAYLEIGH, Segret. della S. R.

« J. LISTER, Segret. estero della S. R. »

Ammissione di nuovi soci. — Dietro votazioni a schede segrete, i signori: prof. George Bruce Halsted (Austin, Texas, U. S. A.), proposto nella precedente adunanza dai soci Loria e Guccia, ed il prof. On ofrio Porcelli (Bari), proposto nella precedente adunanza dai soci Cerruti e Guccia, sono eletti soci non residenti.

Memorie e Comunicazioni.

DEL RE: Sopra una quistione relativa alla teoria delle curve piane algebriche. SOLER: Sopra una certa deformata della sfera.

FOURET: Sur le nombre des plans tangents que l'on peut mener à une surface algébrique par une droite multiple de cette surface.

ADUNANZA DEL 27 MAGGIO 1894. (Presidenza F. Caldarera).

Corrispondenza. — Il prof. On ofrio Porcelli ringrazia per la sua ammissione a socio del Circolo.

Affari interni.

ADUNANZA DEL 10 GIUGNO 1894. (Presidenza G. B. Guccia).

Il Circolo delibera di ringraziare il Sindaco ed il Consiglio Comunale di Palermo pel sussidio di L. 500 accordato alla Società pel 1894, a titolo d'incoraggiamento per la pubblicazione dei Rendiconti.

Corrispondenza. — La Facoltà delle Scienze di Marsiglia propone il cambio delle sue pubblicazioni coi Rendiconti del Circolo. Il Circolo aderisce.

ADUNANZA DEL 24 GIUGNO 1894. (Presidenza F. Caldarera). Affari interni.

ADUNANZA DELL'8 LUGLIO 1894. (Presidenza F. Caldarera).

Ammissione di nuovi soci. — Dietro votazioni a schede segrete, il dottore Pacifico Massimi (Roma), proposto nella precedente adunanza dai soci Marcolongo e Gerbaldi, ed il dott. Pietro Burgatti (Roma), proposto nella precedente adunanza dai soci Cerruti e Guccia, sono eletti soci non residenti.

Memorie e Comunicazioni.

BURGATTI: Un teorema di Meccanica.

ADUNANZA DEL 22 LUGLIO 1894. (Presidenza F. Caldarera).

Corrispondenza. — La Facoltà di Lilla propone il cambio delle sue pubblicazioni coi Rendiconti del Circolo. Il Circolo aderisce.

Ammissione di nuovi soci. — Dietro votazione a schede segrete, il dottore Federigo Enriques (Bologna), proposto dai soci Castelnuovo e Guccia, è eletto socio non residente.

DE VRIES: Zur Theorie der Tripelsysteme.

KANTOR: Sur les courbes hyperelliptiques portant des correspondances univoques.

ADUNANZA DEL 12 AGOSTO 1894. (Presidenza F. Caldarera).

Corrispondenza. — Il dott. F. Enriques (Bologna) ringrazia per la sua ammissione a socio del Circolo. — La R. Accademia di Torino partecipa la morte del suo presidente prof. comm. Michele Lessona, senatore del Regno, avvenuta il 20 luglio u. s.

Ammissione di nuovi soci. — Dietro votazione a schede segrete, il signor Fortunato Bucca (Palermo), proposto nella precedente adunanza dai soci Torelli e Certo, è eletto socio residente.

Memorie e Comunicazioni.

LAISANT: Note sur les invariants des polinômes entiers.

ADUNANZA DEL 26 AGOSTO 1894. (Presidenza F. Caldarera). Affari interni.

ADUNANZA DELL'11 NOVEMBRE 1894. (Presidenza M. L. Albeggiani). Memorie e Comunicazioni.

FANO ed ENRIQUES: Sui postulati fondamentali della Geometria projettiva (Corrispondenza).

MOORE: Concerning Triple Systems.

GERBALDI: Sulle involuzioni di specie qualunque.

ADUNANZA DEL 25 NOVEMBRE 1894. (Presidenza M. L. Albeggiani). Affari interni.

ADUNANZA DEL 9 DICEMBRE 1894. (Presidenza F. Caldarera).

Gorrispondenza. — Il Presidente partecipa alla Società che S. E. il Ministro della P. I., con lettera del 22 ottobre 1894, ha concesso al Circolo un sussidio di L. 800 per la pubblicazione dei suoi Rendiconti. Il Circolo delibera, all'unanimità, un voto di ringraziamento a S. E. il Ministro.

Memorie e Comunicazioni.

GUCCIA: Sui vincoli esistenti fra i punti di contatto delle tangenti condotte da un punto a k curve algebriche piane.

L'Autore comunica il seguente enunciato, che è una generalizzazione di una proposizione da lui dimostrata nel nº 76 delle sue Ricerche sui sistemi lineari di curve algebriche piane, dotati di singolarità ordinarie (Memoria II^a) (questi Rendiconti, t. IX, pp. 1-64):

TEOREMA. - Siano nel piano:

$$C_1, C_2, \ldots C_k$$

k curve algebriche, d'ordini

$$n_1$$
, n_2 , ... n_k ,

le quali passano, per un medesimo punto O, rispettivamente con

$$\alpha_1, \alpha_2, \ldots \alpha_k$$
 $(\alpha_i \geq 0)$

rami a tangenti distinte e diverse per due qualunque di esse.

Esiste un sistema lineare ∞^{k-1} di curve, $[\Theta]$, dell'ordine $n_1 + n_2 + ... + n_k - 1$, la curva generica del quale passa:

con $\alpha_1 + \alpha_2 + \ldots + \alpha_k$ rami pel punto O ed ha ivi le stesse tangenti delle curve C_1 , C_2 , ... C_k ;

con un ramo, a tangente mobile, per ciascuno degli ulteriori

$$\sum_{i,j} (n_i n_j - \alpha_i \alpha_j)$$

punti d'incontro delle curve C_1 , C_2 , ... C_k , due a due; con un ramo, a tangente mobile, per ciascuno dei

$$\sum_{i} \left[n_i \left(n_i - 1 \right) - \alpha_i \left(\alpha_i + 1 \right) \right]$$

punti di contatto delle rette che si possono condurre da O a toccare altrove le curve

$$C_1$$
, C_2 , ... C_k .

Indicando con

|C|p

un gruppo qualunque di p $(0 \leq p \leq k)$ curve scelle fra le k curve date C_1 , C_2 ,... C_k e con

 $|C|_{k-p}$

il gruppo delle curve residuali, il sistema lineare ∞ $^{k-1}[\Theta]$ contiene una curva Θ' , tale che:

1º in uno qualsiasi, a, degli ulteriori punti comuni ad una curva del gruppo $|C|_{b}$ e ad una curva del gruppo $|C|_{b}$ ha per tangente la retta Oa;

 2° in uno qualsiasi, b, degli ulteriori punti comuni a due curve del gruppo $|C|_{k-p}$), ha per tangente la retta coniugata armonica di O b rispetto alle due tangenti in b alle dette due curve.

Il numero delle curve O' (associate alle singole coppie |C|p, |C|k-p) é:

$$\frac{1}{2}\sum_{p=0}^{p=k}\binom{k}{p}=2^{k-1}.$$

ADUNANZA DEL 23 DICEMBRE 1894. (Presidenza F. Caldarera). Corrispondenza. — Il socio Gerbaldi fa dono al Circolo dell'opera in due volumi intitolata: Scritti di Leonardo Pisano pubblicati da B. Boncompagni (Roma, 1857, 1862). Il Circolo ringrazia.

Ammissione di nuovi soci. — Dietro votazioni a schede segrete, i signori: prof. Alexander Macfarlane (Ithaca, New-York, U. S. A.), proposto nella precedente adunanza dai soci Guccia e Gerbaldi, e prof. Gregorio Ricci (Padova), proposto nella precedente adunanza dall'Ufficio di Presidenza, sono eletti soci non residenti; ed il sig. dott. Ezio Grescini (Palermo), proposto nella precedente adunanza dai soci Certo e Cantone, è eletto socio residente.

Memorie e Comunicazioni.

GARIBALDI: Intorno all'annullarsi di un invariante.

PENNACCHIETTI: Sull'equilibrio delle superficie flessibili ed inestendibili.

MACCAFERRI: Su di un teorema fondamentale relativo agli elementi comuni di due coniche in un piano.

ADUNANZA DEL 13 GENNAJO 1895. (Presidenza F. Caldarera). Corrispondenza. — Con lettera del 27 dicembre 1894, il dott. Carlo Bigiavi si dimette da socio del Circolo.

Ammissione di nuovi soci. — Dietro votazioni a schede segrete: il Marchese Gabriele Terzi (Bergamo), proposto nella precedente adunanza dai soci Torelli e Guccia, è eletto socio non residente, ed il sig. Michele De

Franchis (Palermo), proposto nella precedente adunanza dai soci Guccia e Gerbaldi, è eletto socio residente.

Memorie e Comunicazioni.

PENNACCHIETTI: Sull'integrazione dell'equazione di Poisson.

BORTOLOTTI (Sig. na Emma): Sulle frazioni continue algebriche periodiche.

VIVANTI: Preliminari per lo studio delle funzioni di due variabili.

ADUNANZA DEL 27 GENNAJO 1895. (Presidenza F. Caldarera).

Affari interni. — Esposizione ed approvazione del Conto consuntivo dell'esercizio 1894, reso dal Tesoriere, e del Bilancio di previsione pel 1895.

Ammissione di nuovi soci. — S. E. il Generale L. F. Menabrea, marchese di Val Dora, è eletto, per acclamazione, socio non residente.

Memorie e Comunicazioni.

MENABREA: Una pagina di storia vera sul Traforo delle Alpi tra Bardonnecchia e Modana. [Per desiderio espresso dall'Autore questo manoscritto sarà conservato negli Archivî della Società].

ADUNANZA DEL 10 FEBBRAJO 1895. (Presidenza F. Caldarera).

Corrispondenza. — Il Presidente dà il triste anunzio della morte del signor T.-J. Stieltjès, professore di Calcolo differenziale ed integrale nella Facoltà di Scienze di Tolosa, avvenuta in Tolosa il 31 dicembre 1894. — S. E. il Generale Menabrea, marchese di Val Dora, ringrazia per la sua ammissione a socio del Circolo.

Memorie e Comunicazioni.

BERZOLARI: Sulle secanti multiple di una curva algebrica dello spazio a tre od a quattro dimensioni.

MURER: I divisori dei numeri della forma a* - 1.

ADUNANZA DEL 24 FEBBRAJO 1895. (Presidenza G. B. Guccia).

Ammissione di nuovi soci. — Dietro votazione a schede segrete, il dottor Tullio Levi Civita (Padova), proposto nella precedente adunanza dai soci Pincherle e Guccia, è eletto socio non residente.

ADUNANZA DEL 10 MARZO 1895. (Presidenza F. Gerbaldi).

Ammissione di nuovi soci.—Dietro votazioni a schede segrete, i signori: Giovanni Di Pirro (Roma), proposto nella precedente adunanza dai soci Cerruti e Guccia, e l'ing. Angelo Neppi Modona (Girgenti), proposto nella precedente adunanza dai soci Gerbaldi e Guccia, sono eletti soci non residenti.

Memorie e Comunicazioni.

DI PIRRO: Sulle trasformazioni delle equazioni della Dinamica. GARIBALDI: Un piccolo contributo alla teoria degli aggregati. ADUNANZA DEL 24 MARZO 1895. (Presidenza F. Caldarera). Affari interni.

ADUNANZA DEL 14 APRILE 1895. (Presidenza F. Gerbaldi). Memorie e Comunicazioni.

ASCIONE: Su di un teorema di Geometria proiettiva. [Vedi p. 208].

ADUNANZA DEL 28 APRILE 1895. (Presidenza G. B. Guccia).

Ammissione di nuovi soci.—Dietro votazioni a schede segrete, i signori: dott. Gerolamo Cordone (Genova), proposto nella precedente adunanza dai soci Loria e Garibaldi, ed il sig. dott. Paolo Painlevé (Parigi), proposto nella precedente adunanza dai soci Humbert e Guccia, sono eletti soci non residenti.

Memorie e Comunicazioni.

VIVANTI: Sulla irrazionalità icosaedrica.

ADUNANZA DEL 12 MAGGIO 1895. (Presidenza F. Caldarera). Memorie e Comunicazioni.

CORDONE: Sulla congruenza generale di 4º grado secondo un modulo primo.

ADUNANZA DEL 26 MAGGIO 1895. (Presidenza G. B. Guccia). CORDONE: Sulla congruenza generale di 4º grado secondo un modulo primo. (Continuaz. e fine).

ADUNANZA DEL 9 GIUGNO 1895. (Presidenza F. Gerbaldi). Affari interni.

ADUNANZA DEL 23 GIUGNO 1895. (Presidenza G. B. Guccia). Memorie e Comunicazioni.

PICARD: Sur la théorie des groupes et des surfaces algébriques.

ADUNANZA DEL 14 LUGLIO 1895. (Presidenza G. B. Guccia). Memorie è Comunicazioni.

DICKSON: A Quadratic Cremona Transformation Defined by a Conic.

ASCIONE: Errata-Corrige alle Osservazioni: « Su di un teoremi di Geometria proiettiva » (questi Rendiconti, t. IX, pag. 208). A linee 34, 35 invece di « E poichè il gruppo URMM₁ è prospettivo al gruppo (UA, r, s, s₁)» leggasi: « E poichè il gruppo URMM₁ è prospettivo al gruppo di punti secondo cui SS₁ seca « il gruppo (UA, r, s, s₁)». Questa correzione è già comparsa nella seconda edizione delle Lezioni di Geometria proiettiva del prof. Achille Sannia, Napoli, B. Pellerano, 1895.

ALAGNA: Le relazioni irreduttibili fra gl'invarianti di una forma qualunque d'ottavo ordine.

G. B. G.

ERRATA CORRIGE.

A pagina 309 del t. VII, dopo la linea 14 aggiungasi:

Ammissione di nuovi soci. — Dietro votazione a schede segrete, il dottore Giuseppe Lauricella (Girgenti), proposto nella precedente adunanza dai soci Volterra e Guccia, è eletto socio non residente.

INDICE

ESTRATTI DAI VERBALI

Adunanze dal 28 gennajo 1894 al 14 luglio 1895	263-271
MEMORIE E COMUNICAZIONI (*)	
Ascione, E. (Caserta).	
Su di un teorema di Geometria proiettiva. (Osservazioni)	208
*Errata-Corrige	
Berzolari, L. (Torino).	
Sulle secanti multiple di una curva algebrica dello spazio a tre	
od a quattro dimensioni. (Estratto di Lettera diretta al professore	
C. F. Geiser)	186-197
Bortolotti, Emma (Bologna).	
Sulle frazioni continue algebriche periodiche	136-149
Burgatti, P. (Roma).	
Un teorema di Meccanica	125-135
Cordone, G. (Genova).	
Sulla congruenza generale di 4º grado secondo un modulo primo.	209-243
Dickson, L. E. (Chicago).	
A Quadratic Cremona Transformation defined by a Conic.	256-259
Di Pirro, G. (Roma).	
Sulle trasformazioni delle equazioni della Dinamica	169-185
Fano, G. ed Enriques, F. (Roma e Bologna).	
Sui postulati fondamentali della Geometria projettiva. (Corrispon-	
denza)	79-85
	79-05

Garibaldi, C. (Genova).	
Un piccolo contributo alla teoria degli aggregati	198-201
Gerbaldi, F. (Palermo).	
Sulle involuzioni di specie qualunque	167-168
Guccia, G. B. (Palermo).	
Ricerche sui sistemi lineari di curve algebriche piane, dotati di	
singolarità ordinarie. (Memoria II ^a)	1-64
* Sui vincoli esistenti fra i punti di contatto delle tangenti con-	
dotte da un punto a k curve algebriche piane	268-269
Kantor, S.	
Sur les courbes hyperelliptiques portant des correspondances uni-	
voques	65-78
Kohn, G. (Wien).	
Emilio Weyr. (Dai Monatshefte für Mathematik und Physik -	
Traduzione di F. Gerbaldi)	260-262
Maccaferri, E. (Bologna).	
Su di un teorema fondamentale relativo agli elementi comuni di	
due coniche in un piano	96-107
Moore, E. H. (Chicago).	
Concerning triple Systems	86
Pennacchietti, G. (Catania).	
Sull'equilibrio delle superficie flessibili e inestendibili	87-95
Picard, Ém. (Paris).	
A propos de quelques récents travaux mathématiques. (Dalla Revue	
générale des sciences pures et appliquées)	150-158
Sur la théorie des surfaces algébriques. (Dalla Revue générale des	
sciences pures et appliquées)	
Sur la théorie des groupes et des surfaces algébriques	244-255
Vivanti, G. (Pavia).	No.
Preliminari per lo studio delle funzioni di due variabili	
Sulla irrazionalità icosaedrica	202-207

INDICE GENERALE

Abel 75, 160.
Alagna 271.
Amanzio 264.
Ameseder 262.
Amici 264.
Amodeo 80.
Appell 155, 169, 185.
Ascione 208, 271.

Barone 263. Battaglini (signora Anna) 263. Battaglini 137, 263, 264. Beltrami 87, 90, 93, 94. Bertini 165. Berzolari 186-197, 270. Bianchi 263. Bigiavi 269. Bobek 34. Boncompagni 269. Bortolotti (sig.na Emma) 136-149, 270. Brianchon 257. Brill 161, 261. Brioschi 134. Bucca 267. Burali-Forti 264. Burgatti 125-135, 183, 267.

Cantor 198, 200.
Caporali 54, 69.
Castellano 263.
Castelnuovo 165, 166, 197, 255.
Catalan 137, 263.
Cauchy 109, 156, 160, 209.
Cayley 163.
Chasles 96, 260.

Chelini 186.
Chizzoni 63.
Clebsch 161, 162, 165, 261.
Cordone 209-243, 271.
Cramer 159.
Cremona 2, 17, 18, 19, 25, 26, 28, 29,
41, 48, 56, 253, 256, 260.
Crescini 269.

Darboux 125, 162.
Dautheville 185.
De Franchis 270.
Del Re 266.
Dickson 256-259, 271.
Di Pirro 169-185, 270.
Doehlemann 34, 39.
Domyslov 262.

Enriques 82-84, 97, 101, 106, 165, 166, 255, 267, 268. Escherich 262.

Fano 79-82, 84-85, 268.
Ferrari 211.
Fiedler 260.
Foster 266.
Fouret 266.
Fuchs 156.

Galois 156.
Garibaldi 198-201, 264, 269, 270.
Gauss 150, 151.
Geiser 186.
Gerbaldi 23, 167-168, 260, 263, 268, 269.

Gerono 137, 149. Giudice 210, 211, 212, 215. Gordan 161. Goursat 127, 169. Guccia 1-64, 165, 167, 190, 263, 264, 268-269.

Halphen 21, 155, 165. Halsted 266. Hamilton 126, 129, 130, 153. Helmholtz 151, 152. Humbert 164, 165. Hurwitz 65.

Jacobi 34. Jonquières (de) 69, 70, 71, 72, 73, 74, 75, 76, 77, 78.

Kantor 65-78, 267. Klein 202, 204. Koenigs 109. Kohn 52, 260-262. Kronecker 166. Kummer 162, 165.

Lagrange 136, 137, 148, 169, 178.

Laguerre 155.

Laisant 267.

Lauricella 272.

Leonardo Pisano 269.

Lessona 267.

Levi Civita 270.

Lie (Sophus) 150, 151, 152, 154, 155, 156, 166.

Liouville (R.) 155.

Lister 266.

Maccaferri 96-107, 208, 269.

Macfarlane 269.

Maggi 87.

Massimi 267.

Menabrea 270.

Ministro della P. I. 268.

Moore 86, 268.

Morera 87.

Moutard 162.

Murer 270.

Neppi Modona 270. Netto 86, 203, 205. Newton 159. Noether 161, 162, 163, 165, 166, 261.

Oltramare 209, 218, 220, 221, 232, 233, 236, 237.

Padova 87.
Pagliani 264.
Painlevé 156, 170, 271.
Pascal 257.
Peano 210.
Pennacchietti 87-95, 269, 270.
Picard 123, 124, 150-158, 159-166, 244-255, 271.
Picciati 87, 185.
Picquet 190, 195, 197.
Pincherle 136.
Plücker, 39, 44.
Poincaré 108, 124, 154, 156, 157, 264.
Porcelli (O.) 266.
Puiseux 160.

Rayleigh 266.

Reye 260.

Riccati 156.

Ricci 269.

Riemann 109, 123, 150, 151, 160, 161, 164.

Romeo 263.

Sannia 96, 98, 208.
Scheffer 154.
Schubert 187, 197.
Segre 165, 193.
Sindaco di Palermo 267.
Soler 266.
Somigliana 263.
Staeckel 125, 183.
Staudt 96, 97, 98, 99, 260.
Steiner 162, 166.
Stieltjès 270.
Studnička 264.

Terzi 269. Torelli 263, 264.

Vailati 264. Vandermonde 168. Veronese 193, 194. Vessiot 156. Vivanti 108-124, 198, 202-207, 270, 271. Volterra 87, 109. Vries (de) 86, 267.

Weierstrass 152, 153. Weyr (Edoardo) 260. Weyr (Emilio) 260, 261, 262, 263. Weyr (Francesco) 260.

Zeuthen 163. Zsigmondy 148.

Fine della Parte 1ª del Tomo IX (1895).

Tipografia Matematica 28, via Ruggiero Settimo, Palermo.

REMERCIA

CIRCOLO MATEMATICO

DE PALERME

RENDICONTI

DEL

CIRCOLO MATEMATICO

DI PALERMO

RENDICONTI

380

CIRCOLO MATEMATICO

DI PALERMO

RENDICONTI

DEL.

CIRCOLO MATEMATICO

DI PALERMO

TOMO IX. - ANNO 1895.

PARTE SECONDA: BIBLIOTECA MATEMATICA.

PALERMO,
SEDE DELLA SOCIETÀ
28, via Ruggiero Settimo, 28

1895

RENDICONTI

TEU

IRCOLO MATEMATICO

DI PALERMO

TOMO IX. - ANNO 1893.

AND AND LAM ANTIOLOGY, ACCOUNT HOME

PALERMO.
SPOE DELLA SOCIETÀ
SE VIR Bardero Segura, 18

BIBLIOTECA MATEMATICA.

PUBBLICAZIONI NON PERIODICHE

PERVENUTE IN DONO AL CIRCOLO.

XIIº ELENCO: maggio 1894-febbrajo 1895.

[Vedi gli Elenchi precedenti: t. VIII, pp. 1-10 e retro].

- Accademia dei Lincei (Roma). Annuario 1895 (anno CCXCII). Roma, 1895. Amici, N. (Montecassino). Risoluzione della congruenza $x^m \equiv b \pmod{2^{\nu}}$. Rend. Circ. Matem., VIII, 1894.
- Antomari, X. et Laisant, C-A. (Paris). Questions de Mécanique à l'usage des élèves de Mathématiques spéciales. Paris, Librairie Nony et Cie, 1895.
- Arnoux, G. (Paris). Essais de Psycologie et de Métaphysique positives: Arithmétique graphique: Les espaces arithmétiques hypermagiques. Paris, Gauthier-Villars et fils, 1894.
- Bianchi, L. (Pisa). [Vedi t. VIII, p. 1]. Sulle superficie i cui piani principali hanno costante il rapporto delle distanze da un punto fisso. Rend. Acc. Lincei, 5 agosto 1894.
 - Sulla interpretazione geometrica del teorema di Moutard. Ibid., 17 giugno 1894.
 - Lezioni di Geometria Differenziale (Seconda metà dell'opera). Pisa, Enrico Spoerri, 1895-
 - Complemento alle ricerche sulle forme quaternarie quadratiche e sui gruppi poliedrici. Ann. Matem., XXIII₂, 1895.

 Rend. Circ. Matem., t. IX, parte 2^a.

- Il metodo di Riemann esteso alla integrazione della equazione:

$$\frac{\partial^n u}{\partial x_1 \partial x_2 \cdots \partial x_n} = M u.$$

Rend. Acc. Lincei, 6 gennaio 1895.

- Boncompagni, B. Scritti di Leonardo Pisano, matematico del secolo decimoterzo pubblicati da Baldassare Boncompagni. Volume I. Leonardi Pisani, Liber abbaci. Roma, 1857.—Volume II. Leonardi Pisani, Practica Geometriae ed opuscoli. Roma, 1862.
- Borghese, F. (Messina). Un problema sulle trasformazioni piane multiple. Giorn. di Battaglini, XXXII, 1894.
- Bortolotti, Emma (Bologna). Sulle frazioni continue algebriche periodiche. Rend. Circ. Matem., IX, 1895.
- Brambilla, A. (Napoli). [Vedi t. VIII, p. 2]. La curva doppia di una particolare superficie razionale del 9º ordine. Ibid., XXXII, 1894.
- Brill, A. und Noether, M. (Tübingen, Erlangen). [Vedi t. VII, p. 2; t. VI, p. 8]. Die Entwicklung der Theorie der algebraischen Functionen in älterer und neuerer Zeit. Jahresb. d. Deutschen Mathematiker-Vereinigung, III, 1893.
- Brisse, Ch. (Paris). Cours de Géométrie Descriptive à l'usage des élèves de l'enseignement secondaire moderne. Paris, Gauthier-Villars et fils, 1895.
- Burali-Forti, C. (Torino). [Vedi t. VIII, p. 2]. Logica Matematica. [Manuali Hoepli]. Milano, 1894.
- Sulle classi ordinate e i numeri transfiniti. Rend. Circ. Matem., VIII, 1894. Bureau des Longitudes (Paris). Annuaire pour l'an 1895. Paris, Gauthier-Villars et fils, 1895.
- Burgatti, P. (Roma). Un teorema di Meccanica. Rend. Circ. Matem., IX, 1895. Caldarera, G. (Catania). [Vedi t. VIII, p. 3]. Sviluppo d'un determinante particolare ad n variabili. Atti Acc. Gioenia di Catania, VII., 1894.
- Capelli, A. (Napoli). [Vedit. VII, p. 2]. «Giuseppe Battaglini». Cenno biografico. Giorn. di Battaglini, XXXII, 1894.
 - L'Analisi Algebrica e l'interpretazione fattoriale delle potenze. Ibid., XXXI, 1893.
 - Dell'impossibilità di sizigie fra le operazioni fondamentali permutabili con ogni altra operazione di polare fra le stesse serie di variabili. Rend. Acc. Sc. Fis. e Mat. di Napoli, 10 giugno 1893.
 - Sulla separazione delle radici delle equazioni mediante il Calcolo delle Differenze. Nota I. *Ibid.*, 17 novembre 1894.—Nota II. *Ibid.*, 15 dicembre 1894.
- Lezioni di Algebra complementare ad uso degli aspiranti alla Licenza Universitaria in Scienze Fisiche e Matematiche. Napoli, Libreria di B. Pellerano, 1895.

- Castellano, F. (Torino). Alcune applicazioni cinematiche della Teoria dei Vettori. Rivista di Matem., 1892.
 - Alcune proprietà delle accelerazioni d'ordine qualunque nel moto di una figura piana nel suo piano. *Ibid.*, 1893.
- Applicazioni della Teoria dei Vettori al moto centrale di un punto ed alla risoluzione dei problemi relativi. Atti R. Acc. Sc. di Torino, XXIX, 3 dicembre 1893.
 - Il complesso delle accelerazioni d'ordine qualunque dei punti di un corpo in movimento. *Ibid.*, XXIX, 28 gennaio 1894.
- Elementi di Algebra ad uso dei Licei, Istituti Tecnici e Scuole Militari. Torino, Fratelli Bocca, 1891.
 - Lezioni di Meccanica Razionale. Torino, Tip. G. Candelletti, 1894.
- Castelnuovo, G. (Roma). [Vedi t. VIII, p. 3]. Sulla razionalità delle involuzioni piane. Mathem. Annalen, XLIV, 1894.
 - Sulle superficie algebriche che contengono una rete di curve iperellittiche.

 Rend. Acc. Lincei, 20 maggio 1894.
- Del Re, A. (Modena). [Vedi t. VIII, p. 3]. Costruzione delle 16 rette di una superficie del 4º ordine a conica doppia e dei 5 relativi coni di Kummer. Atti Soc. Naturalisti, Modena, XII₃, 1894.
 - Joseph Gillet. Théorie des plans hypercycliques des surfaces du second degré. Periodico di Matem., IX, 1894.
 - Sulla superficie del 5º ordine con 5 punti tripli ed una cubica doppia. Nota III. Rend. Acc. Lincei, 1 luglio 1894.
- Eck, B. (Bonn). Ueber die Verteilung der Axen der Rotationsflächen 2. Grades, welche durch gegebene Punkte gehen. Inaugural-Dissertation. Bonn, 1890.
- Eneström, G. (Stockholm). [Vedi t. VIII, p. 4]. Om Taylors och Nicoles inbördes förtjänster beträffande differenskalkylens första utbildande. Öfversigt af Kongl. Vetenskaps-Ak. Förhandlingar, 11 april 1894.
 - Um uppkomsten af tecknen + och samt de matematiska termerna «plus» och «minus». *Ibid.*, 9 maj 1894.
 - Um upptäckten of sättet att medelst differentiation bestämma värdet af en brakfunction, da täljare och nämnare samtidigt blifva noll. *Ibid.*, 6 juni 1894.
- Fabris, V. (Aquila). Pico Fonticulano e la sua Geometria. Aquila, 1894.
- Fano, G. (Roma). [Vedi t. VIII, p. 4]. Sopra alcune considerazioni geometriche che si collegano alla teoria delle equazioni differenziali lineari. Due Note. Rend. Acc. Lincei, 6 e 20 gennaio 1895.
- Fano, G. ed Enriques, F. (Roma, Bologna). Sui postulati fondamentali della Geometria projettiva. (Corrispondenza). Rend. Circ. Matem., IX, 1895.
- Fellini, D. (Forit). I poliedri regolari stellati. Forlt, Tip. Croppi, 1895.
- Fouret, G. (Paris). [Vedi t. VIII, p. 4]. Sur le nombre des plans tangents que l'on peut mener à une surface algébrique par une droite multiple de cette surface. Rend. Circ. Matem., VIII, 13 maggio 1894.

- Galdeano, Z. G. de (Zaragoza). [Vedi t. VIII, p. 4]. El concepto del imaginarismo en la ciencia matematica. Conferencia. Zaragoza, C. Ariño, 1894.
- Gerbaldi, F. (Palermo), [Vedi t. VIII, p. 4]. Sulle singolarità della Jacobiana di tre curve piane. Rend. Circ. Matem., VIII, 1894.
 - Sulle involuzioni di specie qualunque. Ibid., IX, 1895.
- Giudice, F. (Genova). [Vedi t. VIII, p. 5]. Teoria delle serie. Parte VIII del Formulario. Rivista di Matem., 1894.
 - Sui polinomii. Periodico di Matem., IX, 1894.
- Grousintzew, A.-P. (Karkoff). La théorie électromagnétique de la lumière. Karkoff, 1893.
- Guccia, G. B. (Palermo). [Vedi t. VIII, p. 5]. Sulle involuzioni di specie qualunque dotate di singolarità ordinarie. Rend. Circ. Matem., VIII, 1894.
 - Ricerche sui sistemi lineari di curve algebriche piane, dotati di singolarità ordinarie. (Memoria II^a). *Ibid.*, IX, 1895.
- Heinrichs, E. (Wermelskirchen). Ueber den Bündel derjenigen kubischen Raumcurven, welche ein gegebenes Tetraeder in derselben Art zum gemeinsamen Schmiegungstetraeder haben. Inaugural-Dissertation. Wermelskirchen, 1887.
- Humbert, G. (Paris). [Vedi t. V, p. 4]. Sur la théorie générale des surfaces unicursales. Math. Annalen, XLV, 1894.
 - Sur quelques points de la théorie des courbes et des surfaces algébriques. Premier Mémoire. Journ. de Math. pures et appliquées, X₄, 1894.
 - Sur un complexe remarquable de coniques et sur la surface du troisième ordre. Journ. École Polyt., LXIV, 1894.
 - Sur les surfaces de Kummer elliptiques. American Journ., XVI, 1894.
- Kantor, S. Sur les courbes hyperelliptiques portant des correspondances univoques. Rend. Circ. Matem., IX, 1895.
- Laisant, C.-A. (Paris). [Vedi t. VIII, p. 5]. Note sur les invariants des polynômes entiers. Rend. Circ. Matem., VIII, 1894.
- Laurent, H. (Paris). Traité d'Algèbre. Compléments. Quatrième Partie: Theorie des polynômes à plusieurs variables. Paris, Gauthier-Villars et Fils, 1894.
- Lemoine, E. (Paris). [Vedi t. VIII, p. 6]. Nuevo medio de obtener fórmulas en la Geometría del triángulo. El Progreso Mat., Año IV, 1894.
 - Notes de Gométrie. Association Française. Congrès de Besançon, 1893.
 - Compléments de Géométrographie. Ibid., 1893.
 - Application au tétraèdre de la transformation continue. Ibid., 1893.
- Longohamps, G. de (Paris). [Vedi t. VIII, p. 6]. Sur un trisecteur. Association Française. Congrès de Besançon, 1893.
 - L'Arithmétique avec les figures négatives. Ibid., 1893.
 - L'espace infinitésimal autour d'un point d'inflexion. Ibid., 1893.
 - Un théorème sur la géométrie des masses. Ibid., 1893.
 - Note sur les travaux scientifiques de M. G. de Longchamps, Paris, Imprimerie Chaix, 1894.

- Lucas, Éd. [Vedi t. VIII, p. 6]. Récréations mathématiques. IV. Le Calendrier perpétuel. L'Arithmétique en boules. L'Arithmétique en bâtons. Les Mérelles au XIIIe siècle. Les Carrés magiques de Fermat. Les Réseaux et les Dominos. Les Régions et les quatre Couleurs. La Machine à marcher. Paris, Gauthier-Villars et fils, 1894.
- Maccaferri, E. (Bologna). Su di un teorema fondamentale relativo agli elementi comuni di due coniche in un piano. Rend. Circ. Matem., IX, 1895.
- Macfarlane, A. (Austin, Texas). [Vedi t. VIII, p. 6]. The fundamental Theorems of Analysis generalized for Space. Boston, 1892.
 - On the Definitions of the Trigonometric Functions. Boston, 1893.
 - On the Analytical Treatment of Alternating Currents. New York, 1893.
- Masoni, U. (Napoli). [Vedi t. VIII, p. 7]. Sulle bocche a stramazzo rigurgitative. Atti Acc. Pontaniana, 4 marzo 1894.
- Mattina, C. (Palermo). [Vedi t. VIII, p. 7]. Studio sulla pseudosfera. Palermo, 1894.
- Menabrea, L. F. (Chambéry). [Vedi t. II, p. 59]. Sperienze sul tiro e l'effetto delle armi da fuoco eseguite a Metz nel 1834. Il Subalpino, maggio 1836.
 - Discours sur la vie et les ouvrages du Chevalier Georges Bidone. Mem. Acc. di Torino, IV₂, 1841.
 - Mémoire sur les quadratures. Ibid., VIII2, 1844.
 - Études sur la série de Lagrange. Turin, Imprimerie Royale, 1844-47.
 - Discours prononcé par le député Menabrea dans la séance du 21 mars 1854.
 - Sopra una teoria analitica dalla quale si deducono le leggi generali di varii ordini di fenomeni che dipendono da equazioni differenziali lineali, fra i quali quelli delle vibrazioni e della propagazione del calore ne' corpi solidi. Ann. di Sc. Mat. e Fis., settembre 1855.
 - Rapport de la Commission technique Internationale convoquée à Paris pour l'examen des questions relatives a l'amélioration des bouches du Danube. Paris, Impr. Impériale 1858.
 - Nouveau Principe sur la Distribution des tensions dans les systèmes élastiques. Comptes Rendus, XLVI, 31 mai 1858.
 - Note sur le percement des Alpes entre Modane et Bardonèche. Comptes Rendus, XLVI, 21 juin 1858.
 - Note sur les effets du choc de l'eau dans les conduites. Comptes Rendus, XLVII, 2 août 1858.
 - Interpellanza del Senatore Menabrea al Ministro della Marina. Atti del Senato, 11 luglio 1862.
 - Il Genio nella Campagna d'Ancona e della Bassa Italia (1860-61). Testo e Atlante. Torino, G. Favale, 1864.
 - Relazione dell'Ufficio Centrale sul progetto di legge relativo alla spesa

- straordinaria di L. 79,700,000 per lavori di difesa dello Stato. Senato del Regno, 1873-74.
 - Niewenglowski, B. (Paris). Cours de Géométrie analytique à l'usage des élèves de la Classe de Mathématiques spéciales et des Candidats aux Écoles du Gouvernement. Tome I: Sections Coniques. Paris, Gauthier-Villars et Fils, 1894.
 - Ocagne, M. d' (Paris). [Vedi t. VIII, p. 8]. Sur la composition des lois d'erreurs de situation d'un point. Comptes Rendus, CXV, 5 mars 1894.
- Pennacchietti, G. (Catania). [Vedi t. VIII, p. 8]. Sull'equilibrio delle superficie flessibili e inestendibili. Rend. Circ. Matem., IX, 1895.
- Picard, E. (Paris). [Vedi t. VIII, p. 8]. A propos de quelques récents travaux mathématiques.—Sur la théorie des surfaces algébriques. Rend. Circ. Matem., IX, 1895.
- Pieri, M. (Torino). [Vedi t. VIII, p. 8]. Per trovare i raggi di massima e minima curvatura nelle superficie quadriche. El Progreso Matem., IV, 1894.
- Trasformazione d'ogni curva algebrica in altra priva di punti multipli. Rivista di Matem., 1894.
 - Teoremi da dimostrare. Giorn. di Battaglini, XXXI, 1893.
- Pinto, L. (Napoli). [Vedi t. VII, p. 7]. L'Elettricità modo di movimento dello stesso etere luminoso e calorifico. Atti Acc. Pontaniana, 15 aprile 1894.
 - «Giuseppe Battaglini». Parole lette dal Socio Segretario L. Pinto. Rend. Acc. Sc. Fis. e Mat. di Napoli, 5 maggio 1894.
- Porro, F. (Torino). [Vedi t. VIII, p. 8]. Astronomia sferica elementarmente esposta. Roma, Soc. Dante Alighieri, 1894.
- Reina, V. (Roma). [Vedi t. VIII, p. 9]. Azimut assoluto di Monte Cavo sull'orizzonte della Specola Geodetica di S. Pietro in Vincoli, in Roma. R. Commissione Geodetica Italiana. Padova, 1894.
- Sulla lunghezza del pendolo semplice a secondi in Roma. Esperienze eseguite dai prof. G. Pisati ed E. Pucci. Mem. R. Acc. Lincei, I₅, 4 dicembre 1892.
- Riccardi, P. (Modena). Intorno ad alcune edizioni dell'« Algorismus » del Sacrobosco. Bibliotheca Math., 1894.
- Ricci, G. (Padova). [Vedi t. III, p. 40]. Della equazione di condizione pei parametri dei sistemi di superficie che appartengono ad un sistema triplo ortogonale. Rend. Acc. Lincei, III, 1894.
- Riccò, A. (Catania). Sulla percezione più rapida delle stelle più luminose. Memorie della Società degli Spettroscopisti Italiani, XXII, 1893.
 - Sui movimenti microsismici. Ibid., XXII, 1893.
- Osservazioni astrofisiche solari eseguite nel R. Osservatorio di Catania Statistica delle macchie solari nell'anno 1892. *Ibid.*, XXII, 1893.
- Sulla relazione fra le perturbazioni magnetiche e le macchie solari. *Ibid.*, XXIII, 1894.

- La lava incandescente nel cratere centrale dell'Etna e fenomeni geodinamici concomitanti. Annali dell'Ufficio Centrale di Meteorologia e Geodinamica, XV, 1893.
- Velocità di propagazione delle principali scosse del terremoto di Zante a Catania. Rend. Acc. Lincei, 4 marzo 1894.
- Riccò, A. e Saija, G. Osservazioni termometriche eseguite nel R. Osservatorio Etneo. Boll. Acc. Gioenia di Catania, 25 febbrajo 1894.
- Riccò A. e Tringali, E. Sulla temperatura del suolo. Ibid., 26 novembre 1893 e 14 gennajo 1894.
- Ruffini, F. P. (Bologna). [Vedi t. VIII, p. 9]. Delle pedali delle parabole cubiche divergenti. Mem. Acc. Sc. di Bologna, V., 25 novembre 1894.
- Schrader, A. (Eversen). Geometrische Untersuchung der Geschwindigkeits-Kegel und der Oberflächen gleichen Gangunterschiedes optisch doppeltbrechender Krystalle. Inaugural-Dissertation. Münster, 1892.
- Scuola d'applicazione per gl'Ingegneri in Roma. Annuario per l'anno scolastico 1894-95.
- Siacci, F. (Napoli). Sulle tensioni in un sistema elastico articolato. Nota I. Nota II. Rend. Acc. Lincei, III., 1894.
- Soler, E. (Palermo). [Vedi t. VIII, p. 9]. Sopra una certa deformata della sfera. Rend. Circ. Matem., VIII, 1894.
- Somigliana, C. (Pavia). Sui sistemi simmetrici di equazioni a derivate parziali.

 Annali di Matem., XXII., 1894.
 - Sulla legge di razionalità rispetto alle proprietà elastiche dei cristalli.
 Rend. Acc. Lincei, III₅, 4 marzo 1894.
 - Sopra g'i invarianti ortogonali di deformazione. Ibid., IV, 6 gennaio 1895.
 - Sopra gli integrali delle equazioni della isotropia elastica. Nuovo Cimento, XXXVI, 1894.
- Stegemann, M. [Vedi t. VIII, p. 9]. Grundriss der Differential und Integral-Rechnung. II. Theil: Integral-Rechnung. Hannover, 1894.
- Stecloff, B. A. (Kharkow). Sur le mouvement d'un corps solide dans le liquide.

 Annales de l'Univ. de Kharkow, 1893.
- Studnička, F. J. (Praga). O Kvaternionech. V. Praze, 1894.
- Sturm, R. (Breslau). [Vedi t. VIII, p. 9]. Ueber den allgemeinen Complex zweiten Grades. Sitzungsb. d. k. Akad. d. W. zu Berlin, 12 Juli 1894.
- Torelli, G. (Palermo). [Vedi t. VIII, p. 10]. Sul gruppo monomio individuato da una trasformazione infinitesimale projettiva. Rend. Circ. Matem., VIII, 1894.
 - Sulle equazioni finite del gruppo monomio individuato da una trasformazione infinitesimale projettiva. Rend. R. Acc. Sc. Fis. e Matem. Napoli, 12 maggio 1894.
 - Giuseppe Battaglini. Rend. Circ. Matem., VIII, 1894.
- Université de Kasan. Pour le centième anniversaire de la naissance de N. I. Lobatcheffsky. Kasan, 1894.

- University of Chicago (Founded by John D. Rockefeller). Programme of the Departments of Mathematics and Astronomy. 1894-95.
- Vivanti, G. (Pavia). [Vedi t. VIII, p. 10]. Teoria degli Aggregati. Parte VI del Formulario. Rivista Matem., 1894.
 - Ueber Potenzreihen zweier Veränderlichen. Monatshefte f. Math. u. Phys.,
 V, 1894.
 - Preliminari per lo studio delle funzioni di due variabili. Rend. Circ. Matem., IX, 1895.
- Vries, J. de (Delft). [Vedi t. VIII, p. 10]. Ueber mehrstufige Involutionen in der Complexen Ebene. Ibid., V, 1894.

Sincel P. (Navelie, Sulfe revided his un signed educion articoloris, Nov. I.

Solar, E. (Paleton), (Ved paleton), and Soor up consideration delivers

- Zur Theorie der Tripelsysteme. Rend. Circ. Matem., VIII, 1894.

F. G.

REPERTORIO BIBLIOGRAFICO

DELLE SCIENZE MATEMATICHE IN ITALIA.

(Continuazione, vedi t. VIII, pp. 11-164).

R. ISTITUTO VENETO DI SCIENZE, LETTERE ED ARTI. (1840-1889) (*).

ELENCO DELLE PUBBLICAZIONI ED ABBREVIATURE.

A. I. V. = Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti. Venezia (**).

SERIE I, TOMI: I-VII (1840-1847); in-8°.

SERIE II, TOMI: I-V (1850-1853); in-8°.

SERIE III, TOMI: I-XVI (1854-1871); in-8°.

SERIE IV, TOMI: I-III (1871-1874); in-8°.

SERIE V, TOMI: I-VIII (1874-1882); in-8°.

SERIE VI, TOMI: I-VIII (1882-1890); in-8°.

M. I. V. = Memorie del Reale Istituto Veneto di Scienze, Lettere ed Arti. Venezia. Volumi: I-XXII (1843-1887); in-4°.

s. = Serie; t. = Tomo. v. = Volume; pp. = pagine.

1492. A 3.

MINICH (Serafino Raffaele). Notizie sulle indagini intraprese e proseguite dal professore S. R. Minich intorno alla risolubilità generale delle equazioni algebriche, ecc. [A. I. V., s. V, t. VII, pp. 905-919 (1880-8i)].

1493. A 3.

MINICH (Serafino Raffaele). Sulle equazioni di quinto grado. [A. I. V., s. V., t. VIII, pp. 307-323, 893-908 (1881-82)].

1494. A 3 b

MINICH (Serafino Raffaele). Sopra un modo di dedurre il progressivo sviluppo della equazione a' quadrati delle differenze. [A. I. V., s. III, t. IV, pp. 343-374 (1858-59)].

1495. A 3 d, A 3 e.

BELLAVITIS (Giusto). Sul più facile modo di trovare le radici reali delle equa-

^(*) Il lavoro di spoglio e di classificazione delle pubblicazioni del R. Istituto Veneto è dovuto al prof. C. Somigliana.

^(**) I tomi delle prime tre serie portano il titolo: « Atti delle Adunanze dell'I. R. Istituto Veneto di Scienze, Lettere ed Arti».

Rend, Circ. Matem., t. IX, parte 24.—Stampato il 30 maggio 1895.

zioni algebriche, e sopra un nuovo metodo per la determinazione delle radici immaginarie. [M. I. V., v. III, pp. 109-219 (1847)].

1496. A 3 d, A 3 e.

BELLAVITIS (Giusto). Sulla risoluzione numerica delle equazioni. [M. I. V., v. VI, pp. 357-413 (1856)].

1497. A 3 d.

BELLAVITIS (Giusto). Appendice alle Memorie sulla risoluzione numerica delle equazioni, inserite nei vol. 3°, 4°, 6°,... [M. I. V., v. IX, pp. 177-236 (1860)].

1498. A 3 d.

MINICH (Serafino Raffaele). Di un modo di arguire da principi già noti il teorema di Newton sul più piccolo numero delle radici immaginarie d'ogni equazione algebrica. [A. I. V., s. III, t. XI, pp. 127-136 (1865-66)].

1499. A 3 d.

MINICH (Serafino Raffaele). Sopra altre regole analoghe a quella del Newton, che possono esibire un limite inferiore al numero delle radici immaginarie di un'equazione algebrica. [A. I. V., s. III, t. XI, pp. 211-223, 309-317 (1865-66)].

1500. A 3 d.

TURAZZA (Domenico). Del teorema di Sylvester. [A. I. V., s. III, t. XI, pp. 419-428 (1865-66)].

1501. A 3 e.

BELLAVITIS (Giusto). Determinazione numerica delle radici immaginarie delle equazioni algebriche. [M. I. V., v. XI, pp. 461-493 (1862)].

A 3 e (Vedi ni 1495, 1496).

1502. A 3 k, V 2.

MINICH (Serafino Raffaele). Sulle teorie di Lagrange e di Vandermonde spettanti alla risoluzione generale delle equazioni algebriche e sulla risoluzione delle equazioni di quarto grado per radici esteriori quarte. [A. I. V., s. III, t. IV, pp. 19-38 (1858-59)].

1503. A 4.

MINICH (Serafino Raffaele). Sulla risolubi'ità delle equazioni algebriche. [A. I. V., s. III, t. III, pp. 629-636 (1856-57)].

1504. A 4.

BELLAVITIS (Giusto). Sulla risoluzione algebrica delle equazioni. [A. I. V., s. III, t. IV, pp. 55-61 (1858-59)].

1505. A 5 b.

MINICH (Serafino Raffaele). Sopra una formo a d'interpolazione del Prony. [A. I. V., s. III, t. XII, pp. 1153-1160 (1867-68)].

1506. B1.

BELLAVITIS (Giusto). Sposizione elementare della teorica dei determinanti. [M. I. V., v. VII, pp. 67-144 (1857)].

1507. Bl, B3a.

GARBIERI (Giovanni). Sopra alcune classi di funzioni simmetriche. [A. I. V., s. VI, t. I, pp. 33-74 (1882-83)].

1508. B 4 a.

BELLAVITIS (Giusto). Cenni elementari sui discriminanti invarianti e covarianti. [A. I. V., s. III, t. IV, pp. 65-80, 83-90 (1858-59)].

1509. B 12.

BELLAVITIS (Giusto). Saggio sull'algebra degli immaginari. [M. I. V., v. IV, pp. 243-344 (1852)].

1510. B 12 b.

BELLAVITIS (Giusto). Sulle origini del metodo delle equipollenze. [M. I. V., v. XIX, pp. 449-491 (1876)].

B 12 b. (Vedi nº 1533).

1511. C 2 g.

BELLAVITIS (Giusto). Sul calcolo approssimato degli integrali d'ordine superiore. [M. I. V., v. VI, pp. 91-110 (1856)].

1512. C 2 g.

MINICH (Serafino Raffaele). Sopra due nuove formole onde integrare le funzioni di ordine qualunque a più variabili indipendenti. [M. I. V., v. VI, pp. 473-509 (1856)].

1513. C 2j.

TURAZZA (Domenico). Intorno all'uso dei compartimenti diseguali nella ricerca del valore numerico di un dato integrale. [M. I. V., v. V, pp. 277-279 (1885)].

1514. C 2j, U.

SANTINI (Giovanni). Delle interpolazioni e quadrature meccaniche per gli usi astronomici. [M. I. V., v. XIII, pp. 177-231 (1866)].

1515. Dla.

FAMBRI (Paulo). Nota sulle funzioni continue, le quali in un dato intervallo non ammettono derivate. [A. I. V., s. VI, t. III, pp. 823-831 (1884-85)].

1516. D 3 c y.

BASSANI (A.). Generalizzazione della formola di Lagrange. [A. I. V., s. VI, t. V, pp. 1163-1170 (1886-87)].

F 8 g, (Vedi nº 1548).

1517. Gla.

MAINARDI (Gaspare). Sulla integrazione della formola $\frac{F}{E\sqrt[3]{\Psi}}$ essendo F, E,

Ψ funzioni intere di una medesima variabile. [M. I. V., v. II, pp. 401-424 (1845)].

1518. G 3 f.

MINICH (Serafino Raffaele). Sopra alcune nuove proposizioni relative alle trascendenti Abeliane. [A. I. V., s. I, t. VI, pp. 130-135 (1847)].

1519. G 3 f.

MINICH (Serafino Raffaele). Sugli integrali algebrici di un sistema di equazioni differenziali, i cui termini sono integrabili per mezzo di trascendenti abeliane, e sulla proprietà fondamentale di simili trascendenti. [M. I. V., v. III, pp. 269-328 (1847)].

1520. H 4.

MINICH (Serafino). Sulla espressione dell'integrale completo d'ogni equazione lineare a due variabili per mezzo degli integrali particolari della stessa equazione col secondo membro ridotto a zero. [M. I. V., v. V, pp. 43-185 (1855)].

1521. H 6 a.

MINICH (Serafino Raffaele). Sulle caratteristiche generatrici delle superficie curve; e sulla teoria delle equazioni a derivate parziali. [M. I. V., v. XXII, pp. 169-230 (1884)].

1522. H 7.

GARBIERI (Giovanni). Sopra le equazioni alle derivate parziali. [A. I. V., s. VI, t. I, pp. 1173-1225 (1882-83)].

1523. H 7.

GARBIERI (Giovanni). Sulla eliminazione delle funzioni arbitrarie. [A. I. V., s. VI, t. V, pp. 831-841 (1886-87)].

1524. H 10 d α.

RICCI (Gregorio). Nota sulla integrazione della equazione Δ_2 U=f. [A. I. V., s. VI, t. III, pp. 1439-1444 (1884-85)].

1525. I 7.

CAZZANIGA (Pietro). Sui residui di ordine qualunque rispetto ai moduli primi. [A. I. V., s. VI, t. IV, pp. 1271-1279 (1885-86)].

1526. Jlay.

BELLAVITIS (Giusto). Nota sul giuoco americano del 15, ecc. [A. I. V., s. V, t. VI, pp. 901-904 (1879-80)].

1527. J1c. O2.

VERONESE (Giuseppe). Dimostrazione di una formola matematica di una serie comprendente le formole di Kantor. [A. I. V., s. VI, t. II, pp. 137-143 (1883-84)].

1528. J 2 a.

BELLAVITIS (Giusto). Considerazioni sulla teoria della probabilità. [A. I. V., s. III, t. II, pp. 299-319 (1856-57)].

1529. J 2 b.

GRANDI (Agostino). Dimostrazione di un teorema della teoria dei numeri. [A. I. V., s. VI, t. I, pp. 809-812 (1882-83)].

1530. J 2 d.

MESSEDAGLIA (Angelo). Studi sulla popolazione. [M. I. V., v. XII, pp. 505-594 (1864).

1531. J 2 e.

SANTINI (Giovanni). Compendiata esposizione del modo più vantaggioso di risolvere una serie di equazioni lineari, risultanti da osservazioni tutte egualmente probabili per la determinazione degli elementi di una proposta teorica. [M. I. V., v. XIV, pp. 477-510 (1868)].

1532. J 2 e.

BELLATI (Manfredo). Intorno a un modo di semplificare in alcuni casi l'applicazione del metodo dei minimi quadrati al calcolo delle costanti empiriche. [A. I. V., s. V, t. I, pp. 849-863 (1874-75)].

J 2 g. (Vedi nº 1639).

1533. K, B 12 b.

BELLAVITIS (Giusto). Soluzioni grafiche di problemi geometrici del primo e del secondo grado trovate col metodo delle equipollenze. [M. I. V., v. I, pp. 225-267 (1843)].

1534. K, L1.

BELLAVITIS (Giusto). Note intorno ad alcune questioni di matematica pura elementare. [A. I. V., s. III, t. VI, pp. 165-208 (1860-61)].

1535. K 9 a a, B 12 b.

BELLAVITIS (Giusto). Dimostrazione col metodo delle equipollenze di alcuni teoremi in parte considerati dai sig. Bellati e Ridolfi. [A. I. V., s. I, t. VI, pp. 53-59 (1847)].

1536. K 14 b.

MINICH (Serafino Raffaele). Di alcuni teoremi spettanti agli angoli solidi dei corpi piano-superficiali. [A. I. V., s. III, t. VII, pp. 824-849 (1861-62)].

K 14 b. (Vedi nº 1635).

1537. K 20 f, U.

LORENZONI (Giuseppe). Sulle formole fondamentali della trigonometria sferica e su quelle che servono pel calcolo della parallasse nelle coordinate di un astro. [A. I. V., s. V, t. III, pp. 1053-1069 (1876-77)].

1538. K 23.

CASSANI (Pietro). La projezione stereoscopica. [A. I. V., s. VI, t. III, pp. 1835-1848 (1884-85)].

L1. (Vedi nº 1534).

1539. L' 1 C.

LAZZERI (Giulio). Nuovi teoremi sull'esagono di Pascal. [A. I. V., s. VI, t. III, pp. 481-500 (1884-85)].

1540. L1 2 a.

CASSANI (Pietro). Intorno all'uso del sistema polo-tangenziale in alcune questioni di geometria analitica. [A. I. V., s. IV, t. III, pp. 2067-2074 (1873-74)].

1541. L' 2 a.

REGGIO (Zaccaria). Sulla determinazione del polo di una retta data. [A. I. V., s. V, t. VII, pp. 1117-1120 (1880-81)].

1542. L' 9 d.

CAMUS (Giulio). Ricerca geometrica della lunghezza di un arco di ellisse. [A. I. V., s. VI, t. I, pp. 997-1003 (1882-83)].

1543. L' 17 e.

REGGIO (Zaccaria). Alcune ricerche sulle coniche. [A. I. V., s. V, t. VIII, pp. 649-672 (1881-82)].

1544. L. 18 c.

CASSANI (Pietro). Ricerche sulla Involuzione Quadratica. [A. I. V., s. III, t. XVI, pp. 535-554 (1870-71)].

1545. L2 la.

BORDIGA (Giovanni Alfredo). Alcuni teoremi sulle quadriche analoghi a quello di Pascal sulle coniche. [A. I. V., s. V, t. VII, pp. 1253-1259 (1880-81)].

1546. L2 11 d.

MAGGI (Pietro). Sopra una proprietà delle linee di curvatura principale delle superficie. [A. I. V., s. II, t. I, pp. 64-66 (1850)].

1547. MI 1.

BELLAVITIS (Giusto). Relazioni di allineamento nei punti delle curve algebriche. [M. I. V., v. VIII, pp. 161-179 (1859)].

1548. M1 5 e, F 8 q.

D'ARCAIS (Francesco). Sopra alcuni teoremi sulle curve piane del terzo ordine. [A. I. V., s. V, t. VIII, pp. 673-682 (1881-82)].

1549. M2 1 e.

GARBIERI (Giovanni). Sui fasci e sulle schiere di superficie. [A. I. V., s. VI, t. IV, pp. 943-994 (1885-86)].

1550. M2 1 e.

GARBIERI (Giovanni). Sulle superficie polari covarianti e sui loro invarianti simultanei. [A. I. V., s. VI, t. IV, pp. 1149-1199 (1885-86)].

1551. M2 3 b.

LAZZERI (Giulio). Le curve e le sviluppabili multiple di una classe di superficie algebriche. [A. I. V., s. VI, t. VI, pp. 171-188 (1887-88)].

1552. M2 4 e.

VERONESE (Giuseppe). Di una costruzione della superficie del 4º ordine dotata di conica doppia. [A. I. V., s. VI, t. II, pp. 1841-1842 (1883-84)].

1553. M2 5 d. Q 2.

BORDIGA (Giovanni Alfredo). Intorno ad alcune superficie del 5° e del 6° ordine, che si deducono dallo spazio a sei dimensioni. [A. I. V., s. VI, t. IV, pp. 1461-1501 (1885-86)].

1554. M2 6 b α.

MURER (Vittorio). Sulla superficie di 5º ordine dotata di quartica doppia di 1ª specie. [A. I. V., s. VI, t. V, pp. 1223-1227 (1886-87)].

1555. M2 8, Q 2.

BORDIGA (Giovanni Alfredo). Rappresentazione piana della superficie rigata normale. [A. I. V., s. VI, t. IV, pp. 1085-1092 (1885-86)].

1556. M² 9.

BORDIGA (Giovanni). Di una certa superficie del 7º ordine. [A. I. V., s. VI, t. V, pp. 1397-1403 (1886-87)].

1557. M3 4a, Q 2.

CASTELNUOVO (Guido). Studio dell'involuzione generale sulle curve razionali mediante la loro curva normale dello spazio a n dimensioni. [A. I. V., s. VI, t. IV, pp. 1167-1199 (1885-86)].

1558. M3 6, Q 2.

BORDIGA (Giovanni Alfredo). Studio generale della quartica normale. [A. I. V., s. VI, t. IV, pp. 503-525 (1885-86)].

1559. M3 6 a.

BRAMBILLA (Alberto). Ricerche analitiche intorno alle curve gobbe razionali del 4º ordine. [A. I. V., s. VI, t. III, pp. 1471-1489 (1884-85)].

1560. N1, Q 2.

BORDIGA (Giovanni Alfredo). Complessi e sistemi lineari di raggi sugli spazi superiori. — Curve normali che essi generano. [A. I. V., s. VI, t. IV, pp. 163-189 (1885-86)].

1561. Nº 1.

BORDIGA (Giovanni). Dei complessi in generale nello spazio a 4 dimensioni ed in particolare di alcuni di primo ordine; loro proiezione e rappresentazione nello spazio ordinario. [A. I. V., s. VI, t. VI, pp. 919-962 (1887-88)].

1562. Nº 1 a.

D'EMILIO (Raffaele). Le superficie rigate di una congruenza lineare. [A. I. V., s. VI, t. III, pp. 1265-1275 (1884-85)].

1563. Nº 1 g.

CASTELNUOVO (Guido). Sopra una congruenza del 3º ordine e 6ª classe dello spazio a 4 dimensioni e sulle projezioni nello spazio ordinario. [A. I. V., s. VI, t. V, pp. 1249-1281 (1886-87); s. VI, t. VI, pp. 525-579 (1886-87)].

1564. O 2 a.

REGGIO (Zaccaria). Quadratura di certe aree circolari. [A. I. V., s. V, t. VII, pp. 1097-1116 (1880-81)].

1565. O 2 i.

MINICH (Serafino Raffaele). Sulle coniche osculatrici delle curve piane, e sopra un problema della geometria di posizione del Carnot. [M. I. V., v. VI, pp. 111-196 (1856)].

1566. 0 5 1.

LORENZONI (Giuseppe). Dimostrazione della equazione di Clairaut indipendente dalla proprietà della linea geodetica di essere la brevissima. [A. I. V., s. V, t. II, pp. 591-597 (1875-76)].

1567. O 6 j.

GARBIERI (Giovanni). Sulle superficie inviluppi. [A. I. V., s. VI, t. II, pp. 1201-1219 (1883-84)].

1568. P1.

CASTELNUOVO (Guido). Studio sulla omografia di seconda specie. [A. I. V., s. VI, t. V, pp. 1041-1115 (1886-87)].

1569. Pla.

FAVARO (Antonio). Intorno alla costruzione delle punteggiate proiettive simili. [A. I. V., s. IV, t. III, pp. 1024-1031 (1873-74)].

1570. P 4 g.

MONTESANO (Domenico). Di alcuni gruppi chiusi di trasformazioni involutorie nel piano e nello spazio. [A. I. V., s. VI, t. VI, pp. 1425-1444 (1887-88)].

3

1571. P 6 a.

LAZZERI (Giulio). La rappresentazione dello spazio rigato sopra un piano connesso e sua applicazione allo studio dei connessi lineo-lineari. [A. I. V., s. VI, t. III, pp. 247-268, 437-474 (1884-85)].

1572. Q 2.

VERONESE (Giuseppe). Sulla geometria descrittiva a quattro dimensioni. [A. I. V., s. V, t. VIII, pp. 987-1024 (1881-82)].

1573. 0 2.

CASTELNUOVO (Guido). Angoli di due spazi contenuti nello spazio a n dimensioni. [A. I. V., s. VI, t. III, pp. 1331-1348 (1884-85)].

1574. Q 2.

BORDIGA (Giovanni Alfredo). Corrispondenza di polarità negli spazi superiori. [A. I. V., s. VI, t. III, pp. 2097-2105 (1884-85)].

1575. Q 2.

CASSANI (Pietro). Ricerche geometriche negli spazi superiori. [A. I. V., s. VI, t. IV, pp. 227-241 (1885-86)].

Q 2. (Vedi ni 1527, 1553, 1555, 1557, 1558, 1560).

1576. R1b.

BELLAVITIS (Giusto). Applicazione della cinematica alla curvatura di tutte le trajettorie descritte dai punti di un sistema piano invariabile. [A. I. V., s. III, t. IV, pp. 991-1001 (1858-59)].

1577. R1c.

MINICH (Serafino Raffaele). Alcune considerazioni sul moto progressivo e rotatorio dei solidi liberi. [A. I. V., s. I, t. III, pp. 321-341 (1844)].

1578. RIC.

MINICH (Serafino Raffaele). Sui raggi osculatori delle curve descritte da varii punti d'un sistema invariabile, che si muove con moto continuo intorno ad un punto fisso. [A. I. V., s. III, t. V, pp. 183-195 (1859-60)].

1579. RIC.

BELLAVITIS (Giusto). Esposizione di una facile costruzione geometrica della soluzione del problema di determinare i poli dei circoli osculatori delle curve descritte dai punti di una sfera che si muove intorno al proprio centro.

[A. I. V., s. III, t. V, pp. 195-196 (1859-60)].

1580. R1c.

BELLAVITIS (Giusto). Sul movimento istantaneo intorno ad un punto, [A. I. V., s. III, t. V, pp. 519-524 (1859-60)].

Rend. Circ. Matem., t. IX, parte 2ª.—Stampato il 5 giugno 1895.

1581. R1c.

TURAZZA (Domenico). Intorno ad un nuovo teorema relativo alla rotazione di un sistema rigido ad un asse. [A. I. V., s. III, t. X, pp. 1403-1404 (1864-65)].

1582. RIC.

TURAZZA (Domenico). Di alcune proprietà degli assi di rotazione. [A. I. V., s. VI, t. VII, pp. 1221-1233 (1888-89)].

1583. R 4 a.

CONTI (Carlo). Considerazioni sulle forze e sui momenti. [A. I. V., s. I, t. III, pp. 12-41 (1844)].

1584. R 4 a.

TURAZZA (Domenico). Dei sistemi di forze formati con due forze soltanto, i quali sono equipollenti ad un sistema qualunque di forze agenti sovra punti invariabilmente congiunti fra loro. [M. I. V., v. XV, pp. 461-481 (1870)].

1585. R 4 a.

TURAZZA (Domenico). Dei sistemi di rette coniugate, così che lungo le stesse si possa far agire un sistema di forze equipollente ad un sistema qualunque di forze date. [M. I. V., v. XVIII, pp. 467-481 (1874)].

1586. R 4 a.

PADOVA (Ernesto). Intorno agli assi statici nei sistemi di forma invariabile. [A. I. V., s. VI, t. I, pp. 1243-1250 (1882-83)].

1587. R 4 a.

D'EMILIO (Raffaello). Gli assoidi nella statica e nella Cinematica. [A. I. V., s. VI, t. III, pp. 1135-1154 (1884-85)].

1588. R 4 b.

FAVARO (Antonio). Sulla teoria dei poligoni funicolari secondo La mé e Clapeyron nei suoi rapporti coi metodi della statica grafica. [A. I. V., s. V, t. III, pp. 1319-1344 (1876-77)].

1589. R 4 c.

TURAZZA (Domenico). Introduzione ad un Corso di Statica dei sistemi variabili. [A. I. V., s. VI, t. VI, pp. 701-723 (1887-88)].

1590. R 4 d.

FAVARO (Antonio). Sopra alcuni esercizii di statica grafica proposti dal professore H. Zeuthen. [A. I. V., s. V, t. V, pp. 719-748 (1878-79)].

1591. R 7 g α.

ARCARI (Giovanni). Teoria del pendolo di Foucault. [A. I. V., s. III, t. VII, pp. 820-822 (1861-62)].

1592. R 8.

CONTI (Carlo). Soluzioni di alcuni problemi relativi al movimento dei corpi sottoposti a forza centrifuga. [M. I. V., v. I, pp. 187-224 (1843)].

1593. R 8.

PADOVA (Ernesto). Un teorema di meccanica. [A. I. V., s. VI, t. I, pp. 913-917 (1882-83)].

1594. R 8 a.

TURAZZA (Domenico). Di alcune proprietà relative agli assi di rotazione di un sistema rigido. [M. I. V., v. XI, pp. 383-404 (1862)].

1595. R 8 a.

TURAZZA (Domenico). Intorno agli assi principali ed agli assi permanenti in un sistema rigido qualunque. [M. I. V., v. XII, pp. 411-446 (1864)].

1596. R 8 c.

LORENZONI (Giuseppe). Sulla deviazione dal piede della verticale di un grave liberamente caduto dalla superficie della terra sul fondo di una cava. [A. I. V., s. VI, t. VII, pp. 759-784 (1888-89)].

1597. R 8 c a.

TURAZZA (Domenico). Del moto di un corpo rotondo pesante fisso ad un punto del suo asse di figura, oppure giacente sopra un piano. [M. I. V., v. XI, pp. 75-91, 375-382 (1862)].

1598. R 8 d.

CAPPELLETTO (Antonio Alippo). Del pendolo conico. [M. I. V., v. XVII, pp. 515-527 (1872)].

1599. R 8 d.

LORENZONI (Giuseppe). Sulla equazione differenziale del moto di un pendolo fisico, il cui asse di sospensione muovesi rimanendo parallelo a sé stesso. [A. I. V., s. VI, t. V, pp. 331-375 (1886-87)].

R 8 e. (Vedi nº 1629).

1600. R 8 fα.

PADOVA (Ernesto). Sugli integrali comuni a più problemi di dinamica. [A. I. V., s. VI, t. I, pp. 1005-1020 (1882-83)].

1601. R 8 i.

ARCARI (Giovanni). Teoria del pendolo di Foucault. [A. I. V., s. III, t. VII, pp. 820-821 (1861-62)].

1602. R 9 a.

BELLAVITIS (Giusto). Alcune considerazioni sugli effetti dell'attrito e sul modo di calcolarli. [M. I. V., v. IV, pp. 213-241 (1852)].

1603. R 9 d.

MINICH (Serafino Raffaele). Teorema generale concernente gli ingranaggi conici. [A. I. V., s. III, t. V, pp. 506-518 (1859-60)].

1604. S 2 d.

TURAZZA (Domenico). Dell'efflusso dei liquidi dai vasi di rivoluzione. [M. I. V., v. II, pp. 93-130 (1845)].

1605. S 2 d.

BELLAVITIS (Giusto). Sul movimento di un liquido che discende in modo perfettamente simmetrico rispetto ad un asse verticale. [M. I. V., v. II, pp. 339-360 (1845)].

1606. S 3.

TURAZZA (Domenico). Considerazioni intorno alcuni obbietti mossi alle soluzioni de' problemi d'Idraulica. [A. I. V., s. I, t. III, pp. 348-360 (1844)].

1607. S 3 b.

TURAZZA (Domenico). Nuova determinazione delle costanti relative alla resistenza d'attrito nel movimento dell'acqua pe' lunghi tubi di condotta e per gli alvei. [M. I. V., v. III, pp. 75-108 (1847)].

1608. S 3 b.

BERNARDI (Enrico). Sopra un curioso problema di idrodinamica pratica. [A. I. V., s. VI, t. VI, pp. 1309-1348 (1887-88)].

1609. S 3 b a.

TURAZZA (Domenico). Intorno alle leggi del moto dell'acqua nei canali e nei fiumi con applicazione a varii casi della pratica. [M. I. V., v. VI, pp. 285-324 (1856)].

1610. S 3 b α.

TURAZZA (Domenico). Intorno alla teoria del moto permanente dell'acqua nei canali e nei fiumi, con alcune applicazioni pratiche alla stima delle portate e dei rigurgiti. [M. I. V., v. X, pp. 381-412 (1861)].

1611. S3ba.

TURAZZA (Domenico). Delle formole di Bazin e delle equazioni del moto permanente dell'acqua negli alvei naturali od artefatti. [M. I. V., v. XVII, pp. 171-188 (1872)].

1612. S 3 b a.

TURAZZA (Domenico). Di una nuova formula proposta dal Bazin allo scopo di rappresentare la legge con cui varia la velocità di una corrente lungo una stessa verticale. [A. I. V., s. V, t. II, pp. 301-308 (1875-76)].

1613. S 3 b a.

BUCCHIA (Gustavo). Sul movimento della marea negli estuarii. [A. I. V., s. V, t. II, pp. 1033-1046 (1875-76)].

1614. S3ba.

TURAZZA (Domenico). Delle formole più appropriate pel calcolo degli scoli delle basse pianure e del modo di valutarne la portata massima. [M. I. V., v. XXI, pp. 189-219 (1879)].

1615. S 4.

TURAZZA (Domenico). Teoria dinamica del calorico. [M. I. V., v. VIII, pp. 1-86 (1859)].

1616. S 4.

PAZIENTI (Antonio). Intorno ad alcune deduzioni termodinamiche. [M. I. V., v. XVIII, pp. 163-169 (1874)].

1617. S4a.

TURAZZA (Domenico). Intorno alla ipotesi della metamorfosi delle potenze naturali e della conservazione delle forze. [M. I. V., v. IX, pp. 13-40 (1860)].

1618. S 4 a.

PAZIENTI (Antonio). Considerazioni generali intorno alla termodinamica. [M. I. V., v. XVI, pp. 9-20 (1871)].

1619. S 4 a.

PAZIENTI (Antonio). Intorno all'equivalente meccanico del calore. [M. I. V., v. XIX, pp. 111-116 (1876)].

1620. S 4 a.

PAZIENTI (Antonio). Considerazioni generali intorno alla Termodinamica. [M. I. V., v. XX, pp. 249-256 (1876)].

1621. S 4 b.

TURAZZA (Domenico). Di alcuni problemi spettanti alla teoria dinamica del calorico. [M. I. V., v. X, pp. 335-380 (1861)].

1622. S4b a.

PAZIENTI (Antonio). Considerazioni generali intorno alla termodinamica. [M. I. V., v. XXI, pp. 651-653 (1879)].

1623. S4b B.

CONTI (Carlo). Intorno al calcolo della azione dinamica del vapore nella Locomotiva avuto riguardo alle circostanze della precessione. [M. I. V., v. IV, pp. 133-200 (1852)].

1624. S4b B.

TURAZZA (Domenico). Intorno alla teoria delle macchine a vapore. [M. I. V., v. VII, pp. 169-207 (1857)].

1625. T 2 a B.

TURAZZA (Domenico). Equilibrio di un'asta parallelepipeda rettangolare. [M. I. V., v. XVIII, pp. 219-252 (1874)].

1626. T 3 a.

SANTINI (Giovanni). Considerazioni intorno al calcolo degli oculari pei canocchiali astronomici dirette a distruggere le aberrazioni secondarie di rifrangibilità e di sfericità da essi dipendenti. [M. I. V., v. I, pp. 3-38 (1843)].

1627. T 3 a.

BATTELLI (Angelo). Sulla propagazione della luce in un sistema catadiottrico. [A. I. V., s. VI, t. II, pp. 1081-1095 (1883-84)].

1628. T 6, T 7 a.

RICCI (Gregorio). Sulla funzione potenziale di conduttori di correnti galvaniche costanti. [A. I. V., s. V, t. VIII, pp. 1025-1048 (1881-82)].

1629. U, R 8 e.

LORENZONI (Giuseppe). Dimostrazione delle formole di precessione e nutazione. [A. I. V., s. VI, t. III, pp. 1025-1092 (1884-85)].

U (Vedi ni 1514, 1537).

1630. U 10 a.

CONTI (Carlo). Un facile criterio e qualche semplice regola per procedere con esattezza nella livellazione topografica. [M. I. V., v. II, pp. 131-169 (1845)].

1631. U 10 a.

SANTINI (Giovanni). Delle recenti ricerche intorno alla vera figura della terra dedotta dalle principali misure eseguite nella direzione dei suoi meridiani. [M. I. V., v. XI, pp. 219-267 (1862)].

1632. U 10 a.

SANTINI (Giovanni). Relazione intorno alle attrazioni locali risultanti ne' contorni di Mosca dietro il confronto delle posizioni geodesiche colle osservazioni astronomiche istituite in diversi punti di quel circondario. [M. I. V., v. XII, pp. 77-99 (1864)].

1633. V 1.

BELLAVITIS (Giusto). Considerazioni sulla matematica pura. [M. I. V., v. XIV, pp. 1-34 (1868); v. XV, pp. 375-423 (1870); v. XVII, pp. 189-253 (1872)].

1634. Vla.

BELLAVITIS (Giusto). Proposta di un repertorio generale di pubblicazioni matematiche. [A. I. V., s. III, t. VI, pp. 625-630 (1860-61)].

V 2. (Vedi nº 1502).

1635. V 7, K 14 b.

MINICH (Serafino Raffaele). Sopra un teorema della geometria dei solidi osservato dal Cartesio e sopra altri teoremi concernenti i poliedri. [A. I. V., s. III, t. V, pp. 959-965 (1859-60)].

1636. V 7.

FAVARO (Antonio). Miscellanea Galileiana inedita. [M. I. V., v. XXII, pp. 701-1035 (1887)].

1637. V 9.

FAVARO (Antonio). Intorno ad una lettera di C. F. Gauss ad E. G. M. Olbers, pubblicata da D. B. Boncompagni. [A. I. V., s. VI, t. III, pp. 53-62 (1884-85)].

1638. X 4 a.

FAVARO (Antonio). Sulle prime operazioni del Calcolo grafico. [A. I. V., s. IV, t. I, pp. 1391-1463 (1871-72)].

1639. X 4a, J 2 g.

FAVARO (Antonio). Intorno alla soluzione grafica di alcuni problemi pratici dipendenti dalla teoria delle probabilità. [A. I. V., s. V, t. III, pp. 1023-1034 (1886-77)].

1640. X 6.

FAVARO (Antonio). Intorno ad uno strumento ordinato a calcolare i risultati d'osservazione ottenuti mediante apparecchi autografici. [A. I. V., s. V, t. II, pp. 559-566 (1875-76)].

1641. X 8.

FAVARO (Antonio). Sulla elica calcolatoria di Fuller con cenni storici sopra gli strumenti calcolatori a divisione logaritmica. [A. I. V., s. V, t. V, pp. 495-520 (1878-79)].

ERRATA - CORRIGE.

Ai ni 1459 e 1460 leggasi T 7 a invece di U 7 a.

BULLETTINO DI BIBLIOGRAFIA E DI STORIA

delle Scienze Matematiche e Fisiche. (1868-1887) (*).

ABBREVIATURE.

B. Bon. = Bullettino di Bibliografia e di Storia delle Scienze Matematiche e Fisiche, pubblicato da B. Boncompagni. [Roma].

Tomi: I-XX (1868-1887); in-4°.

t. = Tomo, pp. = Pagine.

1642. A*.

VIÈTE (François). Introduction à l'art analytique par François Viète. Traduit par M. F. Ritter. [B. Bon., t. I, pp. 223-275 (1868)].

1643. A.

CHUQUET (Nicolas). La Triparty en la science des nombres; par Maistre Nicolas Chuquet Parisien, d'après le manuscrit Fonds français nº 1346 de la Bibliothèque nationale de Paris. [B. Bon., t. XIII, pp. 593-659, 693-814 (1880); t. XIV, pp. 413-416 (1881)].

1644. A*.

CHUQUET (Nicolas). Problèmes numériques faisant suite et servant d'application au Triparty en la science des nombres de Nicolas Chuquet Parisien. Extrait de le seconde partie du ms. nº 1346 du Fond français de la Bibliothèque nationale. [B. Bon., t. XIV, pp. 417-460 (1881)].

1645. A*, K*.

Traité d'algorisme (Manuscrit de la Bibliothèque Sainte Geneviève côté « R I 17 » feuillets 150-151). [B. Bon., t. XV, pp. 53-55 (1882)].

Traité de géométrie (même manuscrit, feuillets 151-163). [B. Bon., t. XV, pp. 55-70 (1882)].

1646. A 1; K 1, 17 a, 13 c, 14 c, 15 b, 16 g; L 1 a; R 2 b; V. MAUROLICO (F.). Scritti inediti. [B. Bon., t. IX, pp. 23-121 (1857)].

^(*) Il lavoro di spoglio e di classificazione di questa pubblicazione è dovuto al prof. G. Loria.

Clb. (Vedi ni 1798, 1799, 1800, 1801).

D 2 b. (Vedi ni 1734, 1810).

F 4 a. (Vedi ni 1823, 1867).

Gle. (Vedi nº 1867).

G 2 b a. (Vedi nº 1867).

1647. H1.

CONDORCET (J. A. N., marquis de). Des méthodes d'approximation pour les équations différentielles lorsqu' on connaît une première valeur approchée. Mémoire inédit. (Bibliothèque de l'Institut de France, Portefeuille M. 57**, in folio). [B. Bon., t. XVI, pp. 292-324 (1883)].

1648. I1.

ADELARDO DI BATH, Regulæ Abaci. [B. Bon., t. XIV, pp. 91-134 (1881)].

1649. II.

Due trattati inediti d'Abaco. [B. Bon., t. XV, pp. 135-162 (1882)].

1650. II.

CAPELLI (Marziano). Brano dell'Aritmetica di Marziano Capelli. (Codice della Biblioteca Vaticana contrassegnato Regina Svecorum nº 1762, car. 213, verso, lin. 5-21, car. 214-217). [B. Bon., t. XV, pp. 566-571 (1882)].

1651. II.

Comento di Remigio d'Auxerre all'Aritmetica di Marziano Capelli (Codice della Biblioteca Vaticana contrassegnato Regina Svecorum, nº 1970, car. 15, verso, lin. 32-37, car. 16-19, car. 20, recto lin. 1-4). [B. Bon., t. XV, pp. 572-580 (1882)].

1652. Il, I 23 a.

GÜNTHER (Sigismondo). Paragone di due metodi per la determinazione approssimata di quantità irrazionali. Traduzione dal tedesco del Dr. Alfonso Sparagna. [B. Bon., t. VII, pp. 590-596 (1874)].

II. (Vedi ni 1673, 1745, 1748).

1653. I 2.

LUCAS (E.). Sur un théorème de l'arithmétique indienne. [B. Bon., t. IX, pp. 157-164 (1876)].

1654. I 2.

BONCOMPAGNI (Baldassarre). Soluzione della « Question 391 » della « Nouvelle correspondance mathématique ». [B. Bon., t. XI, pp. 487 (1878)].

Rend. Circ. Matem., t. IX, parte 2^a.—Stampato il 24 giugno 1895.

I 2. (Vedi ni 1702, 1719, 1734).

I 3. (Vedi nº 1734).

14. (Vedi nº 1911).

I4aβ (Vedi nº 1862).

1655. I4a B.

GENOCCHI (Angelo). Sur la loi de réciprocité de Legendre étendue aux nombres non premiers. (Extrait d'une lettre adressée à M. Hermite. [B. Bon., t. XVIII, pp. 235-237 (1885)].

1656. I 4 a B.

GENOCCHI (Angelo). Sur quelques théorèmes qui peuvent conduire à la loi de réciprocité de Legendre. [B. Bon., t. XVIII, pp. 238-243 (1885)].

1657. I 6 d.

GENOCCHI (Angelo). Teoremi di Sofia Germain intorno ai residui biquadratici. [B. Bon., t. XVI, p. 248-251 (1883)].

1658. I7c, I7d.

GENOCCHI (Angelo). Ancora un cenno dei residui cubici e biquadratici. [B. Bon., t. XVIII, pp. 231-234 (1885)].

1659. 113.

GENOCCHI (Angelo). Alcune asserzioni di Gauss circa le forme quadratiche $YY \pm nZZ$. [B. Bon., t, XVII, pp. 245-247 (1884)].

1660. I 19 c.

GENOCCHI (Angelo). Brano di lettera diretta a D. B. Boncompagni. [B. Bon., t. XVI, pp. 211-212 (1883)].

1661. I 19 c.

REALIS (Savarino). Sopra un'equazione indeterminata. [B. Bon., t. XVI, pp. 213-214 (1883)].

I 19 c. (Vedi nº 1734).

I 23 a. (Vedi ni 1652, 1701, 1749).

1662. K.

Extraits du Traité de Géométrie de Claude Mydorge. (Manuscrit Fonds français, nº 656 de la Bibliothèque Nationale de Paris). [B. Bon., t. XIV, pp. 279-350 (1881)].

K*. (Vedi ni 1645, 1781).

K 1. (Vedi nº 1646).

1663. K 3 b. K 10 c. K 21 c.

ZECCHINI LEONELLI (Giuseppe). Scritti inediti. [B. Bon., t. XVIII, pp. 661-671 (1885)].

K 3 c. (Vedi nº 1706).

K 7. (Vedi nº 1674).

K 10 c. (Vedi ni 1663, 1795).

1664. K II e.

Catalogo di lavori relativi al problema di Malfatti. [B. Bon., t. IX, pp. 388-392 (1876)].

K13 c, K14 c, K15 b, K16 g, K17 a (Vedi nº 1646).

K 21 c. (Vedi nº 1663).

L. (Vedi nº 1674).

L' I a. (Vedi nº 1646).

R 2 b. (Vedi nº 1675).

R 6 b. (Vedi nº 1676).

R 7 c. (Vedi n. 1861).

S1a. (Vedi nº 1831).

1665. T.

MAGGI (Pietro). Intorno ai principii di meccanica molecolare del Dottore Ambrogio Fusinieri [B. Bon., t. XII, pp. 847-862 (1879)].

T 2 a. (Vedi nº 1677).

1666. U.

BARTOLOMEO DA PARMA. Tractatus sphæræ. Parti prima e seconda. (Biblioteca Vittorio Emanuele, Codice « Santa Croce » n° 228, carte 47-83). [B. Bon., t. XVII, pp. 43-120, 165-218 (1884)].

U. (Vedi ni 1678, 1684, 1685, 1686, 1713, 1715, 1716, 1718, 1724, 1742, 1746, 1764, 1808, 1860, 1885, 1886, 1913).

1667. V.

CATALAN (E.). Sur un article du Journal des Savants. [B. Bon., t. IV, pp. 127-134 (1871)].

1668. V.

RICCARDI (Geminiano). Due scritti inediti. I. Saggio di alcune noterelle relative allo scritto intitolato: « Mémoire sur les travaux et les écrits de M. Le-

g e n d r e, membre de l'Institut et du Bureau des Longitudes et des principales Académies de l'Europe » segnato in fine dalle iniziali « F. M. », colla data di Ginevra 24 febbrajo 1833 ed inserito nel giornale La bibliothèque universelle (vedi il quaderno Janvier et Février 1833, XVIII Année, Sciences et Arts, t. LII, pp. 45-82). II. Breve esame critico sopra un annunzio relativo ai lavori instituiti dalla R. Accademia delle Scienze e Belle Lettere di Brusselles nell'adunanza del 15 dicembre 1839. Nota letta alla R. Accademia di Scienze, Lettere ed Arti di Modena, nell'adunanza della Sezione di Scienze del 30 Maggio 1849. [B. Bon., t. VIII, pp. 36-50 (1875)].

1669. V.

FAVARO (Antonio). La storia delle matematiche nella Università di Padova. Lettera a D. B. Boncompagni. [B. Bon., t. XI, pp. 799-801 (1878)].

1670. V.

NARDUCCI (E.). Notizie di libri relativi alle matematiche posseduti dalla Biblioteca Alessandrina e non citati dal Conte Giovanni Maria Mazzuchelli nella parte stampata della sua opera « Gli scrittori d'Italia ecc. ». [B. Bon., t. XIII, p. 369-378 (1880)].

1671. V.

I precursori inglesi del Newton. Traduzione dall'inglese del prof. Antonio Favaro. [B. Bon., t. XIII, pp. 481-514 (1880)].

1672. V.

BONCOMPAGNI. (Baldassarre). Intorno a due quesiti proposti nella raccolta intitolata «Giornale degli eruditi e curiosi, Anno I, v. II, maggio-ottobre 1883 ». [B. Bon., t. XVI, p. 673-686 (1883)].

1673. **V**, (**I 1**).

STIATTESI (Andrea). Sull'aritmetica. Dissertazione storico-critica. [B. Bon., t, III, p. 389-408 (1870)].

1674. V, (K 7, L).

HANKEL (Ermanno). Prospetto storico dello sviluppo della geometria moderna. Scritto postumo. Traduzione dal tedesco del Dr. Alfonso Sparagna. [B. Bon., t. IX, pp. 267-289 (1876)].

1675. V, (R 2 b).

PIANI (Domenico). Intorno al centro di gravità. Notizie storico-critiche. [B. Bon., t. I, pp. 41-42 (1868)].

1676. V, (R 6 b).

MAYER (Adolfo). Storia del principio della minima azione. Prelezione accademica. Traduzione dal tedesco dell'ing. G. B. Biadego. [B. Bon., t. XI, pp. 155-166 (1878)].

1677. V, (T 2 a).

CIPOLLETTI (Domenico). Intorno ad alcune definizioni della forza di resistenza dei corpi solidi corrispondenti ai due metodi analitico e sintetico coi quali è stata studiata la teoria dell'elasticità. [B. Bon., t. I, pp. 43-50 (1868)].

1678. V, (U).

SÉDILLOT. (L. Am.). Sur quelques points de l'astronomie ancienne et en particulier sur la précession des équinoxes. Lettre de M. L. Am. Sédillot à D. B. Boncompagni. [B. Bon., t. V, pp. 306-317 (1872)].

1679. V3, V4c, V5a, V6.

MARRE (Aristide). Manière de compter des anciens avec les doigts des mains, d'après un petit poème inédit arabe de Chems-Eddin el Mossouli et le *Tratado de mathematicas* de Juan Perez de Moya, imprimé à Alcala de Henares en 1573. [B. Bon., t. I, pp. 309-318 (1868)].

1680. V 3 a.

MARTIN (Th. H). Sur un ouvrage faussement attribué à Aristarque de Samos. Lettre de M. Th. H. Martin à B. Boncompagni. [B. Bon., t. III, pp. 299-302 (1870)].

1681. V 3 a.

DUPUIS (J.). Note sur un passage géométrique de la République de Platon. [B. Bon., t. XIX, pp. 641-644 (1886)].

1682. V 3 a.

DUPUIS (J.). Note sur un passage géométrique du Ménon de Platon. [B. Bon., t. XIX, pp. 645-650 (1886)].

1683. V 3 a.

BALDI (Bernardino). Vita di Pitagora, tratta dall'autografo ed annotata da Enrico Narducci. [B. Bon., t. XX, pp. 197-308 (1887)].

1684. V 3 a, (U).

MARTIN (Th. H.). Hypothèse astronomique de Pythagore. [B. Bon., t. V, pp. 99-126 (1872)].

1685. V 3 a, (U).

MARTIN (Th. H.). Hypothèse astronomique de Philolaus. [B. Bon., t. V, pp. 127-157 (1872)].

1686. V 3 a, (U).

SÉDILLOT (L. Am.). Sur l'origine de la semaine planétaire et de la spirale de Platon. [B. Bon., t. VI, pp. 239-248 (1873)].

1687. V3a, V3b, V5a, V5b.

BALDI (Bernardino). Vite inedite di matematici italiani pubblicate da Enrico Narducci. [B. Bon, t. XIX pp. 335-406, 437-489, 521-640 (1886)].

1688. V3a, V4a, V4c, V5b, V7, V8, V9.

HENRY (C.). Lettre à M. le prince D. B. Boncompagni sur divers points d'histoire des mathématiques. [B. Bon., t. XX, pp. 389-403 (1887)].

1689. V 3 a, V 5 b.

GÜNTHER (Sigismondo). Lo sviluppo storico della teoria dei poligoni stellati nell'antichità e nel medio evo. Traduzione dal tedesco del D. Alfonso Sparagna. [B. Bon. t. VI, pp. 313-340 (1873)].

1690. V 3 b.

FRIEDLEIN (Godofredo). De Heronis quæ feruntur definitionibus. [B. Bon., t. IV, pp. 93-121 (1871)].

1691. V 3 b.

BONCOMPAGNI (Baldassarre). Intorno alle definizioni di Erone Alessandrin o. [B. Bon., t. IV, pp. 122-126 (1871)].

1692. V 3 b.

CANTOR (Maurizio). Euclide e il suo secolo. Saggio storico matematico di Maurizio Cantor. Traduzione di G. B. Biadego. [B. Bon., t. V, pp. 1-73 (1872)].

1693. V 3 b.

FRIEDLEIN (Godofredo). De Hypside mathematico. [B. Bon., t. VI, p. 493-529 (1873)].

1694. V 3 b.

MARTIN (Th. H.). Sur l'époque et l'auteur du prétendu XVe Livre des Éléments d'Euclide. Lettre à D. B. Boncompagni. [B. Bon., t. VII, pp. 263-266 (1874)].

1695. V3b, V4c, V5a.

MARTIN (Th. H.). Ptolomée, auteur de l'Optique traduite en latin par Ammiratus Eugenius Siculus sur une traduction arabe incomplète, est-il le même que Claude Ptolomée auteur de l'Almageste? [B. Bon., t. IV, pp. 466-469 (1871)].

1696. V3b, V4c, V5a.

BONCOMPAGNI (Baldassarre). Intorno ad una traduzione latina dell'Ottica di Tolomeo. [B. Bon., t. IV, pp. 470-492 (1871); t. VI, pp. 159-170 (1873)].

1697. V3b, V4c, V5b.

GÜNTHER (Sigismondo). Le origini ed i gradi di sviluppo del principio delle coordinate. Traduzione del tedesco con note del Dr. Giovanni Garbieri. [B. Bon., t. X, pp. 363-406 (1877)].

1698. V 3 b. V 6.

JACOLI (Ferdinando). Intorno ad una edizione degli Elementi di Euclide. Lettere del Prof. Ing. Ferdinando Jacolia B. Boncompagni. [B. Bon., t. III, pp. 297-298 (1870)].

1699. V3b. V8. V9.

ENESTRÖM (G.). Notice bibliographique sur les traductions en suédois des Éléments d'Euclide. [B. Bon., t. XVIII, pp. 332-342 (1885)].

V 3 b. (Vedi nº 1687).

1700. V 3 c.

BONCOMPAGNI (Baldassarre). Interno al comento di Proclo sul primo libro degli Elementi di Euclide. B. Bon., t. VII, pp. 152-165 (1874)].

1701. V3c, V4a, V4c, V5b, V6, V7, V8, (123a). GUNTHER (Sigismondo). Storia dello sviluppo della teoria delle frazioni continue sino all'Euler. Traduzione del D. Alfonso Sparagna, [B. Bon., t. VII, pp. 213-254 (1874)].

1702. V3c. V6. V9 (I2).

BONCOMPAGNI (Baldassarre). Intorno ad una proprietà de' numeri dispari. [B. Bon., t. VIII, pp. 51-62 (1875)].

1703. V 3 d. V 5 a.

FRIEDLEIN (G.). Annotationes ad historiam matheseos spectantes. I. Pauca de Johannis Pediasimi Geometria annotanda. II. Designis + et -.. III. De Victorii Calculo. [B. Bon., t. III, pp. 303-306 (1870)].

1704. V 4a.

BONCOMPAGNI (Baldassarre). Intorno all'opera di Albiruni sull'India. [B. Bon., t. II, pp. 153-206 (1869)].

1705. V 4 a.

SÉDILLOT (L. Am.). Grande exécution d'automne. Lettre à M. le D. Ferdinand Hoefer au sujet des sciences mathématiques des Indiens, et des origines du sanscrit. [B. Bon., t. VIII, pp. 457-468 (1875)].

1705. V 4a, (K 3c). MARRE (A.). Théorème du carré de l'hypoténuse. [B. Bon., t. XX, pp. 404-406 (1887)].

V 4 a. (Vedi ni 1688, 1701).

1707. V.4 b.

SÉDILLOT (L. Am.). De l'astronomie et des mathématiques chez les Chinois. Lettre de M. L. Am. Sédillot à D. B. Boncompagni. [B. Bon., t. I, pp. 161-166 (1868)].

1708. V 4 c.

SÉDILLOT (L. Am.). De l'école de Bagdad et des travaux scientifiques des Arabes. Lettre de M. L. Am. Sédillot à D. B. Boncompagni. [B. Bon., t. I, pp. 217-222 (1868)].

1709. V 4 c.

Storia delle matematiche presso gli Arabi del Dr. Ermanno Hankel. Traduzione dal tedesco del sig. Filippo Keller. [B. Bon., t. V, pp. 343-401 (1872)].

1710. V 4 c.

Vite di matematici arabi tratte da un'opera inedita di Bernardino Baldi. Con note di M. Steinschneider. [B. Bon., t. V, pp. 427-534 (1872)].

1711. V 4 c.

BONCHON BRANDELY (G.). Quelques remarques sur deux articles du Bullettino (t. V) intitulés « Storia delle matematiche presso gli Arabi, del Dr. Ermanno Hankel» et « Vite di matematici arabi ecc. con note di M. Steinschneider». [B. Bon., t. VI, p. 65-68 (1873)].

1712. V4c.

MARRE (A.). Extrait du Kitâb al Mobârek d'Abu'l Wafa al Djouëini, transcrit d'après le ms. 1912 du Supplément Arabe de la Bibliothèque nationale de Paris, et traduit pour la première fois en français. [B. Bon, t. VII, pp. 267-277 (1873)].

1713. V 4 c, (U).

SÉDILLOT (L. Am.). Sur les emprunts que nous avons faits à la science Arabe, et en particulier de la troisième inégalité lunaire ou variation par A b o u l-Wéfå de Bagdad astronome du Xe siècle. [B. Bon., t. VIII, p. 63-78 (1875)].

1714. V 4 c.

STEINSCHNEIDER (M.). Rectifications de quelques erreurs relatives au mathématicien arabe I b n A l-B a n n a. [B. Bon., t. X, pp. 313-314 (1877)].

1715. V4c, V4d, (U).

STEINSCHNEIDER (M.). Études sur Zarkali, astronome arabe du XIe siècle, et ses ouvrages. [B. Bon., t. XIV, pp. 171-182 (1881); t. XVI, pp. 493-504 (1883); t. XVII, pp. 765-794 (1884); t. XVIII, pp. 343-360 (1885); t. XX, pp. 1-36, 575-604 (1887)].

1716. V4c, V4d, (U).

STEINSCHNEIDER (M.). Notice sur un ouvrage astronomique inédit d'Ibn Haitham. [B. Bon., t. XIV, pp. 721-740 (1882). Supplément t. XVI, pp. 505-513 (1883)].

5

1717. V4c. V5b.

NARDUCCI (E.). Intorno ad una traduzione italiana, fatta nel secolo decimoquarto, del trattato d'ottica d'Alhagen, matematico del secolo undecimo, e ad altri lavori di questo scienziato. [B. Bon., t. IV, pp. 1-48, 137-139 (1871)].

1718. V4c. V6. (U).

SÉDILLOT (L. Am.). Sur la détermination de la troisième inegalité lunaire ou variation par Abul-Wéfå et Tycho Brahé, Lettre de M. L. Am. Sédillot à D. B. Boncompagni. [B. Bon., t. I, pp. 51-53 (1868)].

1719. V4c, V7, (I2).

BONCOMPAGNI (Baldassarre). Intorno alla somma delle quarte potenze dei numeri naturali. [B. Bon., t. X, pp. 294-302 (1877)].

1720. V4c. V9.

SÉDILLOT (L. Am.). Des savants arabes et des savants d'aujourd'hui à propos de quelques rectifications. Lettre de M. L. Am. Sédillot à D. B. Boncompagni. [B. Bon., t. IV, pp. 401-418 (1871)].

1721. V 4 c, V 9.

MARTIN (Th. H.). Quelques mots de réponse à M. Sédillot par Th. H. Martin. [B. Bon., t. IV, pp. 464-465 (1871)].

1722. V4c, V9.

SÉDILLOT (L. Am.). Lettre de M. L. Am. Sédillot à D. B. Boncompagniau sujet d'une Note de M. Th. H. Martin. [B. Bon., t V, p. 294 (1872)].

V 4 c. (Vedi ni 1679, 1688, 1695, 1696, 1697, 1701).

1723. V 4 d.

STEINSCHNEIDER (M.). Prophati Judæi Montepessulani (a. 1300) Proemium Almanach adhuc ineditum e versionibus duabus antiquis (altera quoque interpolata) una cum texto hebraico e manuscriptus primum edidit, suamque versionem latinam verbalem adjecit Mauritius Steinschneider. [B. Bon., t. IX, pp. 595-614 (1876)].

V 4 d. (Vedi ni 1715, 1716).

1724. V 5 a, (U).

CURTZE (Maximilien). Sur l'astronomie de Boèce signalée par M. le Dr. Maurice Cantor. [B. Bon., t. I, p. 140 (1868)].

1725. V 5 a.

Victorii Calculus ex codice Vaticano editus a Godofredo Friedlein.
[B. Bon., t. IV, pp. 443-463 (1871)].

Rend. Circ. Matem., t. IX, parte 2ª. - Stampato il 29 giugno 1895.

1726. V5a, V5b.

NARDUCCI (E.). Intorno ad un comento inedito di Remigio d'Auxerre af « Satyricon » di Marziano Capelli e ad altri comenti al medesimo « Satyricon ». [B. Bon., t. XV, pp. 505-565 (1882)].

V 5 a. (Vedi ni 1679, 1687, 1695, 1696, 1703).

1727. V 5 b.

CURTZE (M.). Sur l'ortographe du nom et sur la patrie de Witelo (Vitellion). [B. Bon., t. IV, pp. 49-77 (1871)].

1728. V 5 b.

BONCOMPAGNI (Baldassarre). Intorno ad un manoscritto dell'opera di Vitellione citato da Fra Luca Pacioli. [B. Bon., t. IV, pp. 78-81 (1871)].

1729. V 5 b.

BONCOMPAGNI (Baldassarre). Intorno al Tractatus proportionum di Alberto di Sassonia. [B. Bon., t. IV, pp. 498-511 (1871)].

1730. V 5 b.

BONCOMPAGNI (Baldassarre). Intorno ad un passo della Geometria di Boezio relativo al pentagono stellato. [B. Bon., t, VI, pp. 341-356, 544 (1873)].

1731. V 5 b.

DE' SIMONI (Cornelio). Intorno alla vita ed ai lavori di Andalò di Negro matematico ed astronomo genovese del secolo decimoquarto e d'altri matematici e cosmografi genovesi. [B. Bon., t. VII, pp. 313-336 (1874)].

1732. V 5 b.

ANDALO DE NEGRI. (De le vite de matematici libri due di Bernardino Baldi da Urbino Abbate di Guastalla. MDCXCVI. Tomo II. Manoscritto posseduto da D. B. Boncompagni contrassegnato «nº 134», car. 120-121). [B. Bon., t. VII, pp. 339-376 (1874)].

1733. V 5 b.

BONCOMPAGNI (Baldassarre). Catalogo dei lavori di Andalò di Negro. [B. Bon., t. VII, pp. 339-376 (1874)].

1734. V 5 b, (D 2 b, I 2, I 3, 119 c).

LUCAS (E.). Recherches sur plusieurs ouvrages de Léonard de Pise et sur diverses questions d'arithmétique supérieure. [B. Bon., t. V, pp. 129-193, 239-293 (1877)].

1735. V 5 b.

RICCARDI (Pietro). Lettera a D. B. Boncompagni. [B. Bon., t. X, pag. 543 (1877)].

1736. V 5 b.

TREUTLEIN (P.). Intorno ad alcuni scritti inediti relativi al calcolo dell'Abaco. Traduzione dal tedesco del Dr. Alfonso Sparagna. [B. Bon., t. X, pp. 587-594 (1877)].

1737. V 5 b.

Scritti inediti relativi al calcolo dell'abaco. [B. Bon., t. X, pp. 595-648 (1876)].

1738. V 5 b.

BONCOMPAGNI (Baldassarre). Intorno al Tractatus de Abaco di Gerlando. [B. Bon., t. X, pp. 648-656 (1877)].

1739. V 5 b.

STEINSCHNEIDER (M.). Intorno a Johannes de Lineriis (de Liveriis) e Johannes Siculus [B. Bon., t. XII, pp. 345-351 (1879)].

1740. V 5 b.

BONCOMPAGNI (Baldassarre). Intorno alle vite inedite di tre matematici (Giovanni di Sassonia, Giovanni de Lineriis e Fra Luca Pacioli da Borgo S. Sepolcro) scritte da Bernardino Baldi. [B. Bon., t. XII, pp. 352-419, 863-872 (1879)].

1741. V 5 b.

BALDI (Bernardino). Vite inedite di tre matematici (Giovanni Danck di Sassonia, Giovanni de Lineriis e Fra Luca Pacioli di Borgo S. Sepolcro). [B. Bon., t. XII, pp. 420-427 (1879)].

Appendice di documenti inediti relativi a Fra Luca Pacioli. [B. Bon., t. XII, pp. 428-438 (1879)].

1742. V 5 b, (U).

STEINSCHNEIDER (M.). Notice sur les tables astronomiques attribuées à Pierre III d'Aragon. [B. Bon., t. XIII, pp. 413-436 (1880); t. XV, pp. 170-173 (1882)].

1743. V 5 b.

BONCOMPAGNI (Baldassarre). Intorno ad uno scritto inedito di Adelardo di Bath intitolato Regulæ Abaci. [B. Bon., t. XIV, pp. 1-90 (1881)].

1744. V 5 b.

HENRY (C.). Sur les deux plus anciens traités français d'algorisme et de géométrie. [B. Bon., t. XV, pp. 42-52 (1882)].

1745. V 5 b, (I 1).

NARDUCCI (E.). Intorno a due trattati inediti d'abaco contenuti in due codici vaticani del Secolo XII. [B. Bon., t. XV, pp. 111-134 (1882)].

1746. V 5 b, (U).

NARDUCCI (E.). Intorno al « Tractatus sphæræ » di Bartolomeo da Par-

m a astronomo del Secolo XIII e ad altri scritti del medesimo autore. [B. Bon., t. XVII, pp. 1-42 (1884)].

1747. V 5 b, V 6.

JACOLI (Ferdinando). Intorno ad un comento di Benedetto Vittori medico faentino al *Tractatus proportionum* di Alberto di Sassonia. [B. Bon., t. IV, pp. 493-497 (1871)].

1748. V 5 b, V 6, (I 1).

WOEPCKE (F.). Intorno ad un metodo per la determinazione approssimata degli irrazionali di secondo grado. Brano di lettera del Dr. F. Woepcke a D. B. Boncompagni. [B. Bon., t. VII, pp. 255-262 (1874)].

1749. V5b, V6, V7, (123a).

FAVARO (A.). Notizie storiche sulle frazioni continue dal secolo decimoterzo al decimosettimo. [B. Bon., t. VII, pp. 451-502, 533-589 (1874)].

V 5 b. (Vedi ni 1687, 1688, 1689, 1697, 1701, 1717, 1726).

1750. V 6.

VORSTERAN VAN OIJEN (G. A.). Notice sur Ludolph van Colen. [B. Bon., t. I, pp. 141-156 (1868)].

1751. V 6.

JACOLI (Ferdinando). Notizia sconosciuta intorno a Bonaventura Cavalieri. [B. Bon., t. II, p. 299-312 (1869)],

1752, V 6.

GOVI (Gilberto). Intorno a tre lettere di Galileo Galilei tratte dall'Archivio dei Gonzaga. [B. Bon., t. III, pp. 267-281 (1870)].

1753. V 6.

Sopra alcuni scritti stampati, finora non conosciuti, di Domenico Maria Novara di Ferrara. Notizie comunicate a richiesta del Principe D. B. Boncompagni alla Società Copernicana di Scienze ed Arti di Thorn, nelle sedute del 27 giugno e 15 agosto 1870 da Massimiliano Curtze. Traduzione del sig. Filippo Keller. [B. Bon., t. IV, pp. 140-148 (1871)].

1754. V 6.

Ulteriori notizie intorno ad alcuni scritti stampati, finora non conosciuti, di Domenico Maria Novara di Ferrara, comunicate per incarico del Principe D. B. Boncompagni in Roma alla Società Copernicana per le Scienze ed Arti nella sessione del 5 dicembre 1870 da Massimiliano Curtze. Traduzione del sig. Filippo Keller. [B. Bon., t. IV, p. 149 (1871)].

1755. V 6.

BONCOMPAGNI (Baldassarre). Intorno ad un opuscolo di Domenico Maria Novara. [B. Bon., t. IV, pp. 340-341 (1871)].

BONCOMPAGNI (Baldassarre). Intorno ad alcune note di Galileo Galilei ad un'opera di Giovanni Battista Morin. [B. Bon., t. VI, pp. 45-60 (1873)].

1757. V 6.

CATALAN (E.). Intorno ad una iscrizione posta sulla tomba di Ludolf van Ceulen. Lettera a D. B. Boncompagni. [B. Bon., t. VII, pp. 141-144 (1874)].

1758. V 6.

NAPOLI (Federico). Intorno alla vita ed ai lavori di Francesco Maurolico. [B. Bon., t. IX, pp. 1-22 (1876)].

1759. V 6.

BONCOMPAGNI (Baldassarre). Intorno ad un trattato d'aritmetica di Giovanni Widman di Eger. [B. Bon., t. IX, pp. 188-210 (1876)].

1760. V 6.

Copernico in Italia. Traduzione dal tedesco del Dr. Alfonso Sparagna. [B. Bon., t. IX, pp. 315-319 (1876)].

1761. V 6.

HIPLER (F.). Copernico in Bologna. Traduzione del tedesco del Dr. Alfonso Sparagna. [B. Bon., t. IX, pp. 320-325 (1876)].

1762. V 6.

LE BESGUE. (V. A.). Notes sur les opuscules de Léonard de Pise. [B. Bon., t. IX, pp. 583-594 (1876)].

1763. V 6.

CANTOR (Maurizio). Sulla nazionalità di Copernico. Traduzione dal tedesco del Dr. Alfonso Sparagna. [B. Bon., t. IX, pp. 701-716 (1876)].

1764. V 6, (U).

JACOLI (F.). Intorno alla determinazione di Domenico Maria Novara dell'obliquità dell'eclittica. [B. Bon., t. X, pp. 75-88 (1887)].

1765. V 6.

FAVARO (Antonio). Niccolò Copernico e l'Archivio universitario di Padova. Lettera a D. B. Boncompagni. [B. Bon., t. X, pp. 303-512 (1877)].

1766. V 6.

RICCARDI (Pietro). Intorno ad un opuscolo di Francesco dal Sole. [B. Bon., t. X, pp. 407-418 (1877)].

Documenti inediti relativi a Francesco dal Sole. [B. Bon., t. X, pp. 419-427 (1877)].

1768. V 6.

BONCOMPAGNI (Baldassarre). Intorno alla parola « cumulo » usata da Francesco dal Sole in senso di « mille milioni ». [B. Bon., t. X, pp. 428-431 (1877)].

1769. V 6.

CURTZE (M.). Nuove Copernicana da Upsal. Rapporto letto alla Società Copernicana di Scienze ed Arti in Thorn il 4 giugno 1877. Traduzione dal tedesco del Dr. Alfonso Sparagna. [B. Bon., t. XI, pp. 167-171; pp. 172-176 (1878)].

1770. V 6.

FAVARO (Antonio). Intorno alla vita ed alle opere di Prosdocimo de' Baldomandi matematico padovano del Secolo XV. [B. Bon., t. XII, pp. 1-74, 115-251 (1879); t. XVIII, pp. 405-423 (1885)].

1771. V 6.

FAVARO (Antonio). Intorno alla pubblicazione fatta dal Dr. Carlo Malagola di alcuni documenti relativi a Niccolò Copernico e ad altri astronomi e matematici dei secoli XV e XVI. [B. Bon., t. XI, pp. 319-334 (1878)].

1772. V 6.

ZERBRAWSKI (T.). Quelques mots au sujet de la note de M. Maximilien Curtze sur l'ortographe du nom et de la patrie de Witelo. [B. Bon., t. XII, pp. 315-317 (1879)].

1773. V 6.

FAVARO (Antonio). Intorno ad alcune notizie inedite relative a Nicolò Copernico raccolte e pubblicate dal Prof. Massimiliano Curtze. [B. Bon., t. XII, pp. 775-807 (1879)].

1774. V 6.

BONCOMPAGNI (Baldassarre). Intorno ad un trattato d'aritmetica del P. D. S meral do Borghetti Lucchese canonico regolare della Congregazione del SS. Salvatore. [B. Bon., t. XXIII, pp. 1-80, 121-200, 245-368 (1880)].

1775. V 6.

MARRE (A.). Notice sur Nicolas Chuquet et son Triparty en la science des nombres. [B. Bon., t. XIII, p. 555-592 (1880)].

1776. V 6.

HENRY (C.). Notice sur un manuscrit inédit de Claude Mydorge. [B. Bon., t. XIV, pp. 271-278 (1881)].

Alcune lettere inedite di Galileo Galilei pubblicate ed illustrate da Gilberto Govi. [B. Bon., t. XIV. pp. 351-379 (1881)].

1778. V 6.

PEROTT (J.). Sur une arithmétique espagnole du seizième siècle. [B. Bon., t. XV, pp. 163-169 (1882)].

1779. V 6.

FAVARO (Antonio). Gli autografi di Galileo nell'Archivio Marsigli di Bologna. [B. Bon., t. XV, pp. 581-592 (1882)].

1780. V 6.

FAVARO (Antonio). Alcuni scritti inediti di Galileo Galilei tratti dai manoscritti della Biblioteca nazionale di Firenze, pubblicati ed illustrati. [B. Bon., t. XVI, pp. 1-97, 135-210 (1883)].

1781. V 6, (K).

HENRY (C.). Problèmes de géométrie pratique de Mydorge. Énoncés et solutions publiés pour la première fois. [B. Bon., t. XVI, pp. 514-544 (1883)].

1782. V 6

UZIELLI (G.). Ricerche intorno a Paolo del Pozzo Toscanelli. [B. Bon., t. XVI, pp. 611-618 (1883)].

1783. V 6.

FAVARO (Antonio). Di alcune relazioni tra Galileo Galilei e Federico Cesi illustrate con documenti inediti. [B. Bon., t. XVII, pp. 219-229 (1884)].

1784. V 6.

CESI (Federico). Lettere a Galileo Galilei, tratte dai manoscritti galileiani della Biblioteca nazionale di Firenze. [B. Bon., t. XVII, pp. 230-244 (1884)].

1785. V 6.

FAVARO (Antonio). Sulla morte di Marco Velsero e sopra alcuni particolari della vita di Galileo Galilei. [B. Bon., t. XVII, pp. 252-270 (1884)].

1786. V 6.

BONCOMPAGNI (Baldassarre). Intorno alla vita ed ai lavori di Francesco Barozzi. [B. Bon., t. XVII, pp. 795-848 (1884)].

1787. V 6.

FAVARO (Antonio). Ragguaglio dei manoscritti galileiani nella Collezione Libri-Ashburnham presso la Biblioteca Medico-Laurenziana di Firenze. [B. Bon., t. XVII, pp. 849-878 (1884)].

FAVARO (Antonio). Documenti inediti per la storia dei manoscritti galileiani nella Biblioteca Nazionale di Firenze, pubblicati ed illustrati. [B. Bon., t. XVIII, pp. 1-112, 151-230 (1885)].

1789. V 6.

FAVARO (Antonio). Conclusioni sull'accademico incognito oppositore al discorso di Galileo: Intorno alle cose, che stanno in su l'acqua, o che in quella si muovono. [B. Bon., t. XVIII, pp. 321-326 (1885)].

1790. V 6.

FAVARO (Antonio). Intorno ad alcuni documenti galileiani recentemente scoperti nella Biblioteca Nazionale di Firenze. [B. Bon., t. XIX, pp. 1-54 (1886)].

1791. V 6.

FAVARO (Antonio). Documenti per la storia dell'Accademia dei Lincei nei Manoscritti galileiani della Biblioteca nazionale di Firenze. [B. Bon., t. XX, pp. 95-158 (1887)].

1792. V 6.

FAVARO (Antonio). La libreria di Galileo Galilei descritta ed illustrata. [B. Bon., t. XIX, pp. 219-291 (1886); t. XX, pp. 372-376 (1887)].

1793. V 6.

FAVARO (Antonio). Di Giovanni Tarde e di una sua visita a Galileo dal 12 al 15 novembre 1614. [B. Bon., t. XX, pp. 345-371 (1887)].

1794. V 6.

RICCARDI (P.). Ancora del trattato De quadratura circuli di Giovanni Battista della Porta. [B. Bon.. t. XX, pp. 605-606 (1887)].

1795. V 6, V 7, (K 10 c).

BIERENS DE HAAN (D.). Notice sur quelques quadrateurs du cercle dans les Pays Bas. [B. Bon., t. VII, pp. 99-140 (1874)].

1796. V 6, V 7, V 8.

BIERENS DE HAAN (D.). Bibliographie néerlandaise historico-scientifique des ouvrages importants dont les auteurs sont nés aux 16°, 17° et 18° siècles, sur les sciences mathématiques et physiques et leurs applications. [B. Bon., t. XIV, pp. 512-630, 677-717 (1881); t. XV, pp. 225-312, 355-440 (1882); t. XVI, pp. 393-444, 687-718 (1883)].

1797. V6, V7, V8, V9.

SÉDILLOT (L. Am.). Les professeurs de mathématiques et de physique générale au Collège de France. [B. Bon., t. II, pp. 343-348, 387-448, 461-510 (1869); t. III, pp. 108-170 (1870)].

V 6. (Vedi ni 1679, 1698, 1701, 1702, 1718, 1747, 1748, 1749).

1798. V 7. (C1b).

TARDY (Placido). Intorno ad una formola del Leibniz. [B. Bon., t. I, pp. 177-186 (1868)].

1799. V 7, (C1b).

BONCOMPAGNI (Baldassarre). Intorno ad uno scritto del sig. prof. Placido Tardy inserito nel presente Bullettino (Tomo I, 1868, pp. 177-186). [B. Bon., t. II, pp. 273-274 (1869)].

1800. V 7, (Clb).

Intorno ad una formola del Leibniz. Traduzione del sig. Filippo Keller. [B. Bon., t. II, pp. 275-276 (1869)].

1801. V 7, (C1b).

BORCHARDT (G.). Sur quelques passages des lettres de Leibniz relatifs aux différentielles à indice quelconque. Note de M. Ch. G. Borchardt.

[B. Bon., t. II, p. 277-278 (1869)].

1802. V 7.

JACOLI (Ferdinando). Intorno a due edizioni di Marco Michele Bous que t. Brano di lettera del prof. Ing. Ferdinando Jacoli a D. B. Bonco mpagni in data di « Genova 10 gennaro 1870 ». [B. Bon., t. III, pp. 91-92 (1870)].

1803. V 7.

JACOLI (Ferdinando). Evangelista Torricelli ed il metodo delle tangenti detto Metodo del Roberval. [B. Bon., t. VIII, pp. 265-307 (1875)].

1804. V 7.

BONCOMPAGNI (Baldassarre). Intorno ad alcune lettere di Evangelista Torricelli, del P. Marino Mersenne e di Francesco di Verdus. [B. Bon., t. VIII, pp. 353-381 (1875)].

1805. V 7.

Lettere di Evangelista Torricelli al P. Marino Mersenne. [B. Bon., t. VIII, pp. 382-409 (1875)].

1806. V 7.

Lettere del P. Marino Mersenne ad Evangelista Torricelli. [B. Bon., t. VIII, pp. 410-441 (1875)].

1807. V 7.

Lettere di Francesco de Verdus ad Evangelista Torricelli. [B. Bon., t. VIII, pp. 442-456 (1875)].

Rend. Circ. Matem., t. IX, parte 2ª.—Stampato l'8 luglio 1895,

1808. V 7, (U).

BÉZIAT (L. C.). La vie et les travaux de Jean Hévélius. [B. Bon., t. VIII, pp. 497-558, 589-669 (1873)].

1809. V 7.

BIERENS DE HAAN. Notice sur un pamphlet mathématique hollandais intitulé « Bril voor de Amsterdamsche belachelycke Geometristen, Amsterdam 1663 ». [B. Bon., t. XI, pp. 383-452 (1878)].

1810. V 7, (D 2 b).

LUCAS (E.). Sur la série récurrente de Fermat. [B. Bon., t. XI, pp. 783-798 (1878)].

1811. V 7.

RICCARDI (P.). Nuovi materiali per la storia della Facoltà matematica dell'antica Università di Bologna. [B. Bon., t. XII, pp. 299-312 (1879)].

1812. V 7.

HENRY (C.). Recherches sur les manuscrits de Pierre Fermat suivies de fragments inédits de Bachet et de Malebranche. [B. Bon., t. XII, pp. 477-568, 619-740 (1879); t. XIII, pp. 437-470 (1880)].

1813. V 7.

MARRE (A.). Deux mathématiciens de l'Oratoire. [B. Bon., t. XII, pp. 886-894 (1879)].

1814. V 7.

FAVARO (A.). Intorno alla vita ed alle opere di Bartolomeo Sovero, matematico svizzero del Secolo XVII. [B. Bon., t. XV, pp. 1-48 (1882), t. XIX, pp. 99-114 (1886)].

1815. V 7.

MARRE (A.). Sur huit lettres inédites du P. Claude Jaquemet de l'Oratoir, né à Valenciennes en Juin 1651, mort à Vienne (Dauphiné) le 16 Septembre 1728. [B. Bon., t. XV, pp. 679-682 (1882)].

1816. V 7.

P. Claude Jaquemet de l'Oratoire. Huit lettres inédites. [B. Bon., t. XV, pp. 683-697 (1882)].

1817. **V 7**.

JACOLI (F.). Intorno al problema « Le noeud de cravate » e ad alcune opere di Urbano d'Aviso Romano. [B. Bon., t. XVI, pp. 445-456 (1883)].

1818. V 7.

HENRY (C.). Pierre de Carcavy intermédiaire de Fermat, de Pascal et de Huygens, Bibliothécaire de Colbert et du Roi, Directeur de l'Aacdémie des Sciences. [B. Bon., t. XVII, p. 317-391, 879 (1884)].

1819. V 7.

LE PAIGE (C.). Correspondance de Rêné-François de Sluze publiée pour la première fois et précédée d'une Introduction. [B. Bon., t. XVII, pp. 427-554, 603-726 (1884)].

1820. V 7, V 9.

WOLF (Rudolphe). Matériaux divers pour l'histoire des mathématiques, recueillis par le Dr. Rodolphe Wolf. I. Sur l'invention du niveau à bulle d'air. II. Mort de M. Strauch. III. Correspondance littéraire des Bernoulli. IV. Nicolas Fatio de Driller. V. Marc-Michel Bousquet. VI. Cosimo Bartoli. [B. Bon., t. II, pp. 313-342 (1869)].

1821. V 7, V 8, (X 2).

BIERENS DE HAAN (D.). Notices sur des tables logarithmiques hollandaises. [B. Bon., t. VI, pp. 203-238 (1873)].

V 7. (Vedi ni 1688, 1701, 1719, 1749, 1795, 1796, 1797).

1822. V 8.

FORTI (Angelo). Intorno alla vita ed agli scritti di Wolfang e Giovanni Bolyai di Bolya, matematici ungheresi. [B. Bon., t. I, pp. 277-299 (1868)].

1823. V 7, (F 4 a).

SIACCI (Francesco). Sul teorema del conte di Fagnano. [B. Bon., t. III, pp. 1-26 (1870)].

1824. V 8.

BONCOMPAGNI (Baldassarre). Intorno ad uno scritto intitolato « Memorie concernenti il marchese Giulio Carlo de' Toschi di Fagnano fino al mese di febbrajo dell'anno 1792 ». [B. Bon., t. III, pp..27-46 (1870)].

1825. V 8.

BIERENS DE HAAN (D.). Notice sur Meindert Semijus. [B. Bon., t. V, pp. 213-220 (1872)].

1826. V 8.

BONCOMPAGNI (Baldassarre). Intorno alla vita ed ai lavori di Meindert Semijus. [B. Bon., t. V, pp. 221-227 (1872)].

1827. V 8.

BONCOMPAGNI (Baldassarre). Intorno ad un'opera dell'Abate Nicolò Luigi De La Caille intitolata « Leçons élémentaires de Mathématiques etc. n. [B. Bon., t. V, pp. 278-293 (1872)].

1828. V 8.

BIADEGO (G. B.). Intorno a dieci lettere inedite di Giuseppe Luigi Lagrange. [B. Bon., t. V!, pp. 101-130 (1873)].

1829. V 8.

Dieci lettere inedite di Giuseppe Luigi Lagrange scritte al matematico veronese Antonio Maria Lorgna. [B. Bon., t. VI, pp. 131-141 (1873)].

1830. V 8.

BONCOMPAGNI (Baldassarre). Intorno a dieci lettere in lingua italiana di Giuseppe Luigi Lagrange. [B. Bon., t. VI, pp. 142-152, 539-543 (1873)].

1831. V 8, (Sla).

GÜNTHER (Sigismond). Note sur Jean-André de Segner fondateur de la météorologie mathématique. [B. Bon., t. IX, pp. 217-228 (1876)].

1832. V 8.

BIADEGO (G. B.). Intorno alla vita ed agli scritti di Gianfrancesco Malfatti matematico del secolo XVIII. [B. Bon., t. IX, pp. 361-381 (1876)].

1833. V 8.

Catalogo dei lavori di Gianfrancesco Malfatti. [B. Bon., t. IX, pp. 382-387 (1876)].

1834. V 8.

MALFATTI (Gianfrancesco). Lettere inedite di Gianfrancesco Malfatti. [B. Bon., t. IX, pp. 393-480 (1876)].

1835. V 8.

ABRIA (O.) et HOÜD (Y.). Notice sur la vie et les travaux de Victor-Amédée Le Besque. [B. Bon., t. IX, pp. 554-551 (1876)].

1836. V 8.

JACOLI (F.). Intorno alla vita ed ai lavori di Antonio Maria Lorgna. [B. Bon., t. X, pp. 1-74 (1877)].

1837. V 8.

GENOCCHI (Angelo). Sopra la pubblicazione fatta da B. Boncompagni di undici lettere di Luigi Lagrange a Leonardo Eulero. [B. Bon., t. X, pp. 657-667 (1877)].

1838. V 8.

MILLOSEVICH (E.). Intorno alla vita ed ai lavori di Giovanni Santini. [B. Bon., t. XI, pp. 1-110 (1878)].

1839. V 8.

CANTOR (Maurizio). Il carteggio fra Lagrange ed Euler. Traduzione dal tedesco del prof. Antonio Favaro. [B. Bon., t. XI, pp. 197-216 (1878)].

1840. V 8.

ENESTROM (G.). Notice sur la correspondance de Jean Ier Bernoulli. [B. Bon., t. XII, pp. 313-314 (1879)].

1841. V 8

BONCOMPAGNI (Baldassarre). Intorno a due scritti di Leonardo Eulero. [B. Bon., t. XII, pp. 808-811 (1879)].

1842. V 8.

TYCHSEN (Camille). Lagrange. Traduit du danois par M. H. G. Zeuthen. [B. Bon., t. XII, pp. 815-827 (1879)].

1843. V 8.

ENESTROM (G.). Lettres inédites de Joseph-Louis Lagrange à Leonard Euler publiées par B. Boncompagni. Traduit du danois par MM. Leouzon Le Duc et Aristide Marre. [B. Bon., t. XII, pp. 828-838 (1879)].

1844. V 8.

BONCOMPAGNI (Baldassarre). Intorno agli atti di nascita e di morte di Pietro Simone Marchese di Laplace. [B. Bon., t. XV, pp. 446-463 (1882)].

1845. V 8.

Atti di nascita e di morte di Pietro Simone Marchese di Laplace. [B. Bon., t. XV, pag. 464 (1882)].

1846. V 8.

HENRY (C.). Les connaissances mathématiques de Jacques Casanova de Seingalt. [B. Bon., t. XV, pp. 637-669 (1882)].

1847. V 8.

GAUSS (Carlo Federico). Lettera al Dr. Enrico Guglielmo Mattia Olbers. Traduzione dal tedesco del Dr. Alfonso Sparagna. [B. Bon., t. XVI, pp. 215-217 (1883)].

1848. V 8.

GAUSS (Carlo Federico). Lettera al Dr. Enrico Guglielmo Mattia Olbers, pubblicata secondo l'autografo posseduto dalla Società Reale delle Scienze di Göttingen. [B. Bon., t. XVI, pp. 218-220 (1883)].

1849. V 8.

HENRY (C.). Sur la vie et les écrits mathématiques de Jean-Antoine-Nicolas Caritat, Marquis de Condorcet. [B. Bon., t. XVI, pp. 271-282 (1883)].

1850. V 8.

Travaux de J. A. N. Marquis de Condorcet. [B. Bon., t. XVI, pp. 283-291 (1883)].

1851. V 8.

CATALAN (E.). Une polémique entre Goldbach et Daniel Bernoulli.

Extrait d'une lettre adressée à D. B. Boncompagni en date « Liège, 29 novembre 1884 ». [B. Bon., t. XVIII, pp. 464-467 (1885)].

1852. V 8.

ENESTRÖM (Gustave). Sur un théorème de Goldbach. Lettre à D. B. Boncompagni. [B. Bon., t. XVIII, pag. 468 (1885)].

1853. V 8.

HENRY (Ch.). Correspondance inédite de D'Alembert avec Cramer, Lesage, Clairaut, Turgot, Castillon, Beguelin, etc. publiée avec notice. [B. Bon., t. XVIII, pp. 507-570, 605-645 (1885)].

1854. V 8.

D'ALEMBERT. Liste des travaux mathématiques inédits de D'Alembert. [B. Bon., t. XVIII, pp. 646-649 (1885)].

1855. V 8.

PORRO (F.). Notizie intorno alla vita ed agli scritti di Giuseppe Zecchini Leonelli, matematico cremonese. [B. Bon., t. XVIII, pp. 625-660 (1885)].

1856. V 8.

RICCARDI (Pietro). Per una completa collezione delle opere matematiche di Lorenzo Mascheroni. [B. Bon., t. XIX, pp. 57-66 (1886)].

1857. V 8.

REALIS (S.). Giovanni Plana në à Voghera le 8 novembre 1781, mort à Turin le 20 Janvier 1864. [B. Bon., t. XIX, pp. 121-128 (1886)].

1858. V 8.

HENRY (C.). Sur quelques billets inédits de Lagrange. [B. Bon., t. XIX, pp. 129-135 (1886)].

1859. V 8.

HENRY (C.). Lettres inédites d'Euler à D'Alembert. [B. Bon., t. XIX, pag. 136-148 (1886)].

1860. V 8, (U).

HENRY (C.). Lettres inédites de Laplace, publiées avec une première reduction de sa méthode pour determiner les orbites des comètes et une notice sur les manuscrits de Pingré. [B. Bon., t. XIX, pp. 149-178 (1886)].

1861. V8, V9, (R7c).

BRIOSCHI (Francesco). Intorno al problema delle tautocrone. Lettera a D. B. B o n-c o m p a g n i. [B. Bon., t. IX, (1876)].

1862. V 8, V 9, (I 4 a β).

KRONECKER (Leopoldo). Intorno alla storia della legge di reciprocità. Tradu-

zione dal tedesco del Dr. Alfonso Sparagna. [R. Bon., t. XVIII, pp. 244-249 (1885)].

V 8. (Vedi ni 1688, 1699, 1701, 1796, 1797, 1821).

1863. V 9.

Catalogue des travaux de M. Noel Germinal Poudra. [B. Bon. t. I, pp. 302 308 (1868)].

1864. V 9.

NARDUCCI (Enrico). Intorno alla vita ed agli scritti di Francesco Woep-cke. [B. Bon., t. II, pp. 119-152 (1869)].

1865. V 9.

IANICHEFSKY (E.). Notice historique sur la vie et les travaux de Nicolas Ivanovitch Lobatschefsky. Discours prononcé dans la séance solennelle de l'Université impériale de Kazan le 5/17 novembre 1868. [B. Bon., t. II, pp. 223-262 (1869)].

1866. V 9.

LE ROY (Alphonse). Notice sur la vie et les travaux de Jean Baptiste Brasseur. [B. Bon., t. II, pp. 253-272 (1869)].

1867. V9, (F4a, G1e, G2bα).

GENOCCHI (Angelo). Rassegna d'alcuni scritti relativi all'addizione degl'integrali ellittici ed abeliani. [B. Bon., t. III, pp. 47-66 (1870)].

1868. V 9.

SCHERING (Ernest). Notice biographique sur Bernard Riemann. (Traduit de l'allemand par M. le Dr. Paul Mansion). [B. Bon., t. III, pp. 409-428 (1870)].

1869. V 9.

MARCHETTI (F.). Cenni necrologici del P. Nazareno Mancini d.C.d.G. [B. Bon., t. III, pp. 429-438 (1870)].

1870. V 9.

GENOCCHI (Angelo). Notizie intorno alla vita ed agli scritti di Felice Chiò. [B. Bon., t. IV, pp. 363-380 (1871)].

1871. **V 9**.

BONCOMPAGNI (Baldassarre). Catalogo dei lavori di Felice Chio. [B. Bon., t. IV, pp. 381-400 (1871)].

1872. V 9.

Notice sur les travaux de Jules Plücker par M. Alfred Clebsch,

traduit de l'allemand par le Dr. Paul Mansion. [B. Bon., t. V, pp. 183-212 (1872)].

1873. V 9.

Intorno alla vita ed ai lavori del P. Giovanni Antonelli delle Scuole Pie. Cenni di Andrea Stiattesi. [B. Bon., t. V, pp. 253-277 (1872)].

1874. V 9.

MENABREA (Luigi Federico). Intorno ad uno scritto del sig. prof. Angelo Genocchi. Lettera del Conte Luigi Federigo Menabrea a D. B. Boncompagni. [B. Bon., t. V, pp. 301-305 (1872)].

1875. V 9.

GENOCCHI (Angelo). Intorno ad una lettera del sig. Conte L. F. Menabrea. Appunti di Angelo Genocchi. [B. Bon., t. V, pp. 535-542 (1872)].

1876. V 9.

GENOCCHI (Angelo). Richiamo a favore di Felice Chiò. [B. Bon., t. VI, pp. 153-158 (1873)].

1877. V 9.

MANSION (P.). Les mathématiques en Belgique en 1872. [B. Bon., t. VI, pp. 277-312 (1873)].

1878. V 9.

MENABREA (L. F.). Un'ultima lettera sulle peripezie della serie di Lagrange in risposta al prof. Angelo Genocchi per L. F. Menabrea a D. B. Boncompagni. [B. Bon., t. VI, pp. 435-437 (1873)].

1879. V 9.

GENOCCHI (Angelo). Breve risposta al sig. Conte L. F. Menabrea. [B. Bon., t. VI, pp. 530-532 (1873)].

1880. V 9.

LODI (Luigi). Cenni intorno alla vita ed ai lavori del prof. Geminiano Riccardi. [B. Bon., t. VIII, pp. 1-15 (1875)].

1881. V 9.

Catalogo dei lavori del prof. Geminiano Riccardi. [B. Bon., t. VIII, pp. 16-35 (1875)].

1882. V 9.

MANSION (Paul). Notice sur la vie et les travaux de Rodolphe Frédéric Alfred Clebsch. [B. Bon., t. VIII, pp. 121-130 (1875)].

1883. V 9.

Notice sur la vie de R. F. Alfred Clebsch jusqu'à l'âge de vingt-deux ans, écrite par lui même. [B. Bon., t. VIII, pag. 131 (1875)].

1884. V 9.

Catalogue des travaux de R. F. Alfred Clebsch. [B. Bon., t. VIII, pp. 132-184 (1875)].

1885. V 9, (U).

MARCHETTI (F.). Intorno alla vita èd ai lavori del P. Paolo Rosa d. C. d. G. [B. Bon., t. VIII, pp. 305-313 (1875)].

1886. V 9. (U).

Catalogo dei lavori del P. Paolo Rosa d. C. d. G. [B. Bon., t. VIII, pp. 314-320 (1875)].

1887. V 9.

ZAHN (Guglielmo von). Commemorazione di Ermanno Hankel. Traduzione dal tedesco del Dr. Alfonso Sparagna. [B. Bon., t. IX, pp. 290-296 (1876)].

1888. V 9.

Catalogo dei lavori del Dr. Ermanno Hankel. [B. Bon., t. IX, pp. 297-308 (1876)].

1889. V 9.

KLEIN (Félix). Notice sur la vie et les travaux de Louis-Othon Hesse. Traduite de l'allemand par M. Paul Mansion. [B. Bon., t. IX, pp. 309-314 (1876)].

1890. V 9.

CANTOR (Maurizio). Goffredo Friedlein. Necrologia. Traduzione dal tedesco del Dr. Alfonso Sparagna. [B. Bon., t. IX, pp. 536-554 (1876)].

1891. V 9.

Catalogue des travaux de V. A. Lebesgue. [B. Bon., t. IX, pp. 556-573 (1876)].

1892. V 9.

Notice sur les principaux travaux de V. A. Le Besgue, rédigée par lui-même. [B. Bon., t. IX, pp. 574-582 (1876)].

1893. V 9.

SÉDILLOT (C. E.). Lettre à D. B. Boncompagni sur la vie et les travaux de M. Louis Amélie Sédillot. [B. Bon., t. IX, pp. 649-655 (1876)].

1894. V 9.

BONCOMPAGNI (Baldassarre). Catalogo dei lavori di Luigi Amelio Sedillot. [B. Bon., t. IX, pp. 656-700 (1876)].

1895. V 9.

MANSION (Paul). Les mathématiques en Belgique en 1871, 1873, 1874, 1875. [B. Bon., t. X, pp. 471-542 (1877)].

Rend. Circ. Matem., t. IX, parte 2ª. - Stampato il 17 luglio 1895.

1896: V 9.

GENOCCHI (Angelo). Brano di lettera a D. B. Boncompagni. [B. Bon., t. XI, pag. 111 (1878)].

1897. V 9.

Nécrologie de Joseph-Ivanovitch Somoff. Traduite du russe par M. J. Hoüel. [B. Bon., t. XI, pp. 453-459 (1878)].

1898. V 9.

BONCOMPAGNI (Baldassarre). Catalogo dei lavori del prof. G. I. Somoff. [B. Bon., t. XI, pp. 460-481 (1878)].

1899. V 9.

BONCOMPAGNI (Baldassarre). Intorno ad una lettera del prof. G. I. Som off. [B. Bon., t. XI, pp. 482-483 (1878)].

1900. V 9.

Lettera del prof. G. I. Somoff a D. B. Boncompagni. [B. Bon., t. XI, pp. 484-486 (1878)].

1901. V 9.

FAVARO (A.). Della vita e degli scritti fisico-matematici di Ermanno Grassmann. [B. Bon., t. XI, pp. 699-756 (1878)].

1902. V 9.

BIADEGO (G. B.). Sulla memoria inedita di Pietro Maggi intorno ai principii di meccanica molecolare di Ambrogio Fusinieri. [B. Bon., t. XII, pp. 839-846 (1879)].

1903. **V 9.**

BONCOMPAGNI (Baldassarre). Michele Chasles. [B. Bon., t. XIII, pp. 815-827 (1880)].

1904. V 9.

HENRY (C.). Supplément à la Bibliographie de Gergonne. [B. Bon., t. XIV, pp. 211-218 (1881)].

1905. **V 9**.

GÜNTHER (S.). Il carteggio tra Gauss e Sofia Germain. Traduzione dal tedesco del Dr. Alfonso Sparagna. [B. Bon., t. XV, pp. 174-179 (1882)].

1906. V 9.

STIATTESI. Intorno alla vita ed ai lavori di Sebastiano Purgatti. [B. Bon., t. XVI, pp. 619-672 (1883)].

1907. V 9.

BIADEGO (G. B.). Intorno alla vita ed ai lavori di Alberto Castigliano. [B. Bon., t. XVIII, pp. 293-313 (1885)].

1908. V 9.

BONCOMPAGNI (Baldassarre). Catalogo dei lavori di Alberto Castigliano. [B. Bon., t. XVIII, pp. 314-320 (1885)].

1909. V 9.

MARRE (A.). Notice sur la vie et les travaux de François-Joseph Lionnet. [B. Bon., t. XVIII, pp. 424-428 (1885)].

1910. V 9.

Catalogue des travaux de François-Joseph Lionnet. [B. Bon., t. XVIII, pp. 429-440 (1885)].

1911. V 9. (14).

GENOCCHI (Angelo). Intorno all'ampliazione d'un lemma del Gauss. [B. Bon., t. XVIII, pp. 646-649 (1885)].

1912. V9.

GENOCCHI (Angelo). Brevi cenni della vita dell'ingegnere Savino Realis. [B. Bon., t. XIX, pp. 55-58 (1886)].

1913. V 9, (U).

SCHRAMM (Robert). Notice sur les travaux de Théodore d'Oppolzer avec la liste complète de ses publications. Traduite de l'allemand par le Dr. Ernest Pasquier. [B. Bon., t. XX, pp. 439-480 (1887)].

V 9. (Vedi ni 1688, 1699, 1702, 1720, 1721, 1722, 1797, 1820, 1861, 1862).

X 2. (Vedi nº 1821).

Nota.-Nel classificare i lavori storici contenuti nel Bullettino di Bibliografia e di Storia delle Scienze Matematiche e Fisiche fui costretto ad arrecare un piccolo complemento al sistema di notazioni indicato dall'Index du Répertoire, affinchè per ciascuno di essi fosse dichiarato, non soltanto il tempo al quale si riferisce, ma eziandio il tema in esso svolto; a tale scopo ho fatto seguire al simbolo cronologico in parentesi un simbolo scientifico. In conseguenza scrivendo ad es. V 8, V 9 (I 4 a β) intendo trattarsi di un lavoro storico riferentesi alle vicende della legge di reciprocità nei secoli XVIII e XIX; tale lavoro verrà collocato nei gruppi V 8, V 9, ma la sua esistenza verrà richiamata nel gruppo I 4 a β. Tutto ciò venne fatto per uniformarsi al procedimento generale seguito dai varii compilatori del Répertoire; ma non è a tacersi come in un lavoro storico il simbolo riesca sovente superfluo, perchè il titolo lo caratterizza sufficientemente per chiunque abbia presente la cronologia matematica. - Va ancora notato che nel precedente indice ragionato del B. Bon. non fu possibile registrare le dottissime note di cui il direttore arricchi buon numero degli articoli ivi inseriti. - Finalmente bisogna avvertire che ogni matematico venne considerato come appartenente per intero al secolo nel quale egli nacque. GINO LORIA.

R. ACCADEMIA DEI LINCEI.

(1847-1889) (*).

ELENCO DELLE PUBBLICAZIONI ED ABBREVIATURE.

- N. L. A. = Atti dell'Accademia Pontificia de' Nuovi Lincei. Roma. Tomi: I-XXIII (1847-1870); in-4°.
- A. A. L. R. = Atti della Reale Accademia dei Lincei. Roma.

 Tomi: XXIV-XXVI (1870-1873); in-4°.

 Serie II, Volumi: I-II (1873-1875); in-4°.
- M. A. L. R. = Atti della Reale Accademia dei Lincei. Memorie della classe di scienze fisiche, matematiche e naturali. Roma.

 Serie II, Volume III (1875-1876); in-4°.

 Serie IV, Volumi: I-XIX (1876-1884); in-4°.

 Serie IV, Volumi: I-VI (1884-1889); in-4°.
- T. A. L. R. = Atti della Reale Accademia dei Lincei. Transunti. Roma. Serie III, Volumi: I-VIII (1876-1884); in-4°.
- R. A. L. R. = Atti della Reale Accademia dei Lincei. Rendiconti. Roma. Serie IV, Volumi: I-V (1884-1889); in-4°.

s. = Serie, t. = Tomo, v. = Volume, pp. = Pagine (**).

Alc. (Vedi ni 2014, 2106, 2108).

1914. Alca, I3b.

CAVALIERI S. BERTOLO (Nicola). Alcune ricerche intorno alle serie aritmetiche. [N. L. A., t. X, pp. 78-93 (1856-57)].

1915. A 3. D 6 c.

FAVERO (G. B.). Sulle radici delle equazioni algebriche. [M. A. L. R., s. IV, v. VI, pp. 415-425 (1889)].

^(*) Il lavoro di spoglio e di classificazione di queste pubblicazioni è dovuto ai professori G. Castelnuovo, R. Marcolongo, G. Fano.

^(**) Per i volumi dei Rendiconti l'indice apposto al numero romano denota il semestre: così v. IVI sta per indicare il volume IV, primo semestre.

A 3. (Vedi nº 2056).

1916. A 3 b.

MAINARDI (Gaspare). Pensieri intorno vari argomenti. III. Esprimere le sommatorie simetriche delle radici di una equazione algebrica per i suoi coefficienti. [N. L. A., t. XX, pp. 163-164 (1866-67)].

1917. A3b, A3h.

MINICH (R.). Sull'uso analitico delle differenze tra le radici nella teorica delle equazioni algebriche. [M. A. L. R., s. II, v. III, pp. 303-352 (1875-76)].

1918. A 3 e, A 3 g.

CAVALIERI S. BERTOLO (Nicola). Scioglimento di un dubbio mosso dal sig. Budan sopra la generale veridicità idei risultamenti del metodo di Lagrange nella ricerca delle radici immaginarie delle equazioni numeriche per approssimazione. [N. L. A., t. IV, pp. 1-10 (1850-51)].

A 3 h. (Vedi nº 1917).

1919. A 3 i, H 5 f a.

BESSO (Davide). Sopra una classe di equazioni trinomie. [M. A. L. R., s. III, v. XIX, pp. 631-642 (1883-84)].

1920. A 3 i.

BESSO (Davide). Sulle equazioni trinomie e, in particolare, su quelle del settimo grado. [R. A. L. R., s. IV, v. I, pp. 237-243 (1884-85)].

1921. A 3 i a, A 4 a.

KUMMER (Edoardo). Note sur une expression analogue à la résolvante de Lagrange pour l'équation $z^p = 1$. [N. L. A., t. VI, pp. 237-241 (1852-53)].

1922. A 3 k.

TORTOLINI (Barnaba). Soluzione di un problema relativo all'equazioni del terzo e quarto grado. [N. L. A., t. XXII, pp. 166-168 (1868-69)].

A 4 a. (Vedi nº 1921).

1923. A 4 d.

FRATTINI (Giovanni). Un teorema relativo alla trasformazione modulare di grado p. Nota I. [R. A. L. R., s. IV, v. I, pp. 142-147 (1884-85)].

1924. A 4 d.

FRATTINI (Giovanni). Un teorema relativo al gruppo della trasformazione modulare di grado p. Nota II. [R. A. L. R., s. IV, v. I, pp. 166-168 (1884-85)].

A 4 d. (Vedi nº 2152).

1925. A 4 d a.

BRIOSCHI (Francesco). Sulla equazione dell'ottaedro. [T. A. L. R., s. III, v. III, pp. 233-237 (1878-79)].

1926. A 4 d a.

PITTARELLI (Giulio). Sulle forme appartenenti all'ottaedro. [R. A. L. R., s. IV, v. IV, pp. 509-513 (1888)].

1927. A 4 e.

MAINARDI (Gaspare). Pensieri intorno a vari argomenti. I. Su la risoluzione delle equazioni algebriche per mezzo di funzioni irrazionali. [N. L. A., t. XX, pp. 153-160 (1866-67)].

1928. B1.

CASORATI (Felice). Osservazioni sui modi comunemente usati nella trattazione di parecchie questioni fondamentali dell'analisi infinitesimale. [T. A. L. R., s. III, v. V, pp. 216-217 (1880-81)].

1929. Bld.

DE GASPARIS. Prodotto di due determinanti a tre indici espresso con un determinante ordinario. [T. A. L. R., s. III, v. III, pp. 44-45 (1878-79)].

. 1930. B 4.

CAPELLI (Alfredo). Fondamenti di una teoria generale delle forme algebriche. [M. A. L. R., s. III, v. XII, pp. 529-598 (1881-82)].

1931. B 4.

CAPELLI (Alfredo). Estensione della formola pel numero dei covarianti al caso delle trasformazioni lineari indipendenti. [M. A. L. R., s. III, v. XV, pp. 233-241 (1882-83)].

1932. B 4 e.

PASCAL (Ernesto). Sopra un teorema fondamentale nella teoria del calcolo simbolico delle forme ennarie. [R. A. L. R., s. IV, v. IV, pp. 119-124 (1888)].

1933. B 4j.

SPOTTISWOODE. Sur les invariants et les covariants d'une fonction transformée par une substitution quadratique. [T. A. L. R., s. III, v. VII, pp. 2:8-223 (1882-83)].

1934. B 4j.

PITTARELLI (Giulio). Intorno alla Nota del sig. Spottis woode: «Sur les invariants et les covariants d'une fonction transformée par une substitution quadratique ». Nota I. [R. A. L. R., s. IV, v. I, pp. 327-331 (1884-35)].

1935. B 4 j.

PITTARELLI (Giulio). Intorno alla Nota del sig. Spottis woode: «Sur les invariants et les covariants d'une fonction transformée par une substitution quadratique ». Nota II. [R. A. L. R., s. IV, v. I, pp. 374-380 (1884-85)].

1936. B 6 c.

DE PAOLIS (Riccardo). Sulla espressione di una forma binaria di grado n con

una somma di potenze nº. [M. A. L. R., s. III, v. XII, pp. 405-413 (1881-82)].

1937. В 7 с.

BATTAGLINI (Giuseppe). Nota sulla quintica binaria. [A. A. L. R., s. II, v. II, pp. 582-591 (1874-75)].

1938. B 7 c.

MAISANO (Giovanni). Sulla forma binaria di quinto ordine. [M. A. L. R., s. III, v. XIV, pp. 97-135 (1882-83)].

1939. B 7 d.

MAISANO (Giovanni). La sestica binaria. [M. A. L. R., s. III, v. XIX, pp. 9-60 (1883-84)].

1940. B 7 d.

BRIOSCHI (Francesco). La forma normale delle equazioni del sesto grado. Nota I. [R. A. L. R., s. IV, v. IV, , pp. 301-305 (1888)].

1941. B 7 d.

BRIOSCHI (Francesco). La forma normale delle equazioni del sesto grado. Nota II. [R. A. L. R., s. IV, v. IV, pp. 485-488 (1888)].

1942. B7e. B7d.

MAISANO (Giovanni). Alcuni teoremi relativi alle forme binarie di grado qualunque, e loro applicazione allo studio delle radici multiple dell'equazione di 6º grado. [T. R. A. L., s. III, v. VII, pp. 231-232 (1882-83)].

1943. B 7 e.

MAISANO (Giovanni). Sopra due classi di forme binarie. [M. A. L. R., s. III, v. XV, pp. 44-56 (1882-83)].

1944. B 7 f.

BRIOSCHI (Francesco). Sulle proprietà di una classe di forme binarie. [R. A. L. R., s. IV, v. II, pp. 302-305 (1885-86)].

1945. B 7 f.

D'OVIDIO (Enrico). Sopra alcuni invarianti simultanei di due forme binarie degli ordini 5 e 4, e sul risultante di esse. [M. A. L. R., s. IV, v. IV, pp. 607-622 (1887)].

1946. B8a.

BRIOSCHI (Francesco). Sulle condizioni per la decomposizione di una cubica in una conica ed in una retta. [M. A. L. R., s. II, v. III, pp. 89-90 (1875-76)].

1947. B8b.

BRIOSCHI (Francesco). Sulle condizioni che devono esser verificate dai parametri di una curva del quarto ordine perchè la medesima sia una conica ripetuta. [M. A. L. R., s. II, v. III, pp. 91-92 (1875-76)].

1948. B9d.

PASCAL (Ernesto). Sopra le relazioni che possono sussistere identicamente fra formazioni simboliche del tipo invariantivo nella teoria generale delle forme algebriche. [M. A. L. R., s. IV, v. V, pp. 375-387 (1888)].

1949. B 10 b.

SIACCI (Francesco). Nota intorno alle forme quadratiche. [A. A. L. R., t. XXV, pp. 339-341 (1871-72)].

1950. B II a.

BATTAGLINI (Giuseppe). Sulle forme ternarie bilineari. [T. A. L. R., s. III, v. V, pp. 24-26 (1880-81)].

1951. B II a.

BATTAGLINI (Giuseppe). Sulle forme ternarie bilineari. [M. A. L. R., s. III, v. IX, pp. 3-16 (1880-81)].

1952. Bll a.

BATTAGLINI (Giuseppe). Sulle forme quaternarie bilineari. [T. A. L. R., s. III, v. VI, pp. 40-42 (1881-82)].

1953. B II a.

BATTAGLINI (Giuseppe). Sulle forme quaternarie bilineari. [M. A. L. R., s. III, v. XII, pp. 233-255 (1881-82)].

1954. Bll a.

BATTAGLINI (Giuseppe). Sulle forme binarie bilineari. [R. A. L. R., s. IV, v. I, pp. 691-699 (1884-85)].

1955. Cla.

DE GASPARIS. Sopra una rimarchevole relazione che si verifica in una doppia trasformazione di variabili. [T. A. L. R., s. III, v. II, pp. 192-195 (1877-88)].

1956. C 2 a.

GOMES-TEIXEIRA (F.). Sur la détermination de la partie algébrique de l'intégrale des fonctions rationnelles. [R. A. L. R., s. IV, v. I. pp. 187-188 (1884-85)].

C 2 d. (Vedi nº 2023).

. 1957. C 2 e.

GOMES-TEIXEIRA (F.). Sur l'intégrale $\int e^{\omega x} f(x) dx$. [R. A. L. R, s. IV, v. I, pp. 278-280 (1884-85)].

1958. C 2 g.

BRIOSCHI (Francesco). Sopra una formola di trasformazione di integrali multipli. [R. A. L. R., s. IV., v. II2, pp. 111-117 (1885-86)].

1959. C 2 h.

ASCOLI (Giulio). Sul concetto di integrale definito. [A. A. L. R., s. II, v. II, pp. 862-872 (1874-75)].

1960. C 2 h.

SMITH (Henry J. Stephen). Sur les intégrales elliptiques complètes, [T. A. L. R., s. III, v. I, pp. 42-44 (1876-77)].

C 2 h. (Vedi nº 2199).

1951. C 2 1.

VOLPICELLI (Paolo). Sui criteri d'integrabilità delle funzioni differenziali. [N. L. A., t. IV, pp. 622-668 (1850-51)].

1962. C 4.

RICCI (Gregorio). Sopra certi sistemi di funzioni. [R. A. L. R., s. IV, v. V, 1° sem., pp. 112-118 (1889)].

1963. C4b.

PADOVA (Ernesto). Sulle espressioni invariabili. [M. A. L. R., s. IV, v. IV, pp. 4-17 (1887)].

1964. C 4 b.

RICCI (Gregorio). Sulla derivazione covariante ad una forma quadratica differenziale. [R. A. L. R., s. IV, v. III, 10 sem., pp. 15-18 (1887)].

1965. C 4 b.

BIANCHI (Luigi). Sulle forme differenziali quadratiche indefinite. [M. A. L. R., s. IV, v. V, pp. 539-603 (1888)].

1966. C 4 b.

RICCI (Gregorio). Sulla classificazione delle forme differenziali quadratiche. [R. A. L. R., s. IV, v. IV, 1° sem., pp. 203-207 (1888)].

1967. C 4 b.

RICCI (Gregorio). Di un punto della teoria delle forme differenziali quadratiche ternarie. [R. A. L. R., s. IV, v. V, 1° sem., pp. 643-651 (1889)].

1968. D1, D1b a.

ASCOLI (Giulio). Nuove ricerche sulla serie di Fourier. [M. A. L. R., s. III, v. II, pp. 584-651 (1877-78)].

1969. D1.

ASCOLI (Giulio). La curva limite di una varietà data di curve. [M. A. L. R., s. III, v. XVIII, pp. 521-586 (1882-83)].

1970. D 1.

VOLTERRA (Vito). Sopra le funzioni dipendenti da linee, I. [R. A. L. R., s. IV, v. III, 2° sem., pp. 225-230 (1887)].

Rend. Circ. Matem., t. IX, parte 22. - Stampato il 4 ottobre 1895.

1971. D1.

VOLTERRA (Vito). Sopra le funzioni dipendenti da linee. II. [R. A. L. R., s. IV, v. III, 2° sem., pp. 274-281 (1887)].

1972. Dla.

DINI (Ulisse). Sopra una classe di funzioni finite e continue che non hanno mai una derivata. [T. A. L. R., s. III, v. I, pp. 70-72 (1876-77)].

1973. Dla.

DINI (Ulisse). Sulle funzioni finite continue di variabili reali che non hanno mai derivate. [T. A. L. R., s. III, v. I, pp. 130-133 (1876-77)].

1974. Dla.

TONELLI (Alberto). Sulla rappresentazione analitica di certe funzioni singolari. [R. A. L. R., s. IV, v. I, pp. 124-130 (1884-85)].

1975. Dla.

VOLTERRA (Vito). Sopra le funzioni che dipendono da altre funzioni. I. [R. A. L. R., s. IV, v. III, 2º sem., pp. 97-105 (1887)].

1976. Dla.

VOLTERRA (Vito). Sopra le funzioni che dipendono da altre funzioni. II. [R. A. L. R., s. IV, v. III, 2º sem., pp. 141-146 (1887)].

1977. Dla.

VOLTERRA (Vito). Sopra le funzioni che dipendono da altre funzioni. [R. A. L. R., s. IV, v. III, 2º sem., pp. 153-158 (1887)].

1978. **Dla**.

CESARO (Ernesto). Sui concetti di limite e di continuità. [R. A. L. R., s. IV, v. IV, 1° sem., pp. 12-17 (1888)].

1979. Dla.

ARZELA (Cesare). Funzioni di linee. [R. A. L. R, s. IV, v. V, 1° sem., pp. 342-348 (1889)].

1980. D1b.

MAINARDI (Gaspare). Pensieri intorno vari argomenti. IV. Intorno ad una serie di Laplace. [N. L. A., t. XX, pp. 164-166 (1866-67)].

1981. Dld, D2ay.

ARZELÀ (Cesare). Sulla integrabilità di una serie di funzioni. [R. A. L. R., s. IV, v. I, pp. 321-326 (1884-85)].

1982. DId 8.

ASCOLI (Giulio). Sulla rappresentabilità di una funzione a due variabili per serie doppia trigonometrica. [M. A. L. R., s. III, v. IV, pp. 253-300 (1878-79)].

1983. Dld 8.

ASCOLI (Giulio). Sulle serie trigonometriche a due variabili. [M. A. L. R., s. III, v. VIII, pp. 263-319 (1879-80)].

1984. D 2 a.

CESÀRO (Ernesto). Sur la comparaison des séries divergentes. [R. A. L. R., s. IV, v. IV, 1° sem., pp. 115-118 (1888)].

1985. D 2 a.

CESÀRO (Ernesto). Sur une distribution de signes. [R. A. L. R., s. IV, v. IV, 2° sem., pp. 133-138 (1888)].

1986. D 2 a y.

ARZELÀ (Cesare). Sulla integrazione per serie. I. [R. A. L. R., s. IV, v. I, pp. 532-537 (1884-85)].

1987. D 2 a y.

ARZELÀ (Cesare). Sulla integrazione per serie. II. [R. A. L. R., s. IV, v. I, pp. 566-569 (1884-85)].

1988. **D 2 b**.

ARZELÀ (Cesare). Un teorema intorno alle serie di funzioni. [R. A. L. R., s. IV, v. I, pp. 262-267 (1884-85)].

1989. **D 2 b**.

ARZELÀ (Cesare). Sopra una certa estensione di un teorema relativo alle serie trigonometriche. [R. A. L. R., s. IV, v. I, pp. 637-640 (1884-85)].

1990. **D 2 b**.

PINCHERLE (Salvatore). I sistemi ricorrenti di prim'ordine e di secondo grado. [R. A. L. R., s. IV, v. V, 1° sem., pp. 8-12 (1889)].

1991. D 2 b.

PINCHERLE (Salvatore). Nuove osservazioni sui sistemi ricorrenti di prim'ordine e di secondo grado. [R. A. L. R., s. IV, v. V, 1° sem., pp. 323-327 (1889)].

1992. **D 2 b** a.

ASCOLI (Giulio). Sulla serie $\sum_{n} u_{n} \chi^{n}$. [M. A. L. R., s. II, v. III, pp. 156-159 (1875-76)].

1993. D 2 b a.

PINCHERLE (Salvatore). Alcune osservazioni sui polinomi del prof. Appell. [R. A. L. R., s. IV, v. II, 2° sem., pp. 214-217 (1885-86)].

D 2 d. (Vedi nº 2110).

1994. D3b, D5d.

TONELLI (Alberto). Il teorema di Cauchy per le funzioni a più valori. [R. A. L. R., s. IV, v. I, pp. 785-790 (1884-85)].

1995. D 3 f.

PINCHERLE (Salvatore). Sul confronto delle singolarità di due funzioni analitiche. [R. A. L. R., s. IV, v. III, 2° sem., pp. 310-315 (1887)].

1996. D 4.

PINCHERLE (Salvatore). Sopra una formola del sig. Hermite. [R. A. L. R., s. IV, v. I, pp. 267-268 (1884-85)].

1997. D 4 c.

VOLTERRA (Vito). Sulle funzioni analitiche polidrome. [R. A. L. R., s. IV, v. IV, 2° sem., pp. 355-361 (1888)].

1998. D4ey.

PINCHERLE (Salvatore). Costruzione di nuove espressioni analitiche atte a rappresentare funzioni con un numero infinito di punti singolari. [R. A. L. R., s. IV, v. III, 1° sem., pp. 370-375 (1887)].

1999. D5cβ.

DINI (Ulisse). Su una funzione analoga a quella di Green. [M. A. L. R., s. II, v. III, pp. 129-137 (1875-76)].

2000. D 5 c β.

VOLTERRA (Vito). Sopra una estensione della teoria di Riemann sulle funzioni di variabili complesse. I. [R. A. L. R., s. IV, v. III, 2° sem., pp. 281-287 (1887)].

2001. D 5 c β.

VOLTERRA (Vito). Sopra una estensione della teoria di Riemann sulle funzioni di variabili complesse. II. [R. A. L. R., s. IV, v. IV, 1° sem, pp. 107-115 (1888)].

2002. D 5 c β.

VOLTERRA (Vito). Sopra una estensione della teoria di Riemann sulle funzioni di variabili complesse. III. [R. A. L. R., s. IV, v. IV, 10 sem., pp. 196-202 (1888)].

2003. D5 c β.

VOLTERRA (Vito). Delle variabili complesse negli iperspazî. [R. A. L. R., s. IV, v. V, 1° sem, pp. 158-165 (1889)].

2004. **D** 5 c β.

VOLTERRA (Vito). Delle variabili complesse negli iperspazi. [R. A. L. R., s. IV, v. V, 1° sem., pp. 291-299 (1889)].

2005. D 5 c β.

VOLTERRA (Vito). Sulle funzioni coniugate. [R. A. L. R., s. 1V, v. V, 1° sem., pp. 599-611 (1889)].

2006. D 5 c β.

VOLTERRA (Vito). Sulle funzioni di iperspazi e sui loro parametri differenziali. [R. A. L. R., s. IV, v. V, 1° sem., pp. 630-640 (1889)].

D 5 d. (Vedi nº 1994).

D 6 c. (Vedi nº 1915).

2007. D 6 c α, M 3 h.

BELLAVITIS (Giusto). Sviluppo in serie di funzioni implicite, e-rami infiniti delle curve algebriche. [M. A. L. R., s. III, v. V, pp. 43-49 (1879-80)].

2008. D 6 e.

MAGGI (Gian Antonio). Sulla storia delle funzioni cilindriche. [T. A. L. R., s. III, v. IV, pp. 259-263 (1879-80)].

2009. D 6 g.

SCHLAEFLI (Ludovico). Verbesserungen und Zusätze zu den Bemerkungen über die Laméschen Functionen. (Collectanea mathematica in Memoriam D. Chelini, p. 277). [M. A. L. R., s. IV, v. IV, pp. 37-44 (1887)].

2010. E 3.

PINCHERLE (Salvatore). Sopra certi integrali definiti. [R. A. L. R., s. IV, v. IV, 1º sem., pp. 100-104 (1888)].

2011. E 5.

VOLPICELLI (Paolo). Determinazione di alcuni integrali definiti. [N. L. A., t. XV, pp. 143-149 (1861-62)].

E 5. (Vedi ni 2331, 2332).

2012. F 5.

BRIOSCHI (Francesco). Sulla origine di talune equazioni differenziali lineari. [T. A. L. R., s. III, v. VI, pp. 42-47 (1881-82)].

2013. F 5 a.

BRIOSCHI (Francesco). Su di alcune formole nella teorica delle funzioni ellittiche. [T. A. L. R., s. III, v. II, pp. 115-118 (1877-78)].

2014. F 5 a.

PITTARELLI (Giulio). Intorno alla trasformazione del differenziale ellittico effettuata per mezzo della rappresentazione tipica delle forme binarie di 3° e 4° grado. [R. A. L. R., s. IV, v. IV, 1° sem., pp. 703-705 (1888)].

2015. F 5 d.

SMITH (Henry J. Stephen). Sur les équations modulaires. (Comunicazione del Socio Cremona). [T. A. L. R., s. III, v. I, pp. 68-69 (1876-77)].

2016. F 5 d, F 7 a β, I 13.

SMITH (Henry J. Stephen). Mémoire sur les équations modulaires. [M. A. L. R., v. I, s. III, pp. 136-149 (1876-77)].

2017. F 5 d.

BRIOSCHI (Francesco). Sulla equazione modulare dell'ottavo grado. [T. A. L. R., s. III, v. III, pp. 45-47 (1878-79)].

2018. F 5 d.

KLEIN (Felice). Sulla risolvente di 11º grado dell'equazione modulare di 12º grado. [T. A. L. R., s. III, v. III, pp. 177-178 (1878-79)].

2019. F 5 d.

BRIOSCHI (Francesco). Sopra una proprietà della ridotta dell'equazione modulare di ottavo grado. I. [R. A. L. R., s. IV, v. I, pp. 514-516 (1884-85)].

2020. F 5 d.

BRIOSCHI (Francesco). Sopra una proprietà della ridotta della equazione modulare dell'ottavo grado. II. [R. A. L. R., s. IV, v. I, pp. 583-586 (1884-85)].

F 7 a B. (Vedi nº 2016).

2021. F 8 b.

MAINARDI (Gaspare). Pensieri intorno a vari argomenti. II. Su la risoluzione delle equazioni algebriche. [N. L. A., t. XX, pp. 160-163 (1866-67)].

2022. F 8 b.

BRIOSCHI (Francesco). Sopra alcuni recenti risultati ottenuti dal sig. Klein nella risoluzione delle equazioni del quinto grado. [T. A. L. R., s. III, v. I, pp. 31-34 (1876-77)].

2023. F8f, C2d.

CATALAN (Eugène). Sur quelques questions relatives aux fonctions elliptiques. [N. L. A., t. XX, pp. 171-180 (1866-67)].

2024. F8h.

PADOVA (Ernesto). Una nuova applicazione della teoria delle funzioni ellittiche alla meccanica. [R. A. L. R., s. IV, v. IV, 1° sem., pp. 507-509 (1888)].

2025. G 2 b a.

VOLTERRA (Vito). Sopra una proprietà di una classe di funzioni trascendenti. [R. A. L. R., s. IV, v. II, 2º sem., pp. 211-214 (1885-86)].

2026. G 3 a.

BRIOSCHI (Francesco). Le relazioni algebriche fra le funzioni iperellittiche del primo ordine. [T. A. L. R., s. III, v. VII, pp. 137-140 (1882-83)].

2027. G 3 a.

BRIOSCHI (Francesco). Sulle funzioni sigma iperellittiche. [R. A. L. R., s. IV, v. III, 1° sem., pp. 245-250 (1887)].

2028. G 3 a.

BRIOSCHI (Francesco). Sulle funzioni sigma iperellittiche. [R. A. L. R., s. IV, v. III, 1° sem., pp. 311-315 (1887)].

2029. G 3 a.

BRIOSCHI (Francesco). Le equazioni differenziali pei periodi delle funzioni iperellittiche a due variabili. I. [R. A. L. R., s. IV, v. IV, 2° sem., pp. 341-347 (1888)].

2030. G 3 a.

BRIOSCHI (Francesco). Le equazioni differenziali pei periodi delle funzioni iperellittiche a due variabili. II. [R. A. L. R., s. IV, v. IV, 2° sem., pp. 429-436 (1888)].

2031. G 3 i.

BRIOSCHI (Francesco). Sulla espressione per serie delle funzioni iperellittiche a due variabili. [R. A. L. R, s. IV, v. II, 1° sem., pp. 199-203 (1885-86)].

2032. G 3 i.

BRIOSCHI (Francesco). Sulla espressione per serie delle funzioni iperellittiche a due variabili. [R. A. L. R., s. IV, v. II, 1° sem., pp. 215-221 (1885-86)].

2033. G 3 i.

BRIOSCHI (Francesco). Sullo sviluppo in serie delle funzioni sigma iperellittiche. [M. A. L. R., s. IV, v. VI, pp. 471-484 (1889)].

2034. G4a, M' 6kα.

BRIOSCHI (Francesco). Sulla bissezione delle funzioni iperellittiche di prima specie, e sul problema geometrico corrispondente. [A. A. L. R., t. XXIV, pp. 47-48 (1870-71)].

2035. G4b.

BRIOSCHI (Francesco). Sulla trasformazione delle funzioni iperellittiche del primo ordine. [R. A. L. R., s. IV, v. I, pp. 315-318 (1884-85)].

2036. G4b.

BRIOSCHI (Francesco). Le equazioni modulari nella trasformazione del terzo ordine delle funzioni iperellittiche a due variabili. [R. A. L. R., s. IV, v. I, pp. 769-773 (1884-85)].

2037. G 4 b.

BRIOSCHI (Francesco). I nuovi moduli per le funzioni iperellittiche a due variabili. [R. A. L. R., s. IV, v. II, 1° sem., pp. 159-164 (1885-86)].

2038. G 5 a.

MASCHKE (H.). La risoluzione della equazione di sesto grado. (Estratto di una lettera al Socio Brioschi). [R. A. L. R., s. IV, v. IV, 1° sem., pp. 181-182 (1888)].

2039. G 5 a.

BRIOSCHI (Francesco). Osservazioni sulla precedente comunicazione. [R. A. L. R., s. IV, v. IV, 1° sem., pp. 183-184 (1888)].

2040. G 6 a.

BIANCHI (Luigi). Sulle superficie Fuchsiane. [R. A. L. R., s. IV, v. IV, 2° sem., pp. 161-165 (1888)].

2041. H 2 b.

CASORATI (Felice). Nuova teoria delle soluzioni singolari delle equazioni differenziali di primo ordine e secondo grado tra due variabili. [M. A. L. R., s. II, v. III, pp. 160-167 (1875-76)].

2042. H 2 b.

CASORATI (Felice). Nota concernente la teoria delle soluzioni singolari delle equazioni algebrico-differenziali di primo ordine e secondo grado. [M. A. L. R., s. III, v. III, pp. 271-276 (1878-79)].

2043. H 2 c α.

BATTAGLINI (Giuseppe). Sull'equazione differenziale ellittica. [T. A. L. R., s. III, v. IV, pp. 49-50 (1879-80)].

2044. H 2 c β.

CASORATI (Felice). Ricerche sulle equazioni differenziali a primitiva generale algebrica. [T. A. L. R., s. III, v. I, pp. 185-189 (1876-77)].

2045. **H 2 c** β.

BATTAGLINI (Giuseppe). Sull'equazione differenziale ellittica. [M. A. L. R., s. III, v. V, pp. 50-57 (1879-80)].

2046. **H 2 c**β.

BATTAGLINI (Giuseppe). Intorno ad un'applicazione della teoria delle forme binarie quadratiche all'integrazione dell'equazione differenziale ellittica. [R. A. L. R., s. IV, v. I, pp. 653-657 (1884-85)].

2047. **H 4**.

BESSO (Davide). Alcune proposizioni sulle equazioni differenziali lineari. [M. A. L. R., s. III, v. X, pp. 252-258 (1880-81)].

2048. **H 4**.

BESSO (Davide). Sul prodotto di più soluzioni particolari d'un'equazione differenziale lineare ed omogenea, e specialmente sul prodotto di due soluzioni particolari dell'equazione differenziale lineare ed omogenea del terz'ordine. [M. A. L. R., s. III, v. XIV, pp. 3-13 (1882-83)].

2049. H 4 e.

VOLTERRA (Vito). Sulle equazioni differenziali lineari. [R. A. L. R., s. IV, v. III, 1° sem., pp. 393-396 (1887)].

2050. H 4 g.

CASORATI (Felice). Sulle equazioni differenziali lineari. [T. A. L. R., s. III, v. VI, pp. 121-124 (1881-82)].

2051. H 4i, H 5 j α.

BESSO (Davide). Di alcune proprietà dell'equazione differenziale lineare, non omogenea del second'ordine. [M. A. L. R., s. III, v. XIV, pp. 40-45 (1882-83)].

2052. H 5 c.

BRIOSCHI (Francesco). Sopra una classe di equazioni differenziali integrabili per funzioni ellittiche. [T. A. L. R., s. III, v. IV, pp. 241-246 (1879-80)].

2053. H 5 d α.

BIGIAVI (Carlo). Sulle equazioni differenziali lineari. [R. A. L. R., s. IV, v. V, 1° sem., pp. 651-657 (1889)].

2054. H 5 f.

BESSO (Davide). Intorno ad un'equazione differenziale ipergeometrica. [T. A. L. R., s. III, v. VII, pag. 230 (1882-83)].

2055. H 5 f.

BESSO (Davide). Sopra una classe di equazioni del sesto grado risolubili per serie ipergeometriche. [M. A. L. R., s. III, v. XIV, pp. 30-39 (1882-83)].

2056. H 5 f, A 3.

BESSO (Davide). Sull'equazione del quinto grado. [M. A. L. R., s. III, v. XIX, pp. 232-244 (1883-84)].

2057. H 5 fα.

PINCHERLE (Salvatore). Sulle funzioni ipergeometriche generalizzate. I. [R. A. L. R., s. IV, v. IV, 1° sem., pp. 694-700 (1888)].

2058. H 5 f a.

PINCHERLE (Salvatore). Sulle funzioni ipergeometriche generalizzate. II. [R. A. L. R., s. IV, v. IV, 1° sem., pp. 792-799 (1888)].

H 5 f a. (Vedi nº 1919).

2059. H 5 j.

BESSO (Davide). Sopra una classe d'equazioni differenziali lineari del quart'ordine, integrabili per serie ipergeometriche. [M. A. L. R., s. III, v. XIX, pp. 245-250 (1883-84)].

2060. H 5 j.

BESSO (Davide). Di una classe d'equazioni differenziali lineari del terz'ordine, integrabili per serie ipergeometriche. [M. A. L. R., s. III, v. XIX, pp. 251-252 (1883-84)].

Rend. Circ. Matem., t. IX, parte 2ª.—Stampato il 18 ottobre 1895.

2061. H 5 j.

BESSO (Davide). Sopra una classe d'equazioni differenziali lineari del quart'ordine e sull'equazione del quinto grado. I. [R. A. L. R., s. IV, v. I, pp. 183-186 (1884-85)].

2062. H 5 j.

BESSO (Davide). Sopra una classe d'equazioni differenziali lineari del quart'ordine, e sull'equazione del quinto grado. II. [R. A. L. R., s. IV, v. I, pp. 233-237 (1884-85)].

2063. H 5 j α.

BESSO (Davide). Di alcune proprietà dell'equazione differenziale lineare ed omogenea del second'ordine e di alcune equazioni algebriche. [M. A. L. R.. s. III, v. XIV, pp. 14-29 (1882-83)].

2064. H 5 j α.

BESSO (Davide). Sul prodotto di due soluzioni di due equazioni differenziali lineari omogenee del secondo ordine. [M. A. L. R., s. III, v. XIX, pp. 219-231 (1883-84)].

2065. H 5 j α.

BESSO (Davide). Sopra una classe d'equazioni differenziali lineari del second'ordine e sull'equazione del quinto grado. [R. A. L. R., s. IV, v. II, 1° sem., pp. 593-597 (1885-86)].

H 5 j α. (Vedi n° 2051).

2066. H 6 a.

VOLPICELLI (Paolo). Sulla integrazione delle equazioni differenziali di primo grado ed ordine, a tre variabili. [N. L. A., t. I, pp. 108-124 (1847-48)].

2067. H 6 b.

BIANCHI (Luigi). Sui sistemi di equazioni lineari ai differenziali totali. [R. A. L. R., s. IV, v. V, 1° sem., pp. 312-323 (1889)].

2068. H 7.

FAVERO (Giovanni Battista). De æquationum differentialium partialium natura disquisitiones quædam analyticæ. [M. A. L. R., s. III, v. VIII, pp. 217-239 (1879-80)].

2069. H 7 a.

RICCI (Gregorio). Sui sistemi di integrali indipendenti di una equazione lineare ed omogenea a derivate parziali di 1º ordine. I. [R. A. L. R., s. IV, v. II, 2º sem., pp. 119-122 (1885-86)].

2070. H 7 a.

RICCI (Gregorio). Sui sistemi di integrali indipendenti di una equazione lineare

ed omogenea a derivate parziali di 1º ordine. II. [R. A. L. R., s. IV, v. II, 2º sem., pp. 190-194 (1885-86)].

2071. H 8.

BESSO (Davide). Di alcune equazioni alle derivate parziali del prim'ordine. [R. A. L. R., s. IV, v. III, 2° sem, pp. 158-160 (1887)].

2072. H 9 d.

VOLTERRA (Vito). Integrazione di alcune equazioni differenziali del secondo ordine. [R. A. L. R., s. IV, v. I, pp. 303-306 (1884-85)].

2073. H 9 d.

BIANCHI (Luigi). Sopra una classe di trasformazioni in sè medesime della equazione a derivate parziali:

[R. A. L. R., s. IV, v. IV, 10 sem., pp. 445-452 (1888)].

2074. H 9 d.

TONELLI (Alberto). Sopra una certa equazione differenziale a derivate parziali del 2º ordine. [R. A. L. R., s. IV, v. IV, 2º sem., pp. 384-388 (1888)].

2075. H 9 d.

BIANCHI (Luigi). Sulle equazioni lineari a derivate parziali del 2º ordine. [R. A. L. R., s. IV, v. V, 2º sem., pp. 35-44 (1889)].

2076. H 9 f.

TONELLI (Alberto). Sopra una classe di equazioni differenziali a derivate parziali di ordine m. [R. A. L. R., s. IV, v. V, 1° sem., pp. 178-185 (1889)].

2077. H 9 f.

TONELLI (Alberto). Alcune formule relative a certe equazioni differenziali a derivate parziali di ordine m. [R. A. L. R., s. IV, v. V, 1° sem., pp. 508-514 (1889)].

2078. H 9 h.

BIANCHI (Luigi). Sulle soluzioni comuni a due equazioni a derivate parziali del 2º ordine con due variabili. Nota I. [R. A. L. R., s. IV, v. II, 2º sem., pp. 218-223 (1885-86)].

2079. H 9 h.

BIANCHI (Luigi). Sulle soluzioni comuni a due equazioni a derivate parziali del 2º ordine con due variabili. Nota II. [R. A. L. R., s. IV, v. II, 2º sem., e pp. 237-241 (1885-86)].

2080. H 9 h.

BIANCHI (Luigi). Sulle soluzioni comuni a due equazioni a derivate parziali del 2º ordine a due variabili. Nota III. [R. A. L. R., s. IV, v. II, 2º sem., pp. 307-310 (1885-86)].

H 11 c. (Vedi nº 2340).

2081. H 12 a, H 12 h.

CASORATI (Felice). Il calcolo delle differenze finite interpretato e accresciuto di nuovi teoremi, a sussidio principalmente delle odierne ricerche basate sulla variabilità complessa. [M. A. L. R., s. III, v. V, pp. 195-208 (1879-80)].

2082. H 12 b.

BESSO (Davide). Di alcune proprietà delle equazioni lineari omogenee alle differenze finite del 2º ordine. [R. A. L. R., s. IV, v. I, pp. 381-383 (1884-85)].

2083. H 12 g.

MAINARDI (Gaspare). Pensieri intorno a vari argomenti. V. Integrazione delle equazioni lineari a differenze finite. [N. L. A., t. XX, pp. 167-169 (1866-67)].

H 12 h. (Vedi nº 2081).

2084. I 2, I 13 f.

VOLPICELLI (Paolo). Alcune ricerche relative alla teorica dei numeri. [N. L. A., t. VI, pp. 77-119 (1852-53)].

2085. I 2.

HENRY (Charles). Sur quelques propositions inédites de Fermat. [T. A. L. R., s. III, v. VII, pp. 39-40 (1882-83)].

I 3 a. (Vedi nº 2086).

13 b. (Vedi nº 1914).

2086. I7b, I3a.

BELLAVITIS (Giusto). Sulla risoluzione delle congruenze numeriche, e sulle tavole che dànno i logaritmi (indici) degli interi rispetto ai vari moduli. [M. A. L. R., v. I, s. III, pp. 778-800 (1876-77)].

2087. I 10. ·

VOLPICELLI (Paolo). Sugli spezzamenti diversi che può subire un dato numero, tutti ad una stessa legge di partizione subordinati. [N. L. A., t. X, pp. 43-51; 122-131 (1856-57)].

2088. I 11.

CESARO (Ernesto). Intorno a taluni determinanti aritmetici. [R. A. L. R., s. IV, v. I, pp. 709-711 (1884-85)].

2089. I 11.

CESARO (Ernesto). Nuovo studio di determinanti aritmetici. [R. A. L. R., s. IV, v. I, pp. 711-715 (1884-85)].

2090. III.

CESÀRO (Ernesto). Formes algébriques à liens arithmétiques. [R. A. L. R., s. IV, v. II, 2° sem., pp. 56-61 (1885-86)].

2091. I 11.

CESARO (Ernesto). Sur les systèmes de nombres entiers. [R. A. L. R., s. IV, v. IV, 1° sem., pp. 457-462 (1888)].

2092. Ill c.

CESARO (Ernesto). Sur les lois asymptotiques des nombres. [R. A. L. R., s. IV, v. IV, 1° sem., pp. 452-457 (1888)].

2093. I12.

FRATTINI (Giovanni). Estensione ed inversione d'un teorema d'aritmetica. [R. A. L. R., s. IV, v. II, 1º sem., pp. 132-135 (1885-86)].

I12. (Vedi nº 2118).

113. (Vedi nº 2016).

113 b a. (Vedi nº 2103).

2094. I 13 b α.

VOLPICELLI (Paolo). Sulla legge dello spezzamento in due quadrati, praticato su qualsiasi potenza di qualunque numero, similmente spezzabile una sol volta. [N. L. A., t. III, pp. 1-6 (1849-50)].

2095. **I 13 b** α.

VOLPICELLI (Paolo). Dimostrazione delle formule date dal celebre Gauss, per determinare in quante somme, ognuna di due quadrati, può spezzarsi un intero. [N. L. A., t. IV, pp. 22-31 (1850-51)].

2096. I 13 b α.

VOLPICELLI (Paolo). Alcune conseguenze delle formule di Gauss, dimostrate nella sessione precedente. [N. L. A., t. IV, pp. 71-81 (1850-51)].

2097. I 13 b α, I 19 a.

VOLPICELLI (Paolo). Nuova generale soluzione della

$$x^2 + y^2 = z^2$$

e sue conseguenze. [N. L. A., t. IV, pp. 124-140; 346-377 (1850-51)].

2098. I 13 b α.

VOLPICELLI (Paolo). Sullo spezzamento numerico in somme ognuna di due quadrati. [N. L. A., t. IV, pp. 508-510 (1850-51)].

2099. I 13 b α.

VOLPICELLI (Paolo). Soluzione algebrica della:

$$x^2 + y^2 = (a^2 + b^2)^k$$
,

-essendo k un intero qualunque. [N. L. A., t. V, pp. 315-352 (1851-52)].

2100. I 13 b a.

VOLPICELLI (Paolo). Rettificazione delle formule per assegnare il numero delle somme, ognuna di due quadrati, nelle quali un intero può spezzarsi. [N. L. A., t. V, pp. 528-533 (1851-52).

2101. I 13 f.

RICHAUD (Casimir). Sur la résolution des équations :

$$x^2 - Ay^2 = \pm 1.$$

[N. L. A., t. XIX, pp. 177-182 (1865-66)].

I 13 f. (Vedi ni 2084, 2107).

2102. I 15 c.

BIANCHI (Luigi). Sulle forme quadratiche a coefficienti e a indeterminate complesse. [R. A. L. R., s. IV, v. V, 1° sem., pp. 589-599 (1889)].

2103. I 19 a, I 13 b α.

VOLPICELLI (Paolo). Sulla generale soluzione in interi delle:

$$x^2 + y^2 = z$$
; $x^2 + y^2 = z^2$.

[N. L. A., t. III, pp. 17-26 (1849-50)].

2104. I 19 c, A 1 c.

GENOCCHI (Angelo). Intorno ad alcune somme di cubi. [N. L. A., t. XIX, pp. 43-50 (1865-66)].

2105. I 19 c.

RICHAUD (Casimir). Sur un problème indéterminé. [N. L. A., t. XIX, pp. 183-186 (1865-66)].

2106. I 19 c, Alc.

CATALAN (Eugène). Note sur un problème d'analyse indéterminée. [N. L. A., t. XX, pp. 1-4 (1866-67)].

2107. I 19 c, I 13 f.

CATALAN (Eugène). Rectification et addition à la « Note sur un problème d'analyse indéterminée ». [N. L. A., t. XX, pp. 77-80 (1866-67)].

2108. I 19 c, A 1 c.

RICHAUD (Casimir). Note sur la résolution de l'équation:

$$x^3 + (x+r)^3 + (x+2r)^3 + \dots + [x+(n-1)r]^3 = y^2$$
.

[N. L. A., t. XX, pp. 91-110 (1866-67)].

2109. I 19 c.

FRATTINI (Giovanni). Intorno ad un teorema di Lagrange. [R. A. L. R., s. IV, v. I, pp. 136-142 (1884-85)].

2110. I 23 a, D 2 d.

PINCHERLE (Salvatore). Alcuni teoremi sulle frazioni continue. [R. A. L. R., s. IV, v. V, 1° sem., pp. 640-643 (1889)].

2111. J 2 e.

PIZZETTI (Paolo). Un teorema relativo all'errore medio di una funzione di quantità determinate dall'esperienza. [R. A. L. R., s. IV, v. II, 1° sem., pp. 597-601 (1885-86)].

2112. J 2 e.

PIZZETTI (Paolo). Sulla compensazione delle osservazioni secondo il metodo dei minimi quadrati. I. [R. A. L. R., s. IV, v. III, 2° sem., pp. 230-235 (1887)].

2113. J 2 e.

PIZZETTI (Paolo). Sulla compensazione delle osservazioni secondo il metodo dei minimi quadrati. II. [R. A. L. R., s. IV, v. III, 2° sem., pp. 288-293 (:887)].

2114. J 2 e.

PIZZETTI (Paolo). Sopra una generalizzazione del principio della media aritmetica. [R. A. L. R., s. IV, v. V, 1° sem., pp. 186-191 (1889)].

2115. J 2 e.

PIZZETTI (Paolo). Sopra una certa formula esprimente la probabilità degli errori di osservazione. [R. A. L. R., s. IV, v. V, 1° sem., pp. 191-199 (1889)].

2116. J 2 e.

PIZZETTI (Paolo). Sopra il calcolo dell'errore medio di un sistema di osservazioni. [R. A. L. R., s. IV, v. V, 1° sem., pp. 740-744 (1889)].

2117. J 2 e.

PUCCI (Enrico). Sul modo di ricercare la vera espressione delle leggi della natura dalle curve empiriche. [M. A. L. R., s. IV, v. VI, pp. 316-327 (1889)].

2118. J 4, I 12.

FRATTINI (Giovanni). Intorno alla generazione dei gruppi d'operazioni e ad un teorema d'Aritmetica. [R. A. L. R., s. IV, v. II, 10 sem., pp. 16-19 (1885-86)].

2119. J 4.

CESARO (Ernesto). Intorno a taluni gruppi di operazioni. [R. A. L. R., s. IV, v, II, 2º sem., pp. 35-39 (1885-86)].

2120. J 4 a.

FRATTINI (Giovanni). Intorno ad alcune proposizioni della teoria delle sostituzioni. [M. A. L. R., s. III, v. XVIII, pp. 487-513 (1882-83)].

2121. J 4 a.

CAPELLI (Alfredo). Sopra la composizione dei gruppi di sostituzioni. [M. A. L. R., s. III, v. XIX, pp. 262-272 (1883-84)].

2122. J 4 a.

FRATTINI (Giovanni). I gruppi a k dimensioni. [T. A. L. R., s. III, v. VIII, pp. 260-264 (1883-84)].

2123. J4a.

FRATTINI (Giovanni). Intorno alla generazione dei gruppi di operazioni. I. [R. A. L. R., s. IV, v. I, pp. 281-285 (1884-85)].

2124. J 4a.

FRATTINI (Giovanni). Intorno alla generazione dei gruppi di operazioni. II. [R. A. L. R., s. IV, v. I, pp. 455-456 (1884-85)].

2125. J4aa.

FRATTINI (Giovanni). I gruppi transitivi di sostituzioni dell'istesso ordine e grado. [M. A. L. R., s. III, v. XIV, pp. 143-172 (1882-83)].

2126. J 4 c.

SPINA (Carlo). Sul numero dei valori delle funzioni algebriche razionali le quali contengono un dato numero di lettere; e come si possano formare le funzioni algebriche razionali per le quali esiste un dato numero di valori quando si permutano le lettere fra loro. [N. L. A., t. XXI, pp. 182-238 (1868)].

2127. K 6b, O 6 r a.

TORTOLINI (Barnaba). Sopra un nuovo sistema di variabili introdotte dal sig. Ossian Bonnet nello studio delle proprietà delle superficie curve. [N. L. A., t. XXII, pp. 172-187 (1868-69)].

2128. K ll e, K l8 g, K l2 b β .

LUCAS (Édouard). Sur un principe fondamental de géométrie et de trigonométrie. [M. A. L. R., s. III, v. II, pp. 449-456 (1877-78)].

2129. K 14 C.

UZIELLI (Gustavo). Studi di Cristallografia teorica. [M. A. L. R., v. I, s. III, pp. 427-480 (1876-77)].

K 18 g. (Vedi nº 2128).

2130. L'1c, Q4a.

VERONESE (Giuseppe). Nuovi teoremi sull'Hexagrammum Mysticum. [M. A. L. R., v. I, s. III, pp. 649-703 (1876-77)].

2131. L'1c, M'3h B.

CREMONA (Luigi). Teoremi stereometrici dai quali si deducono le proprietà dell'esagrammo di Pascal. [M. A.L. R., s. III, v. I, pp. 854-874 (1876-77)].

L' 1 c. (Vedi nº 2165),

L' 6 a. (Vedi nº 2133).

2132. L' 15 f, M' 6 i.

TORTOLINI (Barnaba). Sull'equazione della curva piana, luogo geometrico di un punto tale, dal quale condotte due tangenti ad un'ellissi data, l'angolo delle medesime sia costante. [N. L. A., t. I, pp. 125-129 (1847-48)].

2133. L' 15 f, L' 6 a.

TORTOLINI (Barnaba). Soluzione di due problemi di geometria analitica, proposti negli Annali di Matematica del sig. Terquem nei fasc. di maggio 1850 pag. 181 e di febbrajo 1850, pag. 55. [N. L. A., t. III, pp. 55-60 (1849-50)].

2134. L' 16 a.

CAVALIERI SAN BERTOLO (Nicola). Soluzione di un problema di geometria analitica, dalla quale si deduce una notevole proprietà dell'iperbole apolloniana. [N. L. A., t. XIX, pp. 101-107 (1865-66)].

2135. L' 17, P 2 d.

BATTAGLINI (Giuseppe). Nota intorno alla conica rispetto alla quale due coniche date sono polari reciproche. [A. A. L. R., t. XXV, pp. 195-202 (1871-72)].

2136. L' 17 a, Q1.

BATTAGLINI (Giuseppe). Nota sul rapporto anarmonico sezionale e tangenziale delle coniche. [A. A. L. R., t. XXVI, pp. 566-576 (1873)].

2137. L. 19.

VOLPICELLI (Paolo). Ricerche analitiche relative al luogo geometrico dei punti di tangenza, fra uno, e due sistemi di parallele, con una serie di coniche omofocali. [N. L. A., t. XIX, pp. 26-37 (1865-66)].

2138. L' 19.

VOLPICELLI (Paolo). Ricerche analitiche relative al geometrico luogo, tanto dei punti di tangenza fra uno, e due sistemi di parallele, con una serie di coniche omofocali; quanto dei punti di intersecazione delle tangenti parallele di un sistema colle rispettive dell'altro. [N. L. A., t. XIX, pp. 53-82; 149-171; 219-243; 268-305 (1865-66)].

2139. L2 2 e.

CAVALIERI SAN BERTOLO (Nicola). Intorno alle curve piane, che possono essere comprese nella superficie del cono. [N. L. A., t. XII, pp. 173-180 (1858-59)].

Rend. Circ. Matem., t. IX, parte 2ª. - Stampato il 28 ottobre 1895.

L2 10 a. (Vedi nº 2140).

2140. L2 12, L2 10 a.

TORTOLINI (Barnaba). Sulla determinazione della linea geodetica descritta sulla superficie di un ellissoide a tre assi disuguali secondo il metodo del Cav. J acobi, da esso dato nelle sue lezioni di Meccanica all'Università di Kœnigsberg. [N. L. A., t. IV, pp. 287-324 (1850-51)].

L2 17 c. (Vedi nº 2223).

L2 17 g. (Vedi nº 2250).

2141. M11. M14d.

BERTINI (Eugenio). Una proprietà delle curve di ordine n con un punto (n-2) plo. [T. A. L. R., s. III, v. I, pp. 92-95 (1876-77)].

2142. MI 1 b.

GUCCIA (Giovanni Battista). Sulla classe e sul numero dei flessi di una curva algebrica dotata di singolarità qualunque. [R. A. L. R. s. IV, v. V, 1º sem., pp. 18-25 (1889)].

2143. MI 1c. MI 5 q.

DE PAOLIS (Riccardo). Alcune applicazioni della teoria generale delle curve polari. [M. A. L. R., s. IV, v. III, pp. 265-280 (1885-86)].

2144. M1 2 a.

PITTARELLI (Giulio). Studio algebrico-geometrico intorno alla corrispondenza (1, 2). [M. A. L. R., s. IV, v. III, pp. 375-400 (1885-86)].

2145. M1 2 a, M1 5 a.

PITTARELLI (Giulio). Le cubiche con un punto doppio e la corrispondenza (1, 2). [M. A. L. R., s. IV, v. III, pp. 401-416 (1885-86)].

2146. M' 2 a α.

DE PAOLIS (Riccardo). Sulle involuzioni projettive. [R. A. L. R., s. IV, v. II, 2º sem., pp. 335-337 (1885-86)].

2147. M1 2 c a.

CASTELNUOVO (Guido). Numero delle involuzioni razionali giacenti sopra una curva di dato genere. [R. A. L. R., s. IV, v. V, 2º sem., pp. 130-133 (1889)].

2148. M¹ 2d, M¹ 5 e β.

BATTAGLINI (Giuseppe). Sui punti sestatici di una curva qualunque. Nota I. [R. A. L. R., s. IV, v. IV, 20 sem., pp. 238-246 (1888)].

M1 2 g. (Vedi nº 2252).

M1 3 h. (Vedi nº 2007).

M1 4 d. (Vedi nº 2141).

M1 5 a. (Vedi nº 2145).

M¹ 5 e β. (Vedi nº 2148).

2149. M1 5 g.

CAPORALI (Ettore). Teoremi sulle curve di terz'ordine. [T. A. L. R., s. III, v. I, pp. 232-236 (1876-77)].

M1 5 q. (Vedi nº 2143).

2150. M' 5 i.

CAPORALI (Ettore). Teoremi sui fasci di curve del terz'ordine. [T. A. L. R., s. III, v. I, pag. 236 (1876-77)].

2151. MI 5 i y.

KANTOR (S.). Una semplice generazione della curva Jacobiana di una rete di curve del 3º ordine. [T. A. L. R., s. III, v. III, pp. 93-95 (1878-79)].

M1 6 i. (Vedi nº 2132).

M¹ 6 k α. (Vedi nº 2034).

2152. M' 61, A4d.

BRIOSCHI (Francesco). Sopra una classe di curve del 4° ordine. [T. A. L. R., s. III, v. VIII, pp. 164-168 (1883-84)].

MI 61. (Vedi nº 2236).

2153. M2 la.

VANĚČEK (M. N.). Sur la génération des surfaces et des courbes gauches par des faisceaux de surfaces. [R. A. L. R., s. IV, v. I, pp. 130-133 (1884-85)].

2154. M2 1a.

JUNG (Giuseppe). Sulle superficie generate da due sistemi Cremoniani reciproci di grado m. [R. A. L. R., s. IV, v. I, pp. 762-767 (1884-85)].

2155. M2 la.

JUNG (Giuseppe). Sui sistemi Cremoniani reciproci di grado m. Nota II. [R. A. L. R., s. IV, v. I, pp. 773-774 (1884-85)].

2156. M2 1a.

JUNG (Giuseppe). Sui sistemi Cremoniani reciproci di grado m. Nota III. [R. A. L. R., s. IV, v. I, pp. 810-812 (1884-85)].

2157. M2 la.

JUNG (Giuseppe). Sulle superficie generate da tre sistemi deducibili l'uno dall'altro mediante trasformazioni birazionali. [R. A. L. R., s. IV, v. II, 1° sem., pp. 85-89 (1885-86)]. 2158. M² l b.

GUCCIA (Giovanni Battista). Su una proprietà delle superficie algebriche dotate di singolarità qualunque. [R. A. L. R., s. IV, v. V, 1° sem., pp. 349-353 (1889)].

2159. M2 1b, P4g.

GUCCIA (Giovanni Battista). Sulla intersezione di tre superficie algebriche in un punto singolare e su una questione relativa alle trasformazioni razionali nello spazio. [R. A. L. R., s. IV, v. V, 1° sem., pp. 456-461 (1889)].

2160. M2 1 b.

GUCCIA (Giovanni Battista). Nuovi teoremi sulle superficie algebriche dotate di singolarità qualunque. [R. A. L. R., s. IV, v. V, 1° sem., pp. 490-497 (1889)].

2161. M2 2 h.

PIERI (Mario). Sulle normali doppie di una superficie algebrica. [R. A. L. R., s. IV, v. II, 2° sem., pp. 40-42 (1885-86)].

2162. M2 3.

DE PAOLIS (Riccardo). Ricerche sulla superficie del terzo ordine. [M. A. L. R., s. III, v. X, pp. 123-160 (1880-81)].

2163. M2 3 b.

BRIOSCHI (Francesco). Sopra una proprietà dei piani tritangenti ad una superficie cubica. [M. A. L. R., s. II, v. III, pp. 257-259 (1875-76)].

M² 3 h β. (Vedi n° 2131).

M2 4 d. (Vedi nº 2246).

2164. M² 4 f, M² 9 e.

CHIZZONI (Francesco). Sopra una certa famiglia di superficie che comprende una nuova famiglia di ciclidi. [R. A. L. R., s. IV, v. II, 1° sem., pp. 476-482 (1885-86)].

2165. M2 4k, L1 1c, Q4a.

CAPORALI (Ettore). Sopra i piani ed i punti singolari della superficie di Kummer. [M. A. L. R., s. III, v. II, pp. 791-810 (1877-78)].

M² 6. (Vedi n° 2254).

2166. M2 7 a.

SEGRE (Corrado). Intorno alla geometria su una rigata algebrica. [R. A. L. R., s. IV, v. III, 2° sem., pp. 3-6 (1887)].

2167. M² 7 c β, M² 7 b.

CHIZZONI (Francesco). Sulle superficie e sulle linee che si ottengono come luogo o come inviluppo delle rette congiungenti i punti corrispondenti di due curve omografiche piane. [M. A. L. R., s. III, v. III, pp. 69-116 (1878-79)]. 2168. M2 8 b.

VISALLI (Pietro). Sopra una serie di superficie rappresentabili punto per punto sopra un piano. Nota I. [R. A. L. R., s. IV, v. II, 2º sem., pp. 80-84 (1885-86)].

2169. M2 8 b.

VISALLI (Pietro). Sopra una serie di superficie rappresentabili punto per punto sopra un piano. Nota II. (R. A. L. R., s. IV, v. II, 2º sem., pp. 84-87 (1885-86)].

2170. M² 9 b, R 5 a.

BATTAGLINI (Giuseppe). Nota intorno ad una superficie di 8º ordine. [A. A. L. R., s. II, v. II, pp. 244-249 (1874-75)].

M2 9 e. (Vedi nº 2164).

M3 1 a. (Vedi nº 2240).

2171. M3 2 d.

PIERI (Mario). Sulle normali doppie di una curva gobba algebrica. [R. A. L. R., s. IV, v. II, 1° sem., pp. 327-329 (1885-86)].

M3 5 e. (Vedi ni 2220, 2249).

2172. M3 6 d, T 6.

VOLPICELLI (Paolo). Ricerche analitiche sul bifilare tanto magnetometro, quanto elettrometro; sulla curva bifilare; e sulla misura del magnetismo terrestre. [N. L. A., t. XVII, pp. 331-356; t. XVIII, pp. 1-16, 279-315 (1863-64; 1864-65)].

M4. (Vedi nº 2192).

2173. M4 a, O 2 p.

FABRI (Ruggiero). Sulle curve cicloidali. [N. L. A., t. X, pp. 225-235 (1856-57)].

2174. M4 a, O 2 p.

FABRI (Ruggiero). Sulla curvatura delle linee cicloidali. [N. L. A., t. X, pp. 387-392 (1856-57)].

2175. M⁴ a, O 2 p.

FABRI (Ruggiero). Alcuni teoremi risguardanti la rettificazione e quadratura delle cicloidali. [N. L. A., t. XI, pp. 399-404 (1857-58)].

2176. N' 1b, N2 1c, Q1.

D'OVIDIO (Enrico). Alcune proprietà metriche dei complessi e delle congruenze lineari in Geometria proiettiva. [M. A. L. R., s. II, v. III, pp. 260-268 (1875-76)].

2177. N' 1b, P6d.

CREMONA (Luigi). Sulla corrispondenza fra la teoria dei sistemi di rette e la teoria delle superficie. [M. A. L. R., s. II, v. III, pp. 285-302 (1875-76)].

2178. N' 1 b.

PORCHIESI (Augusto). Una rappresentazione del complesso lineare sullo spazio ordinario. [M. A. L. R., s. IV, v. I, pp. 610-621 (1884-85)].

2179. N' 1 c, Q 1.

D'OVIDIO (Enrico). Sulle reti di complessi lineari nella Geometria metricoproiettiva. [M. A. L. R., s. II, v. III, pp. 561-581 (1875-76)].

2180. N' 1 c, Q 1.

D'OVIDIO (Enrico). Le serie triple e quadruple di complessi lineari nella Geometria metrico-proiettiva. [M. A. L. R., s. II, v. III, pp. 723-746 (1875-76)].

2181. Nº 1 C.

DE PAOLIS (Riccardo). Fondamenti di una teoria dello spazio generato dai complessi lineari. [M. A. L. R., s. IV, v. I, pp. 205-231 (1884-85)].

2182. Nº 1e, Nº 1e.

CAPORALI (Ettore). Sui complessi e sulle congruenze di 2º grado. [M. A. L. R., s. III, v. II, pp. 749-769 (1877-78)].

2183. Nº 1 e.

BATTAGLINI (Giuseppe). Sui complessi di secondo ordine. [T. A. L. R., s. III, v. III, pp. 43-44 (1878-79)].

2184. Nº 1 e.

BATTAGLINI (Giuseppe). Sui complessi di secondo grado. [M. A. L. R., s. III, v. III, pp. 35-44 (1878-79)].

Nº 1 h. (Vedi nº 2232).

Nº 1 c. (Vedi nº 2176).

Nº 1 e. (Vedi nº 2182).

2185. Nº 1 f.

BERTINI (Eugenio). Sulla congruenza di 2º ordine, 6ª classe e 1ª specie, dotata soltanto di superficie focale. [T. A. L. R., s. III, v. IV, pp. 30-31 (1879-80)].

2186. Nº 1 g.

PANNELLI (Marino). Sopra le congruenze generate da due superficie di cui i punti si corrispondono univocamente. [M. A. L. R., s. IV, v. VI, pp. 216-229 (1889)].

2187. N3 d.

ARMENANTE (A.) Generazione dei connessi di 2º ordine e 2ª classe. [M. A. L. R., s. II, v. III, pp. 123-128 (1875-76)].

2188. N3 f.

LAZZERI (Giulio). Sopra i sistemi lineari di connessi quaternari (1, 1). [M. A. L. R., s. IV, v. IV, pp. 259-272 (1887)].

2189. N4 1 b, Q 1.

BATTAGLINI (Giuseppe). Nota sui circoli nella geometria non euclidea. [A. A. L. R., s. II, v. I, pp. 53-61 (1873-74)].

N4 2 a. (Vedi ni 2251, 2255).

2190. O 2 b, R 3 c.

FABRI (Ruggiero). Sull'uso de' principii meccanici, nella ricerca delle proprietà geometriche delle curve. [N. L. A., t. VI, pp. 73-76 (1852-53)].

.2191. O 2 h.

TORTOLINI (Barnaba). Sopra le differenti formole esprimenti i raggi delle due curvature di una linea tracciata sulla superficie di una sfera. [N. L. A., t. IV, pp. 555-568 (1850-51)].

O 2 p. (Vedi ni 2173, 2174, 2175).

2192. O 2 q, M4.

CALLEGARI (Pietro). Equazioni generali ai luoghi geometrici, ed applicazioni. [N. L. A., t. VII, pp. 179-218; 251-274 (1853)].

2193. O3f, O5ia.

GREMIGNI (Michele). La teoria delle sviluppoidi e le superficie che hanno un sistema di linee di curvatura circolari. [M. A. L. R., s. III, v. XV, pp. 3-43 (1882-83)].

2194. 0 5.

MAINARDI (Gaspare). Sulla teoria generale delle superficie. [N. L. A., t. IV, pp. 591-611 (1850-51)].

2195. 0 5.

MAINARDI (Gaspare). Pensieri intorno vari argomenti. VI. Su la teorica generale delle superficie. [N. L. A., t. XXIII, pp. 220-229 (1869-70)].

2196. 05a, 05b.

JUNG (Giuseppe). Nuovi teoremi a complemento della regola di Guldin e proprietà della spirale:

$$r=a\frac{\sin\theta}{\theta}.$$

[T. A. L. R., s. III, v. VII, pp. 97-100 (1882-83)].

0 5 d. (Vedi nº 2327).

O 5 i a. (Vedi nº 2193).

2197. 05k. 05n.

PUCCI (Enrico). Dell'angolo caratteristico e delle linee caratteristiche di una superficie. [R. A. L. R., s. IV, v. V, 1° sem., pp. 501-507 (1889)].

2198. O 5 n.

REINA (Vincenzo). Di alcune proprietà delle linee caratteristiche. [R. A. L. R., s. IV, v. V, 1° sem., pp. 881-885 (1889)].

2199. O5p, C2h.

TORTOLINI (Barnaba). Sul valore della curvatura totale di una superficie e sull'uso di questo valore nella determinazione di alcuni integrali definiti duplicati. [N. L. A., t. IV, pp. 53-70 (1850-51)].

2200. O 5 q, O 6 q.

PADOVA (Ernesto). Sulla teoria delle coordinate curvilinee. Nota I. [R. A. L. R., s. IV, v. IV, 2° sem., pp. 369-376 (1888)].

2201. O 5 q, O 6 q.

PADOVA (Ernesto). Sulla teoria delle coordinate curvilinee. Nota II. [R. A. L. R., s. IV, v. IV, 2° sem., pp. 454-461 (1888)].

2202. O 6 g.

REINA (Vincenzo). Sugli oricicli delle superficie pseudosferiche. [R. A. L. R., s. IV, v. V, 1° sem., pp. 448-456 (1889)].

2203. O6h, Q1.

BIANCHI (Luigi). Sulle superficie d'area minima negli spazi a curvatura costante. [M. A. L. R., s. IV, v. IV, pp. 503-519 (1887)].

2204. O6k, Q1.

BIANCHI (Luigi). Sull'applicabilità delle superficie degli spazi a curvatura costante. [M. A. L. R., s. III, v. II, pp. 479-484 (1877-78)].

2205. O6k.

VOLTERRA (Vito). Sulla deformazione delle superficie flessibili ed inestendibili. [R. A. L. R., s. IV, v. I, pp. 274-278 (1884-85)].

2206. O 6 k.

BIANCHI (Luigi). Sulla equazione a derivate parziali del Cayley nella teoria delle superficie. [R. A. L. R., s. IV, v. IV, 1° sem., pp. 442-445 (1888)].

2207. O 6 n.

PIZZETTI (Paolo). Sulle rappresentazioni geografiche conformi. Nota I. [R. A. L. R., s. IV, v. I, pp. 599-605 (1834-85)].

2208. O 6 n.

PIZZETTI (Paolo). Sulle rappresentazioni geografiche conformi. Nota II. [R. A. L. R., s. IV, v. I, pp. 628-632 (1884-85)].

2209. O 6 p.

BIANCHI (Luigi). Sopra una classe di sistemi tripli di superficie ortogonali. [T. A. L. R., s. III, v. VII, pp. 46-47 (1882-83)].

2210. O 6 p.

BIANCHI (Luigi). Sopra i sistemi tripli ortogonali di Weingarten, [R. A. L. R., s. IV, v. I, pp. 163-166 (1884-85)].

2211. O 6 p.

BIANCHI (Luigi). Sopra i sistemi tripli ortogonali di Weingarten. [R. A. L. R., s. IV, v. I, pp. 243-246 (1884-85)].

2212. O 6 p.

BIANCHI (Luigi). Sopra i sistemi tripli di superficie ortogonali che contengono un sistema di superficie pseudosferiche. [R. A. L. R., s. IV, v. II, 1° sem., pp. 19-22 (1885-86)].

2213. O 6 p.

BIANCHI (Luigi). Sui sistemi di Weingarten negli spazi di curvatura costante. [M. A. L. R., s. IV, v. IV, pp. 221-256 (1887)].

O 6 q. (Vedi ni 2200, 2201).

O 6 r a. (Vedi nº 2127).

O 6 r β. (Vedi nº 2327).

2214. 0 7 a.

BIANCHI (Luigi). Sopra i sistemi doppiamente infiniti di raggi (congruenze). [R. A. L. R., s. IV, v. III, 1° sem., pp. 369-370 (1887)].

2215. 08.

CESARO (Ernesto). Formole fondamentali per l'analisi intrinseca delle curve. [R. A. L. R., s. IV, v. V, 2° sem., pp. 165-170 (1889)].

2216. O 8 d.

GAUTERO (Giacinto). Sul movimento di una superficie che ne tocca costantemente un'altra fissa. [T. A. L. R., s. III, v. IV, pp. 106-109 (1879-80)].

2217. P1, Q2.

SEGRE (Corrado). Sulla teoria e sulla classificazione delle omografie in uno spazio lineare ad un numero qualunque di dimensioni. [M. A. L. R., s. III, v. XIX, pp. 127-148].

Rend. Circ. Matem., t. IX, parte 2ª.—Stampato il 7 novembre 1895.

P 1. (Vedi ni 2248, 2258, 2259).

2218. Plf. Qla.

DE PAOLIS (Riccardo). Sui fondamenti della Geometria Projettiva. [M. A. L. R., s. III, v. IX, pp. 489-503 (1880-81)].

P 2. (Vedi ni 2258, 2259).

2219. P 2 c.

HIRST (T. Archer). Sulla correlazione di due piani. [T. A. L. R., s. III, v. I, pp. 86-92 (1876-77)].

2220. P 2 c, M3 5 e.

MONTESANO (Domenico). Su le correlazioni polari dello spazio, rispetto alle quali una cubica gobba è polare a sè stessa. [M. A. L. R., s. IV, v. III, pp. 105-115 (1885-86)].

2221. P 2 C.

VISALLI (Pietro). Sulle correlazioni in due spazi a tre dimensioni. [M. A. L. R., s. IV, v. III, pp. 597-671 (1885-86)].

2222. P 2 C.

VISALLI (Pietro). Sulle correlazioni (in due spazi a tre dimensioni) che soddisfanno a dodici condizioni elementari. [R. A. L. R., s. IV, v. III, 1° sem., pp. 118-124 (1887)].

2223. P 2 d, L2 17 c.

BATTAGLINI (Giuseppe). Nota intorno alla quadrica rispetto alla quale due quadriche date sono polari reciproche tra di loro. [A. A. L. R., t. XXVI, pp. 5-16 (1872-73)].

P 2 d. (Vedi nº 2135).

2224. P 4 a.

LAZZERI (Giulio). Sulle reciprocità birazionali nel piano. [R. A. L. R., s. IV, v. II, 2° sem., pp. 61-67 (1885-86)].

P4a. (Vedi nº 2239).

2225. P4g.

DE PAOLIS (Riccardo). Alcune particolari trasformazioni involutorie dello spazio. Nota Ia. [R. A. L. R., s. IV, v. I, pp. 735-742 (1884-85)].

2226. P 4 g.

DE PAOLIS (Riccardo). Alcune particolari trasformazioni involutorie dello spazio. Nota II^a. [R. A. L. R., s. IV, v. I, pp. 754-758 (1884-85)].

2227. P4g.

LAZZERI (Giulio). Sulle reciprocità birazionali nello spazio. [R. A. L. R., s. IV, y. II, 2º sem., pp. 73-79 (1885-86)].

2228. P 4 q.

CHIZZONI (Francesco). Sopra una certa famiglia di superficie che s'incontrano in una trasformazione involutoria di terzo grado nello spazio. [R. A. L. R., s. IV, v. II, 1º sem., pp. 470-476 (1885-86)].

2229. P 4 g.

MONTESANO (Domenico). Su le trasformazioni involutorie dello spazio che determinano un complesso lineare di rette. Nota I. [R. A. L. R., s. IV, v. IV, 1° sem., pp. 207-215 (1888)].

2230. P 4 g.

MONTESANO (Domenico). Su le trasformazioni involutorie dello spazio che determinano un complesso lineare di rette. Nota II. [R. A. L. R., s. IV, v. IV, 1° sem., pp. 277-285 (1888)].

2231. P 4 g.

MONTESANO (Domenico). Sulle reciprocità birazionali nulle dello spazio. [R. A. L. R., s. IV, v. IV, 1º sem., pp. 583-590 (1888)].

2232. P4g, N'lh.

MONTESANO (Domenico). Su la trasformazione involutoria dello spazio che determina un complesso tetraedrale. [R. A. L. R., s. IV, v. V, 1º sem., pp. 497-501 (1889)].

2233. P 4 g.

MONTESANO (Domenico). Su le trasformazioni involutorie dello spazio nelle quali ai piani corrispondono superficie di ordine n con una retta (n-2)-pla. [R. A. L. R., s. IV, v. Y, 2° sem., pp. 123-130 (1889)].

P 4 g. (Vedi nº 2159).

2234. P 6 a.

DE PAOLIS (Riccardo). Le trasformazioni piane doppie. [M. A. L. R., s. III, v. I, pp. 511-544 (1876-77)].

2235. P 6 a, Q 1.

DE PAOLIS (Riccardo). La trasformazione piana doppia di secondo ordine e la sua applicazione alla geometria non euclidea. [M. A. L. R., s. III, v. II, pp. 31-50 (1877-78)].

2236. P6a, M161.

DE PAOLIS (Riccardo). La trasformazione piana doppia di terzo ordine, primo genere, e la sua applicazione alle curve del quarto ordine. [M. A. L. R., s. III, v. II, pp. 851-878 (1877-78)].

2237. P 6 a.

DE PAOLIS (Riccardo). Le trasformazioni doppie dello spazio. [M. A. L. R., s. IV, v. I, pp. 576-608 (1884-85)].

2238. P 6 a.

JUNG (Giuseppe). Sulle trasformazioni piane multiple. [R. A. L. R., s. IV, v. II, 2° sem., pp. 302-306 (1885-86)].

2239. P6a, P4a.

JUNG (Giuseppe). Di due trasformazioni multiple associate a ogni trasformazione birazionale. [R. A. L. R., s. IV, v. II, 2° sem., pp. 338-344 (1885-86)].

2240. P 6 a, M3 1 a.

VISALLI (Pietro). Sulle figure generate da due forme fondamentali di seconda specie fra le quali esiste una corrispondenza multipla (1, r) di grado n. [R. A. L. R., s. IV, v. III, 1° sem., pp. 124-127 (1887)].

2241. P 6 c.

CHIZZONI (Francesco). Sopra le involuzioni nel piano. [M. A. L. R., s. III, v. XIX, pp. 301-343 (1883-84)].

P 6 d. (Vedi nº 2177).

P 6 g. (Vedi nº 2253).

2242. Q1, Q2.

D'OVIDIO (Enrico). Le funzioni metriche fondamentali negli spazi di quante si vogliano dimensioni e di curvatura costante. [M. A. L. R., s. III, v. I, pp. 929-986 (1876-77)].

Q 1. (Vedi ni 2136, 2176, 2179, 2180, 2189, 2203, 2204, 2235, 2342, 2379).

2243. Qla.

VERONESE (Giuseppe). Il continuo rettilineo, e l'assioma V di Archimede. [M. A. L. R., s. IV, v. VI, pp. 603-624 (1889)].

Qla. (Vedi nº 2218).

2244. Q 2.

VERONESE (Giuseppe). Alcuni teoremi sulla geometria a n dimensioni. Nota I. [T. A. L. R., s. III, v. V, pp. 303-304 (1880-81)].

2245. Q 2.

VERONESE (Giuseppe). Alcuni teoremi sulla geometria a n dimensioni. Nota II. [T. A. L. R., s. III, v. V, pp. 333-338 (1880-81)].

2246. Q 2, M2 4 d.

VERONESE (Giuseppe). La superficie omaloide normale a due dimensioni e del quarto ordine dello spazio a cinque dimensioni e le sue projezioni nel piano e nello spazio ordinario. [M. A. L. R., s. III, v. XIX, pp. 344-371 (1883-84)].

2247. Q 2.

CASSANI (Pietro). Gli angoli degli spazi lineari. [R. A. L. R., s. IV, v. I, pp. 133-136 (1884-85)].

2248. Q 2, P1.

SEGRE (Corrado). Sugli spazi fondamentali di un'omografia. [R. A. L. R., s. IV, v. II, 1° sem., pp. 325-327 (1885-86)].

2249. Q 2, M3 5 e.

CASSANI (Pietro). Un teorema generale sulle linee normali degli spazi dispari. [R. A. L. R., s. IV, v. II, 1° sem., pp. 482-484 (1885-86)].

2250. Q 2, L2 17 g.

BERTINI (Eugenio). Sui fasci di quadriche in uno spazio ad n dimensioni. [R. A. L. R., s. IV, v. II, 2° sem, pp. 208-211 (1885-86)].

2251. Q 2, N+ 2 a.

PIERI (Mario). Sul principio di corrispondenza in uno spazio lineare qualunque ad n dimensioni. [R. A. L. R., s. IV, v. III, 1° sem., pp. 196-199 (1887)].

2252. Q 2, M1 2 g.

SEGRE (Corrado). Sulle varietà algebriche composte di una serie semplicemente infinita di spazi. [R. A. L. R. s. IV, v. III, 2º sem., pp. 149-153 (1887)].

2253. Q 2, P 6 g.

ASCHIERI (Ferdinando). Sulla curva normale di uno spazio a quattro dimensioni. [M. A. L. R., s. IV, v. IV, pp. 172-180 (1887)].

2254. Q 2, M2 6.

BORDIGA (Giovanni). La superficie del 6º ordine, con dieci rette, nello spazio R_4 ; e le sue projezioni nello spazio ordinario. [M. A. L. R., s. IV, v. IV, pp. 182-203 (1887)].

2255. Q 2, N4 2 a.

CASTELNUOVO (Guido). Numero degli spazi che segano più rette in uno spazio ad n dimensioni. [R. A. L. R., s. IV, v. V, 2° sem., pp. 71-78 (1889)].

Q 2. (Vedi ni 2217, 2242).

2256. Q 3 a.

TONELLI (Alberto). Osservazioni sulla teoria della connessione. [A. A. L. R., s. II, v. II, pp. 594-601 (1874-75)].

2257. Q 3 a.

BORTOLOTTI (Ettore). Sopra un teorema della teoria della connessione. [R. A. L. R., s. IV, v. V, 2° sem., pp. 229-234 (1889)].

2258. Q4a, P1, P2.

VERONESE (Giuseppe). Sopra alcune notevoli configurazioni di punti, rette e piani, di coniche e di superficie di 2º ordine. [T. A. L. R., s. III, v. IV, pp. 132-149 (1879-80)].

2259. 04a, Pl. P2.

VERONESE (Giuseppe). Sopra alcune notevoli configurazioni di punti, rette e piani, di coniche e superficie di 2º grado e di altre curve e superficie [M. A. L. R., s. III, v. IX, pp. 265-343 (1880-81)].

Q 4 a. (Vedi ni 2130, 2165).

2260. Q 4 b.

VOLPICELLI (Paolo). Soluzione completa e generale, mediante la geometria di situazione, del problema relativo alle corse del cavallo sopra qualunque scacchiere. [A. A. L. R., t. XXV, pp. 87-160, 364-454; t. XXVI, pp. 49-187, 241-325 (1871-72, 1872-73)].

2261. R1c.

CHELINI (Domenico). Dimostrazione nuova del parallelogrammo de' moti rotatori. [N. L. A., t. IV, pp. 377-380 (1850-51)].

2262. R 3.

BELLAVITIS (Giusto). Sulla Statica. [M. A. L. R., s. III, v. V, pp. 29-42 (1879-80)].

R 3 c. (Vedi nº 2190).

2263. R4ba.

MORERA (Giacinto). Sull'equilibrio delle superficie flessibili ed inestendibili. [T. A. L. R., s. III, v. VII, pp. 268-270 (1882-83)].

2264. R4ba.

VOLTERRA (Vito). Sull'equilibrio delle superficie flessibili ed inestendibili. Nota I. [T A. L. R., s. III, v. VIII, pp. 214-217 (1883-84)].

2265. R4b a.

VOLTERRA (Vito). Sull'equilibrio delle superficie flessibili ed inestendibili. Nota II. [T. A. L. R., s. III, v. VIII, pp. 244-246 (1883-84)].

2256. R4ba.

PADOVA (Ernesto). Ricerche sull'equilibrio delle superficie filessibili ed inestendibili. Nota I. [R. A. L. R., s. IV, v. I, pp. 269-274 (1884-85)].

2267. R4b a.

PADOVA (Ernesto). Ricerche sull'equilibrio delle superficie flessibili ed inestendibili. Nota II. [R. A. L. R. s. IV, v. I, pp. 306-309 (1884-85)].

2268. R 4 C.

GEBBIA (Michele). Sugli sforzi interni dei sistemi articolati. [M. A. L. R., s. III, v. XIII, pp. 259-273 (1881-82)].

2269. R 4 d.

FAVERO (Giovanni Battista). Intorno alle figure reciproche della Statica grafica. [A. A. L. R., s. II, v. II, pp. 455-495 (1874-75)].

2270. R 4 d.

SAVIOTTI (Carlo). Sopra alcuni punti di Statica grafica. [M. A. L. R., s. III, v. I, pp. 704-740 (1876-77)].

2271. R 4 d.

PADELLETTI (Dino). Figure alternamente reciproche ottenute mediante lo spostamento finito di un sistema rigido e diagrammi reciproci piani che se ne deducono. [T. A. L. R., s. III, v. III, pp. 120-121 (1878-79)].

2272. R 4 d.

SAVIOTTI (Carlo). Sopra un nuovo metodo generale di composizione delle forze e sua estensione al calcolo delle travature reticolari. [M. A. L. R., s. III, v. III, pp. 240-247 (1878-79)].

2273. R 4 d a.

FAVERO (Giovanni Battista). La determinazione grafica delle forze interne nelle travi reticolari. [M. A. L. R., s. III, v. II, pp. 201-273 (1877-78)].

2274. R 4 d a.

SAVIOTTI (Carlo). Le travature reticolari a membri caricati. [M. A. L. R., s. III, v. II, pp. 523-532 (1877-78)].

2275. R4da.

GUIDI (Camillo). Sulla determinazione grafica delle forze interne negli archi metallici. [M. A. L. R., s. III, v. IV, pp. 3-18 (1878-79)].

2276. R 4 d a.

GUIDI (Camillo). Sulla determinazione grafica delle forze interne nelle travi omogenee e nelle travi reticolari appoggiate agli estremi e soggette ad un sopraccarico mobile. [M. A. L. R., s. III, v. V, pp. 3-28 (1879-80)].

2277. R4d a.

GEBBIA (Michele). Determinazione grafica degli sforzi interni nelle travature reticolari con aste sovrabbondanti. [M. A. L. R., s. III, v. IX, pp. 467-479 (1880-81)].

2278. R 5 a.

FAVERO (Giovanni Battista). Intorno ad un recente studio sulla gravità. [R. A. L. R., s. IV, v. IV, 10 sem., pp. 310-313 (1888)].

R 5 a. (Vedi nº 2170).

2279. R 5 a a.

KELLER (Filippo). Sull'attrazione del parallelepipedo. [A. A. L. R., t. XXV, pp. 317-328 (1871-72)].

2280. R 5 a α.

BETTI (Enrico). Sopra la funzione potenziale di una ellissi omogenea. [A. A. L. R., s. II, v. II, pp. 262-263 (1874-75)].

2281. R 5 a a.

BELTRAMI (Eugenio). Sull'attrazione di un anello circolare od ellittico. [M. A. L. R., s. III, v. V, pp. 183-194 (1879-80)].

2282. R 5 b.

DINI (Ulisse). Sulla funzione potenziale dell'ellissi e dell'ellissoide. [A. A. L. R., s. II, v. II, pp. 689-707 (1874-75)].

2283. R 5 b.

GLASER. Distribuzione di materia agente sulla superficie di un elissoide, per ottenere nell'interno di detto solido una data azione costante in grandezza e direzione. [T. A. L. R., s. III, v. VII, pp. 224-227 (1882-83)].

2284. R 6 b.

BETTI (Enrico). Sopra una estensione dei principi generali della dinamica. [T. A. L. R., s. III, v. II, pp. 32-33 (1877-78)].

2285. R 6 b.

SIACCI (Francesco). Teorema fondamentale nella teoria delle equazioni canoniche del moto. [M. A. L. R., s. III, v. XII, pp. 423-436 (1881-82)].

2286. R 6 b y.

SIACCI (Francesco). Sopra una proposizione di Jacobi. [T. A. L. R., s. III, v. IV, pp. 236-240 (1879-80)].

2287. R 7 a.

CERRUTI (Valentino). Sopra una trasformazione delle equazioni del moto di un punto materiale. [T. A. L. R., s. III, v. III, pp. 196-197 (1878-79)].

2288. R 7 a.

CESARO (Ernesto). Formole relative al moto d'un punto. [R. A. L. R., s. IV, v. IV, 1° sem., pp. 18-19 (1888)].

2289. R 7 b δ.

AZZARELLI (Mattia). Moto dei proietti nei mezzi resistenti. [N. L. A., t. XVI, pp. 1071-1091 (1862-63)].

2290. R 7 f.

BATTAGLINI (Giuseppe). Sul movimento per una linea di 2º ordine. [T. A. L. R., s. III, v. I, pp. 211-212 (1876-77)].

2291. R 7 f.

BATTAGLINI (Giuseppe). Sul movimento per una linea di 2º ordine. [M. A. L. R., s. III, v. I, pp. 631-638 (1876-77)].

2292. R 7 g.

VOLPICELLI (Paolo). Del moto rettilineo lungo un sistema di piani diversamente inclinati, e contigui. [N. L. A., t. XIII, pp. 417-431, 478-490; t. XIV, pp. 107-120 (1859-60, 1860-61)].

2293. R 7 g.

VOLPICELLI (Paolo). Appendice alla memoria del moto rettilineo, lungo un sistema di piani diversamente inclinati, e contigui. [N. L. A., t. XIV, pp. 181-192 (1860-61)].

2294. R 7 g β.

DE SAINT-ROBERT (Paul). Du mouvement d'un pendule simple suspendu dans une voiture de chemin de fer. [M. A. L. R., s. III, v. III, pp. 277-291 (1878-79)].

2295. R 8 a.

VOLPICELLI (Paolo). Dimostrazione di un teorema di meccanica, enunciato, e non dimostrato, da Poisson. [A. A. L. R., s. II, v. I, pp. 62-67 (1873-74)].

2296. R 8 a.

CERRUTI (Valentino). Intorno ai movimenti non periodici di un sistema di punti materiali. [M. A. L. R., s. II, v. III, pp. 244-249 (1875-76)].

2297. R 8 a.

CERRUTI (Valentino). Intorno alle piccole oscillazioni di un corpo rigido interamente libero. [M. A. L. R., s. III, v. I, pp. 345-370 (1876-77)].

2298. R 8 a.

PALADINI (Bernardo). Sul movimento di rotazione che prende nel vuoto od in un fluido incomprensibile un corpo soggetto a forze di potenziale:

 $H_1 \cos^2 \theta + H_2 \cos \theta$.

[R. A. L. R., s. IV, v. IV, 1° sem., pp. 187-196 (1888)].

2299. R 8 a α.

CHELINI (Domenico). Nuova dimostrazione elementare delle proprietà fondamentali degli assi coniugati di rotazione e degli assi permanenti. [N. L. A., t. XXII, pp. 147-155 (1868-69)].

Rend. Circ. Matem., t. IX, parte 2ª.—Stampato il 13 novembre 1895. 12

2300. R 8 a α.

GEBBIA (Michele). Su due proprietà della rotazione spontanea dei corpi. [M. A. L. R., s. IV, v. I, pp. 326-333 (1884-85)].

2301. R 8 c a.

PADOVA (Ernesto). Proprietà del moto di un corpo di rivoluzione soggetto a forze che hanno la funzione potenziale $H\cos^2 z$. Nota I. [R. A. L. R.,, s. IV, v. II, 1° sem., pp. 135-140 (1885-86)].

2302. R 8 c α.

PADOVA (Ernesto). Proprietà del moto di un corpo di rivoluzione soggetto a forze che hanno la funzione potenziale $H\cos^2 \pi$. Nota II. [R. A. L. R., s. IV, v. II, 1° sem., pp. 168-174 (1885-86)].

2303. R 8 C Y.

CRESCINI (Ezio). Sul moto di una sfera che rotola su di un piano fisso. [R. A. L. R., s. IV, v. V, 1° sem., pp. 204-209 (1889)].

2304. R 8 e.

BETTI (Enrico). Sopra il moto di un sistema di un numero qualunque di punti. [T. A. L. R., s. III, v. I, pp. 129-130 (1876-77)].

2305. R 8 e.

SIACCI (Francesco). Sulle forze atte a produrre eguali spostamenti. Nota I. [R. A. L. R., s. IV, v. V, 1° sem., pp. 626-630 (1889)].

2306. R 8 e.

SIACCI (Francesco). Sulle forze atte a produrre eguali spostamenti. Nota II. [R. A. L. R., s. IV, v. V, 1° sem., pp. 856-860 (1889)].

2307. R 8 f α.

CERRUTI (Valentino). Nuovo teorema generale di meccanica. [T. A. L. R., s. III, v. II, pp. 75-76 (1877-78)].

2308. R 9 b.

VOLPICELLI (Paolo). Teorica elementare dell'urto fra solidi, qualunque sia la natura e la forma dei medesimi, supposti perfettamente liberi. [N. L. A., t. I, pp. 152-169 (1847-48)].

2309. S 2 a.

MORERA (Giacinto). Sui moti elicoidali dei fluidi. [R. A. L. R., s. IV, v. V, 1° sem., pp. 611-617 (1889)].

2310. S 6 b.

SIACCI (Francesco). Sugli angoli di massima gittata. [R. A. L. R., s. IV, v. III, 2º sem., pp. 211-216 (1887)].

2311. T 2 a.

VOLPICELLI (Paolo). Sulla dottrina di Galileo, circa la resistenza relativa delle travi. [A. A. L. R., t. XXIV, pp. 448-461 (1870-71)].

2312. T 2 a.

MENABREA (Luigi Federico). Sulla determinazione delle tensioni e delle pressioni ne' sistemi elastici. [A. A. L. R., s. II, v. II, pp. 201-229 (1874-75)].

2313. T 2 a.

CERRUTI (Valentino). Sopra un teorema del sig. Menabrea. [A. A. L. R., s. II, v. II, pp. 570-581 (1874-75)].

2314. T 2 a.

CERRUTI (Valentino). Sulle vibrazioni dei corpi elastici isotropi. [M. A. L. R., s. III, v. VIII, pp. 361-389 (1879-80)].

2315. T 2 a.

CERRUTI (Valentino). Ricerche intorno all'equilibrio dei corpi elastici isotropi. [M. A. L. R., s. III, v. XIII, pp. 81-123 (1881-82)].

2316. T 2 a.

CERRUTI (Valentino). Sulla deformazione di uno strato isotropo indefinito limitato da due piani paralleli. [R. A. L. R., s. IV, v. I, pp. 521-522 (1884-85)].

2317. T 2 a.

CERRUTI (Valentino). Sulla deformazione di un corpo elastico isotropo per alcune condizioni speciali ai limiti. [R. A. L. R., s. IV, v. IV, 1° sem., pp. 785-792 (1888)].

2318. T 2 a.

CESÀRO (Ernesto). Moti rigidi e deformazioni termiche negli spazi curvi. [R. A. L. R., s. IV, v. IV, 2° sem., pp. 376-384 (1888)].

2319. T 2 a.

PADOVA (Ernesto). Sulle deformazioni infinitesime. [R. A. L. R., s. IV, v. V, 1° sem., pp. 176-178 (1889)].

2320. T 2 a.

CESARO (Ernesto). Sulle variazioni di volume nei corpi elastici. [R. A. L. R., s. IV, v. V, 2° sem., pp. 259-264 (1889)].

2321. T 2 a α.

CERRUTI (Valentino). Sulla deformazione d'una sfera omogenea isotropa. Nota I. [R. A. L. R., s. IV, v. II, 1° sem., pp. 461-469 (1885-86)].

2322. T 2 a a.

CERRUTI (Valentino). Sulla deformazione d'una sfera omogenea isotropa. Nota II. [R. A. L. R., s. IV, v. II, 10 sem., pp. 586-593 (1885-86)].

2323. T 2 a a.

CERRUTI (Valentino). Sulla deformazione di un involucro sferico isotropo per dati spostamenti de' punti delle due superficie limiti. [R. A. L. R., s. IV, v. V, 2º sem., pp. 189-201 (1889)].

2324. T 2 a α.

MARCOLONGO (Roberto). Sulla deformazione di una sfera omogenea isotropa per speciali condizioni ai limiti. [R. A. L. R., s. IV, v. V, 2° sem., pp. 349-357 (1889)].

2325. T 2 c.

ROITI (Antonio). La velocità teorica del suono e la velocità molecolare dei gas. [M. A. L. R., v. I, s. III, pp. 39-45 (1876-77)].

2326. T 2 c.

ROITI (Antonio). Sulla propagazione del suono nella odierna teoria degli aereiformi. [M. A. L. R., s. III, v. I. pp. 762-777 (1876-77)].

2327. T3a, O5d, O6r B.

MANNHEIM (A.). Mémoire d'optique géométrique contenant la théorie du point représentatif d'un élément de surface réglée et son emploi, tant pour la démonstration nouvelle de théorèmes relatifs à la courbure des surfaces que pour la détermination plane des éléments des surfaces caustiques. [M. A. L. R., s. IV, v. I, pp. 520-546 (1884-85)].

2328. T 3 b.

VIOLA (Carlo). Le lamine sottili anisotrope colorate nella luce polarizzata parallela. [R. A. L. R., s. IV, v. IV, 1° sem., pp. 19-27 (1888)].

2329. ТЗс.

CESARO (Ernesto). Sur le pouvoir rotatoire magnétique. [R. A. L. R., s. IV, v. V, 2° sem., pp. 202-208 (1889)].

2330. T 4.

CERRUTI (Valentino). Considerazioni sui calori specifici. [T. A. L. R., s. III, v. I, pp. 136-141 (1876-77)].

2331. T 5 a, E 5.

VOLPICELLI (Paolo). Determinazione di un integrale definito, relativo alla elettrostatica; ed applicazioni del medesimo. [N. L. A., t. XV, pp. 383-405 (1861-62)].

2332. T 5 a, E 5.

VOLPICELLI (Paolo). Alcune rimarchevoli formule, che si ottengono da un integrale definito, relativo alla elettrostatica. [N. L. A., t. XV, pp. 443-454 (1861-62)].

2333. T 5 a.

VOLPICELLI (Paolo). Rapporti fra le accumulazioni elettriche, sopra due sfere conduttrici di raggio cognito, assegnati generalmente in termini finiti. [N. L. A., t. XVI, pp. 76-83 (1862-63)].

2334. T 5 a.

VOLPICELLI (Paolo). Alla domanda del socio Govi sulla elettrica tensione, risposta del socio P. Volpicelli. [A. A. L. R., s. II, v. II, pp. 303-332 (1874-75)].

2335. T 5 a.

VOLPICELLI (Paolo). Analisi fisico-matematica degli effetti elettrostatici relativi ad un coibente armato e chiuso. [A. A. L. R., s. II, v. II, pp. 609-628 (1874-75)].

2336. T 5 a.

BELTRAMI (Eugenio). Sulla determinazione sperimentale della densità elettrica alla superficie dei corpi conduttori. [M. A. L. R., s. III, v. I, pp. 491-502 (1876-77)].

2337. T 5 a.

VOLPICELLI (Paolo). Rettificazione delle formule dalle quali viene rappresentata la teorica fisico-matematica del condensatore voltaico. [M. A. L. R., s. III, v. II, pp. 811-850 (1877-78)].

2338. T 5 a.

MAGGI (Gian Antonio). Distribuzione dell'elettricità in equilibrio sopra due conduttori piani indefiniti, paralleli, assoggettati all'induzione di un punto situato nello spazio compreso fra essi. [M. A. L. R., s. III, v. VII, pp. 273-286 (1879-80)].

2339. T 5 a.

MAGGI (Gian Antonio). Induzione elettrica su conduttori limitati da piani indefiniti assoggettati all'azione di coibenti caricati simmetricamente intorno ad un asse. [M. A. L. R., s. III, v. IX, pp. 423-448 (1880-81)].

2340. T 5 a, H 11 c.

VOLTERRA (Vito). Sopra un problema di elettrostatica. [T. A. L. R., s. III, v. VIII, pp. 316-318 (1883-84)].

2341. T 5 a.

CESÀRO (Ernesto). Sulle formole di Maxwell. [R. A. L. R., s. IV, v. V, 1° sem., pp. 199-204 (1889)].

2342. T5c, Q1.

PADOVA (Ernesto). La teoria di Maxwell negli spazi curvi. [R. A. L. R., s. IV, v. V, 1° sem., pp. 875-880 (1889)].

T 6. (Vedi nº 2172).

2343. T 7 a.

FERRARIS (Galileo). Teoremi sulla distribuzione delle correnti elettriche costanti. [M. A. L. R., s. III, v. IV, pp. 163-171 (1878-79)].

2344. T 7 a.

BELTRAMI (Eugenio). Sull'estensione del principio di D'Alembert all'elettrodinamica. [R. A. L. R., s. IV, v. V, 1° sem., pp. 852-856 (1889)].

2345. T 7 b.

BAZZI (Eugenio). Sul calore sviluppato da una corrente durante il periodo variabile, [M. A. L. R., s. III, v. XIII, pp. 537-554 (1881-82)].

2346. U 2.

DE GASPARIS (Annibale). Sul valore del parametro nelle orbite ellittiche o paraboliche. [T. A. L. R., s. III, v. I, pp. 165-169 (1876-77)].

2347. U 2.

DE GASPARIS (Annibale). Sul calcolo del parametro nelle orbite planetarie. [T. A. L. R., s. III, v. I, pp. 246-247 (1876-77)].

2348. U 2.

DE GASPARIS (Annibale). Sopra alcuni elementi ellittici in funzione dell'anomalia media espressa in parti del raggio. [T. A. L. R., s. III, v. III, pp. 111-112 (1878-79)].

2349. U 2.

DE GASPARIS (Annibale). Sul valore inverso del cubo del raggio vettore di un pianeta espresso con una serie ordinata secondo le potenze del tempo. [T. A. L. R., s. III, v. III, pp. 144-145 (1878-79)].

2350. U 2.

DE GASPARIS (Annibale). Sopra una equazione fra le derivate parziali delle distanze inverse di tre pianeti che scambievolmente si attraggono. [T. A. L. R., s. III, vol. V, pp. 79-80 (1880-81)].

2351. U 2.

DE GASPARIS (Annibale). Sopra una nuova formola pel calcolo delle orbite delle stelle doppie. [T. A. L. R., s. III, v. V, pp. 133-134 (1880-81)].

2352. U 2.

DE GASPARIS (Annibale). Nuove serie, per esprimere le coordinate eliocentriche in funzione dell'anomalia media. [T. A. L. R., s. III, v. VI, pag. 65 (1881-82)].

2353. U 2.

BETTI (Enrico). Sopra la Entropia di un sistema Newtoniano in moto stabile. Nota I. [R. A. L. R., s. IV, v. IV, 2° sem., pp. 113-115 (1888)]. 2354. U 2.

BETTI (Enrico). Sopra la Entropia di un sistema Newtoniano in moto stabile. Nota II. [R. A. L. R., s. IV, v. IV, 2° sem., pp. 195-198 (1888)].

2355. U 3.

DE GASPARIS (Annibale). Sulla espressione di uno dei termini della correzione delle coordinate ellittiche nella teoria delle perturbazioni planetarie. [T. A. L. R., s. III, v. III, pp. 92-93 (1878-79)].

2356. U 3.

DE GASPARIS (Annibale). Sulla variazione delle eccentricità nelle orbite planetarie. [T. A. L. R., s. III, v. IV, pp. 50-51 (1879-80)].

2357. U 3.

DE GASPARIS (Annibale). Sulla variazione dell'area descritta dalla luna intorno alla terra, prodotta dall'azione solare. [T. A. L. R., s. III, v. IV, pp. 116-117 (1879-80)].

2358. U 3.

DE GASPARIS (Annibale). Verificazione ed uso di una nuova formola pel calcolo delle perturbazioni planetarie. [T. A. L. R., s. III, v. IV, 246-248 (1879-80)].

2359. U 3.

DE GASPARIS (Annibale). Sulle correzioni alle coordinate ellittiche, nel calcolo delle correzioni planetarie. [T. A. L. R., s. III, v. V, pp. 310-312 (1880-81)].

2360. U 6.

BETTI (Enrico). Sopra il moto di un ellissoide fluido eterogeneo. [T. A. L. R., s. III, v. V, pp. 201-202 (1880-81)].

V 3 b. (Vedi nº 2361).

2361. V3c, V3b.

VINCENT (H) et MARTIN (H). Passage du traité « De la musique » d'Aristide Quintilien relatif au nombre nuptial de Platon, traduit et annoté par M. H. Vincente M. H. Martin; suivi de deux notes de M. H. Martin, l'une sur l'époque d'Aristide Quintilien et sur celle de l'astronome Claude Ptolémée; l'autre sur la chronologie de la vie et des œuvres de Ptolémée. [N. L. A., t. XVIII, pp. 365-376 (1864-65)].

V 3 d. (Vedi nº 2368).

2362. V 4.

SÉDILLOT (L. Am.). Sur l'origine de nos Chiffres. (Lettre de M. Sédillot à M. le Prince B. Boncompagni). [N. L. A., t. XVIII, pp. 316-322 (1864-65)].

2363. V 4 c.

MARRE (Aristide). Le Talkhys D'I b n A l b a n n å, traduit pour la première fois (d'après un Ms. inédit de la Bibliothèque Bodléienne coté « Marsh 378 » n° CCXVII du Catalogue d'Uri). [N. L. A., t. XVII, pp. 289-319 (1863-64)].

2364. V 4 c.

MARRE (Aristide). Biographie d'I b n A l b a n n å, mathématicien du XIIIe siècle, extraite du Tekmilet Ed-Bibadj d'A h m e d B a b a, traduite et annotée. [N. L. A., t. XIX, pp. 1-10 (1865-66)].

2365. V 4 C.

BONCOMPAGNI (Baldassare). Introduction au Calcul Góbari et Hawâi — Traité d'arithmétique traduit de l'arabe par François Woepke, et précedé d'une notice de M. Aristide Marre sur un manuscrit possédé par M. Chasles, membre de l'Institut Impérial de France (Académie des Sciences), et contenant le texte arabe de ce traité. (Avertissement de B. Boncompagni). [N. L. A., t. XIX pp. 360-361 (1865-66)].

2366. V 4 c.

MARRE (Aristide). Sur un manuscrit arabe possédé par M. Chasles et contenant plusieurs traités d'Astronomie et un traité d'arithmétique. [N. L. A., t. XIX, pp. 362-364 (1865-66)].

2367. V 4 c.

Introduction au Calcul Gobarî et Hawâi. [N. L. A., t. XIX, pp. 365-383 (1865-66)].

V 4 c. (Vedi nº 2373).

2368. V5a, V3d.

MARTÍN (Th. Henri). Sur l'âge du traité De Republica de Cicéron et sur l'époque de Théodore Méliténiote. Passages de lettres adressées à B. Boncompagni, suivis d'une addition à sa note sur l'époque d'Aristide Quintilien et d'un article sur Aristide Quintilien tiré des Vite de' Matematici de Bernardino Baldi. [N. L. A., t. XIX, pp. 87-100 (1865-66)].

2369. V 5 a.

MARTIN (Th. Henri). Note sur un article inséré dans les Nouvelles Annales de Mathématiques et relatif à la publication intitulée: Passage du traité « De la musique » d'Aristide Quintilien. [N. L. A., t. XIX, pp. 267-268 (1865-66)].

2370. V 5 b.

BONCOMPAGNI (Baldassare). Delle versioni fatte da Platone Tiburtino traduttore del secolo duodecimo. [N. L. A., t. IV, pp. 247-286 (1850-51)].

2371. V 5 b.

BONCOMPAGNI (Baldassare) Della vita e delle opere di Gherardo Cre-

monese, traduttore del secolo duodecimo, e di Gherardo da Sabbionetta, astronomo del secolo decimoterzo. [N. L. A., t. IV, pp. 387-493 (1850-51)].

2372. V 5 b.

BONCOMPAGNI (Baldassare). Della vita e delle opere di Leonardo Pisano, matematico del secolo decimoterzo. [N. L. A., t. V, pp. 5-91, 208-246 (1851-52)].

2373. V 5 b, V 4 c.

WOEPCKE (F.). Recherches sur plusieurs ouvrages de Léonard de Pise découverts et publiés par M. le prince Balthasar Boncompagni, et sur les rapports qui existent entre ces ouvrages et les travaux mathématiques des arabes. [N. L. A., t. X, pp. 236-248; t. XII, pp. 230-275, 399-438; t. XIV, pp. 211-227, 241-269, 301-324, 343-359 (1856-57; 1858-59; 1860-61)].

2374. V 5 b.

BONCOMPAGNI (Baldassare). Intorno ad un trattato d'aritmetica stampato nel 1478. [N. L. A., t. XVI, pp. 1-64, 101-228, 301-364, 389-452, 503-630, 683-842, 909-1044 (1862-63)].

2375. V 5 b.

NARDUCCI (Enrico). Intorno ad un manoscritto della Biblioteca Alessandrina contenente gli apici di Boezio, senz'abaco e con valore di posizione. [M. A. L. R., s. III, v. I, pp. 503-509 (1876-77)].

2376. V 5 d.

NARDUCCI (Enrico). Trattatello sulle divisioni, secondo il sistema dell'abbaco, scritto in Italia innanzi al secolo XII. [R. A. L. R., s. IV, v. I, pp. 563-566 (1884-85)].

2377. V 7.

GOVI (Gilberto). Galile o'e i matematici del Collegio Romano nel 1611. [A. A. L. R., s. II, v. II, pp. 230-240 (1874-75)].

2378. V 7.

GOVI (Gilberto). Dei metodi proposti nel 1639 da B. Cavalieri per ottenere direttamente il logaritmo della somma o della differenza di due numeri dei quali sono dati i logaritmi e per risolvere mediante le funzioni circolari le equazioni di 2º grado. [M. A. L. R., s. II, v. III, pp. 173-178 (1875-76)].

2379. V 8, Q 1.

BELTRAMI (Eugenio). Un precursore italiano di Legendre e di Lobatschewski. [R. A. L. R., s. IV, v. V, 10 sem., pp. 441-448 (1889)].

Rend. Circ. Matem., t. IX, parte 2a.—Stampato il 14 novembre 1895.

2380. V 9.

CREMONA (Luigi). Commemorazione di Domenico Chelini. [T. A. L. R., s. III, v. III, pp. 54-59 (1878-79)].

2381. V 9.

SELLA (Quintino). Commemorazione del socio Gaspare Mainardi. [T. A. L. R., s. III, v. III, pp. 126-128 (1878-79)].

2382. V 9.

SELLA (Quintino). Commemorazione del socio Paolo Volpicelli. [T. A. L. R., s. III, v. III, pp. 160-168 (1878-79)].

2383. V 9.

SELLA (Quintino). Cenno necrologico di Giusto Bellavitis. [T. A. L. R., s. III, v. V, pp. 15-19 (1880-81)].

2384. V 9.

SIACCI (Francesco). Paolo Ballada di St. Robert. [R. A. L. R., s. IV, v. V, 1° sem., pp. 243-247 (1889)].

2385. V 9.

BRIOSCHI (Francesco). Notizie sulla vita e sulle opere di Giorgio Enrico Halphen. [R. A. L. R., s. IV, v. V, 1° sem., pp. 815-823 (1889)].

INDICE

PUBBLICAZIONI NON PERIODICHE

PERVENUTE IN DONO AL CIRCOLO.

Elenco XII (maggio 1894-febbrajo 1895)	1-8
REPERTORIO BIBLIOGRAFICO	
DELLE SCIENZE MATEMATICHE IN ITALIA.	
R. Istituto Veneto di Scienze, Lettere ed Arti (1840-1889). [Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti. — Memorie del	
Reale Istituto Veneto di Scienze, Lettere ed Arti]. Ni 1492-1641.	9-23
Errata-Corrige	23
Bullettino di Bibliografia e di Storia delle Scienze Matemati-	
che e Fisiche (1868-1887), pubblicato da B. Boncompagni.	
Ni 1642-1913	24-51
Nota del prof. Gino Loria	51
R. Accademia dei Lincei (1847-1889). [Atti dell'Accademia Pontificia dei Nuovi Lincei.—Atti della Reale Accademia dei Lincei.—Atti della Reale Accademia dei Lincei: Memorie della classe di scienze fisiche, matematiche e naturali. — Atti della Reale Accademia dei Lincei: Transunti. — Atti della Reale Accademia dei Lincei: Rendiconti].	
Ni 1914-2385	52-98

Fine della Parte 2ª del Tomo IX (1895).

Tome IX (1895) .- Parte II': SIBLIDTECA MATEMATICA.

28, via Ruggiero Settimo, Palermo.

Rest Lineary Vermo at Colottee Leners on Avid at 1492-1541.

der Nuova Lincot - Arti della Ream Accidentia del Lincot - Alti deba

Relietting di Ribbiografia e di Riorie delle delles Roserradi.

0015 teach

TOMO IX.

ANNO 1895.

RENDICONTI

DEL

CIRCOLO MATEMATICO

DI PALERMO

(28, via Ruggiero Settimo, 28)

Fascicoli I e II.

Gennajo-Febbrajo e Marzo-Aprile.

Conto corrente con la posta.

CIRCOLO MATEMATICO DI PALERMO

CONSIGLIO DIRETTIVO (Comitato di Redazione dei RENDICONTI) pel triennio 1894-95-96.

Residenti: Albeggiani, Gebbia, Gerbaldi, Guccia, Torelli.

Non residenti: Beltrami (Roma), Bianchi (Pisa), Brioschi (Milano), Capelli (Napoli), Cerruti (Roma), Cremona (Roma), Del Pezzo (Napoli), Jung (Milano), Loria (Genova), Maisano (Messina), Mittag-Leffler (Stoccolma), Peano (Torino), Pincherle (Bologna), Poincaré (Parigi), Volterra (Torino).

Delegato dal Consiglio per dirigere la pubblicazione dei Rendiconti (Art. 20 dello Statuto): Guccia.

NUOVI SOCI

[Vedi l'Elenco a pp. VII-XXVI del tomo VI dei Rendiconti].

RESIDENTI.

DATA DELLA NOMINA.

1893, 22 gennajo. Agnello Francesco. - Piazza Stazione, palazzo Valenti.

1894, 12 agosto. Bucca Fortunato.

1894, 23 dicembre. Crescini Ezio, prof. nel R. Liceo V. E.

1895, 13 geneajo. De Franchis Michele. — Corso Calatasimi, 245.

1894, 28 gennajo. Romeo Antonino, tenente del Genio nella Direzione territoriale di Palermo.

1892, 11 dicembre. **Tirelli** Francesco, dottore in Matematica, prof. nel R. Liceo Umberto I.—Corso Calatasimi, 243.

1894, 14 gennajo. Viola Achille, ingegnere.-Via Cappuccini, 9.

NON RESIDENTI.

1894, 8 aprile. Amanzio Domenico, dottore in Matematica, prof. nel R. Istituto Tecnico di Napoli.—

Concezione a Montecalvario, 53—Napoli.

1894, 11 marzo. Amici Nicola, dottore in Matematica-Piazza S. Pietro in Vincoli, 5-Roma.

1893, 24 dicembre. Bianchi Luigi, dottore in Matematica, prof. nell'Università di Pisa. - R. Università - Pisa.

1893, 8 gennajo. Bigiavi Carlo, dottore in Matematica. — Via Lorenzo il Magnisico, 4 — Firenze.

1894, 8 luglio. Burgatti Pietro, dottore in Matematica. — Via Principe Amedeo, 175-Roma.

1894, 11 febbrajo. Castellano Filiberto, dottore in Matematica, prof. nella R. Acc. Militare di Torino.—
R. Accademia Militare—Torino.

1894, 22 luglio. Enriques Federigo, dottore in Matematica. — R. Università—Bologna.

1893, 8 gennajo. Fano Gino, dottore in Matematica. — R. Università — Torino.

1893, 23 aprile. Fiorentino Aristide, dottore in Fisica. — Liceo Mandralisca — Cefalù.

1893, 8 gennajo. Garibaldi Cesare, dottore in Matematica. — Via Balbi, 21 — Genova.

1894, 13 maggio. Halsted George Bruce [S. P.], prof. nella Università di Texas.—Austin, Texas, U.S. A.

1893, 26 febbrajo. Lauricella Giuseppe, dottore in Matematica. – Via Atenea – Girgenti.

1892, 26 giugno. Legnazzi Enrico Nestore, prof. nella R. Università di Padova. — Padova.

1895, 24 febbrajo. Levi-Civita Tullio, dottore in Matematica. — Padova.

1894, 23 dicembre. Macfarlane Alexander, prof. nella Cornell-University di Ithaca.—Ithaca (New-York, U. S. A.).

1894, 14 gennajo. Mancini Ernesto, ingegnere, segretario della R. Accademia dei Lincei.—Palazzo Corsini — Roma.

1894, 8 luglio. Massimi Pacifico, dottore in Matematica. — Via del Pellegrino, 96—Roma.

1895, 27 gennajo. Menabrea, Conte Luigi Federico, marchese di Valdora, tenente generale, cav. della Santissima Annunziata, senatore del Regno, etc. — Chambery (Savia).

1894, 13 maggio. Porcelli Onofrio, preside del R. Istituto Tecnico di Bari.—Bari.

Segue in 3ª pagina.

DATA DELLA NOMINA.

1894, 23 dicembre.

Ricci Gregorio, prof. nella R. Università di Padova.

1894, 28 gennajo. **Somigliana** Carlo, dottore in Matematica, prof. nell'Università di Pavia. — R. Università — Pavia.

1894, 11 marzo.

1893, 9 luglio.

1893, 26 marzo.

Studnička F. J., professore nell'Università Boema di Praga.—Praga.

Terzi, Marchese Gabriele, maggiore di Stato Maggiore.—Palazzo Terzi, Bergamo.

1895, 13 gennajo. Terzi, Marchese Gabriele, maggiore di Stato Maggiore. — Palazzo Terzi, Bergamo.

1894, 11 marzo. Vailati Giovanni, dottore in Matematica, assistente alla Cattedra di Calcolo infinitesi-

male nella R. Università di Torino.-R. Università-Torino.

Valeri Demetrio, prof. nel R. Liceo di Modena. — R. Liceo — Modena.

Zanotti Bianco Ottavio, ingegnere. — R. Università — Torino.

ANNUNZI DI RECENTI PUBBLICAZIONI.

Outre les renseignements pratiques qu'il contient chaque année, l'Annuaire du Bureau des Longil des pour 1895 renferme des articles dus aux savants les plus illustres sur les Monnaies, la Statistique, la Géographie, la Minéralogie, etc., ensin les notices suivantes: Ondes atmosphériques lunaires; par M. Bouquet de la Grye. — Sur le Congrès géodésique d'Insprück; par M. Tisserand. — L'Observatoire du mont Blanc; par M. J. Janssen.—La Photométrie photographique; par M. J. Janssen.—Rapport sur les propositions d'unification des jours astronomique et civil; par M. H. Poincaré. In-18. (Librairie, Gauthier-Villars et fils, 55, quai des Grands-Augustins, Paris). Prix: 1fr, 50.

INDEX du Répertoire bibliographique des Sciences Mathématiques, publié par la Commission permanente du Répertoire. Grand in-8, 1893. Prix 2 fr.—Librairie Gauthier-Villars et fils, 55, Quai des Grands-Augustins, Paris.

VIVANTI, Giulio, dottore in Matematica. — Il concetto d'infinitesimo e la sua applicazione alla Matematica. Mantova, 1894. Prezzo L. 3 (Ditta Editrice G. Mondovi, Mantova).

MÉRAY, Ch., professeur à la Faculté des Sciences de Dijon.—Leçons nouvelles sur l'Analyse infinitésimale et ses applications géométriques.—Première Partie: Principes généraux. 1894. (Librairie Gauthier-Villars et fils, quai des Grands-Augustins, 55, Paris). Prix: 13 fr.

CAPELLI, Alfredo, professore ordinario nella R. Università di Napoli. — Lezioni di Algebra complementare ad uso degli aspiranti alla licenza Universitaria in Scienze fisiche e matematiche. Prezzo L. 8 — Napoli, 1895. (B. Pellerano, via Gennaro Serra, 20, Napoli).

BRISSE, Ch., professeur à l'École Centrale et au Lycée Condorcet, Répétiteur à l'École Polytechnique.—Cours de Géométrie descriptive à l'usage des élèves de l'enseignement secondaire normale. 1895. (Paris, GAUTHIER-VILLARS, et fils, 55, quai des Grands-Augustins).

CASTELLANO, F., professore nella R. Accademia Militare.—Lezioni di Meccanica razionale. 1895. (Torino, Tipografia Editrice G. Candeletti, via della Zecca, nº 11).

ANTOMARI, X et LAISANT, C.-A., docteurs-es-Sciences Mathématiques.—Questions de Mécanique à l'usage des élèves de Mathématiques spéciales. 1895. (Paris, Librairie Nony et Cie., 17, rue des Écoles).

LUCAS, Édouard. — Récréations Mathématiques. IV: Le Calendrier perpétuel. — L'Arithmétique en boules.—L'Arithmétique en bâton.—Les Mérelles au XIII^e siècle.—Les Carrés magiques de Fermat.—Les Réseaux et les Dominos. — Les Régions et les quatre Couleurs. — La Machine à marcher. 1894. (Paris, GAUTHIER-VILLARS et fils, 55, quai des Grands-Augustins).

BRILL, Dr. A., Professor an der Universität Tübingen, und NOETHER, Dr. M., Professor an der Universität Erlangen. — Die Entwicklung der Theorie der algebraischen Functionen in terer und neuerer Zeit. [Sonderabdruck aus dem Jahresbericht der Deutschen Mathematiker-Verei-III. (1893)]. (Druck und Verlag von Georg Reimer, Berlin).

TOMO IX (ANNO 1895). — Fascicoli I e II (gennajo-febbrajo e marzo-aprile).

(Pubblicato il 28 febbrajo 1895).

INDICE DELLE MATERIE.

PARTE PRIMA — MEMORIE E COMUNICAZIONI. GUCCIA. — Ricerche sui sistemi lineari di curve algebriche piane, dotati di singolarità ordinarie (Memoria II ^a)) » » » » »	1 65 79 86 87 96
PARTE SECONDA — BIBLIOTECA MATEMATICA. Pubblicazioni non periodiche pervenute in dono al Circolo: XIIº Elenco (maggio 1894—febbrajo 1895).	»	1
G. B. Guccia, direttore responsabile a' sensi di legge.	1	1

I nuovi soci che volessero render completa la propria collezione dei RENDICONTI potranno farlo, una sola volta, per ciascuno dei volumi pubblicati prima della loro ammissione, al prezzo di LIRE 6, franco di porto in tutti gli Stati dell'Unione Generale Postale.

RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO

A partire da gennajo 1888 questa raccolta matematica si pubblica per fascicoli bimestrali in-8º grande, caratteri elzeviri—6 fascicoli formano ogni anno un volume di circa 300 pagine, che comprende due parti: 1º Memorie e Comunicazioni, 2º Biblioteca Matematica. Al volume vanno annessi gl'indici e la copertina.

Prezzo	del	Tomo	I (1884-1887) in-8° grande, di pagine VIII-406	
))		II (1888) in-80 grande, di pagine 319 (due parti)	
"	"	(A)	(1880) in-8° grande, di pagine 352 (due parti)	
- 30	"	»	(1800) in-8° grande, di pagine Akvin))	
))	33		(1801) III-0° grande, di pagine 4°4	
23	"	»	VI (1802) in-80 grande, di pagine AAAII)41 (11802)	
*	*	"	(1x02) in-o granuc, ui pagine 400 (45)	
*))))	VIII (1894) in-8° grande, di pagine 434 (due parti) L. 15.	

È aperta l'associazione pel Tomo IX (1895) al prezzo di L. 15, franco di porto in tutti gli Stati dell'Unione Generale Postale. Inviare vaglia postale al

Tesoriere del Gircolo Matematico, via Ruggiero Settimo, 28, Palermo.

Tipografia Matematica, 28, via Ruggiero Settimo, Palermo.

TOMO IX.

ANNO 1895.

RENDICONTI

DEL

CIRCOLO MATEMATICO

DI PALERMO

(28, via Ruggiero Settimo, 28)

Fascicoli III e IV.

Maggio-Giugno e Luglio-Agosto.

Conto corrente con la posta.

Di prossima pubblicazione: l'Annuario del Circolo Matematico pel 1895.

Mr

CIRCOLO MATEMATICO DI PALERMO

CONSIGLIO DIRETTIVO (Comitato di Redazione dei RENDICONTI) pel triennio 1894-95-96.

Residenti: Albeggiani, Gebbia, Gerbaldi, Guccia, Torelli.

Non residenti: Beltrami (Roma), Bianchi (Pisa), Brioschi (Milano), Capelli (Napoli) Cerruti (Roma), Cremona (Roma), Del Pezzo (Napoli), Jung (Milano), Loria (Genova) Maisano (Messina), Mittag-Leffler (Stoccolma), Peano (Torino), Pincherle (Bologna) Poincaré (Parigi), Volterra (Torino).

Delegato dal Consiglio per dirigere la pubblicazione dei Rendiconti (Art. 20 dello Statuto): Guccia.

NUOVI SOCI

[Vedi l'Elenco a pp. VII-XXVI del tomo VI dei Rendiconti].

RESIDENTI.

DATA DELLA NOMINA. Agnello Francesco. - Piazza Stazione, palazzo Valenti. WEE 1893, 22 gennajo.

Bucca Fortunato. 1894, 12 agosto.

Crescini Ezio, prof. nel R. Liceo V. E. 1894, 23 dicembre.

De Franchis Michele. — Corso Calatasimi, 245. 1895, 13 gennajo.

Romeo Antonino, tenente del Genio nella Direzione territoriale di Palermo. 1894, 28 gennajo.

Tirelli Francesco, dottore in Matematica, prof. nel R. Liceo Umberto I.-Corso Cala 1892, 11 dicembre. tasimi, 243.

Viola Achille, ingegnere.-Via Cappuccini, 9. 1894, 14 gennajo.

NON RESIDENTI.

Amanzio Domenico, dottore in Matematica, prof. nel R. Istituto Tecnico di Napoli. 1894, 8 aprile. Concezione a Montecalvario, 53-Napoli.

Amici Nicola, dottore in Matemat ca-Piazza S. Pietro in Vincoli, 5-Roma. 1894, 11 marzo.

Bianchi Luigi, dottore in Matematica, prof. nell'Università di Pisa.-R. Università-Pisa 1893, 24 dicembre.

Bigiavi Carlo, dottore in Matematica. - Via Lorenzo il Magnifico, 4 - Firenze. 1893, 8 gennajo.

Burgatti Pietro, dottore in Matematica. — Via Principe Amedeo, 175-Roma. 1894, 8 luglio.

Castellano Filiberto, dottore in Matematica, prof. nella R. Acc. Militare di Torino.-1894, 11 febbrajo. R. Accademia Militare-Torino.

Cordone Gerolamo, dottore in Matematica. - Via Giustiniani, 6, int. 2 - Genova. 1895, 28 aprile.

Di Pirro Giovanni, dottore in Matematica. — Via Macchiavelli, 49, int. 13 — Roma 1895, 10 marzo.

Enriques Federigo, dottore in Matematica. — R. Università—Bologna.

1894, 22 luglio.

Fano Gino, dottore in Matematica. — R. Università — Torino. 1893, 8 gennajo.

Fiorentino Aristide, dottore in Fisica. — Liceo Mandralisca — Cefalù. 1893, 23 aprile.

Garibaldi Cesare, dottore in Matematica. — Via Balbi, 21 — Genova. 1893, 8 gennajo. Halsted George Bruce [S. P.], prof. nella Università di Texas. - Austin, Texas, U. S. A

1894, 13 maggio.

Lauricella Giuseppe, dottore in Matematica. - Via Atenea - Girgenti. 1893, 26 febbrajo.

Legnazzi Enrico Nestore, prof. nella R. Università di Padova. - Padova. 1892, 26 giugno.

Levi-Civita Tullio, dottore in Matematica. — Padova. 1895, 24 febbrajo.

Macfarlane Alexander, prof. nella Cornell-University di Ithaca. - Ithaca (New-York 1894, 23 dicembre. U. S. A.).

Mancini Ernesto, ingegnere, segretario della R. Accademia dei Lincei.—Palazzo Cor 1894, 14 gennajo. sini - Roma.

Massimi Pacifico, dottore in Matematica. - Via del Pellegrino, 96-Roma. 1894, 8 luglio.

Menabrea, Conte Luigi Federico, marchese di Valdora, tenente generale, cav. della 895, 27 gennajo.

Santissima Annunziata, senatore del Regno, etc. — Chambery (Savoia). Segue in 3ª pagina.

DATA DELLA NOMIN	A.
1895, 10 marzo.	Neppi Modona Angelo, ingegnere, dottore in Matematica, prof. nel R. Istituto Tecnico di Girgenti.
1895, 28 aprile.	Painlevé Paolo, dottore in Scienze, prof. aggiunto nella Facoltà delle Scienze di Parigi. — 99, rue de Rennes — Paris.
1894, 13 maggio.	Porcelli Onofrio, preside del R. Istituto Tecnico di Bari.—Bari.
1894, 23 dicembre.	Ricci Gregorio, prof. nella R. Università di Padova.
1894, 28 gennajo.	Somigliana Carlo, dottore in Matematica, prof. nell'Università di Pavia. — R. Università — Pavia.
1894, 11 marzo.	Studnička F. J., professore nell'Università Boema di Praga.—Praga.
1895, 13 gennajo.	Terzi, Marchese Gabrie'e, maggiore di Stato Maggiore. — Palazzo Terzi, Bergamo.
1894, 11 marzo.	Vailati Giovanni, dottore in Matematica, assistente alla Cattedra di Calcolo infinitesi-
-P a luelie	male nella R. Università di Torino.—R. Università—Torino.

ANNUNZI DI RECENTI PUBBLICAZIONI.

Zanotti Bianco Ottavio, ingegnere. — R. Università — Torino.

1893, 9 luglio. 1893, 26 marzo. Valeri Demetrio, prof. nel R. Liceo di Modena. — R. Liceo — Modena.

BRISSE, Ch., professeur à l'École Centrale et au Lycée Condorcet, Répétiteur à l'École Polytechnique.—Cou s de Géométrie descriptive à l'usage des élèves de l'enseignement secondaire normale. 1895. (Paris, Gauthier-Villars, et fils, 55, quai des Grands-Augustins).

ANTOMARI, X et LAISANT, C.-A., docteurs-es-Sciences Mathémat ques. — Questions de Mécanique à l'usage des élèves de Mathématiques spéciales. 1895. (Paris, Librairie Nony et Cie., 17, rue des Écoles).

LUCAS, Édouard. — Récréations Mathématiques. IV: Le Calendrier perpétuel. — L'Arithmétique en baules.—L'Arithmétique en bâton.—Les Mérelles au XIIIe siècle.—Les Carrés magiques de Fermat.—Les Réseaux et les Dominos. — Les Régions et les quatre Couleurs. — La Machine à marcher. 1894. Prix: Hollande, 12 fr. — Vélin, 7 fr. 50. (Paris, Gauthier-Villars et fils, 55, quai des Grands-Augustins).

PAINLEVÉ, Paul, Maître de conférences à la Facu'té des Sciences de Paris. — Lecons sur l'intégration des équations différentielles de la Mécanique et applications. Paris, in-4 lith. 1895. 295 p. Prix: 14 fr. (Librairie scientifique de A. Hermann, 8, rue de la Sorbonne, Paris).

NIEWENGLOWSKI, B., Professeur de Mathématiques spéciales au Lycée Louis-le-Grand, Membre du Conseil supérieur de l'Instruction pub'ique. — Cours de Géométrie analytique, à l'usage des Élèves de la classe de Mathématiques spéciales et des Candidats aux Écoles du Gouvernement. 3 volumes grand in-8, avec nombreuses figures, se vendant séparément. — Tome I: Sections coniques; 1894. Prix: 10 fr. — Tome II: Construction des courbes planes. Compléments relatifs aux coniques; 1895. Prix: 8 fr. — Tome III (en préparation): Géométrie dans l'espace, avec une Note sur les transformations en Géométrie; par E. Borel, Maître de Conférences à la Faculté des Sciences de Lille. (Paris, Gauthier-Willars et fils, 55, quai des Grands-Augustins).

APPELL, Paul, Membre de l'Institut, Professeur à la Faculté des Sciences, et GOURSAT (Édouard), Maître de Conférences à l'École Normale supérieure. — Théorie des Fonctions algébriques et de leurs intégrales. Étude des fonctions analytiques sur une surface de Riemann. Avec une Préface de M. Ch. Hermite. Grand in-8, avec figures; 1895. (Paris, GAUTHIER-VILLARS et fils, 55, quai des Grands-Augustins).

POINCARÉ, H., Membre de l'Institut, Professeur à la Faculté des Sciences.—Les Méthodes nouvelles de la Mécanique céleste. 2 beaux volumes grand in-8, se vendant séparément — Tome I: Solutions périodiques. Non-existance des intégrales uniformes. Solutions asymptotiques; 1892. Prix: 12 fr. — Tome II: Méthodes de MM. Newcomb, Gyldén, Lindstedt et Boh'in; 1893. Prix: 14 fr. (Paris, Gauthier-Villars et fils, 55, quai des Grands-Augustins).

TOMO IX (ANNO 1895). — Fascicoli III e IV (maggio-giugno e luglio-agosto).

(Pubblicato il 30 giugno 1895).

INDICE DELLE MATERIE.

PARTE PRIMA — MEMORIE E COMUNICAZIONI.		
VIVANTI Preliminari per lo studio delle funzioni di due variabili (Continuaz. e sine)	Pag.	113
BURGATTI. — Un teorema di Meccanica))	125
BORTOLOTTI (Emma). — Sulle frazioni continue algebriche periodiche))	136
PICARD. — A propos de quelques récents travaux mathématiques))	150
PICARD. — A propos de quelques recents travalles mathematiques))	159
PICARD. — Sur la théorie des surfaces algébriques))	167
GERBALDI. — Sulle involuzioni di specie qualunque	"	169
DI PIRRO. — Sulle trasformazioni delle equazioni della Dinamica		- 77
BERZOLARI. — Sulle secanti multiple di una curva algebrica dello spazio a tre od a quattro		186
dimensioni (Estratto di Lettera diretta al prof. C. F. Geiser)	"	
GARIBAI DI - Un piccolo contributo alla teoria degli aggregati	"	198
VIVANTI — Sulla irrazionalità icosaedrica	"	202
ACCIONE Su di un teorema di Geometria projettiva))	208
CORDONE. — Sulla congruenza generale di 4º grado secondo un modulo primo	"	209
CONDONIA - Sun conference grant gran		
THE REPORT OF THE PARTY OF THE		
PARTE SECONDA — BIBLIOTECA MATEMATICA.		
Repertorio bibliografico delle Scienze Matematiche in Italia:		
R. Istuto Veneto di Scienze, Lettere ed Arti))	9
Bullettino di Bibliografia e di Storia delle Scienze Matematiche e Fisiche	>>	24
		200
G. B. Guccia, direttore responsabile a' sensi di legge.		

I nuovi soci che volessero render completa la propria collezione dei RENDICONTI potranno farlo, una sola volta, per ciascuno dei volumi pubblicati prima della loro ammissione, al prezzo di LIRE 6, franco di porto in tutti gli Stati dell'Unione Generale Postale.

RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO

A partire da gennajo 1888 questa raccolta matematica si pubblica per fascicoli bimestrali in-8º grande, caratteri elzeviri—6 fascicoli formano ogni anno un volume di circa 300 pagine, che comprende due parti 1º Memorie e Comunicazioni, 2º Biblioteca Matematica. Al volume vanno annessi gl'indici e la copertina.

										-					L	
zo del	Tomo	I	(1884-1	(887)	in-8° gr	and	e, di pa	agine	VIII-	406 .					L. 15	
))))	II	(1888)	in-8°	grande,	di	pagine	319	(aue	partij						
))	>>	III	(1889)	in-8º	grande,	di	pagine	352	que	partij	Estate.					
))))	IV	(1890)	in-8°	grande,	di	pagine	XXVI	11-350	o (aue	parti).				
))))	V	(1891)	in-8°	grande,	di	pagine	404	(due	parti)						
))	VI	(1892)	in-8°	grande,	di	pagine	XXXII	1-341	(due	parti)					
, ,,))	VII	(1893)	in-80	grande,	di	pagine	400	(due	parti)						
»,	» ·	VIII	(1894)	in-8°	grande,	di	pagine	434	(due	parti)			•		L. 15	1
	» » » »)	" " III " " IV " " V " " VI	" " II (1888) " " III (1889) " " IV (1890) " " V (1891) " " VI (1892) " " VII (1893)	" " II (1888) in-8° " " III (1889) in-8° " " IV (1890) in-8° " " V (1891) in-8° " " VI (1892) in-8° " " VII (1893) in-8°	" " II (1888) in-8° grande, " " III (1889) in-8° grande, " " IV (1890) in-8° grande, " " V (1891) in-8° grande, " " VI (1892) in-8° grande, " " VII (1893) in-8° grande,	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "

È aperta l'associazione pel Tomo IX (1895) al prezzo di L. 15, franco di porto in tutti gli Stat dell'Unione Generale rostale. Inviare vaglia postale al

Tesoriere del Circolo Matematico, via Ruggiero Settimo, 28, Palermo.

21. 11. 95.

Pubblicazione bimestrale.

TOMO IX.

ANNO 1895.

RENDICONTI

DEL

CIRCOLO MATEMATICO

DI PALERMO

(28, via Ruggiero Settimo, 28)

Fascicolo V.

Settembre-Ottobre.

Conto corrente con la posta.

Di prossima pubblicazione: l'Annuario del Circolo Matematico pel 1895.

CIRCOLO MATEMATICO DI PALERM

CONSIGLIO DIRETTIVO (Comitato di Redazione dei RENDICON) pel triennio 1894-95-96.

Residenti: Albeggiani, Gebbia, Gerbaldi, Guccia, Torelli.

Non residenti: Beltrami (Roma), Bianchi (Pisa), Brioschi (Milano), Capelli (Nat Cerruti (Roma), Cremona (Roma), Del Pezzo (Napoli), Jung (Milano), Loria (Gene Maisano (Messina), Mittag-Leffler (Stoccolma), Peano (Torino), Pincherle (Bolog Poincaré (Parigi), Volterra (Torino).

Delegato dal Consiglio per dirigere la pubblicazione dei Rediconti (Art. 20 dello Statuto): Guccia.

NUOVI SOCI

[Vedi l'Elenco a pp. VII-XXVI del tomo VI dei Rendiconti].

RESIDENTI.

DATA DELLA NOMINA.

1893, 8 gennajo.

1894, 11 febbrajo.

1894, 8 luglio.

1895, 10 marzo. 1894, 22 luglio.

1893, 8 gennajo.

1893, 8 gennajo.

1894, 13 maggio. 1893, 26 febbrajo.

1892, 26 giugno. 1895, 24 febbrajo.

1894, 8 luglio.

1895, 27 gennajo.

1893, 23 aprile.

1893, 22 gennajo. Agnello Francesco. — Piazza Stazione, palazzo Valenti.

1894, 12 agosto. Bucca Fortunato.

1894, 23 dicembre. Crescini Ezio, prof. nel R. Liceo V. E.

De Franchis Michele. - Corso Calatasimi, 245. 1895, 13 gennaio.

1892, 11 dicembre. Tirelli Francesco, dottore in Matematica, prof. nel R. Liceo Umberto I.—Corso Calatasimi, 243.

1894, 14 gennajo. Viola Achille, ingegnere.—Via Cappuccini, 9.

NON RESIDENTI.

Amanzio Domenico, dottore in Matematica, prof. nel R. Istituto Tecnico di Napoli.-1894, 8 aprile. Concezione a Montecalvario, 53-Napoli.

1894, 11 marzo. Amici Nicola, dottore in Matematica-Piazza S. Pietro in Vincoli, 5-Roma.

Bianchi Luigi, dottore in Matematica, prof. nell'Università di Pisa.—R. Università—Pisa. 1893, 24 dicembre.

Bigiavi Carlo, dottore in Matematica. — Via Lorenzo il Magnifico, 4 — Firenze.

Burgatti Pietro, dottore in Matematica. - Via Principe Amedeo, 175-Roma.

Castellano Filiberto, dottore in Matematica, prof. nella R. Acc. Militare di Torino.-R. Accademia Militare-Torino.

1895, 28 aprile.

Cordone Gerolamo, dottore in Matematica. — Via Giustiniani, 6, int. 2 — Genova. Di Pirro Giovanni, dottore in Matematica. — Via Macchiavelli, 49, int. 13 — Roma.

Enriques Federigo, dottore in Matematica. — R. Università—Bologna.

Fano Gino, dottore in Matematica."— R. Università — Torino.

Fiorentino Aristide, dottore in Fisica. — Liceo Mandralisca — Cefalù.

Garibaldi Cesare, dottore in Matematica. — Via Balbi, 21 — Genova.

Halsted George Bruce [S. P.], prof. nella Università di Texas. - Austin, Texas, U. S. A.

Lauricella Giuseppe, dottore in Matematica. - Via Atenea - Girgenti.

Legnazzi Enrico Nestore, prof. nella R. Università di Padova. - Padova.

Levi-Civita Tullio, dottore in Matematica. — Padova.

Macfarlane Alexander, prof. nella Cornell-University di Ithaca. — Ithaca (New-York, 1894, 23 dicembre.

U. S. A.).

Mancini Ernesto, ingegnere, segretario della R. Accademia dei Lincei.-Palazzo Cor-1894, 14 gennajo. sini - Roma.

Massimi Pacifico, dottore in Matematica. — Via del Pellegrino, 96-Roma.

Menabrea, Conte Luigi Federico, marchese di Valdora, tenente generale, cav. della Santissima Annunziata, senatore del Regno, etc. - Chambéry (Savoia).

Segue in 3ª pagina.

TA DELLA NOMINA.

395, 10 marzo. Neppi Modona Angelo, ingegnere, dottore in Matematica, prof. nel R. Istituto Tecnico di Girgenti.

395, 28 aprile. Painlevé Paolo, dottore in Scienze, prof. aggiunto nella Facoltà delle Scienze di Parigi. — 99, rue de Rennes — Paris.

394, 13 maggio. Porcelli Onofrio, preside del R. Istituto Tecnico di Bari.—Bari.

394, 23 dicembre. Ricci Gregorio, prof. nella R. Università di Padova.

394, 28 gennajo. Romeo Antonino, capitano nel 2º Reggimento Genio. — Casale Monferrato.

394, 28 gennajo. Somigliana Carlo, dottore in Matematica, prof. nell'Università di Pavia. — R. Università — Pavia.

394, 11 marzo. Studnička F. J., professore nell'Università Boema di Praga.—Praga.

395, 13 gennajo. Terzi, Marchese Gabrie'e, maggiore di Stato Maggiore. — Palazzo Terzi, Bergamo. Vailati Giovanni, dottore in Matematica, assistente alla Cattedra di Calcolo infinitesi-

male nella R. Università di Torino.-R. Università-Torino.

893, 9 luglio. Valeri Demetrio, prof. nel R. Liceo di Modena. — R. Liceo — Modena.

893, 26 marzo. Zanotti Bianco Ottavio, ingegnere. — R. Università — Torino.

ANNUNZI DI RECENTI PUBBLICAZIONI.

BRISSE, Ch., professeur à l'École Centrale et au Lycée Condorcet, Répétiteur à l'École Polytechnique.—Cours de Géométrie descriptive à l'usage des élèves de l'enseignement secondaire normale. 1895. Paris, GAUTHIER-VILLARS, et fils, 55, quai des Grands-Augustins).

ANTOMARI, X et LAISANT, C.-A., docteurs-es-Sciences Mathématiques. — Questions de Mécanique à l'usage des élèves de Mathématiques spéciales. 1895. (Paris, Librairie Nony et Cie., 17, rue des Écoles).

LUCAS, Édouard. — Récréations Mathématiques. IV: Le Calendrier perpétuel. — L'Arithmétique en boules.—L'Arithmétique en bâton.—Les Mérelles au XIII^e siècle.—Les Carrés magiques de Fermat.—Les Réseaux et les Dominos. — Les Régions et les quatre Couleurs. — La Machine à marcher. 1894. Prix: Hollande, 12 fr. — Vélin, 7 fr. 50. (Paris, Gauthier-Villars et fils, 55, quai des Grands-Augustins).

PAINLEVÉ, Paul, Maître de conférences à la Facu'té des Sciences de Paris. — Lecons sur l'intégration des équations différentielles de la Mécanique et applications. Paris, in-4 lith. 1895.

295 p. Prix: 14 fr. (Librairie scientifique de A. Hermann, 8, rue de la Sorbonne, Paris).

NIEWENGLOWSKI, B., Professeur de Mathématiques spéciales au Lycée Louis-le-Grand, Membre du Conseil supérieur de l'Instruction publique. — Cours de Géométrie analytique, à l'usage des Élèves de la classe de Mathématiques spéciales et des Candidats aux Écoles du Gouvernement. 3 volumes grand in-8, avec nombreuses figures, se vendant séparément. — Tome I: Sections coniques; 1894. Prix: 10 fr. — Tome II: Construction des courbes planes. Compléments relatifs aux coniques; 1895. Prix: 8 fr. — Tome III (en préparation): Géométrie dans l'espace, avec une Note sur les transformations en Géométrie; par E. Borel, Maître de Conférences à la Faculté des Sciences de Lille. (Paris, Gauthier-Willars et fils, 55, quai des Grands-Augustins).

APPELL, Paul, Membre de l'Institut, Professeur à la Faculté des Sciences, et GOURSAT (Édouard), Maître de Conférences à l'École Normale supérieure. — Théorie des Fonctions algébriques et de leurs intégrales. Étude des fonctions analytiques sur une surface de Riemann. Avec une Préface de M. Ch. Hermite. Grand in-8, avec figures; 1895. (Paris, GAUTHIER-VILLARS et fils, 55, quai des Grands-Augustins).

POINCARÉ, H., Membre de l'Institut, Professeur à la Faculté des Sciences.—Les Méthodes nouvelles de la Mécanique céleste. 2 beaux volumes grand in-8, se vendant séparément — Tome I: Solutions périodiques. Non-existance des intégrales uniformes. Solutions asymptotiques; 1892. Prix: 12 fr. — Tome II: Méthodes de MM. Newcomb, Gyldén, Lindstedt et Bohlin; 1893. Prix: 14 fr. (Paris, GAUTHIER-VILLARS et fils, quai des Grands-Augustins).

TOMO IX (ANNO 1895). — Fascicolo V. (settembre-ottobre).

(Pubblicato il 1º settembre 1895).

INDICE DELLE MATERIE.

PARTE PRIMA — MEMORIE E COMUNICAZIONI.

CORDONE Sulla congruenza generale di 4º grado secondo un modulo primo (Continuaz.	e	
(ine)		217
PICARD. — Sur la théorie des groupes et des surfaces algébriques		
DICKSON A quadratic Cremona Transformation Defined by a Conic	. »	256
KOHN. — Emil Weyr (Traduzione di F. Gerbaldi)	. »	260
Estratti dai Verbali	. »	263

PARTE SECONDA — BIBLIOTECA MATEMATICA.

Repertorio bibliografico dell	e Scienze Matematic	he in Italia:			
Bullettino di Bibliografi	a e di Storia delle S	Scienze Matematiche e	Fisiche	F	» 33

G. B. Guccia, direttore responsabile a' sensi di legge.

I nuovi soci che volessero render completa la propria collezione dei RENDICONTI potranno farlo, una sola volta, per ciascuno dei volumi pubblicati prima della loro ammissione, al prezzo di LIRE 6, franco di porto in tutti gli Stati dell'Unione Generale Postale.

RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO

A partire da gennajo 1888 questa raccolta matematica si pubblica per fascicoli bimestrali in-8º grande, caratteri elzeviri—6 fascicoli formano ogni anno un volume di circa 300 pagine, che comprende due parti: 1º Memorie e Comunicazioni, 2º Biblioteca Matematica. Al volume vanno annessi gl'indici e la copertina.

Prezzo	del	Tomo		(1884-1887) in-8° grande, di pagine VIII-406			L. 15
»))	»	II	(1888) in-80 grande, di pagine 319 (due parti)			L. 15
»))	*	III	(1889) in-80 grande, di pagine 352 (due parti)		-	L. 15
))))))	IV	(1890) in-80 grande, di pagine XXVIII-350 (due parti)			L. 15
»))))		(1891) in-8° grande, di pagine 404 (due parti)			L. 15
))))))		(1892) in-8° grande, di pagine XXXII-341 (due parti)			L. 15
))))))	VII	(1893) in-8° grande, di pagine 400 (due parti)			L. 15
				(1894) in-80 grande, di pagine 434 (due parti)			L. 15.

È aperta l'associazione pel Tomo IX (1895) al prezzo di L. 15, franco di porto in tutti gli Stati dell'Unione Generale Postale. Inviare vaglia postale al

Tesoriere del Circolo Matematico, via Ruggiero Settimo, 28, Palermo.

TOMO IX.

ANNO 1895.

RENDICONTI

DEL

CIRCOLO MATEMATICO

DI PALERMO

(28, via Ruggiero Settimo, 28)

Fascicolo VI.

Novembre-Dicembre.

Conto corrente con la posta.

Di prossima pubblicazione: l'Annuario del Circolo Matematico di Palermo.

H

CIRCOLO MATEMATICO DI PALERMO

CONSIGLIO DIRETTIVO (Comitato di Redazione dei RENDICONTI) pel triennio 1894-95-96.

Residenti: Albeggiani, Gebbia, Gerbaldi, Guccia, Torelli.

Non residenti: Beltrami (Roma), Bianchi (Pisa), Brioschi (Milano), Capelli (Napoli), Cerruti (Roma), Cremona (Roma), Del Pezzo (Napoli), Jung (Milano), Loria (Genova), Maisano (Messina), Mittag-Leffler (Stoccolma), Peano (Torino), Pincherle (Bologna). Poincaré (Parigi), Volterra (Torino).

Delegato dal Consiglio per dirigere la pubblicazione dei Rendiconti (Art. 20 dello Statuto): Guccia.

NUOVI SOCI

[Vedi l'Elenco a pp. VII-XXVI del tomo VI dei Rendiconti].

RESIDENTI.

DATA DELLA NOMINA.

1894, 8 luglio.

1895, 28 aprile.

1895, 10 marzo.

1894, 22 luglio.

1893, 8 gennajo.

1893, 8 gennajo.

1893, 26 febbrajo.

1892, 26 giugno.

1895, 24 febbrajo.

1894, 8 luglio.

1893, 23 aprile.

1894, 11 febbrajo.

Agnello Francesco. — Piazza Stazione, palazzo Messina. 1893, 22 gennajo.

Bucca Fortunato. - Via Emerico Amari, 39. 1894, 12 agosto.

1894, 23 dicembre. Crescini Ezio, prof. nel R. Liceo V. E.

De Franchis Michele. - Corso Calatasimi, 245. 1895, 13 gennajo.

1892, 11 dicembre. Tirelli Francesco, dottore in Matematica, prof. nel R. Liceo Umberto I.-Corso Calatasimi, 243.

Viola Achille, ingegnere.-Via Cappuccini, 9. 1894, 14 gennajo.

NON RESIDENTI.

Amanzio Domenico, dottore in Matematica, prof. nel R. Istituto Tecnico di Napoli.-1894, 8 aprile. Vico Avellino a Tarsia, 4 - Napoli.

Amici Nicola, dottore in Matematica.-Montecassino (Prov. di Caserta). 1894, 11 marzo.

Bianchi Luigi, dottore in Matematica, prof. nell'Università di Pisa. - R. Università - Pisa. 1893, 24 dicembre.

Burgatti Pietro, dottore in Matematica. - Via Principe Amedeo, 175-Roma.

Castellano Filiberto, dottore in Matematica, prof. nella R. Acc. Militare di Torino.-

R. Accademia Militare-Torino.

Cordone Gerolamo, dottore in Matematica. — Via Giustiniani, 6, int. 2 — Genova.

Di Pirro Giovanni, dottore in Matematica. — Via Macchiavelli, 49, int. 13 — Roma.

Enriques Federigo, dottore in Matematica. — R. Università - Bologna.

Fano Gino, dottore in Matematica. - Via Cavour, 47 - Roma.

Fiorentino Aristide, dottore in Fisica. — Liceo Mandralisca — Cefalù.

Garibaldi Cesare, dottore in Matematica. — Via Balbi, 21 — Genova.

1895, 10 novembre. Guimaraes Rodolfo. - Académie des Sciences, rue Arco Jésus - Lisbonne (Portugal). 1894, 13 maggio.

Halsted George Bruce [S. P.], prof. nella Università di Texas. - Austin, Texas, U. S. A.

Lauricella Giuseppe, dottore in Matematica. — R. Università — Pisa.

Legnazzi Enrico Nestore, prof. nella R. Università di Padova. - Padova.

Levi-Civita Tullio, dottore in Matematica. — Via S. Gaetano, 3394 — Padova.

Macfarlane Alexander, prof. nella Cornell-University di Ithaca. — Ithaca (New-York, 1894, 23 dicembre.

U. S. A.).

Mancini Ernesto, ingegnere, segretario della R. Accademia dei Lincei.—Palazzo Cor-1894, 14 gennajo. sini - Roma.

Massimi Pacifico, dottore in Matematica. - Via del Pellegrino, 96-Roma.

Segue in 3ª pagina.

1895, 27 gennajo. Menabrea, Conte Luigi Federico, marchese di Valdora, tenente generale, cav. dell'Ordine Supremo della Santissima Annunziata, senatore del Regno, etc.—Chambery (Savoia).

895, 10 marzo. Neppi Modona Angelo, ingegnere, dottore in Matematica, prof. nel R. Istituto Tecnico di Girgenti.

895, 28 aprile. Painlevé Paolo, dottore in Scienze, prof. aggiunto nella Facoltà delle Scienze di Parigi. — 99, rue de Rennes — Paris.

894, 13 maggio. Porcelli Onofrio, preside del R. Istituto Tecnico di Bari.-Bari.

894, 23 dicembre. Ricci Gregorio, prof. nella R. Università di Padova.

894, 28 gennajo. Romeo Antonino, capitano nel 2º Reggimento Genio. — Casale Monferrato.

894, 28 gennajo. **Somigliana** Carlo, dottore in Matematica, prof. nell'Università di Pavia. — R. Università — Pavia.

894, 11 marzo. Studnička F. J., professore nell'Università Boema di Praga.—Praga.

895, 13 gennajo. Terzi, Marchese Gabrie'e, maggiore di Stato Maggiore. — Palazzo Terzi, Bergamo.

894, 11 marzo. Vailati Giovanni, dottore in Matematica. — Via Serio — Crema.

893, 9 luglio. Valeri Demetrio, prof. nel R. Liceo di Modena. — R. Liceo — Modena. 893, 26 marzo. Zanotti Bianco Ottavio, ingegnere. — R. Università — Torino.

ANNUNZI DI RECENTI PUBBLICAZIONI.

PESCI, Giuseppe, prof. nella R. Accademia Navale.—Trattato elementare di Trigonometria piana e sferica, con 2027 Esercizi. Libro di testo per la R. Accademia Navale. 1895. Prezzo: L. 4.—Dello tesso Autore: Appendice al Trattato elementare di Trigonometria piana e sferica. 1895. Prezzo L. 1. (Livorno, Tip. di Raffaello Giusti, editore-librajo).

MÉRAY, Ch., professeur à la Faculté des Sciences de Dijon.—Leçons nouvelles sur l'Analyse infinitésimale et ses applications géométriques.—Deuxième Partie: Étude monographique des principales fonctions d'une seule variable. 1895. Prix: 14 fr. (Librairie Gauthier-Villars et fils, 55, quai des Grands-Augustins, Paris).

KIEPERT, Dr. Ludwig, Professor der Mathematik an der technischen Hochschule zu Hannover,—Grundriss der Differential-und Integral-Rechnung. I. Theil: Differential-Rechnung. Siebente vollständig umgearbeitete und vermehrte Auflage des gleichnamigen Leitfadens von weil. Dr. Max Stegemann. Mit 160 Figuren im Texte. 1895. (Hannover, Helwing'sche Verlagsbuchandlung).

RESAL, H., membre de l'Institut, inspecteur général des Mines. — Traité de Mécanique générale, comprenant les Leçons professées à l'École Polytechnique. — Tome I: Cinématique. — Théorèmes généraux de la Mécanique. — De l'équilibre et du mouvement des corps solides. 2º édition. In-8, avec 47 figures; 1895. Prix: 6 fr. 50. — Tome II: Du mouvement des solides eu égard aux frottements. — Équilibre intérieur. — Élasticité. — Hydrostatique. — Hydrodynamique. — Hydraulique. 2º édition. In-8°, avec 41 figures; 1895. Prix: 3 fr. (Librairie Gauthier-Villars et fils, 55, quai des Grands-Augustins, Paris).

LAISANT, C.-A., docteur ès Sciences.—Recueil de problèmes de Mathématiques classés par divisions scientifiques, contenant les énoncés avec renvoi aux solutions de tous les problèmes posés, depuis l'origine, dans divers journaux: Nouvelles Annales de Mathématiques, Journal de Mathématiques élémentaires et de Mathématiques spéciales, Muthesis, Nouvelle Correspondance mathématique. 7 volumes in-8, se vendant séparément.—Vient de paraître le Tome III: Algèbre. Théorie des nombres. Probabilités. Géométrie de situation. (A l'usage des classes de Mathématiques spéciales). 1895. Prix: 6 fr. (Librairie Gauthier Villars et FILS, 55, quai des Grands-Augustins, Paris).

SALISBURY (Marquis de), premier Ministre d'Angleterre. — Les limites actuelles de notre Science, discours présidentiel prononcé le 8 août 1894 devant la British Association, dans sa session d'Oxford. Traduit par M. W. de Fonvielle, avec l'autorisation de l'Auteur. 1895. (Librairie Gauthier-Villars et fils, 55, quai des Grands-Augustins, Paris).

Or'ora pubbicato, coi tipi della Tipografia Matematica:

NEPPI MODONA, A. e VANNINI, T. — Questioni e formole di Geometria analitica (ad una e due dimensioni). 1896. Un bel volume in-8º di pagine 320. Prezzo L. 7. (Palermo, Alberto Reber, Libreria di Carlo Clausen).

TOMO IX (ANNO 1895). — Fascicolo VI. (novembre-dicembre).

(Pubblicato il 14 novembre 1895).

INDICE DELLE MATERIE.

PARTE PRIMA - MEMORIE E COMUNICAZIONI.

Indice generale	
PARTE SECONDA — BIBLIOTECA MATEMATICA.	
Repertorio bibliografico delle Scienze Matematiche in Italia:	
Bullettino di Bibliografia e di Storia delle Scienze Matematiche e Fisiche »	41
R. Accademia dei Lincei	52
Indice della Parte 2ª del Tomo IX	99

G. B. Guccia, direttore responsabile a' sensi di legge.

I nuovi soci che volessero render completa la propria collezione dei RENDICONTI potranno farlo, una sola volta, per ciascuno dei volumi pubblicati prima della loro ammissione, al prezzo di LIRE 6, franco di porto in tutti gli Stati dell'Unione Generale Postale.

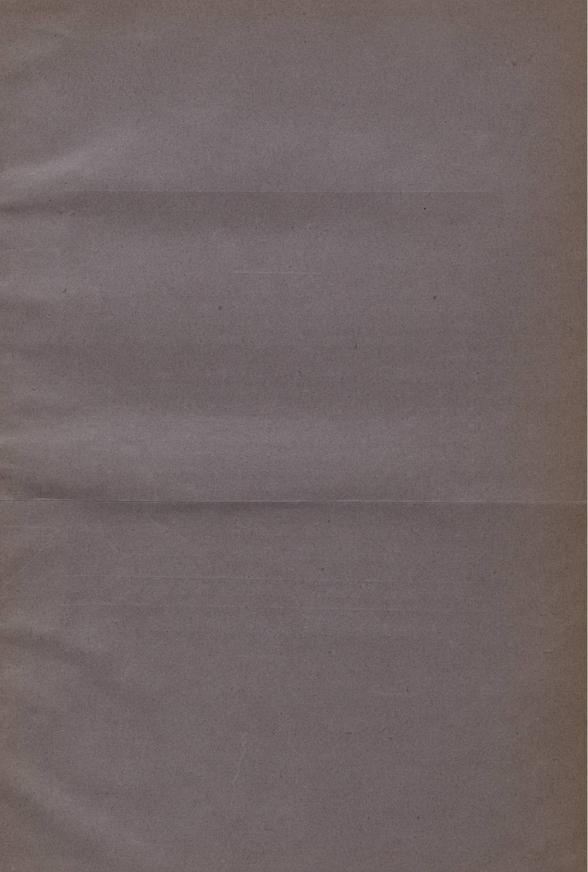
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO

A partire da gennajo 1888 questa raccolta matematica si pubblica per fascicoli bimestrali in-8º grande, caratteri elzeviri—6 fascicoli formano ogni anno un volume di circa 300 pagine, che comprende due parti: 1º Memorie e Comunicazioni, 2º Biblioteca Matematica. Al volume vanno annessi gl'indici e la copertina.

									T TH
Prezzo	del	Tomo	I	884-1887) in-8° gra	ande, di pa	gine VIII-406			L. 15
))))))	II	(888) in-80 grande,	di pagine	319 (due par	ti)		L. 15
))		>)	III	889) in-8° grande,	di pagine	352 (due par	ti)	1.17.0	L. 15
))))	IV	(890) in-8° grande,	di pagine	XXVIII-350 (lue parti).		L. 15
)))	V	(891) in-8° grande,	di pagine	404 (due par	ti)		L. 15
"		"		892) in-8° grande,					L. 15
		"		893) in-8° grande,					L. 15
			TITTE	(894) in-8° grande,	di pagine	124 (due par	ri)	To be to	L. 15
))))	"	AIII	1094) III-6 grande,	di pagine	4)4 (due par			L. 15.
))	>>))	1X	1895) in-8° grande,	di pagine	385 (due par	ti)		ц. 15.

È aperta l'associazione pel Tomo X (1896) al prezzo di L. 15, franco di porto in tutti gli Stati dell'Unione Generale Postale. Inviare vaglia postale al

Tesoriere del Circolo Matematico, via Ruggiero Settimo, 28, Palermo.



RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO

A partire da gennajo 1888 questa raccolta matematica si pubblica per fascicoli bimestrali in-8º grande, caratteri elzeviri. 6 fascicoli formano ogni anno un
volume di circa 300 pagine, che comprende due parti: 1ª Memorie e Comunicazioni, 2ª Biblioteca Matematica. Al volume vanno annessi gl'indici e la
copertina.

				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L. 15
Prezzo	del	Tomo	I	(1004-100/) III-0 grande, at pug.	
»		3	11	(1888) in-8° grande, di pagine 319 (due parti) . I	J. 15
»))))	III	(1889) in-80 grande, di pagine 352 (due parti) . I	L. 15
"	33))	IV	(1890) in-80 grande, di pagine xxvIII-350 (due parti). I	L. 15
»))))	V	(1891) in-80 grande, di pagine 404 (due parti) . I	L. 15
»		,,	VI	(1802) in-80 grande, di pagine XXXII-341 (due parti).	L. 15
"	"	,	VII	(1893) in-80 grande, di pagine 400 (due parti) . I	L. 15
		,,,	VIII	(1894) in-8° grande, di pagine 434 (due parti) . I	L. 15
	,	"	IX	(1895) in-8° grande, di pagine 385 (due parti). I	L. 15.
»	"	"	1.0	(109)) III & (1806) al prezzo di 1, 15 fran	co di

È aperta l'associazione pel Tomo X (1896) al prezzo di L. 15, franco di porto in tutti gli Stati dell'Unione Generale Postale. Inviare vaglia postale al Tesoriere del Circolo Matematico, Via Ruggiero Settimo, 28, Palermo.

G. B. Guccia, direttore responsabile ai sensi di legge.

Tipografia Matematica, 28, via Ruggiero Settimo, Palermo.
(60) 16-x1-95.

90 **OPCARD**

© SUB GÖTTINGEN / GDZ | 2010