440
von г2 und die Coulombsche Energiedifferenz ЛЕ^ für die Spiegelpaare F^'^jO^'^ (d-Zw stand) und O^jHP-^ (p-Znsi&nd) berechnet, und zwar unter Berücksichtigung der Austauschterme. Zugrunde gelegt wird das Topfpotential sowie das tial. Die Diskrepanz konnte teilweise aufgeklärt werden. Cr. Süßmann.
Inglis , D. R.: Partiele derivation of nuclear rotation properties associated with a snrfaee wave. Phys. Review, II. Ser. 96, 1059—1065 (1954).
Verf . gibt eine neue Ableitung der von Bohr und Mottelson entdeckten Ro- tationszustände stark defomierter Atomkerne. Die Bohrsche Annahme ehier freien Strömung der Kernmaterie wird ersetzt durch das Schalenmodell mit einem klassisch rotierenden anisotropen Oszillationspotential. Auf diese Weise können vieUeicht die beobachte^fcen großen Trägheitsmomente der Rotationsspektren erklärt werden. ^- Süßmann.
Pniewski , J.: Neue Modellhypothesen über den Atomkern. Material phys. Konferenz in Spala, 1.-14. Sept. 1952, 175-192 (1954) [Polnisch].
Der Vortrag enthält einen Bericht über das neuere Schalenmodell des Kerns.
G . Süßmann.
Sengupta , S.: Nuclear moments and shell structure. Indian J. theor. Phys. 2, 121—158 (1954).
Nach einem Überblick über die Systematik der Kernmomente werden auf der Basis des Schalenmodells der Kerne mit Hilfe der möghchen Kopplungsschemen die Abweichungen der Kernmomente vom Ein-Nukleonenmodell diskutiert.
B . Stech.
Rapoport , L. P. und V. A. Filimonov: Die statistische Berechnung der verteilung der Nukleonen und der Schalenaufbau des Kerns. 2urn. éksper. teor. Fiz. 27, 243—250 (1954) [Russisch].
Die Verff. berechnen auf der Grundlage des Thomas-Fermi-Modells nach dem Ritzschen Näherungsverfahren durch Variation zweier Parameter (Kernradius und Abfallsbreite) die Verteilung der Materiedichte im Kern. Es wird ein giges Yukawa-Potential mit Ortsaustauseh zugrunde gelegt (ladungssymmetrisch aber nicht ladungsunabhängig) ; das Coulombpotential wird vernachlässigt. Es wird ferner untersucht, wie sieh die Materiedichte auf die Drehimpuls- Quantenzahlen l verteilt. Die Übereinstimmung mit dem Schalenmodell ist befriedigend.
G . Süßmann.
Sokolov , A. A. und B. K. Kerimov: Zur statistischen Theorie des Atomkerns. II. 2urn, éksper. teor. Fiz. 26, 430—438 (1954) [Russisch].
[ Teil I, Kerimov, 2urn. éksper. teor. Fiz. 84, 299 (1953).] Mit Hilfe der schen Methode wird die Kopplungsenergie schwerer Kerne berechnet. Es wird gesetzt, daß die Wechselwirkung zwischen den Nukleonen durch Austausch neutraler Mesonen zweier Arten geschieht. Dabei soll das eine von ihnen pseudoskalar, das andere vektoriell sein. Die Massen der Mesonen gelten als verschieden, wobei das pseudoskalare Meson mit dem 7r<>-Meson identifiziert wird. Für die Elimination von Dipolgliedern wurde eine Mischung der skalaren und der vektoriellen kung genommen. Bei der Berechnung der Kopplungsenergie galt die Voraussetzung, daß sich die Wellenfunktion jedes der Teilchen trotz der Beimischung von zentralen Kräften als ein Produkt von Funktionen darstellen läßt, von denen eine von den räumlichen, die andere von den Spinkoordinaten abhängt. Die vollständige Weîlenfunktion des Kerns wurde als Produkt von Einteilchenfunktionen dargestellt. Bei der Durchführung konkreter Berechnungen wurden die räumlichen Teile der Ein- teüehenwellenfunktionen durch ebene Wellen ersetzt. Außerdem setzen Verff. der einfachung wegen die Dichte der Verteilung innerhalb des Кегш als konstant und außerhalb gleich Null. Als Ergebnis der Berechnung der Energie des Systems fand man nach dem Übergang von den Wellenfunktionen zu den Dichten einen Ausdruck für die vollständige Energie in Form mmi Summe der Glieder der Austausch-Kem-