221
+ J е-^+' I fit, У(Ь), y'(t)] -fit, уо(<), Voit)] I (К < I +
- - - - 00
00
+ / e-l^-'l . I Л«, 2/(0, y'm -f[t, Voit), уМ I d< < I + I fi = е.
- - - - 00
It follows from the relations (11) and (12)
Pn [ Ty { x ) — Туо{х)] < e, if ргпЫх) — уо(х)] < д and thus continuity of the operator (9) is proved.
The compactness of the operator (9) will be proved by the application of the AscoH-Arzela theorem. It is therefore sufficient to show that Ty{x) are equi-bounded and equi-continuous on each of the intervals
<—w , n).
Let ^j(x) 6 if. Then
Ty { x )
\ J ^-'^-'' -fit, y(t), y'(t)] dt S~ f e-l^-^l dt=:K
—00 _oo
X
'\й\ f e-^+« .f[t, y(t), y'(t}] à.t\ + Ku2K.
I •/
iTy ( x ) ]
Hence TM с M and at the same time also the set TM is equibounded. The equi-continuity of the functions from TM on the interval (—n, n} will be proved in the following way: Let e > 0 be an arbitrary number and let
Then
\xi — X2\<-^, a?i < a;2, Xi, XzE (—n,n}, Ty(x,) — Ty(x2) \=~\ (e-^^ — e-^^) j é .f[t, y(t), y\t)] at +
- - - - 00
x^
00
+ (e^' — e=^^) j e-'. f[t, y(t), y'{t)] àt