Fourier - Bessel Transforms
263
The Bessel functions Jl,k> 0, can also be computed exphcitly using most of the techniques developed above. We content ourselves with stating only the final results.
Theorem 6. // ip^ is a character on Cf^ which is trivial on Cf ^ and non-trivial onÖ^-'\h^l,then
Jk { v ) = hvit)Wk{t)dt = 0 if N^g. If\v\ = q^'^^^>q, then
JkHv ) =<
0 , lSm<h/2,
X { v ) J x(2'n;xVl -т:^^')У^к{я>М)^х, h/2^m<h,
If \v\ = q^'^>q, then
4i^m<A±l
Xiv )
h + 1
j xi2Tvx^/l-TX^)\pk((p(x))dx, —Y-U^<h,
Jk4v ) = <
\x\=q -
[ \x\ = q Ux\=q
X { 2Tux^ ) xPk { ( p { T^x ) ) dx + l\ , m = h,v = x~^\ueU,
' } ■
X { 2xux^' ) dx + \\ ,m>h,v = T ^""u^ueU.
q'^^xi
Each of the integrals occurring in the above evaluation of J^ can be written as a finite sum of ^''-th roots of unity (the last integral is a sum of ^-th roots of unity as in Theorem 5.
As a final remark, we note that the subspaces Жо and J^q of J^o» defined in the remark after Theorem 1, are not invariant under the Fourier transform. For example, iffej^o, it follows from (3.7) and Theorem 4 that
f ( ] / ^R ) =if { Q ) \Q\jS { - RQ ) dQ= J f{Q)\Q\dQ,
к \Q\âq\R\~'
and this last integral is not zero, in general. A similar proof can be given show the non-invariance of Жо.
References
1 . BocHNER, S., and K. Chandrasekharan: Fourier transforms. Princeton, N.J.: Princeton
University Press 1949.
2 . BosECK, H. : Darstellungen von Matrixgruppen über topologischen Körpern I. Math. Nachr.
24 , 229—243 (1962).
3 . BouRBAKi, N.: Algèbre commutative, Ch. 5 and 6. Paris: Hermann 1964.
4 . Gelfand, I. M., and M. I. Graev: Representations of a group of the second order with
elements from a locally compact field. Uspehi Mat. Nauk. (Russian Math. Surveys) 18, 29—100 (1963).
18 Math Ann 174